WorldWideScience

Sample records for single reconstructed time

  1. Online evolution reconstruction from a single measurement record with random time intervals for quantum communication

    Science.gov (United States)

    Zhou, Hua; Su, Yang; Wang, Rong; Zhu, Yong; Shen, Huiping; Pu, Tao; Wu, Chuanxin; Zhao, Jiyong; Zhang, Baofu; Xu, Zhiyong

    2017-10-01

    Online reconstruction of a time-variant quantum state from the encoding/decoding results of quantum communication is addressed by developing a method of evolution reconstruction from a single measurement record with random time intervals. A time-variant two-dimensional state is reconstructed on the basis of recovering its expectation value functions of three nonorthogonal projectors from a random single measurement record, which is composed from the discarded qubits of the six-state protocol. The simulated results prove that our method is robust to typical metro quantum channels. Our work extends the Fourier-based method of evolution reconstruction from the version for a regular single measurement record with equal time intervals to a unified one, which can be applied to arbitrary single measurement records. The proposed protocol of evolution reconstruction runs concurrently with the one of quantum communication, which can facilitate the online quantum tomography.

  2. Lower extremity muscle activation onset times during the transition from double-leg stance to single-leg stance in anterior cruciate ligament reconstructed subjects.

    Science.gov (United States)

    Dingenen, Bart; Janssens, Luc; Claes, Steven; Bellemans, Johan; Staes, Filip F

    2016-06-01

    Previous studies mainly focused on muscles at the operated knee after anterior cruciate ligament reconstruction, less on muscles around other joints of the operated and non-operated leg. The aim of this study was to investigate muscle activation onset times during the transition from double-leg stance to single-leg stance in anterior cruciate ligament reconstructed subjects. Lower extremity muscle activation onset times of both legs of 20 fully returned to sport anterior cruciate ligament reconstructed subjects and 20 non-injured control subjects were measured during the transition from double-leg stance to single-leg stance in eyes open and eyes closed conditions. Analysis of covariance (ANCOVA) was used to evaluate differences between groups and differences between legs within both groups, while controlling for peak center of pressure velocity. Significantly delayed muscle activation onset times were found in the anterior cruciate ligament reconstructed group compared to the control group for gluteus maximus, gluteus medius, vastus medialis obliquus, medial hamstrings, lateral hamstrings and gastrocnemius in both eyes open and eyes closed conditions (Panterior cruciate ligament reconstructed group, no significant different muscle activation onset times were found between the operated and non-operated leg (P>.05). Despite completion of rehabilitation and full return to sport, the anterior cruciate ligament reconstructed group showed neuromuscular control deficits that were not limited to the operated knee joint. Clinicians should focus on relearning multi-segmental anticipatory neuromuscular control strategies after anterior cruciate ligament reconstruction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Skull reconstruction after resection of bone tumors in a single surgical time by the association of the techniques of rapid prototyping and surgical navigation.

    Science.gov (United States)

    Anchieta, M V M; Salles, F A; Cassaro, B D; Quaresma, M M; Santos, B F O

    2016-10-01

    Presentation of a new cranioplasty technique employing a combination of two technologies: rapid prototyping and surgical navigation. This technique allows the reconstruction of the skull cap after the resection of a bone tumor in a single surgical time. The neurosurgeon plans the craniotomy previously on the EximiusMed software, compatible with the Eximius Surgical Navigator, both from the company Artis Tecnologia (Brazil). The navigator imports the planning and guides the surgeon during the craniotomy. The simulation of the bone fault allows the virtual reconstruction of the skull cap and the production of a personalized modelling mold using the Magics-Materialise (Belgium)-software. The mold and a replica of the bone fault are made by rapid prototyping by the company Artis Tecnologia (Brazil) and shipped under sterile conditions to the surgical center. The PMMA prosthesis is produced during the surgical act with the help of a hand press. The total time necessary for the planning and production of the modelling mold is four days. The precision of the mold is submillimetric and accurately reproduces the virtual reconstruction of the prosthesis. The production of the prosthesis during surgery takes until twenty minutes depending on the type of PMMA used. The modelling mold avoids contraction and dissipates the heat generated by the material's exothermic reaction in the polymerization phase. The craniectomy is performed with precision over the drawing made with the help of the Eximius Surgical Navigator, according to the planned measurements. The replica of the bone fault serves to evaluate the adaptation of the prosthesis as a support for the perforations and the placement of screws and fixation plates, as per the surgeon's discretion. This technique allows the adequate oncologic treatment associated with a satisfactory aesthetic result, with precision, in a single surgical time, reducing time and costs.

  4. Characterization of a detector chain using a FPGA-based time-to-digital converter to reconstruct the three-dimensional coordinates of single particles at high flux

    Energy Technology Data Exchange (ETDEWEB)

    Nogrette, F.; Chang, R.; Bouton, Q.; Westbrook, C. I.; Clément, D. [Laboratoire Charles Fabry, Institut d’Optique Graduate School, CNRS, Univ. Paris-Saclay, 91127 Palaiseau cedex (France); Heurteau, D.; Sellem, R. [Fédération de Recherche LUMAT (DTPI), CNRS, Univ. Paris-Sud, Institut d’Optique Graduate School, Univ. Paris-Saclay, F-91405 Orsay (France)

    2015-11-15

    We report on the development of a novel FPGA-based time-to-digital converter and its implementation in a detection chain that records the coordinates of single particles along three dimensions. The detector is composed of micro-channel plates mounted on top of a cross delay line and connected to fast electronics. We demonstrate continuous recording of the timing signals from the cross delay line at rates up to 4.1 × 10{sup 6} s{sup −1} and three-dimensional reconstruction of the coordinates up to 3.2 × 10{sup 6} particles per second. From the imaging of a calibrated structure we measure the in-plane resolution of the detector to be 140(20) μm at a flux of 3 × 10{sup 5} particles per second. In addition, we analyze a method to estimate the resolution without placing any structure under vacuum, a significant practical improvement. While we use UV photons here, the results of this work apply to the detection of other kinds of particles.

  5. Y BALANCE TEST™ ANTERIOR REACH SYMMETRY AT THREE MONTHS IS RELATED TO SINGLE LEG FUNCTIONAL PERFORMANCE AT TIME OF RETURN TO SPORTS FOLLOWING ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION.

    Science.gov (United States)

    Garrison, J Craig; Bothwell, James M; Wolf, Gina; Aryal, Subhash; Thigpen, Charles A

    2015-10-01

    Restoration of symmetrical strength, balance, and power following anterior cruciate ligament reconstruction (ACL-R) are thought to be important factors for successful return to sports. Little information is available regarding early rehabilitation outcomes and achieving suggested limb indices of 90% on functional performance measures at the time of return to sports (RTS). To examine the relationship between symmetry of the anterior reach of the Y Balance Test™ at 12 weeks and functional performance measures at time of return to sports after anterior cruciate ligament (ACL) reconstruction. Retrospective Cohort. Forty subjects (mean ± SD age, 17.2 ± 3.8 years) who were in the process of rehabilitation following ACL reconstruction. Each subject volunteered and was enrolled in the study during physical therapy following ACL-R. Participants averaged two visits per week in physical therapy until the time of testing for RTS. The Y Balance Test™ was assessed at 12 weeks. Participants completed a battery of tests at RTS (6.4 ± 1.1 months) including triple hop distance (THD), single hop distance (SHD), isometric knee extension strength (KE), and the Vail Sport Test™. Side to side difference was calculated for the Y Balance Test™ anterior reach and limb symmetry indices (LSI) were computed for THD, SHD, and KE. Multiple regression models were used to study the relationship between variables at 12 weeks and RTS while controlling for age, gender, type of graft, and pain score. In addition, subjects were dichotomized based on a side-to-side Y Balance anterior reach difference into high risk (>4 cm) or low risk (≤4 cm) categories. A receiver operating characteristic (ROC) curve was used to identify individuals at 12 weeks who do not achieve 90% limb symmetry indices at time of RTS testing. . A statistically significant association was seen between Y Balance ANT at 12 weeks and SHD at RTS (β = -1.46, p = 0.0005, R(2) = 0.395), THD at RTS

  6. 3D color reconstructions in single DMD holographic display with LED source and complex coding scheme

    Science.gov (United States)

    Chlipała, Maksymilian; Kozacki, Tomasz

    2017-06-01

    In the paper we investigate the possibility of color reconstructions of holograms with a single DMD and incoherent LED source illumination. Holographic display is built with 4F imaging system centering reconstruction volume around the DMD surface. The display design employs complex coding scheme, which allows reconstructing complex wave from a binary hologram. In order to improve the quality of reconstructed holograms time multiplexing method is used. During the optical reconstructions we analyze quality of reconstructed holograms with incoherent RGB light sources as a function of reconstruction distance, present the possibility of 3D hologram reconstruction, and investigate temporal coherence effects in holographic display with the DMD.

  7. Tunka-Rex: energy reconstruction with a single antenna station

    Directory of Open Access Journals (Sweden)

    Hiller R.

    2017-01-01

    Full Text Available The Tunka-Radio extension (Tunka-Rex is a radio detector for air showers in Siberia. From 2012 to 2014, Tunka-Rex operated exclusively together with its host experiment, the air-Cherenkov array Tunka-133, which provided trigger, data acquisition, and an independent air-shower reconstruction. It was shown that the air-shower energy can be reconstructed by Tunka-Rex with a precision of 15% for events with signal in at least 3 antennas, using the radio amplitude at a distance of 120 m from the shower axis as an energy estimator. Using the reconstruction from the host experiment Tunka-133 for the air-shower geometry (shower core and direction, the energy estimator can in principle already be obtained with measurements from a single antenna, close to the reference distance. We present a method for event selection and energy reconstruction, requiring only one antenna, and achieving a precision of about 20%. This method increases the effective detector area and lowers thresholds for zenith angle and energy, resulting in three times more events than in the standard reconstruction.

  8. Megaprepuce Reconstruction: A Single Center Experience

    Directory of Open Access Journals (Sweden)

    Miguel Luis Podestá

    2018-03-01

    Full Text Available IntroductionSurgical treatment of congenital megaprepuce is challenging and controversial. We report our 10-year experience treating patients with this deformity using a standardized procedure that has similarities to a technique reported by Smeulders et al. (1. Our postoperative complications and mid-term follow-up cosmetic appearance of the genitalia after reconstruction are reviewed.Material and methodsFifteen patients operated on between 2005 and 2015 were evaluated. Age at surgical repair ranged from 3 to 20 months (mean 9. Treatment included unfolding the preputial sac via a ventral approach, excision of redundant inner preputial skin, and ventral skin coverage with the outer preputial layer. Twelve patients presented associated partial scrotal engulfment, which was simultaneously treated. Mean follow-up was 4.6 years (range 2–7 years.ResultsShort-term complications occurred in three patients: scrotal hematoma in one patient and small skin dehiscence at the penoscrotal junction in two patients. Skin disruption healed by secondary epithelial ingrowth. All cases resulted in a satisfactory genital cosmetic outcome. There were no late complications. All patients preserved normal external genitalia appearance.ConclusionOur experience is in agreement with reports of other authors; suggesting that excision of the inner preputial layer and using the external one for penile coverage provide good and durable mid-term esthetic results in megaprepuce reconstruction.

  9. Quantitative reconstruction from a single diffraction-enhanced image

    International Nuclear Information System (INIS)

    Paganin, D.M.; Lewis, R.A.; Kitchen, M.

    2003-01-01

    Full text: We develop an algorithm for using a single diffraction-enhanced image (DEI) to obtain a quantitative reconstruction of the projected thickness of a single-material sample which is embedded within a substrate of approximately constant thickness. This algorithm is used to quantitatively map inclusions in a breast phantom, from a single synchrotron DEI image. In particular, the reconstructed images quantitatively represent the projected thickness in the bulk of the sample, in contrast to DEI images which greatly emphasise sharp edges (high spatial frequencies). In the context of an ultimate aim of improved methods for breast cancer detection, the reconstructions are potentially of greater diagnostic value compared to the DEI data. Lastly, we point out that the methods of analysis presented here are also applicable to the quantitative analysis of differential interference contrast (DIC) images

  10. Some factors affecting time reversal signal reconstruction

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk; Kober, Jan

    2015-01-01

    Roč. 70, September (2015), s. 604-608 ISSN 1875-3892. [ICU International Congress on Ultrasonics 2015. Metz, 10.05.2015-15.05.2015] Institutional support: RVO:61388998 Keywords : nondestructive testing * time reversal signal processing * ultrasonic source reconstruction * acoustic emission * coda wave interferometry Subject RIV: BI - Acoustics http://ac.els-cdn.com/S1875389215007762/1-s2.0-S1875389215007762-main.pdf?_tid=1513a4a2-9e5b-11e5-9693-00000aab0f27&acdnat=1449655153_455a4e32a1135236d0796c3f973ff58e

  11. Reconstruction of the time shape of TileCal signals

    CERN Document Server

    Roda, C

    2003-01-01

    The Hadronic Tile Calorimeter is readout using a dual gain ADC. In this note a method to reconstruct the time shape of signals from a single ADC channel is reported. Both calibration events (CIS) and events generated by beam particles are used. Although the electronic system shapes the input signal, some differences are found between the time shape of the signal exiting the photomultiplier and the one produced by the calibration circuit. The simulation of the shaper circuit allows to infer the time shape of the signal generated at the output of the photomultiplier when a beam particle crosses the calorimeter.

  12. Accurate Sample Time Reconstruction of Inertial FIFO Data.

    Science.gov (United States)

    Stieber, Sebastian; Dorsch, Rainer; Haubelt, Christian

    2017-12-13

    In the context of modern cyber-physical systems, the accuracy of underlying sensor data plays an increasingly important role in sensor data fusion and feature extraction. The raw events of multiple sensors have to be aligned in time to enable high quality sensor fusion results. However, the growing number of simultaneously connected sensor devices make the energy saving data acquisition and processing more and more difficult. Hence, most of the modern sensors offer a first-in-first-out (FIFO) interface to store multiple data samples and to relax timing constraints, when handling multiple sensor devices. However, using the FIFO interface increases the negative influence of individual clock drifts-introduced by fabrication inaccuracies, temperature changes and wear-out effects-onto the sampling data reconstruction. Furthermore, additional timing offset errors due to communication and software latencies increases with a growing number of sensor devices. In this article, we present an approach for an accurate sample time reconstruction independent of the actual clock drift with the help of an internal sensor timer. Such timers are already available in modern sensors, manufactured in micro-electromechanical systems (MEMS) technology. The presented approach focuses on calculating accurate time stamps using the sensor FIFO interface in a forward-only processing manner as a robust and energy saving solution. The proposed algorithm is able to lower the overall standard deviation of reconstructed sampling periods below 40 μ s, while run-time savings of up to 42% are achieved, compared to single sample acquisition.

  13. Accurate Sample Time Reconstruction of Inertial FIFO Data

    Directory of Open Access Journals (Sweden)

    Sebastian Stieber

    2017-12-01

    Full Text Available In the context of modern cyber-physical systems, the accuracy of underlying sensor data plays an increasingly important role in sensor data fusion and feature extraction. The raw events of multiple sensors have to be aligned in time to enable high quality sensor fusion results. However, the growing number of simultaneously connected sensor devices make the energy saving data acquisition and processing more and more difficult. Hence, most of the modern sensors offer a first-in-first-out (FIFO interface to store multiple data samples and to relax timing constraints, when handling multiple sensor devices. However, using the FIFO interface increases the negative influence of individual clock drifts—introduced by fabrication inaccuracies, temperature changes and wear-out effects—onto the sampling data reconstruction. Furthermore, additional timing offset errors due to communication and software latencies increases with a growing number of sensor devices. In this article, we present an approach for an accurate sample time reconstruction independent of the actual clock drift with the help of an internal sensor timer. Such timers are already available in modern sensors, manufactured in micro-electromechanical systems (MEMS technology. The presented approach focuses on calculating accurate time stamps using the sensor FIFO interface in a forward-only processing manner as a robust and energy saving solution. The proposed algorithm is able to lower the overall standard deviation of reconstructed sampling periods below 40 μ s, while run-time savings of up to 42% are achieved, compared to single sample acquisition.

  14. The PRISM (Pliocene Palaeoclimate) reconstruction: Time for a paradigm shift

    Science.gov (United States)

    Dowsett, Harry J.; Robinson, Marci M.; Stoll, Danielle K.; Foley, Kevin M.; Johnson, Andrew L. A.; Williams, Mark; Riesselman, Christina

    2013-01-01

    Global palaeoclimate reconstructions have been invaluable to our understanding of the causes and effects of climate change, but single-temperature representations of the oceanic mixed layer for data–model comparisons are outdated, and the time for a paradigm shift in marine palaeoclimate reconstruction is overdue. The new paradigm in marine palaeoclimate reconstruction stems the loss of valuable climate information and instead presents a holistic and nuanced interpretation of multi-dimensional oceanographic processes and responses. A wealth of environmental information is hidden within the US Geological Survey's Pliocene Research,Interpretation and Synoptic Mapping (PRISM) marine palaeoclimate reconstruction, and we introduce here a plan to incorporate all valuable climate data into the next generation of PRISM products. Beyond the global approach and focus, we plan to incorporate regional climate dynamics with emphasis on processes, integrating multiple environmental proxies wherever available in order to better characterize the mixed layer, and developing a finer time slice within the Mid-Piacenzian Age of the Pliocene, complemented by underused proxies that offer snapshots into environmental conditions. The result will be a proxy-rich, temporally nested, process-oriented approach in a digital format - a relational database with geographic information system capabilities comprising a three-dimensional grid representing the surface layer, with a plethora of data in each cell.

  15. Promising results after single-stage reconstruction of the nipple and areola complex

    DEFF Research Database (Denmark)

    Børsen-Koch, Mikkel; Bille, Camilla; Thomsen, Jørn B

    2013-01-01

    a technique based on a local flap for reconstruction of the nipple in combination with immediate intradermal tattooing for reconstruction of the areola. Results: We reviewed the outcome of 22 cases of women who had simple single-stage reconstruction over a period of one year. We found no major and only two...... minor complications including one case of partial flap necrosis and one case of infection. Only three patients needed additional tattooing after a three-month period. The cosmetic outcome was satisfactory and none of the patients needed corrective procedures. The mean procedure time for unilateral...

  16. Particle segmentation algorithm for flexible single particle reconstruction.

    Science.gov (United States)

    Zhou, Qiang; Zhou, Niyun; Wang, Hong-Wei

    2017-01-01

    As single particle cryo-electron microscopy has evolved to a new era of atomic resolution, sample heterogeneity still imposes a major limit to the resolution of many macromolecular complexes, especially those with continuous conformational flexibility. Here, we describe a particle segmentation algorithm towards solving structures of molecules composed of several parts that are relatively flexible with each other. In this algorithm, the different parts of a target molecule are segmented from raw images according to their alignment information obtained from a preliminary 3D reconstruction and are subjected to single particle processing in an iterative manner. This algorithm was tested on both simulated and experimental data and showed improvement of 3D reconstruction resolution of each segmented part of the molecule than that of the entire molecule.

  17. Image reconstruction of dynamic infrared single-pixel imaging system

    Science.gov (United States)

    Tong, Qi; Jiang, Yilin; Wang, Haiyan; Guo, Limin

    2018-03-01

    Single-pixel imaging technique has recently received much attention. Most of the current single-pixel imaging is aimed at relatively static targets or the imaging system is fixed, which is limited by the number of measurements received through the single detector. In this paper, we proposed a novel dynamic compressive imaging method to solve the imaging problem, where exists imaging system motion behavior, for the infrared (IR) rosette scanning system. The relationship between adjacent target images and scene is analyzed under different system movement scenarios. These relationships are used to build dynamic compressive imaging models. Simulation results demonstrate that the proposed method can improve the reconstruction quality of IR image and enhance the contrast between the target and the background in the presence of system movement.

  18. 3D Point Cloud Reconstruction from Single Plenoptic Image

    Directory of Open Access Journals (Sweden)

    F. Murgia

    2016-06-01

    Full Text Available Novel plenoptic cameras sample the light field crossing the main camera lens. The information available in a plenoptic image must be processed, in order to create the depth map of the scene from a single camera shot. In this paper a novel algorithm, for the reconstruction of 3D point cloud of the scene from a single plenoptic image, taken with a consumer plenoptic camera, is proposed. Experimental analysis is conducted on several test images, and results are compared with state of the art methodologies. The results are very promising, as the quality of the 3D point cloud from plenoptic image, is comparable with the quality obtained with current non-plenoptic methodologies, that necessitate more than one image.

  19. A 3D Reconstruction Strategy of Vehicle Outline Based on Single-Pass Single-Polarization CSAR Data.

    Science.gov (United States)

    Leping Chen; Daoxiang An; Xiaotao Huang; Zhimin Zhou

    2017-11-01

    In the last few years, interest in circular synthetic aperture radar (CSAR) acquisitions has arisen as a consequence of the potential achievement of 3D reconstructions over 360° azimuth angle variation. In real-world scenarios, full 3D reconstructions of arbitrary targets need multi-pass data, which makes the processing complex, money-consuming, and time expending. In this paper, we propose a processing strategy for the 3D reconstruction of vehicle, which can avoid using multi-pass data by introducing a priori information of vehicle's shape. Besides, the proposed strategy just needs the single-pass single-polarization CSAR data to perform vehicle's 3D reconstruction, which makes the processing much more economic and efficient. First, an analysis of the distribution of attributed scattering centers from vehicle facet model is presented. And the analysis results show that a smooth and continuous basic outline of vehicle could be extracted from the peak curve of a noncoherent processing image. Second, the 3D location of vehicle roofline is inferred from layover with empirical insets of the basic outline. At last, the basic line and roofline of the vehicle are used to estimate the vehicle's 3D information and constitute the vehicle's 3D outline. The simulated and measured data processing results prove the correctness and effectiveness of our proposed strategy.

  20. Videoendoscopic Single-Port Nipple-Sparing Mastectomy and Immediate Reconstruction

    Science.gov (United States)

    Ozden, Burcu Celet; Agcaoglu, Orhan; Kecer, Mustafa; Ozmen, Vahit; Muslumanoglu, Mahmut; Igci, Abdullah

    2014-01-01

    Abstract Purpose: Single-incision videoendoscopic surgery has recently become popular as a result of the ongoing search for less invasive procedures. The aim of this study was to evaluate the safety and efficacy of endoscopic single-port nipple-sparing mastectomy, axillary lymphadenectomy, and immediate reconstruction in patients with breast cancer. Patients and Methods: From May 14, 2012 through January 23, 2013, 10 patients underwent videoendoscopic single-port nipple-sparing mastectomy and axillary dissection via a single, limited incision and immediate prosthetic reconstruction. Patient charts were reviewed, and demographic data, operative time, complications and pathology results were analyzed. Results: In all patients, videoendoscopic surgery was performed successfully. Of 10 patients, 7 were diagnosed as having invasive ductal carcinoma, 2 had a ductal carcinoma in situ, and 1 underwent bilateral prophylactic mastectomy. The weight of the resected gland was 300–650 g, with a mean of 420 g. There were no operative complications, and the mean operative time was 250 minutes (range, 160–330 minutes). One-stage reconstruction with implants was performed on 4 patients, whereas expanders were placed in the remaining 6. Surgical margins of all cases were pathologically negative, and there were no recurrences observed during the early follow-up period. Conclusions: Videoendoscopic single-port nipple-sparing mastectomy is technically feasible even in larger breasts, enabling immediate reconstruction with good cosmetic outcomes. However, further studies with larger clinical series and long-term follow-up are required to compare the safety and efficacy of the technique with those of the standard nipple-sparing mastectomy. PMID:24401140

  1. Evaluation of wait times for patients seeking cosmetic and reconstructive breast surgery.

    Science.gov (United States)

    Silvestre, Jason; Bess, Christina R; Nguyen, John T; Ibrahim, Ahmed M S; Patel, Priti P; Lee, Bernard T

    2014-07-01

    Patients seeking cosmetic or reconstructive procedures in plastic surgery typically face significant wait times for consultations. Little attention has been given to potential disparities in wait times between elective cosmetic and reconstructive procedures. In this initial pilot study, we audited a broad sample of plastic surgery offices within a single state for wait times in initial consultations for both breast reconstruction and breast augmentation. A sample of board-certified plastic surgeons was audited from the American Society of Plastic Surgeons (ASPS) Web site that listed both cosmetic and reconstructive breast surgery. Scripted patient telephone calls were made to 67 plastic surgery clinics within a single state on May 2012. Two calls separated by 7 days were made to each office by the same actor seeking an initial appointment for either breast reconstruction or breast augmentation. Wait times were calculated from the date of the call until the date of appointment offered. There were 72 paired calls completed on 36 plastic surgery clinics. Significant disparities in appointment wait times existed between elective cosmetic versus reconstructive procedures (P = 0.02). Mean wait times for breast reconstruction consultation (26.1 days) were significantly longer than mean consultation wait times for breast augmentation (20.9 days). Interestingly, 17.9% of offices contacted no longer perform certain procedures currently advertised on the ASPS Web site. Disparities exist in access to care between patients seeking elective breast augmentation and reconstruction after mastectomy. Patients seeking breast augmentation have more rapid access to plastic surgeons. This study did not evaluate possible explanations for the observed differences. Potential causes may include physician preference and compensation benefits for cosmetic procedures.

  2. Iterative image reconstruction with a single-board computer employing hardware acceleration

    International Nuclear Information System (INIS)

    Mayans, R.; Rogers, W.L.; Clinthorne, N.H.; Atkins, D.; Chin, I.; Hanao, J.

    1984-01-01

    Iterative reconstruction of tomographic images offers much greater flexibility than filtered backprojection; finite ray width, spatially variant resolution, nonstandard ray geometry, missing angular samples and irregular attenuation maps are all readily accommodated. In addition, various solution strategies such as least square or maximum entropy can be implemented. The principal difficulty is that either a large computer must be used or the computation time is excessive. The authors have developed an image reconstructor based on the Intel 86/12 single-board computer. The design strategy was to first implement a family of reconstruction algorithms in PLM-86 and to identify the slowest common computation segments. Next, double precision arithmetic was recoded and extended addressing calls replaced with in-line code. Finally, the inner loop was shortened by factoring the computation. Computation times for these versions were in the ratio 1:0:75:0.5. Using software only, a single iteration of the ART algorithm for finite beam geometry involving 300k pixel weights could be accomplished in 70 seconds with high quality images obtained in three iterations. In addition the authors examined multibus compatible hardware additions to further speed the computation. The simplest of those schemes, which performs only the forward projection, has been constructed and is being tested. With this addition, computation time is expected to be reduced an additional 40%. With this approach that have combined flexible choice of algorithm with reasonable image reconstruction time

  3. Lengthening Temporalis Myoplasty for Single-Stage Smile Reconstruction in Children with Facial Paralysis.

    Science.gov (United States)

    Panossian, Andre

    2016-04-01

    Free muscle transfer for dynamic smile reanimation in facial paralysis is not always predictable with regard to cosmesis. Hospital stays range from 5 to 7 days. Prolonged operative times, longer hospital stays, and excessive cheek bulk are associated with free flap options. Lengthening temporalis myoplasty offers single-stage smile reanimation with theoretical advantages over free tissue transfer. From 2012 to 2014, 18 lengthening temporalis myoplasties were performed in 14 children for smile reconstruction. A retrospective chart review was completed for demographics, operative times, length of hospital stay, and perioperative complications. Fourteen consecutive patients with complete facial paralysis were included. Four patients underwent single-stage bilateral reconstruction, and 10 underwent unilateral procedures. Diagnoses included Möbius syndrome (n = 5), posterior cranial fossa tumors (n = 4), posttraumatic (n = 2), hemifacial microsomia (n = 1), and idiopathic (n = 2). Average patient age was 10.1 years. Average operative time was 410 minutes (499 minutes for bilateral lengthening temporalis myoplasty and 373 for unilateral lengthening temporalis myoplasty). Average length of stay was 3.3 days (4.75 days for bilateral lengthening temporalis myoplasty and 2.8 for unilateral lengthening temporalis myoplasty). Nine patients required minor revisions. Lengthening temporalis myoplasty is a safe alternative to free tissue transfer for dynamic smile reconstruction in children with facial paralysis. Limited donor-site morbidity, shorter operative times, and shorter hospital stays are some benefits over free flap options. However, revisions are required frequently secondary to tendon avulsions and adhesions. Therapeutic, IV.

  4. The generalized time variable reconstructed birth-death process.

    Science.gov (United States)

    Hallinan, Nathaniel

    2012-05-07

    Much recent research has investigated the effect that different time variable birth-death processes have on the distribution of branching times in phylogenies of extant taxa. Previous work has shown how to calculate the distributions of number of lineages and branching times for a reconstructed constant rate birth-death process that started with one or two reconstructed lineages at some time in the past or ended with some number of lineages in the present. Here I expand that work to include any time variable birth-death process that starts with any number of reconstructed lineages and/or ends with any number of reconstructed lineages at any time, and I calculate a number of distributions under that process. I also explore the discrete time birth-death process which operates as an efficient and accurate numerical solution to any time-variable birth-death process and allows for the analytical incorporation of sampling and mass extinctions. I describe how these distributions can be used to compare different time variable models using maximum likelihood analysis, and I show how to simulate random trees under any of these models. I also introduce two visual methods for evaluating different time variable birth-death processes; these methods illustrate the shape of distributions for the number of lineages and waiting times by plotting them over time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Surgical reconstruction of pressure ulcer defects: a single- or two-stage procedure?

    LENUS (Irish Health Repository)

    Laing, Tereze A

    2012-02-01

    BACKGROUND: The surgical management of pressure ulcers traditionally involved staged procedures, with initial debridement of necrotic or infected material followed by reconstruction at a later date when the wound was deemed viable and free of gross infection. However, over the past decade, it has been suggested that a single-stage procedure, combining initial debridement and definitive reconstruction, may provide advantages over staged surgery. We present our experience with the staged approach and review the current evidence for both methods. SUBJECTS AND SETTINGS: : We reviewed medical records of all patients referred to our service for pressure ulcer management between October 2001 and October 2007. The National Rehabilitation Hospital is the national center in Ireland for primary rehabilitation of adults and children suffering from spinal and brain injury, serving patients locally and from around the country. METHODS: All subjects who were managed surgically underwent a 2-stage procedure, with initial debridement and subsequent reconstruction. The main outcome measures were length of hospital stay, postoperative morbidity and mortality, and time to complete ulcer healing. RESULTS: Forty-one of 108 patients with 58 pressure ulcers were managed surgically. All patients underwent initial surgical debridement and 20 patients underwent subsequent pressure ulcer reconstruction. Postreconstructive complications occurred in 5 patients (20%). The mean time to complete ulcer healing was 17.4 weeks. Partial flap necrosis occurred in 3 patients, but there were no episodes of flap failure. CONCLUSIONS: We achieved favorable results with a 2-stage reconstruction technique and suggest that the paucity of evidence related to single-stage procedures does not support a change in surgical management.

  6. Sparse time series chain graphical models for reconstructing genetic networks

    NARCIS (Netherlands)

    Abegaz, Fentaw; Wit, Ernst

    We propose a sparse high-dimensional time series chain graphical model for reconstructing genetic networks from gene expression data parametrized by a precision matrix and autoregressive coefficient matrix. We consider the time steps as blocks or chains. The proposed approach explores patterns of

  7. Reconstruction of network topology using status-time-series data

    Science.gov (United States)

    Pandey, Pradumn Kumar; Badarla, Venkataramana

    2018-01-01

    Uncovering the heterogeneous connection pattern of a networked system from the available status-time-series (STS) data of a dynamical process on the network is of great interest in network science and known as a reverse engineering problem. Dynamical processes on a network are affected by the structure of the network. The dependency between the diffusion dynamics and structure of the network can be utilized to retrieve the connection pattern from the diffusion data. Information of the network structure can help to devise the control of dynamics on the network. In this paper, we consider the problem of network reconstruction from the available status-time-series (STS) data using matrix analysis. The proposed method of network reconstruction from the STS data is tested successfully under susceptible-infected-susceptible (SIS) diffusion dynamics on real-world and computer-generated benchmark networks. High accuracy and efficiency of the proposed reconstruction procedure from the status-time-series data define the novelty of the method. Our proposed method outperforms compressed sensing theory (CST) based method of network reconstruction using STS data. Further, the same procedure of network reconstruction is applied to the weighted networks. The ordering of the edges in the weighted networks is identified with high accuracy.

  8. Time-Dependent-Asymmetric-Linear-Parsimonious Ancestral State Reconstruction.

    Science.gov (United States)

    Didier, Gilles

    2017-10-01

    The time-dependent-asymmetric-linear parsimony is an ancestral state reconstruction method which extends the standard linear parsimony (a.k.a. Wagner parsimony) approach by taking into account both branch lengths and asymmetric evolutionary costs for reconstructing quantitative characters (asymmetric costs amount to assuming an evolutionary trend toward the direction with the lowest cost). A formal study of the influence of the asymmetry parameter shows that the time-dependent-asymmetric-linear parsimony infers states which are all taken among the known states, except for some degenerate cases corresponding to special values of the asymmetry parameter. This remarkable property holds in particular for the Wagner parsimony. This study leads to a polynomial algorithm which determines, and provides a compact representation of, the parametric reconstruction of a phylogenetic tree, that is for all the unknown nodes, the set of all the possible reconstructed states associated with the asymmetry parameters leading to them. The time-dependent-asymmetric-linear parsimony is finally illustrated with the parametric reconstruction of the body size of cetaceans.

  9. Fat injection to correct contour deformities of the reconstructed breast: a single surgeon experience

    Directory of Open Access Journals (Sweden)

    Youssef Tahiri

    2015-06-01

    Full Text Available Aim: Autologous fat grafting has gained acceptance as a technique to improve aesthetic outcomes in breast reconstruction. The purpose of this study was to share our clinical experience using autologous fat injection to correct contour deformities during breast reconstruction. Methods: A single surgeon, prospectively maintained database of patients who underwent autologous fat injection during breast reconstruction from January 2008 to November 2013 at McGill University Health Center was reviewed. Patient characteristics, breast history, type of breast reconstruction, volume of fat injected, and complications were analyzed. Results: One hundred and twenty-four patients benefited from autologous fat injection from January 2008 to November 2013, for a total of 187 treated breasts. The patients were on average 49.3 years old (΁ 8.9 years. Fat was harvested from the medial thighs (20.5%, flanks (39.1%, medial thighs and flanks (2.9%, trochanters (13.3%, medial knees (2.7%, and abdomen (21.9%. An average of 49.25 mL of fat was injected into each reconstructed breast. A total of 187 breasts in 124 patients were lipo-infiltrated during the second stage of breast reconstruction. Thirteen breasts (in 12 separate patients were injected several years after having undergone lumpectomy and radiotherapy. Of the 187 treated breasts, 118 were reconstructed with expanders to implants, 45 with deep inferior epigastric perforator flaps, 9 with latissimus dorsi flaps with implants, 4 with transverse rectus abdominis myocutaneous flaps, and 13 had previously undergone lumpectomy and radiotherapy. Six complications were noted in the entire series, for a rate of 3.2%. All were in previously radiated breasts. Average follow-up time was 12 months (range: 2-36 months. Conclusion: Fat injection continues to grow in popularity as an adjunct to breast reconstruction. Our experience demonstrates a low complication rate as compared to most surgical interventions of the breast

  10. Optimization of time-of-flight reconstruction on Philips GEMINI TF

    International Nuclear Information System (INIS)

    Vandenberghe, Stefaan; Clementel, Enrico; Verhaeghe, Jeroen; Lemahieu, Ignace; Elmbt, Larry van; Bol, Anne; Lonneux, Max; Guerchaft, Michel

    2009-01-01

    The aim of this study is to optimize different parameters in the time-of-flight (TOF) reconstruction for the Philips GEMINI TF. The use of TOF in iterative reconstruction introduces additional variables to be optimized compared to conventional PET reconstruction. The different parameters studied are the TOF kernel width, the kernel truncation (used to reduce reconstruction time) and the scatter correction method. These parameters are optimized using measured phantom studies. All phantom studies were acquired with a very high number of counts to limit the effects of noise. A high number of iterations (33 subsets and 3 iterations) was used to reach convergence. The figures of merit are the uniformity in the background, the cold spot recovery and the hot spot contrast. As reference results we used the non-TOF reconstruction of the same data sets. It is shown that contrast recovery loss can only be avoided if the kernel is extended to more than 3 standard deviations. To obtain uniform reconstructions the recommended scatter correction is TOF single scatter simulation (SSS). This also leads to improved cold spot recovery and hot spot contrast. While the daily measurements of the system show a timing resolution in the range of 590-600 ps, the optimal reconstructions are obtained with a TOF kernel full-width at half-maximum (FWHM) of 650-700 ps. The optimal kernel width seems to be less critical for the recovered contrast but has an important effect on the background uniformity. Using smaller or wider kernels results in a less uniform background and reduced hot and cold contrast recovery. The different parameters studied have a large effect on the quantitative accuracy of the reconstructed images. The optimal settings from this study can be used as a guideline to make an objective comparison of the gains obtained with TOF PET versus PET reconstruction. (orig.)

  11. Time relative single-photon (photoelectron) method

    International Nuclear Information System (INIS)

    Luo Binqiao

    1988-01-01

    A single-photon (photoelectron) measuring system is designed. It researches various problems in single-photon (photoelectron) method. The electronic resolving time is less than 25 ps. The resolving time of single-photon (photoelectron) measuring system is 25 to 65 ps

  12. Controversies in orbital reconstruction--II. Timing of post-traumatic orbital reconstruction: a systematic review

    NARCIS (Netherlands)

    Dubois, L.; Steenen, S. A.; Gooris, P. J. J.; Mourits, M. P.; Becking, A. G.

    2015-01-01

    The timing of orbital reconstruction is a determinative factor with respect to the incidence of potential postoperative orbital complications. In orbital trauma surgery, a general distinction is made between immediate (within hours), early (within 2 weeks), and late surgical intervention. There is a

  13. Real time reconstruction of quasiperiodic multi parameter physiological signals

    Science.gov (United States)

    Ganeshapillai, Gartheeban; Guttag, John

    2012-12-01

    A modern intensive care unit (ICU) has automated analysis systems that depend on continuous uninterrupted real time monitoring of physiological signals such as electrocardiogram (ECG), arterial blood pressure (ABP), and photo-plethysmogram (PPG). These signals are often corrupted by noise, artifacts, and missing data. We present an automated learning framework for real time reconstruction of corrupted multi-parameter nonstationary quasiperiodic physiological signals. The key idea is to learn a patient-specific model of the relationships between signals, and then reconstruct corrupted segments using the information available in correlated signals. We evaluated our method on MIT-BIH arrhythmia data, a two-channel ECG dataset with many clinically significant arrhythmias, and on the CinC challenge 2010 data, a multi-parameter dataset containing ECG, ABP, and PPG. For each, we evaluated both the residual distance between the original signals and the reconstructed signals, and the performance of a heartbeat classifier on a reconstructed ECG signal. At an SNR of 0 dB, the average residual distance on the CinC data was roughly 3% of the energy in the signal, and on the arrhythmia database it was roughly 16%. The difference is attributable to the large amount of diversity in the arrhythmia database. Remarkably, despite the relatively high residual difference, the classification accuracy on the arrhythmia database was still 98%, indicating that our method restored the physiologically important aspects of the signal.

  14. Real-time posture reconstruction for Microsoft Kinect.

    Science.gov (United States)

    Shum, Hubert P H; Ho, Edmond S L; Jiang, Yang; Takagi, Shu

    2013-10-01

    The recent advancement of motion recognition using Microsoft Kinect stimulates many new ideas in motion capture and virtual reality applications. Utilizing a pattern recognition algorithm, Kinect can determine the positions of different body parts from the user. However, due to the use of a single-depth camera, recognition accuracy drops significantly when the parts are occluded. This hugely limits the usability of applications that involve interaction with external objects, such as sport training or exercising systems. The problem becomes more critical when Kinect incorrectly perceives body parts. This is because applications have limited information about the recognition correctness, and using those parts to synthesize body postures would result in serious visual artifacts. In this paper, we propose a new method to reconstruct valid movement from incomplete and noisy postures captured by Kinect. We first design a set of measurements that objectively evaluates the degree of reliability on each tracked body part. By incorporating the reliability estimation into a motion database query during run time, we obtain a set of similar postures that are kinematically valid. These postures are used to construct a latent space, which is known as the natural posture space in our system, with local principle component analysis. We finally apply frame-based optimization in the space to synthesize a new posture that closely resembles the true user posture while satisfying kinematic constraints. Experimental results show that our method can significantly improve the quality of the recognized posture under severely occluded environments, such as a person exercising with a basketball or moving in a small room.

  15. Reconstructions of solar irradiance on centennial time scales

    Science.gov (United States)

    Krivova, Natalie; Solanki, Sami K.; Dasi Espuig, Maria; Kok Leng, Yeo

    Solar irradiance is the main external source of energy to Earth's climate system. The record of direct measurements covering less than 40 years is too short to study solar influence on Earth's climate, which calls for reconstructions of solar irradiance into the past with the help of appropriate models. An obvious requirement to a competitive model is its ability to reproduce observed irradiance changes, and a successful example of such a model is presented by the SATIRE family of models. As most state-of-the-art models, SATIRE assumes that irradiance changes on time scales longer than approximately a day are caused by the evolving distribution of dark and bright magnetic features on the solar surface. The surface coverage by such features as a function of time is derived from solar observations. The choice of these depends on the time scale in question. Most accurate is the version of the model that employs full-disc spatially-resolved solar magnetograms and reproduces over 90% of the measured irradiance variation, including the overall decreasing trend in the total solar irradiance over the last four cycles. Since such magnetograms are only available for about four decades, reconstructions on time scales of centuries have to rely on disc-integrated proxies of solar magnetic activity, such as sunspot areas and numbers. Employing a surface flux transport model and sunspot observations as input, we have being able to produce synthetic magnetograms since 1700. This improves the temporal resolution of the irradiance reconstructions on centennial time scales. The most critical aspect of such reconstructions remains the uncertainty in the magnitude of the secular change.

  16. Correlated spectroscopic imaging of calf muscle in three spatial dimensions using group sparse reconstruction of undersampled single and multichannel data.

    Science.gov (United States)

    Wilson, Neil E; Burns, Brian L; Iqbal, Zohaib; Thomas, M Albert

    2015-11-01

    To implement a 5D (three spatial + two spectral) correlated spectroscopic imaging sequence for application to human calf. Nonuniform sampling was applied across the two phase encoded dimensions and the indirect spectral dimension of an echo planar-correlated spectroscopic imaging sequence. Reconstruction was applied that minimized the group sparse mixed ℓ2,1-norm of the data. Multichannel data were compressed using a sensitivity map-based approach with a spatially dependent transform matrix and utilized the self-sparsity of the individual coil images to simplify the reconstruction. Single channel data with 8× and 16× undersampling are shown in the calf of a diabetic patient. A 15-channel scan with 12× undersampling of a healthy volunteer was reconstructed using 5 virtual channels and compared to a fully sampled single slice scan. Group sparse reconstruction faithfully reconstructs the lipid cross peaks much better than ℓ1 minimization. COSY spectra can be acquired over a 3D spatial volume with scan time under 15 min using echo planar readout with highly undersampled data and group sparse reconstruction. © 2015 Wiley Periodicals, Inc.

  17. Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables

    Science.gov (United States)

    Zanotti, Olindo; Dumbser, Michael

    2016-01-01

    We present a new version of conservative ADER-WENO finite volume schemes, in which both the high order spatial reconstruction as well as the time evolution of the reconstruction polynomials in the local space-time predictor stage are performed in primitive variables, rather than in conserved ones. To obtain a conservative method, the underlying finite volume scheme is still written in terms of the cell averages of the conserved quantities. Therefore, our new approach performs the spatial WENO reconstruction twice: the first WENO reconstruction is carried out on the known cell averages of the conservative variables. The WENO polynomials are then used at the cell centers to compute point values of the conserved variables, which are subsequently converted into point values of the primitive variables. This is the only place where the conversion from conservative to primitive variables is needed in the new scheme. Then, a second WENO reconstruction is performed on the point values of the primitive variables to obtain piecewise high order reconstruction polynomials of the primitive variables. The reconstruction polynomials are subsequently evolved in time with a novel space-time finite element predictor that is directly applied to the governing PDE written in primitive form. The resulting space-time polynomials of the primitive variables can then be directly used as input for the numerical fluxes at the cell boundaries in the underlying conservative finite volume scheme. Hence, the number of necessary conversions from the conserved to the primitive variables is reduced to just one single conversion at each cell center. We have verified the validity of the new approach over a wide range of hyperbolic systems, including the classical Euler equations of gas dynamics, the special relativistic hydrodynamics (RHD) and ideal magnetohydrodynamics (RMHD) equations, as well as the Baer-Nunziato model for compressible two-phase flows. In all cases we have noticed that the new ADER

  18. Bayesian sparse-based reconstruction in bioluminescence tomography improves localization accuracy and reduces computational time.

    Science.gov (United States)

    Feng, Jinchao; Jia, Kebin; Li, Zhe; Pogue, Brian W; Yang, Mingjie; Wang, Yaqi

    2017-11-09

    Bioluminescence tomography (BLT) provides fundamental insight into biological processes in vivo. To fully realize its potential, it is important to develop image reconstruction algorithms that accurately visualize and quantify the bioluminescence signals taking advantage of limited boundary measurements. In this study, a new 2-step reconstruction method for BLT is developed by taking advantage of the sparse a priori information of the light emission using multispectral measurements. The first step infers a wavelength-dependent prior by using all multi-wavelength measurements. The second step reconstructs the source distribution based on this developed prior. Simulation, phantom and in vivo results were performed to assess and compare the accuracy and the computational efficiency of this algorithm with conventional sparsity-promoting BLT reconstruction algorithms, and results indicate that the position errors are reduced from a few millimeters down to submillimeter, and reconstruction time is reduced by 3 orders of magnitude in most cases, to just under a few seconds. The recovery of single objects and multiple (2 and 3) small objects is simulated, and the recovery of images of a mouse phantom and an experimental animal with an existing luminescent source in the abdomen is demonstrated. Matlab code is available at https://github.com/jinchaofeng/code/tree/master. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Bilateral Breast Reconstruction with Abdominal Free Flaps: A Single Centre, Single Surgeon Retrospective Review of 55 Consecutive Patients

    Directory of Open Access Journals (Sweden)

    Peter McAllister

    2016-01-01

    Full Text Available Breast reconstruction using free tissue transfer is an increasingly utilised oncoplastic procedure. The aim was to review all bilateral breast reconstructions using abdominal free flaps by a single surgeon over an 11-year period (2003–2014. A retrospective review was performed on all patients who underwent bilateral breast reconstruction using abdominal free flaps between 2003 and 2014 by the senior author (DAM. Data analysed included patient demographics, indication for reconstruction, surgical details, and complications. Fifty-five female patients (mean 48.6 years [24–71 years] had bilateral breast reconstruction. The majority (41, 74.5% underwent immediate reconstruction and DIEP flaps were utilised on 41 (74.5% occasions. Major surgical complications occurred in 6 (10.9% patients, all of which were postoperative vascular compromise of the flap. Failure to salvage the reconstruction occurred on 3 (5.5% occasions resulting in a total flap failure rate of 2.7%. Obesity (>30 kg/m2 and age > 60 years were shown to have a statistically increased risk of developing postoperative complications (P60 years were associated with higher complication rates.

  20. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jonghwan; Pua, Rizza; Cho, Seungryong, E-mail: scho@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Insoo; Han, Bumsoo [EB Tech, Co., Ltd., 550 Yongsan-dong, Yuseong-gu, Daejeon 305-500 (Korea, Republic of)

    2015-11-15

    Purpose: A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. Methods: The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in a circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. Results: The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. Conclusions: The authors have successfully demonstrated that the

  1. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction.

    Science.gov (United States)

    Min, Jonghwan; Pua, Rizza; Kim, Insoo; Han, Bumsoo; Cho, Seungryong

    2015-11-01

    A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in a circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. The authors have successfully demonstrated that the proposed scanning method and image

  2. A fully three-dimensional reconstruction algorithm with the nonstationary filter for improved single-orbit cone beam SPECT

    International Nuclear Information System (INIS)

    Cao, Z.J.; Tsui, B.M.

    1993-01-01

    Conventional single-orbit cone beam tomography presents special problems. They include incomplete sampling and inadequate three-dimensional (3D) reconstruction algorithm. The commonly used Feldkamp reconstruction algorithm simply extends the two-dimensional (2D) fan beam algorithm to 3D cone beam geometry. A truly 3D reconstruction formulation has been derived for the single-orbit cone beam SPECT based on the 3D Fourier slice theorem. In the formulation, a nonstationary filter which depends on the distance from the central plane of the cone beam was derived. The filter is applied to the 2D projection data in directions along and normal to the axis-of-rotation. The 3D reconstruction algorithm with the nonstationary filter was evaluated using both computer simulation and experimental measurements. Significant improvement in image quality was demonstrated in terms of decreased artifacts and distortions in cone beam reconstructed images. However, compared with the Feldkamp algorithm, a five-fold increase in processing time is required. Further improvement in image quality needs complete sampling in frequency space

  3. New, multi-dimensional reconstructions for the 12-detector, scanned focal point, single-photon tomograph

    International Nuclear Information System (INIS)

    Stoddart, H.A.; Stoddart, H.F.

    1990-01-01

    The heuristic reconstruction process used for the highly-focused, scanned focal-point tomograph described by us in 1979 has remained unchanged until recently. This paper describes an entirely new and completely rigorous reconstruction for this unique geometry which produces dramatically improved images that are least square estimates of the objects. The handling of attenuation, scattering, and object power spectra are discussed. Reconstructions are described for 2D, 3D from three slices, time varying 3D from three slices, and 3D from a large set of slices. Reconstructions for simulated and actual clinical data are shown and the accuracy for quantitation is estimated

  4. Single-stage reconstruction of flexor tendons with vascularized tendon transfers.

    Science.gov (United States)

    Cavadas, P C; Pérez-García, A; Thione, A; Lorca-García, C

    2015-03-01

    The reconstruction of finger flexor tendons with vascularized flexor digitorum superficialis (FDS) tendon grafts (flaps) based on the ulnar vessels as a single stage is not a popular technique. We reviewed 40 flexor tendon reconstructions (four flexor pollicis longus and 36 finger flexors) with vascularized FDS tendon grafts in 38 consecutive patients. The donor tendons were transferred based on the ulnar vessels as a single-stage procedure (37 pedicled flaps, three free flaps). Four patients required composite tendon and skin island transfer. Minimum follow-up was 12 months, and functional results were evaluated using a total active range of motion score. Multiple linear regression analysis was performed to evaluate the factors that could be associated with the postoperative total active range of motion. The average postoperative total active range of motion (excluding the thumbs) was 178.05° (SD 50°). The total active range of motion was significantly lower for patients who were reconstructed with free flaps and for those who required composite tendon and skin island flap. Age, right or left hand, donor/motor tendon and pulley reconstruction had no linear effect on total active range of motion. Overall results were comparable with a published series on staged tendon grafting but with a lower complication rate. Vascularized pedicled tendon grafts/flaps are useful in the reconstruction of defects of finger flexor tendons in a single stage, although its role in the reconstructive armamentarium remains to be clearly established. © The Author(s) 2014.

  5. Reconstructing Cell Lineages from Single-Cell Gene Expression Data: A Pilot Study

    Science.gov (United States)

    2016-08-30

    Reconstructing cell lineages from single -cell gene expression data: a pilot study The goal of this pilot study is to develop novel mathematical...methods, by leveraging tools developed in the bifurcation theory, to infer the underlying cell-state dynamics from single -cell gene expression data. Our...from single -cell gene expression data. The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued

  6. Pixel-wise estimation of noise statistics on iterative CT reconstruction from a single scan.

    Science.gov (United States)

    Wang, Tonghe; Zhu, Lei

    2017-07-01

    As iterative CT reconstruction continues to advance, the spatial distribution of noise standard deviation (STD) and accurate noise power spectrum (NPS) on the reconstructed CT images become important for method evaluation as well as optimization of algorithm parameters. Using a single CT scan, we propose a practical method for pixel-wise calculation of noise statistics on an iteratively reconstructed CT image, which enables accurate calculation of noise STD for each pixel and NPS. We first derive the noise propagation from measured projections to an iteratively reconstructed CT image provided that the projection noise is known. We then show that the model of noise propagation remains approximately unchanged for extra simulated noise added on the measured projections. To compute the noise STD map and the NPS map on an iteratively reconstructed CT image from a single scan, we first iteratively reconstruct the CT image from the measured projections using an existing reconstruction algorithm. The same measured projections are added by different sets (a total of 32 sets in our implementation) of projection noise simulated from an estimated projection noise model, and are then used to iteratively reconstruct different CT images. The calculations of the noise STD map and the NPS map are finally performed on the entire stack of these different reconstruction images. We evaluate our method on an anthropomorphic head phantom, and demonstrate the clinical utility on a set of head and neck patient CT data, using two iterative CT reconstruction algorithms: the penalized weighted least-square (PWLS) algorithm and the total-variation (TV) regularization. In the head phantom case, repeated scans are acquired to generate the ground truths of noise STD and NPS maps. Using only one single scan, the proposed method accurately calculates the noise STD maps with a root-mean-square error (RMSE) of less than 5HU. In the NPS map estimation, we compare the result of our proposed method with

  7. Cardiac C-arm computed tomography using a 3D + time ROI reconstruction method with spatial and temporal regularization

    Energy Technology Data Exchange (ETDEWEB)

    Mory, Cyril, E-mail: cyril.mory@philips.com [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, F-69621 Villeurbanne Cedex (France); Philips Research Medisys, 33 rue de Verdun, 92156 Suresnes (France); Auvray, Vincent; Zhang, Bo [Philips Research Medisys, 33 rue de Verdun, 92156 Suresnes (France); Grass, Michael; Schäfer, Dirk [Philips Research, Röntgenstrasse 24–26, D-22335 Hamburg (Germany); Chen, S. James; Carroll, John D. [Department of Medicine, Division of Cardiology, University of Colorado Denver, 12605 East 16th Avenue, Aurora, Colorado 80045 (United States); Rit, Simon [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1 (France); Centre Léon Bérard, 28 rue Laënnec, F-69373 Lyon (France); Peyrin, Françoise [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, F-69621 Villeurbanne Cedex (France); X-ray Imaging Group, European Synchrotron, Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Douek, Philippe; Boussel, Loïc [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1 (France); Hospices Civils de Lyon, 28 Avenue du Doyen Jean Lépine, 69500 Bron (France)

    2014-02-15

    Purpose: Reconstruction of the beating heart in 3D + time in the catheter laboratory using only the available C-arm system would improve diagnosis, guidance, device sizing, and outcome control for intracardiac interventions, e.g., electrophysiology, valvular disease treatment, structural or congenital heart disease. To obtain such a reconstruction, the patient's electrocardiogram (ECG) must be recorded during the acquisition and used in the reconstruction. In this paper, the authors present a 4D reconstruction method aiming to reconstruct the heart from a single sweep 10 s acquisition. Methods: The authors introduce the 4D RecOnstructiOn using Spatial and TEmporal Regularization (short 4D ROOSTER) method, which reconstructs all cardiac phases at once, as a 3D + time volume. The algorithm alternates between a reconstruction step based on conjugate gradient and four regularization steps: enforcing positivity, averaging along time outside a motion mask that contains the heart and vessels, 3D spatial total variation minimization, and 1D temporal total variation minimization. Results: 4D ROOSTER recovers the different temporal representations of a moving Shepp and Logan phantom, and outperforms both ECG-gated simultaneous algebraic reconstruction technique and prior image constrained compressed sensing on a clinical case. It generates 3D + time reconstructions with sharp edges which can be used, for example, to estimate the patient's left ventricular ejection fraction. Conclusions: 4D ROOSTER can be applied for human cardiac C-arm CT, and potentially in other dynamic tomography areas. It can easily be adapted to other problems as regularization is decoupled from projection and back projection.

  8. Accelerated Computing in Magnetic Resonance Imaging: Real-Time Imaging Using Nonlinear Inverse Reconstruction

    Directory of Open Access Journals (Sweden)

    Sebastian Schaetz

    2017-01-01

    Full Text Available Purpose. To develop generic optimization strategies for image reconstruction using graphical processing units (GPUs in magnetic resonance imaging (MRI and to exemplarily report on our experience with a highly accelerated implementation of the nonlinear inversion (NLINV algorithm for dynamic MRI with high frame rates. Methods. The NLINV algorithm is optimized and ported to run on a multi-GPU single-node server. The algorithm is mapped to multiple GPUs by decomposing the data domain along the channel dimension. Furthermore, the algorithm is decomposed along the temporal domain by relaxing a temporal regularization constraint, allowing the algorithm to work on multiple frames in parallel. Finally, an autotuning method is presented that is capable of combining different decomposition variants to achieve optimal algorithm performance in different imaging scenarios. Results. The algorithm is successfully ported to a multi-GPU system and allows online image reconstruction with high frame rates. Real-time reconstruction with low latency and frame rates up to 30 frames per second is demonstrated. Conclusion. Novel parallel decomposition methods are presented which are applicable to many iterative algorithms for dynamic MRI. Using these methods to parallelize the NLINV algorithm on multiple GPUs, it is possible to achieve online image reconstruction with high frame rates.

  9. Reconstructing an icosahedral virus from single-particle diffraction experiments

    Science.gov (United States)

    Saldin, D. K.; Poon, H.-C.; Schwander, P.; Uddin, M.; Schmidt, M.

    2011-08-01

    The first experimental data from single-particle scattering experiments from free electron lasers (FELs) are now becoming available. The first such experiments are being performed on relatively large objects such as viruses, which produce relatively low-resolution, low-noise diffraction patterns in so-called ``diffract-and-destroy'' experiments. We describe a very simple test on the angular correlations of measured diffraction data to determine if the scattering is from an icosahedral particle. If this is confirmed, the efficient algorithm proposed can then combine diffraction data from multiple shots of particles in random unknown orientations to generate a full 3D image of the icosahedral particle. We demonstrate this with a simulation for the satellite tobacco necrosis virus (STNV), the atomic coordinates of whose asymmetric unit is given in Protein Data Bank entry 2BUK.

  10. Full offline reconstruction in real-time with the LHCb detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00341115

    2016-01-01

    This document describes the novel, unique in High Energy Physics, real-time alignment and calibration of the full LHCb detector. The LHCb experiment has been designed as a dedicated heavy flavour physics experiment focused on the reconstruction of c and b hadrons. The LHCb detector is a single-arm forward spectrometer, which measures proton-proton interactions at the LHC. The operational bunch crossing rate is several orders of magnitude above the current abilities of data recording and storage. Therefore, a trigger system has been implemented to reduce this rate to an acceptable value. The LHCb trigger system has been redesigned during the 2013-2015 long shutdown, achieving oine-quality alignment and calibration online. It also allows analyses to be performed entirely at the trigger level. In addition, having the best performing reconstruction in the trigger gives the possibility to fully use the particle identification selection criteria and greatly increases the eciency, in particular for the selection of ...

  11. Time-based Reconstruction of Free-streaming Data in CBM

    Science.gov (United States)

    Akishina, Valentina; Kisel, Ivan; Vassiliev, Iouri; Zyzak, Maksym

    2018-02-01

    Traditional latency-limited trigger architectures typical for conventional experiments are inapplicable for the CBM experiment. Instead, CBM will ship and collect time-stamped data into a readout buffer in a form of a time-slice of a certain length and deliver it to a large computer farm, where online event reconstruction and selection will be performed. Grouping measurements into physical collisions must be performed in software and requires reconstruction not only in space, but also in time, the so-called 4-dimensional track reconstruction and event building. The tracks, reconstructed with 4D Cellular Automaton track finder, are combined into event-corresponding clusters according to the estimated time in the target position and the errors, obtained with the Kalman Filter method. The reconstructed events are given as inputs to the KF Particle Finder package for short-lived particle reconstruction. The results of time-based reconstruction of simulated collisions in CBM are presented and discussed in details.

  12. Single-Step Resection of an Intraosseous Meningioma and Cranial Reconstruction : Technical Note

    NARCIS (Netherlands)

    Broeckx, Charlotte-Elise; Maal, Thomas J. J.; Vreeken, Rinaldo D.; Bos, Ruud R. M.; ter Laan, Mark

    2017-01-01

    OBJECTIVE: Simultaneous tumor resection and cranial reconstruction can be a challenging task. Surgical navigation is an indispensable tool in making this single-step procedure possible. In this technical note, we describe a new technique for this procedure to ensure a precise resection and optimal

  13. Reconstruction of ensembles of coupled time-delay systems from time series.

    Science.gov (United States)

    Sysoev, I V; Prokhorov, M D; Ponomarenko, V I; Bezruchko, B P

    2014-06-01

    We propose a method to recover from time series the parameters of coupled time-delay systems and the architecture of couplings between them. The method is based on a reconstruction of model delay-differential equations and estimation of statistical significance of couplings. It can be applied to networks composed of nonidentical nodes with an arbitrary number of unidirectional and bidirectional couplings. We test our method on chaotic and periodic time series produced by model equations of ensembles of diffusively coupled time-delay systems in the presence of noise, and apply it to experimental time series obtained from electronic oscillators with delayed feedback coupled by resistors.

  14. Outcomes of single-stage grip-release reconstruction in tetraplegia.

    Science.gov (United States)

    Reinholdt, Carina; Fridén, Jan

    2013-06-01

    To evaluate the outcomes of our technique for single-stage grip-release reconstruction and compare it with previous 1- and 2-stage grip reconstructions in tetraplegia. A total of 14 patients (16 hands) with tetraplegia underwent a single-stage combination of operations to provide pinch, grip, and release function. We compared the study group with a historical control group of 15 patients (18 hands) who had been treated with staged flexion-extension grip-release reconstructions. Both groups were classified as ocular cutaneous 4. Assessment parameters included grip and pinch strength, maximal opening of the first webspace, and Canadian Occupational Performance Measurement. Both groups were rehabilitated with early active mobilization beginning the first day after surgery. Grip strength and opening of the first webspace were significantly greater in the single-stage group than in the comparative group. Pinch strength was not significantly different between groups. On the Canadian Occupational Performance Measurement score, patients belonging to the single-stage group were highly satisfied (increase of 3.7 points) and could perform several of their self-selected goals (3.5 points of improvement). The single-stage grip-release reconstruction provides people who have spinal cord injuries and tetraplegia with improved and reliable grip function; active finger flexion, active thumb flexion, passive thumb extension, and passive interossei function can all be achieved through this procedure. Early active mobilization is particularly important in improving functional outcome after this combination of grip reconstruction procedures. Therapeutic III. Copyright © 2013 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  15. Single Particle Cryo-electron Microscopy and 3-D Reconstruction of Viruses

    Science.gov (United States)

    Guo, Fei; Jiang, Wen

    2014-01-01

    With fast progresses in instrumentation, image processing algorithms, and computational resources, single particle electron cryo-microscopy (cryo-EM) 3-D reconstruction of icosahedral viruses has now reached near-atomic resolutions (3–4 Å). With comparable resolutions and more predictable outcomes, cryo-EM is now considered a preferred method over X-ray crystallography for determination of atomic structure of icosahedral viruses. At near-atomic resolutions, all-atom models or backbone models can be reliably built that allow residue level understanding of viral assembly and conformational changes among different stages of viral life cycle. With the developments of asymmetric reconstruction, it is now possible to visualize the complete structure of a complex virus with not only its icosahedral shell but also its multiple non-icosahedral structural features. In this chapter, we will describe single particle cryo-EM experimental and computational procedures for both near-atomic resolution reconstruction of icosahedral viruses and asymmetric reconstruction of viruses with both icosahedral and non-icosahedral structure components. Procedures for rigorous validation of the reconstructions and resolution evaluations using truly independent de novo initial models and refinements are also introduced. PMID:24357374

  16. Real-time reconstruction of sensitivity encoded radial magnetic resonance imaging using a graphics processing unit.

    Science.gov (United States)

    Sørensen, Thomas Sangild; Atkinson, David; Schaeffter, Tobias; Hansen, Michael Schacht

    2009-12-01

    A barrier to the adoption of non-Cartesian parallel magnetic resonance imaging for real-time applications has been the times required for the image reconstructions. These times have exceeded the underlying acquisition time thus preventing real-time display of the acquired images. We present a reconstruction algorithm for commodity graphics hardware (GPUs) to enable real time reconstruction of sensitivity encoded radial imaging (radial SENSE). We demonstrate that a radial profile order based on the golden ratio facilitates reconstruction from an arbitrary number of profiles. This allows the temporal resolution to be adjusted on the fly. A user adaptable regularization term is also included and, particularly for highly undersampled data, used to interactively improve the reconstruction quality. Each reconstruction is fully self-contained from the profile stream, i.e., the required coil sensitivity profiles, sampling density compensation weights, regularization terms, and noise estimates are computed in real-time from the acquisition data itself. The reconstruction implementation is verified using a steady state free precession (SSFP) pulse sequence and quantitatively evaluated. Three applications are demonstrated; real-time imaging with real-time SENSE 1) or k- t SENSE 2) reconstructions, and 3) offline reconstruction with interactive adjustment of reconstruction settings.

  17. COMPARATIVE STUDY OF ARTHROSCOPIC SINGLE BUNDLE ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION AND NON-ANATOMICAL DOUBLE BUNDLE WITH SINGLE TIBIAL TUNNEL ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION WITH SEMITENDINOSUS ± GRACILIS AUTOGRAFTS USING LAXOMETRY

    Directory of Open Access Journals (Sweden)

    Sivananda

    2016-01-01

    Full Text Available BACKGROUND The knee joint is the most commonly injured of all joints and the ACL is the most commonly injured ligament. Arthroscopic reconstruction of ACL has become gold standard in treating these injuries. AIM 1. To compare the short-term results of ACL reconstruction using single bundle (one Tibial + one Femoral tunnel and non-anatomical double-bundle (one Tibial + two Femoral tunnels techniques using Hamstrings (Semitendinosus ± Gracilis graft. 2. To evaluate ACL graft reconstruction stability measured by laxometry and to find out an association with clinical findings. MATERIAL & METHODS We performed a prospective study between 2014-2015 of 20 case of ACL injuries & compared single bundle reconstruction with Non – anatomical double Bundle reconstruction with semitendinosus ± Gracilis, Autograft using laxometry. CONCLUSION Arthroscopic Non-anatomical double ACL Reconstruction is Bio-mechanically stable reconstruction resembling anatomy of the ACL.

  18. Real-time wavefront reconstruction from intensity measurements

    Science.gov (United States)

    Smith, Carlas; Marinica, Raluca; Verhaegen, Michel

    2013-12-01

    We propose an ecient approximation to the nonlinear phase diversity method for wavefront reconstruction method from intensity measurements in order to avoid the shortcomings of the nonlinear phase diversity method that prevent its real-time application, such as its computationally complex and the presence of local minima. The new method is called linear sequential phase diversity (LSPD). The method assumes that residual phase aberration is small and makes use of a rst order Taylor expansion of the point spread function (PSF). The Taylor expansion is performed in two dierent phase diversities, that can be arbitrary (large) pupil shapes in order to optimize the phase retrieval. For static aberrations LSPD makes use of two images that are collected at each iteration step of the algorithm. In each step the residual phase aberrations are estimated by solving a linear least squares problem, followed by the use of a deformable mirror to correct for the aberrations. The computational complexity of LSPD is O(m*m) - where m*m is the number of pixels. For the static case the convergence of the LSPD iterations have been studied and experimentally veried. In an extensive comparison the method is compared with the recently proposed method of [1]. This study demonstrates the improved performance both computationally and in accuracy with respect to existing competitors that also linearize the PSF. A further contribution of the paper is that we extend the static LSPD method to the case of dynamic wavefront reconstruction based on intensity measurements. Here the dynamics are assumed to be modelled standardly by a linear innovation model such that its spectrum e.g. approximates that given by Kolmogorov. The advantage of the application of the dynamic variant of the LSPD method is that in closed-loop the assumption that the residual phase aberration is small is justiable, since the goal of the controller is to reduce (minimize) the residual phase aberration. This unique contribution

  19. One stage revision single-bundle anterior cruciate ligament reconstruction with impacted morselized bone graft following a failed double-bundle reconstruction

    Directory of Open Access Journals (Sweden)

    Ho Jong Ra

    2017-01-01

    Full Text Available Although double-bundle anterior cruciate ligament (ACL reconstruction has theoretical benefits such as more accurate reproduction of ACL anatomy, it is technically more demanding surgery. This report describes the case of a one stage revision single-bundle ACL reconstruction after primary double-bundle ACL reconstruction. A professional dancer had an ACL previously reconstructed with a double-bundle technique, but the femoral tunnels were malpositioned resulting in residual laxity and rotational instability. The previous femoral tunnel positions were vertical and widened. The previous vertical tunnels were filled with impacted bone graft and a revision single-bundle ACL reconstruction was performed via the new femoral tunnel with a 2 O'clock position between the previous two tunnels. After 10 months of postoperative rehabilitation, the patient returned to professional dancing with sound bony union and without any residual instability.

  20. Electron reconstruction and calibration with single Z and W production in CMS at the LHC

    CERN Document Server

    Rovelli, Chiara

    2006-01-01

    The CMS experiment at the LHC is building an electromagnetic calorimeter with high performance. Preserving high reconstruction efficiency and best four momentum measurements for electrons is a necessity for optimal discovery prospects in the ZZ(*) and WW(*) Higgs boson decay channels. This is challenging in view of the material budget in front of ECAL and of the presence of a strong magnetic field. A new reconstruction strategy for electrons in CMS is described. The usage of electrons from single Z and W production for the ECAL calibration strategy is also discussed.

  1. Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector

    Energy Technology Data Exchange (ETDEWEB)

    Shcheslavskiy, V., E-mail: vis@becker-hickl.de; Becker, W. [Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Morozov, P.; Divochiy, A. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Vakhtomin, Yu. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); Smirnov, K. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); National Research University Higher School of Economics, 20 Myasnitskaya St., Moscow 101000 (Russian Federation)

    2016-05-15

    Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ∼15% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels with counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board.

  2. Reconstruction of coupling architecture of neural field networks from vector time series

    Science.gov (United States)

    Sysoev, Ilya V.; Ponomarenko, Vladimir I.; Pikovsky, Arkady

    2018-04-01

    We propose a method of reconstruction of the network coupling matrix for a basic voltage-model of the neural field dynamics. Assuming that the multivariate time series of observations from all nodes are available, we describe a technique to find coupling constants which is unbiased in the limit of long observations. Furthermore, the method is generalized for reconstruction of networks with time-delayed coupling, including the reconstruction of unknown time delays. The approach is compared with other recently proposed techniques.

  3. Facilitating model reconstruction for single-particle scattering using small-angle X-ray scattering methods.

    Science.gov (United States)

    Ma, Shufen; Liu, Haiguang

    2016-04-01

    X-ray free-electron lasers generate intense femtosecond X-ray pulses, so that high-resolution structure determination becomes feasible from noncrystalline samples, such as single particles or single molecules. At the moment, the orientation of sample particles cannot be precisely controlled, and consequently the unknown orientation needs to be recovered using computational algorithms. This delays the model reconstruction until all the scattering patterns have been re-oriented, which often entails a long elapse of time and until the completion of the experiment. The scattering patterns from single particles or multiple particles can be summed to form a virtual powder diffraction pattern, and the low-resolution region, corresponding to the small-angle X-ray scattering (SAXS) regime, can be analysed using existing SAXS methods. This work presents a pipeline that converts single-particle data sets into SAXS data, from which real-time model reconstruction is achieved using the model retrieval approach implemented in the software package SASTBX [Liu, Hexemer & Zwart (2012). J. Appl. Cryst. 45 , 587-593]. To illustrate the applications, two case studies are presented with real experimental data sets collected at the Linac Coherent Light Source.

  4. Time-stretch microscopy based on time-wavelength sequence reconstruction from wideband incoherent source

    International Nuclear Information System (INIS)

    Zhang, Chi; Xu, Yiqing; Wei, Xiaoming; Tsia, Kevin K.; Wong, Kenneth K. Y.

    2014-01-01

    Time-stretch microscopy has emerged as an ultrafast optical imaging concept offering the unprecedented combination of the imaging speed and sensitivity. However, dedicated wideband and coherence optical pulse source with high shot-to-shot stability has been mandated for time-wavelength mapping—the enabling process for ultrahigh speed wavelength-encoded image retrieval. From the practical point of view, exploiting methods to relax the stringent requirements (e.g., temporal stability and coherence) for the source of time-stretch microscopy is thus of great value. In this paper, we demonstrated time-stretch microscopy by reconstructing the time-wavelength mapping sequence from a wideband incoherent source. Utilizing the time-lens focusing mechanism mediated by a narrow-band pulse source, this approach allows generation of a wideband incoherent source, with the spectral efficiency enhanced by a factor of 18. As a proof-of-principle demonstration, time-stretch imaging with the scan rate as high as MHz and diffraction-limited resolution is achieved based on the wideband incoherent source. We note that the concept of time-wavelength sequence reconstruction from wideband incoherent source can also be generalized to any high-speed optical real-time measurements, where wavelength is acted as the information carrier

  5. Altered lower extremity joint mechanics occur during the star excursion balance test and single leg hop after ACL-reconstruction in a collegiate athlete.

    Science.gov (United States)

    Samaan, Michael A; Ringleb, Stacie I; Bawab, Sebastian Y; Greska, Eric K; Weinhandl, Joshua T

    2018-03-15

    The effects of ACL-reconstruction on lower extremity joint mechanics during performance of the Star Excursion Balance Test (SEBT) and Single Leg Hop (SLH) are limited. The purpose of this study was to determine if altered lower extremity mechanics occur during the SEBT and SLH after ACL-reconstruction. One female Division I collegiate athlete performed the SEBT and SLH tasks, bilaterally, both before ACL injury and 27 months after ACL-reconstruction. Maximal reach, hop distances, lower extremity joint kinematics and moments were compared between both time points. Musculoskeletal simulations were used to assess muscle force production during the SEBT and SLH at both time points. Compared to the pre-injury time point, SEBT reach distances were similar in both limbs after ACL-reconstruction except for the max anterior reach distance in the ipsilateral limb. The athlete demonstrated similar hop distances, bilaterally, after ACL-reconstruction compared to the pre-injury time point. Despite normal functional performance during the SEBT and SLH, the athlete exhibited altered lower extremity joint mechanics during both of these tasks. These results suggest that measuring the maximal reach and hop distances for these tasks, in combination with an analysis of the lower extremity joint mechanics that occur after ACL-reconstruction, may help clinicians and researchers to better understand the effects of ACL-reconstruction on the neuromuscular system during the SEBT and SLH.

  6. Pinhole single-photon emission tomography reconstruction based on median root prior

    International Nuclear Information System (INIS)

    Sohlberg, Antti; Kuikka, Jyrki T.; Ruotsalainen, Ulla

    2003-01-01

    The maximum likelihood expectation maximisation (ML-EM) algorithm can be used to reduce reconstruction artefacts produced by filtered backprojection (FBP) methods in pinhole single-photon emission tomography (SPET). However, ML-EM suffers from noise propagation along iterations, which leads to quantitatively unpleasant reconstruction results. To avoid this increase in noise, the median root prior (MRP) algorithm for pinhole SPET was implemented. Projection data of a line source and Picker's thyroid phantom were collected using a single-head gamma camera with a pinhole collimator. MRP was added to existing pinhole ML-EM reconstruction algorithm and the phantom studies were reconstructed using MRP, ML-EM and FBP for comparison. Coefficients of variation, contrasts and full-widths at half-maximum were calculated and showed a clear reduction in noise without significant loss of resolution or decrease in contrast when MRP was applied. MRP also produced visually pleasing images even with high iteration numbers, free of the checkerboard-type noise patterns which are typical of ML-EM images. (orig.)

  7. Realtime Reconstruction of an Animating Human Body from a Single Depth Camera.

    Science.gov (United States)

    Chen, Yin; Cheng, Zhi-Quan; Lai, Chao; Martin, Ralph R; Dang, Gang

    2016-08-01

    We present a method for realtime reconstruction of an animating human body,which produces a sequence of deforming meshes representing a given performance captured by a single commodity depth camera. We achieve realtime single-view mesh completion by enhancing the parameterized SCAPE model.Our method, which we call Realtime SCAPE, performs full-body reconstruction without the use of markers.In Realtime SCAPE, estimations of body shape parameters and pose parameters, needed for reconstruction, are decoupled. Intrinsic body shape is first precomputed for a given subject, by determining shape parameters with the aid of a body shape database. Subsequently, per-frame pose parameter estimation is performed by means of linear blending skinning (LBS); the problem is decomposed into separately finding skinning weights and transformations. The skinning weights are also determined offline from the body shape database,reducing online reconstruction to simply finding the transformations in LBS. Doing so is formulated as a linear variational problem;carefully designed constraints are used to impose temporal coherence and alleviate artifacts. Experiments demonstrate that our method can produce full-body mesh sequences with high fidelity.

  8. Real-time quantitative phase reconstruction in off-axis digital holography using multiplexing.

    Science.gov (United States)

    Girshovitz, Pinhas; Shaked, Natan T

    2014-04-15

    We present a new approach for obtaining significant speedup in the digital processing of extracting unwrapped phase profiles from off-axis digital holograms. The new technique digitally multiplexes two orthogonal off-axis holograms, where the digital reconstruction, including spatial filtering and two-dimensional phase unwrapping on a decreased number of pixels, can be performed on both holograms together, without redundant operations. Using this technique, we were able to reconstruct, for the first time to our knowledge, unwrapped phase profiles from off-axis holograms with 1 megapixel in more than 30 frames per second using a standard single-core personal computer on a MATLAB platform, without using graphic-processing-unit programming or parallel computing. This new technique is important for real-time quantitative visualization and measurements of highly dynamic samples and is applicable for a wide range of applications, including rapid biological cell imaging and real-time nondestructive testing. After comparing the speedups obtained by the new technique for holograms of various sizes, we present experimental results of real-time quantitative phase visualization of cells flowing rapidly through a microchannel.

  9. Dressing Wear Time after Breast Reconstruction: A Randomized Clinical Trial.

    Directory of Open Access Journals (Sweden)

    Daniela Francescato Veiga

    Full Text Available The evidence to support dressing standards for breast surgery wounds is empiric and scarce.This two-arm randomized clinical trial was designed to assess the effect of dressing wear time on surgical site infection (SSI rates, skin colonization and patient perceptions.A total of 200 breast cancer patients undergoing breast reconstruction were prospectively enrolled. Patients were randomly allocated to group I (dressing removed on the first postoperative day, n = 100 or group II (dressing removed on the sixth postoperative day, n = 100. SSIs were defined and classified according to criteria from the Centers for Disease Control and Prevention. Samples collected before placing the dressing and after 1 day (group I and 6 days (both groups were cultured for skin colonization assessments. Patients preferences and perceptions with regard to safety, comfort and convenience were recorded and analyzed.A total of 186 patients completed the follow-up. The global SSI rate was 4.5%. Six patients in group I and three in group II had SSI (p = 0.497. Before dressing, the groups were similar with regard to skin colonization. At the sixth day, there was a higher colonization by coagulase-negative staphylococci in group I (p<0.0001. Patients preferred to keep dressing for six days (p<0.0001, and considered this a safer choice (p<0.05.Despite group I had a higher skin colonization by coagulase-negative staphylococci on the sixth postoperative day, there was no difference in SSI rates. Patients preferred keeping dressing for six days and considered it a safer choice.ClinicalTrials.gov NCT01148823.

  10. Metric 3D reconstruction and texture acquisition of surfaces of revolution from a single uncalibrated view.

    Science.gov (United States)

    Colombo, Carlo; Del Bimbo, Alberto; Pernici, Federico

    2005-01-01

    Image analysis and computer vision can be effectively employed to recover the three-dimensional structure of imaged objects, together with their surface properties. In this paper, we address the problem of metric reconstruction and texture acquisition from a single uncalibrated view of a surface of revolution (SOR). Geometric constraints induced in the image by the symmetry properties of the SOR structure are exploited to perform self-calibration of a natural camera, 3D metric reconstruction, and texture acquisition. By exploiting the analogy with the geometry of single axis motion, we demonstrate that the imaged apparent contour and the visible segments of two imaged cross sections in a single SOR view provide enough information for these tasks. Original contributions of the paper are: single view self-calibration and reconstruction based on planar rectification, previously developed for planar surfaces, has been extended to deal also with the SOR class of curved surfaces; self-calibration is obtained by estimating both camera focal length (one parameter) and principal point (two parameters) from three independent linear constraints for the SOR fixed entities; the invariant-based description of the SOR scaling function has been extended from affine to perspective projection. The solution proposed exploits both the geometric and topological properties of the transformation that relates the apparent contour to the SOR scaling function. Therefore, with this method, a metric localization of the SOR occluded parts can be made, so as to cope with them correctly. For the reconstruction of textured SORs, texture acquisition is performed without requiring the estimation of external camera calibration parameters, but only using internal camera parameters obtained from self-calibration.

  11. Combined EEG/MEG can outperform single modality EEG or MEG source reconstruction in presurgical epilepsy diagnosis.

    Directory of Open Access Journals (Sweden)

    Ümit Aydin

    Full Text Available We investigated two important means for improving source reconstruction in presurgical epilepsy diagnosis. The first investigation is about the optimal choice of the number of epileptic spikes in averaging to (1 sufficiently reduce the noise bias for an accurate determination of the center of gravity of the epileptic activity and (2 still get an estimation of the extent of the irritative zone. The second study focuses on the differences in single modality EEG (80-electrodes or MEG (275-gradiometers and especially on the benefits of combined EEG/MEG (EMEG source analysis. Both investigations were validated with simultaneous stereo-EEG (sEEG (167-contacts and low-density EEG (ldEEG (21-electrodes. To account for the different sensitivity profiles of EEG and MEG, we constructed a six-compartment finite element head model with anisotropic white matter conductivity, and calibrated the skull conductivity via somatosensory evoked responses. Our results show that, unlike single modality EEG or MEG, combined EMEG uses the complementary information of both modalities and thereby allows accurate source reconstructions also at early instants in time (epileptic spike onset, i.e., time points with low SNR, which are not yet subject to propagation and thus supposed to be closer to the origin of the epileptic activity. EMEG is furthermore able to reveal the propagation pathway at later time points in agreement with sEEG, while EEG or MEG alone reconstructed only parts of it. Subaveraging provides important and accurate information about both the center of gravity and the extent of the epileptogenic tissue that neither single nor grand-averaged spike localizations can supply.

  12. Combined EEG/MEG can outperform single modality EEG or MEG source reconstruction in presurgical epilepsy diagnosis.

    Science.gov (United States)

    Aydin, Ümit; Vorwerk, Johannes; Dümpelmann, Matthias; Küpper, Philipp; Kugel, Harald; Heers, Marcel; Wellmer, Jörg; Kellinghaus, Christoph; Haueisen, Jens; Rampp, Stefan; Stefan, Hermann; Wolters, Carsten H

    2015-01-01

    We investigated two important means for improving source reconstruction in presurgical epilepsy diagnosis. The first investigation is about the optimal choice of the number of epileptic spikes in averaging to (1) sufficiently reduce the noise bias for an accurate determination of the center of gravity of the epileptic activity and (2) still get an estimation of the extent of the irritative zone. The second study focuses on the differences in single modality EEG (80-electrodes) or MEG (275-gradiometers) and especially on the benefits of combined EEG/MEG (EMEG) source analysis. Both investigations were validated with simultaneous stereo-EEG (sEEG) (167-contacts) and low-density EEG (ldEEG) (21-electrodes). To account for the different sensitivity profiles of EEG and MEG, we constructed a six-compartment finite element head model with anisotropic white matter conductivity, and calibrated the skull conductivity via somatosensory evoked responses. Our results show that, unlike single modality EEG or MEG, combined EMEG uses the complementary information of both modalities and thereby allows accurate source reconstructions also at early instants in time (epileptic spike onset), i.e., time points with low SNR, which are not yet subject to propagation and thus supposed to be closer to the origin of the epileptic activity. EMEG is furthermore able to reveal the propagation pathway at later time points in agreement with sEEG, while EEG or MEG alone reconstructed only parts of it. Subaveraging provides important and accurate information about both the center of gravity and the extent of the epileptogenic tissue that neither single nor grand-averaged spike localizations can supply.

  13. Online dose reconstruction for tracked volumetric arc therapy: Real-time implementation and offline quality assurance for prostate SBRT.

    Science.gov (United States)

    Kamerling, Cornelis Ph; Fast, Martin F; Ziegenhein, Peter; Menten, Martin J; Nill, Simeon; Oelfke, Uwe

    2017-11-01

    Firstly, this study provides a real-time implementation of online dose reconstruction for tracked volumetric arc therapy (VMAT). Secondly, this study describes a novel offline quality assurance tool, based on commercial dose calculation algorithms. Online dose reconstruction for VMAT is a computationally challenging task in terms of computer memory usage and calculation speed. To potentially reduce the amount of memory used, we analyzed the impact of beam angle sampling for dose calculation on the accuracy of the dose distribution. To establish the performance of the method, we planned two single-arc VMAT prostate stereotactic body radiation therapy cases for delivery with dynamic MLC tracking. For quality assurance of our online dose reconstruction method we have also developed a stand-alone offline dose reconstruction tool, which utilizes the RayStation treatment planning system to calculate dose. For the online reconstructed dose distributions of the tracked deliveries, we could establish strong resemblance for 72 and 36 beam co-planar equidistant beam samples with less than 1.2% deviation for the assessed dose-volume indicators (clinical target volume D98 and D2, and rectum D2). We could achieve average runtimes of 28-31 ms per reported MLC aperture for both dose computation and accumulation, meeting our real-time requirement. To cross-validate the offline tool, we have compared the planned dose to the offline reconstructed dose for static deliveries and found excellent agreement (3%/3 mm global gamma passing rates of 99.8%-100%). Being able to reconstruct dose during delivery enables online quality assurance and online replanning strategies for VMAT. The offline quality assurance tool provides the means to validate novel online dose reconstruction applications using a commercial dose calculation engine. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  14. Results on L2 Trigger Reconstruction in Single and Di-Muon Topologies

    CERN Document Server

    Acosta, Darin; Cox, T; Dallavalle, Gaetano-Marco; Fanfani, Alessandra; Fierro, Massimiliano; Gasparini, Ugo; Grandi, Claudio; Konecki, Marcin; Lacaprara, Stefano; Neumeister, Norbert; Rick, Hartmut; Ronchese, Paolo; Smith, Richard P; Tannenbaum, Benn; Vitelli, Annalina; Wilkinson, Richard

    2001-01-01

    A detailed study of the CMS L2 trigger performance in single and di-muontopologies is reported, using the full detector simulation developed in CMSIM and the digitization, L1 trigger simulation and L2 reconstruction code developed in ORCA. The study was performed assuming the high luminosity scenario for the LHC machine (L= 10 nb-1s-1). The resulting single muon and di-muon rates at L2 selection level are reported and compared with the L1 Global Muon Trigger output.

  15. Single- versus double-bundle suture button reconstruction of the forearm interosseous membrane for the chronic Essex-Lopresti lesion.

    Science.gov (United States)

    Gaspar, Michael P; Kearns, Kenneth A; Culp, Randall W; Osterman, A Lee; Kane, Patrick M

    2017-10-06

    Reconstruction of the ruptured interosseous membrane (IOM) is critical to restore forearm stability for the chronic Essex-Lopresti injury. Positive outcomes have been reported following IOM reconstruction with a single-bundle suture button (Mini-Tightrope) construct, although recent work suggests that double-bundle Mini-TightRope ® IOM reconstruction is biomechanically superior. The purpose of this study was to determine whether double-bundle Mini-TightRope ® reconstruction of the forearm IOM results in superior clinical outcomes to the single-bundle technique. Five patients with chronic Essex-Lopresti injuries treated with double-bundle Mini-TightRope ® IOM reconstruction were matched to five patients treated with single-bundle Mini-TightRope ® reconstruction. Improvement in clinical examination measures and patient-reported outcomes was compared between the groups. Results were good to excellent in all 10 patients. At final follow-up, forearm rotation was significantly better in the single-bundle group, while maintenance of ulnar variance was better in the double-bundle group. No significant differences were noted between the two groups for any other numerical outcomes, and no complications occurred. These findings suggest that while IOM reconstruction with a double-bundle Mini-TightRope ® construct results in greater resistance to proximal migration of the radius in the intermediate term, there is a modest concomitant loss of forearm rotation when compared to single-bundle reconstruction. Therapeutic Level IV.

  16. Preoperative CT angiography reduces surgery time in perforator flap reconstruction

    NARCIS (Netherlands)

    Smit, Jeroen M.; Dimopoulou, Angeliki; Liss, Anders G.; Zeebregts, Clark J.; Kildal, Morten; Whitaker, Iain S.; Magnusson, Anders; Acosta, Rafael

    The use of perforator flaps in breast reconstructions has increased considerably in the past decade. A disadvantage of the perforator flap is difficult dissection, which results in a longer procedure. During spring 2006, we introduced CT angiography (CTA) as part of the diagnostic work-up in

  17. Time-of-flight camera via a single-pixel correlation image sensor

    Science.gov (United States)

    Mao, Tianyi; Chen, Qian; He, Weiji; Dai, Huidong; Ye, Ling; Gu, Guohua

    2018-04-01

    A time-of-flight imager based on single-pixel correlation image sensors is proposed for noise-free depth map acquisition in presence of ambient light. Digital micro-mirror device and time-modulated IR-laser provide spatial and temporal illumination on the unknown object. Compressed sensing and ‘four bucket principle’ method are combined to reconstruct the depth map from a sequence of measurements at a low sampling rate. Second-order correlation transform is also introduced to reduce the noise from the detector itself and direct ambient light. Computer simulations are presented to validate the computational models and improvement of reconstructions.

  18. Time Reversal Reconstruction Algorithm Based on PSO Optimized SVM Interpolation for Photoacoustic Imaging

    Directory of Open Access Journals (Sweden)

    Mingjian Sun

    2015-01-01

    Full Text Available Photoacoustic imaging is an innovative imaging technique to image biomedical tissues. The time reversal reconstruction algorithm in which a numerical model of the acoustic forward problem is run backwards in time is widely used. In the paper, a time reversal reconstruction algorithm based on particle swarm optimization (PSO optimized support vector machine (SVM interpolation method is proposed for photoacoustics imaging. Numerical results show that the reconstructed images of the proposed algorithm are more accurate than those of the nearest neighbor interpolation, linear interpolation, and cubic convolution interpolation based time reversal algorithm, which can provide higher imaging quality by using significantly fewer measurement positions or scanning times.

  19. Single-Bundle Versus Double-Bundle Reconstruction for Anterior Cruciate Ligament Rupture: A Meta-Analysis-Does Anatomy Matter?

    NARCIS (Netherlands)

    Eck, Carola F. Van; Kopf, Sebastian; Irrgang, James J.; Blankevoort, Leendert; Bhandari, Mohit; Fu, Freddie H.; Poolman, Rudolf W.

    2012-01-01

    Purpose: To determine whether double-bundle anterior cruciate ligament reconstruction leads to better restoration of anterior and rotational laxity and range of motion than single-bundle reconstruction. Methods: A search was performed in the Medline, Embase, CINAHL, and Cochrane databases. All

  20. Reconstruction of the PETM onset from single specimen analyses of foraminiferal stable isotopes at Medford, NJ

    Science.gov (United States)

    Makarova, M.; Miller, K. G.; Wright, J. D.

    2017-12-01

    The Paleocene-Eocene transition ( 56 Ma) is marked by a global temperature increase of 4-8°C and the carbon isotope excursion (CIE) found ubiquitously in marine and terrestrial realms. However, the mechanisms of warming and overall changes in the ocean-atmosphere system during the Paleocene-Eocene thermal maximum (PETM) are uncertain. The timing of the PETM onset has been debated suggested by various studies between years to thousands of years and therefore is of particular interest to ascertain the trigger mechanism. One way to resolve this is to study thick cores on the continental margins that have higher sedimentation rates and thus resolution. Stratigraphically more complete in regard to the CIE onset marine PETM sections are found along the U.S. mid-Atlantic margin, New Jersey coastal plain (35-40°N paleolatitude). We present new carbon and oxygen isotopic data of planktonic and benthic foraminifera from the Medford 3A core, drilled on the New Jersey coastal plain in Summer 2016. Medford is the most proximal among the New Jersey coastal plain sites. The Medford 3A core has recovered 4 ft (1.2 m) of the Marlboro Formation, unit that contains the CIE "core" with low stable δ13C values and CIE recovery in other New Jersey cores. The top of the Marlboro Formation is truncated at Medford 3A, but the base is conformable with the underlaying Vincentown Formation. The sharp δ13C decrease appears within the Vincentown/Marlboro transitional lithological interval 1.5 ft (0.5 m) thick allowing a detailed study of the PETM onset. The Medford 3A core recovered sufficient well-preserved foraminifera to establish isotopic changes across the PETM onset. We measure δ13C and δ18O in single specimens of surface dwellers (Morozovella, Acarinina), thermocline dwellers (Subbotina), and benthic foraminifera (Anomalinoides, Cibicidoides) at high resolution to understand the nature of the PETM onset. We compliment previously published single specimen isotopic records from the

  1. REAL-TIME CAMERA GUIDANCE FOR 3D SCENE RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    F. Schindler

    2012-07-01

    Full Text Available We propose a framework for operator guidance during the image acquisition process for reliable multi-view stereo reconstruction. Goal is to achieve full coverage of the object and sufficient overlap. Multi-view stereo is a commonly used method to reconstruct both camera trajectory and 3D object shape. After determining an initial solution, a globally optimal reconstruction is usually obtained by executing a bundle adjustment involving all images. Acquiring suitable images, however, still requires an experienced operator to ensure accuracy and completeness of the final solution. We propose an interactive framework for guiding unexperienced users or possibly an autonomous robot. Using approximate camera orientations and object points we estimate point uncertainties within a sliding bundle adjustment and suggest appropriate camera movements. A visual feedback system communicates the decisions to the user in an intuitive way. We demonstrate the suitability of our system with a virtual image acquisition simulation as well as in real-world scenarios. We show that when following the camera movements suggested by our system, the proposed framework is able to generate good approximate values for the bundle adjustment, leading to accurate results compared to ground truth after few iterations. Possible applications are non-professional 3D acquisition systems on low-cost platforms like mobile phones, autonomously navigating robots as well as online flight planning of unmanned aerial vehicles.

  2. Single particle electron microscopy reconstruction of the exosome complex using the random conical tilt method.

    Science.gov (United States)

    Liu, Xueqi; Wang, Hong-Wei

    2011-03-28

    Single particle electron microscopy (EM) reconstruction has recently become a popular tool to get the three-dimensional (3D) structure of large macromolecular complexes. Compared to X-ray crystallography, it has some unique advantages. First, single particle EM reconstruction does not need to crystallize the protein sample, which is the bottleneck in X-ray crystallography, especially for large macromolecular complexes. Secondly, it does not need large amounts of protein samples. Compared with milligrams of proteins necessary for crystallization, single particle EM reconstruction only needs several micro-liters of protein solution at nano-molar concentrations, using the negative staining EM method. However, despite a few macromolecular assemblies with high symmetry, single particle EM is limited at relatively low resolution (lower than 1 nm resolution) for many specimens especially those without symmetry. This technique is also limited by the size of the molecules under study, i.e. 100 kDa for negatively stained specimens and 300 kDa for frozen-hydrated specimens in general. For a new sample of unknown structure, we generally use a heavy metal solution to embed the molecules by negative staining. The specimen is then examined in a transmission electron microscope to take two-dimensional (2D) micrographs of the molecules. Ideally, the protein molecules have a homogeneous 3D structure but exhibit different orientations in the micrographs. These micrographs are digitized and processed in computers as "single particles". Using two-dimensional alignment and classification techniques, homogenous molecules in the same views are clustered into classes. Their averages enhance the signal of the molecule's 2D shapes. After we assign the particles with the proper relative orientation (Euler angles), we will be able to reconstruct the 2D particle images into a 3D virtual volume. In single particle 3D reconstruction, an essential step is to correctly assign the proper orientation

  3. Anatomic Double Bundle single tunnel Foreign Material Free ACL-Reconstruction - a technical note.

    Science.gov (United States)

    Felmet, Gernot

    2011-10-01

    The anterior cruciate ligament (ACL) consists of two bundles, the anteromedial (AM) and posterolateral bundle (PM). Double bundle reconstructions appear to give better rotational stability. The usual technique is to make two tunnels in the femur and two in the tibia. This is difficult and in small knees may not even be possible. We have developed a foreign material free press fit fixation for double bundle ACL reconstruction using a single femoral tunnel ((R)). This is based on the ALL PRESS FIT ACL reconstruction. It is suitable for the most common medium and, otherwise difficult, small sizes of knees. Using diamond edged wet grinding hollow reamers, bone cylinders in different diameters are harvested from the implantation tunnels of the tibia and femur and used for the press fit fixation. Using the press fit technique the graft is first fixed in tibia. It is then similarly fixed under tension in the femoral side with the knee in 120 degree flexion. This is called Bottom To Top Fixation (BTT). On extending the knee the graft tension is self adapting. Depending on the size of the individual knee, the diameter of the femoral bone plug is varied from 8 to 13 mm to achieve an anatomic spread with a double bundle-like insertion. The tibia tunnel can be applied with two 7 or 8 mm diameter tunnels overlapping to a semi oval tunnel between 10 to 13 mm. Since May 2003 we have carried out ACL-reconstructions with Hamstring grafts without foreign material using the ALL PRESS FIT technique. Initially, an 8 mm press fit fixation was used proximally with good results. Since April 2008, the range of diameters was increased up to 13 mm. The results of the Lachman tests have been good to excellent. Results of the Pivot shift test suggested more stability with femoral broader diameters of 9,5 to 13 mm. The foreign material free fixation of ham-string in the ALL PRESS FIT Bottom To Top Fixation is a successful method for ACL Reconstruction. The Diamond Instruments and tubed guiding

  4. Posterior instrumentation, anterior column reconstruction with single posterior approach for treatment of pyogenic osteomyelitis of thoracic and lumbar spine.

    Science.gov (United States)

    Gorensek, M; Kosak, R; Travnik, L; Vengust, R

    2013-03-01

    Surgical treatment of thoracolumbar osteomyelitis consists of radical debridement, reconstruction of anterior column either with or without posterior stabilization. The objective of present study is to evaluate a case series of patients with osteomyelitis of thoracic and lumbar spine treated by single, posterior approach with posterior instrumentation and anterior column reconstruction. Seventeen patients underwent clinical and radiological evaluation pre and postoperatively with latest follow-up at 19 months (8-56 months) after surgery. Parameters assessed were site of infection, causative organism, angle of deformity, blood loss, duration of surgery, ICU stay, deformity correction, time to solid bony fusion, ambulatory status, neurologic status (ASIA impairment scale), and functional outcome (Kirkaldy-Willis criteria). Mean operating time was 207 min and average blood loss 1,150 ml. Patients spent 2 (1-4) days in ICU and were able to walk unaided 1.6 (1-2) days after surgery. Infection receded in all 17 patients postoperatively. Solid bony fusion occurred in 15 out of 17 patients (88 %) on average 6.3 months after surgery. Functional outcome was assessed as excellent or good in 82 % of cases. Average deformity correction was 8 (1-18) degrees, with loss of correction of 4 (0-19) degrees at final follow-up. Single, posterior approach addressing both columns poses safe alternative in treatment of pyogenic vertebral osteomyelitis of thoracic and lumbar spine. It proved to be less invasive resulting in faster postoperative recovery.

  5. Fully 3D list-mode time-of-flight PET image reconstruction on GPUs using CUDA.

    Science.gov (United States)

    Cui, Jing-Yu; Pratx, Guillem; Prevrhal, Sven; Levin, Craig S

    2011-12-01

    List-mode processing is an efficient way of dealing with the sparse nature of positron emission tomography (PET) data sets and is the processing method of choice for time-of-flight (ToF) PET image reconstruction. However, the massive amount of computation involved in forward projection and backprojection limits the application of list-mode reconstruction in practice, and makes it challenging to incorporate accurate system modeling. The authors present a novel formulation for computing line projection operations on graphics processing units (GPUs) using the compute unified device architecture (CUDA) framework, and apply the formulation to list-mode ordered-subsets expectation maximization (OSEM) image reconstruction. Our method overcomes well-known GPU challenges such as divergence of compute threads, limited bandwidth of global memory, and limited size of shared memory, while exploiting GPU capabilities such as fast access to shared memory and efficient linear interpolation of texture memory. Execution time comparison and image quality analysis of the GPU-CUDA method and the central processing unit (CPU) method are performed on several data sets acquired on a preclinical scanner and a clinical ToF scanner. When applied to line projection operations for non-ToF list-mode PET, this new GPU-CUDA method is >200 times faster than a single-threaded reference CPU implementation. For ToF reconstruction, we exploit a ToF-specific optimization to improve the efficiency of our parallel processing method, resulting in GPU reconstruction >300 times faster than the CPU counterpart. For a typical whole-body scan with 75 × 75 × 26 image matrix, 40.7 million LORs, 33 subsets, and 3 iterations, the overall processing time is 7.7 s for GPU and 42 min for a single-threaded CPU. Image quality and accuracy are preserved for multiple imaging configurations and reconstruction parameters, with normalized root mean squared (RMS) deviation less than 1% between CPU and GPU

  6. Reconstruction of Time-Resolved Neutron Energy Spectra in Z-Pinch Experiments Using Time-of-flight Method

    International Nuclear Information System (INIS)

    Rezac, K.; Klir, D.; Kubes, P.; Kravarik, J.

    2009-01-01

    We present the reconstruction of neutron energy spectra from time-of-flight signals. This technique is useful in experiments with the time of neutron production in the range of about tens or hundreds of nanoseconds. The neutron signals were obtained by a common hard X-ray and neutron fast plastic scintillation detectors. The reconstruction is based on the Monte Carlo method which has been improved by simultaneous usage of neutron detectors placed on two opposite sides from the neutron source. Although the reconstruction from detectors placed on two opposite sides is more difficult and a little bit inaccurate (it followed from several presumptions during the inclusion of both sides of detection), there are some advantages. The most important advantage is smaller influence of scattered neutrons on the reconstruction. Finally, we describe the estimation of the error of this reconstruction.

  7. Online real-time reconstruction of adaptive TSENSE with commodity CPU / GPU hardware

    DEFF Research Database (Denmark)

    Roujol, Sebastien; de Senneville, Baudouin Denis; Vahalla, Erkki

    2009-01-01

    Adaptive temporal sensitivity encoding (TSENSE) has been suggested as a robust parallel imaging method suitable for MR guidance of interventional procedures. However, in practice, the reconstruction of adaptive TSENSE images obtained with large coil arrays leads to long reconstruction times and l...

  8. Surgical timing of anterior cruciate ligament reconstruction to prevent associated meniscal and cartilage lesions.

    Science.gov (United States)

    Taketomi, Shuji; Inui, Hiroshi; Yamagami, Ryota; Kawaguchi, Kohei; Nakazato, Keiu; Kono, Kenichi; Kawata, Manabu; Nakagawa, Takumi; Tanaka, Sakae

    2018-02-28

    The purpose of this study was to analyze the association between the prevalence of meniscal and chondral lesions and the timing of surgery in patients undergoing primary anterior cruciate ligament (ACL) reconstruction to determine a safe time for surgery. This retrospective study involved 226 patients (91 females and 135 males; median age, 29 years) undergoing primary ACL reconstruction. Time interval from ACL injury to surgery (median, 4 months; range, 1-420 months) and concomitant meniscal and cartilage lesions in ACL reconstruction were reviewed. Receiver operating characteristic (ROC) curve analysis was used to determine the precise threshold interval to surgery to prevent meniscal or cartilage lesions. The risk of lesion occurrence after each cutoff period was determined using odds ratio (OR). The incidences of medial meniscus (MM), lateral meniscus (LM), and cartilage lesions were 43.8%, 32.7%, and 27.4%, respectively. ROC analysis revealed that patients who waited for more than 6, 4, and 5 months for ACL reconstruction had a significantly greater risk of associated MM, LM, and chondral lesions, respectively. Patients who underwent ACL reconstruction ≥7 months after injury had OR of 4.1 (p lesion as compared with those who underwent reconstruction within 6 months. Similarly, patients who underwent ACL reconstruction ≥5 months after injury had OR of 1.9 (p = 0.023) for the presence of LM lesion as compared with those who underwent reconstruction within 4 months, and patients who underwent ACL reconstruction ≥6 months after injury had OR of 2.9 (p lesion as compared with those who underwent reconstruction within 6 months. ACL reconstruction should be performed within approximately 6 months after the injury to prevent associated meniscal or chondral lesions. Copyright © 2018 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  9. Empirical reconstruction and long-duration tracking of the magnetospheric boundary in single- and multi-spacecraft contexts

    Directory of Open Access Journals (Sweden)

    J. De Keyser

    2005-06-01

    Full Text Available The magnetospheric boundary is always moving, making it difficult to establish its structure. This paper presents a novel method for tracking the motion of the boundary, based on in-situ observations of the plasma velocity and of one or more additional observables. This method allows the moving boundary to be followed for extended periods of time (up to several hours and aptly deals with limitations on the time resolution of the data, with measurement errors, and with occasional data gaps; it can exploit data from any number of spacecraft and any type of instrument. At the same time the method is an empirical reconstruction technique that determines the one-dimensional spatial structure of the boundary. The method is illustrated with single- and multi-spacecraft applications using data from Ampte/Irm and Cluster.

  10. A reconstructed South Atlantic Meridional Overturning Circulation time series since 1870

    Science.gov (United States)

    Lopez, Hosmay; Goni, Gustavo; Dong, Shenfu

    2017-04-01

    This study reconstructs a century-long South Atlantic Meridional Overturning Circulation (SAMOC) index. The reconstruction is possible due to its covariability with sea surface temperature (SST). A singular value decomposition (SVD) method is applied to the correlation matrix of SST and SAMOC. The SVD is performed on the trained period (1993 to present) for which Expendable Bathythermographs and satellite altimetry observations are available. The joint modes obtained are used in the reconstruction of a monthly SAMOC time series from 1870 to present. The reconstructed index is highly correlated to the observational based SAMOC time series during the trained period and provides a long historical estimate. It is shown that the Interdecadal Pacific Oscillation (IPO) is the leading mode of SAMOC-SST covariability, explaining 85% with the Atlantic Niño accounting for less than 10%. The reconstruction shows that SAMOC has recently shifted to an anomalous positive period, consistent with a recent positive shift of the IPO.

  11. Sliding time of flight: sliding time of flight MR angiography using a dynamic image reconstruction method.

    Science.gov (United States)

    Choi, Joonsung; Seo, Hyunseok; Lim, Yongwan; Han, Yeji; Park, HyunWook

    2015-03-01

    To obtain three-dimensional (3D) MR angiography having high contrast between vessel and stationary background tissue, a novel technique called sliding time of flight (TOF) is proposed. The proposed method relies on the property that flow-related enhancement (FRE) is maximized at the blood-entering slice in an imaging slab. For the proposed sliding TOF, a sliding stack-of-stars sampling and a dynamic MR image reconstruction algorithm were developed. To verify the performance of the proposed method, in vivo study was performed and the results were compared with multiple overlapping thin 3D slab acquisition (MOTSA) and sliding interleaved ky (SLINKY). In MOTSA and SLINKY, the variation of FRE resulted in severe venetian blind (MOTSA) or ghost (SLINKY) artifacts, while the vessel-contrast increased as the flip angle of radiofrequency (RF) pulses increased. On the other hand, the proposed method could provide high-contrast angiograms with reduced FRE-related artifacts. The sliding TOF can provide 3D angiography without image artifacts even if high flip angle RF pulses with thick slab excitation are used. Although remains of subsampling artifacts can be present in the reconstructed images, they can be reduced by MIP operation and resolved further by regularization techniques. © 2014 Wiley Periodicals, Inc.

  12. Single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation in surgical treatment for single-segment lumbar spinal tuberculosis

    OpenAIRE

    Zeng, Hao; Wang, Xiyang; Zhang, Penghui; Peng, Wei; Zhang, Yupeng; Liu, Zheng

    2015-01-01

    Objective: The aim of this study is to determine the feasibility and efficacy of surgical management of single-segment lumbar spinal tuberculosis (TB) by using single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation.Methods: Seventeen cases of single-segment lumbar TB were treated with single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reco...

  13. Robust reconstruction of time-resolved diffraction from ultrafast streak cameras

    Directory of Open Access Journals (Sweden)

    Daniel S. Badali

    2017-09-01

    Full Text Available In conjunction with ultrafast diffraction, streak cameras offer an unprecedented opportunity for recording an entire molecular movie with a single probe pulse. This is an attractive alternative to conventional pump-probe experiments and opens the door to studying irreversible dynamics. However, due to the “smearing” of the diffraction pattern across the detector, the streaking technique has thus far been limited to simple mono-crystalline samples and extreme care has been taken to avoid overlapping diffraction spots. In this article, this limitation is addressed by developing a general theory of streaking of time-dependent diffraction patterns. Understanding the underlying physics of this process leads to the development of an algorithm based on Bayesian analysis to reconstruct the time evolution of the two-dimensional diffraction pattern from a single streaked image. It is demonstrated that this approach works on diffraction peaks that overlap when streaked, which not only removes the necessity of carefully choosing the streaking direction but also extends the streaking technique to be able to study polycrystalline samples and materials with complex crystalline structures. Furthermore, it is shown that the conventional analysis of streaked diffraction can lead to erroneous interpretations of the data.

  14. Polyquant CT: direct electron and mass density reconstruction from a single polyenergetic source

    Science.gov (United States)

    Mason, Jonathan H.; Perelli, Alessandro; Nailon, William H.; Davies, Mike E.

    2017-11-01

    Quantifying material mass and electron density from computed tomography (CT) reconstructions can be highly valuable in certain medical practices, such as radiation therapy planning. However, uniquely parameterising the x-ray attenuation in terms of mass or electron density is an ill-posed problem when a single polyenergetic source is used with a spectrally indiscriminate detector. Existing approaches to single source polyenergetic modelling often impose consistency with a physical model, such as water-bone or photoelectric-Compton decompositions, which will either require detailed prior segmentation or restrictive energy dependencies, and may require further calibration to the quantity of interest. In this work, we introduce a data centric approach to fitting the attenuation with piecewise-linear functions directly to mass or electron density, and present a segmentation-free statistical reconstruction algorithm for exploiting it, with the same order of complexity as other iterative methods. We show how this allows both higher accuracy in attenuation modelling, and demonstrate its superior quantitative imaging, with numerical chest and metal implant data, and validate it with real cone-beam CT measurements.

  15. Polyquant CT: direct electron and mass density reconstruction from a single polyenergetic source.

    Science.gov (United States)

    Mason, Jonathan H; Perelli, Alessandro; Nailon, William H; Davies, Mike E

    2017-11-02

    Quantifying material mass and electron density from computed tomography (CT) reconstructions can be highly valuable in certain medical practices, such as radiation therapy planning. However, uniquely parameterising the x-ray attenuation in terms of mass or electron density is an ill-posed problem when a single polyenergetic source is used with a spectrally indiscriminate detector. Existing approaches to single source polyenergetic modelling often impose consistency with a physical model, such as water-bone or photoelectric-Compton decompositions, which will either require detailed prior segmentation or restrictive energy dependencies, and may require further calibration to the quantity of interest. In this work, we introduce a data centric approach to fitting the attenuation with piecewise-linear functions directly to mass or electron density, and present a segmentation-free statistical reconstruction algorithm for exploiting it, with the same order of complexity as other iterative methods. We show how this allows both higher accuracy in attenuation modelling, and demonstrate its superior quantitative imaging, with numerical chest and metal implant data, and validate it with real cone-beam CT measurements.

  16. Evaluations of Three-Dimensional Building Model Reconstruction from LiDAR Point Clouds and Single-View Perspective Imagery

    Directory of Open Access Journals (Sweden)

    F. Tsai

    2014-06-01

    Full Text Available This paper briefly presents two approaches for effective three-dimensional (3D building model reconstruction from terrestrial laser scanning (TLS data and single perspective view imagery and assesses their applicability to the reconstruction of 3D models of landmark or historical buildings. The collected LiDAR point clouds are registered based on conjugate points identified using a seven-parameter transformation system. Three dimensional models are generated using plan and surface fitting algorithms. The proposed single-view reconstruction (SVR method is based on vanishing points and single-view metrology. More detailed models can also be generated according to semantic analysis of the façade images. Experimental results presented in this paper demonstrate that both TLS and SVR approaches can successfully produce accurate and detailed 3D building models from LiDAR point clouds or different types of single-view perspective images.

  17. Automated selection of the optimal cardiac phase for single-beat coronary CT angiography reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Stassi, D.; Ma, H.; Schmidt, T. G., E-mail: taly.gilat-schmidt@marquette.edu [Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53201 (United States); Dutta, S.; Soderman, A.; Pazzani, D.; Gros, E.; Okerlund, D. [GE Healthcare, Waukesha, Wisconsin 53188 (United States)

    2016-01-15

    Purpose: Reconstructing a low-motion cardiac phase is expected to improve coronary artery visualization in coronary computed tomography angiography (CCTA) exams. This study developed an automated algorithm for selecting the optimal cardiac phase for CCTA reconstruction. The algorithm uses prospectively gated, single-beat, multiphase data made possible by wide cone-beam imaging. The proposed algorithm differs from previous approaches because the optimal phase is identified based on vessel image quality (IQ) directly, compared to previous approaches that included motion estimation and interphase processing. Because there is no processing of interphase information, the algorithm can be applied to any sampling of image phases, making it suited for prospectively gated studies where only a subset of phases are available. Methods: An automated algorithm was developed to select the optimal phase based on quantitative IQ metrics. For each reconstructed slice at each reconstructed phase, an image quality metric was calculated based on measures of circularity and edge strength of through-plane vessels. The image quality metric was aggregated across slices, while a metric of vessel-location consistency was used to ignore slices that did not contain through-plane vessels. The algorithm performance was evaluated using two observer studies. Fourteen single-beat cardiac CT exams (Revolution CT, GE Healthcare, Chalfont St. Giles, UK) reconstructed at 2% intervals were evaluated for best systolic (1), diastolic (6), or systolic and diastolic phases (7) by three readers and the algorithm. Pairwise inter-reader and reader-algorithm agreement was evaluated using the mean absolute difference (MAD) and concordance correlation coefficient (CCC) between the reader and algorithm-selected phases. A reader-consensus best phase was determined and compared to the algorithm selected phase. In cases where the algorithm and consensus best phases differed by more than 2%, IQ was scored by three

  18. Ventricular outflow tract reconstructions with cryopreserved cardiac valve homografts. A single surgeon's 10-year experience.

    Science.gov (United States)

    Hopkins, R A; Reyes, A; Imperato, D A; Carpenter, G A; Myers, J L; Murphy, K A

    1996-01-01

    OBJECTIVE: From January 1, 1985 through December 31, 1994, one surgeon implanted cryopreserved valved homografts into 149 patients--65 since December 1988. This latter series (II) was accomplished in a single hospital, facilitating patient follow-up with biannual echocardiograms. Analysis of these 65 patients is the primary focus of this report; the indications and early surgical results for the two parts of the series (I and II) are compared to assess the evolution of a single surgeon's use of homografts in a mixed pediatric and adult practice. METHODS: Fifty-one variables for each patient (series II) were entered into a computerized database and analyzed (multivariate and univariate) using SPSS 6.1 software (Statistical Products and Service Solutions, Chicago, IL). Cox proportional hazard model was used to identify the independent contribution of each variable for patient mortality and homograft failure. Cumulative survival estimates were made using Kaplan-Meier analysis. Homograft failure was defined as requirement for replacement or death. In series I, there were 41 left ventricular outflow tract (LVOT) reconstructions (31 adult) and 43 right ventricular outflow tract (RVOT) reconstructions (42 pediatric). In series II, there were 55 RVOT reconstructions (52 pediatric) and 10 LVOT reconstructions (7 adult). RESULTS: There were no technical surgical failures. Total surgical mortality rate was 6% (5/84) in series I (3 LVOT, 2 RVOT) and 15% (10/65) in series II (2 LVOT, 8 RVOT) (I vs. II NS; p = 0.11, two-tailed Fisher exact test). By the Cox analysis, only age 120 minutes (p < 0.05) were significant predictors for death. Age-based survival curves were compared in a sequential bivariate analyses (log rank test) and age < 2 years again was a significant predictor of decreased patient survival (p < 0.006). Actuarial freedom from patient death or reoperation for homograft failure was 82% +/- 7% at 1000 days and 77% +/- 10% at 2000 days. Three patients required re

  19. Time-resolved reconstruction of dynamical pulse trains using multiheterodyne detection

    Science.gov (United States)

    Butler, T.; Tykalewicz, B.; Goulding, D.; Kelleher, B.; Huyet, Guillaume; Hegarty, S. P.

    2014-05-01

    A technique has been developed for the measurement of pulse trains demonstrating a dynamical behaviour (i.e. not ideally periodic). Existing techniques in this area (e.g. FROG, SPIDER or other heterodyne methods) require very stable pulse trains, or large averaging times, and so are limited when applied to even slowly varying pulse trains. The technique presented involves mixing the comb under test (CUT) with a reference optical frequency comb (OFC) which has a known spectral intensity profile. Mixing these signals on a photodiode results in a series of radio frequency (RF) beat tones. The phase properties of these beat tones can be used to measure the spectral phase between adjacent modes in the CUT, allowing the full complex spectrum of the CUT to be measured simultaneously with one single real time oscilloscope acquisition. With the spectral properties of the comb known, the pulse train can be reconstructed in the temporal domain. By applying this technique to very small sections of the beating signal ( tens of nanoseconds), a time resolved picture of the pulse train behaviour can be obtained. Dynamic signals generated in a LiNbO3 modulator driven by a modulated RF signal have been measured. This technique is well suited to studying the combs produced by mode-locked semiconductor lasers. Quantum dot mode-locked laser combs can be characterised, and pulse train instabilities measured.

  20. Plane-based optimization for 3D object reconstruction from single line drawings.

    Science.gov (United States)

    Liu, Jianzhuang; Cao, Liangliang; Li, Zhenguo; Tang, Xiaoou

    2008-02-01

    In previous optimization-based methods of 3D planar-faced object reconstruction from single 2D line drawings, the missing depths of the vertices of a line drawing (and other parameters in some methods) are used as the variables of the objective functions. A 3D object with planar faces is derived by finding values for these variables that minimize the objective functions. These methods work well for simple objects with a small number N of variables. As N grows, however, it is very difficult for them to find expected objects. This is because with the nonlinear objective functions in a space of large dimension N, the search for optimal solutions can easily get trapped into local minima. In this paper, we use the parameters of the planes that pass through the planar faces of an object as the variables of the objective function. This leads to a set of linear constraints on the planes of the object, resulting in a much lower dimensional nullspace where optimization is easier to achieve. We prove that the dimension of this nullspace is exactly equal to the minimum number of vertex depths which define the 3D object. Since a practical line drawing is usually not an exact projection of a 3D object, we expand the nullspace to a larger space based on the singular value decomposition of the projection matrix of the line drawing. In this space, robust 3D reconstruction can be achieved. Compared with two most related methods, our method not only can reconstruct more complex 3D objects from 2D line drawings, but also is computationally more efficient.

  1. Single-Particle Cryo-EM and 3D Reconstruction of Hybrid Nanoparticles with Electron-Dense Components.

    Science.gov (United States)

    Yu, Guimei; Yan, Rui; Zhang, Chuan; Mao, Chengde; Jiang, Wen

    2015-10-01

    Single-particle cryo-electron microscopy (cryo-EM), accompanied with 3D reconstruction, is a broadly applicable tool for the structural characterization of macromolecules and nanoparticles. Recently, the cryo-EM field has pushed the limits of this technique to higher resolutions and samples of smaller molecular mass, however, some samples still present hurdles to this technique. Hybrid particles with electron-dense components, which have been studied using single-particle cryo-EM yet with limited success in 3D reconstruction due to the interference caused by electron-dense elements, constitute one group of such challenging samples. To process such hybrid particles, a masking method is developed in this work to adaptively remove pixels arising from electron-dense portions in individual projection images while maintaining maximal biomass signals for subsequent 2D alignment, 3D reconstruction, and iterative refinements. As demonstrated by the success in 3D reconstruction of an octahedron DNA/gold hybrid particle, which has been previously published without a 3D reconstruction, the devised strategy that combines adaptive masking and standard single-particle 3D reconstruction approach has overcome the hurdle of electron-dense elements interference, and is generally applicable to cryo-EM structural characterization of most, if not all, hybrid nanomaterials with electron-dense components. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Single-View 3D Scene Reconstruction and Parsing by Attribute Grammar.

    Science.gov (United States)

    Liu, Xiaobai; Zhao, Yibiao; Zhu, Song-Chun

    2018-03-01

    In this paper, we present an attribute grammar for solving two coupled tasks: i) parsing a 2D image into semantic regions; and ii) recovering the 3D scene structures of all regions. The proposed grammar consists of a set of production rules, each describing a kind of spatial relation between planar surfaces in 3D scenes. These production rules are used to decompose an input image into a hierarchical parse graph representation where each graph node indicates a planar surface or a composite surface. Different from other stochastic image grammars, the proposed grammar augments each graph node with a set of attribute variables to depict scene-level global geometry, e.g., camera focal length, or local geometry, e.g., surface normal, contact lines between surfaces. These geometric attributes impose constraints between a node and its off-springs in the parse graph. Under a probabilistic framework, we develop a Markov Chain Monte Carlo method to construct a parse graph that optimizes the 2D image recognition and 3D scene reconstruction purposes simultaneously. We evaluated our method on both public benchmarks and newly collected datasets. Experiments demonstrate that the proposed method is capable of achieving state-of-the-art scene reconstruction of a single image.

  3. Dynamic Non-Rigid Objects Reconstruction with a Single RGB-D Sensor

    Directory of Open Access Journals (Sweden)

    Sen Wang

    2018-03-01

    Full Text Available This paper deals with the 3D reconstruction problem for dynamic non-rigid objects with a single RGB-D sensor. It is a challenging task as we consider the almost inevitable accumulation error issue in some previous sequential fusion methods and also the possible failure of surface tracking in a long sequence. Therefore, we propose a global non-rigid registration framework and tackle the drifting problem via an explicit loop closure. Our novel scheme starts with a fusion step to get multiple partial scans from the input sequence, followed by a pairwise non-rigid registration and loop detection step to obtain correspondences between neighboring partial pieces and those pieces that form a loop. Then, we perform a global registration procedure to align all those pieces together into a consistent canonical space as guided by those matches that we have established. Finally, our proposed model-update step helps fixing potential misalignments that still exist after the global registration. Both geometric and appearance constraints are enforced during our alignment; therefore, we are able to get the recovered model with accurate geometry as well as high fidelity color maps for the mesh. Experiments on both synthetic and various real datasets have demonstrated the capability of our approach to reconstruct complete and watertight deformable objects.

  4. Time Reconstruction and Performance of the CMS Electromagnetic Calorimeter

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The resolution and the linearity of time measurements made with the CMS electromagnetic calorimeter are studied with samples of data from test beam electrons, cosmic rays, and beam-produced muons. The resulting time resolution measured by lead tungstate crystals is better than 100 ps for energy deposits larger than 10 GeV. Crystal-to-crystal synchronization with a precision of 500 ps is performed using muons produced with the first LHC beams in 2008.

  5. Towards a digital sound reconstruction MEMS device: Characterization of a single PZT based piezoelectric actuator

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2015-04-01

    In this paper we report the fabrication and characterization of a single piezoelectric actuator for digital sound reconstruction. This work is the first step towards the implementation of a true digital micro-loudspeaker by means of an array of acoustic actuators. These actuators consist of a flexible membrane fabricated using polyimide, which is actuated using a Lead-Zirconate-Titanate (PZT) piezoelectric ceramic layer working in the d31 actuation mode. The dimensions of the membrane are of 1mm diameter and 4μm in thickness, which is capable of being symmetrically actuated in both upward and downward directions, due to the back etch step releasing the membrane. Our electrical characterization shows an improvement in the polarization of the piezoelectric material after its final etch patterning step, and our mechanical characterization shows the natural modes of resonance of the stacked membrane. © 2015 IEEE.

  6. Single-particle cryo-EM-Improved ab initio 3D reconstruction with SIMPLE/PRIME.

    Science.gov (United States)

    Reboul, Cyril F; Eager, Michael; Elmlund, Dominika; Elmlund, Hans

    2018-01-01

    Cryogenic electron microscopy (cryo-EM) and single-particle analysis now enables the determination of high-resolution structures of macromolecular assemblies that have resisted X-ray crystallography and other approaches. We developed the SIMPLE open-source image-processing suite for analysing cryo-EM images of single-particles. A core component of SIMPLE is the probabilistic PRIME algorithm for identifying clusters of images in 2D and determine relative orientations of single-particle projections in 3D. Here, we extend our previous work on PRIME and introduce new stochastic optimization algorithms that improve the robustness of the approach. Our refined method for identification of homogeneous subsets of images in accurate register substantially improves the resolution of the cluster centers and of the ab initio 3D reconstructions derived from them. We now obtain maps with a resolution better than 10 Å by exclusively processing cluster centers. Excellent parallel code performance on over-the-counter laptops and CPU workstations is demonstrated. © 2017 The Protein Society.

  7. Real time breast microwave radar image reconstruction using circular holography: a study of experimental feasibility.

    Science.gov (United States)

    Flores-Tapia, Daniel; Pistorius, Stephen

    2011-10-01

    The purpose of this paper is to assess the experimental feasibility of a novel breast microwave radar reconstruction approach, circular holography, using realistic experimental datasets recorded using a preclinical experimental setup. The performance of this approach was quantitatively evaluated by calculating the signal to noise ratio, contrast to noise ratio, spatial accuracy, and reconstruction time. Six datasets were recorded, three corresponding to fatty cases and three containing synthetic dense tissue structures. Five of these datasets contained an 8 mm inclusion that emulated a malignant lesion. The data were acquired from synthetic phantoms that mimic the dielectric properties of breast tissues in the 1-6 GHz range using a custom experimental breast microwave radar system. The spatial accuracy and signal to noise ratio of the reconstructed was calculated for all the reconstructed images. The contrast to noise ratio of the reconstructed images corresponding to the datasets containing fibroglandular tissue regions was determined. This was done to evaluate the ability of the circular holographic method to provide images in which the responses from tumors can be distinguished from adjacent dense tissue structures. The execution time required to form the images was also measured to evaluate the data throughput of the holographic approach. For all the reconstructed datasets, the location of the synthetic tumors in the experimental setup was consistent with its position in the reconstructed image. The average spatial error was 2.2 mm, which is less than half the spatial resolution of the data acquisition system. The average signal to noise ratio of the reconstructed images containing an artificial malignant lesion was 8.5 dB, while the average contrast to noise ratio was 6.7 dB. The reconstructed images presented no artifacts. The average execution time of the images formed using the proposed approach was 5 ms, which is six orders of magnitude faster than current

  8. Real-time computation of parameter fitting and image reconstruction using graphical processing units

    Science.gov (United States)

    Locans, Uldis; Adelmann, Andreas; Suter, Andreas; Fischer, Jannis; Lustermann, Werner; Dissertori, Günther; Wang, Qiulin

    2017-06-01

    In recent years graphical processing units (GPUs) have become a powerful tool in scientific computing. Their potential to speed up highly parallel applications brings the power of high performance computing to a wider range of users. However, programming these devices and integrating their use in existing applications is still a challenging task. In this paper we examined the potential of GPUs for two different applications. The first application, created at Paul Scherrer Institut (PSI), is used for parameter fitting during data analysis of μSR (muon spin rotation, relaxation and resonance) experiments. The second application, developed at ETH, is used for PET (Positron Emission Tomography) image reconstruction and analysis. Applications currently in use were examined to identify parts of the algorithms in need of optimization. Efficient GPU kernels were created in order to allow applications to use a GPU, to speed up the previously identified parts. Benchmarking tests were performed in order to measure the achieved speedup. During this work, we focused on single GPU systems to show that real time data analysis of these problems can be achieved without the need for large computing clusters. The results show that the currently used application for parameter fitting, which uses OpenMP to parallelize calculations over multiple CPU cores, can be accelerated around 40 times through the use of a GPU. The speedup may vary depending on the size and complexity of the problem. For PET image analysis, the obtained speedups of the GPU version were more than × 40 larger compared to a single core CPU implementation. The achieved results show that it is possible to improve the execution time by orders of magnitude.

  9. Telemetry Timing Analysis for Image Reconstruction of Kompsat Spacecraft

    Directory of Open Access Journals (Sweden)

    Jin-Ho Lee

    2000-06-01

    Full Text Available The KOMPSAT (KOrea Multi-Purpose SATellite has two optical imaging instruments called EOC (Electro-Optical Camera and OSMI (Ocean Scanning Multispectral Imager. The image data of these instruments are transmitted to ground station and restored correctly after post-processing with the telemetry data transferred from KOMPSAT spacecraft. The major timing information of the KOMPSAT is OBT (On-Board Time which is formatted by the on-board computer of the spacecraft, based on 1Hz sync. pulse coming from the GPS receiver involved. The OBT is transmitted to ground station with the house-keeping telemetry data of the spacecraft while it is distributed to the instruments via 1553B data bus for synchronization during imaging and formatting. The timing information contained in the spacecraft telemetry data would have direct relation to the image data of the instruments, which should be well explained to get a more accurate image. This paper addresses the timing analysis of the KOMPSAT spacecraft and instruments, including the gyro data timing analysis for the correct restoration of the EOC and OSMI image data at ground station.

  10. Single Motherhood, Living Arrangements, and Time With Children in Japan.

    Science.gov (United States)

    Raymo, James M; Park, Hyunjoon; Iwasawa, Miho; Zhou, Yanfei

    2014-08-01

    The authors examined relationships between single parenthood and mothers' time with children in Japan. Using data from the 2011 National Survey of Households with Children (N = 1,926), they first demonstrate that time spent with children and the frequency of shared dinners are significantly lower for single mothers than for their married counterparts. For single mothers living alone, less time with children reflects long work hours and work-related stress. Single mothers coresiding with parents spend less time with children and eat dinner together less frequently than either married mothers or their unmarried counterparts not living with parents, net of (grand)parental support, work hours, income, and stress. The findings suggest that rising divorce rates and associated growth in single-mother families may have a detrimental impact on parents' time with children in Japan and that the relatively high prevalence of intergenerational coresidence among single mothers may do little to temper this impact.

  11. EVALUTION OF THE SINGLE INTERCITY FREIGHT TRANSPORTATION WAITING TIME

    Directory of Open Access Journals (Sweden)

    N. Ponomariova

    2015-07-01

    Full Text Available The example of vechicle operation on the pendulum intercity route during single freightages processing is considered. Two approaches to the definition of the single freightage waiting time by the carrier are proposed. These approaches allow to take into account the probability of the single freightage obtaining by the carrier during the different load level of the transport enterprise capacity.

  12. On algebraic time-derivative estimation and deadbeat state reconstruction

    DEFF Research Database (Denmark)

    Reger, Johann; Jouffroy, Jerome

    2009-01-01

    This paper places into perspective the so-called algebraic time-derivative estimation method recently introduced by Fliess and co-authors with standard results from linear statespace theory for control systems. In particular, it is shown that the algebraic method can essentially be seen...

  13. Acceleration optimization of real-time equilibrium reconstruction for HL-2A tokamak discharge control

    Science.gov (United States)

    Rui, MA; Fan, XIA; Fei, LING; Jiaxian, LI

    2018-02-01

    Real-time equilibrium reconstruction is crucially important for plasma shape control in the process of tokamak plasma discharge. However, as the reconstruction algorithm is computationally intensive, it is very difficult to improve its accuracy and reduce the computation time, and some optimizations need to be done. This article describes the three most important aspects of this optimization: (1) compiler optimization; (2) some optimization for middle-scale matrix multiplication on the graphic processing unit and an algorithm which can solve the block tri-diagonal linear system efficiently in parallel; (3) a new algorithm to locate the X&O point on the central processing unit. A static test proves the correctness and a dynamic test proves the feasibility of using the new code for real-time reconstruction with 129 × 129 grids; it can complete one iteration around 575 μs for each equilibrium reconstruction. The plasma displacements from real-time equilibrium reconstruction are compared with the experimental measurements, and the calculated results are consistent with the measured ones, which can be used as a reference for the real-time control of HL-2A discharge.

  14. Single particle 3D reconstruction for 2D crystal images of membrane proteins.

    Science.gov (United States)

    Scherer, Sebastian; Arheit, Marcel; Kowal, Julia; Zeng, Xiangyan; Stahlberg, Henning

    2014-03-01

    In cases where ultra-flat cryo-preparations of well-ordered two-dimensional (2D) crystals are available, electron crystallography is a powerful method for the determination of the high-resolution structures of membrane and soluble proteins. However, crystal unbending and Fourier-filtering methods in electron crystallography three-dimensional (3D) image processing are generally limited in their performance for 2D crystals that are badly ordered or non-flat. Here we present a single particle image processing approach, which is implemented as an extension of the 2D crystallographic pipeline realized in the 2dx software package, for the determination of high-resolution 3D structures of membrane proteins. The algorithm presented, addresses the low single-to-noise ratio (SNR) of 2D crystal images by exploiting neighborhood correlation between adjacent proteins in the 2D crystal. Compared with conventional single particle processing for randomly oriented particles, the computational costs are greatly reduced due to the crystal-induced limited search space, which allows a much finer search space compared to classical single particle processing. To reduce the considerable computational costs, our software features a hybrid parallelization scheme for multi-CPU clusters and computer with high-end graphic processing units (GPUs). We successfully apply the new refinement method to the structure of the potassium channel MloK1. The calculated 3D reconstruction shows more structural details and contains less noise than the map obtained by conventional Fourier-filtering based processing of the same 2D crystal images. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Development of a method for reconstruction of crowded NMR spectra from undersampled time-domain data

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Takumi; Yoshiura, Chie; Matsumoto, Masahiko; Kofuku, Yutaka; Okude, Junya; Kondo, Keita; Shiraishi, Yutaro [The University of Tokyo, Graduate School of Pharmaceutical Sciences (Japan); Takeuchi, Koh [Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (Japan); Shimada, Ichio, E-mail: shimada@iw-nmr.f.u-tokyo.ac.jp [The University of Tokyo, Graduate School of Pharmaceutical Sciences (Japan)

    2015-05-15

    NMR is a unique methodology for obtaining information about the conformational dynamics of proteins in heterogeneous biomolecular systems. In various NMR methods, such as transferred cross-saturation, relaxation dispersion, and paramagnetic relaxation enhancement experiments, fast determination of the signal intensity ratios in the NMR spectra with high accuracy is required for analyses of targets with low yields and stabilities. However, conventional methods for the reconstruction of spectra from undersampled time-domain data, such as linear prediction, spectroscopy with integration of frequency and time domain, and analysis of Fourier, and compressed sensing were not effective for the accurate determination of the signal intensity ratios of the crowded two-dimensional spectra of proteins. Here, we developed an NMR spectra reconstruction method, “conservation of experimental data in analysis of Fourier” (Co-ANAFOR), to reconstruct the crowded spectra from the undersampled time-domain data. The number of sampling points required for the transferred cross-saturation experiments between membrane proteins, photosystem I and cytochrome b{sub 6}f, and their ligand, plastocyanin, with Co-ANAFOR was half of that needed for linear prediction, and the peak height reduction ratios of the spectra reconstructed from truncated time-domain data by Co-ANAFOR were more accurate than those reconstructed from non-uniformly sampled data by compressed sensing.

  16. Evaluation of Single-Bundle versus Double-Bundle PCL Reconstructions with More Than 10-Year Follow-Up

    Directory of Open Access Journals (Sweden)

    Masataka Deie

    2015-01-01

    Full Text Available Background. Posterior cruciate ligament (PCL injuries are not rare in acute knee injuries, and several recent anatomical studies of the PCL and reconstructive surgical techniques have generated improved patient results. Now, we have evaluated PCL reconstructions performed by either the single-bundle or double-bundle technique in a patient group followed up retrospectively for more than 10 years. Methods. PCL reconstructions were conducted using the single-bundle (27 cases or double-bundle (13 cases method from 1999 to 2002. The mean age at surgery was 34 years in the single-bundle group and 32 years in the double-bundle group. The mean follow-up period was 12.5 years. Patients were evaluated by Lysholm scoring, the gravity sag view, and knee arthrometry. Results. The Lysholm score after surgery was 89.1±5.6 points for the single-bundle group and 91.9±4.5 points for the double-bundle group. There was no significant difference between the methods in the side-to-side differences by gravity sag view or knee arthrometer evaluation, although several cases in both groups showed a side-to-side difference exceeding 5 mm by the latter evaluation method. Conclusions. We found no significant difference between single- and double-bundle PCL reconstructions during more than 10 years of follow-up.

  17. Efficient reconstruction of dispersive dielectric profiles using time domain reflectometry (TDR

    Directory of Open Access Journals (Sweden)

    P. Leidenberger

    2006-01-01

    Full Text Available We present a numerical model for time domain reflectometry (TDR signal propagation in dispersive dielectric materials. The numerical probe model is terminated with a parallel circuit, consisting of an ohmic resistor and an ideal capacitance. We derive analytical approximations for the capacitance, the inductance and the conductance of three-wire probes. We couple the time domain model with global optimization in order to reconstruct water content profiles from TDR traces. For efficiently solving the inverse problem we use genetic algorithms combined with a hierarchical parameterization. We investigate the performance of the method by reconstructing synthetically generated profiles. The algorithm is then applied to retrieve dielectric profiles from TDR traces measured in the field. We succeed in reconstructing dielectric and ohmic profiles where conventional methods, based on travel time extraction, fail.

  18. System architecture for high speed reconstruction in time-of-flight positron tomography

    International Nuclear Information System (INIS)

    Campagnolo, R.E.; Bouvier, A.; Chabanas, L.; Robert, C.

    1985-06-01

    A new generation of Time Of Flight (TOF) positron tomograph with high resolution and high count rate capabilities is under development in our group. After a short recall of the data acquisition process and image reconstruction in a TOF PET camera, we present the data acquisition system which achieves a data transfer rate of 0.8 mega events per second or more if necessary in list mode. We describe the reconstruction process based on a five stages pipe line architecture using home made processors. The expected performance with this architecture is a time reconstruction of six seconds per image (256x256 pixels) of one million events. This time could be reduce to 4 seconds. We conclude with the future developments of the system

  19. On single-time reduction in quantum field theory

    International Nuclear Information System (INIS)

    Arkhipov, A.A.

    1984-01-01

    It is shown, how the causality and spectrality properties in qUantum field theory may help one to carry out a single-time reduction of the Bethe-Salpeter wave fUnction. The single-time reduction technique is not based on any concrete model of the quantum field theory. Axiomatic formulations underline the quantum field theory

  20. Multi-institutional Experience in Laparoendoscopic Single-site Surgery (LESS): For Major Extirpative and Reconstructive Procedures in Pediatric Urology.

    Science.gov (United States)

    Gor, Ronak A; Long, Christopher J; Shukla, Aseem R; Kirsch, Andrew J; Perez-Brayfield, Marcos; Srinivasan, Arun K

    2016-02-01

    To review peri-procedural outcomes from a large, multi-institutional series of pediatric urology patients treated with laparaendoscopic single-site surgery (LESS) for major extirpative and reconstructive procedures. Consecutive LESS cases between January 2011 and May 2014 from three free-standing pediatric referral centers were reviewed. Data include age, sex, operative time, blood loss, length of stay, and complications according to the modified Clavien-Dindo classification. Hasson technique was used for peritoneal entry, GelPOINT advanced access platform was inserted, and standard 5mm laparoscopic instruments were used. Fifty-nine patients (median age 5 years, 4 months-17 years) met inclusion criteria: 29 nephrectomies, 9 nephroureterectomies, 3 bilateral nephrectomies, 5 heminephrectomies, 5 renal cyst decortications, 3 bilateral gonadectomies, 2 Malone antegrade continence enema, 2 calyceal diverticulectomy, and 1 ovarian detorsion with cystectomy. Median operative times for each case type were comparable to published experiences with traditional laparoscopy. Overall mean and median length of stay was 36.2 hours and 1 day, respectively. There were two complications: port site hernia requiring surgical repair (Clavien IIIb) and a superficial port site infection that resolved with antibiotics (Clavien II). Cosmetic outcomes were subjectively well received by patients and their parents. Operative time was significantly shorter between the first half of the experience and the second half (102 vs 70 minutes, P  <  .05). LESS approach can be broadly applied across many major extirpative and reconstructive procedures within pediatric urology. Our series advances our field's utilization of this technique and its safety. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Deep Learning- and Transfer Learning-Based Super Resolution Reconstruction from Single Medical Image

    Directory of Open Access Journals (Sweden)

    YiNan Zhang

    2017-01-01

    Full Text Available Medical images play an important role in medical diagnosis and research. In this paper, a transfer learning- and deep learning-based super resolution reconstruction method is introduced. The proposed method contains one bicubic interpolation template layer and two convolutional layers. The bicubic interpolation template layer is prefixed by mathematics deduction, and two convolutional layers learn from training samples. For saving training medical images, a SIFT feature-based transfer learning method is proposed. Not only can medical images be used to train the proposed method, but also other types of images can be added into training dataset selectively. In empirical experiments, results of eight distinctive medical images show improvement of image quality and time reduction. Further, the proposed method also produces slightly sharper edges than other deep learning approaches in less time and it is projected that the hybrid architecture of prefixed template layer and unfixed hidden layers has potentials in other applications.

  2. An in vitro biomechanical comparison of anterior cruciate ligament reconstruction: single bundle versus anatomical double bundle techniques

    Directory of Open Access Journals (Sweden)

    Sandra Umeda Sasaki

    2008-01-01

    Full Text Available INTRODUCTION: Anterior cruciate ligament ruptures are frequent, especially in sports. Surgical reconstruction with autologous grafts is widely employed in the international literature. Controversies remain with respect to technique variations as continuous research for improvement takes place. One of these variations is the anatomical double bundle technique, which is performed instead of the conventional single bundle technique. More recently, there has been a tendency towards positioning the two bundles through double bone tunnels in the femur and tibia (anatomical reconstruction. OBJECTIVES: To compare, through biomechanical tests, the practice of anatomical double bundle anterior cruciate ligament reconstruction with a patellar graft to conventional single bundle reconstruction with the same amount of patellar graft in a paired experimental cadaver study. METHODS: Nine pairs of male cadaver knees ranging in age from 44 to 63 years were randomized into two groups: group A (single bundle and group B (anatomical reconstruction. Each knee was biomechanically tested under three conditions: intact anterior cruciate ligament, reconstructed anterior cruciate ligament, and injured anterior cruciate ligament. Maximum anterior dislocation, rigidity, and passive internal tibia rotation were recorded with knees submitted to a 100 N horizontal anterior dislocation force applied to the tibia with the knees at 30, 60 and 90 degrees of flexion. RESULTS: There were no differences between the two techniques for any of the measurements by ANOVA tests. CONCLUSION: The technique of anatomical double bundle reconstruction of the anterior cruciate ligament with bone-patellar tendon-bone graft has a similar biomechanical behavior with regard to anterior tibial dislocation, rigidity, and passive internal tibial rotation.

  3. Effects of phylogenetic reconstruction method on the robustness of species delimitation using single-locus data.

    Science.gov (United States)

    Tang, Cuong Q; Humphreys, Aelys M; Fontaneto, Diego; Barraclough, Timothy G; Paradis, Emmanuel

    2014-10-01

    Coalescent-based species delimitation methods combine population genetic and phylogenetic theory to provide an objective means for delineating evolutionarily significant units of diversity. The generalised mixed Yule coalescent (GMYC) and the Poisson tree process (PTP) are methods that use ultrametric (GMYC or PTP) or non-ultrametric (PTP) gene trees as input, intended for use mostly with single-locus data such as DNA barcodes. Here, we assess how robust the GMYC and PTP are to different phylogenetic reconstruction and branch smoothing methods. We reconstruct over 400 ultrametric trees using up to 30 different combinations of phylogenetic and smoothing methods and perform over 2000 separate species delimitation analyses across 16 empirical data sets. We then assess how variable diversity estimates are, in terms of richness and identity, with respect to species delimitation, phylogenetic and smoothing methods. The PTP method generally generates diversity estimates that are more robust to different phylogenetic methods. The GMYC is more sensitive, but provides consistent estimates for BEAST trees. The lower consistency of GMYC estimates is likely a result of differences among gene trees introduced by the smoothing step. Unresolved nodes (real anomalies or methodological artefacts) affect both GMYC and PTP estimates, but have a greater effect on GMYC estimates. Branch smoothing is a difficult step and perhaps an underappreciated source of bias that may be widespread among studies of diversity and diversification. Nevertheless, careful choice of phylogenetic method does produce equivalent PTP and GMYC diversity estimates. We recommend simultaneous use of the PTP model with any model-based gene tree (e.g. RAxML) and GMYC approaches with BEAST trees for obtaining species hypotheses.

  4. Single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation in surgical treatment for single-segment lumbar spinal tuberculosis.

    Science.gov (United States)

    Zeng, Hao; Wang, Xiyang; Zhang, Penghui; Peng, Wei; Liu, Zheng; Zhang, Yupeng

    2015-01-01

    The aim of this study is to determine the feasibility and efficacy of surgical management of single-segment lumbar spinal tuberculosis (TB) by using single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation. Seventeen cases of single-segment lumbar TB were treated with single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation. The mean follow-up was 36.9 months (range: 24-62 months). The kyphotic angle ranged from 15.2-35.1° preoperatively, with an average measurement of 27.8°. The American Spinal Injury Association (ASIA) score system was used to evaluate the neurological deficits and erythrocyte sedimentation rate (ESR) used to judge the activity of TB. Spinal TB was completely cured in all 17 patients. There was no recurrent TB infection. The postoperative kyphotic angle was 6.6-10.2°, 8.1° in average, and there was no significant loss of the correction at final follow-up. Solid fusion was achieved in all cases. Neurological condition in all patients was improved after surgery. Single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation can be a feasible and effective method the in treatment of single-segment lumbar spinal TB.

  5. Reconstruction of Nonuniformly Sampled Bandlimited Signals by Means of Time-Varying Discrete-Time FIR Filters

    Directory of Open Access Journals (Sweden)

    Johansson Håkan

    2006-01-01

    Full Text Available This paper deals with reconstruction of nonuniformly sampled bandlimited continuous-time signals using time-varying discrete-time finite-length impulse response (FIR filters. The main theme of the paper is to show how a slight oversampling should be utilized for designing the reconstruction filters in a proper manner. Based on a time-frequency function, it is shown that the reconstruction problem can be posed as one that resembles an ordinary filter design problem, both for deterministic signals and random processes. From this fact, an analytic least-square design technique is then derived. Furthermore, for an important special case, corresponding to periodic nonuniform sampling, it is shown that the reconstruction problem alternatively can be posed as a filter bank design problem, thus with requirements on a distortion transfer function and a number of aliasing transfer functions. This eases the design and offers alternative practical design methods as discussed in the paper. Several design examples are included that illustrate the benefits of the proposed design techniques over previously existing techniques.

  6. Real-time analysis and visualization for single-molecule based super-resolution microscopy.

    Directory of Open Access Journals (Sweden)

    Adel Kechkar

    Full Text Available Accurate multidimensional localization of isolated fluorescent emitters is a time consuming process in single-molecule based super-resolution microscopy. We demonstrate a functional method for real-time reconstruction with automatic feedback control, without compromising the localization accuracy. Compatible with high frame rates of EM-CCD cameras, it relies on a wavelet segmentation algorithm, together with a mix of CPU/GPU implementation. A combination with Gaussian fitting allows direct access to 3D localization. Automatic feedback control ensures optimal molecule density throughout the acquisition process. With this method, we significantly improve the efficiency and feasibility of localization-based super-resolution microscopy.

  7. Few-view single photon emission computed tomography (SPECT) reconstruction based on a blurred piecewise constant object model

    DEFF Research Database (Denmark)

    Wolf, Paul A.; Jørgensen, Jakob Sauer; Schmidt, Taly G.

    2013-01-01

    A sparsity-exploiting algorithm intended for few-view Single Photon Emission Computed Tomography (SPECT) reconstruction is proposed and characterized. The algorithm models the object as piecewise constant subject to a blurring operation. To validate that the algorithm closely approximates the true...

  8. Atomic force microscopy imaging and 3-D reconstructions of serial thin sections of a single cell and its interior structures

    International Nuclear Information System (INIS)

    Chen Yong; Cai Jiye; Zhao Tao; Wang Chenxi; Dong Shuo; Luo Shuqian; Chen, Zheng W.

    2005-01-01

    The thin sectioning has been widely applied in electron microscopy (EM), and successfully used for an in situ observation of inner ultrastructure of cells. This powerful technique has recently been extended to the research field of atomic force microscopy (AFM). However, there have been no reports describing AFM imaging of serial thin sections and three-dimensional (3-D) reconstruction of cells and their inner structures. In the present study, we used AFM to scan serial thin sections approximately 60 nm thick of a mouse embryonic stem (ES) cell, and to observe the in situ inner ultrastructure including cell membrane, cytoplasm, mitochondria, nucleus membrane, and linear chromatin. The high-magnification AFM imaging of single mitochondria clearly demonstrated the outer membrane, inner boundary membrane and cristal membrane of mitochondria in the cellular compartment. Importantly, AFM imaging on six serial thin sections of a single mouse ES cell showed that mitochondria underwent sequential changes in the number, morphology and distribution. These nanoscale images allowed us to perform 3-D surface reconstruction of interested interior structures in cells. Based on the serial in situ images, 3-D models of morphological characteristics, numbers and distributions of interior structures of the single ES cells were validated and reconstructed. Our results suggest that the combined AFM and serial-thin-section technique is useful for the nanoscale imaging and 3-D reconstruction of single cells and their inner structures. This technique may facilitate studies of proliferating and differentiating stages of stem cells or somatic cells at a nanoscale

  9. Atomic force microscopy imaging and 3-D reconstructions of serial thin sections of a single cell and its interior structures

    Science.gov (United States)

    Chen, Yong; Cai, Jiye; Zhao, Tao; Wang, Chenxi; Dong, Shuo; Luo, Shuqian; Chen, Zheng W.

    2010-01-01

    The thin sectioning has been widely applied in electron microscopy (EM), and successfully used for an in situ observation of inner ultrastructure of cells. This powerful technique has recently been extended to the research field of atomic force microscopy (AFM). However, there have been no reports describing AFM imaging of serial thin sections and three-dimensional (3-D) reconstruction of cells and their inner structures. In the present study, we used AFM to scan serial thin sections approximately 60nm thick of a mouse embryonic stem (ES) cell, and to observe the in situ inner ultrastructure including cell membrane, cytoplasm, mitochondria, nucleus membrane, and linear chromatin. The high-magnification AFM imaging of single mitochondria clearly demonstrated the outer membrane, inner boundary membrane and cristal membrane of mitochondria in the cellular compartment. Importantly, AFM imaging on six serial thin sections of a single mouse ES cell showed that mitochondria underwent sequential changes in the number, morphology and distribution. These nanoscale images allowed us to perform 3-D surface reconstruction of interested interior structures in cells. Based on the serial in situ images, 3-D models of morphological characteristics, numbers and distributions of interior structures of the single ES cells were validated and reconstructed. Our results suggest that the combined AFM and serial-thin-section technique is useful for the nanoscale imaging and 3-D reconstruction of single cells and their inner structures. This technique may facilitate studies of proliferating and differentiating stages of stem cells or somatic cells at a nanoscale. PMID:15850704

  10. Factors that influence the intra-articular rupture pattern of the ACL graft following single-bundle reconstruction

    NARCIS (Netherlands)

    van Eck, Carola F.; Kropf, Eric J.; Romanowski, James R.; Lesniak, Bryson P.; Tranovich, Michael J.; van Dijk, C. Niek; Fu, Freddie H.

    2011-01-01

    The number of revision anterior cruciate ligament (ACL) surgeries performed annually continues to rise. The purpose of this study was to determine the most common rupture pattern in ACL revision cases after previous single-bundle reconstruction. The second aim was to determine the relationship

  11. Immediate two-stage tissue expander vs single-stage direct-to-implant breast reconstruction: two case reports of identical twins with BRCA 2 mutation

    Directory of Open Access Journals (Sweden)

    Aleš Porčnik

    2015-12-01

    Full Text Available In order to achieve the best aesthetic result after immediate implant-based breast reconstruction, all the advantages and disadvantages of two-stage tissue expander and single-stage direct-to-implant breast reconstruction should be considered. Decision about the type of implant-based reconstruction is based on the consultations outcomes after multidisciplinary team meeting of breast and reconstructive specialist, but patients own wishes should be prioritised.

  12. Association Between Meniscal and Chondral Lesions and Timing of Anterior Cruciate Ligament Reconstruction.

    Science.gov (United States)

    de Campos, Gustavo Constantino; Nery, Wilton; Teixeira, Paulo Eduardo Portes; Araujo, Paulo Henrique; Alves, Wilson de Mello

    2016-10-01

    Rupture of the anterior cruciate ligament (ACL) is a common sports injury and is known to be associated with an increased risk of knee osteoarthritis. Several studies have indicated that the risk of additional injuries to the menisci and articular cartilage increases with delays in the treatment of ACL tears. However, no consensus has been reached regarding the ideal timing for ACL reconstruction in terms of preventing secondary lesions. To determine how the time elapsed between an ACL lesion and its reconstruction affects the incidence of meniscal and chondral lesions. Case series; Level of evidence, 4. Medical records of 764 patients who underwent primary ACL reconstruction were reviewed. Data from arthroscopic findings that included information about meniscal lesions and full-thickness articular cartilage lesions at the time of surgery were collected. The association between time elapsed between ACL lesion and reconstruction surgery and incidence of articular cartilage and meniscal lesions was analyzed by chi-square or Fisher exact test. The risk of secondary lesion was calculated by odds ratios (ORs) obtained from simple logistic regression analysis. A positive correlation was observed between time after injury and the presence of any articular lesions ( P = .003), cartilage lesions ( P = .01), and medial meniscus lesions ( P lesion relative to the reference period (24 months (OR = 5.88). Furthermore, the odds of lesions on the medial meniscus increased when the timing between injury and surgery was 6 to 12 months (OR = 2.71) and continued to increase when the timing was 12 to 24 months (OR = 3.78) and >24 months (OR = 9.07). Associated articular lesions are more common if ACL reconstruction is delayed by ≥6 months (medial meniscus lesion) and ≥1 year (chondral or any meniscal lesion).

  13. Robot-assisted reconstructive surgery of the distal ureter: single institution experience in 16 patients.

    Science.gov (United States)

    Musch, Michael; Hohenhorst, Lukas; Pailliart, Anne; Loewen, Heinrich; Davoudi, Yadollah; Kroepfl, Darko

    2013-05-01

    WHAT'S KNOWN ON THE SUBJECT? AND WHAT DOES THE STUDY ADD?: Open reconstructive surgery of the lower ureteric segment in adults often requires large incisions, as the basic prerequisite for such complex procedures is wide exposure. Published experience on minimally invasive techniques in this challenging surgical field, e.g. conventional laparoscopy or robot-assisted laparoscopy, still remains limited. We report our experience from one of the largest single institution series on robot-assisted reconstructive surgery of the distal ureter in adults, with a special focus on technical aspects of the different surgical procedures. To describe the feasibility of and operative techniques used during different daVinci® robot-assisted laparoscopic reconstructive procedures of the distal ureter, and to report the short-term outcome of such procedures. Between June 2009 and October 2011, 16 patients underwent robot-assisted operations of the distal ureter because of various underlying pathological conditions. We present a description of each procedure, the incidence of perioperative complications and the results of follow-up examination. The data were collected retrospectively using the patients' records and questionnaires sent to the patients and the referring urologists. The follow-up examinations were done at the discretion of the referring urologists. The surgical indications and operative techniques were as follows: seven distal ureteric resections [DUR] with psoas hitch procedures (+/- Boari flap; four), extravesical reimplantation (two) or end-to-end anastomosis (one) because of benign distal ureteric stricture; four DUR with psoas hitch procedure (+/- Boari flap) and pelvic lymphadenectomy for urothelial carcinoma of the ureter; one DUR with psoas hitch procedure and Boari flap because of unexpected locally recurrent prostate cancer; one extravesical reimplantation because of vesico-ureteric reflux; one bilateral intravesical reimplantation of ectopic ureters (as part

  14. Clinical and arthroscopic outcome of single bundle anterior cruciate ligament reconstruction: Comparison of remnant preservation versus conventional technique.

    Science.gov (United States)

    Choi, Sungwook; Kim, Myung-Ku; Kwon, Yong Suk; Kang, Hyunseong

    2017-10-01

    The purpose of this study was to compare the clinical outcomes and second-look arthroscopic findings of remnant preservation technique with those of conventional anterior cruciate ligament (ACL) reconstruction in single bundle ACL reconstructions. One hundred sixty two consecutive patients underwent ACL reconstruction by one surgeon, with 93 patients receiving remnant preservation technique (Group A) and 69 patients receiving conventional ACL reconstruction (Group B). The mean follow-up was 15months. Clinical outcomes were assessed using Lysholm scores and the International Knee Documentation Committee form (IKDC form) evaluation. Post-operative knee stability was evaluated through manual knee laxity evaluation, pivot-shift test, and a Telos device. Differences in post-operative stability (manual knee laxity, pivot shift test and Telos device) were not significant between the groups (p=0.681, p=0.610, p=0.696). And also no significant differences were noted with respect to the IKDC form and the latest Lysholm scores. But in the second-look arthroscopic findings, synovial coverage was confirmed to be excellent in 36% (22/61) of Group A patients and 23% (7/30) of Group B patients. ACL reconstruction with both techniques was found to result in acceptable stability, clinical outcomes and second-look arthroscopic findings. With regard to synovial coverage, the remnant reservation techniques were found to be superior to conventional ACL reconstruction. Level III, retrospective comparative study. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Online real-time reconstruction of adaptive TSENSE with commodity CPU / GPU hardware

    DEFF Research Database (Denmark)

    Roujol, Sebastien; de Senneville, Baudouin; Vahala, E.

    2009-01-01

    A real-time reconstruction for adaptive TSENSE is presented that is optimized for MR-guidance of interventional procedures. The proposed method allows high frame-rate imaging with low image latencies, even when large coil arrays are employed and can be implemented on affordable commodity hardware....

  16. Single-image super-resolution reconstruction via learned geometric dictionaries and clustered sparse coding.

    Science.gov (United States)

    Yang, Shuyuan; Wang, Min; Chen, Yiguang; Sun, Yaxin

    2012-09-01

    Recently, single image super-resolution reconstruction (SISR) via sparse coding has attracted increasing interest. In this paper, we proposed a multiple-geometric-dictionaries-based clustered sparse coding scheme for SISR. Firstly, a large number of high-resolution (HR) image patches are randomly extracted from a set of example training images and clustered into several groups of "geometric patches," from which the corresponding "geometric dictionaries" are learned to further sparsely code each local patch in a low-resolution image. A clustering aggregation is performed on the HR patches recovered by different dictionaries, followed by a subsequent patch aggregation to estimate the HR image. Considering that there are often many repetitive image structures in an image, we add a self-similarity constraint on the recovered image in patch aggregation to reveal new features and details. Finally, the HR residual image is estimated by the proposed recovery method and compensated to better preserve the subtle details of the images. Some experiments test the proposed method on natural images, and the results show that the proposed method outperforms its counterparts in both visual fidelity and numerical measures.

  17. Component tree analysis of cystovirus φ6 nucleocapsid Cryo-EM single particle reconstructions.

    Directory of Open Access Journals (Sweden)

    Lucas M Oliveira

    Full Text Available The 3-dimensional structure of the nucleocapsid (NC of bacteriophage φ6 is described utilizing component tree analysis, a topological and geometric image descriptor. The component trees are derived from density maps of cryo-electron microscopy single particle reconstructions. Analysis determines position and occupancy of structure elements responsible for RNA packaging and transcription. Occupancy of the hexameric nucleotide triphosphorylase (P4 and RNA polymerase (P2 are found to be essentially complete in the NC. The P8 protein lattice likely fixes P4 and P2 in place during maturation. We propose that the viral procapsid (PC is a dynamic structural intermediate where the P4 and P2 can attach and detach until held in place in mature NCs. During packaging, the PC expands to accommodate the RNA, and P2 translates from its original site near the inner 3-fold axis (20 sites to the inner 5-fold axis (12 sites with excess P2 positioned inside the central region of the NC.

  18. Gendered Expectations? Reconsidering Single Fathers' Child-Care Time

    Science.gov (United States)

    Hook, Jennifer L.; Chalasani, Satvika

    2008-01-01

    We take a fresh look at an important question in the sociology of gender and family: Do single fathers "mother"? We add to the theoretical debate by proposing that single fathers face competing interactional pressures, to simultaneously act like mothers and men. Using nationally representative data from the American Time Use Survey 2003-2006 (N =…

  19. A review of the surgical management of breast cancer: plastic reconstructive techniques and timing implications.

    Science.gov (United States)

    Rosson, Gedge D; Magarakis, Michael; Shridharani, Sachin M; Stapleton, Sahael M; Jacobs, Lisa K; Manahan, Michele A; Flores, Jaime I

    2010-07-01

    The oncologic management of breast cancer has evolved over the past several decades from radical mastectomy to modern-day preservation of chest and breast structures. The increased rate of mastectomies over recent years made breast reconstruction an integral part of the breast cancer management. Plastic surgery now offers patients a wide variety of reconstruction options from primary closure of the skin flaps to performance of microvascular and autologous tissue transplantation. Well-coordinated partnerships between surgical oncologists, plastic surgeons, and patients address concerns of tumor control, cosmesis, and patients' wishes. The gamut of breast reconstruction options is reviewed, particularly noting state-of-the-art techniques, as well as the advantages and disadvantages of various timing modalities.

  20. Pure laparoscopic and robot-assisted laparoscopic reconstructive surgery in congenital megaureter: a single institution experience.

    Science.gov (United States)

    Fu, Weijun; Zhang, Xu; Zhang, Xiaoyi; Zhang, Peng; Gao, Jiangping; Dong, Jun; Chen, Guangfu; Xu, Axiang; Ma, Xin; Li, Hongzhao; Shi, Lixin

    2014-01-01

    To report our experience of pure laparoscopic and robot-assisted laparoscopic reconstructive surgery in congenital megaureter, seven patients (one bilateral) with symptomatic congenital megaureter underwent pure laparoscopic or robot-assisted laparoscopic surgery. The megaureter was exposed at the level of the blood vessel and was isolated to the bladder narrow area. Extreme ureter trim and submucosal tunnel encapsulation or papillary implantations and anti-reflux ureter bladder anastomosis were performed intraperitoneally by pure laparoscopic or robot-assisted laparoscopic surgery. The clinical data of seven patients after operation were analyzed, including the operation time, intraoperative complications, intraoperative bleeding volumes, postoperative complications, postoperative hospitalization time and pathological results. All of the patients were followed. The operation was successfully performed in seven patients. The mean operation times for pure laparoscopic surgery and robotic-assistant laparoscopic surgery were 175 (range: 150-220) and 187 (range: 170-205) min, respectively, and the mean operative blood loss volumes were 20 (range: 10-30) and 28.75 (range: 15-20) ml, respectively. There were no intraoperative complications. The postoperative drainage time was 5 (range: 4-6) and 5.75 (range: 5-6) d, respectively, and the indwelling catheter time was 6.33 (range: 4-8) d and 7 (range: 7-7) d, respectively. The postoperative hospitalization time was 7.67 (range: 7-8) d and 8 (range: 7-10) d, respectively. There was no obvious pain, no secondary bleeding and no urine leakage after the operation. Postoperative pathology reports revealed chronic urothelial mucosa inflammation. The follow-up results confirmed that all patients were relieved of their symptoms. Both pure laparoscopic and robot-assisted laparoscopic surgery using different anti-reflux ureter bladder anastomoses are safe and effective approaches in the minimally invasive treatment of congenital

  1. Reconstruction of systems with impulses and delays from time series data

    International Nuclear Information System (INIS)

    Jeon, Jong-ha; Kim, Pilwon

    2014-01-01

    In this paper, we present an approach to identification of dynamical systems with irregular impulses and time delays. The suggested method enables one to reconstruct the underlying differential equations, using the l 1 -minimization technique in signal processing which takes advantage of the signal’s sparseness. Based on the idea that irregular impulses can be regarded as sparse error in the fitting procedure, we obtain an efficient algorithm for reconstructions that separates the regular parts of dynamics from impulsive ones. From time series data sampled from an impulsive ecological models, the suggested method restores an essential dynamics of the original systems. The method also applies to chaotic systems perturbed by intermittent impacts and successfully captures dynamics reflecting qualitative behavior independent of impacts. In addition, we can identify a time-delay Lotka–Volterra model with no prior information on delay time given, to which conventional parameter estimate methods are hardly applicable

  2. High Performance Harmonic Isolation By Means of The Single-phase Series Active Filter Employing The Waveform Reconstruction Method

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Hava, Ahmet M.

    2009-01-01

    This paper proposes the Waveform Reconstruction Method (WRM), which is utilized in the single-phase Series Active Filter's (SAF's) control algorithm, in order to extract the load harmonic voltage component of voltage harmonic type single-phase diode rectifier loads. Employing WRM and the line...... current sampling delay reduction method (SDRM), a single-phase SAF compensated system provides higher harmonic isolation performance and higher stability margins compared to the system using conventional synchronous reference frame based methods. The analytical, simulation, and experimental studies of a 2...

  3. SINCERITIES: Inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles.

    Science.gov (United States)

    Papili Gao, Nan; Ud-Dean, S M Minhaz; Gandrillon, Olivier; Gunawan, Rudiyanto

    2017-09-14

    Single cell transcriptional profiling opens up a new avenue in studying the functional role of cell-to-cell variability in physiological processes. The analysis of single cell expression profiles creates new challenges due to the distributive nature of the data and the stochastic dynamics of gene transcription process. The reconstruction of gene regulatory networks (GRNs) using single cell transcriptional profiles is particularly challenging, especially when directed gene-gene relationships are desired. We developed SINCERITIES (SINgle CEll Regularized Inference using TIme-stamped Expression profileS) for the inference of GRNs from single cell transcriptional profiles. We focused on time-stamped cross-sectional expression data, commonly generated from transcriptional profiling of single cells collected at multiple time points after cell stimulation. SINCERITIES recovers directed regulatory relationships among genes by employing regularized linear regression (ridge regression), using temporal changes in the distributions of gene expressions. Meanwhile, the modes of the gene regulations (activation and repression) come from partial correlation analyses between pairs of genes. We demonstrated the efficacy of SINCERITIES in inferring GRNs using in silico time-stamped single cell expression data and single cell transcriptional profiles of THP-1 monocytic human leukemia cells. The case studies showed that SINCERITIES could provide accurate GRN predictions, significantly better than other GRN inference algorithms such as TSNI, GENIE3 and JUMP3. Moreover, SINCERITIES has a low computational complexity and is amenable to problems of extremely large dimensionality. Finally, an application of SINCERITIES to single cell expression data of T2EC chicken erythrocytes pointed to BATF as a candidate novel regulator of erythroid development. The MATLAB and R version of SINCERITIES is freely available from the following websites: http://www.cabsel.ethz.ch/tools/sincerities.html and

  4. Single-Leg Hop Test Performance and Isokinetic Knee Strength After Anterior Cruciate Ligament Reconstruction in Athletes.

    Science.gov (United States)

    Sueyoshi, Ted; Nakahata, Akihiro; Emoto, Gen; Yuasa, Tomoki

    2017-11-01

    Isokinetic strength and hop tests are commonly used to assess athletes' readiness to return to sport after knee surgery. The purpose of this study was to investigate the results of single-leg hop and isokinetic knee strength testing in athletes who underwent anterior cruciate ligament reconstruction (ACLR) upon returning to sport participation as well as to study the correlation between these 2 test batteries. The secondary purpose was to compare the test results by graft type (patellar tendon or hamstring). It was hypothesized that there would be no statistically significant limb difference in either isokinetic knee strength or single-leg hop tests, that there would be a moderate to strong correlation between the 2 test batteries, and that there would be no significant difference between graft types. Cross-sectional study; Level of evidence, 3. Twenty-nine high school and collegiate athletes who underwent ACLR participated in this study. At the time of return to full sport participation, a series of hop tests and knee extension/flexion isokinetic strength measurements were conducted. The results were analyzed using analysis of variance and Pearson correlation ( r ). The timed 6-m hop test was the only hop test that showed a significant difference between the involved and uninvolved limbs (2.3 and 2.2 seconds, respectively; P = .02). A significant difference between limbs in knee strength was found for flexion peak torque/body weight at 180 deg/s ( P = .03), flexion total work/body weight at 180 deg/s ( P = .04), and flexion peak torque/body weight at 300 deg/s ( P = .03). The strongest correlation between the hop tests and knee strength was found between the total distance of the hop tests and flexion total work/body weight at 300 deg/s ( r = 0.69) and between the timed 6-m hop test and flexion peak torque/body weight at 300 deg/s ( r = -0.54). There was no statistically significant difference in hop test performance or isokinetic knee strength between graft types

  5. Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge

    Directory of Open Access Journals (Sweden)

    Timmer Jens

    2007-02-01

    Full Text Available Abstract Background Cellular processes are controlled by gene-regulatory networks. Several computational methods are currently used to learn the structure of gene-regulatory networks from data. This study focusses on time series gene expression and gene knock-out data in order to identify the underlying network structure. We compare the performance of different network reconstruction methods using synthetic data generated from an ensemble of reference networks. Data requirements as well as optimal experiments for the reconstruction of gene-regulatory networks are investigated. Additionally, the impact of prior knowledge on network reconstruction as well as the effect of unobserved cellular processes is studied. Results We identify linear Gaussian dynamic Bayesian networks and variable selection based on F-statistics as suitable methods for the reconstruction of gene-regulatory networks from time series data. Commonly used discrete dynamic Bayesian networks perform inferior and this result can be attributed to the inevitable information loss by discretization of expression data. It is shown that short time series generated under transcription factor knock-out are optimal experiments in order to reveal the structure of gene regulatory networks. Relative to the level of observational noise, we give estimates for the required amount of gene expression data in order to accurately reconstruct gene-regulatory networks. The benefit of using of prior knowledge within a Bayesian learning framework is found to be limited to conditions of small gene expression data size. Unobserved processes, like protein-protein interactions, induce dependencies between gene expression levels similar to direct transcriptional regulation. We show that these dependencies cannot be distinguished from transcription factor mediated gene regulation on the basis of gene expression data alone. Conclusion Currently available data size and data quality make the reconstruction of

  6. Improving outcomes in microsurgical breast reconstruction: lessons learnt from 406 consecutive DIEP/TRAM flaps performed by a single surgeon.

    Science.gov (United States)

    Damen, Tim H C; Morritt, Andrew N; Zhong, Toni; Ahmad, Jamil; Hofer, Stefan O P

    2013-08-01

    Multiple preoperative, intraoperative and postoperative decisions can influence the outcome of microsurgical breast reconstruction. We have simplified the decision-making process by incorporating a number of algorithms into our microsurgical breast reconstruction practice and critically review our results in this study. Prospectively maintained databases for all microsurgical breast reconstructions performed by a single surgeon over a nine-year period were examined to determine: patient demographics; operative details including flap choice, donor and recipient vessel selection; and, details of intraoperative and early postoperative (406 Consecutive free flap microsurgical breast reconstructions (164 unilateral and 121 bilateral) were performed in 285 patients over the study period. Deep inferior epigastric artery perforator (DIEP) flaps (88%, n=359) were used most commonly followed by muscle-sparing transverse rectus abdominis musculocutaneous (MS-TRAM) flaps (11%, n=44), and fascial-sparing TRAM (FS-TRAM) flaps (0.7%, n=3). One-hundred-seventy-one (48%) DIEP flaps were based on a single perforator while 188 (52%) had multiple perforators. The internal mammary (IM) artery and vein were used as the recipient vessels for 99% (n=403) of flaps. A second venous anastomosis was required for 11.8 percent (n=48) of flaps. Partial flap failure occurred in nine (2.2%) flaps while total flap failure occurred in two flaps (0.5%). Minimum follow-up was three months. Incorporating a number of algorithms into our practice has enabled us to simplify the decision-making processes involved in microsurgical breast reconstruction and to consistently obtain successful surgical outcomes. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. Landing mechanics during single hop for distance in females following anterior cruciate ligament reconstruction compared to healthy controls.

    Science.gov (United States)

    Trigsted, Stephanie M; Post, Eric G; Bell, David R

    2017-05-01

    To determine possible differences in single-hop kinematics and kinetics in females with anterior cruciate ligament reconstruction compared to healthy controls. A second purpose was to make comparisons between the healthy and reconstructed limbs. Subjects were grouped based on surgical status (33 ACLR patients and 31 healthy controls). 3D motion capture synchronized with force plates was used to capture the landing phase of three successful trials of single hop for distance during a single data collection session. Peak values during the loading phase were analysed. Subjects additionally completed three successful trials of the triple hop for distance Tegner activity scale and International Knee Document Committee 2000 (IKDC). Controls demonstrated greater peak knee flexion and greater internal knee extension moment and hip extension moment than ACLR subjects. Within the ACLR group, the healthy limb exhibited greater peak knee flexion, hip flexion, hip extension moment, single hop and triple hops for distance and normalized quadriceps strength. Patients who undergo anterior cruciate ligament reconstruction land in a more extended posture when compared to healthy controls and compared to their healthy limb. III.

  8. Revision Anterior Cruciate Ligament Reconstruction: Results of a Single-stage Approach Using Allograft Dowel Bone Grafting for Femoral Defects.

    Science.gov (United States)

    Werner, Brian C; Gilmore, Carl J; Hamann, Joshua C; Gaskin, Cree M; Carroll, John J; Hart, Joseph M; Miller, Mark D

    2016-08-01

    The purpose of this study was to present results of single-stage revision anterior cruciate ligament (ACL) reconstruction using an allograft bone dowel for isolated femoral bony deficiency. Sixteen patients underwent single-stage revision ACL reconstruction using an allograft bone dowel for isolated femoral bony deficiency between 2007 and 2012. Twelve patients (75%) completed study visits, which included CT scans as well as completion of validated outcomes measures. The average KT-1000 side-to-side difference was 1.0 mm ± 2.9 mm. The average International Knee Documentation Committee score was 70.2 ± 17.8, the Tegner score was 4.8 ± 2.8, and the visual analog scale pain score was 2.8 ± 2.4. An analysis of CT scans showed that all 12 dowels had excellent (>75%) incorporation. A single-stage approach for revision ACL reconstruction using allograft dowels for isolated femoral bony deficiency yields objective and subjective outcomes comparable to those reported in the literature for two-stage and other single-stage techniques, with good incorporation of the dowels. Retrospective case series, level IV.

  9. Late-Start Days Increase Total Operative Time in Microvascular Breast Reconstruction.

    Science.gov (United States)

    Chu, Michael W; Barr, Jason S; Hill, J Bradford; Weichman, Katie E; Karp, Nolan S; Levine, Jamie P

    2015-07-01

    Prolonged operative time has been associated with increased postoperative complications and higher costs. Many academic centers have a designated day for didactics that cause cases to start 1 hour later. The purpose of this study is to analyze the late-start effect of microvascular breast reconstructions on operative duration. A retrospective review was performed on all patients who underwent abdomina-based free flap breast reconstruction from 2007 to 2011 and analyzed by those who had surgery on late-start versus normal-start days. Patient demographics, average operative time, postoperative complications, and individual surgeon effects were analyzed. A Student t-test was used to compare operative times with statistical significance set at p start days and 251 cases were performed on normal-start days. Patient demographics and complications were not statistically different between the groups. The average operative time for all reconstructions was 434.3 minutes. The average operative times were significantly longer for late-start days, 517.6 versus 427.3 minutes (p = 0.002). This was true for both unilateral and bilateral reconstructions (432.8 vs. 350.9 minutes, p = 0.05; 551.5 vs. 461.2 minutes, p = 0.007). There were no differences in perioperative complications and multivariate regression showed no statistically significant relationship of confounders to duration of surgery. Starting cases 1 hour later can increase operative times. Although outcomes were not affected, we recommend avoiding lengthy procedures on late-start days. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  10. Single image super-resolution using self-optimizing mask via fractional-order gradient interpolation and reconstruction.

    Science.gov (United States)

    Yang, Qi; Zhang, Yanzhu; Zhao, Tiebiao; Chen, YangQuan

    2017-04-04

    Image super-resolution using self-optimizing mask via fractional-order gradient interpolation and reconstruction aims to recover detailed information from low-resolution images and reconstruct them into high-resolution images. Due to the limited amount of data and information retrieved from low-resolution images, it is difficult to restore clear, artifact-free images, while still preserving enough structure of the image such as the texture. This paper presents a new single image super-resolution method which is based on adaptive fractional-order gradient interpolation and reconstruction. The interpolated image gradient via optimal fractional-order gradient is first constructed according to the image similarity and afterwards the minimum energy function is employed to reconstruct the final high-resolution image. Fractional-order gradient based interpolation methods provide an additional degree of freedom which helps optimize the implementation quality due to the fact that an extra free parameter α-order is being used. The proposed method is able to produce a rich texture detail while still being able to maintain structural similarity even under large zoom conditions. Experimental results show that the proposed method performs better than current single image super-resolution techniques. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Clinical outcomes and frontal plane two-dimensional biomechanics during the 30-second single leg stance test in patients before and after hip abductor tendon reconstructive surgery.

    Science.gov (United States)

    Huxtable, Rose E; Ackland, Timothy R; Janes, Gregory C; Ebert, Jay R

    2017-07-01

    Hip abductor tendon tears are a common cause of Greater Trochanteric Pain Syndrome. Conservative treatments are often ineffective and surgical reconstruction may be recommended. This study investigated the improvement in clinical outcomes and frontal plane two-dimensional biomechanics during a 30-second single leg stance test, in patients undergoing reconstruction. We hypothesized that clinical scores and pertinent biomechanical variables would significantly improve post-surgery, and these outcomes would be significantly correlated. Twenty-one patients with symptomatic tendon tears underwent reconstruction. Patients were evaluated pre-surgery, and at 6 and 12months post-surgery, using patient-reported outcome measures, assessment of hip abductor strength and six-minute walk capacity. Frontal plane, two-dimensional, biomechanical variables including pelvis-on-femur angle, pelvic drop, trunk lean and lateral pelvic shift, were evaluated throughout a 30-second single leg stance test. ANOVA evaluated outcomes over time, while Pearson's correlations investigated associations between clinical scores, pain, functional and biomechanical outcome variables. While clinical and functional measures significantly improved (P0.05) were observed in biomechanical variables from pre- to post-surgery. While five patients displayed a positive Trendelenburg sign pre-surgery, only one was positive post-surgery. Clinical outcomes and biomechanical variables during the single leg stance test were not correlated. Despite improvements in clinical and functional measures over time, biomechanical changes during a weight bearing single leg stance test were not significantly different following tendon repair. Follow up beyond 12months may be required, whereby symptomatic relief may precede functional and biomechanical improvement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Optimization of time-correlated single photon counting spectrometer

    International Nuclear Information System (INIS)

    Zhang Xiufeng; Du Haiying; Sun Jinsheng

    2011-01-01

    The paper proposes a performance improving scheme for the conventional time-correlated single photon counting spectrometer and develops a high speed data acquisition card based on PCI bus and FPGA technologies. The card is used to replace the multi-channel analyzer to improve the capability and decrease the volume of the spectrometer. The process of operation is introduced along with the integration of the spectrometer system. Many standard samples are measured. The experimental results show that the sensitivity of the spectrometer is single photon counting, and the time resolution of fluorescence lifetime measurement can be picosecond level. The instrument could measure the time-resolved spectroscopy. (authors)

  13. A prospective comparative study of clinical and functional outcomes between anatomic double bundle and single bundle hamstring grafts for arthroscopic anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Morey, Vivek M; Nag, Hira Lal; Chowdhury, Buddhadev; Sankineani, Sukesh Rao; Naranje, Sameer M

    2015-09-01

    Despite a number of studies comparing postoperative stability and function after anatomic single bundle and double bundle anterior cruciate ligament reconstruction, it remains unclear whether double bundle reconstruction has better functional outcome than single bundle anterior cruciate ligament reconstruction. To compare the subjective functional outcome as well as clinical stability in patients treated with either anatomic single bundle or anatomic double bundle anterior cruciate ligament (ACL) reconstruction. We hypothesized that there would be no difference in the postoperative functional outcome and clinical stability between anatomical double bundle anterior cruciate ligament reconstructions when compared to single bundle anterior cruciate ligament reconstructions. We prospectively followed 40 patients out of which, 20 patients were operated for anatomic single bundle ACL reconstruction and other 20 patients underwent anatomic double bundle ACL reconstruction. Patient evaluation using the laxity tests and outcome scales was done preoperatively and at 12, 24 and 48 months after the surgery. Clinical stability was assessed by Lachman test, Pivot shift test and Delhi active test. Functional outcome was assessed by International Knee Documentation Committee (IKDC), Lysholm and Modified Cincinnati scores. Patients in both groups were evaluated at regular intervals for a minimum period of 48 months (mean 51 months, range 48-56 months). For all subjective scores, double bundle group patients reported statistically significant higher scores compared to single bundle group patients. Graded stability results of the Lachman, and Pivot shift tests were significantly higher in the anatomically reconstructed double bundle patient group. We suggest that functional outcome and clinical stability may be better with anatomical double bundle anterior cruciate ligament reconstruction as compared to anatomical single bundle anterior cruciate ligament reconstruction. Copyright

  14. Parametric PET Image Reconstruction via Regional Spatial Bases and Pharmacokinetic Time Activity Model

    Directory of Open Access Journals (Sweden)

    Naoki Kawamura

    2017-11-01

    Full Text Available It is known that the process of reconstruction of a Positron Emission Tomography (PET image from sinogram data is very sensitive to measurement noises; it is still an important research topic to reconstruct PET images with high signal-to-noise ratios. In this paper, we propose a new reconstruction method for a temporal series of PET images from a temporal series of sinogram data. In the proposed method, PET images are reconstructed by minimizing the Kullback–Leibler divergence between the observed sinogram data and sinogram data derived from a parametric model of PET images. The contributions of the proposition include the following: (1 regions of targets in images are explicitly expressed using a set of spatial bases in order to ignore the noises in the background; (2 a parametric time activity model of PET images is explicitly introduced as a constraint; and (3 an algorithm for solving the optimization problem is clearly described. To demonstrate the advantages of the proposed method, quantitative evaluations are performed using both synthetic and clinical data of human brains.

  15. Statistical inference approach to structural reconstruction of complex networks from binary time series

    Science.gov (United States)

    Ma, Chuang; Chen, Han-Shuang; Lai, Ying-Cheng; Zhang, Hai-Feng

    2018-02-01

    Complex networks hosting binary-state dynamics arise in a variety of contexts. In spite of previous works, to fully reconstruct the network structure from observed binary data remains challenging. We articulate a statistical inference based approach to this problem. In particular, exploiting the expectation-maximization (EM) algorithm, we develop a method to ascertain the neighbors of any node in the network based solely on binary data, thereby recovering the full topology of the network. A key ingredient of our method is the maximum-likelihood estimation of the probabilities associated with actual or nonexistent links, and we show that the EM algorithm can distinguish the two kinds of probability values without any ambiguity, insofar as the length of the available binary time series is reasonably long. Our method does not require any a priori knowledge of the detailed dynamical processes, is parameter-free, and is capable of accurate reconstruction even in the presence of noise. We demonstrate the method using combinations of distinct types of binary dynamical processes and network topologies, and provide a physical understanding of the underlying reconstruction mechanism. Our statistical inference based reconstruction method contributes an additional piece to the rapidly expanding "toolbox" of data based reverse engineering of complex networked systems.

  16. Lower Lip Reconstruction after Tumor Resection; a Single Author's Experience with Various Methods

    International Nuclear Information System (INIS)

    Rifaat, M.A.

    2006-01-01

    Background: Squamous cell carcinoma is the most frequently seen malignant tumor of the lower lip The more tissue is lost from the lip after tumor resection, the more challenging is the reconstruction. Many methods have been described, but each has its own advantages and its disadvantages. The author presents through his own clinical experience with lower lip reconstruction at tbe NCI, an evaluation of the commonly practiced techniques. Patients and Methods: Over a 3 year period from May 2002 till May 2005, 17 cases presented at the National Cancer Institute, Cairo University, with lower lip squamous cell carcinoma. The lesions involved various regions of the lower lip excluding the commissures. Following resection, the resulting defects ranged from 1/3 of lip to total lip loss. The age of the patients ranged from 28 to 67 years and they were 13 males and 4 females With regards to the reconstructive procedures used, Karapandzic technique (orbicularis oris myocutaneous flaps) was used in 7 patients, 3 of whom underwent secondary lower lip augmentation with upper lip switch flaps Primary Abbe (Lip switch) nap reconstruction was used in two patients, while 2 other patients were reconstructed with bilateral fan flaps with vermilion reconstruction by mucosal advancement in one case and tongue flap in the other The radial forearm free nap was used only in 2 cases, and direct wound closure was achieved in three cases. All patients were evaluated for early postoperative results emphasizing on flap viability and wound problems and for late results emphasizing on oral continence, microstomia, and aesthetic outcome, in addition to the usual oncological follow-up. Results: All flaps used in this study survived completely including the 2 free flaps. In the early postoperative period, minor wound breakdown occurred in all three cases reconstructed by utilizing adjacent cheek skin flaps, but all wounds healed spontaneously. The latter three cases Involved defects greater than 2

  17. Reconstruction of neuronal input through modeling single-neuron dynamics and computations

    International Nuclear Information System (INIS)

    Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin; Chan, Wai-lok

    2016-01-01

    Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.

  18. Reconstruction of neuronal input through modeling single-neuron dynamics and computations

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin, E-mail: dengbin@tju.edu.cn; Chan, Wai-lok [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2016-06-15

    Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.

  19. Advanced time-correlated single photon counting applications

    CERN Document Server

    Becker, Wolfgang

    2015-01-01

    This book is an attempt to bridge the gap between the instrumental principles of multi-dimensional time-correlated single photon counting (TCSPC) and typical applications of the technique. Written by an originator of the technique and by sucessful users, it covers the basic principles of the technique, its interaction with optical imaging methods and its application to a wide range of experimental tasks in life sciences and clinical research. The book is recommended for all users of time-resolved detection techniques in biology, bio-chemistry, spectroscopy of live systems, live cell microscopy, clinical imaging, spectroscopy of single molecules, and other applications that require the detection of low-level light signals at single-photon sensitivity and picosecond time resolution.

  20. Single-tunnel double-bundle anterior cruciate ligament reconstruction with anatomical placement of hamstring tendon graft: can it restore normal knee joint kinematics?

    Science.gov (United States)

    Gadikota, Hemanth R; Wu, Jia-Lin; Seon, Jong Keun; Sutton, Karen; Gill, Thomas J; Li, Guoan

    2010-04-01

    Anatomical reconstruction techniques that can restore normal joint kinematics without increasing surgical complications could potentially improve clinical outcomes and help manage anterior cruciate ligament injuries more efficiently. Single-tunnel double-bundle anterior cruciate ligament reconstruction with anatomical placement of hamstring tendon graft can more closely restore normal knee anterior-posterior, medial-lateral, and internal-external kinematics than can conventional single-bundle anterior cruciate ligament reconstruction. Controlled laboratory study. Kinematic responses after single-bundle anterior cruciate ligament reconstruction and single-tunnel double-bundle anterior cruciate ligament reconstruction with anatomical placement of hamstring tendon graft were compared with the intact knee in 9 fresh-frozen human cadaveric knee specimens using a robotic testing system. Kinematics of each knee were determined under an anterior tibial load (134 N), a simulated quadriceps load (400 N), and combined torques (10 N.m valgus and 5 N.m internal tibial torques) at 0 degrees , 15 degrees , 30 degrees , 60 degrees , and 90 degrees of flexion. Anterior tibial translations were more closely restored to the intact knee level after single-tunnel double-bundle reconstruction with anatomical placement of hamstring tendon graft than with a single-bundle reconstruction under the 3 external loading conditions. Under simulated quadriceps load, the mean internal tibial rotations after both reconstructions were lower than that of the anterior cruciate ligament-intact knee with no significant differences between these 3 knee conditions at 0 degrees and 30 degrees of flexion (P > .05). The increased medial tibial shifts of the anterior cruciate ligament-deficient knees were restored to the intact level by both reconstruction techniques under the 3 external loading conditions. Single-tunnel double-bundle anterior cruciate ligament reconstruction with anatomical placement of

  1. [Anatomic reconstruction of the anterior cruciate ligament in single bundle technique].

    Science.gov (United States)

    Petersen, W; Forkel, P; Achtnich, A; Metzlaff, S; Zantop, T

    2013-04-01

    program is divided into three phases. During the inflammatory phase (1st-2nd week) control of pain and swelling is recommended. The patient is immobilized with 20 kg partial weight bearing. During the proliferative phase (3 nd-6th week), load and mobility are slowly increased. Goal of this phase is it full extension. Exercises should be performed in a closed chain. During the remodeling phase strength and coordination exercises can be started. Athletes should not return to competitive sports before the 6th to 8th month. In a prospective study, we have examined 21 patients treated with an anatomic anterior cruciate ligament reconstruction in single-bundle technique, after two years. As graft the semitendinosus was used. The postoperative MRI diagnosis showed that all tunnels were positioned anatomically. KT 1000 measurement showed that the difference of anterior translation decreased from an average of 6.4-1.7 mm. A sliding pivot shift phenomenon was detected in only one patient. The postoperative Lysholmscore was 94.2 points.

  2. Comparison of femur tunnel aperture location in patients undergoing transtibial and anatomical single-bundle anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Lee, Dae-Hee; Kim, Hyun-Jung; Ahn, Hyeong-Sik; Bin, Seong-Il

    2016-12-01

    Although three-dimensional computed tomography (3D-CT) has been used to compare femoral tunnel position following transtibial and anatomical anterior cruciate ligament (ACL) reconstruction, no consensus has been reached on which technique results in a more anatomical position because methods of quantifying femoral tunnel position on 3D-CT have not been consistent. This meta-analysis was therefore performed to compare femoral tunnel location following transtibial and anatomical ACL reconstruction, in both the low-to-high and deep-to-shallow directions. This meta-analysis included all studies that used 3D-CT to compare femoral tunnel location, using quadrant or anatomical coordinate axis methods, following transtibial and anatomical (AM portal or OI) single-bundle ACL reconstruction. Six studies were included in the meta-analysis. Femoral tunnel location was 18 % higher in the low-to-high direction, but was not significant in the deep-to-shallow direction, using the transtibial technique than the anatomical methods, when measured using the anatomical coordinate axis method. When measured using the quadrant method, however, femoral tunnel positions were significantly higher (21 %) and shallower (6 %) with transtibial than anatomical methods of ACL reconstruction. The anatomical ACL reconstruction techniques led to a lower femoral tunnel aperture location than the transtibial technique, suggesting the superiority of anatomical techniques for creating new femoral tunnels during revision ACL reconstruction in femoral tunnel aperture location in the low-to-high direction. However, the mean difference in the deep-to-shallow direction differed by method of measurement. Meta-analysis, Level II.

  3. Time expansion chamber and single ionization cluster measurement

    International Nuclear Information System (INIS)

    Walenta, A.H.

    1978-10-01

    The time expansion chamber (TEC), a new type of drift chamber, allows the measurement of microscopic details of ionization. The mean drift time interval from subsequent sngle ionization clusters of a relativistic particle in the TEC can be made large enough compared to the width of a anode signal to allow the recording of the clusters separately. Since single primary electrons can be detected, the cluster counting would allow an improved particle separation using the relativistic rise of primary ionization. In another application, very high position accuracy for track detectors or improved energy resolution may be obtained. Basic ionization phenomena and drift properties can be measured at the single electron level

  4. Online Scheduling on a Single Machine with Grouped Processing Times

    Directory of Open Access Journals (Sweden)

    Qijia Liu

    2015-01-01

    Full Text Available We consider the online scheduling problem on a single machine with the assumption that all jobs have their processing times in [p,(1+αp], where p>0 and α=(5-1/2. All jobs arrive over time, and each job and its processing time become known at its arrival time. The jobs should be first processed on a single machine and then delivered by a vehicle to some customer. When the capacity of the vehicle is infinite, we provide an online algorithm with the best competitive ratio of (5+1/2. When the capacity of the vehicle is finite, that is, the vehicle can deliver at most c jobs at a time, we provide another best possible online algorithm with the competitive ratio of (5+1/2.

  5. Reconstruction for time-domain in vivo EPR 3D multigradient oximetric imaging--a parallel processing perspective.

    Science.gov (United States)

    Dharmaraj, Christopher D; Thadikonda, Kishan; Fletcher, Anthony R; Doan, Phuc N; Devasahayam, Nallathamby; Matsumoto, Shingo; Johnson, Calvin A; Cook, John A; Mitchell, James B; Subramanian, Sankaran; Krishna, Murali C

    2009-01-01

    Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23 x 23 x 23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible even from low-cost personal computers through local internet (NIHnet). The experimental results demonstrate that the parallel computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging, almost in real-time.

  6. Reconstruction for Time-Domain In Vivo EPR 3D Multigradient Oximetric Imaging—A Parallel Processing Perspective

    Directory of Open Access Journals (Sweden)

    Christopher D. Dharmaraj

    2009-01-01

    Full Text Available Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23×23×23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible even from low-cost personal computers through local internet (NIHnet. The experimental results demonstrate that the parallel computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging, almost in real-time.

  7. A single pre-operative antibiotic dose is as effective as continued antibiotic prophylaxis in implant-based breast reconstruction: A matched cohort study.

    Science.gov (United States)

    Townley, William A; Baluch, Narges; Bagher, Shaghayegh; Maass, Saskia W M C; O'Neill, Anne; Zhong, Toni; Hofer, Stefan O P

    2015-05-01

    Infections following implant-based breast reconstruction can lead to devastating consequences. There is currently no consensus on the need for post-operative antibiotics in preventing immediate infection. This study compared two different methods of infection prevention in this group of patients. A retrospective matched cohort study was performed on consecutive women undergoing implant-based breast reconstruction at University Health Network, Toronto (November 2008-December 2012). All patients received a single pre-operative intravenous antibiotic dose. Group A received minimal interventions and Group B underwent maximal prophylactic measures. Patient (age, smoking, diabetes, co-morbidities), oncologic and procedural variables (timing and laterality) were collected. Univariate and multivariate logistic regression were performed to compare outcomes between the two groups. Two hundred and eight patients underwent 647 implant procedures. After matching the two treatment groups by BMI, 94 patients in each treatment group yielding a total of 605 implant procedures were selected for analysis. The two groups were comparable in terms of patient and disease variables. Post-operative wound infection was similar in Group A (n = 11, 12%) compared with Group B (n = 9, 10%; p = 0.8). Univariate analysis revealed only pre-operative radiotherapy to be associated with the development of infection (0.004). Controlling for the effect of radiotherapy, multivariate analysis demonstrated that there was no statistically significant difference between the two methods for infection prevention. Our findings suggest that a single pre-operative dose of intravenous antibiotics is equally as effective as continued antibiotic prophylaxis in preventing immediate infection in patients undergoing implant-based breast reconstructions. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. Accelerated median root prior reconstruction for pinhole single-photon emission tomography (SPET)

    Energy Technology Data Exchange (ETDEWEB)

    Sohlberg, Antti [Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, PO Box 1777 FIN-70211, Kuopio (Finland); Ruotsalainen, Ulla [Institute of Signal Processing, DMI, Tampere University of Technology, PO Box 553 FIN-33101, Tampere (Finland); Watabe, Hiroshi [National Cardiovascular Center Research Institute, 5-7-1 Fujisihro-dai, Suita City, Osaka 565-8565 (Japan); Iida, Hidehiro [National Cardiovascular Center Research Institute, 5-7-1 Fujisihro-dai, Suita City, Osaka 565-8565 (Japan); Kuikka, Jyrki T [Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, PO Box 1777 FIN-70211, Kuopio (Finland)

    2003-07-07

    Pinhole collimation can be used to improve spatial resolution in SPET. However, the resolution improvement is achieved at the cost of reduced sensitivity, which leads to projection images with poor statistics. Images reconstructed from these projections using the maximum likelihood expectation maximization (ML-EM) algorithms, which have been used to reduce the artefacts generated by the filtered backprojection (FBP) based reconstruction, suffer from noise/bias trade-off: noise contaminates the images at high iteration numbers, whereas early abortion of the algorithm produces images that are excessively smooth and biased towards the initial estimate of the algorithm. To limit the noise accumulation we propose the use of the pinhole median root prior (PH-MRP) reconstruction algorithm. MRP is a Bayesian reconstruction method that has already been used in PET imaging and shown to possess good noise reduction and edge preservation properties. In this study the PH-MRP algorithm was accelerated with the ordered subsets (OS) procedure and compared to the FBP, OS-EM and conventional Bayesian reconstruction methods in terms of noise reduction, quantitative accuracy, edge preservation and visual quality. The results showed that the accelerated PH-MRP algorithm was very robust. It provided visually pleasing images with lower noise level than the FBP or OS-EM and with smaller bias and sharper edges than the conventional Bayesian methods.

  9. Image reconstruction in single photon emission computed tomography for radioactive waste testing

    International Nuclear Information System (INIS)

    Pouletaut, P.

    1993-02-01

    The aim of this study is to reconstruct by tomography the spatial distribution of the activity of an object which emits photons. First, an analysis of the imaging qualities of a tomograph in terms of physical parameters related to the measurement process is proposed. Then, an algorithm which evaluates, the self-attenuation of the emitted photons and corrects for the collimator aperture angle is developed; this computation corresponds to a subdivision of the object into voxels and to a parallel geometry of the projections. Two algebraic reconstruction methods have been studied; one using a regularized least-squares technique, the other using a bayesian approach. We show by computer simulations the dependence of the reconstruction on the condition number of the self-attenuation matrix and on the estimation errors of this matrix. Then, the reconstruction is tested on experimental data; the images we reconstruct on a square grid of ten by ten voxels from one hundred twenty measurements show an accurate location of the sources; their activities are efficiently estimated when the collimator aperture angle is well taken into account in the self-attenuation matrix

  10. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    Science.gov (United States)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  11. Real-time cardiovascular magnetic resonance at high temporal resolution: radial FLASH with nonlinear inverse reconstruction

    Directory of Open Access Journals (Sweden)

    Merboldt Klaus-Dietmar

    2010-07-01

    Full Text Available Abstract Background Functional assessments of the heart by dynamic cardiovascular magnetic resonance (CMR commonly rely on (i electrocardiographic (ECG gating yielding pseudo real-time cine representations, (ii balanced gradient-echo sequences referred to as steady-state free precession (SSFP, and (iii breath holding or respiratory gating. Problems may therefore be due to the need for a robust ECG signal, the occurrence of arrhythmia and beat to beat variations, technical instabilities (e.g., SSFP "banding" artefacts, and limited patient compliance and comfort. Here we describe a new approach providing true real-time CMR with image acquisition times as short as 20 to 30 ms or rates of 30 to 50 frames per second. Methods The approach relies on a previously developed real-time MR method, which combines a strongly undersampled radial FLASH CMR sequence with image reconstruction by regularized nonlinear inversion. While iterative reconstructions are currently performed offline due to limited computer speed, online monitoring during scanning is accomplished using gridding reconstructions with a sliding window at the same frame rate but with lower image quality. Results Scans of healthy young subjects were performed at 3 T without ECG gating and during free breathing. The resulting images yield T1 contrast (depending on flip angle with an opposed-phase or in-phase condition for water and fat signals (depending on echo time. They completely avoid (i susceptibility-induced artefacts due to the very short echo times, (ii radiofrequency power limitations due to excitations with flip angles of 10° or less, and (iii the risk of peripheral nerve stimulation due to the use of normal gradient switching modes. For a section thickness of 8 mm, real-time images offer a spatial resolution and total acquisition time of 1.5 mm at 30 ms and 2.0 mm at 22 ms, respectively. Conclusions Though awaiting thorough clinical evaluation, this work describes a robust and

  12. A Timing Single Channel Analyzer with pileup rejection

    International Nuclear Information System (INIS)

    Lauch, J.; Nachbar, H.U.

    1981-07-01

    A Timing Single Channel Analyzer is described as normally used in nuclear physics applications for measuring certain ranges of energy spectra. The unit accepts unipolar or bipolar gaussian shaped or rectangular pulses and includes a special pileup rejection circuit. Because of its good timing performance high resolution timing and coincidence measurements are possible. The differential analyzer, trigger and timing modes and the function of external strobe and gate signals are explained. Parts of the circuit are illustrated by help of block diagrams and pulse schematics. An essential part of the unit is the pileup rejection circuit. Following theoretical reflections the circuit is described and some measurement results are reported. (orig.) [de

  13. Comparison of hamstring tendon autograft and tibialis anterior allograft in arthroscopic transtibial single-bundle posterior cruciate ligament reconstruction.

    Science.gov (United States)

    Li, Bin; Wang, Jia-Shi; He, Ming; Wang, Guang-Bin; Shen, Peng; Bai, Lun-Hao

    2015-10-01

    To compare the outcomes between hamstring tendon autograft and tibialis anterior allograft in arthroscopic transtibial single-bundle posterior cruciate ligament (PCL) reconstruction. Thirty-seven patients undergoing isolated single-bundle PCL reconstruction were enrolled in this study, and their data were retrospectively analyzed. They were divided into group A [4-strand hamstring tendon autograft (4SHG), n = 18] and group B [2-strand tibialis anterior allograft (2STAG), n = 19] and followed up for 2 years at least. Several parameters including the International Knee Documentation Committee score, Lysholm knee score, Tegner activity rating and knee laxity arthrometer were evaluated, and physical examination was performed preoperatively and postoperatively, and postoperative complications were also observed in all patients. Meanwhile, the postoperative posterior instability was compared between the affected knee and the contra-lateral knee. Compared with preoperative knee laxity and function, both groups had significant improvement postoperatively (P reconstruction. Compared with contra-lateral knees, the affected knees have slight residual knee laxity in both groups. Retrospective comparative study, Level III.

  14. Single stage reconstruction of ruptured tendoachilles tendon with skin cover using distally based superficial sural artery flap.

    Science.gov (United States)

    Abhyankar, Suhas V; Kulkarni, Ananta; Agarwal, Naveen Kumar

    2009-10-01

    Ruptured tendoachilles along with skin defect is a complex problem to reconstruct. Both things require a priority. Single stage reconstruction of ruptured tendoachilles tendon with skin cover using distally based superficial sural arterial flap allows us to perform both. This procedure gives excellent result, shortens the stay, thereby reducing the cost. This method is a simple solution to the complex problem like ruptured tendoachilles with skin defect. In this study, 6 patients with rupture of tendoachilles tendon due to penetrating injury, with skin defect are presented. The repair was done using aponeurotic part of tendoachilles tendon, taken from proximal part of tendoachilles in the midline measuring around 2 to 2.5 cm in width and 8 to 10 cm in length, with intact distal attachment. The tendon was turned upside down by 180 degrees and sutured to the distal stump of the tendoachilles tendon without tension. The skin defect was covered using distally based superficial sural artery flap in the same sitting. The follow-up period was 9 to 30 months. All patients showed good results. In one patient there was distal necrosis of 1.5 cm of the distally based superficial sural artery flap, which healed satisfactorily with conservative treatment. Single stage tendoachilles reconstruction can be used with good functional result and patient satisfaction.

  15. Rapid Time-Resolved Magnetic Resonance Angiography via a multi-echo radial trajectory and GraDeS reconstruction

    Science.gov (United States)

    Lee, Gregory R.; Seiberlich, Nicole; Sunshine, Jeffrey L.; Carroll, Timothy J.; Griswold, Mark A.

    2012-01-01

    Contrast enhanced magnetic resonance angiography (CE-MRA) is challenging due to the need for both high spatial and temporal resolution. A multi-shot trajectory composed of pseudo-random rotations of a single multi-echo radial readout was developed. The trajectory is designed to give incoherent aliasing artifacts and a relatively uniform distribution of projections over all time scales. A field map (computed from the same data set) is used to avoid signal dropout in regions of substantial field inhomogeneity. A compressed sensing reconstruction using the GraDeS algorithm was employed. Whole brain angiograms were reconstructed at 1 mm isotropic resolution and a 1.1 s frame rate (corresponding to an acceleration factor > 100). The only parameter which must be chosen is the number of iterations of the GraDeS algorithm. A larger number of iterations improves the temporal behavior at cost of decreased image signal to noise ratio. The resulting images provide a good depiction of the cerebral vasculature and have excellent arterial/venous separation. PMID:22473742

  16. Rapid time-resolved magnetic resonance angiography via a multiecho radial trajectory and GraDeS reconstruction.

    Science.gov (United States)

    Lee, Gregory R; Seiberlich, Nicole; Sunshine, Jeffrey L; Carroll, Timothy J; Griswold, Mark A

    2013-02-01

    Contrast-enhanced magnetic resonance angiography is challenging due to the need for both high spatial and temporal resolution. A multishot trajectory composed of pseudo-random rotations of a single multiecho radial readout was developed. The trajectory is designed to give incoherent aliasing artifacts and a relatively uniform distribution of projections over all time scales. A field map (computed from the same data set) is used to avoid signal dropout in regions of substantial field inhomogeneity. A compressed sensing reconstruction using the GraDeS algorithm was used. Whole brain angiograms were reconstructed at 1-mm isotropic resolution and a 1.1-s frame rate (corresponding to an acceleration factor > 100). The only parameter which must be chosen is the number of iterations of the GraDeS algorithm. A larger number of iterations improves the temporal behavior at cost of decreased image signal-to-noise ratio. The resulting images provide a good depiction of the cerebral vasculature and have excellent arterial/venous separation. Copyright © 2012 Wiley Periodicals, Inc.

  17. Neural network based real-time reconstruction of KSTAR magnetic equilibria with Bayesian-based preprocessing

    Science.gov (United States)

    Joung, Semin; Kwak, Sehyun; Ghim, Y.-C.

    2017-10-01

    Obtaining plasma shapes during tokamak discharges requires real-time estimation of magnetic configuration using Grad-Shafranov solver such as EFIT. Since off-line EFIT is computationally intensive and the real-time reconstructions do not agree with the results of off-line EFIT within our desired accuracy, we use a neural network to generate an off-line-quality equilibrium in real time. To train the neural network (two hidden layers with 30 and 20 nodes for each layer), we create database consisting of the magnetic signals and off-line EFIT results from KSTAR as inputs and targets, respectively. To compensate drifts in the magnetic signals originated from electronic circuits, we develop a Bayesian-based two-step real-time correction method. Additionally, we infer missing inputs, i.e. when some of inputs to the network are not usable, using Gaussian process coupled with Bayesian model. The likelihood of this model is determined based on the Maxwell's equations. We find that our network can withstand at least up to 20% of input errors. Note that this real-time reconstruction scheme is not yet implemented for KSTAR operation.

  18. Biomechanical comparisons of knee stability after anterior cruciate ligament reconstruction between 2 clinically available transtibial procedures: anatomic double bundle versus single bundle.

    Science.gov (United States)

    Kondo, Eiji; Merican, Azhar M; Yasuda, Kazunori; Amis, Andrew A

    2010-07-01

    Several trials have compared the clinical results between anatomic double-bundle and single-bundle anterior cruciate ligament reconstruction procedures. However, it remains controversial whether the anatomic double-bundle procedure is superior to the single-bundle procedure. The anatomic double-bundle procedure will be better than the single-bundle procedure at resisting anterior laxity, internal rotation laxity, and pivot-shift instability. Controlled laboratory study. Eight cadaveric knees were tested in a 6 degrees of freedom rig using the following loading conditions: 90-N anterior tibialforce, 5-N.m internal and external tibial torques, and a simulated pivot-shift test. Tibiofemoral kinematics during the flexion-extension cycle were recorded with an optical tracking system for (1) intact, (2) anterior cruciate ligament-deficient knee, (3) anatomic double-bundle reconstruction, and (4) single-bundle reconstruction placed at 11 o'clock in the intercondylar notch. There were significant reductions of anterior laxity of 3.5 mm at 20 degrees of flexion, internal rotational laxity of 2.5 degrees at 20 degrees of flexion, and anterior translations (2 mm) and internal rotations (5 degrees ) in the simulated pivot-shift test in the double-bundle reconstruction com-pared with the single-bundle reconstruction. There were no significant differences between the 2 procedures for external rotation laxity. The postoperative anterior translation and internal rotation stability after anatomic double-bundle anterior cruciate ligament reconstruction were significantly better than after single-bundle reconstruction, in both static tests and the pivot shift. Unlike previous laboratory studies, this work used clinical arthroscopic methods for anterior cruciate ligament reconstruction, and found that the anatomic reconstruction was superior to a single graft placed at 11 o'clock.

  19. Rapid tomographic reconstruction based on machine learning for time-resolved combustion diagnostics

    Science.gov (United States)

    Yu, Tao; Cai, Weiwei; Liu, Yingzheng

    2018-04-01

    Optical tomography has attracted surged research efforts recently due to the progress in both the imaging concepts and the sensor and laser technologies. The high spatial and temporal resolutions achievable by these methods provide unprecedented opportunity for diagnosis of complicated turbulent combustion. However, due to the high data throughput and the inefficiency of the prevailing iterative methods, the tomographic reconstructions which are typically conducted off-line are computationally formidable. In this work, we propose an efficient inversion method based on a machine learning algorithm, which can extract useful information from the previous reconstructions and build efficient neural networks to serve as a surrogate model to rapidly predict the reconstructions. Extreme learning machine is cited here as an example for demonstrative purpose simply due to its ease of implementation, fast learning speed, and good generalization performance. Extensive numerical studies were performed, and the results show that the new method can dramatically reduce the computational time compared with the classical iterative methods. This technique is expected to be an alternative to existing methods when sufficient training data are available. Although this work is discussed under the context of tomographic absorption spectroscopy, we expect it to be useful also to other high speed tomographic modalities such as volumetric laser-induced fluorescence and tomographic laser-induced incandescence which have been demonstrated for combustion diagnostics.

  20. Single Stage Reconstruction of Type IIA Defect of the Ear Lobule ...

    African Journals Online (AJOL)

    technique using a doubled‑over skin flap allows a one stage reconstruction of the ear lobule. It is technically simple and may be performed under local anesthesia. The aesthetic results are generally well acceptable and there is a good color match between the neolobule and the surrounding skin. Key words: Ear lobule, ...

  1. Anatomic Single- and Double-Bundle Anterior Cruciate Ligament Reconstruction Flowchart

    NARCIS (Netherlands)

    van Eck, Carola F.; Lesniak, Bryson P.; Schreiber, Verena M.; Fu, Freddie H.

    2010-01-01

    Anatomy is the foundation of orthopaedic surgery, and the advancing knowledge of the anterior cruciate ligament (ACL) anatomy has led to the development of improved modern reconstruction techniques that approach the anatomy of the native ACL. Current literature on the anatomy of the ACL and its

  2. TreeTime: an extensible C++ software package for Bayesian phylogeny reconstruction with time-calibration.

    Science.gov (United States)

    Himmelmann, Lin; Metzler, Dirk

    2009-09-15

    For the estimation of phylogenetic trees from molecular data, it is worthwhile to take prior paleontologic knowledge into account, if available. To calibrate the branch lengths of the tree with times assigned to geo-historical events or fossils, it is necessary to select a relaxed molecular clock model to specify how mutation rates can change along the phylogeny. We present the software TreeTime for Bayesian phylogeny estimation. It can take prior information about the topology of the tree and about branching times into account. Several relaxed molecular clock models are implemented in TreeTime. TreeTime is written in C++ and designed to be efficient and extensible. TreeTime is freely available from http://evol.bio.lmu.de/statgen/software/treetime under the terms of the GNU General Public Licence (GPL, version 3 or later).

  3. A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy.

    Science.gov (United States)

    Li, Hao; Yang, Haw

    2018-03-28

    This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.

  4. A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy

    Science.gov (United States)

    Li, Hao; Yang, Haw

    2018-03-01

    This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.

  5. Real-time SPARSE-SENSE cardiac cine MR imaging: optimization of image reconstruction and sequence validation.

    Science.gov (United States)

    Goebel, Juliane; Nensa, Felix; Bomas, Bettina; Schemuth, Haemi P; Maderwald, Stefan; Gratz, Marcel; Quick, Harald H; Schlosser, Thomas; Nassenstein, Kai

    2016-12-01

    Improved real-time cardiac magnetic resonance (CMR) sequences have currently been introduced, but so far only limited practical experience exists. This study aimed at image reconstruction optimization and clinical validation of a new highly accelerated real-time cine SPARSE-SENSE sequence. Left ventricular (LV) short-axis stacks of a real-time free-breathing SPARSE-SENSE sequence with high spatiotemporal resolution and of a standard segmented cine SSFP sequence were acquired at 1.5 T in 11 volunteers and 15 patients. To determine the optimal iterations, all volunteers' SPARSE-SENSE images were reconstructed using 10-200 iterations, and contrast ratios, image entropies, and reconstruction times were assessed. Subsequently, the patients' SPARSE-SENSE images were reconstructed with the clinically optimal iterations. LV volumetric values were evaluated and compared between both sequences. Sufficient image quality and acceptable reconstruction times were achieved when using 80 iterations. Bland-Altman plots and Passing-Bablok regression showed good agreement for all volumetric parameters. 80 iterations are recommended for iterative SPARSE-SENSE image reconstruction in clinical routine. Real-time cine SPARSE-SENSE yielded comparable volumetric results as the current standard SSFP sequence. Due to its intrinsic low image acquisition times, real-time cine SPARSE-SENSE imaging with iterative image reconstruction seems to be an attractive alternative for LV function analysis. • A highly accelerated real-time CMR sequence using SPARSE-SENSE was evaluated. • SPARSE-SENSE allows free breathing in real-time cardiac cine imaging. • For clinically optimal SPARSE-SENSE image reconstruction, 80 iterations are recommended. • Real-time SPARSE-SENSE imaging yielded comparable volumetric results as the reference SSFP sequence. • The fast SPARSE-SENSE sequence is an attractive alternative to standard SSFP sequences.

  6. Preoperative computed tomography angiography for planning DIEP flap breast reconstruction reduces operative time and overall complications.

    Science.gov (United States)

    Fitzgerald O'Connor, Edmund; Rozen, Warren Matthew; Chowdhry, Muhammad; Band, Bassam; Ramakrishnan, Venkat V; Griffiths, Matthew

    2016-04-01

    The approach and operative techniques associated with breast reconstruction have steadily been refined since its inception, with abdominal perforator-based flaps becoming the gold standard reconstructive option for women undergoing breast cancer surgery. The current study comprises a cohort of 632 patients, in whom specific operative times are recorded by a blinded observer, and aims to address the potential benefits seen with the use of computer tomography (CT) scanning preoperatively on operative outcomes, complications and surgical times. A prospectively recorded, retrospective review was undertaken of patients undergoing autologous breast reconstruction with a DIEP flap at the St Andrews Centre over a 4-year period from 2010 to 2014. Computed tomography angiography (CTA) scanning of patients began in September 2012 and thus 2 time periods were compared: 2 years prior to the use of CTA scans and 2 years afterwards. For all patients, key variables were collected including patient demographics, operative times, flap harvest time, pedicle length, surgeon experience and complications. In group 1, comprising patients within the period prior to CTA scans, 265 patients underwent 312 flaps; whilst in group 2, the immediately following 2 years, 275 patients had 320 flaps. The use of preoperative CTA scans demonstrated a significant reduction in flap harvest time of 13 minutes (P<0.013). This significant time saving was seen in all flap modifications: unilateral, bilateral and bipedicled DIEP flaps. The greatest time saving was seen in bipedicle flaps, with a 35-minute time saving. The return to theatre rate significantly dropped from 11.2% to 6.9% following the use of CTA scans, but there was no difference in the total failure rate. The study has demonstrated both a benefit to flap harvest time as well as overall operative times when using preoperative CTA. The use of CTA was associated with a significant reduction in complications requiring a return to theatre in the

  7. Dual matrix ordered subsets reconstruction for accelerated 3D scatter compensation in single-photon emission tomography

    International Nuclear Information System (INIS)

    Kamphuis, C.; Beekman, F.J.; Van Rijk, P.P.; Viergever, M.A.

    1998-01-01

    Three-dimensional (3D) iterative maximum likelihood expectation maximization (ML-EM) algorithms for single-photon emission tomography (SPET) are capable of correcting image-degrading effects of non-uniform attenuation, distance-dependent camera response and patient shape-dependent scatter. However, the resulting improvements in quantitation, resolution and signal-to-noise ratio (SNR) are obtained at the cost of a huge computational burden. This paper presents a new acceleration method for ML-EM: dual matrix ordered subsets (DM-OS). DM-OS combines two acceleration methods: (a) different matrices for projection and back-projection and (b) ordered subsets of projections. DM-OS was compared with ML-EM on simulated data and on physical thorax phantom data, for both 180 and 360 orbits. Contrast, normalized standard deviation and mean squared error were calculated for the digital phantom experiment. DM-OS resulted in similar image quality to ML-EM, even for speed-up factors of 200 compared to ML-EM in the case of 120 projections. The thorax phantom data could be reconstructed 50 times faster (60 projections) using DM-OS with preservation of image quality. ML-EM and DM-OS with scatter compensation showed significant improvement of SNR compared to ML-EM without scatter compensation. Furthermore, inclusion of complex image formation models in the computer code is simplified in the case of DM-OS. It is thus shown that DM-OS is a fast and relatively simple algorithm for 3D iterative scatter compensation, with similar results to conventional ML-EM, for both 180 and 360 acquired data. (orig.)

  8. Multi-Mode Lamb Wave Arrival Time Extraction for Improved Tomographic Reconstruction

    International Nuclear Information System (INIS)

    Hinders, Mark K.; Hou Jidong; Leonard, Kevin R.

    2005-01-01

    An ultrasonic signal processing technique is applied to multi-mode arrival time estimation from Lamb waveforms. The basic tool is a simplified time-scale projection called a dynamic wavelet fingerprint (DWFP) which enables direct observation of the variation of features of interest in non-stationary ultrasonic signals. The DWFP technique was used to automatically detect and evaluate each candidate through-transmitted Lamb mode. The area of the dynamic wavelet fingerprint was then used as a feature to distinguish false modes caused by noise and other interference from the true modes of interest. The set of estimated arrival times were then used as inputs for tomographic reconstruction. The Lamb wave tomography images generated with these estimated arrival times were able to indicate different defects in aluminum plates

  9. Sinonasal mucosal melanoma extended to nose bridge: A one-time reconstruction treatment report

    Directory of Open Access Journals (Sweden)

    Antonio Romano

    2018-03-01

    Full Text Available Sinonasal mucosal melanoma is a rare and highly aggressive tumour. This tumour often carries a poor prognosis because of local invasion and early distant metastasis. It's, in fact, an aggressive, fortunately rare, disease. It's more common among population in their seventies, with a prolonged course due to innocuous symptoms. We report a case of sinonasal mucosal melanoma in a 56-years old male who presented with a brownish sinonasal mass involving right nasal fossa, swelling and spontaneous epistaxis. We report this case for the one-time reconstruction treatment performed by our team.

  10. Reconstruction from limited single-particle diffraction data via simultaneous determination of state, orientation, intensity, and phase.

    Science.gov (United States)

    Donatelli, Jeffrey J; Sethian, James A; Zwart, Peter H

    2017-07-11

    Free-electron lasers now have the ability to collect X-ray diffraction patterns from individual molecules; however, each sample is delivered at unknown orientation and may be in one of several conformational states, each with a different molecular structure. Hit rates are often low, typically around 0.1%, limiting the number of useful images that can be collected. Determining accurate structural information requires classifying and orienting each image, accurately assembling them into a 3D diffraction intensity function, and determining missing phase information. Additionally, single particles typically scatter very few photons, leading to high image noise levels. We develop a multitiered iterative phasing algorithm to reconstruct structural information from single-particle diffraction data by simultaneously determining the states, orientations, intensities, phases, and underlying structure in a single iterative procedure. We leverage real-space constraints on the structure to help guide optimization and reconstruct underlying structure from very few images with excellent global convergence properties. We show that this approach can determine structural resolution beyond what is suggested by standard Shannon sampling arguments for ideal images and is also robust to noise.

  11. An open repository for single-cell reconstructions of the brain forest

    Science.gov (United States)

    Akram, Masood A.; Nanda, Sumit; Maraver, Patricia; Armañanzas, Rubén; Ascoli, Giorgio A.

    2018-02-01

    NeuroMorpho.Org was launched in 2006 to provide unhindered access to any and all digital tracings of neuronal morphology that researchers were willing to share freely upon request. Today this database is the largest public inventory of cellular reconstructions in neuroscience with a content of over 80,000 neurons and glia from a representative diversity of animal species, anatomical regions, and experimental methods. Datasets continuously contributed by hundreds of laboratories worldwide are centrally curated, converted into a common non-proprietary format, morphometrically quantified, and annotated with comprehensive metadata. Users download digital reconstructions for a variety of scientific applications including visualization, classification, analysis, and simulations. With more than 1,000 peer-reviewed publications describing data stored in or utilizing data retrieved from NeuroMorpho.Org, this ever-growing repository can already be considered a mature resource for neuroscience.

  12. Time stamping of single optical photons with 10 ns resolution

    Science.gov (United States)

    Chakaberia, Irakli; Cotlet, Mircea; Fisher-Levine, Merlin; Hodges, Diedra R.; Nguyen, Jayke; Nomerotski, Andrei

    2017-05-01

    High spatial and temporal resolution are key features for many modern applications, e.g. mass spectrometry, probing the structure of materials via neutron scattering, studying molecular structure, etc.1-5 Fast imaging also provides the capability of coincidence detection, and the further addition of sensitivity to single optical photons with the capability of timestamping them further broadens the field of potential applications. Photon counting is already widely used in X-ray imaging,6 where the high energy of the photons makes their detection easier. TimepixCam is a novel optical imager,7 which achieves high spatial resolution using an array of 256×256 55 μm × 55μm pixels which have individually controlled functionality. It is based on a thin-entrance-window silicon sensor, bump-bonded to a Timepix ASIC.8 TimepixCam provides high quantum efficiency in the optical wavelength range (400-1000 nm). We perform the timestamping of single photons with a time resolution of 20 ns, by coupling TimepixCam to a fast image-intensifier with a P47 phosphor screen. The fast emission time of the P479 allows us to preserve good time resolution while maintaining the capability to focus the optical output of the intensifier onto the 256×256 pixel Timepix sensor area. We demonstrate the capability of the (TimepixCam + image intensifier) setup to provide high-resolution single-photon timestamping, with an effective frame rate of 50 MHz.

  13. Double-layer versus single-layer bone-patellar tendon-bone anterior cruciate ligament reconstruction: a prospective randomized study with 3-year follow-up.

    Science.gov (United States)

    Mei, Xiaoliang; Zhang, Zhenxiang; Yang, Jingwen

    2016-12-01

    To evaluate the clinical results of a randomized controlled trial of single-layer versus double-layer bone-patellar tendon-bone (BPTB) anterior cruciate ligament (ACL) reconstruction. Fifty-eight subjects who underwent primary ACL reconstruction with a BPTB allograft were prospectively randomized into two groups: single-layer reconstruction (n = 31) and double-layer reconstruction (n = 27). The following evaluation methods were used: clinical examination, KT-1000 arthrometer measurement, muscle strength, Tegner activity score, Lysholm score, subjective rating scale regarding patient satisfaction and sports performance level, graft retear, contralateral ACL tear, and additional meniscus surgery. Forty-eight subjects (24 in single-layer group and 24 in double-layer group) who were followed up for 3 years were evaluated. Preoperatively, there were no differences between the groups. At 3-year follow-up, the Lachman and pivot-shift test results were better in the double-layer group (P = 0.019 and P reconstruction, double-layer BPTB reconstruction was significantly better than single-layer reconstruction regarding anterior and rotational stability at 3-year follow-up. The results of KT measurements and the Lachman and pivot-shift tests were significantly better in the double-layer group, whereas there was no difference in the anterior drawer test results. The Tegner score was also better in the double-layer group; however, there were no differences in the other subjective findings.

  14. Accuracy of single photoelectron time spread measurement of fast photomultipliers

    International Nuclear Information System (INIS)

    Leskovar, B.

    1975-01-01

    The accuracy of time spread measurements of fast photomultipliers was investigated, using single photoelectrons. The effect of the finite light pulse width on the measurement accuracy was determined and discussed. Experimental data were obtained on a special measuring system for light pulse widths ranging from 200 psec to 10 nsec, using fast photomultipliers 8850 and C31024 with optimized operating conditions for minimum transit time spread. A modified exponential function expression and curve-fitting parameters are given, which fit closely the experimentally obtained data over a wide dynamic range of light pulse widths. (U.S.)

  15. Multiscale Analysis of Time Irreversibility Based on Phase-Space Reconstruction and Horizontal Visibility Graph Approach

    Science.gov (United States)

    Zhang, Yongping; Shang, Pengjian; Xiong, Hui; Xia, Jianan

    Time irreversibility is an important property of nonequilibrium dynamic systems. A visibility graph approach was recently proposed, and this approach is generally effective to measure time irreversibility of time series. However, its result may be unreliable when dealing with high-dimensional systems. In this work, we consider the joint concept of time irreversibility and adopt the phase-space reconstruction technique to improve this visibility graph approach. Compared with the previous approach, the improved approach gives a more accurate estimate for the irreversibility of time series, and is more effective to distinguish irreversible and reversible stochastic processes. We also use this approach to extract the multiscale irreversibility to account for the multiple inherent dynamics of time series. Finally, we apply the approach to detect the multiscale irreversibility of financial time series, and succeed to distinguish the time of financial crisis and the plateau. In addition, Asian stock indexes away from other indexes are clearly visible in higher time scales. Simulations and real data support the effectiveness of the improved approach when detecting time irreversibility.

  16. Tomographic reconstruction of melanin structures of optical coherence tomography via the finite-difference time-domain simulation

    Science.gov (United States)

    Huang, Shi-Hao; Wang, Shiang-Jiu; Tseng, Snow H.

    2015-03-01

    Optical coherence tomography (OCT) provides high resolution, cross-sectional image of internal microstructure of biological tissue. We use the Finite-Difference Time-Domain method (FDTD) to analyze the data acquired by OCT, which can help us reconstruct the refractive index of the biological tissue. We calculate the refractive index tomography and try to match the simulation with the data acquired by OCT. Specifically, we try to reconstruct the structure of melanin, which has complex refractive indices and is the key component of human pigment system. The results indicate that better reconstruction can be achieved for homogenous sample, whereas the reconstruction is degraded for samples with fine structure or with complex interface. Simulation reconstruction shows structures of the Melanin that may be useful for biomedical optics applications.

  17. Transumbilical single-incision laparoscopic subtotal gastrectomy and total intracorporeal reconstruction of the digestive tract in the treatment of benign peptic ulcers.

    Science.gov (United States)

    Chen, Yong-Sheng; Wu, Shuo-Dong; Kong, Jing

    2014-12-01

    Single-incision laparoscopic surgery is being applied increasingly in many surgical specialties. However, few reports are available regarding its use in the treatment of benign peptic ulcer disease. We report here on nine patients with gastric or duodenal ulcers who underwent transumbilical single-incision laparoscopic subtotal gastrectomy (SILSG) between November 2010 and June 2013. All procedures were performed with conventional laparoscopic instruments placed through a single operating portal of entry created within the umbilicus. Total intracorporeal gastrojejunostomy or gastroduodenostomy was then performed for reconstruction of the digestive tract. Only one case required conversion from single-incision to multiple-incision surgery. Among the eight patients who successfully underwent SILSG, total intracorporeal gastroduodenostomy was performed in two and gastrojejunostomy in six. The mean operation time was 290 ± 50 min (range 230-360 min), and blood loss was 200 ± 66 mL (range 100-300 mL). The patients recovered fully, and the single umbilical scars healed well. We believe this is the first report of SILSG with total intracorporeal gastrojejunostomy or gastroduodenostomy in the treatment of benign peptic ulcers. On the basis of this initial experience, SILSG for this indication in the hands of experienced surgeons appears to be feasible and safe. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Wind speed time series reconstruction using a hybrid neural genetic approach

    Science.gov (United States)

    Rodriguez, H.; Flores, J. J.; Puig, V.; Morales, L.; Guerra, A.; Calderon, F.

    2017-11-01

    Currently, electric energy is used in practically all modern human activities. Most of the energy produced came from fossil fuels, making irreversible damage to the environment. Lately, there has been an effort by nations to produce energy using clean methods, such as solar and wind energy, among others. Wind energy is one of the cleanest alternatives. However, the wind speed is not constant, making the planning and operation at electric power systems a difficult activity. Knowing in advance the amount of raw material (wind speed) used for energy production allows us to estimate the energy to be generated by the power plant, helping the maintenance planning, the operational management, optimal operational cost. For these reasons, the forecast of wind speed becomes a necessary task. The forecast process involves the use of past observations from the variable to forecast (wind speed). To measure wind speed, weather stations use devices called anemometers, but due to poor maintenance, connection error, or natural wear, they may present false or missing data. In this work, a hybrid methodology is proposed, and it uses a compact genetic algorithm with an artificial neural network to reconstruct wind speed time series. The proposed methodology reconstructs the time series using a ANN defined by a Compact Genetic Algorithm.

  19. Acceleration for 2D time-domain elastic full waveform inversion using a single GPU card

    Science.gov (United States)

    Jiang, Jinpeng; Zhu, Peimin

    2018-05-01

    Full waveform inversion (FWI) is a challenging procedure due to the high computational cost related to the modeling, especially for the elastic case. The graphics processing unit (GPU) has become a popular device for the high-performance computing (HPC). To reduce the long computation time, we design and implement the GPU-based 2D elastic FWI (EFWI) in time domain using a single GPU card. We parallelize the forward modeling and gradient calculations using the CUDA programming language. To overcome the limitation of relatively small global memory on GPU, the boundary saving strategy is exploited to reconstruct the forward wavefield. Moreover, the L-BFGS optimization method used in the inversion increases the convergence of the misfit function. A multiscale inversion strategy is performed in the workflow to obtain the accurate inversion results. In our tests, the GPU-based implementations using a single GPU device achieve >15 times speedup in forward modeling, and about 12 times speedup in gradient calculation, compared with the eight-core CPU implementations optimized by OpenMP. The test results from the GPU implementations are verified to have enough accuracy by comparing the results obtained from the CPU implementations.

  20. Expander/implant breast reconstruction before radiotherapy. Outcomes in a single-institute cohort

    Energy Technology Data Exchange (ETDEWEB)

    Aristei, C.; Palumbo, I. [Perugia Univ. (Italy). Radiation Oncology Section; Santa Maria della Misericordia Hospital, Perugia (Italy); Falcinelli, L.; Petitto, R.P.; Perrucci, E. [Santa Maria della Misericordia Hospital, Perugia (Italy). Radiation Oncology Div.; Bini, V. [Perugia Univ. (Italy). Dept. of Internal Medicine; Farneti, A. [Perugia Univ. (Italy). Radiation Oncology Section; Gori, S. [Santa Maria della Misericordia Hospital, Perugia (Italy). Medical Oncology Div.

    2012-12-15

    Background and purpose: Radiotherapy (RT) of reconstructed breasts was associated with major complications and poor cosmetic outcome. The present study assessed complication rates, the link between risk factors and prosthesis removal, as well as cosmetic outcomes. Patients and methods: From 1997 to 2009, 101 consecutive patients received RT after breast reconstruction because of risk factors for relapse (92) or because relapse had occurred (9). At RT, 90 patients had temporary tissue expanders and 11 had permanent implants. Twelve patients underwent neo-adjuvant chemotherapy; all patients received adjuvant chemo- and/or hormone therapy. Results: At a median follow-up of 50 months, late toxicities occurred in 28 patients: pain in 7, lymphedema in 6, G1 cutaneous toxicity in 5, and subcutaneous toxicity in 19 (2G1, 9G2, 7G3, 1G4), with more than one side effect in 12. In 8 patients the prosthesis ruptured (3), was displaced (3), was displaced and ruptured (1), or lost shape (1). Capsular contracture was classified in 89 patients as IA in 14, IB in 47, II in 10, III in 11, and IV in 7. Twelve prostheses (11.9%) were removed. The only significant factor for prosthesis removal was age (p = 0.007). Judgments of cosmetic results were available from 81 physicians and 84 patients. Outcome was excellent/good in 58/81 physician judgments and in 57/84 patient evaluations. Overall inter-rater agreement on outcome was good ({kappa}-value 0.64; 95% CI: 0.48-0.79). Conclusion: RT to reconstructed breasts was associated with low rates of late toxicity and prosthesis removal. Cosmetic outcomes were, on the whole, good to excellent. (orig.)

  1. Expander/implant breast reconstruction before radiotherapy. Outcomes in a single-institute cohort

    International Nuclear Information System (INIS)

    Aristei, C.; Palumbo, I.; Falcinelli, L.; Petitto, R.P.; Perrucci, E.; Bini, V.; Farneti, A.; Gori, S.

    2012-01-01

    Background and purpose: Radiotherapy (RT) of reconstructed breasts was associated with major complications and poor cosmetic outcome. The present study assessed complication rates, the link between risk factors and prosthesis removal, as well as cosmetic outcomes. Patients and methods: From 1997 to 2009, 101 consecutive patients received RT after breast reconstruction because of risk factors for relapse (92) or because relapse had occurred (9). At RT, 90 patients had temporary tissue expanders and 11 had permanent implants. Twelve patients underwent neo-adjuvant chemotherapy; all patients received adjuvant chemo- and/or hormone therapy. Results: At a median follow-up of 50 months, late toxicities occurred in 28 patients: pain in 7, lymphedema in 6, G1 cutaneous toxicity in 5, and subcutaneous toxicity in 19 (2G1, 9G2, 7G3, 1G4), with more than one side effect in 12. In 8 patients the prosthesis ruptured (3), was displaced (3), was displaced and ruptured (1), or lost shape (1). Capsular contracture was classified in 89 patients as IA in 14, IB in 47, II in 10, III in 11, and IV in 7. Twelve prostheses (11.9%) were removed. The only significant factor for prosthesis removal was age (p = 0.007). Judgments of cosmetic results were available from 81 physicians and 84 patients. Outcome was excellent/good in 58/81 physician judgments and in 57/84 patient evaluations. Overall inter-rater agreement on outcome was good (κ-value 0.64; 95% CI: 0.48-0.79). Conclusion: RT to reconstructed breasts was associated with low rates of late toxicity and prosthesis removal. Cosmetic outcomes were, on the whole, good to excellent. (orig.)

  2. Optical Sectioning and High Resolution in Single-Slice Structured Illumination Microscopy by Thick Slice Blind-SIM Reconstruction.

    Directory of Open Access Journals (Sweden)

    Aurélie Jost

    Full Text Available The microscope image of a thick fluorescent sample taken at a given focal plane is plagued by out-of-focus fluorescence and diffraction limited resolution. In this work, we show that a single slice of Structured Illumination Microscopy (two or three beam SIM data can be processed to provide an image exhibiting tight sectioning and high transverse resolution. Our reconstruction algorithm is adapted from the blind-SIM technique which requires very little knowledge of the illumination patterns. It is thus able to deal with illumination distortions induced by the sample or illumination optics. We named this new algorithm thick slice blind-SIM because it models a three-dimensional sample even though only a single two-dimensional plane of focus was measured.

  3. Technical options for outflow reconstruction in domino liver transplantation: A single European center experience.

    Science.gov (United States)

    De la Serna, Sofía; Llado, Laura; Ramos, Emilio; Fabregat, Joan; Baliellas, Carme; Busquets, Juli; Secanella, Lluis; Pelaez, Nuria; Torras, Jaume; Rafecas, Antoni

    2015-08-01

    Venous outflow is critical to the success of liver transplantation (LT). In domino liver transplantation (DLT), the venous cuffs should be shared between the donor and the recipient, and the length can be compromised. The aim of this study was to describe and compare the technical options for outflow reconstruction used at our institution. This was a retrospective analysis of 39 consecutive DLT recipients between January 1997 and May 2013. Twenty-seven men and 12 women (mean age, 61.8 ± 4.3 years) underwent LT and consented to receive a liver from a donor with familial amyloid polyneuropathy (FAP). The main indications were hepatocellular carcinoma and hepatitis C virus cirrhosis. All recipients underwent transplantation by a piggyback technique. Liver procurement in the FAP donors was performed with the classic technique in 22 patients and with the piggyback technique in the last 17. In these latter cases, for vascular outflow reconstruction, a cadaveric venous graft was interposed between the hepatic vein (HV) stump of the FAP liver and the recipient HV in 11 cases (28%). Since 2011, we have employed arterial grafts to be interposed between the vessels stumps: a tailored arterial graft in 5 patients and an aortic graft in 1 case. There was no postoperative mortality. Arterial and portal complications presented in 2 (5.1) and 4 patients (10.3), respectively. Postoperative outflow complications (post-LT subacute Budd-Chiari syndrome) occurred in 4 patients, and all of them had received a venous interposed graft for reconstruction. The incidence of outflow complications tended to be higher among patients with venous grafts than those with arterial graft interposition. Overall patient survival at 1, 3, 5, and 10 years was 97%, 79%, respectively. Arterial grafts constitute a feasible and safe option for vascular outflow reconstruction in DLT because they are associated with a relatively low incidence of complications. The recently proposed Bellvitge arterial

  4. On Reconstructing School Segregation: The Efficacy and Equity of Single-Sex Schooling

    Science.gov (United States)

    Billger, Sherrilyn M.

    2009-01-01

    A change to Title IX has spurred new single-sex public schooling in the US. Until recently, nearly all gender-segregated schools were private, and comprehensive data for public school comparisons are not yet available. To investigate the effects of single-sex education, I focus on within private sector comparisons, and additionally address…

  5. Precise 3D Track Reconstruction Algorithm for the ICARUS T600 Liquid Argon Time Projection Chamber Detector

    Directory of Open Access Journals (Sweden)

    M. Antonello

    2013-01-01

    Full Text Available Liquid Argon Time Projection Chamber (LAr TPC detectors offer charged particle imaging capability with remarkable spatial resolution. Precise event reconstruction procedures are critical in order to fully exploit the potential of this technology. In this paper we present a new, general approach to 3D reconstruction for the LAr TPC with a practical application to the track reconstruction. The efficiency of the method is evaluated on a sample of simulated tracks. We present also the application of the method to the analysis of stopping particle tracks collected during the ICARUS T600 detector operation with the CNGS neutrino beam.

  6. Precise 3D track reconstruction algorithm for the ICARUS T600 liquid argon time projection chamber detector

    CERN Document Server

    Antonello, M

    2013-01-01

    Liquid Argon Time Projection Chamber (LAr TPC) detectors offer charged particle imaging capability with remarkable spatial resolution. Precise event reconstruction procedures are critical in order to fully exploit the potential of this technology. In this paper we present a new, general approach of three-dimensional reconstruction for the LAr TPC with a practical application to track reconstruction. The efficiency of the method is evaluated on a sample of simulated tracks. We present also the application of the method to the analysis of real data tracks collected during the ICARUS T600 detector operation with the CNGS neutrino beam.

  7. Reconstructing unpredictability: experiences of living with an implantable cardioverter defibrillator over time.

    Science.gov (United States)

    Morken, Ingvild Margreta; Severinsson, Elisabeth; Karlsen, Bjørg

    2010-02-01

    The experience of living with an implantable cardioverter defibrillator over time is still poorly understood. Few qualitative studies have investigated this phenomenon. To explore implantable cardioverter defibrillator recipients' experiences of living with an implantable cardioverter defibrillator over time. Qualitative. Semi-structured interviews were performed with 16 persons living with an implantable cardioverter defibrillator. The constant comparative method of grounded theory was used for data collection and analysis. The core category was defined as 'Reconstructing the unpredictability of living with an ICD' and illustrated by four categories: 'losing control'; 'regaining control'; 'lacking support'; and 'seeking support'. The category 'losing control' encompassed experiences of unpredictability leading to uncertainty as a result of the triggering of the device. Reduced activity to avoid shocks played a major role. In the category 'regaining control', wellbeing increased as time elapsed after the shock and the implantable cardioverter defibrillator recipients reconstructed the unpredictability by adapting to life changes, trusting the implantable cardioverter defibrillator as a life saver and accepting uncertainty. The category labelled 'lacking support' highlighted the implantable cardioverter defibrillator recipients' experiences of lack of appropriate support and advice from health care professionals. The final category 'seeking support' illustrates the implantable cardioverter defibrillator recipients' attempts to obtain guidance and support from family members and health care professionals and the importance of these aspects for the recovery process. Living with an implantable cardioverter defibrillator over time was characterised by unpredictability and uncertainty associated with the triggering of the device. Despite coping with uncertainty by means of several strategies, a new onset of arrhythmia could reinforce the feeling of losing control. An

  8. Can a quantum state over time resemble a quantum state at a single time?

    Science.gov (United States)

    Horsman, Dominic; Heunen, Chris; Pusey, Matthew F; Barrett, Jonathan; Spekkens, Robert W

    2017-09-01

    The standard formalism of quantum theory treats space and time in fundamentally different ways. In particular, a composite system at a given time is represented by a joint state, but the formalism does not prescribe a joint state for a composite of systems at different times. If there were a way of defining such a joint state, this would potentially permit a more even-handed treatment of space and time, and would strengthen the existing analogy between quantum states and classical probability distributions. Under the assumption that the joint state over time is an operator on the tensor product of single-time Hilbert spaces, we analyse various proposals for such a joint state, including one due to Leifer and Spekkens, one due to Fitzsimons, Jones and Vedral, and another based on discrete Wigner functions. Finding various problems with each, we identify five criteria for a quantum joint state over time to satisfy if it is to play a role similar to the standard joint state for a composite system: that it is a Hermitian operator on the tensor product of the single-time Hilbert spaces; that it represents probabilistic mixing appropriately; that it has the appropriate classical limit; that it has the appropriate single-time marginals; that composing over multiple time steps is associative. We show that no construction satisfies all these requirements. If Hermiticity is dropped, then there is an essentially unique construction that satisfies the remaining four criteria.

  9. Study of reconstruction methods for a time projection chamber with GEM gas amplification system

    International Nuclear Information System (INIS)

    Diener, R.

    2006-12-01

    A new e + e - linear collider with an energy range up to 1TeV is planned in an international collaboration: the International Linear Collider (ILC). This collider will be able to do precision measurements of the Higgs particle and of physics beyond the Standard Model. In the Large Detector Concept (LDC) - which is one proposal for a detector at the ILC - a Time Projection Chamber (TPC) is foreseen as the main tracking device. To meet the requirements on the resolution and to be able to work in the environment at the ILC, the application of new gas amplification technologies in the TPC is necessary. One option is an amplification system based on Gas Electron Multipliers (GEMs). Due to the - in comparison with older technologies - small spatial width of the signals, this technology poses new requirements on the readout structures and the reconstruction methods. In this work, the performance and the systematics of different reconstruction methods have been studied, based on data measured with a TPC prototype in high magnetic fields of up to 4T and data from a Monte Carlo simulation. The latest results of the achievable point resolution are presented and their limitations have been investigated. (orig.)

  10. Diffuse mirrors: 3D reconstruction from diffuse indirect illumination using inexpensive time-of-flight sensors

    KAUST Repository

    Heide, Felix

    2014-06-01

    The functional difference between a diffuse wall and a mirror is well understood: one scatters back into all directions, and the other one preserves the directionality of reflected light. The temporal structure of the light, however, is left intact by both: assuming simple surface reflection, photons that arrive first are reflected first. In this paper, we exploit this insight to recover objects outside the line of sight from second-order diffuse reflections, effectively turning walls into mirrors. We formulate the reconstruction task as a linear inverse problem on the transient response of a scene, which we acquire using an affordable setup consisting of a modulated light source and a time-of-flight image sensor. By exploiting sparsity in the reconstruction domain, we achieve resolutions in the order of a few centimeters for object shape (depth and laterally) and albedo. Our method is robust to ambient light and works for large room-sized scenes. It is drastically faster and less expensive than previous approaches using femtosecond lasers and streak cameras, and does not require any moving parts.

  11. Study of reconstruction methods for a time projection chamber with GEM gas amplification system

    Energy Technology Data Exchange (ETDEWEB)

    Diener, R.

    2006-12-15

    A new e{sup +}e{sup -} linear collider with an energy range up to 1TeV is planned in an international collaboration: the International Linear Collider (ILC). This collider will be able to do precision measurements of the Higgs particle and of physics beyond the Standard Model. In the Large Detector Concept (LDC) - which is one proposal for a detector at the ILC - a Time Projection Chamber (TPC) is foreseen as the main tracking device. To meet the requirements on the resolution and to be able to work in the environment at the ILC, the application of new gas amplification technologies in the TPC is necessary. One option is an amplification system based on Gas Electron Multipliers (GEMs). Due to the - in comparison with older technologies - small spatial width of the signals, this technology poses new requirements on the readout structures and the reconstruction methods. In this work, the performance and the systematics of different reconstruction methods have been studied, based on data measured with a TPC prototype in high magnetic fields of up to 4T and data from a Monte Carlo simulation. The latest results of the achievable point resolution are presented and their limitations have been investigated. (orig.)

  12. Real Time Energy Reconstruction in the ATLAS Hadronic Calorimeter and ATLAS sensitivity to Extra Dimension Models

    CERN Document Server

    Salvachua, Belen; Ros, Eduardo

    This work has been fulfilled within the ATLAS collaboration. I present here two studies, both related with the ATLAS detector and its operation. The ATLAS detector is described in chapter 1 whereas chapter 2 shows an introduction to the ATLAS tile calorimeter and the TileCal Read-Out Drivers (ROD) where the first part of the thesis is developed. In chapter 3 I present the study and the implementation of the Optimal Filtering algorithm in the TileCal Read-Out Drivers. The ROD provides the energy and the arrival time of the digital signal that is generated in the tile calorimeter. These parameters are reconstructed online using the Optimal Filtering algorithm, the RODs also provide a quality factor of the reconstruction. This information is sent to the standard ATLAS acquisition data flow with a specific data format defined in this thesis. Chapter 4 contains a short introduction to the Standard Model, presents its problems and describes other theories like Supersymmetry, Little Higgs or Extra Dimension models t...

  13. Reconstruction of baseline time-trace under changing environmental and operational conditions

    International Nuclear Information System (INIS)

    Aryan, P; Kotousov, A; Ng, C T; Wildy, S

    2016-01-01

    Compensation of changing environmental and operational conditions (EOC) is often necessary when using guided-wave based techniques for structural health monitoring in real-world applications. Many studies have demonstrated that the effect of changing EOC can mask damage to a degree that a critical defect might not be detected. Several effective strategies, specifically for compensating the temperature variations, have been developed in recent years. However, many other factors, such as changing humidity and boundary conditions or degradation of material properties, have not received much attention. This paper describes a practical method for reconstruction of the baseline time-trace corresponding to the current EOC. Thus, there is no need for differentiation or compensation procedures when using this method for damage diagnosis. It is based on 3D surface measurements of the velocity field near the actuator using laser vibrometry, in conjunction with high-fidelity finite element simulations of guided wave propagation in free from defects structure. To demonstrate the feasibility and efficiency of the proposed method we provide several examples of the reconstruction and damage detection. (paper)

  14. Reconstruction of baseline time-trace under changing environmental and operational conditions

    Science.gov (United States)

    Aryan, P.; Kotousov, A.; Ng, C. T.; Wildy, S.

    2016-03-01

    Compensation of changing environmental and operational conditions (EOC) is often necessary when using guided-wave based techniques for structural health monitoring in real-world applications. Many studies have demonstrated that the effect of changing EOC can mask damage to a degree that a critical defect might not be detected. Several effective strategies, specifically for compensating the temperature variations, have been developed in recent years. However, many other factors, such as changing humidity and boundary conditions or degradation of material properties, have not received much attention. This paper describes a practical method for reconstruction of the baseline time-trace corresponding to the current EOC. Thus, there is no need for differentiation or compensation procedures when using this method for damage diagnosis. It is based on 3D surface measurements of the velocity field near the actuator using laser vibrometry, in conjunction with high-fidelity finite element simulations of guided wave propagation in free from defects structure. To demonstrate the feasibility and efficiency of the proposed method we provide several examples of the reconstruction and damage detection.

  15. Relativity theory and time perception: single or multiple clocks?

    Science.gov (United States)

    Buhusi, Catalin V; Meck, Warren H

    2009-07-22

    Current theories of interval timing assume that humans and other animals time as if using a single, absolute stopwatch that can be stopped or reset on command. Here we evaluate the alternative view that psychological time is represented by multiple clocks, and that these clocks create separate temporal contexts by which duration is judged in a relative manner. Two predictions of the multiple-clock hypothesis were tested. First, that the multiple clocks can be manipulated (stopped and/or reset) independently. Second, that an event of a given physical duration would be perceived as having different durations in different temporal contexts, i.e., would be judged differently by each clock. Rats were trained to time three durations (e.g., 10, 30, and 90 s). When timing was interrupted by an unexpected gap in the signal, rats reset the clock used to time the "short" duration, stopped the "medium" duration clock, and continued to run the "long" duration clock. When the duration of the gap was manipulated, the rats reset these clocks in a hierarchical order, first the "short", then the "medium", and finally the "long" clock. Quantitative modeling assuming re-allocation of cognitive resources in proportion to the relative duration of the gap to the multiple, simultaneously timed event durations was used to account for the results. These results indicate that the three event durations were effectively timed by separate clocks operated independently, and that the same gap duration was judged relative to these three temporal contexts. Results suggest that the brain processes the duration of an event in a manner similar to Einstein's special relativity theory: A given time interval is registered differently by independent clocks dependent upon the context.

  16. Relativity theory and time perception: single or multiple clocks?

    Directory of Open Access Journals (Sweden)

    Catalin V Buhusi

    2009-07-01

    Full Text Available Current theories of interval timing assume that humans and other animals time as if using a single, absolute stopwatch that can be stopped or reset on command. Here we evaluate the alternative view that psychological time is represented by multiple clocks, and that these clocks create separate temporal contexts by which duration is judged in a relative manner. Two predictions of the multiple-clock hypothesis were tested. First, that the multiple clocks can be manipulated (stopped and/or reset independently. Second, that an event of a given physical duration would be perceived as having different durations in different temporal contexts, i.e., would be judged differently by each clock.Rats were trained to time three durations (e.g., 10, 30, and 90 s. When timing was interrupted by an unexpected gap in the signal, rats reset the clock used to time the "short" duration, stopped the "medium" duration clock, and continued to run the "long" duration clock. When the duration of the gap was manipulated, the rats reset these clocks in a hierarchical order, first the "short", then the "medium", and finally the "long" clock. Quantitative modeling assuming re-allocation of cognitive resources in proportion to the relative duration of the gap to the multiple, simultaneously timed event durations was used to account for the results.These results indicate that the three event durations were effectively timed by separate clocks operated independently, and that the same gap duration was judged relative to these three temporal contexts. Results suggest that the brain processes the duration of an event in a manner similar to Einstein's special relativity theory: A given time interval is registered differently by independent clocks dependent upon the context.

  17. Performance enhancement of the single-phase series active filter by employing the load voltage waveform reconstruction and line current sampling delay reduction methods

    DEFF Research Database (Denmark)

    Senturk, O.S.; Hava, A.M.

    2011-01-01

    This paper proposes the waveform reconstruction method (WRM), which is utilized in the single-phase series active filter's (SAF's) control algorithm, in order to extract the load harmonic voltage component of voltage harmonic type single-phase diode rectifier loads. Employing WRM and the line...

  18. Time-resolved gamma spectroscopy of single events

    Science.gov (United States)

    Wolszczak, W.; Dorenbos, P.

    2018-04-01

    In this article we present a method of characterizing scintillating materials by digitization of each individual scintillation pulse followed by digital signal processing. With this technique it is possible to measure the pulse shape and the energy of an absorbed gamma photon on an event-by-event basis. In contrast to time-correlated single photon counting technique, the digital approach provides a faster measurement, an active noise suppression, and enables characterization of scintillation pulses simultaneously in two domains: time and energy. We applied this method to study the pulse shape change of a CsI(Tl) scintillator with energy of gamma excitation. We confirmed previously published results and revealed new details of the phenomenon.

  19. A single-photon ecat reconstruction procedure based on a PSF model

    International Nuclear Information System (INIS)

    Ying-Lie, O.

    1984-01-01

    Emission Computed Axial Tomography (ECAT) has been applied in nuclear medicine for the past few years. Owing to attenuation and scatter along the ray path, adequate correction methods are required. In this thesis, a correction method for attenuation, detector response and Compton scatter has been proposed. The method developed is based on a PSF model. The parameters of the models were derived by fitting experimental and simulation data. Because of its flexibility, a Monte Carlo simulation method has been employed. Using the PSF models, it was found that the ECAT problem can be described by the added modified equation. Application of the reconstruction procedure on simulation data yield satisfactory results. The algorithm tends to amplify noise and distortion in the data, however. Therefore, the applicability of the method on patient studies remain to be seen. (Auth.)

  20. Rigorous accuracy assessment for 3D reconstruction using time-series Dual Fluoroscopy (DF) image pairs

    Science.gov (United States)

    Al-Durgham, Kaleel; Lichti, Derek D.; Kuntze, Gregor; Ronsky, Janet

    2017-06-01

    High-speed biplanar videoradiography, or clinically referred to as dual fluoroscopy (DF), imaging systems are being used increasingly for skeletal kinematics analysis. Typically, a DF system comprises two X-ray sources, two image intensifiers and two high-speed video cameras. The combination of these elements provides time-series image pairs of articulating bones of a joint, which permits the measurement of bony rotation and translation in 3D at high temporal resolution (e.g., 120-250 Hz). Assessment of the accuracy of 3D measurements derived from DF imaging has been the subject of recent research efforts by several groups, however with methodological limitations. This paper presents a novel and simple accuracy assessment procedure based on using precise photogrammetric tools. We address the fundamental photogrammetry principles for the accuracy evaluation of an imaging system. Bundle adjustment with selfcalibration is used for the estimation of the system parameters. The bundle adjustment calibration uses an appropriate sensor model and applies free-network constraints and relative orientation stability constraints for a precise estimation of the system parameters. A photogrammetric intersection of time-series image pairs is used for the 3D reconstruction of a rotating planar object. A point-based registration method is used to combine the 3D coordinates from the intersection and independently surveyed coordinates. The final DF accuracy measure is reported as the distance between 3D coordinates from image intersection and the independently surveyed coordinates. The accuracy assessment procedure is designed to evaluate the accuracy over the full DF image format and a wide range of object rotation. Experiment of reconstruction of a rotating planar object reported an average positional error of 0.44 +/- 0.2 mm in the derived 3D coordinates (minimum 0.05 and maximum 1.2 mm).

  1. TiLoop® Bra mesh used for immediate breast reconstruction: comparison of retropectoral and subcutaneous implant placement in a prospective single-institution series

    OpenAIRE

    Casella, Donato; Bernini, Marco; Bencini, Lapo; Roselli, Jenny; Lacaria, Maria Teresa; Martellucci, Jacopo; Banfi, Roberto; Calabrese, Claudio; Orzalesi, Lorenzo

    2014-01-01

    Background Immediate implant reconstruction after a conservative mastectomy is an attractive option made easier by prosthetic devices. Titanized polypropylene meshes are used as a hammock to cover the lower lateral implant pole. We conducted a prospective nonrandomized single-institution study of reconstructions using titanium-coated meshes either in a standard muscular mesh pocket or in a complete subcutaneous approach. The complete subcutaneous approach means to wrap an implant with titaniz...

  2. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system.

    Science.gov (United States)

    Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan

    2016-05-01

    To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. The authors have

  3. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenyang [Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); Cheung, Yam [Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas 75390 (United States); Sawant, Amit [Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas, 75390 and Department of Radiation Oncology, University of Maryland, College Park, Maryland 20742 (United States); Ruan, Dan, E-mail: druan@mednet.ucla.edu [Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095 and Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California 90095 (United States)

    2016-05-15

    Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced

  4. Reconstructing past species assemblages reveals the changing patterns and drivers of extinction through time.

    Science.gov (United States)

    Bromham, Lindell; Lanfear, Robert; Cassey, Phillip; Gibb, Gillian; Cardillo, Marcel

    2012-10-07

    Predicting future species extinctions from patterns of past extinctions or current threat status relies on the assumption that the taxonomic and biological selectivity of extinction is consistent through time. If the driving forces of extinction change through time, this assumption may be unrealistic. Testing the consistency of extinction patterns between the past and the present has been difficult, because the phylogenetically explicit methods used to model present-day extinction risk typically cannot be applied to the data from the fossil record. However, the detailed historical and fossil records of the New Zealand avifauna provide a unique opportunity to reconstruct a complete, large faunal assemblage for different periods in the past. Using the first complete phylogeny of all known native New Zealand bird species, both extant and extinct, we show how the taxonomic and phylogenetic selectivity of extinction, and biological correlates of extinction, change from the pre-human period through Polynesian and European occupation, to the present. These changes can be explained both by changes in primary threatening processes, and by the operation of extinction filter effects. The variable patterns of extinction through time may confound attempts to identify risk factors that apply across time periods, and to infer future species declines from past extinction patterns and current threat status.

  5. Structuration, space and time: the reconstruction of Anthony Giddens’ «structure-agency» synthesis theory

    Directory of Open Access Journals (Sweden)

    A. D. Osypchuk

    2014-10-01

    Full Text Available The article presents a theoretical and analytical reconstruction of A.Giddens’ Structuration theory as an attempt of ‘structure-agency’ synthesis in sociology. The concept of structuration is introduced by Giddens to solve the problem of duality of structure and agency where the former is defined as rules and resources. Structuration can’t be understood without reference to Giddens’ use of ‘time-space’ concept and related locality and regionalization concepts. Article analyses in details which theoretical and methodological possibilities and limitations comes out of defining structuration as constant flux of conducts in time-space, especially in regard to snapshots of previous conditions of system or structure and memories about them. The article also deals with the concepts of presence, locality, and regionalization that are the result of critical development of time geography approach and are based on combining time and space into one inseparable dimension. The main types and modes of regionalization are reviewed. It is emphasized that through regionalization, locality, and forms of presence and of routine practices Giddens defines not only social institutions but also social system. There is a brief theoretical and methodological discussion of correlation between social structure and social system and of the potential application of Structuration theory to analysis of social change.

  6. Reconstructing stimuli from the spike-times of leaky integrate and fire neurons

    Directory of Open Access Journals (Sweden)

    Sebastian eGerwinn

    2011-02-01

    Full Text Available Reconstructing stimuli from the spike-trains of neurons is an important approach for understanding the neural code. One of the difficulties associated with this task is that signals which are varying continuously in time are encoded into sequences of discrete events or spikes. An important problem is to determine how much information about the continuously varying stimulus can be extracted from the time-points at which spikes were observed, especially if these time-points are subject to some sort of randomness. For the special case of spike trains generated by leaky integrate and fire neurons, noise can be introduced by allowing variations in the threshold every time a spike is released. A simple decoding algorithm previously derived for the noiseless case can be extended to the stochastic case, but turns out to be biased. Here, we review a solution to this problem, by presenting a simple yet efficient algorithm which greatly reduces the bias, and therefore leads to better decoding performance in the stochastic case.

  7. Effects of acquisition time and reconstruction algorithm on image quality, quantitative parameters, and clinical interpretation of myocardial perfusion imaging

    DEFF Research Database (Denmark)

    Enevoldsen, Lotte H; Menashi, Changez A K; Andersen, Ulrik B

    2013-01-01

    BACKGROUND: Recently introduced iterative reconstruction algorithms with resolution recovery (RR) and noise-reduction technology seem promising for reducing scan time or radiation dose without loss of image quality. However, the relative effects of reduced acquisition time and reconstruction...... time (HT) protocols and Evolution for Cardiac Software. METHODS: We studied 45 consecutive, non-selected patients referred for a clinically indicated routine 2-day stress/rest (99m)Tc-Sestamibi myocardial perfusion SPECT. All patients underwent an FT and an HT scan. Both FT and HT scans were processed...

  8. Single-pixel three-dimensional imaging with time-based depth resolution

    Science.gov (United States)

    Sun, Ming-Jie; Edgar, Matthew P.; Gibson, Graham M.; Sun, Baoqing; Radwell, Neal; Lamb, Robert; Padgett, Miles J.

    2016-07-01

    Time-of-flight three-dimensional imaging is an important tool for applications such as object recognition and remote sensing. Conventional time-of-flight three-dimensional imaging systems frequently use a raster scanned laser to measure the range of each pixel in the scene sequentially. Here we show a modified time-of-flight three-dimensional imaging system, which can use compressed sensing techniques to reduce acquisition times, whilst distributing the optical illumination over the full field of view. Our system is based on a single-pixel camera using short-pulsed structured illumination and a high-speed photodiode, and is capable of reconstructing 128 × 128-pixel resolution three-dimensional scenes to an accuracy of ~3 mm at a range of ~5 m. Furthermore, by using a compressive sampling strategy, we demonstrate continuous real-time three-dimensional video with a frame-rate up to 12 Hz. The simplicity of the system hardware could enable low-cost three-dimensional imaging devices for precision ranging at wavelengths beyond the visible spectrum.

  9. Real-time 3-D Reconstruction by Means of Structured Light Illumination

    Science.gov (United States)

    Liu, Kai

    Structured light illumination (SLI) is the process of projecting a series of light striped patterns such that, when viewed at an angle, a digital camera can reconstruct a 3-D model of a target object's surface. But by relying on a series of time multiplexed patterns, SLI is not typically associated with video applications. For this purpose of acquiring 3-D video, a common SLI technique is to drive the projector/camera pair at very high frame rates such that any object's motion is small over the pattern set. But at these high frame rates, the speed at which the incoming video can be processed becomes an issue. So much so that many video-based SLI systems record camera frames to memory and then apply off-line processing. In order to overcome this processing bottleneck and produce 3-D point clouds in real-time, we present a lookup-table (LUT) based solution that in our experiments, using a 640 by 480 video stream, can generate intermediate phase data at 1063.8 frames per second and full 3-D coordinate point clouds at 228.3 frames per second. These achievements are 25 and 10 times faster than previously reported studies. At the same time, a novel dual-frequency pattern is developed which combines a high-frequency sinusoid component with a unit-frequency sinusoid component, where the high-frequency component is used to generate robust phase information and the unit-frequency component is used to reduce phase unwrapping ambiguities. Finally, we developed a gamma model for SLI, which can correct the non-linear distortion caused by the optical devices. For three-step phase measuring profilometry (PMP), analysis of the root mean squared error of the corrected phase showed a 60x reduction in phase error when the gamma calibration is performed versus 33x reduction without calibration. KEYWORDS: Real-time 3-D Reconstruction, Structured Light Illumination, Phase Measuring Profilometry, Gamma Correction, Phase Channel Multiplexing Pattern.

  10. Impact of time-of-flight on indirect 3D and direct 4D parametric image reconstruction in the presence of inconsistent dynamic PET data

    Science.gov (United States)

    Kotasidis, F. A.; Mehranian, A.; Zaidi, H.

    2016-05-01

    Kinetic parameter estimation in dynamic PET suffers from reduced accuracy and precision when parametric maps are estimated using kinetic modelling following image reconstruction of the dynamic data. Direct approaches to parameter estimation attempt to directly estimate the kinetic parameters from the measured dynamic data within a unified framework. Such image reconstruction methods have been shown to generate parametric maps of improved precision and accuracy in dynamic PET. However, due to the interleaving between the tomographic and kinetic modelling steps, any tomographic or kinetic modelling errors in certain regions or frames, tend to spatially or temporally propagate. This results in biased kinetic parameters and thus limits the benefits of such direct methods. Kinetic modelling errors originate from the inability to construct a common single kinetic model for the entire field-of-view, and such errors in erroneously modelled regions could spatially propagate. Adaptive models have been used within 4D image reconstruction to mitigate the problem, though they are complex and difficult to optimize. Tomographic errors in dynamic imaging on the other hand, can originate from involuntary patient motion between dynamic frames, as well as from emission/transmission mismatch. Motion correction schemes can be used, however, if residual errors exist or motion correction is not included in the study protocol, errors in the affected dynamic frames could potentially propagate either temporally, to other frames during the kinetic modelling step or spatially, during the tomographic step. In this work, we demonstrate a new strategy to minimize such error propagation in direct 4D image reconstruction, focusing on the tomographic step rather than the kinetic modelling step, by incorporating time-of-flight (TOF) within a direct 4D reconstruction framework. Using ever improving TOF resolutions (580 ps, 440 ps, 300 ps and 160 ps), we demonstrate that direct 4D TOF image

  11. Real-time single-shot electron bunch length measurements

    CERN Document Server

    Wilke, I; Gillespie, W A; Berden, G; Knippels, G M H; Meer, A F G

    2002-01-01

    Linear accelerators employed as drivers for X-ray free electron lasers (FELs) require relativistic electron bunch with sub-picosecond bunch length. Precise bunch length measurements are important for the tuning and operation of the FELs. Previously, we have demonstrated that electro-optic detection is a powerful technique for sub-picosecond electron bunch length measurements. In those experiments, the measured bunch length was the average of all electron bunches within a macropulse. Here, for the first time, we present the measurement of the length of individual electron bunches using a development of our previous technique. In this experiment, the longitudinal electron bunch shape is encoded electro-optically on to the frequency spectrum of a chirped laser pulse. Subsequently, the laser pulse is dispersed by a grating and the spectrum is imaged with a CCD camera. Single bunch measurements are achieved by using a nanosecond gated camera, and synchronizing the gate with both the electron bunch and the laser pu...

  12. Single-Index Additive Vector Autoregressive Time Series Models

    KAUST Repository

    LI, YEHUA

    2009-09-01

    We study a new class of nonlinear autoregressive models for vector time series, where the current vector depends on single-indexes defined on the past lags and the effects of different lags have an additive form. A sufficient condition is provided for stationarity of such models. We also study estimation of the proposed model using P-splines, hypothesis testing, asymptotics, selection of the order of the autoregression and of the smoothing parameters and nonlinear forecasting. We perform simulation experiments to evaluate our model in various settings. We illustrate our methodology on a climate data set and show that our model provides more accurate yearly forecasts of the El Niño phenomenon, the unusual warming of water in the Pacific Ocean. © 2009 Board of the Foundation of the Scandinavian Journal of Statistics.

  13. Single port-assisted fully laparoscopic abdominoperineal resection (APR) with immediate V-RAM flap reconstruction of the perineal defect.

    LENUS (Irish Health Repository)

    Ali, Sayid

    2012-09-01

    Abdominoperineal resection (APR) of anorectal cancers after neoadjuvant chemoradiotherapy may incur significant perineal morbidity. While vertical rectus abdominis muscle (V-RAM) flaps can fill the pelvic resection space with health tissue, their use has previously been described predominantly in association with laparotomy. Here, we describe a means of combination laparoscopic APR with V-RAM flap reconstruction that allows structural preservation of the entire abdominal wall throughout the oncological resection and of the deep parietal layers after V-RAM donation. Furthermore, a single port access device used at the end colostomy site allows a second senior surgeon assist with an additional two working instruments for the purpose of improved pelvic tissue retraction, especially useful in obese patients.

  14. Single-Cell Optical Distortion Correction and Label-Free 3D Cell Shape Reconstruction on Lattices of Nanostructures.

    Science.gov (United States)

    Stephan, Jürgen; Keber, Felix; Stierle, Valentin; Rädler, Joachim O; Paulitschke, Philipp

    2017-12-13

    Imaging techniques can be compromised by aberrations. Especially when imaging through biological specimens, sample-induced distortions can limit localization accuracy. In particular, this phenomenon affects localization microscopy, traction force measurements, and single-particle tracking, which offer high-resolution insights into biological tissue. Here we present a method for quantifying and correcting the optical distortions induced by single, adherent, living cells. The technique uses periodically patterned gold nanostructures as a reference framework to quantify optically induced displacements with micrometer-scale sampling density and an accuracy of a few nanometers. The 3D cell shape and a simplified geometrical optics approach are then utilized to remap the microscope image. Our experiments reveal displacements of up to several hundred nanometers, and in corrected images these distortions are reduced by a factor of 3. Conversely, the relationship between cell shape and distortion provides a novel method of 3D cell shape reconstruction from a single image, enabling label-free 3D cell analysis.

  15. Assessment of MLC tracking performance during hypofractionated prostate radiotherapy using real-time dose reconstruction

    International Nuclear Information System (INIS)

    Fast, M F; Kamerling, C P; Ziegenhein, P; Menten, M J; Bedford, J L; Nill, S; Oelfke, U

    2016-01-01

    By adapting to the actual patient anatomy during treatment, tracked multi-leaf collimator (MLC) treatment deliveries offer an opportunity for margin reduction and healthy tissue sparing. This is assumed to be especially relevant for hypofractionated protocols in which intrafractional motion does not easily average out. In order to confidently deliver tracked treatments with potentially reduced margins, it is necessary to monitor not only the patient anatomy but also the actually delivered dose during irradiation. In this study, we present a novel real-time online dose reconstruction tool which calculates actually delivered dose based on pre-calculated dose influence data in less than 10 ms at a rate of 25 Hz. Using this tool we investigate the impact of clinical target volume (CTV) to planning target volume (PTV) margins on CTV coverage and organ-at-risk dose. On our research linear accelerator, a set of four different CTV-to-PTV margins were tested for three patient cases subject to four different motion conditions. Based on this data, we can conclude that tracking eliminates dose cold spots which can occur in the CTV during conventional deliveries even for the smallest CTV-to-PTV margin of 1 mm. Changes of organ-at-risk dose do occur frequently during MLC tracking and are not negligible in some cases. Intrafractional dose reconstruction is expected to become an important element in any attempt of re-planning the treatment plan during the delivery based on the observed anatomy of the day. (paper)

  16. Rec-DCM-Eigen: reconstructing a less parsimonious but more accurate tree in shorter time.

    Science.gov (United States)

    Kang, Seunghwa; Tang, Jijun; Schaeffer, Stephen W; Bader, David A

    2011-01-01

    Maximum parsimony (MP) methods aim to reconstruct the phylogeny of extant species by finding the most parsimonious evolutionary scenario using the species' genome data. MP methods are considered to be accurate, but they are also computationally expensive especially for a large number of species. Several disk-covering methods (DCMs), which decompose the input species to multiple overlapping subgroups (or disks), have been proposed to solve the problem in a divide-and-conquer way. We design a new DCM based on the spectral method and also develop the COGNAC (Comparing Orders of Genes using Novel Algorithms and high-performance Computers) software package. COGNAC uses the new DCM to reduce the phylogenetic tree search space and selects an output tree from the reduced search space based on the MP principle. We test the new DCM using gene order data and inversion distance. The new DCM not only reduces the number of candidate tree topologies but also excludes erroneous tree topologies which can be selected by original MP methods. Initial labeling of internal genomes affects the accuracy of MP methods using gene order data, and the new DCM enables more accurate initial labeling as well. COGNAC demonstrates superior accuracy as a consequence. We compare COGNAC with FastME and the combination of the state of the art DCM (Rec-I-DCM3) and GRAPPA. COGNAC clearly outperforms FastME in accuracy. COGNAC--using the new DCM--also reconstructs a much more accurate tree in significantly shorter time than GRAPPA with Rec-I-DCM3.

  17. Rec-DCM-Eigen: reconstructing a less parsimonious but more accurate tree in shorter time.

    Directory of Open Access Journals (Sweden)

    Seunghwa Kang

    Full Text Available Maximum parsimony (MP methods aim to reconstruct the phylogeny of extant species by finding the most parsimonious evolutionary scenario using the species' genome data. MP methods are considered to be accurate, but they are also computationally expensive especially for a large number of species. Several disk-covering methods (DCMs, which decompose the input species to multiple overlapping subgroups (or disks, have been proposed to solve the problem in a divide-and-conquer way. We design a new DCM based on the spectral method and also develop the COGNAC (Comparing Orders of Genes using Novel Algorithms and high-performance Computers software package. COGNAC uses the new DCM to reduce the phylogenetic tree search space and selects an output tree from the reduced search space based on the MP principle. We test the new DCM using gene order data and inversion distance. The new DCM not only reduces the number of candidate tree topologies but also excludes erroneous tree topologies which can be selected by original MP methods. Initial labeling of internal genomes affects the accuracy of MP methods using gene order data, and the new DCM enables more accurate initial labeling as well. COGNAC demonstrates superior accuracy as a consequence. We compare COGNAC with FastME and the combination of the state of the art DCM (Rec-I-DCM3 and GRAPPA. COGNAC clearly outperforms FastME in accuracy. COGNAC--using the new DCM--also reconstructs a much more accurate tree in significantly shorter time than GRAPPA with Rec-I-DCM3.

  18. Clinical evaluation of reducing acquisition time on single-photon emission computed tomography image quality using proprietary resolution recovery software.

    Science.gov (United States)

    Aldridge, Matthew D; Waddington, Wendy W; Dickson, John C; Prakash, Vineet; Ell, Peter J; Bomanji, Jamshed B

    2013-11-01

    A three-dimensional model-based resolution recovery (RR) reconstruction algorithm that compensates for collimator-detector response, resulting in an improvement in reconstructed spatial resolution and signal-to-noise ratio of single-photon emission computed tomography (SPECT) images, was tested. The software is said to retain image quality even with reduced acquisition time. Clinically, any improvement in patient throughput without loss of quality is to be welcomed. Furthermore, future restrictions in radiotracer supplies may add value to this type of data analysis. The aims of this study were to assess improvement in image quality using the software and to evaluate the potential of performing reduced time acquisitions for bone and parathyroid SPECT applications. Data acquisition was performed using the local standard SPECT/CT protocols for 99mTc-hydroxymethylene diphosphonate bone and 99mTc-methoxyisobutylisonitrile parathyroid SPECT imaging. The principal modification applied was the acquisition of an eight-frame gated data set acquired using an ECG simulator with a fixed signal as the trigger. This had the effect of partitioning the data such that the effect of reduced time acquisitions could be assessed without conferring additional scanning time on the patient. The set of summed data sets was then independently reconstructed using the RR software to permit a blinded assessment of the effect of acquired counts upon reconstructed image quality as adjudged by three experienced observers. Data sets reconstructed with the RR software were compared with the local standard processing protocols; filtered back-projection and ordered-subset expectation-maximization. Thirty SPECT studies were assessed (20 bone and 10 parathyroid). The images reconstructed with the RR algorithm showed improved image quality for both full-time and half-time acquisitions over local current processing protocols (Pquality compared with local processing protocols and has been introduced into

  19. Design and implementation of multi-signal and time-varying neural reconstructions.

    Science.gov (United States)

    Nanda, Sumit; Chen, Hanbo; Das, Ravi; Bhattacharjee, Shatabdi; Cuntz, Hermann; Torben-Nielsen, Benjamin; Peng, Hanchuan; Cox, Daniel N; De Schutter, Erik; Ascoli, Giorgio A

    2018-01-23

    Several efficient procedures exist to digitally trace neuronal structure from light microscopy, and mature community resources have emerged to store, share, and analyze these datasets. In contrast, the quantification of intracellular distributions and morphological dynamics is not yet standardized. Current widespread descriptions of neuron morphology are static and inadequate for subcellular characterizations. We introduce a new file format to represent multichannel information as well as an open-source Vaa3D plugin to acquire this type of data. Next we define a novel data structure to capture morphological dynamics, and demonstrate its application to different time-lapse experiments. Importantly, we designed both innovations as judicious extensions of the classic SWC format, thus ensuring full back-compatibility with popular visualization and modeling tools. We then deploy the combined multichannel/time-varying reconstruction system on developing neurons in live Drosophila larvae by digitally tracing fluorescently labeled cytoskeletal components along with overall dendritic morphology as they changed over time. This same design is also suitable for quantifying dendritic calcium dynamics and tracking arbor-wide movement of any subcellular substrate of interest.

  20. A real time dose monitoring and dose reconstruction tool for patient specific VMAT QA and delivery

    International Nuclear Information System (INIS)

    Tyagi, Neelam; Yang Kai; Gersten, David; Yan Di

    2012-01-01

    Purpose: To develop a real time dose monitoring and dose reconstruction tool to identify and quantify sources of errors during patient specific volumetric modulated arc therapy (VMAT) delivery and quality assurance. Methods: The authors develop a VMAT delivery monitor tool called linac data monitor that connects to the linac in clinical mode and records, displays, and compares real time machine parameters with the planned parameters. A new measure, called integral error, keeps a running total of leaf overshoot and undershoot errors in each leaf pair, multiplied by leaf width, and the amount of time during which the error exists in monitor unit delivery. Another tool reconstructs Pinnacle 3 ™ format delivered plan based on the saved machine logfile and recalculates actual delivered dose in patient anatomy. Delivery characteristics of various standard fractionation and stereotactic body radiation therapy (SBRT) VMAT plans delivered on Elekta Axesse and Synergy linacs were quantified. Results: The MLC and gantry errors for all the treatment sites were 0.00 ± 0.59 mm and 0.05 ± 0.31°, indicating a good MLC gain calibration. Standard fractionation plans had a larger gantry error than SBRT plans due to frequent dose rate changes. On average, the MLC errors were negligible but larger errors of up to 6 mm and 2.5° were seen when dose rate varied frequently. Large gantry errors occurred during the acceleration and deceleration process, and correlated well with MLC errors (r= 0.858, p= 0.0004). PTV mean, minimum, and maximum dose discrepancies were 0.87 ± 0.21%, 0.99 ± 0.59%, and 1.18 ± 0.52%, respectively. The organs at risk (OAR) doses were within 2.5%, except some OARs that showed up to 5.6% discrepancy in maximum dose. Real time displayed normalized total positive integral error (normalized to the total monitor units) correlated linearly with MLC (r= 0.9279, p < 0.001) and gantry errors (r= 0.742, p= 0.005). There is a strong correlation between total integral

  1. Functional and magnetic resonance imaging evaluation after single-tendon rotator cuff reconstruction

    DEFF Research Database (Denmark)

    Knudsen, H B; Gelineck, J; Søjbjerg, Jens Ole

    1999-01-01

    The aim of this study was to investigate tendon integrity after surgical repair of single-tendon rotator cuff lesions. In 31 patients, 31 single-tendon repairs were evaluated. Thirty-one patients were available for clinical assessment and magnetic resonance imaging (MRI) at follow-up. A standard...... series of MR images was obtained for each. The results of functional assessment were scored according to the system of Constant. According to MRI evaluation, 21 (68%) patients had an intact or thinned rotator cuff and 10 (32%) had recurrence of a full-thickness cuff defect at follow-up. Patients...... with an intact or thinned rotator cuff had a median Constant score of 75.5 points; patients with a full-thickness cuff defect had a median score of 62 points. There was no correlation between tendon integrity on postoperative MR images and functional outcome. Patients with intact or thinned cuffs did not have...

  2. Endoscopic single-port "components separation technique" for postoperative abdominal reconstruction

    Directory of Open Access Journals (Sweden)

    Francesco Rulli

    2012-01-01

    Full Text Available Background: In 1990, Ramirez introduced a new procedure to close abdominal wall hernia (AWH, called "components separation technique (CST". Thanks to endoscopy, surgical repair possibilities have risen, reducing the operative trauma and preserving vascular and neuronal anatomical structures. This report aims to describe a single port endoscopic approach for CST to repair the abdominal wall of a patient undergoing surgery for abdominal aneurysm and already subject to placement of a mesh for AWH. Methods: We performed endoscopic-assisted CST, using a single-port access with a gasless technique. Conclusion: CST is a useful procedure to close large abdominal wall incisional hernia avoiding the use of mesh, notably under contamination, when prosthetic material use is contraindicated. The endoscopic-assisted CST produces same results than the conventional open separation technique and also minimised tissue trauma that ensures blood supply and prevents postoperative wounds complications. The described single port method was found to be safe and effective to close large midline abdominal hernias when a primary open or laparoscopic closure is not feasible or when patients have been previously treated with abdominal meshes.

  3. Single Molecule 3D Orientation in Time and Space

    NARCIS (Netherlands)

    Börner, Richard; Ehrlich, Nicky; Hohlbein, Johannes; Hübner, Christian G.

    2016-01-01

    Interactions between single molecules profoundly depend on their mutual three-dimensional orientation. Recently, we demonstrated a technique that allows for orientation determination of single dipole emitters using a polarization-resolved distribution of fluorescence into several detection

  4. Impact of posterior rhabdosphincter reconstruction during robot-assisted radical prostatectomy: retrospective analysis of time to continence.

    Science.gov (United States)

    Woo, Jason R; Shikanov, Sergey; Zorn, Kevin C; Shalhav, Arieh L; Zagaja, Gregory P

    2009-12-01

    Posterior rhabdosphincter (PR) reconstruction during robot-assisted radical prostatectomy (RARP) was introduced in an attempt to improve postoperative continence. In the present study, we evaluate time to achieve continence in patients who are undergoing RARP with and without PR reconstruction. A prospective RARP database was searched for most recent cases that were accomplished with PR reconstruction (group 1, n = 69) or with standard technique (group 2, n = 63). We performed the analysis applying two definitions of continence: 0 pads per day or 0-1 security pad per day. Patients were evaluated by telephone interview. Statistical analysis was carried out using the Kaplan-Meier method and log-rank test. With PR reconstruction, continence was improved when defined as 0-1 security pad per day (median time of 90 vs 150 days; P = 0.01). This difference did not achieve statistical significance when continence was defined as 0 pads per day (P = 0.12). A statistically significant improvement in continence rate and time to achieve continence is seen in patients who are undergoing PR reconstruction during RARP, with continence defined as 0-1 security/safety pad per day. A larger, prospective and randomized study is needed to better understand the impact of this technique on postoperative continence.

  5. Real-time model-based image reconstruction with a prior calculated database for electrical capacitance tomography

    Science.gov (United States)

    Rodriguez Frias, Marco A.; Yang, Wuqiang

    2017-04-01

    Image reconstruction for electrical capacitance tomography is a challenging task due to the severely underdetermined nature of the inverse problem. A model-based algorithm tackles this problem by reducing the number of unknowns to be calculated from the limited number of independent measurements. The conventional model-based algorithm is implemented with a finite element method to solve the forward problem at each iteration and can produce good results. However, it is time-consuming and hence the algorithm can be used for off-line image reconstruction only. In this paper, a solution to this limitation is proposed. The model-based algorithm is implemented with a database containing a set of prior solved forward problems. In this way, the time required to perform image reconstruction is drastically reduced without sacrificing accuracy, and real-time image reconstruction achieved with up to 100 frames s-1. Further enhancement in speed may be accomplished by implementing the reconstruction algorithm in a parallel processing general purpose graphics process unit.

  6. Time-Domain Techniques for Computation and Reconstruction of One-Dimensional Profiles

    Directory of Open Access Journals (Sweden)

    M. Rahman

    2005-01-01

    Full Text Available This paper presents a time-domain technique to compute the electromagnetic fields and to reconstruct the permittivity profile within a one-dimensional medium of finite length. The medium is characterized by a permittivity as well as conductivity profile which vary only with depth. The discussed scattering problem is thus one-dimensional. The modeling tool is divided into two different schemes which are named as the forward solver and the inverse solver. The task of the forward solver is to compute the internal fields of the specimen which is performed by Green’s function approach. When a known electromagnetic wave is incident normally on the media, the resulting electromagnetic field within the media can be calculated by constructing a Green’s operator. This operator maps the incident field on either side of the medium to the field at an arbitrary observation point. It is nothing but a matrix of integral operators with kernels satisfying known partial differential equations. The reflection and transmission behavior of the medium is also determined from the boundary values of the Green's operator. The inverse solver is responsible for solving an inverse scattering problem by reconstructing the permittivity profile of the medium. Though it is possible to use several algorithms to solve this problem, the invariant embedding method, also known as the layer-stripping method, has been implemented here due to the advantage that it requires a finite time trace of reflection data. Here only one round trip of reflection data is used, where one round trip is defined by the time required by the pulse to propagate through the medium and back again. The inversion process begins by retrieving the reflection kernel from the reflected wave data by simply using a deconvolution technique. The rest of the task can easily be performed by applying a numerical approach to determine different profile parameters. Both the solvers have been found to have the

  7. Curl-Based Finite Element Reconstruction of the Shear Modulus Without Assuming Local Homogeneity: Time Harmonic Case.

    Science.gov (United States)

    Honarvar, Mohammad; Sahebjavaher, Ramin; Sinkus, Ralph; Rohling, Robert; Salcudean, Septimiu E

    2013-12-01

    In elasticity imaging, the shear modulus is obtained from measured tissue displacement data by solving an inverse problem based on the wave equation describing the tissue motion. In most inversion approaches, the wave equation is simplified using local homogeneity and incompressibility assumptions. This causes a loss of accuracy and therefore imaging artifacts in the resulting elasticity images. In this paper we present a new curl-based finite element method inversion technique that does not rely upon these simplifying assumptions. As done in previous research, we use the curl operator to eliminate the dilatational term in the wave equation, but we do not make the assumption of local homogeneity. We evaluate our approach using simulation data from a virtual tissue phantom assuming time harmonic motion and linear, isotropic, elastic behavior of the tissue. We show that our reconstruction results are superior to those obtained using previous curl-based methods with homogeneity assumption. We also show that with our approach, in the 2-D case, multi-frequency measurements provide better results than single-frequency measurements. Experimental results from magnetic resonance elastography of a CIRS elastography phantom confirm our simulation results and further demonstrate, in a quantitative and repeatable manner, that our method is accurate and robust.

  8. Phylogeny and divergence times of gymnosperms inferred from single-copy nuclear genes.

    Science.gov (United States)

    Lu, Ying; Ran, Jin-Hua; Guo, Dong-Mei; Yang, Zu-Yu; Wang, Xiao-Quan

    2014-01-01

    Phylogenetic reconstruction is fundamental to study evolutionary biology and historical biogeography. However, there was not a molecular phylogeny of gymnosperms represented by extensive sampling at the genus level, and most published phylogenies of this group were constructed based on cytoplasmic DNA markers and/or the multi-copy nuclear ribosomal DNA. In this study, we use LFY and NLY, two single-copy nuclear genes that originated from an ancient gene duplication in the ancestor of seed plants, to reconstruct the phylogeny and estimate divergence times of gymnosperms based on a complete sampling of extant genera. The results indicate that the combined LFY and NLY coding sequences can resolve interfamilial relationships of gymnosperms and intergeneric relationships of most families. Moreover, the addition of intron sequences can improve the resolution in Podocarpaceae but not in cycads, although divergence times of the cycad genera are similar to or longer than those of the Podocarpaceae genera. Our study strongly supports cycads as the basal-most lineage of gymnosperms rather than sister to Ginkgoaceae, and a sister relationship between Podocarpaceae and Araucariaceae and between Cephalotaxaceae-Taxaceae and Cupressaceae. In addition, intergeneric relationships of some families that were controversial, and the relationships between Taxaceae and Cephalotaxaceae and between conifers and Gnetales are discussed based on the nuclear gene evidence. The molecular dating analysis suggests that drastic extinctions occurred in the early evolution of gymnosperms, and extant coniferous genera in the Northern Hemisphere are older than those in the Southern Hemisphere on average. This study provides an evolutionary framework for future studies on gymnosperms.

  9. Single-stage osseointegrated reconstruction and rehabilitation of lower limb amputees: the Osseointegration Group of Australia Accelerated Protocol-2 (OGAAP-2) for a prospective cohort study.

    Science.gov (United States)

    Al Muderis, Munjed; Lu, William; Tetsworth, Kevin; Bosley, Belinda; Li, Jiao Jiao

    2017-03-22

    Lower limb amputations have detrimental influences on the quality of life, function and body image of the affected patients. Following amputation, prolonged rehabilitation is required for patients to be fitted with traditional socket prostheses, and many patients experience symptomatic socket-residuum interface problems which lead to reduced prosthetic use and quality of life. Osseointegration has recently emerged as a novel approach for the reconstruction of amputated limbs, which overcomes many of the socket-related problems by directly attaching the prosthesis to the skeletal residuum. To date, the vast majority of osseointegration procedures worldwide have been performed in 2 stages, which require at least 4 months and up to 18 months for the completion of reconstruction and rehabilitation from the time of the initial surgery. The current prospective cohort study evaluates the safety and efficacy of a single-stage osseointegration procedure performed under the Osseointegration Group of Australia Accelerated Protocol-2 (OGAAP-2), which dramatically reduces the time of recovery to ∼3-6 weeks. The inclusion criteria for osseointegrated reconstruction under the OGAAP-2 procedure are age over 18 years, unilateral transfemoral amputation and experiencing problems or difficulties in using socket prostheses. All patients receive osseointegrated implants which are press-fitted into the residual bone. Functional and quality-of-life outcome measures are recorded preoperatively and at defined postoperative follow-up intervals up to 2 years. Postoperative adverse events are also recorded. The preoperative and postoperative values are compared for each outcome measure, and the benefits and harms of the single-stage OGAAP-2 procedure will be compared with the results obtained using a previously employed 2-stage procedure. This study has received ethics approval from the University of Notre Dame, Sydney, Australia (014153S). The study outcomes will be disseminated

  10. R and D on a Fast LXe TPC with real-time event reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Dussoni, S., E-mail: simeone.dussoni@pi.infn.it [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Baldini, A. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Galli, L. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Paul Scherrer Institute PSI, CH-5232 Villigen (Switzerland); Cerri, C.; Grassi, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Papa, A. [Paul Scherrer Institute PSI, CH-5232 Villigen (Switzerland); Signorelli, G. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy)

    2013-12-21

    The FOXFIRE project (Feasibility Of a Xenon detector with Front-end for Ionization Real-time Extraction) aims at the realization of a Liquid Xenon TPC optimized for high rate particle physics experiments, in particular in the field of rare event searches, with particles in the 10–100 MeV energy range. Liquid Xenon has several attractive properties to be exploited resulting in superior time and energy resolution, by using the scintillation light readout with suitable photo-detectors. A novel approach with a complementary TPC readout scheme can improve the space resolution to a level of a few hundred microns. We are studying both the feasibility of a light readout with higher granularity by means of Silicon PhotoMultipliers optimized for the Xenon emission spectrum as well as on an innovative micro-fabricated device capable of charge multiplication in liquid phase. The detector will be equipped with a readout electronics capable of online reconstruction of events, allowing the detector to sustain a high rate of interactions.

  11. Minimizing manual image segmentation turn-around time for neuronal reconstruction by embracing uncertainty.

    Directory of Open Access Journals (Sweden)

    Stephen M Plaza

    Full Text Available The ability to automatically segment an image into distinct regions is a critical aspect in many visual processing applications. Because inaccuracies often exist in automatic segmentation, manual segmentation is necessary in some application domains to correct mistakes, such as required in the reconstruction of neuronal processes from microscopic images. The goal of the automated segmentation tool is traditionally to produce the highest-quality segmentation, where quality is measured by the similarity to actual ground truth, so as to minimize the volume of manual correction necessary. Manual correction is generally orders-of-magnitude more time consuming than automated segmentation, often making handling large images intractable. Therefore, we propose a more relevant goal: minimizing the turn-around time of automated/manual segmentation while attaining a level of similarity with ground truth. It is not always necessary to inspect every aspect of an image to generate a useful segmentation. As such, we propose a strategy to guide manual segmentation to the most uncertain parts of segmentation. Our contributions include 1 a probabilistic measure that evaluates segmentation without ground truth and 2 a methodology that leverages these probabilistic measures to significantly reduce manual correction while maintaining segmentation quality.

  12. Deep Neural Network Emulation of a High-Order, WENO-Limited, Space-Time Reconstruction

    Science.gov (United States)

    Norman, M. R.; Hall, D. M.

    2017-12-01

    Deep Neural Networks (DNNs) have been used to emulate a number of processes in atmospheric models, including radiation and even so-called super-parameterization of moist convection. In each scenario, the DNN provides a good representation of the process even for inputs that have not been encountered before. More notably, they provide an emulation at a fraction of the cost of the original routine, giving speed-ups of 30× and even up to 200× compared to the runtime costs of the original routines. However, to our knowledge there has not been an investigation into using DNNs to emulate the dynamics. The most likely reason for this is that dynamics operators are typically both linear and low cost, meaning they cannot be sped up by a non-linear DNN emulation. However, there exist high-cost non-linear space-time dynamics operators that significantly reduce the number of parallel data transfers necessary to complete an atmospheric simulation. The WENO-limited Finite-Volume method with ADER-DT time integration is a prime example of this - needing only two parallel communications per large, fully limited time step. However, it comes at a high cost in terms of computation, which is why many would hesitate to use it. This talk investigates DNN emulation of the WENO-limited space-time finite-volume reconstruction procedure - the most expensive portion of this method, which densely clusters a large amount of non-linear computation. Different training techniques and network architectures are tested, and the accuracy and speed-up of each is given.

  13. Noise-tolerance analysis for detection and reconstruction of absorbing inhomogeneities with diffuse optical tomography using single- and phase-correlated dual-source schemes

    International Nuclear Information System (INIS)

    Kanmani, B; Vasu, R M

    2007-01-01

    An iterative reconstruction procedure is used to invert intensity data from both single- and phase-correlated dual-source illuminations for absorption inhomogeneities. The Jacobian for the dual source is constructed by an algebraic addition of the Jacobians estimated for the two sources separately. By numerical simulations, it is shown that the dual-source scheme performs superior to the single-source system in regard to (i) noise tolerance in data and (ii) ability to reconstruct smaller and lower contrast objects. The quality of reconstructions from single-source data, as indicated by mean-square error at convergence, is markedly poorer compared to their dual-source counterpart, when noise in data was in excess of 2%. With fixed contrast and decreasing inhomogeneity diameter, our simulations showed that, for diameters below 7 mm, the dual-source scheme has a higher percentage contrast recovery compared to the single-source scheme. Similarly, the dual-source scheme reconstructs to a higher percentage contrast recovery from lower contrast inhomogeneity, in comparison to the single-source scheme

  14. A single-shot T2mapping protocol based on echo-split gradient-spin-echo acquisition and parametric multiplexed sensitivity encoding based on projection onto convex sets reconstruction.

    Science.gov (United States)

    Chu, Mei-Lan; Chang, Hing-Chiu; Oshio, Koichi; Chen, Nan-Kuei

    2018-01-01

    To develop a high-speed T 2 mapping protocol that is capable of accurately measuring T 2 relaxation time constants from a single-shot acquisition. A new echo-split single-shot gradient-spin-echo (GRASE) pulse sequence is developed to acquire multicontrast data while suppressing signals from most nonprimary echo pathways in Carr-Purcell-Meiboom-Gill (CPMG) echoes. Residual nonprimary pathway signals are taken into consideration when performing T 2 mapping using a parametric multiplexed sensitivity encoding based on projection onto convex sets (parametric-POCSMUSE) reconstruction method that incorporates extended phase graph modeling of GRASE signals. The single-shot echo-split GRASE-based T 2 mapping procedure was evaluated in human studies at 3 Tesla. The acquired data were compared with reference data obtained with a more time-consuming interleaved spin-echo echo planar imaging protocol. T 2 maps derived from conventional single-shot GRASE scans, in which nonprimary echo pathways were not appropriately addressed, were also evaluated. Using the developed single-shot T 2 mapping protocol, quantitatively accurate T 2 maps can be obtained with a short scan time (parametric-POCSMUSE reconstruction. Magn Reson Med 79:383-393, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. 600-year reconstruction of the tri-pole Interdecadal Pacific Oscillation (TPI) using tree-ring chronologies and a single coral proxy from Indonesia, Australia and New Zealand.

    Science.gov (United States)

    Palmer, Jonathan; Cook, Edward; Turney, Chris; Cook, Benjamin; Fenwick, Pavla; Allen, Kathy; Baker, Patrick; Henley, Benjamin

    2017-04-01

    The development of the eastern Australia and New Zealand summer drought atlas (i.e. ANZDA; Palmer et al., 2015) highlighted the potential for exploring the reconstruction of the Henley et al. (2015) tripole Interdecadal Pacific Oscillation index (TPI). The approach taken was to use both the 1375 drought atlas scPDSI (self-calibrating Palmer Drought Severity Index) grid-points and the 176 tree-ring and single coral proxies to determine the strength and spatial expression of their relationship to TPI. An important concern was the potential geographic bias of the proxies relative to the TPI. To examine this concern more closely, each of three main TPI regions of sea surface temperatures were extracted and then correlated to the ANZDA scPDSI grid-points. Results showed a robust correlation field to each of the three poles although the closest "Tasman" pole was, as expected, the strongest. Next, the 177 proxies were used in regressions to calibrate/verify to the TPI over the period CE 1871-1975. The positive results provided confidence for the reconstruction "summer" TPI values extending back to CE 1410. The wavelet pattern of the reconstruction shows the ENSO (2-7 year) band frequency has increased during the 20th century while the longer (10-30 year) periodicities are scattered throughout the entire time interval. Finally, the different recognised phases of the IPO are compared to the two reconstructions (grid-points and TPI) and earlier periods discussed. References: Henley BJ, Gergis J, Karoly DJ, Power S, Kennedy J, Folland CK (2015) A Tripole Index for the Inter-decadal Pacific Oscillation. Climate Dynamics 45, 3077-3090. doi:10.1007/s00382-015-2525-1. Palmer J, Cook ER, Turney CSM, Allen K, Fenwick P, Cook BI, O'Donnell A, Lough J, Grierson P, Baker P (2016) Drought variability in the eastern Australia and New Zealand summer drought atlas (ANZDA, CE 1500-2012) modulated by the Interdecadal Pacific Oscillation. Environmental Research Letters 10, 1-12. doi:10.1088/1748-9326/10/12/124002.

  16. Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction

    Science.gov (United States)

    Hollingsworth, Kieren Grant

    2015-11-01

    MRI is often the most sensitive or appropriate technique for important measurements in clinical diagnosis and research, but lengthy acquisition times limit its use due to cost and considerations of patient comfort and compliance. Once an image field of view and resolution is chosen, the minimum scan acquisition time is normally fixed by the amount of raw data that must be acquired to meet the Nyquist criteria. Recently, there has been research interest in using the theory of compressed sensing (CS) in MR imaging to reduce scan acquisition times. The theory argues that if our target MR image is sparse, having signal information in only a small proportion of pixels (like an angiogram), or if the image can be mathematically transformed to be sparse then it is possible to use that sparsity to recover a high definition image from substantially less acquired data. This review starts by considering methods of k-space undersampling which have already been incorporated into routine clinical imaging (partial Fourier imaging and parallel imaging), and then explains the basis of using compressed sensing in MRI. The practical considerations of applying CS to MRI acquisitions are discussed, such as designing k-space undersampling schemes, optimizing adjustable parameters in reconstructions and exploiting the power of combined compressed sensing and parallel imaging (CS-PI). A selection of clinical applications that have used CS and CS-PI prospectively are considered. The review concludes by signposting other imaging acceleration techniques under present development before concluding with a consideration of the potential impact and obstacles to bringing compressed sensing into routine use in clinical MRI.

  17. Clinical and radiological outcomes after management of traumatic knee dislocation by open single stage complete reconstruction/repair

    Directory of Open Access Journals (Sweden)

    Lorez Lukas G

    2010-05-01

    Full Text Available Abstract Background The purpose of our study was to analyze the clinical and radiological long-term outcomes of surgically treated traumatic knee dislocations and determine prognostic factors for outcome. Methods Retrospective consecutive series of patients treated surgically for traumatic knee dislocation with reconstruction/refixation of the anterior (ACL and posterior cruciate ligaments (PCL and primary complete repair of collaterals and posteromedial and posteromedial corner structures. 68 patients were evaluated clinically (IKDC score, SF36 health survey, Lysholm score, Knee Society score, Tegner score, visual analogue scale - VAS pain and satisfaction, Cooper test and radiologically (weight bearing and stress radiographs with a mean follow up of 12 ± 8 years. Instrumented anterior-posterior translation was measured (Rolimeter, KT-1000. Pearson correlation and stepwise regression analysis was used. Results 82% of patients (n = 56 returned to their previous work. At final follow-up 6 patients (9% suffered from pain VAS > 3. The mean side-to-side difference of anterior/posterior translation (KT-1000, 134N was 1.6 ± 1.6 mm and 2.6 ± 1.4 mm. Valgus and varus stress testing in 30° flexion was 40 days were significantly associated with worse outcome (p Conclusions Early complete reconstruction can achieve good functional results and patient satisfaction with overall restoration of sports and working capacity. Negative predictive factors for outcome were injury pattern, type of surgical procedure and timing of surgery.

  18. Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U

    Science.gov (United States)

    Boyer, M. D.; Battaglia, D. J.; Mueller, D.; Eidietis, N.; Erickson, K.; Ferron, J.; Gates, D. A.; Gerhardt, S.; Johnson, R.; Kolemen, E.; Menard, J.; Myers, C. E.; Sabbagh, S. A.; Scotti, F.; Vail, P.

    2018-03-01

    The upgrade to the National Spherical Torus eXperiment (NSTX-U) included two main improvements: a larger center-stack, enabling higher toroidal field and longer pulse duration, and the addition of three new tangentially aimed neutral beam sources, which increase available heating and current drive, and allow for flexibility in shaping power, torque, current, and particle deposition profiles. To best use these new capabilities and meet the high-performance operational goals of NSTX-U, major upgrades to the NSTX-U control system (NCS) hardware and software have been made. Several control algorithms, including those used for real-time equilibrium reconstruction and shape control, have been upgraded to improve and extend plasma control capabilities. As part of the commissioning phase of first plasma operations, the shape control system was tuned to control the boundary in both inner-wall limited and diverted discharges. It has been used to accurately track the requested evolution of the boundary (including the size of the inner gap between the plasma and central solenoid, which is a challenge for the ST configuration), X-point locations, and strike point locations, enabling repeatable discharge evolutions for scenario development and diagnostic commissioning.

  19. New var reconstruction algorithm exposes high var sequence diversity in a single geographic location in Mali.

    Science.gov (United States)

    Dara, Antoine; Drábek, Elliott F; Travassos, Mark A; Moser, Kara A; Delcher, Arthur L; Su, Qi; Hostelley, Timothy; Coulibaly, Drissa; Daou, Modibo; Dembele, Ahmadou; Diarra, Issa; Kone, Abdoulaye K; Kouriba, Bourema; Laurens, Matthew B; Niangaly, Amadou; Traore, Karim; Tolo, Youssouf; Fraser, Claire M; Thera, Mahamadou A; Djimde, Abdoulaye A; Doumbo, Ogobara K; Plowe, Christopher V; Silva, Joana C

    2017-03-28

    Encoded by the var gene family, highly variable Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP1) proteins mediate tissue-specific cytoadherence of infected erythrocytes, resulting in immune evasion and severe malaria disease. Sequencing and assembling the 40-60 var gene complement for individual infections has been notoriously difficult, impeding molecular epidemiological studies and the assessment of particular var elements as subunit vaccine candidates. We developed and validated a novel algorithm, Exon-Targeted Hybrid Assembly (ETHA), to perform targeted assembly of var gene sequences, based on a combination of Pacific Biosciences and Illumina data. Using ETHA, we characterized the repertoire of var genes in 12 samples from uncomplicated malaria infections in children from a single Malian village and showed them to be as genetically diverse as vars from isolates from around the globe. The gene var2csa, a member of the var family associated with placental malaria pathogenesis, was present in each genome, as were vars previously associated with severe malaria. ETHA, a tool to discover novel var sequences from clinical samples, will aid the understanding of malaria pathogenesis and inform the design of malaria vaccines based on PfEMP1. ETHA is available at: https://sourceforge.net/projects/etha/ .

  20. Evaluation of time-efficient reconstruction methods in digital breast tomosynthesis

    International Nuclear Information System (INIS)

    Svahn, T.M.; Houssami, N.

    2015-01-01

    Three reconstruction algorithms for digital breast tomosynthesis were compared in this article: filtered back-projection (FBP), iterative adapted FBP and maximum likelihood-convex iterative algorithms. Quality metrics such as signal-difference-to-noise ratio, normalised line-profiles and artefact-spread function were used for evaluation of reconstructed tomosynthesis images. The iterative-based methods offered increased image quality in terms of higher detectability and reduced artefacts, which will be further examined in clinical images. (authors)

  1. Comparison of procedures for immediate reconstruction of large osseous defects resulting from removal of a single tooth to prepare for insertion of an endosseous implant after healing

    NARCIS (Netherlands)

    Raghoebar, G. M.; Slater, J. J. H.; den Hartog, L.; Meijer, H. J. A.; Vissink, A.

    This study evaluated the treatment outcome of immediate reconstruction of 45 large osseous defects resulting from removal of a single tooth with a 1:2 mixture of Bio-Oss(R) and autologous tuberosity bone, and three different procedures for soft tissue closing (Bio-Gide(R) membrane, connective tissue

  2. Clinical impact of time-of-flight and point response modeling in PET reconstructions: a lesion detection study

    Science.gov (United States)

    Schaefferkoetter, Joshua; Casey, Michael; Townsend, David; El Fakhri, Georges

    2013-03-01

    Time-of-flight (TOF) and point spread function (PSF) modeling have been shown to improve PET reconstructions, but the impact on physicians in the clinical setting has not been thoroughly investigated. A lesion detection and localization study was performed using simulated lesions in real patient images. Four reconstruction schemes were considered: ordinary Poisson OSEM (OP) alone and combined with TOF, PSF, and TOF + PSF. The images were presented to physicians experienced in reading PET images, and the performance of each was quantified using localization receiver operating characteristic. Numerical observers (non-prewhitening and Hotelling) were used to identify optimal reconstruction parameters, and observer SNR was compared to the performance of the physicians. The numerical models showed good agreement with human performance, and best performance was achieved by both when using TOF + PSF. These findings suggest a large potential benefit of TOF + PSF for oncology PET studies, especially in the detection of small, low-intensity, focal disease in larger patients.

  3. Clinical impact of time-of-flight and point response modeling in PET reconstructions: a lesion detection study

    International Nuclear Information System (INIS)

    Schaefferkoetter, Joshua; Casey, Michael; Townsend, David; El Fakhri, Georges

    2013-01-01

    Time-of-flight (TOF) and point spread function (PSF) modeling have been shown to improve PET reconstructions, but the impact on physicians in the clinical setting has not been thoroughly investigated. A lesion detection and localization study was performed using simulated lesions in real patient images. Four reconstruction schemes were considered: ordinary Poisson OSEM (OP) alone and combined with TOF, PSF, and TOF + PSF. The images were presented to physicians experienced in reading PET images, and the performance of each was quantified using localization receiver operating characteristic. Numerical observers (non-prewhitening and Hotelling) were used to identify optimal reconstruction parameters, and observer SNR was compared to the performance of the physicians. The numerical models showed good agreement with human performance, and best performance was achieved by both when using TOF + PSF. These findings suggest a large potential benefit of TOF + PSF for oncology PET studies, especially in the detection of small, low-intensity, focal disease in larger patients. (paper)

  4. D Reconstruction and Visualization of Cultural Heritage: Analyzing Our Legacy Through Time

    Science.gov (United States)

    Rodríguez-Gonzálvez, P.; Muñoz-Nieto, A. L.; del Pozo, S.; Sanchez-Aparicio, L. J.; Gonzalez-Aguilera, D.; Micoli, L.; Gonizzi Barsanti, S.; Guidi, G.; Mills, J.; Fieber, K.; Haynes, I.; Hejmanowska, B.

    2017-02-01

    Temporal analyses and multi-temporal 3D reconstruction are fundamental for the preservation and maintenance of all forms of Cultural Heritage (CH) and are the basis for decisions related to interventions and promotion. Introducing the fourth dimension of time into three-dimensional geometric modelling of real data allows the creation of a multi-temporal representation of a site. In this way, scholars from various disciplines (surveyors, geologists, archaeologists, architects, philologists, etc.) are provided with a new set of tools and working methods to support the study of the evolution of heritage sites, both to develop hypotheses about the past and to model likely future developments. The capacity to "see" the dynamic evolution of CH assets across different spatial scales (e.g. building, site, city or territory) compressed in diachronic model, affords the possibility to better understand the present status of CH according to its history. However, there are numerous challenges in order to carry out 4D modelling and the requisite multi-data source integration. It is necessary to identify the specifications, needs and requirements of the CH community to understand the required levels of 4D model information. In this way, it is possible to determine the optimum material and technologies to be utilised at different CH scales, as well as the data management and visualization requirements. This manuscript aims to provide a comprehensive approach for CH time-varying representations, analysis and visualization across different working scales and environments: rural landscape, urban landscape and architectural scales. Within this aim, the different available metric data sources are systemized and evaluated in terms of their suitability.

  5. Marked asymmetry in vertical force (but not contact times) during running in ACL reconstructed athletes sport.

    Science.gov (United States)

    Thomson, Athol; Einarsson, Einar; Hansen, Clint; Bleakley, Chris; Whiteley, Rod

    2018-03-01

    Compare maximum plantar force (Fmax) during running in soccer players following anterior cruciate ligament reconstruction (ACLR) as they pass return to sport (RTS) criteria. Case control study. Soccer players after ACLR (n=16) and matched healthy controls (n=16) ran on a treadmill at 12, 14 and 16km/h while plantar loading data was measured using an in-shoe pressure system (Pedar-X, Novel). Fmax and contact time of the injured and uninjured limbs in athletes <9months post-ACLR and those ≥9months ACLR were compared to healthy players (no ACLR). Significant differences with large effect sizes in Fmax asymmetry were seen at all running speeds for the athletes <9months ACLR compared to those ≥9months, and the healthy subjects. Fmax difference peaked at 16km/h; 32±11%BW in <9months ACLR group compared to 6±5%BW in ≥9months group; ES=1.67, p<0.01. There was a non-significant trend for increasing asymmetry with increasing speed for subjects who were <9months after ACLR while the reverse was true for those ≥9 months and the healthy subjects. Relatively large unloading of the ACLR limb (but not differences in contact times) are seen during running for athletes <9months post-ACLR despite having completed functional criteria required to permit RTS training. These asymmetries appear to slightly increase with increasing speed, and the reverse is true for healthy controls and those ≥9months after ACLR surgery. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. Breast Reconstruction with Implants

    Science.gov (United States)

    ... What you can expect Breast reconstruction begins with placement of a breast implant or tissue expander, either at the time of your mastectomy surgery (immediate reconstruction) or during a later procedure (delayed reconstruction). ...

  7. Reconstruction of hit time and hit position of annihilation quanta in the J-PET detector using the Mahalanobis distance

    Directory of Open Access Journals (Sweden)

    Sharma Neha Gupta

    2015-12-01

    Full Text Available The J-PET detector being developed at the Jagiellonian University is a positron emission tomograph composed of the long strips of polymer scintillators. At the same time, it is a detector system that will be used for studies of the decays of positronium atoms. The shape of photomultiplier signals depends on the hit time and hit position of the gamma quantum. In order to take advantage of this fact, a dedicated sampling front-end electronics that enables to sample signals in voltage domain with the time precision of about 20 ps and novel reconstruction method based on the comparison of examined signal with the model signals stored in the library has been developed. As a measure of the similarity, we use the Mahalanobis distance. The achievable position and time resolution depend on the number and values of the threshold levels at which the signal is sampled. A reconstruction method as well as preliminary results are presented and discussed.

  8. Wide-field time-correlated single photon counting (TCSPC) microscopy with time resolution below the frame exposure time

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, Liisa M. [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Petrášek, Zdeněk [Max Planck Institute of Biochemistry, Department of Cellular and Molecular Biophysics, Am Klopferspitz 18, D-82152 Martinsried (Germany); Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom)

    2015-07-01

    Fast frame rate CMOS cameras in combination with photon counting intensifiers can be used for fluorescence imaging with single photon sensitivity at kHz frame rates. We show here how the phosphor decay of the image intensifier can be exploited for accurate timing of photon arrival well below the camera exposure time. This is achieved by taking ratios of the intensity of the photon events in two subsequent frames, and effectively allows wide-field TCSPC. This technique was used for measuring decays of ruthenium compound Ru(dpp) with lifetimes as low as 1 μs with 18.5 μs frame exposure time, including in living HeLa cells, using around 0.1 μW excitation power. We speculate that by using an image intensifier with a faster phosphor decay to match a higher camera frame rate, photon arrival time measurements on the nanosecond time scale could well be possible.

  9. Efficient Reconstruction of Heterogeneous Networks from Time Series via Compressed Sensing.

    Directory of Open Access Journals (Sweden)

    Long Ma

    Full Text Available Recent years have witnessed a rapid development of network reconstruction approaches, especially for a series of methods based on compressed sensing. Although compressed-sensing based methods require much less data than conventional approaches, the compressed sensing for reconstructing heterogeneous networks has not been fully exploited because of hubs. Hub neighbors require much more data to be inferred than small-degree nodes, inducing a cask effect for the reconstruction of heterogeneous networks. Here, a conflict-based method is proposed to overcome the cast effect to considerably reduce data amounts for achieving accurate reconstruction. Moreover, an element elimination method is presented to use the partially available structural information to reduce data requirements. The integration of both methods can further improve the reconstruction performance than separately using each technique. These methods are validated by exploring two evolutionary games taking place in scale-free networks, where individual information is accessible and an attempt to decode the network structure from measurable data is made. The results demonstrate that for all of the cases, much data are saved compared to that in the absence of these two methods. Due to the prevalence of heterogeneous networks in nature and society and the high cost of data acquisition in large-scale networks, these approaches have wide applications in many fields and are valuable for understanding and controlling the collective dynamics of a variety of heterogeneous networked systems.

  10. A Study of Neutral B Meson Time Evolution Using Exclusively Reconstructed Semileptonic Decays

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, T

    2003-11-05

    The Standard Model of particle physics describes the fundamental building blocks of the Universe and their basic interactions. The model naturally describes the time evolution of the basic particles, of which lifetime and mixing are two examples. The neutral B meson, consisting of a bottom quark and an oppositely charged down quark, enjoys a lifetime of about 1.5 ps and the special property of mixing with its antiparticle partner, the {bar B}{sup 0}. That is, due to second order weak interactions, the B{sup 0} meson can change into a {bar B}{sup 0} meson and back again as it evolves through time. The details of this behavior offer an opportunity to closely examine the Standard Model. In this dissertation, I report on a measurement of the lifetime and mixing frequency of the neutral B meson. Using the semileptonic decay channel B{sup 0} {yields} D*{sup -}{ell}{sup +}{bar {nu}}{sub {ell}}, we select more than 68,000 signal and background candidates from about 23 million B{bar B} pairs collected in 1999-2000 with the BABAR detector located at the Stanford Linear Accelerator Center. The other B in the event is reconstructed inclusively. By constructing a master probability density function that describes the distribution of decay time differences in the sample, we use a maximum likelihood technique to simultaneously extract the B{sup 0} lifetime and mixing parameters with precision comparable to the year 2000 world average. The results are {tau}{sub B{sup 0}} = (1.523{sub -0.023}{sup +0.024} {+-} 0.022) ps and {Delta}m{sub d} = (0.492 {+-} 0.018 {+-} 0.013) ps{sup -1}. The statistical correlation coefficient between {tau}{sub B{sup 0}} and {Delta}m{sub d} is -0.22. I describe in detail several cutting-edge strategies this analysis uses to study these phenomena, laying important groundwork for the future. I also discuss several extensions of this work to include possible measurements of higher order parameters such as {Delta}{Lambda}{sub d}.

  11. Joint reconstruction of divergence times and life-history evolution in placental mammals using a phylogenetic covariance model.

    Science.gov (United States)

    Lartillot, Nicolas; Delsuc, Frédéric

    2012-06-01

    Violation of the molecular clock has been amply documented, and is now routinely taken into account by molecular dating methods. Comparative analyses have revealed a systematic component in rate variation, relating it to the evolution of life-history traits, such as body size or generation time. Life-history evolution can be reconstructed using Brownian models. However, the resulting estimates are typically uncertain, and potentially sensitive to the underlying assumptions. As a way of obtaining more accurate ancestral trait and divergence time reconstructions, correlations between life-history traits and substitution rates could be used as an additional source of information. In this direction, a Bayesian framework for jointly reconstructing rates, traits, and dates was previously introduced. Here, we apply this model to a 17 protein-coding gene alignment for 73 placental taxa. Our analysis indicates that the coupling between molecules and life history can lead to a reevaluation of ancestral life-history profiles, in particular for groups displaying convergent evolution in body size. However, reconstructions are sensitive to fossil calibrations and to the Brownian assumption. Altogether, our analysis suggests that further integrating inference of rates and traits might be particularly useful for neontological macroevolutionary comparative studies. © 2012 The Author(s). Evolution © 2012 The Society for the Study of Evolution.

  12. Time from ACL injury to reconstruction and the prevalence of additional intra-articular pathology: is patient age an important factor?

    Science.gov (United States)

    Magnussen, Robert A; Pedroza, Angela D; Donaldson, Christopher T; Flanigan, David C; Kaeding, Christopher C

    2013-09-01

    Meniscus and cartilage lesions have been reported to be prevalent during delayed reconstruction of anterior cruciate ligament (ACL) injuries. Relatively, little work has been done exploring the influence of patient age on this relationship. The purpose of this study is to determine whether the effect of time from ACL injury to reconstruction on the prevalence of associated meniscal and chondral injury is influenced by patient age. It was hypothesized that patients in whom the time from ACL injury to reconstruction exceeds 12 weeks will exhibit an increased prevalence of medial compartment pathology relative to those reconstructed within 12 weeks of injury in patients of all ages. Data detailing time from ACL injury to reconstruction and the prevalence of intra-articular findings were obtained in 311 of 489 consecutive patients undergoing primary isolated ACL reconstruction. Patients were divided into two groups based on whether the time from ACL injury to reconstruction was time from ACL injury to reconstruction exceeded 12 weeks. The prevalence of lateral meniscal injury did not increase with increasing time ACL injury to surgery. Among patients aged 22 years and under, there was no increase in the prevalence of intra-articular pathology in any compartment in the late reconstruction group. In contrast, among patients over the age of 22, there was a significant increase in the prevalence of medial chondral injury (p = 0.042) in the late reconstruction group. The prevalence of injuries to the meniscus and articular cartilage in the medial compartment of the knee is increased with increasing time from ACL injury to reconstruction. This relationship may vary depending on patient age. Patients over the age of 22 exhibit a higher prevalence of intra-articular injury with delayed reconstruction, while no such differences are noted among younger patients. Retrospective comparative study, level III.

  13. Cropland changes in times of conflict, reconstruction, and economic development in Iraqi Kurdistan.

    Science.gov (United States)

    Eklund, Lina; Persson, Andreas; Pilesjö, Petter

    2016-02-01

    The destruction of land and forced migration during the Anfal attacks against the Kurds in Iraq in the late 1980s has been reported to have severe consequences for agricultural development. A reconstruction program to aid people in returning to their lands was launched in 1991. To assess the agricultural situation in the Duhok governorate during the pre-Anfal (A), post-Anfal (B), reconstruction (C), and present (D) periods, we mapped winter crops by focusing on inter-annual variability in vegetation greenness, using satellite images. The results indicate a decrease in cultivated area between period A and B, and a small increase between period B and C. This supports reports of a decline in cultivated area related to the Anfal campaign, and indicates increased activity during the reconstruction program. Period D showed a potential recovery with a cropland area similar to period A.

  14. Highly undersampled peripheral Time-of-Flight magnetic resonance angiography: optimized data acquisition and iterative image reconstruction.

    Science.gov (United States)

    Hutter, Jana; Grimm, Robert; Forman, Christoph; Hornegger, Joachim; Schmitt, Peter

    2015-10-01

    The aim of this study was to investigate the acceleration of peripheral Time-of-Flight magnetic resonance angiography using Compressed Sensing and parallel magnetic resonance imaging (MRI) while preserving image quality and vascular contrast. An analytical sampling pattern is proposed that combines aspects of parallel MRI and Compressed Sensing. It is used in combination with a dedicated Split Bregman algorithm. This approach is compared with current state-of-the-art patterns and reconstruction algorithms. The acquisition time was reduced from 30 to 2.5 min in a study using ten volunteer data sets, while showing improved sharpness, better contrast and higher accuracy compared to state-of-the-art techniques. This study showed the benefits of the proposed dedicated analytical sampling pattern and Split Bregman algorithm for optimizing the Compressed Sensing reconstruction of highly accelerated peripheral Time-of-Flight data.

  15. Time sequential single photon emission computed tomography studies in brain tumour using thallium-201

    International Nuclear Information System (INIS)

    Ueda, Takashi; Kaji, Yasuhiro; Wakisaka, Shinichiro; Watanabe, Katsushi; Hoshi, Hiroaki; Jinnouchi, Seishi; Futami, Shigemi

    1993-01-01

    Time sequential single photon emission computed tomography (SPECT) studies using thallium-201 were performed in 25 patients with brain tumours to evaluate the kinetics of thallium in the tumour and the biological malignancy grade preoperatively. After acquisition and reconstruction of SPECT data from 1 min post injection to 48 h (1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 15-20 min, followed by 4-6, 24 and 48 h), the thallium uptake ratio in the tumour versus the homologous contralateral area of the brain was calculated and compared with findings of X-ray CT, magnetic resonance imaging, cerebral angiography and histological investigations. Early uptake of thallium in tumours was related to tumour vascularity and the disruption of the blood-brain barrier. High and rapid uptake and slow reduction of thallium indicated a hypervascular malignant tumour; however, high and rapid uptake but rapid reduction of thallium indicated a hypervascular benign tumour, such as meningioma. Hypovascular and benign tumours tended to show low uptake and slow reduction of thallium. Long-lasting retention or uptake of thallium indicates tumour malignancy. (orig.)

  16. Reconstructing Landsat reflectance time-series for assessing seasonal changes in Finnish lakes

    Science.gov (United States)

    Maeda, E. E.; Lisboa, F. B.; Kaikkonen, L.; Brotas, V.; Kuikka, S.

    2017-12-01

    Finnish lakes are spread across a large latitudinal gradient, and are extremely diverse in terms of trophic state, size and depth. Monitoring seasonal changes in the productivity of these lakes is therefore particularly interesting for assessing the impacts of climate change. Although remote sensing (RS) is a promising tool for monitoring lakes seasonality, the complex shapes, and often small size of Finnish lakes, require the use of high spatial resolution sensors. However, in RS, high spatial resolution often comes at the expense of coarser temporal resolutions. For instance, Landsat (LT) imagery have appropriate spatial resolution for monitoring Finnish lakes, but the low temporal resolution hinders the acquisition of images in cloudy seasons. As a result, data gaps in LT time-series makes it difficult to assess seasonal patterns of reflectance signals. The objective of this study was to apply time series analysis to reconstruct seasonal patterns in 35 years of LT data from a Finnish lake. Our study area was the Lake Köyliönjärvi, in SW Finland. We focused on assessing intra-annual changes between April and October (warm months), given that during the remaining months (cold months) the lake is often frozen and LT imagery have high frequency of cloud coverage. First, we extracted the lake's surface reflectance using every image from the LT 4, 5 and 7 archives. In total, 960 images from 1982 to 2016 were considered. Pixels contaminated by cloud, shadow or ice, were removed using standard masking algorithms (fmask). For this study, we analyzed the band ratio: B2(green)/B1(blue), which, according to previous studies, has a good relationship with Chlorophyll-a (Chl-a) concentration. Next, we fill the values from the cold months with a baseline value. Finally, we use a Kalman seasonal filter for filling the gaps in the warm months. Our approach could successfully retrieve the seasonal patterns during the warm months, showing a significant relationship (ptesting

  17. Single item inventory models : A time- and event- averages approach

    NARCIS (Netherlands)

    E.M. Bazsa-Oldenkamp; P. den Iseger

    2003-01-01

    textabstractThis paper extends a fundamental result about single-item inventory systems. This approach allows more general performance measures, demand processes and order policies, and leads to easier analysis and implementation, than prior research. We obtain closed form expressions for the

  18. Real Time Hand Motion Reconstruction System for Trans-Humeral Amputees Using EEG and EMG

    Directory of Open Access Journals (Sweden)

    Jacobo Fernandez-Vargas

    2016-08-01

    Full Text Available Predicting a hand’s position using only biosignals is a complex problem that has not been completely solved. The only reliable solutions currently available require invasive surgery. The attempts using non-invasive technologies are rare, and usually have led to lower correlation values between the real and the reconstructed position than those required for real-world applications. In this study, we propose a solution for reconstructing the hand’s position in three dimensions using EEG and EMG to detect from the shoulder area. This approach would be valid for most trans-humeral amputees. In order to find the best solution, we tested four different architectures for the system based on artificial neural networks. Our results show that it is possible to reconstruct the hand’s motion trajectory with a correlation value up to 0.809 compared to a typical value in the literature of 0.6. We also demonstrated that both EEG and EMG contribute jointly to the motion reconstruction. Furthermore, we discovered that the system architectures do not change the results radically. In addition, our results suggest that different motions may have different brain activity patterns that could be detected through EEG. Finally, we suggest a method to study non-linear relations in the brain through the EEG signals, which may lead to a more accurate system.

  19. Multi-Mission Simulation and Visualization for Real-Time Telemetry Display, Playback and EDL Event Reconstruction

    Science.gov (United States)

    Pomerantz, M. I.; Lim, C.; Myint, S.; Woodward, G.; Balaram, J.; Kuo, C.

    2012-01-01

    he Jet Propulsion Laboratory's Entry, Descent and Landing (EDL) Reconstruction Task has developed a software system that provides mission operations personnel and analysts with a real time telemetry-based live display, playback and post-EDL reconstruction capability that leverages the existing high-fidelity, physics-based simulation framework and modern game engine-derived 3D visualization system developed in the JPL Dynamics and Real Time Simulation (DARTS) Lab. Developed as a multi-mission solution, the EDL Telemetry Visualization (ETV) system has been used for a variety of projects including NASA's Mars Science Laboratory (MSL), NASA'S Low Density Supersonic Decelerator (LDSD) and JPL's MoonRise Lunar sample return proposal.

  20. WE-G-BRF-03: A Quasi-Cine CBCT Reconstruction Technique for Real-Time On- Board Target Tracking of Lung Cancer Treatment

    International Nuclear Information System (INIS)

    Zhang, Y; Yin, F; Ren, L

    2014-01-01

    Purpose: To develop a quasi-cine CBCT reconstruction technique that uses extremely-small angle (∼3°) projections to generate real-time high-quality lung CBCT images. Method: 4D-CBCT is obtained at the beginning and used as prior images. This study uses extremely-small angle (∼3°) on-board projections acquired at a single respiratory phase to reconstruct the CBCT image at this phase. An adaptive constrained free-form deformation (ACFD) method is developed to deform the prior 4D-CBCT volume at the same phase to reconstruct the new CBCT. Quasi-cine CBCT images are obtained by continuously reconstructing CBCT images at subsequent phases every 3° angle (∼0.5s). Note that the prior 4D-CBCT images are dynamically updated using the latest CBCT images. The 4D digital extended-cardiac-torso (XCAT) phantom was used to evaluate the efficacy of ACFD. A lung patient was simulated with a tumor baseline shift of 2mm along superior-inferior (SI) direction after every respiratory cycle for 5 cycles. Limited-angle projections were simulated for each cycle. The 4D-CBCT reconstructed by these projections were compared with the ground-truth generated in XCAT.Volume-percentage-difference (VPD) and center-of-mass-shift (COMS) were calculated between the reconstructed and the ground-truth tumors to evaluate their geometric differences.The ACFD was also compared to a principal-component-analysis based motion-modeling (MM) method. Results: Using orthogonal-view 3° projections, the VPD/COMS values for tumor baseline shifts of 2mm, 4mm, 6mm, 8mm, 10mm were 11.0%/0.3mm, 25.3%/2.7mm, 22.4%/2.9mm, 49.5%/5.4mm, 77.2%/8.1mm for the MM method, and 2.9%/0.7mm, 3.9%/0.8mm, 6.2%/1mm, 7.9%/1.2mm, 10.1%/1.1mm for the ACFD method. Using orthogonal-view 0° projections (1 projection only), the ACFD method yielded VPD/COMS results of 5.0%/0.9mm, 10.5%/1.2mm, 15.1%/1.4mm, 20.9%/1.6mm and 24.8%/1.6mm. Using single-view instead of orthogonal-view projections yielded less accurate results for ACFD

  1. The Technique and Benefits of Angiographic Embolization of Inferior Epigastric Arteries Prior to Pedicled TRAM Flap Breast Reconstruction: Results from a Single Center.

    Science.gov (United States)

    Sever, Alysse J; Patel, Chirag; Albeer, Yahya; Darian, Vigen B

    2017-12-01

    To report a single center's experience with selective arterial embolization of the deep inferior epigastric arteries (DIEA) prior to pedicled TRAM flap breast reconstruction including techniques and outcomes. Retrospective chart review was performed for 15 patients who underwent pedicled TRAM flap breast reconstruction after selective embolization of bilateral DIEA. Data were analyzed to display the spectrum of postoperative outcomes following the TRAM flap procedure status post-selective angiographic embolization of the bilateral DIEA to improve vascularity of the TRAM flaps by rendering the tissue partially ischemic to undergo neovascularization. We then compared our results to historical controls of those delayed by ligating the DIEA via traditional surgical means to see if the outcomes are similar. We also compared our results to historical non-delayed TRAM flap reconstruction. One patient had a small area of partial flap skin necrosis, and no patients had total flap loss. 13.3% of patients had clinically significant TRAM flap fat necrosis. Outcomes of TRAM flaps delayed by selective arterial embolization are comparable to historical controls of those delayed by traditional surgical means and better than non-delayed flaps. Angiographic delayed TRAM flap reconstruction procedure is a reasonable safe alternative to the surgical delayed TRAM flap reconstruction procedure with less morbidity and is better than non-delayed TRAM flap procedures.

  2. Effects of fatigue on lower limb, pelvis and trunk kinematics and lower limb muscle activity during single-leg landing after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Lessi, Giovanna Camparis; Serrão, Fábio Viadanna

    2017-08-01

    Because there are no studies that have evaluated the effects of fatigue on the kinematics of the trunk and pelvis or on muscle activation in subjects with ACL reconstruction, the aim of this study was to evaluate the effects of fatigue on the lower limb, pelvis and trunk kinematics and lower limb muscle activation in subjects with ACL reconstruction during a single-leg landing compared to a healthy control group. The participants included 20 subjects with ACL reconstruction (ACL reconstruction group-ACLRG) and 20 healthy subjects (control group-CG) who were aged between 18 and 35 years. Kinematic and electromyographic analyses were performed during a single-leg landing before and after fatigue. The fatigue protocol included a series of 10 squats, two vertical jumps, and 20 steps. The effects of fatigue were increased peak trunk flexion and increased activation of the vastus lateralis, biceps femoris (BF) and gluteus maximus (GMax) during the landing phase. After the fatigue protocol, an increase in peak trunk flexion and activation of the GMax and BF were observed, most likely as a strategy to reduce the load on the ACL. ACL injury prevention programs should include strength and endurance exercises for the hip and trunk extensor muscles so that they can efficiently control trunk flexion during landing. Prospective comparative study, Level II.

  3. Optimization of pinhole single photon emission computed tomography (pinhole SPECT) reconstruction; Optimisation de la reconstruction en tomographie d'emission monophotonique avec colimateur stenope

    Energy Technology Data Exchange (ETDEWEB)

    Israel-Jost, V

    2006-11-15

    In SPECT small animal imaging, it is highly recommended to accurately model the response of the detector in order to improve the low spatial resolution. The volume to reconstruct is thus obtained both by back-projecting and de-convolving the projections. We chose iterative methods, which permit one to solve the inverse problem independently from the model's complexity. We describe in this work a Gaussian model of point spread function (PSF) whose position, width and maximum are computed according to physical and geometrical parameters. Then we use the rotation symmetry to replace the computation of P projection operators, each one corresponding to one position of the detector around the object, by the computation of only one of them. This is achieved by choosing an appropriate polar discretization, for which we control the angular density of voxels to avoid over-sampling the center of the field of view. Finally, we propose a new family of algorithms, the so-called frequency adapted algorithms, which enable to optimize the reconstruction of a given band in the frequency domain on both the speed of convergence and the quality of the image. (author)

  4. Real-Time Large Scale 3d Reconstruction by Fusing Kinect and Imu Data

    Science.gov (United States)

    Huai, J.; Zhang, Y.; Yilmaz, A.

    2015-08-01

    Kinect-style RGB-D cameras have been used to build large scale dense 3D maps for indoor environments. These maps can serve many purposes such as robot navigation, and augmented reality. However, to generate dense 3D maps of large scale environments is still very challenging. In this paper, we present a mapping system for 3D reconstruction that fuses measurements from a Kinect and an inertial measurement unit (IMU) to estimate motion. Our major achievements include: (i) Large scale consistent 3D reconstruction is realized by volume shifting and loop closure; (ii) The coarse-to-fine iterative closest point (ICP) algorithm, the SIFT odometry, and IMU odometry are combined to robustly and precisely estimate pose. In particular, ICP runs routinely to track the Kinect motion. If ICP fails in planar areas, the SIFT odometry provides incremental motion estimate. If both ICP and the SIFT odometry fail, e.g., upon abrupt motion or inadequate features, the incremental motion is estimated by the IMU. Additionally, the IMU also observes the roll and pitch angles which can reduce long-term drift of the sensor assembly. In experiments on a consumer laptop, our system estimates motion at 8Hz on average while integrating color images to the local map and saving volumes of meshes concurrently. Moreover, it is immune to tracking failures, and has smaller drift than the state-of-the-art systems in large scale reconstruction.

  5. A simple method to reconstruct the molar mass signal of respiratory gas to assess small airways with a double-tracer gas single-breath washout.

    Science.gov (United States)

    Port, Johannes; Tao, Ziran; Junger, Annika; Joppek, Christoph; Tempel, Philipp; Husemann, Kim; Singer, Florian; Latzin, Philipp; Yammine, Sophie; Nagel, Joachim H; Kohlhäufl, Martin

    2017-11-01

    For the assessment of small airway diseases, a noninvasive double-tracer gas single-breath washout (DTG-SBW) with sulfur hexafluoride (SF 6 ) and helium (He) as tracer components has been proposed. It is assumed that small airway diseases may produce typical ventilation inhomogeneities which can be detected within one single tidal breath, when using two tracer components. Characteristic parameters calculated from a relative molar mass (MM) signal of the airflow during the washout expiration phase are analyzed. The DTG-SBW signal is acquired by subtracting a reconstructed MM signal without tracer gas from the signal measured with an ultrasonic sensor during in- and exhalation of the double-tracer gas for one tidal breath. In this paper, a simple method to determine the reconstructed MM signal is presented. Measurements on subjects with and without obstructive lung diseases including the small airways have shown high reliability and reproducibility of this method.

  6. Prenatal diagnosis and risk factors for preoperative death in neonates with single right ventricle and systemic outflow obstruction: screening data from the Pediatric Heart Network Single Ventricle Reconstruction Trial(∗).

    Science.gov (United States)

    Atz, Andrew M; Travison, Thomas G; Williams, Ismee A; Pearson, Gail D; Laussen, Peter C; Mahle, William T; Cook, Amanda L; Kirsh, Joel A; Sklansky, Mark; Khaikin, Svetlana; Goldberg, Caren; Frommelt, Michele; Krawczeski, Catherine; Puchalski, Michael D; Jacobs, Jeffrey P; Baffa, Jeanne M; Rychik, Jack; Ohye, Richard G

    2010-12-01

    The purpose of this analysis was to assess preoperative risk factors before the first-stage Norwood procedure in infants with hypoplastic left heart syndrome and related single-ventricle lesions and to evaluate practice patterns in prenatal diagnosis, as well as the role of prenatal diagnosis in outcome. Data from all live births with morphologic single right ventricle and systemic outflow obstruction screened for the Pediatric Heart Network's Single Ventricle Reconstruction Trial were used to investigate prenatal diagnosis and preoperative risk factors. Demographics, gestational age, prenatal diagnosis status, presence of major extracardiac congenital abnormalities, and preoperative mortality rates were recorded. Of 906 infants, 677 (75%) had prenatal diagnosis, 15% were preterm (<37 weeks' gestation), and 16% were low birth weight (<2500 g). Rates of prenatal diagnosis varied by study site (59% to 85%, P < .0001). Major extracardiac congenital abnormalities were less prevalent in those born after prenatal diagnosis (6% vs 10%, P = .03). There were 26 (3%) deaths before Norwood palliation; preoperative mortality did not differ by prenatal diagnosis status (P = .49). In multiple logistic regression models, preterm birth (P = .02), major extracardiac congenital abnormalities (P < .0001), and obstructed pulmonary venous return (P = .02) were independently associated with preoperative mortality. Prenatal diagnosis occurred in 75%. Preoperative death was independently associated with preterm birth, obstructed pulmonary venous return, and major extracardiac congenital abnormalities. Adjusted for gestational age and the presence of obstructed pulmonary venous return, the estimated odds of preoperative mortality were 10 times greater for subjects with a major extracardiac congenital abnormality. Copyright © 2010 The American Association for Thoracic Surgery. All rights reserved.

  7. Single-Tooth Replacement Using Dental Implants Supporting All-Ceramic and Metal-Based Reconstructions: Results at 18 Months of Loading.

    Science.gov (United States)

    Bösch, Adrian; Jung, Ronald Ernst; Sailer, Irena; Goran, Benic; Hämmerle, Christoph Hans; Thoma, Daniel Stefan

    The aim of this study was to compare customized zirconia and titanium abutments with respect to survival rates and technical, biologic, and esthetic outcomes. A total of 28 patients with single implants were randomly assigned to 12 customized zirconia (test, AC) and 16 customized titanium (control, MC) abutments. Technical, biologic, and esthetic outcomes were assessed after a mean follow-up time of 18 months. No biologic complications were observed, and no statistical difference for the bone-to-implant distance was found at 18 months (AC -0.05 ± 0.51 mm vs MC -0.28 ± 0.77 mm; P = .40). A similar discoloration of the peri-implant mucosa was observed (ΔE AC 9.6 ± 5.4, ΔE MC 7.6 ± 5.3; P = .46). The mean papilla score values evaluation presented no statistically significant differences between the test and control groups (AC 2.07 ± 0.94, MC 1.96 ± 0.84). At 18 months, reconstructions based on zirconia and titanium abutments exhibited similar survival rates and similar clinical outcomes.

  8. Magnetoresistive sensor for real-time single nucleotide polymorphism genotyping

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Dufva, Martin

    2014-01-01

    We demonstrate a magnetoresistive sensor platform that allows for the real-time detection of point mutations in DNA targets. Specifically, we detect point mutations at two sites in the human beta globin gene. For DNA detection, the present sensor technology has a detection limit of about 160p...... of magnetic beads, which enables real-time quantification of the specific binding of magnetic beads to the sensor surface under varying experimental conditions....

  9. Digital pulley reconstruction with expanded polytetrafluoroethylene (PTFE) membrane at the time of tenorrhaphy in an experimental animal model.

    Science.gov (United States)

    Semer, N B; Bartle, B K; Telepun, G M; Goldberg, N H

    1992-05-01

    Digital pulley reconstruction with a synthetic material, PTFE membrane, was compared with suture repair of the native A3 pulley at the time of tenorrhaphy in the chicken model. The surgically treated foot was immobilized in flexion for either 28 or 35 days and then allowed full ambulation for periods of up to 42 days postoperatively. At sacrifice digits underwent range-of-motion testing, and the pulley and tenorrhaphy sites were explored. No disruptions were noted in the reconstructed PTFE pulleys. The number of tenorrhaphy disruptions was similar between the PTFE pulley group (11%) and the suture repair of the native pulley group (14%). No decrease in range of motion was demonstrated in the PTFE pulley digits, and no deleterious effect of increasing immobilization time (35 days versus 28 days) was noted. The results indicate that this synthetic pulley did not interfere with normal tendon healing processes. PTFE membrane may prove to be a promising reconstructive alternative when the native pulley is irreparably damaged.

  10. Strategies of statistical windows in PET image reconstruction to improve the user’s real time experience

    Science.gov (United States)

    Moliner, L.; Correcher, C.; Gimenez-Alventosa, V.; Ilisie, V.; Alvarez, J.; Sanchez, S.; Rodríguez-Alvarez, M. J.

    2017-11-01

    Nowadays, with the increase of the computational power of modern computers together with the state-of-the-art reconstruction algorithms, it is possible to obtain Positron Emission Tomography (PET) images in practically real time. These facts open the door to new applications such as radio-pharmaceuticals tracking inside the body or the use of PET for image-guided procedures, such as biopsy interventions, among others. This work is a proof of concept that aims to improve the user experience with real time PET images. Fixed, incremental, overlapping, sliding and hybrid windows are the different statistical combinations of data blocks used to generate intermediate images in order to follow the path of the activity in the Field Of View (FOV). To evaluate these different combinations, a point source is placed in a dedicated breast PET device and moved along the FOV. These acquisitions are reconstructed according to the different statistical windows, resulting in a smoother transition of positions for the image reconstructions that use the sliding and hybrid window.

  11. An efficient and robust reconstruction method for optical tomography with the time-domain radiative transfer equation

    Science.gov (United States)

    Qiao, Yaobin; Qi, Hong; Chen, Qin; Ruan, Liming; Tan, Heping

    2016-03-01

    An efficient and robust method based on the complex-variable-differentiation method (CVDM) is proposed to reconstruct the distribution of optical parameters in two-dimensional participating media. An upwind-difference discrete-ordinate formulation of the time-domain radiative transfer equation is well established and used as forward model. The regularization term using generalized Gaussian Markov random field model is added in the objective function to overcome the ill-posed nature of the radiative inverse problem. The multi-start conjugate gradient method was utilized to accelerate the convergence speed of the inverse procedure. To obtain an accurate result and avoid the cumbersome formula of adjoint differentiation model, the CVDM was employed to calculate the gradient of objective function with respect to the optical parameters. All the simulation results show that the CVDM is efficient and robust for the reconstruction of optical parameters.

  12. Transversus Abdominis Plane Blocks with Single-Dose Liposomal Bupivacaine in Conjunction with a Nonnarcotic Pain Regimen Help Reduce Length of Stay following Abdominally Based Microsurgical Breast Reconstruction.

    Science.gov (United States)

    Jablonka, Eric M; Lamelas, Andreas M; Kim, Julie N; Molina, Bianca; Molina, Nathan; Okwali, Michelle; Samson, William; Sultan, Mark R; Dayan, Joseph H; Smith, Mark L

    2017-08-01

    Side effects associated with use of postoperative narcotics for pain control can delay recovery after abdominally based microsurgical breast reconstruction. The authors evaluated a nonnarcotic pain control regimen in conjunction with bilateral transversus abdominis plane blocks on facilitating early hospital discharge. A retrospective analysis was performed of consecutive patients who underwent breast reconstruction using abdominally based free flaps, with or without being included in a nonnarcotic protocol using intraoperative transversus abdominis plane blockade. During this period, the use of locoregional analgesia evolved from none (control), to continuous bupivacaine infusion transversus abdominis plane and catheters, to single-dose transversus abdominis plane blockade with liposomal bupivacaine solution. Demographic factors, length of stay, inpatient opioid consumption, and complications were reported for all three groups. One hundred twenty-eight consecutive patients (182 flaps) were identified. Forty patients (62 flaps) were in the infusion-liposomal bupivacaine group, 48 (66 flaps) were in the single-dose blockade-catheter group, and 40 (54 flaps) were in the control group. The infusion-liposomal bupivacaine patients had a significantly shorter hospital stay compared with the single-dose blockade-catheter group (2.65 ± 0.66 versus 3.52 ± 0.92 days; p bupivacaine help facilitate early hospital discharge after abdominally based microsurgical breast reconstruction. A trend toward consistent discharge by postoperative day 2 was seen. This could result in significant cost savings for health care systems. Therapeutic, III.

  13. Randomized Controlled Clinical Trial of All-Ceramic Single Tooth Implant Reconstructions Using Modified Zirconia Abutments: Radiographic and Prosthetic Results at 1 Year of Loading.

    Science.gov (United States)

    Thoma, Daniel S; Brandenberg, Francine; Fehmer, Vincent; Büchi, Dominik L E; Hämmerle, Christoph H F; Sailer, Irena

    2016-06-01

    This study aims to test whether or not veneering of the submucosal part of zirconia abutments with pink dental ceramic affects radiographic and technical outcomes of implant-supported single crowns (ISSC). Single tooth implants were randomly restored with either pink-veneered zirconia abutments (test; n = 10) or non-veneered zirconia abutments (control group; n = 10) and all-ceramic crowns. At baseline (crown insertion), and 6- and 12-month radiographic and technical evaluations were performed including standardized x-rays and modified United States Public Health Service criteria (technical). Survival and complication rates were assessed for implants and restorations. Robust linear mixed model analysis was performed to investigate the effect of group and time-point on radiographic outcomes. At 1 year, the survival rate for implants was 100% and 95% for ISSC. Most of the implants were placed subcrestally. Therefore, mean marginal bone levels decreased in both groups between implant insertion and baseline (p  .005). At 6 months, one minor chipping occurred in the test group. At 1 year, three crowns (control) exhibited occlusal roughness. In addition, one abutment fracture occurred (test). The differences between test and control group were not statistically significantly different for any of the evaluated outcome measures (p > .05). Veneering of the submucosal part of zirconia abutments did not affect biological and technical outcomes of ISSCs. Technical complications of the reconstructions, however, were frequent, resulting in a rate of 75% of the crowns being complication free. © 2015 Wiley Periodicals, Inc.

  14. Single photon imaging and timing array sensor apparatus and method

    Science.gov (United States)

    Smith, R. Clayton

    2003-06-24

    An apparatus and method are disclosed for generating a three-dimension image of an object or target. The apparatus is comprised of a photon source for emitting a photon at a target. The emitted photons are received by a photon receiver for receiving the photon when reflected from the target. The photon receiver determines a reflection time of the photon and further determines an arrival position of the photon on the photon receiver. An analyzer is communicatively coupled to the photon receiver, wherein the analyzer generates a three-dimensional image of the object based upon the reflection time and the arrival position.

  15. Single particle aerodynamic relaxation time analyzer. [for aerosol pollutants

    Science.gov (United States)

    Mazumder, M. K.; Kirsch, K. J.

    1977-01-01

    An instrument employing a laser Doppler velocimeter and a microphone to measure the phase lag of the motion of aerosol particulates relative to the motion of the fluid medium within an acoustic field is described. The relaxation times and aerodynamic diameters of the particles or droplets are determined in real time from the measured values of phase lag; thus, the size analysis is independent of the electrostatic charges and refractive indices of the particulates. The instrument is suitable for analyzing the aerodynamic size spectrum of atmospheric particulate pollutants with aerodynamic diameters ranging from 0.1 to 10.0 microns.

  16. Preclinical, fluorescence and diffuse optical tomography: non-contact instrumentation, modeling and time-resolved 3D reconstruction

    International Nuclear Information System (INIS)

    Nouizi, F.

    2011-09-01

    Time-Resolved Diffuse Optical Tomography (TR-DOT) is a new non-invasive imaging technique increasingly used in the clinical and preclinical fields. It yields optical absorption and scattering maps of the explored organs, and related physiological parameters. Time-Resolved Fluorescence Diffuse Optical Tomography (TR-FDOT) is based on the detection of fluorescence photons. It provides spatio-temporal maps of fluorescent probe concentrations and life times, and allows access to metabolic and molecular imaging which is important for diagnosis and therapeutic monitoring, particularly in oncology. The main goal of this thesis was to reconstruct 3D TR-DOT/TR-FDOT images of small animals using time-resolved optical technology. Data were acquired using optical fibers fixed around the animal without contact with its surface. The work was achieved in four steps: 1)- Setting up an imaging device to record the 3D coordinates of an animal's surface; 2)- Modeling the no-contact approach to solve the forward problem; 3)- Processing of the measured signals taking into account the impulse response of the device; 4)- Implementation of a new image reconstruction method based on a selection of carefully chosen points. As a result, good-quality 3D optical images were obtained owing to reduced cross-talk between absorption and scattering. Moreover, the computation time was cut down, compared to full-time methods using whole temporal profiles. (author)

  17. Economic resources and remaining single: trends over time

    NARCIS (Netherlands)

    Dykstra, P.A.; Poortman, A.

    2010-01-01

    An influential hypothesis in family research is that having many economic resources decreases women’s and increases men’s rate of entering a union. A more recent hypothesis is that the strength of the association between economic resources and union formation has weakened over time, given decreasing

  18. Economic resources and remaining single : trends over time.

    NARCIS (Netherlands)

    Dykstra, Pearl A.; Poortman, Anne-Rigt

    2010-01-01

    An influential hypothesis in family research is that having many economic resources decreases women’s and increases men’s rate of entering a union. A more recent hypothesis is that the strength of the association between economic resources and union formation has weakened over time, given decreasing

  19. Cavity-Enhanced Real-Time Monitoring of Single-Charge Jumps at the Microsecond Time Scale

    Science.gov (United States)

    Arnold, C.; Loo, V.; Lemaître, A.; Sagnes, I.; Krebs, O.; Voisin, P.; Senellart, P.; Lanco, L.

    2014-04-01

    We use fast coherent reflectivity measurements, in a strongly coupled quantum dot micropillar device, to monitor in real time single-charge jumps at the microsecond time scale. Thanks to the strong enhancement of light-matter interaction inside the cavity, and to a close to shot-noise-limited detection setup, the measurement rate is 5 orders of magnitude faster than with previous optical experiments of direct single-charge sensing with quantum dots. The monitored transitions, identified at any given time with a less than 0.2% error probability, correspond to a carrier being captured and then released by a single material defect. This high-speed technique opens the way for the real-time monitoring of other rapid single quantum events, such as the quantum jumps of a single spin.

  20. TiLoop® Bra mesh used for immediate breast reconstruction: comparison of retropectoral and subcutaneous implant placement in a prospective single-institution series.

    Science.gov (United States)

    Casella, Donato; Bernini, Marco; Bencini, Lapo; Roselli, Jenny; Lacaria, Maria Teresa; Martellucci, Jacopo; Banfi, Roberto; Calabrese, Claudio; Orzalesi, Lorenzo

    2014-01-01

    Immediate implant reconstruction after a conservative mastectomy is an attractive option made easier by prosthetic devices. Titanized polypropylene meshes are used as a hammock to cover the lower lateral implant pole. We conducted a prospective nonrandomized single-institution study of reconstructions using titanium-coated meshes either in a standard muscular mesh pocket or in a complete subcutaneous approach. The complete subcutaneous approach means to wrap an implant with titanized mesh in order to position the implant subcutaneously and spare muscles. Between November 2011 and January 2014, we performed immediate implant breast reconstructions after conservative mastectomies using TiLoop® Bra, either with the standard retropectoral or with a prepectoral approach. Selection criteria included only women with normal Body Mass Index (BMI), no large and very ptotic breasts, no history of smoking, no diabetes, and no previous radiotherapy. We analyzed short-term outcomes of such procedures and compared the outcomes to evaluate implant losses and surgical complications. A total of 73 mastectomies were performed. Group 1 comprised 29 women, 5 bilateral procedures, 34 reconstructions, using the standard muscular mesh pocket. Group 2 comprised 34 women, 5 bilateral procedures, 39 reconstructions with the prepectoral subcutaneous technique. Baseline and oncologic characteristics were homogeneous between the two groups. After a median follow-up period of 13 and 12 months, respectively, no implant losses were recorded in group 1, and one implant loss was recorded in group 2. We registered three surgical complications in group 1 and two surgical complications in group 2. Titanium-coated polypropylene meshes, as a tool for immediate definitive implant breast reconstruction, resulted as safe and effective in a short-term analysis, both for a retropectoral and a totally subcutaneous implant placement. Long-term results are forthcoming. A strict selection is mandatory to

  1. Synchronized multiartifact reduction with tomographic reconstruction (SMART-RECON): A statistical model based iterative image reconstruction method to eliminate limited-view artifacts and to mitigate the temporal-average artifacts in time-resolved CT

    International Nuclear Information System (INIS)

    Chen, Guang-Hong; Li, Yinsheng

    2015-01-01

    Purpose: In x-ray computed tomography (CT), a violation of the Tuy data sufficiency condition leads to limited-view artifacts. In some applications, it is desirable to use data corresponding to a narrow temporal window to reconstruct images with reduced temporal-average artifacts. However, the need to reduce temporal-average artifacts in practice may result in a violation of the Tuy condition and thus undesirable limited-view artifacts. In this paper, the authors present a new iterative reconstruction method, synchronized multiartifact reduction with tomographic reconstruction (SMART-RECON), to eliminate limited-view artifacts using data acquired within an ultranarrow temporal window that severely violates the Tuy condition. Methods: In time-resolved contrast enhanced CT acquisitions, image contrast dynamically changes during data acquisition. Each image reconstructed from data acquired in a given temporal window represents one time frame and can be denoted as an image vector. Conventionally, each individual time frame is reconstructed independently. In this paper, all image frames are grouped into a spatial–temporal image matrix and are reconstructed together. Rather than the spatial and/or temporal smoothing regularizers commonly used in iterative image reconstruction, the nuclear norm of the spatial–temporal image matrix is used in SMART-RECON to regularize the reconstruction of all image time frames. This regularizer exploits the low-dimensional structure of the spatial–temporal image matrix to mitigate limited-view artifacts when an ultranarrow temporal window is desired in some applications to reduce temporal-average artifacts. Both numerical simulations in two dimensional image slices with known ground truth and in vivo human subject data acquired in a contrast enhanced cone beam CT exam have been used to validate the proposed SMART-RECON algorithm and to demonstrate the initial performance of the algorithm. Reconstruction errors and temporal fidelity

  2. Early laparotomy and timely reconstruction for patients with abdominal electrical injury

    Science.gov (United States)

    Zhang, Pi-Hong; Liu, Zan; Ren, Li-Cheng; Zeng, Ji-Zhang; Huang, Geng-Wen; Xiao, Mu-Zhang; Zhou, Jie; Liang, Peng-Fei; Zhang, Ming-Hua; Huang, Xiao-Yuan

    2017-01-01

    Abstract Introduction: High-tension electricity can cause devastating injuries that may result in abdominal wall loss, visceral damage, and sometimes major threat to life. The visceral organ may be exposed after debridement and require flap cover, but the tensile strength of abdominal wall may be lack even if flap transplanted. Methods: From April 2007 through May 2015, 5 patients with severe abdominal electrical injury were treated at our hospital. Exploratory laparotomy was performed based on their clinical manifestations and debridement findings of abdominal wall at early stage, and decision regarding technique for reconstruction of abdominal wall was based on an assessment of the location and extent of the defect. Medical records were reviewed for these data. Results: Clinical evaluation and debridement findings of the abdomen revealed 4 patients with suspicious visceral damage. Laparotomy was performed in 4 cases, and revealed obvious lesion in 3 cases, including segmental necrosis of small intestine, partial necrosis of diaphragm, left liver and gastric wall, and greater omentum. Five patients underwent abdominal wall reconstruction using island retrograde latissimus dorsi myocutaneous flap or free/island composite anterolateral thigh myocutaneous flap. All flaps survived, abdominal bulging occurred in 3 cases after follow-up of 12 to 36 months. Conclusions: The clinical manifestations and wound features of abdomen collectively suggest a possible requirement of laparotomy for severe abdominal electrical burns. Retrograde latissimus dorsi myocutaneous flap or composite anterolateral thigh myocutaneous flap is an effective option for reconstruction of abdominal wall loss, the long-term complication of abdominal bulging, however, remains a significant clinical challenge. PMID:28723751

  3. Assessing the scientific relevance of a single publication over time

    Directory of Open Access Journals (Sweden)

    Philipp A. Bloching

    2013-09-01

    Full Text Available Quantitatively assessing the scientific relevance of a research paper is challenging for two reasons. Firstly, scientific relevance may change over time, and secondly, it is unclear how to evaluate a recently published paper. The temporally averaged paper-specific impact factor is defined as the yearly average of citations to the paper until now including bonus citations equal to the journal impact factor in the publication year. This new measure subsequently allows relevance rankings and annual updates of all (i.e. both recent and older scientific papers of a department, or even a whole scientific field, on a more objective basis. It can also be used to assess both the average and overall time-dependent scientific relevance of researchers in a specific department or scientific field.

  4. The interactive presentation of 3D information obtained from reconstructed datasets and 3D placement of single histological sections with the 3D portable document format

    NARCIS (Netherlands)

    de Boer, Bouke A.; Soufan, Alexandre T.; Hagoort, Jaco; Mohun, Timothy J.; van den Hoff, Maurice J. B.; Hasman, Arie; Voorbraak, Frans P. J. M.; Moorman, Antoon F. M.; Ruijter, Jan M.

    2011-01-01

    Interpretation of the results of anatomical and embryological studies relies heavily on proper visualization of complex morphogenetic processes and patterns of gene expression in a three-dimensional (3D) context. However, reconstruction of complete 3D datasets is time consuming and often researchers

  5. Medium-term cost analysis of breast reconstructions in a single Dutch centre: a comparison of implants, implants preceded by tissue expansion, LD transpositions and DIEP flaps

    NARCIS (Netherlands)

    Damen, T. H. C.; Wei, W.; Mureau, M. A. M.; Tjong-Joe-Wai, R.; Hofer, S. O. P.; Essink-Bot, M. L.; Hovius, S. E. R.; Polinder, S.

    2011-01-01

    Free flap breast reconstruction (BR) is generally believed to be more expensive than implant BR, but costs were previously shown to level out over time due to complications and re-operations. The aim of this study was to assess the economic implications of four BR techniques: silicone prosthesis

  6. Dual Super-Systolic Core for Real-Time Reconstructive Algorithms of High-Resolution Radar/SAR Imaging Systems

    Science.gov (United States)

    Atoche, Alejandro Castillo; Castillo, Javier Vázquez

    2012-01-01

    A high-speed dual super-systolic core for reconstructive signal processing (SP) operations consists of a double parallel systolic array (SA) machine in which each processing element of the array is also conceptualized as another SA in a bit-level fashion. In this study, we addressed the design of a high-speed dual super-systolic array (SSA) core for the enhancement/reconstruction of remote sensing (RS) imaging of radar/synthetic aperture radar (SAR) sensor systems. The selected reconstructive SP algorithms are efficiently transformed in their parallel representation and then, they are mapped into an efficient high performance embedded computing (HPEC) architecture in reconfigurable Xilinx field programmable gate array (FPGA) platforms. As an implementation test case, the proposed approach was aggregated in a HW/SW co-design scheme in order to solve the nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) from a remotely sensed scene. We show how such dual SSA core, drastically reduces the computational load of complex RS regularization techniques achieving the required real-time operational mode. PMID:22736964

  7. A pollen-based reconstruction of summer temperature in central North America and implications for circulation patterns during medieval times

    Science.gov (United States)

    Wahl, Eugene R.; Diaz, Henry F.; Ohlwein, Christian

    2012-03-01

    We present a reconstruction of mean summer temperature for the northern Midwest of the USA based on lacustrine pollen records from three different lakes in Wisconsin. The results suggest a relatively warm period during the earlier part of the record (~ 1200-1500 CE) followed by a cooler Little Ice Age (~ 1500-1900) and a subsequent warming to modern conditions. The reconstructed modern summer mean temperature is in good agreement with observations, and the decades of the 1930s to 1950s appear to be the warmest such period in the proxy record (through 1974). Analyses of circulation features associated with the warmest summers in the recent climate record suggest a prevalence of continental ridging accompanied by generally dry conditions during these warm summers in the Midwest. Drought reconstruction using the Palmer Drought Severity Index (PDSI) and tree-ring records as predictors also yield relatively dry conditions in medieval times for the central US. As reported in a number of recent studies, possible forcing mechanisms include La Niña-like conditions in the equatorial Pacific and warmer than average waters in the tropical Indo-western Pacific Ocean possibly coupled to a positive mode of the AMO/NAO North Atlantic circulation pattern.

  8. Time variability in Cenozoic reconstructions of mantle heat flow: plate tectonic cycles and implications for Earth's thermal evolution.

    Science.gov (United States)

    Loyd, S J; Becker, T W; Conrad, C P; Lithgow-Bertelloni, C; Corsetti, F A

    2007-09-04

    The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by approximately 0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past.

  9. Improving performance of single-path code through a time-predictable memory hierarchy

    DEFF Research Database (Denmark)

    Cilku, Bekim; Puffitsch, Wolfgang; Prokesch, Daniel

    2017-01-01

    . The single-path code generation overcomes these problems by generating time-predictable code that has a single execution trace. However, the simplicity of this approach comes at the cost of longer execution times. This paper addresses performance improvements for single-path code. We propose a time......-predictable memory hierarchy with a prefetcher that exploits the predictability of execution traces in single-path code to speed up code execution. The new memory hierarchy reduces both the cache-miss penalty time and the cache-miss rate on the instruction cache. The benefit of the approach is demonstrated through...

  10. Retrospective Reconstruction of High Temporal Resolution Cine Images from Real-Time MRI using Iterative Motion Correction

    DEFF Research Database (Denmark)

    Hansen, Michael Schacht; Sørensen, Thomas Sangild; Arai, Andrew

    2012-01-01

    Cardiac function has traditionally been evaluated using breath-hold cine acquisitions. However, there is a great need for free breathing techniques in patients who have difficulty in holding their breath. Real-time cardiac MRI is a valuable alternative to the traditional breath-hold imaging...... approach, but the real-time images are often inferior in spatial and temporal resolution. This article presents a general method for reconstruction of high spatial and temporal resolution cine images from a real-time acquisition acquired over multiple cardiac cycles. The method combines parallel imaging...... and motion correction based on nonrigid registration and can be applied to arbitrary k-space trajectories. The method is demonstrated with real-time Cartesian imaging and Golden Angle radial acquisitions, and the motion-corrected acquisitions are compared with raw real-time images and breath-hold cine...

  11. An iterative reduced field-of-view reconstruction for periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) MRI.

    Science.gov (United States)

    Lin, Jyh-Miin; Patterson, Andrew J; Chang, Hing-Chiu; Gillard, Jonathan H; Graves, Martin J

    2015-10-01

    To propose a new reduced field-of-view (rFOV) strategy for iterative reconstructions in a clinical environment. Iterative reconstructions can incorporate regularization terms to improve the image quality of periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) MRI. However, the large amount of calculations required for full FOV iterative reconstructions has posed a huge computational challenge for clinical usage. By subdividing the entire problem into smaller rFOVs, the iterative reconstruction can be accelerated on a desktop with a single graphic processing unit (GPU). This rFOV strategy divides the iterative reconstruction into blocks, based on the block-diagonal dominant structure. A near real-time reconstruction system was developed for the clinical MR unit, and parallel computing was implemented using the object-oriented model. In addition, the Toeplitz method was implemented on the GPU to reduce the time required for full interpolation. Using the data acquired from the PROPELLER MRI, the reconstructed images were then saved in the digital imaging and communications in medicine format. The proposed rFOV reconstruction reduced the gridding time by 97%, as the total iteration time was 3 s even with multiple processes running. A phantom study showed that the structure similarity index for rFOV reconstruction was statistically superior to conventional density compensation (p concept of rFOV reconstruction may potentially be applied to other kinds of iterative reconstructions for shortened reconstruction duration.

  12. Substitute CT generation from a single ultra short time echo MRI sequence: preliminary study

    Science.gov (United States)

    Ghose, Soumya; Dowling, Jason A.; Rai, Robba; Liney, Gary P.

    2017-04-01

    In MR guided radiation therapy planning both MR and CT images for a patient are acquired and co-registered to obtain a tissue specific HU map. Generation of the HU map directly from the MRI would eliminate the CT acquisition and may improve radiation therapy planning. In this preliminary study of substitute CT (sCT) generation, two porcine leg phantoms were scanned using a 3D ultrashort echo time (PETRA) sequence and co-registered to corresponding CT images to build tissue specific regression models. The model was created from one co-registered CT-PETRA pair to generate the sCT for the other PETRA image. An expectation maximization based clustering was performed on the co-registered PETRA image to identify the soft tissues, dense bone and air class membership probabilities. A tissue specific non linear regression model was built from one registered CT-PETRA pair dataset to predict the sCT of the second PETRA image in a two-fold cross validation schema. A complete substitute CT is generated in 3 min. The mean absolute HU error for air was 0.3 HU, bone was 95 HU, fat was 30 HU and for muscle it was 10 HU. The mean surface reconstruction error for the bone was 1.3 mm. The PETRA sequence enabled a low mean absolute surface distance for the bone and a low HU error for other classes. The sCT generated from a single PETRA sequence shows promise for the generation of fast sCT for MRI based radiation therapy planning.

  13. Iatrogenic lower urinary tract injury at the time of pelvic reconstructive surgery: does previous pelvic surgery increase the risk?

    Science.gov (United States)

    Saguan, Docile; Northington, Gina; Chinthakanan, Orawee; Hudson, Catherine; Karp, Deborah

    2014-08-01

    The objective of this study was to evaluate whether a history of previous pelvic surgery is associated with lower urinary tract (LUT) injury at the time of pelvic reconstructive surgery (PRS). A retrospective analysis of patients undergoing pelvic reconstructive surgery from 2006 to 2011 was performed. Patients were divided into two groups: those with previous pelvic surgery and those without previous pelvic surgery. A sample size analysis was performed to determine the number needed to detect at least a 3-fold difference in the rate of LUT injury. Demographic, historical, clinical, intraoperative, and postoperative data were analyzed. Associations between LUT injury and demographics, previous pelvic surgery, or other clinical risk factors were assessed using univariate and multivariate analyses. 685 women were included in the analysis: 514 (74.9%) with and 171 (25.1%) without prior pelvic surgery. The overall rate of LUT injury was 6%. Of the injuries, 3.2% were cystotomies, and 1.9% were ureteral obstructions. Previous pelvic surgery did not significantly affect the rate of LUT injury (OR 0.76, 95%CI 0.38-1.54). A diagnosis of prolapse, concurrent hysterectomy, anterior repair, and apical repair were significantly associated with LUT injury. After controlling for age and race, a diagnosis of prolapse remained significantly associated with LUT injury (OR 3.38, 95% CI 1.11-14.75). Prior pelvic surgery does not affect the rate of LUT injury in pelvic reconstructive surgery. The diagnosis of prolapse is a risk factor for LUT injury in women undergoing pelvic reconstructive surgery.

  14. Single-molecule stochastic times in a reversible bimolecular reaction.

    Science.gov (United States)

    Keller, Peter; Valleriani, Angelo

    2012-08-28

    In this work, we consider the reversible reaction between reactants of species A and B to form the product C. We consider this reaction as a prototype of many pseudobiomolecular reactions in biology, such as for instance molecular motors. We derive the exact probability density for the stochastic waiting time that a molecule of species A needs until the reaction with a molecule of species B takes place. We perform this computation taking fully into account the stochastic fluctuations in the number of molecules of species B. We show that at low numbers of participating molecules, the exact probability density differs from the exponential density derived by assuming the law of mass action. Finally, we discuss the condition of detailed balance in the exact stochastic and in the approximate treatment.

  15. Time-resolved flow reconstruction with indirect measurements using regression models and Kalman-filtered POD ROM

    Science.gov (United States)

    Leroux, Romain; Chatellier, Ludovic; David, Laurent

    2018-01-01

    This article is devoted to the estimation of time-resolved particle image velocimetry (TR-PIV) flow fields using a time-resolved point measurements of a voltage signal obtained by hot-film anemometry. A multiple linear regression model is first defined to map the TR-PIV flow fields onto the voltage signal. Due to the high temporal resolution of the signal acquired by the hot-film sensor, the estimates of the TR-PIV flow fields are obtained with a multiple linear regression method called orthonormalized partial least squares regression (OPLSR). Subsequently, this model is incorporated as the observation equation in an ensemble Kalman filter (EnKF) applied on a proper orthogonal decomposition reduced-order model to stabilize it while reducing the effects of the hot-film sensor noise. This method is assessed for the reconstruction of the flow around a NACA0012 airfoil at a Reynolds number of 1000 and an angle of attack of {20}°. Comparisons with multi-time delay-modified linear stochastic estimation show that both the OPLSR and EnKF combined with OPLSR are more accurate as they produce a much lower relative estimation error, and provide a faithful reconstruction of the time evolution of the velocity flow fields.

  16. Probability, rate and timing of reconstructive surgery following colectomy for inflammatory bowel disease in Sweden: a population-based cohort study.

    Science.gov (United States)

    Nordenvall, C; Myrelid, P; Ekbom, A; Bottai, M; Smedby, K E; Olén, O; Nilsson, P J

    2015-10-01

    Many patients with inflammatory bowel disease (IBD) need colectomy, but the rate of reconstructive surgery with restoration of intestinal continuity is unknown. The aim of this study was to investigate the probability, rate and timing of reconstructive surgery after colectomy in patients with IBD in a population-based setting. The study cohort included all patients with IBD in Sweden who underwent colectomy from 2000 to 2009. Each patient was followed from admission for colectomy to admission for reconstructive surgery, date of death, migration or 31 December 2010. Kaplan-Meier survival curves and multivariable Poisson regression models were used to describe the probability, rate and timing of reconstructive surgery. Out of 2818 IBD patients treated with colectomy, 61.0% were male and 78.9% had ulcerative colitis. No reconstructive surgery had been performed in 1595 (56.6%) patients by the end of follow-up. Of the remaining 1223 patients, 526 underwent primary reconstructive surgery and 697 had a secondary reconstruction following a median interval of 357 days from primary surgery in the form of colectomy. The probability of reconstructive surgery was dependent on age (55.6% and 18.1% at ages 15-29 and ≥ 59 years, respectively), and the chance of reconstructive surgery was higher in hospitals that performed more than 13 colectomies for IBD per year [incidence rate ratio and 95% confidence interval 1.27 (1.09-1.49)]. Fewer than half of the patients having a colectomy for IBD underwent subsequent reconstructive surgery. Older age and low hospital volume were risk factors for no reconstructive surgery. Colorectal Disease © 2015 The Association of Coloproctology of Great Britain and Ireland.

  17. Reproducibility and quantitativity of oblique-angle reconstruction in single photon emission computed tomography using Tl-201 myocardial phantom

    International Nuclear Information System (INIS)

    Bunko, Hisashi; Nanbu, Ichiro; Seki, Hiroyasu

    1984-01-01

    This study was carried out in order to evaluate reproducibility and quantitativity of oblique-angle reconstruction of myocardial phantom SPECT. Myocardial phantom with transmural and subendcardial defects, and off-axis phantom with wall thickness changing continuously from 0 to 23 mm were used. Sixty projection data in every 6 0 were aquired using dual-camera (ZLC) with high resolution collimators connected to Scintipac-2400 computer system. Oblique-angle reconstructed images were obtained by indicating the long axis of the phantom manually in the transaxial and vertical long axial tomograms. Reproducibility and quantitativity were evaluated by creating circumferential profile (CFP) of the finally reconstructed short axial images. Inter- and intra-operater reproducibility of relative counting ratio were less than 6.7% (C.V.) and 3.3% (C.V.), respectively. Both inter- and intraoperater reproducibility of absolute counts were better than that of counting ratio (less than 5.1% (C.V.) and 2.9% (C.V.), respectively). Variation of defect location in the reconstructed image and between the slices were less than 1 sampling interval of CFP (6 0 ) and 0.6 slice, respectively. Quantitativity of counts in the reconstructed images was poor in the transmulal defect, but was fair in the subendocardial defect. Counting ratio was greatly affected by wall thickness. Temporal quantitatibity or linearity of the counts in sequential SPECTs was good in non-defect area, especially when wall thickness was greater than 70% (16 mm) of maximum. In conclusion, three-dimensional oblique-angle reconstruction in Tl-201 myocardial SPECT could be applicable to relative and temporal quantitation of local myocardial activity other than defect area for the quantitative evaluation of Tl-201 myocardial wash-out. (J.P.N.)

  18. Qualitative and Quantitative Evaluation of Blob-Based Time-of-Flight PET Image Reconstruction in Hybrid Brain PET/MR Imaging.

    Science.gov (United States)

    Leemans, Eva L; Kotasidis, Fotis; Wissmeyer, Michael; Garibotto, Valentina; Zaidi, Habib

    2015-10-01

    Many neurological diseases affect small structures in the brain and, as such, reliable visual evaluation and accurate quantification are required. Recent technological developments made the clinical use of hybrid positron emission tomography/magnetic resonance (PET/MR) systems possible, providing both functional and anatomical information in a single imaging session. Nevertheless, there is a trade-off between spatial resolution and image quality (contrast and noise), which is dictated mainly by the chosen acquisition and reconstruction protocols. Image reconstruction algorithms using spherical symmetric basis functions (blobs) for image representation have a number of additional parameters that impact both the qualitative and quantitative image characteristics. Hence, a detailed investigation of the blob-based reconstruction characteristics using different parameters is needed to achieve optimal reconstruction results. This work evaluated the impact of a range of blob parameters on image quality and quantitative accuracy of brain PET images acquired on the Ingenuity Time-of-Flight (TOF) PET/MR system. Two different phantoms were used to simulate brain imaging applications. Image contrast and noise characteristics were assessed using an image quality phantom. Quantitative performance in a clinical setting was investigated using the Hoffman 3D brain phantom at various count levels. Furthermore, the visual quality of four clinical studies was scored blindly by two experienced physicians to qualitatively evaluate the influence of different reconstruction protocols, hereby providing indications on parameters producing the best image quality. Quantitative evaluation using the image quality phantom showed that larger basis function radii result in lower contrast recovery (∼2%) and lower variance levels (∼15%). The brain phantom and clinical studies confirmed these observations since lower contrast was seen between anatomical structures. High and low count statistics

  19. Reconstructing Atmospheric Histories of Halogenated Compounds to Preindustrial Times Using Antarctic Firn Air

    Science.gov (United States)

    Shields, J. E.; Mühle, J.; Severinghaus, J. P.; Weiss, R. F.

    2007-12-01

    Atmospheric histories of many halogenated trace gases remain poorly known, hampering understanding of lifetimes and anthropogenic impacts. A profile of air samples dating back to the late 19th century was collected from the firn at the Megadunes site in central Antarctica (80.78° S, 124.5° E) in January 2004. A number of anthropogenic halogenated compounds were measured in these samples using the AGAGE Medusa gas chromatograph-mass spectrometer instrumentation (B. R. Miller et al., in preparation). A firn gas-diffusion forward model based on the work of Schwander et al. (1993) was tuned to CO2 and 15N observations from the same Megadunes site. The age distribution of CO2 in diffusively mixed air samples collected at each depth was approximated by running short pulses through the forward model. The atmospheric histories of a number of halogenated compounds were then reconstructed using the iterative dating technique developed by Trudinger et al. (2002). The modeled age spread at this site is relatively broad, but interstitial air at the close-off zone is comparatively old with a mean age of about 100 years. Reconstructed histories show good agreement with direct measurements, although rapid changes are not well resolved. The mixing ratios of the deepest layer are within the range of preindustrial estimates, most notably for tetrafluoromethane. Schwander, J., J. M. Barnola, C. Andrie, M. Leuenberger, A. Ludin, D. Raynaud, B. Stauffer (1993). The Age of the Air in the Firn and the Ice at Summit, Greenland. J. Geophys. Res. 98(D2): 2831-2838. Trudinger, C. M., D. M. Etheridge, G. A. Sturrock, P. J. Fraser, P. B. Krummel, and A. McCulloch (2004). Atmospheric histories of halocarbons from analysis of Antarctic firn air: Methyl bromide, methyl chloride, chloroform, and dichloromethane. J. Geophys. Res. 109(D22310): doi:10.1029/2004JD004932.

  20. Time Line for Noncopers to Pass Return-to-Sports Criteria After Anterior Cruciate Ligament Reconstruction

    Science.gov (United States)

    Hartigan, Erin H.; Axe, Michael J.; Snyder-Mackler, Lynn

    2013-01-01

    STUDY DESIGN Randomized clinical trial. OBJECTIVES Determine effective interventions for improving readiness to return to sports post-operatively in patients with complete, unilateral, anterior cruciate ligament (ACL) rupture who do not compensate well after the injury (noncopers). Specifically, we compared the effects of 2 preoperative interventions on quadriceps strength and functional outcomes. BACKGROUND The percentage of athletes who return to sports after ACL reconstruction varies considerably, possibly due to differential responses after acute ACL rupture and different management. Prognostic data for noncopers following ACL reconstruction is absent in the literature. METHODS Forty noncopers were randomly assigned to receive either progressive quadriceps strength-training exercises (STR group) or perturbation training in conjunction with strength-training exercises (PERT group) for 10 preoperative rehabilitation sessions. Postoperative rehabilitation was similar between groups. Data on quadriceps strength indices [(involved limb/uninvolved limb force) ×100], 4 hop score indices, and 2 self-report questionnaires were collected preoperatively and 3, 6, and 12 months postoperatively. Mann-Whitney U tests were used to compare functional differences between the groups. Chi-square tests were used to compare frequencies of passing functional criteria and reasons for differences in performance between groups postoperatively. RESULTS Functional outcomes were not different between groups, except a greater number of patients in the PERT group achieved global rating scores (current knee function expressed as a percentage of overall knee function prior to injury) necessary to pass return-to-sports criteria 6 and 12 months after surgery. Mean scores for each functional outcome met return-to-sports criteria 6 and 12 months postoperatively. Frequency counts of individual data, however, indicated that 5% of noncopers passed RTS criteria at 3, 48% at 6, and 78% at 12 months

  1. Scan time reduction in ²³Na-Magnetic Resonance Imaging using the chemical shift imaging sequence: Evaluation of an iterative reconstruction method.

    Science.gov (United States)

    Weingärtner, Sebastian; Wetterling, Friedrich; Konstandin, Simon; Fatar, Marc; Neumaier-Probst, Eva; Schad, Lothar R

    2015-09-01

    To evaluate potential scan time reduction in (23)Na-Magnetic Resonance Imaging with the chemical shift imaging sequence (CSI) using undersampled data of high-quality datasets, reconstructed with an iterative constrained reconstruction, compared to reduced resolution or reduced signal-to-noise ratio. CSI (23)Na-images were retrospectively undersampled and reconstructed with a constrained reconstruction scheme. The results were compared to conventional methods of scan time reduction. The constrained reconstruction scheme used a phase constraint and a finite object support, which was extracted from a spatially registered (1)H-image acquired with a double-tuned coil. The methods were evaluated using numerical simulations, phantom images and in-vivo images of a healthy volunteer and a patient who suffered from cerebral ischemic stroke. The constrained reconstruction scheme showed improved image quality compared to a decreased number of averages, images with decreased resolution or circular undersampling with weighted averaging for any undersampling factor. Brain images of a stroke patient, which were reconstructed from three-fold undersampled k-space data, resulted in only minor differences from the original image (normalized root means square error scan time reduction with improved image quality compared to conventional methods of scan time saving. Copyright © 2014. Published by Elsevier GmbH.

  2. Evaluation of femoral tunnel positioning using 3-dimensional computed tomography and radiographs after single bundle anterior cruciate ligament reconstruction with modified transtibial technique.

    Science.gov (United States)

    Lee, Sung Rak; Jang, Hyoung Won; Lee, Dhong Won; Nam, Sang Wook; Ha, Jeong Ku; Kim, Jin Goo

    2013-09-01

    The purpose of this study is to report a modified transtibial technique to approach the center of anatomical femoral footprint in anterior cruciate ligament (ACL) reconstruction and to investigate the accurate femoral tunnel position with 3-dimensional computed tomography (3D-CT) and radiography after reconstruction. From December 2010 to October 2011, we evaluated 98 patients who underwent primary ACL reconstruction using a modified transtibial technique to approach the center of anatomical femoral footprint in single bundle ACL reconstruction with hamstring autograft. Their femoral tunnel positions were investigated with 3D-CT and radiography postoperatively. Femoral tunnel angle was measured on the postoperative anteroposterior (AP) radiograph and the center of the femoral tunnel aperture on the lateral femoral condyle was assessed with 3D-CT according to the quadrant method by two orthopedic surgeons. According to the quadrant method with 3D-CT, the femoral tunnel was measured at a mean of 32.94% ± 5.16% from the proximal condylar surface (parallel to the Blumensaat line) and 41.89% ± 5.58% from the notch roof (perpendicular to the Blumensaat line) with good interobserver (intraclass correlation coefficients [ICC], 0.766 and 0.793, respectively) and intraobserver reliability (ICC, 0.875 and 0.893, respectively). According to the radiographic measurement on the AP view, the femoral tunnel angles averaged 50.43° ± 7.04° (ICC, 0.783 and 0.911, respectively). Our modified transtibial technique is anticipated to provide more anatomical placement of the femoral tunnel during ACL reconstruction than the former traditional transtibial techniques.

  3. Diagnosing and Reconstructing Real-World Hydroclimatic Dynamics from Time Sequenced Data: The Case of Saltwater Intrusion into Coastal Wetlands in Everglades National Park

    Science.gov (United States)

    Huffaker, R.; Munoz-Carpena, R.

    2016-12-01

    There are increasing calls to audit decision-support models used for environmental policy to ensure that they correspond with the reality facing policy makers. Modelers can establish correspondence by providing empirical evidence of real-world dynamic behavior that their models skillfully simulate. We present a pre-modeling diagnostic framework—based on nonlinear dynamic analysis—for detecting and reconstructing real-world environmental dynamics from observed time-sequenced data. Phenomenological (data-driven) modeling—based on machine learning regression techniques—extracts a set of ordinary differential equations governing empirically-diagnosed system dynamics from a single time series, or from multiple time series on causally-interacting variables. We apply the framework to investigate saltwater intrusion into coastal wetlands in Everglades National Park, Florida, USA. We test the following hypotheses posed in the literature linking regional hydrologic variables with global climatic teleconnections: (1) Sea level in Florida Bay drives well level and well salinity in the coastal Everglades; (2) Atlantic Multidecadal Oscillation (AMO) drives sea level, well level and well salinity; and (3) AMO and (El Niño Southern Oscillation) ENSO bi-causally interact. The thinking is that salt water intrusion links ocean-surface salinity with salinity of inland water sources, and sea level with inland water; that AMO and ENSO share a teleconnective relationship (perhaps through the atmosphere); and that AMO and ENSO both influence inland precipitation and thus well levels. Our results support these hypotheses, and we successfully construct a parsimonious phenomenological model that reproduces diagnosed nonlinear dynamics and system interactions. We propose that reconstructed data dynamics be used, along with other expert information, as a rigorous benchmark to guide specification and testing of hydrologic decision support models corresponding with real-world behavior.

  4. Ligament reconstruction with single bone tunnel technique for chronic symptomatic subtle injury of the Lisfranc joint in athletes.

    Science.gov (United States)

    Miyamoto, Wataru; Takao, Masato; Innami, Ken; Miki, Shinya; Matsushita, Takashi

    2015-08-01

    Only few procedures for Lisfranc ligaments reconstruction to treat subtle injury of the Lisfranc joint have been reported. We have developed a novel technique for Lisfranc ligaments reconstruction, which was applied to treat chronic symptomatic subtle injuries that had failed to respond to initial treatment or were misdiagnosed. This article describes the technique and its operative outcome in a small case series. Between April 2011 and October 2013, 5 (4 male and 1 female) athletes with a mean age of 19.4 (range 17-21) years were diagnosed with chronic subtle injury of the Lisfranc joint and underwent our novel reconstructive operation. In this technique, only a bone tunnel between the medial cuneiform and the second metatarsal bone is needed for near-anatomical reconstruction of the dorsal and interosseous ligaments. All patients were evaluated before and at 1 year after surgery using the American Orthopaedic Foot and Ankle Society (AOFAS) scale for the ankle-midfoot. In addition, the interval between surgery and return to athletic activity, defined as return to near pre-injury performance level, was investigated. Mean duration of postoperative follow-up was 18.8 (range 12-26) months. Mean AOFAS score improved significantly from 74.6 ± 2.5 (range 71-77) preoperatively to 96.0 ± 5.5 (range 90-100) at 1 year after the operation (p athletic activities and the interval between surgery and return to athletic activity was 16.8 ± 1.1 (range 15-18) weeks. There was no complication related to the operation. The results of this study suggest that our technique of Lisfranc ligaments reconstruction using autologous graft is effective for athletes with chronic subtle injury. Level IV, retrospective case series.

  5. Accelerated time-of-flight (TOF) PET image reconstruction using TOF bin subsetization and TOF weighting matrix pre-computation.

    Science.gov (United States)

    Mehranian, Abolfazl; Kotasidis, Fotis; Zaidi, Habib

    2016-02-07

    Time-of-flight (TOF) positron emission tomography (PET) technology has recently regained popularity in clinical PET studies for improving image quality and lesion detectability. Using TOF information, the spatial location of annihilation events is confined to a number of image voxels along each line of response, thereby the cross-dependencies of image voxels are reduced, which in turns results in improved signal-to-noise ratio and convergence rate. In this work, we propose a novel approach to further improve the convergence of the expectation maximization (EM)-based TOF PET image reconstruction algorithm through subsetization of emission data over TOF bins as well as azimuthal bins. Given the prevalence of TOF PET, we elaborated the practical and efficient implementation of TOF PET image reconstruction through the pre-computation of TOF weighting coefficients while exploiting the same in-plane and axial symmetries used in pre-computation of geometric system matrix. In the proposed subsetization approach, TOF PET data were partitioned into a number of interleaved TOF subsets, with the aim of reducing the spatial coupling of TOF bins and therefore to improve the convergence of the standard maximum likelihood expectation maximization (MLEM) and ordered subsets EM (OSEM) algorithms. The comparison of on-the-fly and pre-computed TOF projections showed that the pre-computation of the TOF weighting coefficients can considerably reduce the computation time of TOF PET image reconstruction. The convergence rate and bias-variance performance of the proposed TOF subsetization scheme were evaluated using simulated, experimental phantom and clinical studies. Simulations demonstrated that as the number of TOF subsets is increased, the convergence rate of MLEM and OSEM algorithms is improved. It was also found that for the same computation time, the proposed subsetization gives rise to further convergence. The bias-variance analysis of the experimental NEMA phantom and a clinical

  6. Revision Anterior Cruciate Ligament Reconstruction

    Science.gov (United States)

    Wilde, Jeffrey; Bedi, Asheesh; Altchek, David W.

    2014-01-01

    Context: Reconstruction of the anterior cruciate ligament (ACL) is one of the most common surgical procedures, with more than 200,000 ACL tears occurring annually. Although primary ACL reconstruction is a successful operation, success rates still range from 75% to 97%. Consequently, several thousand revision ACL reconstructions are performed annually and are unfortunately associated with inferior clinical outcomes when compared with primary reconstructions. Evidence Acquisition: Data were obtained from peer-reviewed literature through a search of the PubMed database (1988-2013) as well as from textbook chapters and surgical technique papers. Study Design: Clinical review. Level of Evidence: Level 4. Results: The clinical outcomes after revision ACL reconstruction are largely based on level IV case series. Much of the existing literature is heterogenous with regard to patient populations, primary and revision surgical techniques, concomitant ligamentous injuries, and additional procedures performed at the time of the revision, which limits generalizability. Nevertheless, there is a general consensus that the outcomes for revision ACL reconstruction are inferior to primary reconstruction. Conclusion: Excellent results can be achieved with regard to graft stability, return to play, and functional knee instability but are generally inferior to primary ACL reconstruction. A staged approach with autograft reconstruction is recommended in any circumstance in which a single-stage approach results in suboptimal graft selection, tunnel position, graft fixation, or biological milieu for tendon-bone healing. Strength-of-Recommendation Taxonomy (SORT): Good results may still be achieved with regard to graft stability, return to play, and functional knee instability, but results are generally inferior to primary ACL reconstruction: Level B. PMID:25364483

  7. Value of 100 kVp scan with sinogram-affirmed iterative reconstruction algorithm on a single-source CT system during whole-body CT for radiation and contrast medium dose reduction: an intra-individual feasibility study.

    Science.gov (United States)

    Nagayama, Y; Nakaura, T; Oda, S; Tsuji, A; Urata, J; Furusawa, M; Tanoue, S; Utsunomiya, D; Yamashita, Y

    2018-02-01

    To perform an intra-individual investigation of the usefulness of a contrast medium (CM) and radiation dose-reduction protocol using single-source computed tomography (CT) combined with 100 kVp and sinogram-affirmed iterative reconstruction (SAFIRE) for whole-body CT (WBCT; chest-abdomen-pelvis CT) in oncology patients. Forty-three oncology patients who had undergone WBCT under both 120 and 100 kVp protocols at different time points (mean interscan intervals: 98 days) were included retrospectively. The CM doses for the 120 and 100 kVp protocols were 600 and 480 mg iodine/kg, respectively; 120 kVp images were reconstructed with filtered back-projection (FBP), whereas 100 kVp images were reconstructed with FBP (100 kVp-F) and the SAFIRE (100 kVp-S). The size-specific dose estimate (SSDE), iodine load and image quality of each protocol were compared. The SSDE and iodine load of 100 kVp protocol were 34% and 21%, respectively, lower than of 120 kVp protocol (SSDE: 10.6±1.1 versus 16.1±1.8 mGy; iodine load: 24.8±4versus 31.5±5.5 g iodine, pquality. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  8. Helical cardiac cone beam reconstruction using retrospective ECG gating

    International Nuclear Information System (INIS)

    Grass, M; Manzke, R; Nielsen, T; Koken, P; Proksa, R; Natanzon, M; Shechter, G

    2003-01-01

    In modern computer tomography (CT) systems, the fast rotating gantry and the increased detector width enable 3D imaging of the heart. Cardiac volume CT has a high potential for non-invasive coronary angiography with high spatial resolution and short scan time. Due to the increased detector width, true cone beam reconstruction methods are needed instead of adapted 2D reconstruction schemes. In this paper, the extended cardiac reconstruction method is introduced. It integrates the idea of retrospectively gated cardiac reconstruction for helical data acquisition into a cone beam reconstruction framework. It leads to an efficient and flexible algorithmic scheme for the reconstruction of single- and multi-phase cardiac volume datasets. The method automatically adapts the number of cardiac cycles used for the reconstruction. The cone beam geometry is fully taken into account during the reconstruction process. Within this paper, results are presented on patient datasets which have been acquired using a 16-slice cone beam CT system

  9. Reconstructing the Spatio-Temporal Development of Irrigation Systems in Uzbekistan Using Landsat Time Series

    Directory of Open Access Journals (Sweden)

    Thomas Koellner

    2012-12-01

    Full Text Available The expansion of irrigated agriculture during the Soviet Union (SU era made Central Asia a leading cotton production region in the world. However, the successor states of the SU in Central Asia face on-going environmental damages and soil degradation that are endangering the sustainability of agricultural production. With Landsat MSS and TM data from 1972/73, 1977, 1987, 1998, and 2000 the expansion and densification of the irrigated cropland could be reconstructed in the Kashkadarya Province of Uzbekistan, Central Asia. Classification trees were generated by interpreting multitemporal normalized difference vegetation index data and crop phenological knowledge. Assessments based on image-derived validation samples showed good accuracy. Official statistics were found to be of limited use for analyzing the plausibility of the results, because they hardly represent the area that is cropped in the very dry study region. The cropping area increased from 134,800 ha in 1972/73 to 470,000 ha in 2009. Overlaying a historical soil map illustrated that initially sierozems were preferred for irrigated agriculture, but later the less favorable solonchaks and solonetzs were also explored, illustrating the strategy of agricultural expansion in the Aral Sea Basin. Winter wheat cultivation doubled between 1987 and 1998 to approximately 211,000 ha demonstrating its growing relevance for modern Uzbekistan. The spatial-temporal approach used enhances the understanding of natural conditions before irrigation is employed and supports decision-making for investments in irrigation infrastructure and land cultivation throughout the Landsat era.

  10. Relationships Between Tibiofemoral Contact Forces and Cartilage Morphology at 2 to 3 Years After Single-Bundle Hamstring Anterior Cruciate Ligament Reconstruction and in Healthy Knees.

    Science.gov (United States)

    Saxby, David John; Bryant, Adam L; Wang, Xinyang; Modenese, Luca; Gerus, Pauline; Konrath, Jason M; Bennell, Kim L; Fortin, Karine; Wrigley, Tim; Cicuttini, Flavia M; Vertullo, Christopher J; Feller, Julian A; Whitehead, Tim; Gallie, Price; Lloyd, David G

    2017-08-01

    Prevention of knee osteoarthritis (OA) following anterior cruciate ligament (ACL) rupture and reconstruction is vital. Risk of postreconstruction knee OA is markedly increased by concurrent meniscal injury. It is unclear whether reconstruction results in normal relationships between tibiofemoral contact forces and cartilage morphology and whether meniscal injury modulates these relationships. Since patients with isolated reconstructions (ie, without meniscal injury) are at lower risk for knee OA, we predicted that relationships between tibiofemoral contact forces and cartilage morphology would be similar to those of normal, healthy knees 2 to 3 years postreconstruction. In knees with meniscal injuries, these relationships would be similar to those reported in patients with knee OA, reflecting early degenerative changes. Cross-sectional study; Level of evidence, 3. Three groups were examined: (1) 62 patients who received single-bundle hamstring reconstruction with an intact, uninjured meniscus (mean age, 29.8 ± 6.4 years; mean weight, 74.9 ± 13.3 kg); (2) 38 patients with similar reconstruction with additional meniscal injury (ie, tear, repair) or partial resection (mean age, 30.6 ± 6.6 years; mean weight, 83.3 ± 14.3 kg); and (3) 30 ligament-normal, healthy individuals (mean age, 28.3 ± 5.2 years; mean weight, 74.9 ± 14.9 kg) serving as controls. All patients underwent magnetic resonance imaging to measure the medial and lateral tibial articular cartilage morphology (volumes and thicknesses). An electromyography-driven neuromusculoskeletal model determined medial and lateral tibiofemoral contact forces during walking. General linear models were used to assess relationships between tibiofemoral contact forces and cartilage morphology. In control knees, cartilage was thicker compared with that of isolated and meniscal-injured ACL-reconstructed knees, while greater contact forces were related to both greater tibial cartilage volumes (medial: R 2 = 0.43, β = 0

  11. Relationships Between Tibiofemoral Contact Forces and Cartilage Morphology at 2 to 3 Years After Single-Bundle Hamstring Anterior Cruciate Ligament Reconstruction and in Healthy Knees

    Science.gov (United States)

    Saxby, David John; Bryant, Adam L.; Wang, Xinyang; Modenese, Luca; Gerus, Pauline; Konrath, Jason M.; Bennell, Kim L.; Fortin, Karine; Wrigley, Tim; Cicuttini, Flavia M.; Vertullo, Christopher J.; Feller, Julian A.; Whitehead, Tim; Gallie, Price; Lloyd, David G.

    2017-01-01

    Background: Prevention of knee osteoarthritis (OA) following anterior cruciate ligament (ACL) rupture and reconstruction is vital. Risk of postreconstruction knee OA is markedly increased by concurrent meniscal injury. It is unclear whether reconstruction results in normal relationships between tibiofemoral contact forces and cartilage morphology and whether meniscal injury modulates these relationships. Hypotheses: Since patients with isolated reconstructions (ie, without meniscal injury) are at lower risk for knee OA, we predicted that relationships between tibiofemoral contact forces and cartilage morphology would be similar to those of normal, healthy knees 2 to 3 years postreconstruction. In knees with meniscal injuries, these relationships would be similar to those reported in patients with knee OA, reflecting early degenerative changes. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Three groups were examined: (1) 62 patients who received single-bundle hamstring reconstruction with an intact, uninjured meniscus (mean age, 29.8 ± 6.4 years; mean weight, 74.9 ± 13.3 kg); (2) 38 patients with similar reconstruction with additional meniscal injury (ie, tear, repair) or partial resection (mean age, 30.6 ± 6.6 years; mean weight, 83.3 ± 14.3 kg); and (3) 30 ligament-normal, healthy individuals (mean age, 28.3 ± 5.2 years; mean weight, 74.9 ± 14.9 kg) serving as controls. All patients underwent magnetic resonance imaging to measure the medial and lateral tibial articular cartilage morphology (volumes and thicknesses). An electromyography-driven neuromusculoskeletal model determined medial and lateral tibiofemoral contact forces during walking. General linear models were used to assess relationships between tibiofemoral contact forces and cartilage morphology. Results: In control knees, cartilage was thicker compared with that of isolated and meniscal-injured ACL-reconstructed knees, while greater contact forces were related to both

  12. THE ASSOCIATIONS BETWEEN HIP STRENGTH AND HIP KINEMATICS DURING A SINGLE LEG HOP IN RECREATIONAL ATHLETES POST ACL RECONSTRUCTION COMPARED TO HEALTHY CONTROLS.

    Science.gov (United States)

    Tate, Jeremiah; Suckut, Tell; Wages, Jensen; Lyles, Heather; Perrin, Benjamin

    2017-06-01

    Only a small amount of evidence exists linking hip abductor weakness to dynamic knee valgus during static and dynamic activities. The associations of hip extensor strength and hip kinematics during the landing of a single leg hop are not known. Purpose: To determine if relationships exist between hip extensor and abductor strength and hip kinematics in both involved and uninvolved limb during the landing phase of a single leg hop in recreational athletes post anterior cruciate ligament (ACL) reconstruction. The presence of similar associations was also evaluated in healthy recreational athletes. Controlled Laboratory Study; Cross-sectional. Twenty-four recreational college-aged athletes participated in the study (12 post ACL reconstruction; 12 healthy controls). Sagittal and frontal plane hip kinematic data were collected for five trials during the landing of a single leg hop. Hip extensor and abductor isometric force production was measured using a hand-held dynamometer and normalized to participants' height and weight. Dependent and independent t-tests were used to analyze for any potential differences in hip strength or kinematics within and between groups, respectively. Pearson's r was used to demonstrate potential associations between hip strength and hip kinematics for both limbs in the ACL group and the right limb in the healthy control group. Independent t-tests revealed that participants post ACL reconstruction exhibited less hip extensor strength (0.18 N/Ht*BW vs. 0.25 N/Ht*BW, p=hip adduction (9.0 º vs. 0.8 º, p=hip extensor strength and maximum hip abduction/adduction angle in the involved limb. A moderate and direct relationship between hip abductor strength and maximum hip flexion angle was demonstrated in the both the involved ( r =.62) and uninvolved limb ( r =.65, p=.02). No significant associations were demonstrated between hip extensor or abductor strength and hip flexion and/or abduction/adduction angles in the healthy group. The

  13. Lung Injury; Relates to Real-Time Endoscopic Monitoring of Single Cells Respiratory Health in Lung

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-16-1-0253 TITLE: Lung Injury; Relates to Real- Time Endoscopic Monitoring of Single Cells Respiratory Health in Lung...response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...Sep 2016 - 31 Aug 2017 5a. CONTRACT NUMBER 4. TITLE AND SUBTITLE Lung Injury; Relates to Real- Time Endoscopic Monitoring of Single Cells Respiratory

  14. Complications and Outcomes of Complex Spine Reconstructions in Poliomyelitis-Associated Spinal Deformities: A Single Institution Experience

    Science.gov (United States)

    Godzik, Jakub; Lenke, Lawrence G.; Holekamp, Terrence; Sides, Brenda; Kelly, Michael P.

    2014-01-01

    Study Design Retrospective case-series Objective Share our institutional experience with spinal reconstruction for deformity correction in patients with a history of poliomyelitis. Background Data Polio and post-polio syndrome are not uncommonly related to a paralytic spinal deformity. Limited modern data exists regarding outcomes and complications following spinal reconstruction in this population. Methods A clinical database was reviewed for patients undergoing spinal reconstruction for polio-associated spinal deformity at our institution from 1985 to 2012. Relevant demographic, medical, surgical and postoperative information were collected from medical records and analyzed. Preoperative and last follow-up SRS-22 scores were recorded. Results A total of 22 patients with polio who underwent surgical deformity correction were identified. Mean age was 49 years (Range, 12–74), and 15 patients (68%) were female. Preoperative motor deficit was present in 14/22 (64%). All patients underwent instrumented spinal fusion (Mean 13 vertebral levels, Range, 3–18). Ten (10/22, 45%) patients developed major complications, and four patients (4/22, 18%) developed new postoperative neurological deficits. Neurological monitoring yielded a 13% false negative rate. At 2-year follow-up (20/22), patients maintained an average coronal correction of 25 degrees (33%, p = 0.001) and sagittal correction of 25 degrees (34%, p = 0.003). Minimum 2-year follow-up data were available for 11/22 (50%) of patients. At an average of 72 months of follow-up (Range, 28 – 134 months), the mean SRS22 pain subscore improved from a mean of 2.75 to 3.6 (p = 0.012); self-image from 2.8 to 3.7 (p = 0.041); function from 3.1 to 3.8 (p = 0.036); satisfaction from 2.1 to 3.9 (p = 0.08); mental health from 3.7 to 4.5 (p = 0.115). Conclusion Spine reconstruction for poliomyelitis-associated deformity was associated with high complication rates (54%) and sometimes unreliable neurologic monitoring data. Despite

  15. Efficient use of single molecule time traces to resolve kinetic rates, models and uncertainties

    Science.gov (United States)

    Schmid, Sonja; Hugel, Thorsten

    2018-03-01

    Single molecule time traces reveal the time evolution of unsynchronized kinetic systems. Especially single molecule Förster resonance energy transfer (smFRET) provides access to enzymatically important time scales, combined with molecular distance resolution and minimal interference with the sample. Yet the kinetic analysis of smFRET time traces is complicated by experimental shortcomings—such as photo-bleaching and noise. Here we recapitulate the fundamental limits of single molecule fluorescence that render the classic, dwell-time based kinetic analysis unsuitable. In contrast, our Single Molecule Analysis of Complex Kinetic Sequences (SMACKS) considers every data point and combines the information of many short traces in one global kinetic rate model. We demonstrate the potential of SMACKS by resolving the small kinetic effects caused by different ionic strengths in the chaperone protein Hsp90. These results show an unexpected interrelation between conformational dynamics and ATPase activity in Hsp90.

  16. A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage

    Science.gov (United States)

    Faure, Emmanuel; Savy, Thierry; Rizzi, Barbara; Melani, Camilo; Stašová, Olga; Fabrèges, Dimitri; Špir, Róbert; Hammons, Mark; Čúnderlík, Róbert; Recher, Gaëlle; Lombardot, Benoît; Duloquin, Louise; Colin, Ingrid; Kollár, Jozef; Desnoulez, Sophie; Affaticati, Pierre; Maury, Benoît; Boyreau, Adeline; Nief, Jean-Yves; Calvat, Pascal; Vernier, Philippe; Frain, Monique; Lutfalla, Georges; Kergosien, Yannick; Suret, Pierre; Remešíková, Mariana; Doursat, René; Sarti, Alessandro; Mikula, Karol; Peyriéras, Nadine; Bourgine, Paul

    2016-01-01

    The quantitative and systematic analysis of embryonic cell dynamics from in vivo 3D+time image data sets is a major challenge at the forefront of developmental biology. Despite recent breakthroughs in the microscopy imaging of living systems, producing an accurate cell lineage tree for any developing organism remains a difficult task. We present here the BioEmergences workflow integrating all reconstruction steps from image acquisition and processing to the interactive visualization of reconstructed data. Original mathematical methods and algorithms underlie image filtering, nucleus centre detection, nucleus and membrane segmentation, and cell tracking. They are demonstrated on zebrafish, ascidian and sea urchin embryos with stained nuclei and membranes. Subsequent validation and annotations are carried out using Mov-IT, a custom-made graphical interface. Compared with eight other software tools, our workflow achieved the best lineage score. Delivered in standalone or web service mode, BioEmergences and Mov-IT offer a unique set of tools for in silico experimental embryology. PMID:26912388

  17. Performance on the modified star excursion balance test at the time of return to sport following anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Clagg, Sarah; Paterno, Mark V; Hewett, Timothy E; Schmitt, Laura C

    2015-06-01

    Cross-sectional. Objectives To compare performance on the modified Star Excursion Balance Test (SEBT) between participants with anterior cruciate ligament reconstruction (ACLR) at the time of return to sport and uninjured control participants. The modified SEBT is a clinical tool to assess neuromuscular control deficits. Deficits in dynamic stability and neuromuscular control persist after ACLR, but assessment with the modified SEBT in this population at the time of return to sport has not been reported. Sixty-six participants (mean age, 17.6 years) at the time of return to sport following unilateral primary ACLR (ACLR group) and 47 uninjured participants (mean age, 17.0 years) serving as a control group participated. For the modified SEBT, the anterior, posteromedial, and posterolateral reach distances were recorded. Lower extremity muscle strength was quantified with isokinetic dynamometry. Independent-sample t tests were used to evaluate performance differences between the ACLR group and the control group and between the ACLR subgroups. In the ACLR group, bivariate correlations determined the association of modified SEBT performance with time since surgery and lower extremity muscle strength. The ACLR group had lower anterior reach distances on the involved and uninvolved limbs compared to the control group. There were no differences observed between groups in reach distances for the posteromedial and posterolateral directions or in limb symmetry indices for any of the reach directions. In the ACLR group, time from surgery and meniscal status at the time of ACLR did not influence modified SEBT performance, whereas participants with patellar bone-tendon-bone grafts had a lower posterolateral reach distance compared to those with hamstring grafts. In the ACLR group, involved-limb hip abduction strength positively correlated with all reach distances, and quadriceps strength positively correlated with posterolateral reach. At the time of return to sport

  18. Single Sources in the Low-Frequency Gravitational Wave Sky:properties and time to detection by pulsar timing arrays

    Science.gov (United States)

    Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars; Sesana, Alberto; Taylor, Stephen R.

    2018-03-01

    We calculate the properties, occurrence rates and detection prospects of individually resolvable `single sources' in the low frequency gravitational wave (GW) spectrum. Our simulations use the population of galaxies and massive black hole binaries from the Illustris cosmological hydrodynamic simulations, coupled to comprehensive semi-analytic models of the binary merger process. Using mock pulsar timing arrays (PTA) with, for the first time, varying red-noise models, we calculate plausible detection prospects for GW single sources and the stochastic GW background (GWB). Contrary to previous results, we find that single sources are at least as detectable as the GW background. Using mock PTA, we find that these `foreground' sources (also `deterministic'/`continuous') are likely to be detected with ˜ 20 yr total observing baselines. Detection prospects, and indeed the overall properties of single sources, are only moderately sensitive to binary evolution parameters—namely eccentricity & environmental coupling, which can lead to differences of ˜ 5 yr in times to detection. Red noise has a stronger effect, roughly doubling the time to detection of the foreground between a white-noise only model (˜ 10 - 15 yr) and severe red noise (˜20 - 30 yr). The effect of red noise on the GWB is even stronger, suggesting that single source detections may be more robust. We find that typical signal-to-noise ratios for the foreground peak near f = 0.1 yr-1, and are much less sensitive to the continued addition of new pulsars to PTA.

  19. Optimisation and validation of a 3D reconstruction algorithm for single photon emission computed tomography by means of GATE simulation platform

    International Nuclear Information System (INIS)

    El Bitar, Ziad

    2006-12-01

    Although time consuming, Monte-Carlo simulations remain an efficient tool enabling to assess correction methods for degrading physical effects in medical imaging. We have optimized and validated a reconstruction method baptized F3DMC (Fully 3D Monte Carlo) in which the physical effects degrading the image formation process were modelled using Monte-Carlo methods and integrated within the system matrix. We used the Monte-Carlo simulation toolbox GATE. We validated GATE in SPECT by modelling the gamma-camera (Philips AXIS) used in clinical routine. Techniques of threshold, filtering by a principal component analysis and targeted reconstruction (functional regions, hybrid regions) were used in order to improve the precision of the system matrix and to reduce the number of simulated photons as well as the time consumption required. The EGEE Grid infrastructures were used to deploy the GATE simulations in order to reduce their computation time. Results obtained with F3DMC were compared with the reconstruction methods (FBP, ML-EM, MLEMC) for a simulated phantom and with the OSEM-C method for the real phantom. Results have shown that the F3DMC method and its variants improve the restoration of activity ratios and the signal to noise ratio. By the use of the grid EGEE, a significant speed-up factor of about 300 was obtained. These results should be confirmed by performing studies on complex phantoms and patients and open the door to a unified reconstruction method, which could be used in SPECT and also in PET. (author)

  20. Conformational analysis of single perfluoroalkyl chains by single-molecule real-time transmission electron microscopic imaging.

    Science.gov (United States)

    Harano, Koji; Takenaga, Shinya; Okada, Satoshi; Niimi, Yoshiko; Yoshikai, Naohiko; Isobe, Hiroyuki; Suenaga, Kazu; Kataura, Hiromichi; Koshino, Masanori; Nakamura, Eiichi

    2014-01-08

    Whereas a statistical average of molecular ensembles has been the conventional source of information on molecular structures, atomic resolution movies of single organic molecules obtained by single-molecule real-time transmission electron microscopy have recently emerged as a new tool to study the time evolution of the structures of individual molecules. The present work describes a proof-of-principle study of the determination of the conformation of each C-C bond in single perfluoroalkyl fullerene molecules encapsulated in a single-walled carbon nanotube (CNT) as well as those attached to the outer surface of a carbon nanohorn (CNH). Analysis of 82 individual molecules in CNTs under a 120 kV electron beam indicated that 6% of the CF2-CF2 bonds and about 20% of the CH2-CH2 bonds in the corresponding hydrocarbon analogue are in the gauche conformation. This comparison qualitatively matches the known conformational data based on time- and molecular-average as determined for ensembles. The transmission electron microscopy images also showed that the molecules entered the CNTs predominantly in one orientation. The molecules attached on a CNH surface moved more freely and exhibited more diverse conformation than those in a CNT, suggesting the potential applicability of this method for the determination of the dynamic shape of flexible molecules and of detailed conformations. We observed little sign of any decomposition of the specimen molecules, at least up to 10(7) e·nm(-2) (electrons/nm(2)) at 120 kV acceleration voltage. Decomposition of CNHs under irradiation with a 300 kV electron beam was suppressed by cooling to 77 K, suggesting that the decomposition is a chemical process. Several lines of evidence suggest that the graphitic substrate and the attached molecules are very cold.

  1. Reconstruction of cloud-free time series satellite observations of land surface temperature

    NARCIS (Netherlands)

    Ghafarian Malamiri, H.R.; Menenti, M.; Jia, L.; den Ouden, H.

    2012-01-01

    Time series satellite observations of land surface properties, like Land Surface Temperature (LST), often feature missing data or data with anomalous values due to cloud coverage, malfunction of sensor, atmospheric aerosols, defective cloud masking and retrieval algorithms. Preprocessing procedures

  2. Reconstructing past species assemblages reveals the changing patterns and drivers of extinction through time

    OpenAIRE

    Bromham, Lindell; Lanfear, Robert; Cassey, Phillip; Gibb, Gillian; Cardillo, Marcel

    2012-01-01

    Predicting future species extinctions from patterns of past extinctions or current threat status relies on the assumption that the taxonomic and biological selectivity of extinction is consistent through time. If the driving forces of extinction change through time, this assumption may be unrealistic. Testing the consistency of extinction patterns between the past and the present has been difficult, because the phylogenetically explicit methods used to model present-day extinction risk typica...

  3. Localised burst reconstruction from space-time PODs in a turbulent channel

    Science.gov (United States)

    Garcia-Gutierrez, Adrian; Jimenez, Javier

    2017-11-01

    The traditional proper orthogonal decomposition of the turbulent velocity fluctuations in a channel is extended to time under the assumption that the attractor is statistically stationary and can be treated as periodic for long-enough times. The objective is to extract space- and time-localised eddies that optimally represent the kinetic energy (and two-event correlation) of the flow. Using time-resolved data of a small-box simulation at Reτ = 1880 , minimal for y / h 0.25 , PODs are computed from the two-point spectral-density tensor Φ(kx ,kz , y ,y' , ω) . They are Fourier components in x, z and time, and depend on y and on the temporal frequency ω, or, equivalently, on the convection velocity c = ω /kx . Although the latter depends on y, a spatially and temporally localised `burst' can be synthesised by adding a range of PODs with specific phases. The results are localised bursts that are amplified and tilted, in a time-periodic version of Orr-like behaviour. Funded by the ERC COTURB project.

  4. Real-time visualization of intracellular hydrodynamics in single living cells

    NARCIS (Netherlands)

    Potma, Eric O.; Boeij, Wim P. de; Haastert, Peter J.M. van; Wiersma, Douwe A.

    2001-01-01

    Intracellular water concentrations in single living cells were visualized by nonlinear coherent anti-Stokes Raman scattering (CARS) microscopy. In combination with isotopic exchange measurements, CARS microscopy allowed the real-time observation of transient intracellular hydrodynamics at a high

  5. Single-staged resections and 3D reconstructions of the nasion, glabella, medial orbital wall, and frontal sinus and bone: Long-term outcome and review of the literature.

    Science.gov (United States)

    Ciporen, Jeremy; Lucke-Wold, Brandon P; Mendez, Gustavo; Chen, Anton; Banerjee, Amit; Akins, Paul T; Balough, Ben J

    2016-01-01

    Aesthetic facial appearance following neurosurgical ablation of frontal fossa tumors is a primary concern for patients and neurosurgeons alike. Craniofacial reconstruction procedures have drastically evolved since the development of three-dimensional computed tomography imaging and computer-assisted programming. Traditionally, two-stage approaches for resection and reconstruction were used; however, these two-stage approaches have many complications including cerebrospinal fluid leaks, necrosis, and pneumocephalus. We present two successful cases of single-stage osteoma resection and craniofacial reconstruction in a 26-year-old female and 65-year-old male. The biopolymer implants were preselected and contoured based on imaging prior to surgery. The ideal selection of appropriate flaps for reconstruction was imperative. The flaps were well vascularized and included a pedicle for easy translocation. Using a titanium mesh biopolymer implant for reconstruction in conjunction with a forehead flap proved advantageous, and the benefits of single-stage approaches were apparent. The patients recovered quickly after the surgery with complete resection of the osteoma and good aesthetic appearance. The flap adhered to the biopolymer implant, and the cosmetic appearance years after surgery remained decent. The gap between the bone and implant was less than 2 mm. The patients are highly satisfied with the symmetrical appearance of the reconstruction. Advances in technology are allowing neurosurgeons unprecedented opportunities to design complex yet feasible single-stage craniofacial reconstructions that improve a patient's quality of life by enhancing facial contours, aesthetics, and symmetry.

  6. Estimating trace deposition time with circadian biomarkers: a prospective and versatile tool for crime scene reconstruction

    Science.gov (United States)

    Ackermann, Katrin; Ballantyne, Kaye N.

    2010-01-01

    Linking biological samples found at a crime scene with the actual crime event represents the most important aspect of forensic investigation, together with the identification of the sample donor. While DNA profiling is well established for donor identification, no reliable methods exist for timing forensic samples. Here, we provide for the first time a biochemical approach for determining deposition time of human traces. Using commercial enzyme-linked immunosorbent assays we showed that the characteristic 24-h profiles of two circadian hormones, melatonin (concentration peak at late night) and cortisol (peak in the morning) can be reproduced from small samples of whole blood and saliva. We further demonstrated by analyzing small stains dried and stored up to 4 weeks the in vitro stability of melatonin, whereas for cortisol a statistically significant decay with storage time was observed, although the hormone was still reliably detectable in 4-week-old samples. Finally, we showed that the total protein concentration, also assessed using a commercial assay, can be used for normalization of hormone signals in blood, but less so in saliva. Our data thus demonstrate that estimating normalized concentrations of melatonin and cortisol represents a prospective approach for determining deposition time of biological trace samples, at least from blood, with promising expectations for forensic applications. In the broader context, our study opens up a new field of circadian biomarkers for deposition timing of forensic traces; future studies using other circadian biomarkers may reveal if the time range offered by the two hormones studied here can be specified more exactly. Electronic supplementary material The online version of this article (doi:10.1007/s00414-010-0457-1) contains supplementary material, which is available to authorized users. PMID:20419380

  7. X-ray microtomography scanner using time-delay integration for elimination of ring artefacts in the reconstructed image

    International Nuclear Information System (INIS)

    Davis, G.R.; London Univ.; Elliott, J.C.; London Univ.

    1997-01-01

    Most X-ray microtomography scanners work on the same principle as third-generation medical CT scanners, that is, the same point in each projection is measured by the same detector element. This leads to ring artefacts in the reconstructed image if the X-ray sensitivities of the individual detector elements, after any analytical correction, are not all identical. We have developed an X-ray microtomography scanner which uses the time-delay integration method of imaging with a CCD detector to average the characteristics of all the detector elements in each linear projection together. This has the added advantage of allowing specimens which are larger than the detector and X-ray field to be scanned. The device also uses a novel mechanical stage to ''average out'' inhomogeneities in the X-ray field. The results show that ring artefacts in microtomographic images are eliminated using this technique. (orig.)

  8. Efficient Time Frame Building for Online Data Reconstruction in ALICE Experiment

    Science.gov (United States)

    Rybalchenko, A.; Al-Turany, M.; Kouzinopoulos, C.; Winckler, N.

    2015-12-01

    After the Long Shutdown 2 period, the upgraded ALICE detector at the LHC will produce more than a terabyte of data per second. The data, constituted from a continuous un-triggered stream data, have to be distributed from about 250 First Level Processor nodes (FLPs) to about 1500 Event Processing Nodes (EPNs). Each FLP receives a small subset of the detector data that is chopped in sub-time frames. One EPN needs all the fragments from the 250 FLPs to build a full time frame. An algorithm has been implemented on the FLPs with the aim of optimizing the usage of the network connecting the FLPs and EPNs. The algorithm minimizes contention when several FLPs are sending to the same EPN. An adequate traffic shaping is implemented by delaying the sending time of each FLP by a unique offset. The payloads are stored in a buffer large enough to accommodate the delay provoked by the maximum number of FLPs. As the buffers are queued for sending, the FLPs can operate with the highest efficiency. Using the time information embedded in the data any further FLP synchronization can be avoided. Moreover, zero-copy and multipart messages of ZeroMQ are used to create full time frames on the EPNs without the overhead of copying the payloads. The concept and the performance measurement of the implementation on a reference computing cluster are presented.

  9. Nonparametric model reconstruction for stochastic differential equations from discretely observed time-series data.

    Science.gov (United States)

    Ohkubo, Jun

    2011-12-01

    A scheme is developed for estimating state-dependent drift and diffusion coefficients in a stochastic differential equation from time-series data. The scheme does not require to specify parametric forms for the drift and diffusion coefficients in advance. In order to perform the nonparametric estimation, a maximum likelihood method is combined with a concept based on a kernel density estimation. In order to deal with discrete observation or sparsity of the time-series data, a local linearization method is employed, which enables a fast estimation.

  10. Comparison of a spatio-temporal speleothem-based reconstruction of late Holocene climate variability to the timing of cultural developments

    Science.gov (United States)

    Deininger, Michael; Lippold, Jörg; Abele, Florian; McDermott, Frank

    2016-04-01

    Speleothems are considered as a valuable continental climate archive. Their δ18O records provide information onto past changes of the atmospheric circulation accompanied by changes in surface air temperature and precipitation. During the last decades European speleothem studies have assembled a European speleothem network (including numerous speleothem δ18O records) that allow now not only to picture past climate variability in time but also in space. In particular the climate variability of the last 4.5 ka was investigated by these studies. This allows the comparison of the speleothem-based reconstructed palaeoclimate with the timings of the rise and fall of ancient civilisations in this period - including the Dark Ages. Here we evaluate a compilation of 10 speleothem δ18O records covering the last 4.5 ka using a Monte Carlo based Principal Component Analysis (MC-PCA) that accounts for uncertainties in individual speleothem age models and for the different and varying temporal resolutions of each speleothem δ18O record. Our MC-PCA approach allows not only the identification of temporally coherent changes in δ18O records, i.e. the common signal in all investigated speleothem δ18O records, but it also facilitates their depiction and evaluation spatially. The speleothem δ18O records are spanning almost the entire European continent ranging from the western Margin of the European continent to Northern Turkey and from Northern Italy to Norway. For the MC-PCA analysis the 4.5 ka are divided into eight 1ka long time windows that overlap the subsequent time window by 500 years to allow a comparison of the spatio-temporal evolution of the common signal. For every single time window we derive a common mode of climate variability of all speleothem δ18O records as well as its spatial extent. This allows us to compare the rise and fall of ancient civilisations, like the Hittite and the Roman Empire, with our reconstructed spatio-temporal record.

  11. Time-resolved C-arm cone beam CT angiography (TR-CBCTA) imaging from a single short-scan C-arm cone beam CT acquisition with intra-arterial contrast injection

    Science.gov (United States)

    Li, Yinsheng; Garrett, John W.; Li, Ke; Wu, Yijing; Johnson, Kevin; Schafer, Sebastian; Strother, Charles; Chen, Guang-Hong

    2018-04-01

    Time-resolved C-arm cone-beam CT (CBCT) angiography (TR-CBCTA) images can be generated from a series of CBCT acquisitions that satisfy data sufficiency condition in analytical image reconstruction theory. In this work, a new technique was developed to generate TR-CBCTA images from a single short-scan CBCT data acquisition with contrast media injection. The reconstruction technique enabling this application is a previously developed image reconstruction technique, synchronized multi-artifact reduction with tomographic reconstruction (SMART-RECON). In this new application, the acquired short-scan CBCT projection data were sorted into a union of several sub-sectors of view angles and each sub-sector of view angles corresponds to an individual image volume to be reconstructed. The SMART-RECON method was then used to jointly reconstruct all of these individual image volumes under two constraints: (1) each individual image volume is maximally consistent with the measured cone-beam projection data within the corresponding view angle sector and (2) the nuclear norm of the image matrix is minimized. The difference between these reconstructed individual image volumes is used to generated the desired subtracted angiograms. To validate the technique, numerical simulation data generated from a fractal tree angiogram phantom were used to quantitatively study the accuracy of the proposed method and retrospective in vivo human subject studies were used to demonstrate the feasibility of generating TR-CBCTA in clinical practice.

  12. A Smartphone Interface for a Wireless EEG Headset with Real-Time 3D Reconstruction

    DEFF Research Database (Denmark)

    Stopczynski, Arkadiusz; Larsen, Jakob Eg; Stahlhut, Carsten

    2011-01-01

    We demonstrate a fully functional handheld brain scanner consisting of a low-cost 14-channel EEG headset with a wireless connec- tion to a smartphone, enabling minimally invasive EEG monitoring in naturalistic settings. The smartphone provides a touch-based interface with real-time brain state...

  13. Reconstruction of the cophylogenetic history of related phylogenetic trees with divergence timing information.

    Science.gov (United States)

    Merkle, Daniel; Middendorf, Martin

    2005-04-01

    In this paper, we present a method and a corresponding tool called Tarzan for cophylogeny analysis of phylogenetic trees where the nodes are labelled with divergence timing information. The tool can be used for example to infer the common history of hosts and their parasites, of insect-plant relations or symbiotic relationships. Our method does the reconciliation analysis using an event-based concept where each event is assigned a cost and cost minimal solutions are sought. The events that are used by Tarzan are cospeciations, sortings, duplications, and (host) switches. Different from existing tools, Tarzan can handle more complex timing information of the phylogenetic trees for the analysis. This is important because several recent studies of cophylogenetic relationship have shown that timing information can be very important for the correct interpretation of results from cophylogenetic analysis. We present two examples (one host-parasite system and one insect-plant system) that show how divergence timing information can be integrated into reconciliation analysis and how this influences the results.

  14. Time Consuming: Women's Radio and the Reconstruction of National Narratives in Western Germany 1945-1948

    NARCIS (Netherlands)

    Badenoch, Alexander

    2007-01-01

    The question of the proper place of women in German society was one of the most pressing issues of the time immediately after the Second World War. The sheer numerical disproportion of women to men in Germany, combined with the expanded public roles many women had adopted during wartime, meant that

  15. In vivo three-dimensional imaging analysis of femoral and tibial tunnel locations in single and double bundle anterior cruciate ligament reconstructions.

    Science.gov (United States)

    Yang, Jae-Hyuk; Chang, Minho; Kwak, Dai-Soon; Jang, Ki-Mo; Wang, Joon Ho

    2014-03-01

    Anatomic footprint restoration of anterior cruciate ligament (ACL) is recommended during reconstruction surgery. The purpose of this study was to compare and analyze the femoral and tibial tunnel positions of transtibial single bundle (SB) and transportal double bundle (DB) ACL reconstruction using three-dimensional computed tomography (3D-CT). In this study, 26 patients who underwent transtibial SB ACL reconstruction and 27 patients with transportal DB ACL reconstruction using hamstring autograft. 3D-CTs were taken within 1 week after the operation. The obtained digital images were then imported into the commercial package Geomagic Studio v10.0. The femoral tunnel positions were evaluated using the quadrant method. The mean, standard deviation, standard error, minimum, maximum, and 95% confidence interval values were determined for each measurement. The femoral tunnel for the SB technique was located 35.07% ± 5.33% in depth and 16.62% ± 4.99% in height. The anteromedial (AM) and posterolateral (PL) tunnel of DB technique was located 30.48% ± 5.02% in depth, 17.12% ± 5.84% in height and 34.76% ± 5.87% in depth, 45.55% ± 6.88% in height, respectively. The tibial tunnel with the SB technique was located 45.43% ± 4.81% from the anterior margin and 47.62% ± 2.51% from the medial tibial articular margin. The AM and PL tunnel of the DB technique was located 33.76% ± 7.83% from the anterior margin, 45.56% ± 2.71% from the medial tibial articular margin and 53.19% ± 3.74% from the anterior margin, 46.00% ± 2.48% from the medial tibial articular margin, respectively. The tibial tunnel position with the transtibial SB technique was located between the AM and PL tunnel positions formed with the transportal DB technique. Using the 3D-CT measuring method, the location of the tibia tunnel was between the AM and PL footprints, but the center of the femoral tunnel was at more shallow position from the AM bundle footprint when ACL reconstruction was performed by the

  16. The effect of intraoperative fluoroscopy on the accuracy of femoral tunnel placement in single-bundle anatomic ACL reconstruction.

    Science.gov (United States)

    Inderhaug, Eivind; Larsen, Allan; Waaler, Per Arne; Strand, Torbjørn; Harlem, Thomas; Solheim, Eirik

    2017-04-01

    The purpose of the current study was to investigate the potential effect of intraoperative fluoroscopy on the accuracy of femoral tunnel placement in anatomic ACL reconstruction, using an ideal anatomic point as reference and evaluating postoperative tunnel placement based on 3D CT. An experienced ACL surgeon, using the anatomic approach for femoral tunnel placement, relying on intraarticular landmarks and remnants of the torn ACL-and novel to the fluoroscopic assist-was introduced to its use. A prospective series of patients was included where group 1 (without fluoroscopy) and group 2 (with fluoroscopy) both had postoperative CT scans so that femoral tunnel position could be evaluated and compared to an ideal tunnel centre based on anatomic studies by using the Bernard and Hertel grid. Group 2, where fluoroscopy was used, had a mean femoral tunnel that was closer to the ideal anatomic centre than group 1. In the Bernard and Hertel grid, the distance in the high-low axis (y-axis) was found significantly closer (P = 0.001), whilst the deep-shallow axis (x-axis) and a total absolute distance were not significantly closer to the ideal described anatomic centre. Intraoperative fluoroscopy was found effective as an aid for placing the femoral tunnel in a more accurate position, as compared to a desired anatomic centre. Although the concept of the "one-size-fits-all" approach for tunnel placement is debatable, the avoidance of grossly misplaced tunnels is the benefit of using fluoroscopy during ACL reconstruction. The authors hold that fluoroscopy is readily available, safe and easy to use and therefore a good aid in the anatomic approach for graft tunnel placement, for example, in a learning situation, in revision cases and when performing low volumes of such surgery. III.

  17. Single center outcomes after reconstructive surgical correction of adult acquired buried penis: measurements of erectile function, depression, and quality of life.

    Science.gov (United States)

    Rybak, James; Larsen, Stephen; Yu, Michelle; Levine, Laurence A

    2014-04-01

    Management of adult acquired buried penis is a troublesome situation for both patient and surgeon. The buried penis has been associated with significant erectile and voiding dysfunction, depression, and overall poor quality of life (QOL). To identify outcomes following reconstructive surgery with release of buried penis, escutcheonectomy, and circumcision with or without skin grafting. We retrospectively identified 11 patients treated by a single surgeon between 2007 and 2011, patient ages were 44-69; complete data review was available on all 11. Validated European Organisation for Research and Treatment of Cancer 15 QOL, Center for Epidemiologic Studies Depression Scale (CES-D), and International Index of Erectile Function (IIEF) surveys assessed patient QOL, depression, and erectile function pre- and postoperatively. Mean body mass index (BMI) was 48.8 (42.4-64.6). Mean operative time was 191 minutes (139-272). Mean length of stay was 2.1 days. Ten of 11 patients required phallic skin grafting. There was one perioperative complication resulting in respiratory failure and overnight stay in the intensive care unit. Wound complications were seen in 2/11 patients, and 1 needed surgical debridement for superficial wound infection. Skin graft take was seen in 100% of the patients. Ninety-one percent of patients noted significant improvement in voiding postoperatively. Ninety-one percent of patients reported significant erectile dysfunction preoperatively. Subsequently, IIEF scores improved post surgery by an average of 7.7 points. Clinical depression was noted to be present in 7/11 patients preoperatively and 2/11 postoperatively based on CES-D surveys. QOL improved significantly in 10/11 compared with preoperative baseline; however, many patients noted significant difficulties based on their weight and other comorbidities. Management of adult acquired buried penis is a challenging, yet correctable problem. In our series it appears that by using established surgical

  18. Reconstructing disturbance history for an intensively mined region by time-series analysis of Landsat imagery.

    Science.gov (United States)

    Li, Jing; Zipper, Carl E; Donovan, Patricia F; Wynne, Randolph H; Oliphant, Adam J

    2015-09-01

    Surface mining disturbances have attracted attention globally due to extensive influence on topography, land use, ecosystems, and human populations in mineral-rich regions. We analyzed a time series of Landsat satellite imagery to produce a 28-year disturbance history for surface coal mining in a segment of eastern USA's central Appalachian coalfield, southwestern Virginia. The method was developed and applied as a three-step sequence: vegetation index selection, persistent vegetation identification, and mined-land delineation by year of disturbance. The overall classification accuracy and kappa coefficient were 0.9350 and 0.9252, respectively. Most surface coal mines were identified correctly by location and by time of initial disturbance. More than 8 % of southwestern Virginia's >4000-km(2) coalfield area was disturbed by surface coal mining over the 28-year period. Approximately 19.5 % of the Appalachian coalfield surface within the most intensively mined county (Wise County) has been disturbed by mining. Mining disturbances expanded steadily and progressively over the study period. Information generated can be applied to gain further insight concerning mining influences on ecosystems and other essential environmental features.

  19. Impact of Sequencing of Postmastectomy Radiotherapy and Breast Reconstruction on Timing and Rate of Complications and Patient Satisfaction

    International Nuclear Information System (INIS)

    Adesiyun, Tolulope A.; Lee, Bernard T.; Yueh, Janet H.; Chen, Chen; Colakoglu, Salih; Anderson, Katarina E.M.; Nguyen, Minh-Doan T.; Recht, Abram

    2011-01-01

    Purpose: There are few long-term studies of how the sequencing of postmastectomy radiotherapy (PMRT) and breast reconstruction (BR) affects the time to development of complications or patient satisfaction with BR. We therefore studied this issue. Methods and Materials: One hundred thirteen women who underwent BR at Beth Israel Deaconess Medical Center (Boston, MA) from 1999-2006 and also received PMRT were included. Complications requiring surgery were categorized as early (within 90 days of BR) or late. The median length of follow-up after BR was 46.5 months. Patients' general and esthetic satisfaction was assessed with a validated questionnaire. Results: Complications occurred among 32% of 57 women receiving PMRT before BR and 44% of 57 patients having BR before PMRT (p = 0.176). Early complications were more frequent in patients who had PMRT first (18%) than for those with BR first (11%) (p = 0.210); conversely, late complication rates in the two groups were 14% and 33%, respectively (p = 0.009). General satisfaction was comparable between the PMRT-first and BR-first groups (68% and 68%, respectively; p = 0.995); esthetic satisfaction rates were also similar (50% and 62%, respectively; p = 0.238). Conclusions: The sequencing of PMRT and BR did not have a substantial impact on the total risk of complications or patients' general and esthetic satisfaction. However, early complications tended to develop in patients having PMRT first, whereas patients having BR first had a higher risk of late complications. Additional study of the effects of sequencing of PMRT on particular types of reconstructions may help devise strategies for reducing these risks.

  20. Reconstructing surface ocean circulation with129I time series records from corals.

    Science.gov (United States)

    Chang, Ching-Chih; Burr, George S; Jull, A J Timothy; Russell, Joellen L; Biddulph, Dana; White, Lara; Prouty, Nancy G; Chen, Yue-Gau; Shen, Chuan-Chou; Zhou, Weijian; Lam, Doan Dinh

    2016-12-01

    The long-lived radionuclide 129 I (half-life: 15.7 × 10 6  yr) is well-known as a useful environmental tracer. At present, the global 129 I in surface water is about 1-2 orders of magnitude higher than pre-1960 levels. Since the 1990s, anthropogenic 129 I produced from industrial nuclear fuels reprocessing plants has been the primary source of 129 I in marine surface waters of the Atlantic and around the globe. Here we present four coral 129 I time series records from: 1) Con Dao and 2) Xisha Islands, the South China Sea, 3) Rabaul, Papua New Guinea and 4) Guam. The Con Dao coral 129 I record features a sudden increase in 129 I in 1959. The Xisha coral shows similar peak values for 129 I as the Con Dao coral, punctuated by distinct low values, likely due to the upwelling in the central South China Sea. The Rabaul coral features much more gradual 129 I increases in the 1970s, similar to a published record from the Solomon Islands. The Guam coral 129 I record contains the largest measured values for any site, with two large peaks, in 1955 and 1959. Nuclear weapons testing was the primary 129 I source in the Western Pacific in the latter part of the 20th Century, notably from testing in the Marshall Islands. The Guam 1955 peak and Con Dao 1959 increases are likely from the 1954 Castle Bravo test, and the Operation Hardtack I test is the most likely source of the 1959 peak observed at Guam. Radiogenic iodine found in coral was carried primarily through surface ocean currents. The coral 129 I time series data provide a broad picture of the surface distribution and depth penetration of 129 I in the Pacific Ocean over the past 60 years. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Reconstructing surface ocean circulation with 129I time series records from corals

    Science.gov (United States)

    Chang, Ching-Chih; Burr, George S.; Jull, A. J. Timothy; Russell, Joellen L.; Biddulph, Dana; White, Lara; Prouty, Nancy G.; Chen, Yue-Gau; Chuan-Chou Shen,; Zhou, Weijian; Lam, Doan Dinh

    2016-01-01

    The long-lived radionuclide 129I (half-life: 15.7 × 106 yr) is well-known as a useful environmental tracer. At present, the global 129I in surface water is about 1–2 orders of magnitude higher than pre-1960 levels. Since the 1990s, anthropogenic 129I produced from industrial nuclear fuels reprocessing plants has been the primary source of 129I in marine surface waters of the Atlantic and around the globe. Here we present four coral 129I time series records from: 1) Con Dao and 2) Xisha Islands, the South China Sea, 3) Rabaul, Papua New Guinea and 4) Guam. The Con Dao coral 129I record features a sudden increase in 129I in 1959. The Xisha coral shows similar peak values for 129I as the Con Dao coral, punctuated by distinct low values, likely due to the upwelling in the central South China Sea. The Rabaul coral features much more gradual 129I increases in the 1970s, similar to a published record from the Solomon Islands. The Guam coral 129I record contains the largest measured values for any site, with two large peaks, in 1955 and 1959. Nuclear weapons testing was the primary 129I source in the Western Pacific in the latter part of the 20th Century, notably from testing in the Marshall Islands. The Guam 1955 peak and Con Dao 1959 increases are likely from the 1954 Castle Bravo test, and the Operation Hardtack I test is the most likely source of the 1959 peak observed at Guam. Radiogenic iodine found in coral was carried primarily through surface ocean currents. The coral 129I time series data provide a broad picture of the surface distribution and depth penetration of 129I in the Pacific Ocean over the past 60 years.

  2. MO-DE-207A-08: Four-Dimensional Cone-Beam CT Iterative Reconstruction with Time-Ordered Chain Graph Model for Non-Periodic Organ Motion and Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, M; Haga, A; Hanaoka, S; Nakagawa, K [The University of Tokyo Hospital, Bunkyo-ku, Tokyo (Japan); Kotoku, J [Teikyo University, Itabashi-ku, Tokyo (Japan); Magome, T [Komazawa University, Setagaya-ku, Tokyo (Japan); Masutani, Y [Hiroshima-City University, Hiroshima, Hiroshima (Japan)

    2016-06-15

    Purpose: The purpose of this study is to propose a new concept of four-dimensional (4D) cone-beam CT (CBCT) reconstruction for non-periodic organ motion using the Time-ordered Chain Graph Model (TCGM), and to compare the reconstructed results with the previously proposed methods, the total variation-based compressed sensing (TVCS) and prior-image constrained compressed sensing (PICCS). Methods: CBCT reconstruction method introduced in this study consisted of maximum a posteriori (MAP) iterative reconstruction combined with a regularization term derived from a concept of TCGM, which includes a constraint coming from the images of neighbouring time-phases. The time-ordered image series were concurrently reconstructed in the MAP iterative reconstruction framework. Angular range of projections for each time-phase was 90 degrees for TCGM and PICCS, and 200 degrees for TVCS. Two kinds of projection data, an elliptic-cylindrical digital phantom data and two clinical patients’ data, were used for reconstruction. The digital phantom contained an air sphere moving 3 cm along longitudinal axis, and temporal resolution of each method was evaluated by measuring the penumbral width of reconstructed moving air sphere. The clinical feasibility of non-periodic time-ordered 4D CBCT reconstruction was also examined using projection data of prostate cancer patients. Results: The results of reconstructed digital phantom shows that the penumbral widths of TCGM yielded the narrowest result; PICCS and TCGM were 10.6% and 17.4% narrower than that of TVCS, respectively. This suggests that the TCGM has the better temporal resolution than the others. Patients’ CBCT projection data were also reconstructed and all three reconstructed results showed motion of rectal gas and stool. The result of TCGM provided visually clearer and less blurring images. Conclusion: The present study demonstrates that the new concept for 4D CBCT reconstruction, TCGM, combined with MAP iterative reconstruction

  3. MO-DE-207A-08: Four-Dimensional Cone-Beam CT Iterative Reconstruction with Time-Ordered Chain Graph Model for Non-Periodic Organ Motion and Deformation

    International Nuclear Information System (INIS)

    Nakano, M; Haga, A; Hanaoka, S; Nakagawa, K; Kotoku, J; Magome, T; Masutani, Y

    2016-01-01

    Purpose: The purpose of this study is to propose a new concept of four-dimensional (4D) cone-beam CT (CBCT) reconstruction for non-periodic organ motion using the Time-ordered Chain Graph Model (TCGM), and to compare the reconstructed results with the previously proposed methods, the total variation-based compressed sensing (TVCS) and prior-image constrained compressed sensing (PICCS). Methods: CBCT reconstruction method introduced in this study consisted of maximum a posteriori (MAP) iterative reconstruction combined with a regularization term derived from a concept of TCGM, which includes a constraint coming from the images of neighbouring time-phases. The time-ordered image series were concurrently reconstructed in the MAP iterative reconstruction framework. Angular range of projections for each time-phase was 90 degrees for TCGM and PICCS, and 200 degrees for TVCS. Two kinds of projection data, an elliptic-cylindrical digital phantom data and two clinical patients’ data, were used for reconstruction. The digital phantom contained an air sphere moving 3 cm along longitudinal axis, and temporal resolution of each method was evaluated by measuring the penumbral width of reconstructed moving air sphere. The clinical feasibility of non-periodic time-ordered 4D CBCT reconstruction was also examined using projection data of prostate cancer patients. Results: The results of reconstructed digital phantom shows that the penumbral widths of TCGM yielded the narrowest result; PICCS and TCGM were 10.6% and 17.4% narrower than that of TVCS, respectively. This suggests that the TCGM has the better temporal resolution than the others. Patients’ CBCT projection data were also reconstructed and all three reconstructed results showed motion of rectal gas and stool. The result of TCGM provided visually clearer and less blurring images. Conclusion: The present study demonstrates that the new concept for 4D CBCT reconstruction, TCGM, combined with MAP iterative reconstruction

  4. Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    Buttafava, Mauro, E-mail: mauro.buttafava@polimi.it; Boso, Gianluca; Ruggeri, Alessandro; Tosi, Alberto [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Dalla Mora, Alberto [Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy)

    2014-08-15

    We present the design and characterization of a complete single-photon counting module capable of time-gating a silicon single-photon avalanche diode with ON and OFF transition times down to 110 ps, at repetition rates up to 80 MHz. Thanks to this sharp temporal filtering of incoming photons, it is possible to reject undesired strong light pulses preceding (or following) the signal of interest, allowing to increase the dynamic range of optical acquisitions up to 7 decades. A complete experimental characterization of the module highlights its very flat temporal response, with a time resolution of the order of 30 ps. The instrument is fully user-configurable via a PC interface and can be easily integrated in any optical setup, thanks to its small and compact form factor.

  5. A 30 ps Timing Resolution for Single Photons with Multi-pixel Burle MCP-PMT

    Energy Technology Data Exchange (ETDEWEB)

    Va' vra, J.; Benitez, J.; Coleman, J.; Leith, D.W.G.S.; Mazaheri, G.; Ratcliff, B.; Schwiening, J.; /SLAC

    2006-07-05

    We have achieved {approx}30 psec single-photoelectron and {approx}12ps for multi-photoelectron timing resolution with a new 64 pixel Burle MCP-PMT with 10 micron microchannel holes. We have also demonstrated that this detector works in a magnetic field of 15kG, and achieved a single-photoelectron timing resolution of better than 60 psec. The study is relevant for a new focusing DIRC RICH detector for particle identification at future Colliders such as the super B-factory or ILC, and for future TOF techniques. This study shows that a highly pixilated MCP-PMT can deliver excellent timing resolution.

  6. Time-incremental creep–fatigue damage rule for single crystal Ni-base

    NARCIS (Netherlands)

    W.A.M. Brekelmans; T. Tinga; M.G.D. Geers

    2009-01-01

    In the present paper a damage model for single crystal Ni-base superalloys is proposed that integrates time-dependent and cyclic damage into a generally applicable time-incremental damage rule. A criterion based on the Orowan stress is introduced to detect slip reversal on the microscopic level

  7. Time-incremental creep–fatigue damage rule for single crystal Ni-base superalloys

    NARCIS (Netherlands)

    Tinga, Tiedo; Brekelmans, W.A.M.; Geers, M.G.D.

    2009-01-01

    In the present paper a damage model for single crystal Ni-base superalloys is proposed that integrates time-dependent and cyclic damage into a generally applicable time-incremental damage rule. A criterion based on the Orowan stress is introduced to detect slip reversal on the microscopic level and

  8. Operative and Oncologic Outcomes in 9861 Patients with Operable Breast Cancer: Single-Institution Analysis of Breast Conservation with Oncoplastic Reconstruction.

    Science.gov (United States)

    Carter, Stacey A; Lyons, Genevieve R; Kuerer, Henry M; Bassett, Roland L; Oates, Scott; Thompson, Alastair; Caudle, Abigail S; Mittendorf, Elizabeth A; Bedrosian, Isabelle; Lucci, Anthony; DeSnyder, Sarah M; Babiera, Gildy; Yi, Min; Baumann, Donald P; Clemens, Mark W; Garvey, Patrick B; Hunt, Kelly K; Hwang, Rosa F

    2016-10-01

    Oncoplastic reconstruction is an approach that enables patients with locally advanced or adversely located tumors to undergo breast conserving surgery (BCS). The objectives were to identify the use of BCS with oncoplastic reconstruction (BCS + R) and determine the operative and oncologic outcomes compared with other breast surgical procedures for breast cancer. This retrospective cohort study interrogated a single institution's prospectively maintained databases to identify patients who underwent surgery for breast cancer between 2007 and 2014. Surgeries were categorized as BCS, BCS + R, total mastectomy (TM), or TM with immediate reconstruction (TM + R). Demographic and clinicopathologic characteristics and postoperative complications were analyzed. There were 10,607 operations performed for 9861 patients. Median follow-up was 3.4 years (range, 0-9.1 years). The use of BCS + R had a nearly fourfold increase in the percentage of all breast cancer surgeries during the study period; 75 % of patients who underwent BCS + R had a T1 or T2 tumor. There was no difference in the use of BCS + R compared with BCS for any quadrant of the breast except the lower outer quadrant (11.1 vs. 6.8 %; p < .0001). BCS + R had a lower rate of seroma formation (13.4 vs. 18 %; p = .002) and positive or close margins compared with BCS (5.8 vs. 8.3 %; p = .04). There was no difference in overall survival or recurrence-free survival when comparing BCS and BCS + R. Patients undergoing BCS + R are not disadvantaged in terms of complications and short-term (3-year) outcomes compared with BCS patients or patients who underwent TM.

  9. Analysis of single-photon time resolution of FBK silicon photomultipliers

    International Nuclear Information System (INIS)

    Acerbi, Fabio; Ferri, Alessandro; Gola, Alberto; Zorzi, Nicola; Piemonte, Claudio

    2015-01-01

    We characterized and analyzed an important feature of silicon photomultipliers: the single-photon time resolution (SPTR). We characterized the SPTR of new RGB (Red–Green–Blue) type Silicon Photomultipliers and SPADs produced at FBK (Trento, Italy), studying its main limiting factors. We compared time resolution of 1×1 mm 2 and 3×3 mm 2 SiPMs and a single SiPM cell (i.e. a SPAD with integrated passive-quenching), employing a mode-locked pulsed laser with 2-ps wide pulses. We estimated the contribution of front-end electronic-noise, of cell-to-cell uniformity, and intrinsic cell time-resolution. At a single-cell level, we compared the results obtained with different layouts. With a circular cell with a top metallization covering part of the edge and enhancing the signal extraction, we reached ~20 ps FWHM of time resolution

  10. Analysis of single-photon time resolution of FBK silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Acerbi, Fabio, E-mail: acerbi@fbk.eu; Ferri, Alessandro; Gola, Alberto; Zorzi, Nicola; Piemonte, Claudio

    2015-07-01

    We characterized and analyzed an important feature of silicon photomultipliers: the single-photon time resolution (SPTR). We characterized the SPTR of new RGB (Red–Green–Blue) type Silicon Photomultipliers and SPADs produced at FBK (Trento, Italy), studying its main limiting factors. We compared time resolution of 1×1 mm{sup 2} and 3×3 mm{sup 2} SiPMs and a single SiPM cell (i.e. a SPAD with integrated passive-quenching), employing a mode-locked pulsed laser with 2-ps wide pulses. We estimated the contribution of front-end electronic-noise, of cell-to-cell uniformity, and intrinsic cell time-resolution. At a single-cell level, we compared the results obtained with different layouts. With a circular cell with a top metallization covering part of the edge and enhancing the signal extraction, we reached ~20 ps FWHM of time resolution.

  11. Time-reversed optical focusing through scattering media by digital full phase and amplitude recovery using a single phase-only SLM

    Directory of Open Access Journals (Sweden)

    Qiang Yang

    2015-03-01

    Full Text Available Focusing light though scattering media beyond the ballistic regime is a challenging task in biomedical optical imaging. This challenge can be overcome by wavefront shaping technique, in which a time-reversed (TR wavefront of scattered light is generated to suppress the scattering. In previous TR optical focusing experiments, a phase-only spatial light modulator (SLM has been typically used to control the wavefront of incident light. Unfortunately, although the phase information is reconstructed by the phase-only SLM, the amplitude information is lost, resulting in decreased peak-to-background ratio (PBR of optical focusing in the TR wavefront reconstruction. A new method of TR optical focusing through scattering media is proposed here, which numerically reconstructs the full phase and amplitude of a simulated scattered light field by using a single phase-only SLM. Simulation results and the proposed optical setup show that the time-reversal of a fully developed speckle field can be digitally implemented with both phase and amplitude recovery, affording a way to improve the performance of light focusing through scattering media.

  12. Tridimensional reconstruction of the Co-Seismic Ionospheric Disturbance around the time of 2015 Nepal earthquake

    Science.gov (United States)

    Kong, Jian; Yao, Yibin; Zhou, Chen; Liu, Yi; Zhai, Changzhi; Wang, Zemin; Liu, Lei

    2018-01-01

    The Co-Seismic Ionospheric Disturbance of the 2015 Nepal earthquake is analyzed in this paper. GNSS data are used to obtain the Satellite-Station TEC sequences. After removing the de-trended TEC variation, a clear ionospheric disturbance was observed 10 min after the earthquake, while the geomagnetic conditions, solar activity, and weather condition remained calm according to the Kp, Dst, F10.7 indices and meteorological records during the period of interest. Computerized ionosphere tomography (CIT) is then used to present the tridimensional ionosphere variation with a 10-min time resolution. The CIT results indicate that (1) the disturbance of the ionospheric electron density above the epicenter during the 2015 Nepal earthquake is confined at a relatively low altitude (approximately 150-300 km); (2) the ionospheric disturbances on the west side and east sides of the epicenter are precisely opposite. A newly established electric field penetration model of the lithosphere-atmosphere-ionosphere coupling is used to investigate the potential physical mechanism.

  13. TH-AB-202-08: A Robust Real-Time Surface Reconstruction Method On Point Clouds Captured From a 3D Surface Photogrammetry System

    International Nuclear Information System (INIS)

    Liu, W; Sawant, A; Ruan, D

    2016-01-01

    Purpose: Surface photogrammetry (e.g. VisionRT, C-Rad) provides a noninvasive way to obtain high-frequency measurement for patient motion monitoring in radiotherapy. This work aims to develop a real-time surface reconstruction method on the acquired point clouds, whose acquisitions are subject to noise and missing measurements. In contrast to existing surface reconstruction methods that are usually computationally expensive, the proposed method reconstructs continuous surfaces with comparable accuracy in real-time. Methods: The key idea in our method is to solve and propagate a sparse linear relationship from the point cloud (measurement) manifold to the surface (reconstruction) manifold, taking advantage of the similarity in local geometric topology in both manifolds. With consistent point cloud acquisition, we propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, building the point correspondences by the iterative closest point (ICP) method. To accommodate changing noise levels and/or presence of inconsistent occlusions, we further propose a modified sparse regression (MSR) model to account for the large and sparse error built by ICP, with a Laplacian prior. We evaluated our method on both clinical acquired point clouds under consistent conditions and simulated point clouds with inconsistent occlusions. The reconstruction accuracy was evaluated w.r.t. root-mean-squared-error, by comparing the reconstructed surfaces against those from the variational reconstruction method. Results: On clinical point clouds, both the SR and MSR models achieved sub-millimeter accuracy, with mean reconstruction time reduced from 82.23 seconds to 0.52 seconds and 0.94 seconds, respectively. On simulated point cloud with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent performance despite the introduced occlusions. Conclusion: We have developed a real-time

  14. Transverse Position Reconstruction in a Liquid Argon Time Projection Chamber using Principal Component Analysis and Multi-Dimensional Fitting

    Science.gov (United States)

    Watson, Andrew William

    2017-08-01

    One of the most enduring questions in modern physics is the dark matter problem. Measurements of galactic rotation curves taken in the middle of the twentieth century suggest that there are large spherical halos of unseen matter permeating and surrounding most galaxies, stretching far beyond their visible extents. Although some of this mass discrepancy can be attributed to sources like primordial black holes or Massive Astrophysical Compact Halo Objects (MACHOs), these theories can only explain a small percentage of this "missing matter". One approach which could account for the entirety of this missing mass is the theory of Weakly Interacting Massive Particles, or "WIMPs". As their name suggests, WIMPs interact only through the weak nuclear force and gravity and are quite massive (100 GeV/c2 to 1 TeV/c2). These particles have very small cross sections ( ≈ 10-39 cm2) with nucleons and therefore interact only very rarely with "normal" baryonic matter. To directly detect a dark matter particle, one needs to overcome this small cross-section barrier. In many experiments, this is achieved by utilizing detectors filled with liquid noble elements, which have excellent particle identification capabilities and are very low-background, allowing potential WIMP signals to be more easily distinguished from detector noise. These experiments also often apply uniform electric fields across their liquid volumes, turning the apparatus into Time Projection Chambers or "TPCs". TPCs can accurately determine the location of an interaction in the liquid volume (often simply called an "event") along the direction of the electric field. In DarkSide-50 ("DS-50" for short), the electric field is aligned antiparallel to the z-axis of the detector, and so the depth of an event can be determined to a considerable degree of accuracy by measuring the time between the first and second scintillation signals ("S1" and "S2"), which are generated at the interaction point itself and in a small gas

  15. A 1500-year reconstruction of annual mean temperature for temperate North America on decadal-to-multidecadal time scales

    International Nuclear Information System (INIS)

    Trouet, V; Diaz, H F; Wahl, E R; Viau, A E; Graham, R; Graham, N; Cook, E R

    2013-01-01

    We present two reconstructions of annual average temperature over temperate North America: a tree-ring based reconstruction at decadal resolution (1200–1980 CE) and a pollen-based reconstruction at 30 year resolution that extends back to 480 CE. We maximized reconstruction length by using long but low-resolution pollen records and applied a three-tier calibration scheme for this purpose. The tree-ring-based reconstruction was calibrated against instrumental annual average temperatures on annual and decadal scale, it was then reduced to a lower resolution, and was used as a calibration target for the pollen-based reconstruction. Before the late-19th to the early-21st century, there are three prominent low-frequency periods in our extended reconstruction starting at 480 CE, notably the Dark Ages cool period (about 500–700 CE) and Little Ice Age (about 1200–1900 CE), and the warmer medieval climate anomaly (MCA; about 750–1100 CE). The 9th and the 11th century are the warmest centuries and they constitute the core of the MCA in our reconstruction, a period characterized by centennial-scale aridity in the North American West. These two warm peaks are slightly warmer than the baseline period (1904–1980), but nevertheless much cooler than temperate North American temperatures during the early-21st century. (letter)

  16. Optimal Estimation of Diffusion Coefficients from Noisy Time-Lapse-Recorded Single-Particle Trajectories

    DEFF Research Database (Denmark)

    Vestergaard, Christian Lyngby

    2012-01-01

    Optimal Estimation of Diusion Coecients from Noisy Time-Lapse- Measurements of Single-Particle Trajectories Single-particle tracking techniques allow quantitative measurements of diusion at the single-molecule level. Recorded time-series are mostly short and contain considerable measurement noise....... The standard method for estimating diusion coecients from single-particle trajectories is based on leastsquares tting to the experimentally measured mean square displacements. This method is highly inecient, since it ignores the high correlations inherent in these. We derive the exact maximum likelihood...... parameter values. We extend the methods to particles diusing on a uctuating substrate, e.g., exible or semi exible polymers such as DNA, and show that uctuations induce an important bias in the estimates of diusion coecients if they are not accounted for. We apply the methods to obtain precise estimates...

  17. Braking Reaction Time After Right-Knee Anterior Cruciate Ligament Reconstruction: A Comparison of 3 Grafts.

    Science.gov (United States)

    Wasserman, Bradley R; Singh, Brian C; Kaplan, Daniel J; Weinberg, Maxwell; Meislin, Robert; Jazrawi, Laith M; Strauss, Eric J

    2017-01-01

    To determine when patients recover the ability to safely operate the brakes of an automobile after a right-knee anterior cruciate ligament reconstruction (ACLR). A computerized driving simulator was used to determine braking ability after an isolated right-knee ACLR. Thirty healthy volunteers were tested at 1 visit to determine normal mean values, and 27 treatment subjects were tested at 1 week, 3 weeks, and 6 weeks after ACLR. Nine study subjects were treated with a patella tendon (BPTB) autograft, 9 were treated with a hamstring (HS) autograft, and 9 were treated with a tibialis anterior (TA) allograft. The driving simulator collected data on brake reaction time (BRT), brake travel time (BTT), and total brake time (TBT) at each visit. The control group generated a BRT of 725 milliseconds, BTT of 2.87 seconds, and TBT of 3.59 seconds. At week 1, all treatment patients had significant differences compared with controls for BRT, BTT, and TBT, except the BTT of the HS group. At week 3, all measures for the allograft group and the BRT for both autograft groups were no longer significantly different compared with controls, but significant differences were found for TBT in the HS and BPTB groups (P = .03, P = .01). At week 6, BRT, BTT, and TBT were no longer significantly different for either the HS group or BPTB group. Patients who underwent a right-knee ACLR with a TA allograft regained normal braking times by week 3 postoperatively. In contrast, those treated with a BPTB or HS autograft demonstrated significantly delayed braking times at 3 weeks but returned to normal braking ability by week 6. Those treated with an autograft had an earlier return of normalized BRT than BTT. Level III, case-control series. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  18. Comparison of intraoperative time measurements between osseous reconstructions with free fibula flaps applying computer-aided designed/computer-aided manufactured and conventional techniques.

    Science.gov (United States)

    Rustemeyer, Jan; Sari-Rieger, Aynur; Melenberg, Alex; Busch, Alexander

    2015-09-01

    We aimed to determine whether computer-aided designed/computer-aided manufactured (CAD/CAM) techniques could save intraoperative time compared with the conventional technique, by comparing flap harvesting and ischemia times, and subsequently impact flap survival. Twenty patients underwent concurrent osteocutaneous fibula flaps, either with (n = 10) or without (n = 10) the CAD/CAM technique. Demographic data, clinical history, complications, number of osseous segments, and times for virtual planning, flap harvesting, flap ischemia, tourniquet inflation, and total reconstruction were recorded. There was no significant difference between CAD/CAM and conventional techniques with respect to age, number of osseous segments, complication rates, and tourniquet inflation time. Flap harvesting times were significantly shorter in the conventional group (112.1 vs. 142.2 min, p technique, including reduced ischemia time of osteocutaneous fibula flaps, there is no impact on total reconstruction time or flap survival.

  19. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    International Nuclear Information System (INIS)

    Razali, Azhani Mohd; Abdullah, Jaafar

    2015-01-01

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm

  20. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    Energy Technology Data Exchange (ETDEWEB)

    Razali, Azhani Mohd, E-mail: azhani@nuclearmalaysia.gov.my; Abdullah, Jaafar, E-mail: jaafar@nuclearmalaysia.gov.my [Plant Assessment Technology (PAT) Group, Industrial Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang (Malaysia)

    2015-04-29

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.

  1. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    Science.gov (United States)

    Razali, Azhani Mohd; Abdullah, Jaafar

    2015-04-01

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.

  2. Single passband microwave photonic filter using continuous-time impulse response.

    Science.gov (United States)

    Huang, Thomas X H; Yi, Xiaoke; Minasian, Robert A

    2011-03-28

    A single passband microwave photonic signal processor based on continuous time impulse response that has high resolution, multiple-taps and baseband-free response as well as exhibiting a square-top passband and tunability, is presented. The design and synthesis of the frequency response are based on a full systematic model for single passband microwave photonic filters to account for arbitrary spectrum slice shapes, which for the first time investigates the combined effects from both the dispersion-induced carrier suppression effect and the RF decay effect due to the spectrum slice width, to enable the optimum design to be realized by utilizing the carrier suppression effect to improve the filter performance. Experimental results demonstrate a high order microwave filter showing high resolution single passband filtering as well as exhibiting reconfiguration, square-top passband and tunability, for the first time to our best knowledge.

  3. Dynamically Switching among Bundled and Single Tickets with Time-Dependent Demand Rates

    Directory of Open Access Journals (Sweden)

    Serhan Duran

    2012-01-01

    Full Text Available The most important market segmentation in sports and entertainment industry is the competition between customers that buy bundled and single tickets. A common selling practice is starting the selling season with bundled ticket sales and switching to selling single tickets later on. The aim of this practice is to increase the number of customers that buy bundles, which in return increases the load factor of the events with low demand. In this paper, we investigate the effect of time dependent demand on dynamic switching times from bundled to single ticket sales and the potential revenue gain over the case where the demand rate of events is assumed to be constant with time.

  4. Breast reconstruction after mastectomy

    Directory of Open Access Journals (Sweden)

    Daniel eSchmauss

    2016-01-01

    Full Text Available Breast cancer is the leading cause of cancer death in women worldwide. Its surgical approach has become less and less mutilating in the last decades. However, the overall number of breast reconstructions has significantly increased lately. Nowadays breast reconstruction should be individualized at its best, first of all taking into consideration oncological aspects of the tumor, neo-/adjuvant treatment and genetic predisposition, but also its timing (immediate versus delayed breast reconstruction, as well as the patient’s condition and wish. This article gives an overview over the various possibilities of breast reconstruction, including implant- and expander-based reconstruction, flap-based reconstruction (vascularized autologous tissue, the combination of implant and flap, reconstruction using non-vascularized autologous fat, as well as refinement surgery after breast reconstruction.

  5. Improving the counting efficiency in time-correlated single photon counting experiments by dead-time optimization

    Energy Technology Data Exchange (ETDEWEB)

    Peronio, P.; Acconcia, G.; Rech, I.; Ghioni, M. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2015-11-15

    Time-Correlated Single Photon Counting (TCSPC) has been long recognized as the most sensitive method for fluorescence lifetime measurements, but often requiring “long” data acquisition times. This drawback is related to the limited counting capability of the TCSPC technique, due to pile-up and counting loss effects. In recent years, multi-module TCSPC systems have been introduced to overcome this issue. Splitting the light into several detectors connected to independent TCSPC modules proportionally increases the counting capability. Of course, multi-module operation also increases the system cost and can cause space and power supply problems. In this paper, we propose an alternative approach based on a new detector and processing electronics designed to reduce the overall system dead time, thus enabling efficient photon collection at high excitation rate. We present a fast active quenching circuit for single-photon avalanche diodes which features a minimum dead time of 12.4 ns. We also introduce a new Time-to-Amplitude Converter (TAC) able to attain extra-short dead time thanks to the combination of a scalable array of monolithically integrated TACs and a sequential router. The fast TAC (F-TAC) makes it possible to operate the system towards the upper limit of detector count rate capability (∼80 Mcps) with reduced pile-up losses, addressing one of the historic criticisms of TCSPC. Preliminary measurements on the F-TAC are presented and discussed.

  6. Improving the counting efficiency in time-correlated single photon counting experiments by dead-time optimization

    Science.gov (United States)

    Peronio, P.; Acconcia, G.; Rech, I.; Ghioni, M.

    2015-11-01

    Time-Correlated Single Photon Counting (TCSPC) has been long recognized as the most sensitive method for fluorescence lifetime measurements, but often requiring "long" data acquisition times. This drawback is related to the limited counting capability of the TCSPC technique, due to pile-up and counting loss effects. In recent years, multi-module TCSPC systems have been introduced to overcome this issue. Splitting the light into several detectors connected to independent TCSPC modules proportionally increases the counting capability. Of course, multi-module operation also increases the system cost and can cause space and power supply problems. In this paper, we propose an alternative approach based on a new detector and processing electronics designed to reduce the overall system dead time, thus enabling efficient photon collection at high excitation rate. We present a fast active quenching circuit for single-photon avalanche diodes which features a minimum dead time of 12.4 ns. We also introduce a new Time-to-Amplitude Converter (TAC) able to attain extra-short dead time thanks to the combination of a scalable array of monolithically integrated TACs and a sequential router. The fast TAC (F-TAC) makes it possible to operate the system towards the upper limit of detector count rate capability (˜80 Mcps) with reduced pile-up losses, addressing one of the historic criticisms of TCSPC. Preliminary measurements on the F-TAC are presented and discussed.

  7. Increased accuracy of single photon emission computed tomography (SPECT myocardial perfusion scintigraphy using iterative reconstruction of images

    Directory of Open Access Journals (Sweden)

    Stević Miloš

    2016-01-01

    Full Text Available Background/Aim. Filtered back projection (FBP is a common way of processing myocardial perfusion imaging (MPI studies. There are artifacts in FBP which can cause falsepositive results. Iterative reconstruction (IR is developed to reduce false positive findings in MPI studies. The aim of this study was to evaluate the difference in the number of false positive findings in MPI studies, between FBP and IR processing. Methods. We examined 107 patients with angina pectoris with MPI and coronary angiography (CAG, 77 man and 30 woman, aged 32−82. MPI studies were processed with FBP and with IR. Positive finding at MPI was visualization of the perfusion defect. Positive finding at CAG was stenosis of coronary artery. Perfusion defect at MPI without coronary artery stenosis at CAG was considered like false positive. The results were statistically analyzed with bivariate correlation, and with one sample t-test. Results. There were 20.6% normal, and 79.4% pathologic findings at FBP, 30.8% normal and 69.2% pathologic with IR and 37.4% normal and 62.6% pathologic at CAG. FBP produced 19 false-positive findings, at IR 11 false positive findings. The correlation between FBP and CAG was 0.658 (p < 0.01 and between IR and CAG 0.784 (p < 0.01. The number of false positive findings at MPI with IR was significantly lower than at FBP (p < 0.01. Conclusion. Our study shows that IR processing MPI scintigraphy has less number of false positive findings, therefore it is our choice for processing MPI studies.

  8. Time delay between singly and doubly ionizing wavepackets in laser-driven helium

    International Nuclear Information System (INIS)

    Parker, J S; Doherty, B J S; Meharg, K J; Taylor, K T

    2003-01-01

    We present calculations of the time delay between single and double ionization of helium, obtained from full-dimensionality numerical integrations of the helium-laser Schroedinger equation. The notion of a quantum mechanical time delay is defined in terms of the interval between correlated bursts of single and double ionization. Calculations are performed at 390 and 780 nm in laser intensities that range from 2 x 10 14 to 14 x 10 14 Wcm -2 . We find results consistent with the rescattering model of double ionization but supporting its classical interpretation only at 780 nm. (letter to the editor)

  9. Clinical evaluation of time-of-flight MR angiography with sparse undersampling and iterative reconstruction for cerebral aneurysms.

    Science.gov (United States)

    Fushimi, Yasutaka; Okada, Tomohisa; Kikuchi, Takayuki; Yamamoto, Akira; Okada, Tsutomu; Yamamoto, Takayuki; Schmidt, Michaela; Yoshida, Kazumichi; Miyamoto, Susumu; Togashi, Kaori

    2017-11-01

    Compressed sensing (CS) MRI has just been introduced to research areas as an innovative approach to accelerate MRI. CS is expected to achieve higher k-space undersampling by exploiting the underlying sparsity in an appropriate transform domain. MR angiography (MRA) provides high spatial resolution information on arteries; however, a relatively long acquisition time is necessary to cover a wide volume. Reduction of acquisition time by CS for time-of-flight (TOF) MR angiography (Sparse-TOF) is beneficial in clinical examinations; therefore, the clinical validity of Sparse-TOF needs to be investigated. The aim of this study was to compare the diagnostic capability of TOF MRA between parallel imaging (PI)-TOF with an acceleration factor of 3 (annotated as 3×) and Sparse-TOF (3× and 5×) in patients with cerebral aneurysms. PI-TOF (3×) and Sparse-TOF (3× and 5×) imaging were performed in 20 patients using a 3 T MRI system. Aneurysms in PI-TOF (3×) and Sparse-TOF (3× and 5×) were blindly rated as visible or scarcely visible by neuroradiologists. The neck, height and width of aneurysms were also measured. Twenty-six aneurysms were visualized and rated as visible in PI-TOF (3×) and Sparse-TOF (3× and 5×), with excellent agreement between two raters. No significant differences were found in measured neck, height or width of aneurysms among them. Sparse-TOF (3× and 5×) were acquired and reconstructed within 6 min, and cerebral aneurysms were visible in both of them with equivalent quality to PI-TOF (3×). Sparse-TOF (5×) is a good alternative to PI-TOF (3×) to visualize cerebral aneurysms. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Digital atom interferometer with single particle control on a discretized space-time geometry.

    Science.gov (United States)

    Steffen, Andreas; Alberti, Andrea; Alt, Wolfgang; Belmechri, Noomen; Hild, Sebastian; Karski, Michał; Widera, Artur; Meschede, Dieter

    2012-06-19

    Engineering quantum particle systems, such as quantum simulators and quantum cellular automata, relies on full coherent control of quantum paths at the single particle level. Here we present an atom interferometer operating with single trapped atoms, where single particle wave packets are controlled through spin-dependent potentials. The interferometer is constructed from a sequence of discrete operations based on a set of elementary building blocks, which permit composing arbitrary interferometer geometries in a digital manner. We use this modularity to devise a space-time analogue of the well-known spin echo technique, yielding insight into decoherence mechanisms. We also demonstrate mesoscopic delocalization of single atoms with a separation-to-localization ratio exceeding 500; this result suggests their utilization beyond quantum logic applications as nano-resolution quantum probes in precision measurements, being able to measure potential gradients with precision 5 x 10(-4) in units of gravitational acceleration g.

  11. Image reconstruction for tomographic mapping of cerebral hemodynamics using time-domain detection: simulation and phantom studies

    Science.gov (United States)

    Gao, Feng; Zhao, Huijuan; Tanikawa, Yukari; Yamada, Yukio

    2003-10-01

    One of the primary applications of diffuse optical imaging is to localize the changes in the cerebral oxygenation during physical or mental activities. Up to now, data from an optical imager is simply presented as a two-dimensional (2-D) topographic map using the modified Beer-Lambert law that assumes the homogeneous optical properties beneath each optode. Due to the highly heterogeneous nature of the optical properties in the brain, the assumption are evidently invalid, leading to both low spatial resolution and inaccurate quantification in the assessment of hemodynamic changes. To cope with the difficulties, we propose a nonlinear image reconstruction algorithm for a two-layered slab geometry using time-resolved reflected light. The algorithm is based on the previously developed generalized pulse spectrum technique, and implemented within a semi three-dimensional (3-D) framework to conform to the topographic visualization and to reduce computational load. We demonstrate the advantages of the algorithm in quantifying simulated changes in hemoglobin concentrations and investigate its robustness to the uncertainties in the cortical structure and optical properties. The methodology is also validated with experiments on a layered phantom.

  12. Pulsed single-photon spectrometer by frequency-to-time mapping using chirped fiber Bragg gratings.

    Science.gov (United States)

    Davis, Alex O C; Saulnier, Paul M; Karpiński, Michał; Smith, Brian J

    2017-05-29

    A fiber-integrated spectrometer for single-photon pulses outside the telecommunications wavelength range based upon frequency-to-time mapping, implemented by chromatic group delay dispersion (GDD), and precise temporally-resolved single-photon counting, is presented. A chirped fiber Bragg grating provides low-loss GDD, mapping the frequency distribution of an input pulse onto the temporal envelope of the output pulse. Time-resolved detection with fast single-photon-counting modules enables monitoring of a wavelength range from 825 nm to 835 nm with nearly uniform efficiency at 55 pm resolution (24 GHz at 830 nm). To demonstrate the versatility of this technique, spectral interference of heralded single photons and the joint spectral intensity distribution of a photon-pair source are measured. This approach to single-photon-level spectral measurements provides a route to realize applications of time-frequency quantum optics at visible and near-infrared wavelengths, where multiple spectral channels must be simultaneously monitored.

  13. Wide beam reconstruction for half-dose or half-time cardiac gated SPECT acquisitions: optimization of resources and reduction in radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Marcassa, Claudio [S. Maugeri Fnd, IRCCS, Scientific Institute of Veruno, Cardiology Department (Italy); Campini, Riccardo; Zoccarato, Orazio; Calza, Paolo [S. Maugeri Fnd, IRCCS, Scientific Institute of Veruno, Nuclear Medicine Department (Italy)

    2011-03-15

    A new iterative reconstruction algorithm (WBR trademark) has been recently proposed for cardiac single photon emission computed tomography (SPECT). The WBR trademark technology is designed to reduce noise, improving lesion identification without affecting the image resolution, allowing SPECT studies with reduced count statistic. This allows for either half-time (HT) or half-dose (HD) cardiac SPECT, with image quality and quantitative data comparable to standard-time (ST) or standard-dose (SD) SPECT. Few data exist on the comparison between conventional filtered backprojection (FBP) and this new algorithm in a clinical setting. The aim of this study was to compare the performance of FBP and WBR trademark. Phantoms studies were performed to compare spatial resolution and contrast recovery with FBP, ordered subset expectation maximization (OSEM) and WBR trademark. A group of 92 patients, with different cardiac pathology, scheduled for a stress-rest SPECT were studied: 52 patients (group A) were injected with a SD of tracer and underwent both ST and HT SPECT; 40 patients (group B) were injected with a half dose of tracer and underwent ST SPECT and immediately after an additional SPECT at double time/projection (DT), to compensate for the low count statistic. A 2-day {sup 99m}Tc-sestamibi protocol was used in all patients. SD/ST and HD/DT SPECT were reconstructed with a conventional FBP; SD/HT and HD/ST SPECT were reconstructed with WBR trademark. The summed stress score (SSS) and summed rest score (SRS) were calculated; the left ventricular ejection fraction (LVEF) was automatically derived. In group A (SD), no significant differences were observed between ST FBP SPECT and HT WBR trademark in SSS (11.1 and 11.7, respectively) and SRS (9.4 and 10.3, respectively, NS). LVEF on rest acquisitions was also comparable (50% on ST SPECT and 49% on HT SPECT, NS); LVEF on post-stress studies in HT SPECT (46%) was lower than ST SPECT (50%), although not statistically significant

  14. Reconstructing land use history from Landsat time-series. Case study of a swidden agriculture system in Brazil

    Science.gov (United States)

    Dutrieux, Loïc P.; Jakovac, Catarina C.; Latifah, Siti H.; Kooistra, Lammert

    2016-05-01

    We developed a method to reconstruct land use history from Landsat images time-series. The method uses a breakpoint detection framework derived from the econometrics field and applicable to time-series regression models. The Breaks For Additive Season and Trend (BFAST) framework is used for defining the time-series regression models which may contain trend and phenology, hence appropriately modelling vegetation intra and inter-annual dynamics. All available Landsat data are used for a selected study area, and the time-series are partitioned into segments delimited by breakpoints. Segments can be associated to land use regimes, while the breakpoints then correspond to shifts in land use regimes. In order to further characterize these shifts, we classified the unlabelled breakpoints returned by the algorithm into their corresponding processes. We used a Random Forest classifier, trained from a set of visually interpreted time-series profiles to infer the processes and assign labels to the breakpoints. The whole approach was applied to quantifying the number of cultivation cycles in a swidden agriculture system in Brazil (state of Amazonas). Number and frequency of cultivation cycles is of particular ecological relevance in these systems since they largely affect the capacity of the forest to regenerate after land abandonment. We applied the method to a Landsat time-series of Normalized Difference Moisture Index (NDMI) spanning the 1984-2015 period and derived from it the number of cultivation cycles during that period at the individual field scale level. Agricultural fields boundaries used to apply the method were derived using a multi-temporal segmentation approach. We validated the number of cultivation cycles predicted by the method against in-situ information collected from farmers interviews, resulting in a Normalized Residual Mean Squared Error (NRMSE) of 0.25. Overall the method performed well, producing maps with coherent spatial patterns. We identified

  15. Reconstructing Land Use History from Landsat Time-Series. Case study of Swidden Agriculture Intensification in Brazil

    Science.gov (United States)

    Dutrieux, L.; Jakovac, C. C.; Siti, L. H.; Kooistra, L.

    2015-12-01

    We developed a method to reconstruct land use history from Landsat images time-series. The method uses a breakpoint detection framework derived from the econometrics field and applicable to time-series regression models. The BFAST framework is used for defining the time-series regression models which may contain trend and phenology, hence appropriately modelling vegetation intra and inter-annual dynamics. All available Landsat data are used, and the time-series are partitioned into segments delimited by breakpoints. Segments can be associated to land use regimes, while the breakpoints then correspond to shifts in regimes. To further characterize these shifts, we classified the unlabelled breakpoints returned by the algorithm into their corresponding processes. We used a Random Forest classifier, trained from a set of visually interpreted time-series profiles to infer the processes and assign labels to the breakpoints. The whole approach was applied to quantifying the number of cultivation cycles in a swidden agriculture system in Brazil. Number and frequency of cultivation cycles is of particular ecological relevance in these systems since they largely affect the capacity of the forest to regenerate after abandonment. We applied the method to a Landsat time-series of Normalized Difference Moisture Index (NDMI) spanning the 1984-2015 period and derived from it the number of cultivation cycles during that period at the individual field scale level. Agricultural fields boundaries used to apply the method were derived using a multi-temporal segmentation. We validated the number of cultivation cycles predicted against in-situ information collected from farmers interviews, resulting in a Normalized RMSE of 0.25. Overall the method performed well, producing maps with coherent patterns. We identified various sources of error in the approach, including low data availability in the 90s and sub-object mixture of land uses. We conclude that the method holds great promise for

  16. Single-molecule three-color FRET with both negligible spectral overlap and long observation time.

    Directory of Open Access Journals (Sweden)

    Sanghwa Lee

    Full Text Available Full understanding of complex biological interactions frequently requires multi-color detection capability in doing single-molecule fluorescence resonance energy transfer (FRET experiments. Existing single-molecule three-color FRET techniques, however, suffer from severe photobleaching of Alexa 488, or its alternative dyes, and have been limitedly used for kinetics studies. In this work, we developed a single-molecule three-color FRET technique based on the Cy3-Cy5-Cy7 dye trio, thus providing enhanced observation time and improved data quality. Because the absorption spectra of three fluorophores are well separated, real-time monitoring of three FRET efficiencies was possible by incorporating the alternating laser excitation (ALEX technique both in confocal microscopy and in total-internal-reflection fluorescence (TIRF microscopy.

  17. Anti-control of chaos of single time-scale brushless DC motor.

    Science.gov (United States)

    Ge, Zheng-Ming; Chang, Ching-Ming; Chen, Yen-Sheng

    2006-09-15

    Anti-control of chaos of single time-scale brushless DC motors is studied in this paper. In order to analyse a variety of periodic and chaotic phenomena, we employ several numerical techniques such as phase portraits, bifurcation diagrams and Lyapunov exponents. Anti-control of chaos can be achieved by adding an external constant term or an external periodic term.

  18. Testing the Efficacy of a Scholarship Program for Single Parent, Post-Freshmen, Full Time Undergraduates

    Science.gov (United States)

    Carpenter, Dick M., II; Kaka, Sarah J.; Tygret, Jennifer A.; Cathcart, Katy

    2018-01-01

    This study examines the efficacy of a scholarship program designed to assist single parent, post-freshmen, full time undergraduate students and predictors of success among a sample of said students, where success is defined as progress toward completion, academic achievement, and degree completion. Results of fixed effects regression and…

  19. Insensitivity of single particle time domain measurements to laser velocimeter 'Doppler ambiguity.'

    Science.gov (United States)

    Johnson, D. A.

    1973-01-01

    It is shown that single particle time domain measurements in high speed gas flows obtained by a laser velocimeter technique developed for use in wind tunnels are not affected by the so-called 'Doppler ambiguity.' A comparison of hot-wire anemometer and laser velocimeter measurements taken under similar flow conditions is used for the demonstration.

  20. Analysis of Kinetic Intermediates in Single-Particle Dwell-Time Distributions

    NARCIS (Netherlands)

    Floyd, Daniel L.; Harrison, Stephen C.; Oijen, Antoine M. van

    2010-01-01

    Many biological and chemical processes proceed through one or more intermediate steps. Statistical analysis of dwell-time distributions from single molecule trajectories enables the study of intermediate steps that are not directly observable. Here, we discuss the application of the randomness

  1. Single-machine scheduling with release dates, due dates, and family setup times

    NARCIS (Netherlands)

    J.M.J. Schutten (Marco); S.L. van de Velde (Steef); W.H.M. Zijm

    1996-01-01

    textabstractWe address the NP-hard problem of scheduling n independent jobs with release dates, due dates, and family setup times on a single machine to minimize the maximum lateness. This problem arises from the constant tug-of-war going on in manufacturing between efficient production and delivery

  2. Single view reflectance capture using multiplexed scattering and time-of-flight imaging

    OpenAIRE

    Zhao, Shuang; Velten, Andreas; Raskar, Ramesh; Bala, Kavita; Naik, Nikhil Deepak

    2011-01-01

    This paper introduces the concept of time-of-flight reflectance estimation, and demonstrates a new technique that allows a camera to rapidly acquire reflectance properties of objects from a single view-point, over relatively long distances and without encircling equipment. We measure material properties by indirectly illuminating an object by a laser source, and observing its reflected light indirectly using a time-of-flight camera. The configuration collectively acquires dense angular, but l...

  3. Single-Server Queueing System with Markov-Modulated Arrivals and Service Times

    OpenAIRE

    Dimitrov, Mitko

    2011-01-01

    Key words: Markov-modulated queues, waiting time, heavy traffic. Markov-modulated queueing systems are those in which the input process or service mechanism is influenced by an underlying Markov chain. Several models for such systems have been investigated. In this paper we present heavy traffic analysis of single queueing system with Poisson arrival process whose arrival rate is a function of the state of Markov chain and service times depend on the state of the same Markov chain at the e...

  4. Pseudospectral operational matrix for numerical solution of single and multiterm time fractional diffusion equation

    OpenAIRE

    GHOLAMI, SAEID; BABOLIAN, ESMAIL; JAVIDI, MOHAMMAD

    2016-01-01

    This paper presents a new numerical approach to solve single and multiterm time fractional diffusion equations. In this work, the space dimension is discretized to the Gauss$-$Lobatto points. We use the normalized Grunwald approximation for the time dimension and a pseudospectral successive integration matrix for the space dimension. This approach shows that with fewer numbers of points, we can approximate the solution with more accuracy. Some examples with numerical results in tables and fig...

  5. Multiple linear regression to estimate time-frequency electrophysiological responses in single trials.

    Science.gov (United States)

    Hu, L; Zhang, Z G; Mouraux, A; Iannetti, G D

    2015-05-01

    Transient sensory, motor or cognitive event elicit not only phase-locked event-related potentials (ERPs) in the ongoing electroencephalogram (EEG), but also induce non-phase-locked modulations of ongoing EEG oscillations. These modulations can be detected when single-trial waveforms are analysed in the time-frequency domain, and consist in stimulus-induced decreases (event-related desynchronization, ERD) or increases (event-related synchronization, ERS) of synchrony in the activity of the underlying neuronal populations. ERD and ERS reflect changes in the parameters that control oscillations in neuronal networks and, depending on the frequency at which they occur, represent neuronal mechanisms involved in cortical activation, inhibition and binding. ERD and ERS are commonly estimated by averaging the time-frequency decomposition of single trials. However, their trial-to-trial variability that can reflect physiologically-important information is lost by across-trial averaging. Here, we aim to (1) develop novel approaches to explore single-trial parameters (including latency, frequency and magnitude) of ERP/ERD/ERS; (2) disclose the relationship between estimated single-trial parameters and other experimental factors (e.g., perceived intensity). We found that (1) stimulus-elicited ERP/ERD/ERS can be correctly separated using principal component analysis (PCA) decomposition with Varimax rotation on the single-trial time-frequency distributions; (2) time-frequency multiple linear regression with dispersion term (TF-MLRd) enhances the signal-to-noise ratio of ERP/ERD/ERS in single trials, and provides an unbiased estimation of their latency, frequency, and magnitude at single-trial level; (3) these estimates can be meaningfully correlated with each other and with other experimental factors at single-trial level (e.g., perceived stimulus intensity and ERP magnitude). The methods described in this article allow exploring fully non-phase-locked stimulus-induced cortical

  6. Breaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform.

    Science.gov (United States)

    Collins, Liam; Ahmadi, Mahshid; Wu, Ting; Hu, Bin; Kalinin, Sergei V; Jesse, Stephen

    2017-09-26

    Atomic force microscopy (AFM) offers unparalleled insight into structure and material functionality across nanometer length scales. However, the spatial resolution afforded by the AFM tip is counterpoised by slow detection speeds compared to other common microscopy techniques (e.g., optical, scanning electron microscopy, etc.). In this work, we develop an ultrafast AFM imaging approach allowing direct reconstruction of the tip-sample forces with ∼3 order of magnitude higher time resolution than is achievable using standard AFM detection methods. Fast free force recovery (F 3 R) overcomes the widely viewed temporal bottleneck in AFM, that is, the mechanical bandwidth of the cantilever, enabling time-resolved imaging at sub-bandwidth speeds. We demonstrate quantitative recovery of electrostatic forces with ∼10 μs temporal resolution, free from influences of the cantilever ring-down. We further apply the F 3 R method to Kelvin probe force microscopy (KPFM) measurements. F 3 R-KPFM is an open loop imaging approach (i.e., no bias feedback), allowing ultrafast surface potential measurements (e.g., <20 μs) to be performed at regular KPFM scan speeds. F 3 R-KPFM is demonstrated for exploration of ion migration in organometallic halide perovskite materials and shown to allow spatiotemporal imaging of positively charged ion migration under applied electric field, as well as subsequent formation of accumulated charges at the perovskite/electrode interface. In this work, we demonstrate quantitative F 3 R-KPFM measurements-however, we fully expect the F 3 R approach to be valid for all modes of noncontact AFM operation, including noninvasive probing of ultrafast electrical and magnetic dynamics.

  7. Three-Dimensional Reconstruction from Single Image Base on Combination of CNN and Multi-Spectral Photometric Stereo

    Directory of Open Access Journals (Sweden)

    Liang Lu

    2018-03-01

    Full Text Available Multi-spectral photometric stereo can recover pixel-wise surface normal from a single RGB image. The difficulty lies in that the intensity in each channel is the tangle of illumination, albedo and camera response; thus, an initial estimate of the normal is required in optimization-based solutions. In this paper, we propose to make a rough depth estimation using the deep convolutional neural network (CNN instead of using depth sensors or binocular stereo devices. Since high-resolution ground-truth data is expensive to obtain, we designed a network and trained it with rendered images of synthetic 3D objects. We use the model to predict initial normal of real-world objects and iteratively optimize the fine-scale geometry in the multi-spectral photometric stereo framework. The experimental results illustrate the improvement of the proposed method compared with existing methods.

  8. Real-time dynamic MR image reconstruction using compressed sensing and principal component analysis (CS-PCA): Demonstration in lung tumor tracking.

    Science.gov (United States)

    Dietz, Bryson; Yip, Eugene; Yun, Jihyun; Fallone, B Gino; Wachowicz, Keith

    2017-08-01

    This work presents a real-time dynamic image reconstruction technique, which combines compressed sensing and principal component analysis (CS-PCA), to achieve real-time adaptive radiotherapy with the use of a linac-magnetic resonance imaging system. Six retrospective fully sampled dynamic data sets of patients diagnosed with non-small-cell lung cancer were used to investigate the CS-PCA algorithm. Using a database of fully sampled k-space, principal components (PC's) were calculated to aid in the reconstruction of undersampled images. Missing k-space data were calculated by projecting the current undersampled k-space data onto the PC's to generate the corresponding PC weights. The weighted PC's were summed together, and the missing k-space was iteratively updated. To gain insight into how the reconstruction might proceed at lower fields, 6× noise was added to the 3T data to investigate how the algorithm handles noisy data. Acceleration factors ranging from 2 to 10× were investigated using CS-PCA and Split Bregman CS for comparison. Metrics to determine the reconstruction quality included the normalized mean square error (NMSE), as well as the dice coefficients (DC) and centroid displacement of the tumor segmentations. Our results demonstrate that CS-PCA performed superior than CS alone. The CS-PCA patient averaged DC for 3T and 6× noise added data remained above 0.9 for acceleration factors up to 10×. The patient averaged NMSE gradually increased with increasing acceleration; however, it remained below 0.06 up to an acceleration factor of 10× for both 3T and 6× noise added data. The CS-PCA reconstruction speed ranged from 5 to 20 ms (Intel i7-4710HQ CPU @ 2.5 GHz), depending on the chosen parameters. A real-time reconstruction technique was developed for adaptive radiotherapy using a Linac-MRI system. Our CS-PCA algorithm can achieve tumor contours with DC greater than 0.9 and NMSE less than 0.06 at acceleration factors of up to, and including, 10×. The

  9. Detecting shifts in gene regulatory networks during time-course experiments at single-time-point temporal resolution.

    Science.gov (United States)

    Takenaka, Yoichi; Seno, Shigeto; Matsuda, Hideo

    2015-10-01

    Comprehensively understanding the dynamics of biological systems is one of the greatest challenges in biology. Vastly improved biological technologies have provided vast amounts of information that must be understood by bioinformatics and systems biology researchers. Gene regulations have been frequently modeled by ordinary differential equations or graphical models based on time-course gene expression profiles. The state-of-the-art computational approaches for analyzing gene regulations assume that their models are same throughout time-course experiments. However, these approaches cannot easily analyze transient changes at a time point, such as diauxic shift. We propose a score that analyzes the gene regulations at each time point. The score is based on the information gains of information criterion values. The method detects the shifts in gene regulatory networks (GRNs) during time-course experiments with single-time-point resolution. The effectiveness of the method is evaluated on the diauxic shift from glucose to lactose in Escherichia coli. Gene regulation shifts were detected at two time points: the first corresponding to the time at which the growth of E. coli ceased and the second corresponding to the end of the experiment, when the nutrient sources (glucose and lactose) had become exhausted. According to these results, the proposed score and method can appropriately detect the time of gene regulation shifts. The method based on the proposed score provides a new tool for analyzing dynamic biological systems. Because the score value indicates the strength of gene regulation at each time point in a gene expression profile, it can potentially infer hidden GRNs from time-course experiments.

  10. Does the Homograft for RVOT Reconstruction in Ross: Patients Fare Better than for Non-Ross Patients? A Single-Center Experience.

    Science.gov (United States)

    Ruzmetov, Mark; Geiss, Dale M; Shah, Jitendra J; Fortuna, Randall S; Welke, Karl F

    2015-07-01

    In patients undergoing the Ross procedure, the right ventricular outflow tract (RVOT) conduit is inserted in an orthotopic position rather than in the more heterotopic position used in the repair of complex congenital RVOT obstruction. The study aim was to compare the authors' institutional mid-term experience of large-sized homografts (>19 mm) in patients with Ross and non-Ross RVOT reconstructions. The outcome was reviewed of all homografts implanted for Ross (n = 72) or non-Ross (n = 64) RVOT reconstruction at a single center between 1993 and 2012. Echocardiographic data were reviewed to evaluate valve performance. Homograft dysfunction was defined as RVOT obstruction with peak echo-Doppler gradient >40 mmHg and/or grade >III/IV conduit valve regurgitation. Homograft failure was defined as the need for conduit replacement or catheter or surgical reintervention. The age, body weight, conduit diameter and previous surgery were significantly higher in patients with Ross compared to the non-Ross group (p = 0.002, 0.003 and Ross, n = 17; non-Ross, n = 18). The data acquired showed actuarial survival, freedom from conduit dysfunction and conduit failure to be similar in both cohorts. Freedom from any type of reoperation was worse for the Ross group (58%) than for the non-Ross group (72%) (p = 0.05). During the first 15 years after Ross or non-Ross pulmonary homograft implantation, the survival rate, freedom from failure and dysfunction, and RVOT gradient were statistically similar. Freedom from any type of reoperation was significantly higher in the non-Ross group, however.

  11. Reconstrução anatômica do ligamento cruzado anterior do joelho: banda dupla ou banda simples? Anatomical reconstruction of anterior cruciate ligament of the knee: double band or single band?

    Directory of Open Access Journals (Sweden)

    Luiz Antonio Zanotelli Zanella

    2012-04-01

    reconstruction technique, using four tunnels and grafts from the semitendinosus and gracilis tendons. All fixations were performed using interference screws. There was no variation in the sample. Before the operation, the objective and subjective IKDC scores, Lysholm score and length of time with the injury were evaluated. All these variables were reassessed six months later, and the KT-1000 correlation with the contralateral knee was also evaluated. RESULTS: There was no significant difference between the two groups in subjective evaluations, but the single-band group showed better results in relation to range of motion and objective evaluations including KT-1000 (with statistical significance. CONCLUSION: Our study demonstrated that there was no difference between the two groups in subjective evaluations, but better results were found using the single-band anatomical technique, in relation to objective evaluations.

  12. Real-time Bacterial Detection by Single Cell Based Sensors UsingSynchrotron FTIR Spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Bertozzi,Carolyn; Zhang, Miqin

    2005-08-10

    Microarrays of single macrophage cell based sensors weredeveloped and demonstrated for real time bacterium detection bysynchrotron FTIR microscopy. The cells were patterned on gold-SiO2substrates via a surface engineering technique by which the goldelectrodes were immobilized with fibronectin to mediate cell adhesion andthe silicon oxide background were passivated with PEG to resist proteinadsorption and cell adhesion. Cellular morphology and IR spectra ofsingle, double, and triple cells on gold electrodes exposed tolipopolysaccharide (LPS) of different concentrations were compared toreveal the detection capabilities of these biosensors. The single-cellbased sensors were found to generate the most significant IR wave numbervariation and thus provide the highest detection sensitivity. Changes inmorphology and IR spectrum for single cells exposed to LPS were found tobe time- and concentration-dependent and correlated with each other verywell. FTIR spectra from single cell arrays of gold electrodes withsurface area of 25 mu-m2, 100 mu-m2, and 400 mu-m2 were acquired usingboth synchrotron and conventional FTIR spectromicroscopes to study thesensitivity of detection. The results indicated that the developedsingle-cell platform can be used with conventional FTIRspectromicroscopy. This technique provides real-time, label-free, andrapid bacterial detection, and may allow for statistic and highthroughput analyses, and portability.

  13. Time-domain single-source integral equations for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdés, Felipe

    2013-03-01

    Single-source time-domain electric-and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis functions and a collocation testing procedure, thus allowing for a marching-on-in-time (MOT) solution scheme. Unlike dual-source formulations, single-source equations involve space-time domain operator products, for which spatial discretization techniques developed for standalone operators do not apply. Here, the spatial discretization of the single-source time-domain integral equations is achieved by using the high-order divergence-conforming basis functions developed by Graglia alongside the high-order divergence-and quasi curl-conforming (DQCC) basis functions of Valdés The combination of these two sets allows for a well-conditioned mapping from div-to curl-conforming function spaces that fully respects the space-mapping properties of the space-time operators involved. Numerical results corroborate the fact that the proposed procedure guarantees accuracy and stability of the MOT scheme. © 2012 IEEE.

  14. Invariant operator theory for the single-photon energy in time-varying media

    International Nuclear Information System (INIS)

    Jeong-Ryeol, Choi

    2010-01-01

    After the birth of quantum mechanics, the notion in physics that the frequency of light is the only factor that determines the energy of a single photon has played a fundamental role. However, under the assumption that the theory of Lewis–Riesenfeld invariants is applicable in quantum optics, it is shown in the present work that this widely accepted notion is valid only for light described by a time-independent Hamiltonian, i.e., for light in media satisfying the conditions, ε(i) = ε(0), μ(t) = μ(0), and σ(t) = 0 simultaneously. The use of the Lewis–Riesenfeld invariant operator method in quantum optics leads to a marvelous result: the energy of a single photon propagating through time-varying linear media exhibits nontrivial time dependence without a change of frequency. (general)

  15. A natural-color mapping for single-band night-time image based on FPGA

    Science.gov (United States)

    Wang, Yilun; Qian, Yunsheng

    2018-01-01

    A natural-color mapping for single-band night-time image method based on FPGA can transmit the color of the reference image to single-band night-time image, which is consistent with human visual habits and can help observers identify the target. This paper introduces the processing of the natural-color mapping algorithm based on FPGA. Firstly, the image can be transformed based on histogram equalization, and the intensity features and standard deviation features of reference image are stored in SRAM. Then, the real-time digital images' intensity features and standard deviation features are calculated by FPGA. At last, FPGA completes the color mapping through matching pixels between images using the features in luminance channel.

  16. Seeing is believing: Visualization of He distribution in zircon and implications for thermal history reconstruction on single crystals.

    Science.gov (United States)

    Danišík, Martin; McInnes, Brent I A; Kirkland, Christopher L; McDonald, Brad J; Evans, Noreen J; Becker, Thomas

    2017-02-01

    Zircon (U-Th)/He thermochronometry is an established radiometric dating technique used to place temporal constraints on a range of thermally sensitive geological events, such as crustal exhumation, volcanism, meteorite impact, and ore genesis. Isotopic, crystallographic, and/or mineralogical heterogeneities within analyzed grains can result in dispersed or anomalous (U-Th)/He ages. Understanding the effect of these grain-scale phenomena on the distribution of He in analyzed minerals should lead to improvements in data interpretation. We combine laser ablation microsampling and noble gas and trace element mass spectrometry to provide the first two-dimensional, grain-scale zircon He "maps" and quantify intragrain He distribution. These maps illustrate the complexity of intracrystalline He distribution in natural zircon and, combined with a correlated quantification of parent nuclide (U and Th) distribution, provide an opportunity to assess a number of crystal chemistry processes that can generate anomalous zircon (U-Th)/He ages. The technique provides new insights into fluid inclusions as potential traps of radiogenic He and confirms the effect of heterogeneity in parent-daughter isotope abundances and metamictization on (U-Th)/He systematics. Finally, we present a new inversion method where the He, U, and Th mapping data can be used to constrain the high- and low-temperature history of a single zircon crystal.

  17. Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11a-deficient hematopoietic stem cells.

    Science.gov (United States)

    Tsang, Jason C H; Yu, Yong; Burke, Shannon; Buettner, Florian; Wang, Cui; Kolodziejczyk, Aleksandra A; Teichmann, Sarah A; Lu, Liming; Liu, Pentao

    2015-09-21

    Hematopoietic stem cells (HSCs) are a rare cell type with the ability of long-term self-renewal and multipotency to reconstitute all blood lineages. HSCs are typically purified from the bone marrow using cell surface markers. Recent studies have identified significant cellular heterogeneities in the HSC compartment with subsets of HSCs displaying lineage bias. We previously discovered that the transcription factor Bcl11a has critical functions in the lymphoid development of the HSC compartment. In this report, we employ single-cell transcriptomic analysis to dissect the molecular heterogeneities in HSCs. We profile the transcriptomes of 180 highly purified HSCs (Bcl11a (+/+) and Bcl11a (-/-)). Detailed analysis of the RNA-seq data identifies cell cycle activity as the major source of transcriptomic variation in the HSC compartment, which allows reconstruction of HSC cell cycle progression in silico. Single-cell RNA-seq profiling of Bcl11a (-/-) HSCs reveals abnormal proliferative phenotypes. Analysis of lineage gene expression suggests that the Bcl11a (-/-) HSCs are constituted of two distinct myeloerythroid-restricted subpopulations. Remarkably, similar myeloid-restricted cells could also be detected in the wild-type HSC compartment, suggesting selective elimination of lymphoid-competent HSCs after Bcl11a deletion. These defects are experimentally validated in serial transplantation experiments where Bcl11a (-/-) HSCs are myeloerythroid-restricted and defective in self-renewal. Our study demonstrates the power of single-cell transcriptomics in dissecting cellular process and lineage heterogeneities in stem cell compartments, and further reveals the molecular and cellular defects in the Bcl11a-deficient HSC compartment.

  18. Using machine learning to identify structural breaks in single-group interrupted time series designs.

    Science.gov (United States)

    Linden, Ariel; Yarnold, Paul R

    2016-12-01

    Single-group interrupted time series analysis (ITSA) is a popular evaluation methodology in which a single unit of observation is being studied, the outcome variable is serially ordered as a time series and the intervention is expected to 'interrupt' the level and/or trend of the time series, subsequent to its introduction. Given that the internal validity of the design rests on the premise that the interruption in the time series is associated with the introduction of the treatment, treatment effects may seem less plausible if a parallel trend already exists in the time series prior to the actual intervention. Thus, sensitivity analyses should focus on detecting structural breaks in the time series before the intervention. In this paper, we introduce a machine-learning algorithm called optimal discriminant analysis (ODA) as an approach to determine if structural breaks can be identified in years prior to the initiation of the intervention, using data from California's 1988 voter-initiated Proposition 99 to reduce smoking rates. The ODA analysis indicates that numerous structural breaks occurred prior to the actual initiation of Proposition 99 in 1989, including perfect structural breaks in 1983 and 1985, thereby casting doubt on the validity of treatment effects estimated for the actual intervention when using a single-group ITSA design. Given the widespread use of ITSA for evaluating observational data and the increasing use of machine-learning techniques in traditional research, we recommend that structural break sensitivity analysis is routinely incorporated in all research using the single-group ITSA design. © 2016 John Wiley & Sons, Ltd.

  19. Reconstructing the Evolutionary History of Powdery Mildew Lineages (Blumeria graminis) at Different Evolutionary Time Scales with NGS Data.

    Science.gov (United States)

    Menardo, Fabrizio; Wicker, Thomas; Keller, Beat

    2017-02-01

    Blumeria graminis (Ascomycota) includes fungal pathogens that infect numerous grasses and cereals. Despite its economic impact on agriculture and its scientific importance in plant-pathogen interaction studies, the evolution of different lineages with different host ranges is poorly understood. Moreover, the taxonomy of grass powdery mildew is rather exceptional: there is only one described species (B. graminis) subdivided in different formae speciales (ff.spp.), which are defined by their host range. In this study we applied phylogenomic and population genomic methods to whole genome sequence data of 31 isolates of B. graminis belonging to different ff.spp. and reconstructed the evolutionary relationships between different lineages. The results of the phylogenomic analysis support a pattern of co-evolution between some of the ff.spp. and their host plant. In addition, we identified exceptions to this pattern, namely host jump events and the recent radiation of a clade less than 280,000 years ago. Furthermore, we found a high level of gene tree incongruence localized in the youngest clade. To distinguish between incomplete lineage sorting and lateral gene flow, we applied a coalescent-based method of demographic inference and found evidence of horizontal gene flow between recently diverged lineages. Overall we found that different processes shaped the diversification of B. graminis, co-evolution with the host species, host jump and fast radiation. Our study is an example of how genomic data can resolve complex evolutionary histories of cryptic lineages at different time scales, dealing with incomplete lineage sorting and lateral gene flow. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Dead time effect on single photon counting for the longitudinal density monitor of LHC

    CERN Document Server

    Bravin, E

    2005-01-01

    The longitudinal distribution of the protons in the two LHC rings needs to be known with high accuracy. This is required for both: the correct operation of the machine and the understanding of beam dynamics effects that can influence the performances of the collider. One possible way of achieving the required time resolution of 50 ps and dynamic range of 10.4 is single photons counting of the synchrotron radiation emitted by the beams using avalanche photo diodes (APDs). Although this kind of devices have very short rise times and allow precise time stamping of detected photons, they also have long recovery times (dead time) of the order of hundreds of nanoseconds, much longer than the bunch length of the LHC beams. For this reason it is important to evaluate the masking effect introduced by this dead time, where photons emitted by protons in different longitudinal positions will have different probabilities of being detected.

  1. Dead time effect on single photon counting for the longitudinal density monitor LHC

    CERN Document Server

    Bravin, E

    2005-01-01

    The longitudinal distribution of the protons in the two LHC rings needs to be known with high accuracy. This is required for both: the correct operation of the machine and the understanding of beam dynamics effects that can influence the performances of the collider. One possible way of achieving the required time resolution of 50 ps and dynamic range of 10.4 is single photons counting of the synchrotron radiation emitted by the beams using avalanche photo diodes (APDs). Although this kind of devices have very short rise times and allow precise time stamping of detected photons, they also have long recovery times (dead time) of the order of humdreds of nanoseconds, much longer than the bunch length of the LHC beams. For this reason it is important to evaluate the masking effect introduced by this dead time, where photons emitted by protons in different longitudinal positions will have different probabilities of being detected.

  2. A high-order solver for unsteady incompressible Navier-Stokes equations using the flux reconstruction method on unstructured grids with implicit dual time stepping

    Science.gov (United States)

    Cox, Christopher; Liang, Chunlei; Plesniak, Michael

    2015-11-01

    This paper reports development of a high-order compact method for solving unsteady incompressible flow on unstructured grids with implicit time stepping. The method falls under the class of methods now referred to as flux reconstruction/correction procedure via reconstruction. The governing equations employ the classical artificial compressibility treatment, where dual time stepping is needed to solve unsteady flow problems. An implicit non-linear lower-upper symmetric Gauss-Seidel scheme with backward Euler discretization is used to efficiently march the solution in pseudo time, while a second-order backward Euler discretization is used to march in physical time. We verify and validate implementation of the high-order method coupled with our implicit time-stepping scheme. Three-dimensional results computed on many processing elements will be presented. The high-order method is very suitable for parallel computing and can easily be extended to moving and deforming grids. The current implicit time stepping scheme is proven effective in satisfying the divergence-free constraint on the velocity field in the artificial compressibility formulation within the context of the high-order flux reconstruction method. Financial support provided under the GW Presidential Merit Fellowship.

  3. Space-time philosophy reconstructed via massive Nordström scalar gravities? Laws vs. geometry, conventionality, and underdetermination

    Science.gov (United States)

    Pitts, J. Brian

    2016-02-01

    found in 1939). The Putnam-Grünbaum debate on conventionality is revisited with an emphasis on the broad modal scope of conventionalist views. Massive scalar gravity thus contributes to a historically plausible rational reconstruction of much of 20th-21st century space-time philosophy in the light of particle physics. An appendix reconsiders the Malament-Weatherall-Manchak conformal restriction of conventionality and constructs the 'universal force' influencing the causal structure. Subsequent works will discuss how massive gravity could have provided a template for a more Kant-friendly space-time theory that would have blocked Moritz Schlick's supposed refutation of synthetic a priori knowledge, and how Einstein's false analogy between the Neumann-Seeliger-Einstein modification of Newtonian gravity and the cosmological constant Λ generated lasting confusion that obscured massive gravity as a conceptual possibility.

  4. Risk factors for intervertebral instability assessed by temporal evaluation of the radiographs and reconstructed computed tomography images after L5-S1 single-level transforaminal interbody fusion: A retrospective study.

    Science.gov (United States)

    Kobayashi, Yoshiomi; Shinozaki, Yoshio; Takahashi, Yohei; Takaishi, Hironari; Ogawa, Jun

    2017-01-01

    Intervertebral instability risks following L5-S1 transforaminal lumbar interbody fusion (TLIF) and causes of bony bridge formation on computed tomography (CT) remain largely unknown. We evaluated the temporal changes on plain radiographs and reconstructed CT images from 178 patients who had undergone single-level L5-S1 TLIF between February 2011 and February 2015. We statistically analyzed temporal changes the L5-S1 angle on radiographs and intervertebral stability (IVS) at the last observation. Bony bridge formation between the L5-S1 vertebral bodies and the titanium cage subsidence were analyzed by using reconstructed CT. Preoperative L5-S1 angle in the non-IVS group was significantly greater than that in the IVS group. The cage subsidence was classified as follows: type A, both upper and lower endplates; type B, either endplate; or type C, no subsidence. Types B and C decreased over time, whereas type A increased after surgery. The bony bridges between vertebral bodies were found in 87.2% of patients, and 94.5% of all bony bridges were found only in the cage, not on the contralateral side. Our findings suggested that high preoperative L5-S1 angle increased the risk of intervertebral instability after TLIF. The L5-S1 angle decreased over time with increasing type A subsidence, and almost all bony bridges were found only in the cage. These results suggest that the vertebral bodies were stabilized because of cage subsidence, and final bony bridges were created. Methods to improve bony bridge creation are needed to obtain reliable L5-S1 intervertebral bone union. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. SIMD studies in the LHCb reconstruction software

    CERN Document Server

    Campora Perez, D H

    2015-01-01

    During the data taking process in the LHC at CERN, millions of collisions are recorded every second by the LHCb Detector. The LHCb Online computing farm, counting around 15000 cores, is dedicated to the reconstruction of the events in real-time, in order to filter those with interesting Physics. The ones kept are later analysed $Offline$ in a more precise fashion on the Grid. This imposes very stringent requirements on the reconstruction software, which has to be as efficient as possible. Modern CPUs support so-called vector-extensions, which extend their Instruction Sets, allowing for concurrent execution across functional units. Several libraries expose the Single Instruction Multiple Data programming paradigm to issue these instructions. The use of vectorisation in our codebase can provide performance boosts, leading ultimately to Physics reconstruction enhancements. In this paper, we present vectorisation studies of significant reconstruction algorithms. A variety of vectorisation libraries are analysed a...

  6. Real-Time Single Frequency Precise Point Positioning Using SBAS Corrections

    Directory of Open Access Journals (Sweden)

    Liang Li

    2016-08-01

    Full Text Available Real-time single frequency precise point positioning (PPP is a promising technique for high-precision navigation with sub-meter or even centimeter-level accuracy because of its convenience and low cost. The navigation performance of single frequency PPP heavily depends on the real-time availability and quality of correction products for satellite orbits and satellite clocks. Satellite-based augmentation system (SBAS provides the correction products in real-time, but they are intended to be used for wide area differential positioning at 1 meter level precision. By imposing the constraints for ionosphere error, we have developed a real-time single frequency PPP method by sufficiently utilizing SBAS correction products. The proposed PPP method are tested with static and kinematic data, respectively. The static experimental results show that the position accuracy of the proposed PPP method can reach decimeter level, and achieve an improvement of at least 30% when compared with the traditional SBAS method. The positioning convergence of the proposed PPP method can be achieved in 636 epochs at most in static mode. In the kinematic experiment, the position accuracy of the proposed PPP method can be improved by at least 20 cm relative to the SBAS method. Furthermore, it has revealed that the proposed PPP method can achieve decimeter level convergence within 500 s in the kinematic mode.

  7. NONLINEAR SYSTEM MODELING USING SINGLE NEURON CASCADED NEURAL NETWORK FOR REAL-TIME APPLICATIONS

    Directory of Open Access Journals (Sweden)

    S. Himavathi

    2012-04-01

    Full Text Available Neural Networks (NN have proved its efficacy for nonlinear system modeling. NN based controllers and estimators for nonlinear systems provide promising alternatives to the conventional counterpart. However, NN models have to meet the stringent requirements on execution time for its effective use in real time applications. This requires the NN model to be structurally compact and computationally less complex. In this paper a parametric method of analysis is adopted to determine the compact and faster NN model among various neural network architectures. This work proves through analysis and examples that the Single Neuron Cascaded (SNC architecture is distinct in providing compact and simpler models requiring lower execution time. The unique structural growth of SNC architecture enables automation in design. The SNC Network is shown to combine the advantages of both single and multilayer neural network architectures. Extensive analysis on selected architectures and their models for four benchmark nonlinear theoretical plants and a practical application are tested. A performance comparison of the NN models is presented to demonstrate the superiority of the single neuron cascaded architecture for online real time applications.

  8. Reduction in the ionospheric error for a single-frequency GPS timing solution using tomography

    Directory of Open Access Journals (Sweden)

    Cathryn N. Mitchell

    2009-06-01

    Full Text Available

    Times;">Abstract

    Times;">Single-frequency Global Positioning System (GPS receivers do not accurately compensate for the ionospheric delay imposed upon a GPS signal. They rely upon models to compensate for the ionosphere. This delay compensation can be improved by measuring it directly with a dual-frequency receiver, or by monitoring the ionosphere using real-time maps. This investigation uses a 4D tomographic algorithm, Multi Instrument Data Analysis System (MIDAS, to correct for the ionospheric delay and compares the results to existing single and dualfrequency techniques. Maps of the ionospheric electron density, across Europe, are produced by using data collected from a fixed network of dual-frequency GPS receivers. Single-frequency pseudorange observations are corrected by using the maps to find the excess propagation delay on the GPS L1 signals. Days during the solar maximum year 2002 and the October 2003 storm have been chosen to display results when the ionospheric delays are large and variable. Results that improve upon the use of existing ionospheric models are achieved by applying MIDAS to fixed and mobile single-frequency GPS timing solutions. The approach offers the potential for corrections to be broadcast over a local region, or provided via the internet and allows timing accuracies to within 10 ns to be achieved.



  9. A mixed integer linear programming model to reconstruct phylogenies from single nucleotide polymorphism haplotypes under the maximum parsimony criterion.

    Science.gov (United States)

    Catanzaro, Daniele; Ravi, Ramamoorthi; Schwartz, Russell

    2013-01-23

    Phylogeny estimation from aligned haplotype sequences has attracted more and more attention in the recent years due to its importance in analysis of many fine-scale genetic data. Its application fields range from medical research, to drug discovery, to epidemiology, to population dynamics. The literature on molecular phylogenetics proposes a number of criteria for selecting a phylogeny from among plausible alternatives. Usually, such criteria can be expressed by means of objective functions, and the phylogenies that optimize them are referred to as optimal. One of the most important estimation criteria is the parsimony which states that the optimal phylogeny T∗for a set H of n haplotype sequences over a common set of variable loci is the one that satisfies the following requirements: (i) it has the shortest length and (ii) it is such that, for each pair of distinct haplotypes hi,hj∈H, the sum of the edge weights belonging to the path from hi to hj in T∗ is not smaller than the observed number of changes between hi and hj. Finding the most parsimonious phylogeny for H involves solving an optimization problem, called the Most Parsimonious Phylogeny Estimation Problem (MPPEP), which is NP-hard in many of its versions. In this article we investigate a recent version of the MPPEP that arises when input data consist of single nucleotide polymorphism haplotypes extracted from a population of individuals on a common genomic region. Specifically, we explore the prospects for improving on the implicit enumeration strategy of implicit enumeration strategy used in previous work using a novel problem formulation and a series of strengthening valid inequalities and preliminary symmetry breaking constraints to more precisely bound the solution space and accelerate implicit enumeration of possible optimal phylogenies. We present the basic formulation and then introduce a series of provable valid constraints to reduce the solution space. We then prove that these

  10. Measurement of the Rise-Time in a Single Sided Ladder Detector

    International Nuclear Information System (INIS)

    Gerber, C.E.

    1997-01-01

    In this note we report on the measurement of the preamplifier output rise time for a SVXII chip mounted on a D0 single sided ladder. The measurements were performed on the ladder 001-883-L, using the laser test stand of Lab D. The rise time was measured for different values of the response (or bandwidth) of the preamplifier. As a bigger bandwidth results in longer rise times and therefore in less noise, the largest possible bandwidth consistent with the time between bunch crossings should be chosen to operate the detectors. The rise time is defined as the time elapsed between 10% and 90% of the charge is collected. It is also interesting to measure the time for full charge collection and the percentage of charge collected in 132 ns and 396 ns. The results are shown in table 1, for bandwidths between 2 and 63 (binary numbers). The uncertainty on the time measurement is considered to be ∼ 10 ns. Figure 1 schematically defines the four quantities measured: rise time, time of full charge collection, and percentage of charge collected in 132 ns and 396 ns. Figures 2 to 8 are the actual measurements for bandwidths of 2, 4, 8, 12, 24, 32 and 63. Figure 9 is a second measurement for BW=24, used as a consistency check of the system and the time measurement performed on the plots. The data indicate that the single sided ladders can be operated at BW=63 for 396 ns and BW=12 for 132 ns, achieving full charge collection. This will result in smaller noise than originally anticipated.

  11. Distributed 3-D iterative reconstruction for quantitative SPECT

    International Nuclear Information System (INIS)

    Ju, Z.W.; Frey, E.C.; Tsui, B.M.W.

    1995-01-01

    The authors describe a distributed three dimensional (3-D) iterative reconstruction library for quantitative single-photon emission computed tomography (SPECT). This library includes 3-D projector-backprojector pairs (PBPs) and distributed 3-D iterative reconstruction algorithms. The 3-D PBPs accurately and efficiently model various combinations of the image degrading factors including attenuation, detector response and scatter response. These PBPs were validated by comparing projection data computed using the projectors with that from direct Monte Carlo (MC) simulations. The distributed 3-D iterative algorithms spread the projection-backprojection operations for all the projection angles over a heterogeneous network of single or multi-processor computers to reduce the reconstruction time. Based on a master/slave paradigm, these distributed algorithms provide dynamic load balancing and fault tolerance. The distributed algorithms were verified by comparing images reconstructed using both the distributed and non-distributed algorithms. Computation times for distributed 3-D reconstructions running on up to 4 identical processors were reduced by a factor approximately 80--90% times the number of the processors participating, compared to those for non-distributed 3-D reconstructions running on a single processor. When combined with faster affordable computers, this library provides an efficient means for implementing accurate reconstruction and compensation methods to improve quality and quantitative accuracy in SPECT images

  12. Single-Particle Time-of-Flight Mass Spectrometry Utilizing a Femtosecond Desorption and Ionization Laser.

    Science.gov (United States)

    Zawadowicz, Maria A; Abdelmonem, Ahmed; Mohr, Claudia; Saathoff, Harald; Froyd, Karl D; Murphy, Daniel M; Leisner, Thomas; Cziczo, Daniel J

    2015-12-15

    Single-particle time-of-flight mass spectrometry has now been used since the 1990s to determine particle-to-particle variability and internal mixing state. Instruments commonly use 193 nm excimer or 266 nm frequency-quadrupled Nd:YAG lasers to ablate and ionize particles in a single step. We describe the use of a femtosecond laser system (800 nm wavelength, 100 fs pulse duration) in combination with an existing single-particle time-of-flight mass spectrometer. The goal of this project was to determine the suitability of a femtosecond laser for single-particle studies via direct comparison to the excimer laser (193 nm wavelength, ∼10 ns pulse duration) usually used with the instrument. Laser power, frequency, and polarization were varied to determine the effect on mass spectra. Atmospherically relevant materials that are often used in laboratory studies, ammonium nitrate and sodium chloride, were used for the aerosol. Detection of trace amounts of a heavy metal, lead, in an ammonium nitrate matrix was also investigated. The femtosecond ionization had a large air background not present with the 193 nm excimer and produced more multiply charged ions. Overall, we find that femtosecond laser ablation and ionization of aerosol particles is not radically different than that provided by a 193 nm excimer.

  13. Single trial time-frequency domain analysis of error processing in post-traumatic stress disorder.

    Science.gov (United States)

    Clemans, Zachary A; El-Baz, Ayman S; Hollifield, Michael; Sokhadze, Estate M

    2012-09-13

    Error processing studies in psychology and psychiatry are relatively common. Event-related potentials (ERPs) are often used as measures of error processing, two such response-locked ERPs being the error-related negativity (ERN) and the error-related positivity (Pe). The ERN and Pe occur following committed error in reaction time tasks as low frequency (4-8 Hz) electroencephalographic (EEG) oscillations registered at the midline fronto-central sites. We created an alternative method for analyzing error processing using time-frequency analysis in the form of a wavelet transform. A study was conducted in which subjects with PTSD and healthy control completed a forced-choice task. Single trial EEG data from errors in the task were processed using a continuous wavelet transform. Coefficients from the transform that corresponded to the theta range were averaged to isolate a theta waveform in the time-frequency domain. Measures called the time-frequency ERN and Pe were obtained from these waveforms for five different channels and then averaged to obtain a single time-frequency ERN and Pe for each error trial. A comparison of the amplitude and latency for the time-frequency ERN and Pe between the PTSD and control group was performed. A significant group effect was found on the amplitude of both measures. These results indicate that the developed single trial time-frequency error analysis method is suitable for examining error processing in PTSD and possibly other psychiatric disorders. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Betting with single forams: Uncertainty constraints on El Niño Southern Oscillation reconstructions using individual foraminiferal analyses

    Science.gov (United States)

    Quinn, T. M.; Thirumalai, K.; Partin, J. W.; Jackson, C. S.

    2012-12-01

    Recent scientific investigations of sub-millennial paleoceanographic variability have attempted to use the population statistics of individual planktic foraminiferal δ18O to resolve high-frequency climate signals such as the El Niño Southern Oscillation (ENSO). However, this approach is complicated by the relatively short lifespan of individual foraminifera (~2-4 weeks) compared to the time represented by a typical marine sediment sample (decades to millennia). The resolving ability of individual foraminiferal analyses (IFA) is investigated through simulations on idealized virtual sediment samples constructed from the instrumental record. We focus on ENSO-related sea surface temperatures (SST) anomalies in the Niño3.4 region of the tropical Pacific Ocean. We constrain uncertainties on the range and standard deviation associated with the IFA technique using a bootstrap Monte Carlo approach. Sensitivity to changes in ENSO amplitude and frequency and the influence of the seasonal cycle on IFA are tested by constructing synthetic time series containing different characteristics of variability. We find that the standard deviation and range may be used to detect ENSO amplitude changes at particular thresholds (though the uncertainty in range is much larger than in standard deviation); however, it is improbable that IFA can resolve changes in ENSO frequency. We also determine that ENSO amplitude is the main driver of the IFA signal at Niño3.4 where the SST response to ENSO is large, and the seasonal cycle is relatively small. Our results suggest that rigorous uncertainty analysis should become a standard for IFA studies as it is crucial for accurate interpretation.

  15. Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution

    Directory of Open Access Journals (Sweden)

    Iman Esmaeil Zadeh

    2017-11-01

    Full Text Available Single-photon detection with high efficiency, high time resolution, low dark counts, and high photon detection rates is crucial for a wide range of optical measurements. Although efficient detectors have been reported before, combining all performance parameters in a single device remains a challenge. Here, we show a broadband NbTiN superconducting nanowire detector with an efficiency exceeding 92%, over 150 MHz photon detection rate, and a dark count rate below 130 Hz operated in a Gifford-McMahon cryostat. Furthermore, with careful optimization of the detector design and readout electronics, we reach an ultra-low system timing jitter of 14.80 ps (13.95 ps decoupled while maintaining high detection efficiencies (>75%.

  16. Memory effect in silicon time-gated single-photon avalanche diodes

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Mora, A.; Contini, D., E-mail: davide.contini@polimi.it; Di Sieno, L. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Tosi, A.; Boso, G.; Villa, F. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Pifferi, A. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); CNR, Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)

    2015-03-21

    We present a comprehensive characterization of the memory effect arising in thin-junction silicon Single-Photon Avalanche Diodes (SPADs) when exposed to strong illumination. This partially unknown afterpulsing-like noise represents the main limiting factor when time-gated acquisitions are exploited to increase the measurement dynamic range of very fast (picosecond scale) and faint (single-photon) optical signals following a strong stray one. We report the dependences of this unwelcome signal-related noise on photon wavelength, detector temperature, and biasing conditions. Our results suggest that this so-called “memory effect” is generated in the deep regions of the detector, well below the depleted region, and its contribution on detector response is visible only when time-gated SPADs are exploited to reject a strong burst of photons.

  17. Time domain spectral phase encoding/DPSK data modulation using single phase modulator for OCDMA application.

    Science.gov (United States)

    Wang, Xu; Gao, Zhensen; Kataoka, Nobuyuki; Wada, Naoya

    2010-05-10

    A novel scheme using single phase modulator for simultaneous time domain spectral phase encoding (SPE) signal generation and DPSK data modulation is proposed and experimentally demonstrated. Array- Waveguide-Grating and Variable-Bandwidth-Spectrum-Shaper based devices can be used for decoding the signal directly in spectral domain. The effects of fiber dispersion, light pulse width and timing error on the coding performance have been investigated by simulation and verified in experiment. In the experiment, SPE signal with 8-chip, 20GHz/chip optical code patterns has been generated and modulated with 2.5 Gbps DPSK data using single modulator. Transmission of the 2.5 Gbps data over 34km fiber with BEROCDMA) and secure optical communication applications. (c) 2010 Optical Society of America.

  18. Reduction In Setup Time By Single Minute Exchange Of Dies SMED Methodology

    Directory of Open Access Journals (Sweden)

    Pallavi A. Gade

    2015-08-01

    Full Text Available Life is a race if you dont chase it someone is definitely chase you and will go ahead. Hence to survive in todays business world every manufacturer has to have some idea and plans for their betterment. Market scenario has nearly change after 1990s that every manufacturer must go through the global competition demand for short lead time demand for variety small lot sizes and also proliferation of OEMs. If we have to increase the frequency of delivery without compromising the quality Single Minute Exchange of Dies is the answer. Single Minute Exchange of Dies is not only apply to bottleneck machines it is to be implemented company wide and aim must be to bring all setup time to less than ten minutes in this paper some techniques basic procedure problems faced by companies are discussed and solution for them are suggested.

  19. Time profile of harmonics generated by a single atom in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Antoine, P.; Piraux, B.; Maquet, A.

    1995-01-01

    We show that the time profile of the harmonics emitted by a single atom exposed to a strong electromagnetic field may be obtained through a wavelet or a Gabor analysis of the acceleration of the atomic dipole. This analysis is extremely sensitive to the details of the dynamics and sheds some light on the competition between the atomic excitation or ionization processes and photon emission. For illustration we study the interaction of atomic hydrogen with an intense laser pulse

  20. Rise time of voltage pulses in NbN superconducting single photon detectors

    International Nuclear Information System (INIS)

    Smirnov, K. V.; Divochiy, A. V.; Karpova, U. V.; Morozov, P. V.; Vakhtomin, Yu. B.; Seleznev, V. A.; Sidorova, M. V.; Zotova, A. N.; Vodolazov, D. Yu.

    2016-01-01

    We have found experimentally that the rise time of voltage pulse in NbN superconducting single photon detectors increases nonlinearly with increasing the length of the detector L. The effect is connected with dependence of resistance of the detector R n , which appears after photon absorption, on its kinetic inductance L k and, hence, on the length of the detector. This conclusion is confirmed by our calculations in the framework of two temperature model.

  1. Rise time of voltage pulses in NbN superconducting single photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, K. V. [Moscow State Pedagogical University, 1 Malaya Pirogovskaya St., 119435 Moscow (Russian Federation); CJSC “Superconducting Nanotechnology” (Scontel), 5/22-1 Rossolimo St., 119021 Moscow (Russian Federation); National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics, 34 Tallinskaya St., 109028 Moscow (Russian Federation); Divochiy, A. V.; Karpova, U. V.; Morozov, P. V. [CJSC “Superconducting Nanotechnology” (Scontel), 5/22-1 Rossolimo St., 119021 Moscow (Russian Federation); Vakhtomin, Yu. B.; Seleznev, V. A. [Moscow State Pedagogical University, 1 Malaya Pirogovskaya St., 119435 Moscow (Russian Federation); CJSC “Superconducting Nanotechnology” (Scontel), 5/22-1 Rossolimo St., 119021 Moscow (Russian Federation); Sidorova, M. V. [Moscow State Pedagogical University, 1 Malaya Pirogovskaya St., 119435 Moscow (Russian Federation); Zotova, A. N.; Vodolazov, D. Yu. [Institute for Physics of Microstructure, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod (Russian Federation)

    2016-08-01

    We have found experimentally that the rise time of voltage pulse in NbN superconducting single photon detectors increases nonlinearly with increasing the length of the detector L. The effect is connected with dependence of resistance of the detector R{sub n}, which appears after photon absorption, on its kinetic inductance L{sub k} and, hence, on the length of the detector. This conclusion is confirmed by our calculations in the framework of two temperature model.

  2. Reconstruction of 3D flow structures in a cylindrical cavity with a rotating lid using time-resolved stereo PIV

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Sørensen, Jens Nørkær; Naumov, Igor

    2009-01-01

    variations. The flow in a cylindrical cavity with a rotating lid of a height of three radii and a Reynolds number of about 3500 is used as example. The reconstruction identifies a series of flow structures including axisymmetric vortex breakdown and distinct vortex structures along the cylinder wall....

  3. Source reconstruction via the spatiotemporal Kalman filter and LORETA from EEG time series with 32 or fewer electrodes.

    Science.gov (United States)

    Hamid, Laith; Al Farawn, Ali; Merlet, Isabelle; Japaridze, Natia; Heute, Ulrich; Stephani, Ulrich; Galka, Andreas; Wendling, Fabrice; Siniatchkin, Michael

    2017-07-01

    The clinical routine of non-invasive electroencephalography (EEG) is usually performed with 8-40 electrodes, especially in long-term monitoring, infants or emergency care. There is a need in clinical and scientific brain imaging to develop inverse solution methods that can reconstruct brain sources from these low-density EEG recordings. In this proof-of-principle paper we investigate the performance of the spatiotemporal Kalman filter (STKF) in EEG source reconstruction with 9-, 19- and 32- electrodes. We used simulated EEG data of epileptic spikes generated from lateral frontal and lateral temporal brain sources using state-of-the-art neuronal population models. For validation of source reconstruction, we compared STKF results to the location of the simulated source and to the results of low-resolution brain electromagnetic tomography (LORETA) standard inverse solution. STKF consistently showed less localization bias compared to LORETA, especially when the number of electrodes was decreased. The results encourage further research into the application of the STKF in source reconstruction of brain activity from low-density EEG recordings.

  4. Internal mammary recipient site breast cancer recurrence following delayed microvascular breast reconstruction.

    Science.gov (United States)

    Rosich-Medina, Anais; Wang, Susan; Erel, Ertan; Malata, Charles M

    2013-01-01

    The internal mammary vessels are a popular recipient site for microsurgical anastomoses of free flap breast reconstructions. We, however, observed 3 patients undergoing internal mammary vessel delayed free flap breast reconstruction that subsequently developed tumor recurrence at this site. We reviewed their characteristics to determine whether there was a correlation between delayed microsurgical reconstruction and local recurrence. A retrospective review of a single surgeon's delayed free flap breast reconstructions using the internal mammary vessels was conducted over a 7-year period to identify the time intervals between mastectomy and delayed breast reconstruction and between delayed breast reconstruction and recurrence. Three patients developed local recurrence at the site of the microvascular anastomoses following delayed breast reconstruction. All patients had been disease-free following mastectomy. The median time interval between mastectomy and delayed breast reconstruction was 28 months (range = 20-120 months) while that between delayed breast reconstruction and local recurrence was 7 months (range = 4-10 months). Two patients died from metastatic disease, 36 and 72 months following their local recurrence. One patient remains alive 44 months after reconstruction. Local tumor recurrence at the internal mammary vessel dissection site following delayed breast reconstruction raises the question whether these 2 events may be related. Specifically, could internal mammary vessel dissection undertaken for delayed microsurgical reconstruction predispose to recurrence in the internal mammary lymph nodes? Further research is needed to ascertain whether delayed breast reconstruction increases the risk of local recurrence in this patient group.

  5. Real-time, single-step bioassay using nanoplasmonic resonator with ultra-high sensitivity

    Science.gov (United States)

    Zhang, Xiang; Ellman, Jonathan A; Chen, Fanqing Frank; Su, Kai-Hang; Wei, Qi-Huo; Sun, Cheng

    2014-04-01

    A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.

  6. Using a single RGB frame for real time 3D hand pose estimation in the wild

    OpenAIRE

    Panteleris, Paschalis; Oikonomidis, Iason; Argyros, Antonis

    2017-01-01

    We present a method for the real-time estimation of the full 3D pose of one or more human hands using a single commodity RGB camera. Recent work in the area has displayed impressive progress using RGBD input. However, since the introduction of RGBD sensors, there has been little progress for the case of monocular color input. We capitalize on the latest advancements of deep learning, combining them with the power of generative hand pose estimation techniques to achieve real-time monocular 3D ...

  7. Non-Markovian theory for the waiting time distributions of single electron transfers.

    Science.gov (United States)

    Welack, Sven; Yan, YiJing

    2009-09-21

    We derive a non-Markovian theory for waiting time distributions of consecutive single electron transfer events. The presented microscopic Pauli rate equation formalism couples the open electrodes to the many-body system, allowing to take finite bias and temperature into consideration. Numerical results reveal transient oscillations of distinct system frequencies due to memory in the waiting time distributions. Memory effects can be approximated by an expansion in non-Markovian corrections. This method is employed to calculate memory landscapes displaying preservation of memory over multiple consecutive electron transfers.

  8. On the thermal inertia and time constant of single-family houses

    Energy Technology Data Exchange (ETDEWEB)

    Hedbrant, J.

    2001-08-01

    Since the 1970s, electricity has become a common heating source in Swedish single-family houses. About one million small houses can use electricity for heating, about 600.000 have electricity as the only heating source, A liberalised European electricity market would most likely raise the Swedish electricity prices during daytime on weekdays and lower it at other times. In the long run, electrical heating of houses would be replaced by fuels, but in the shorter perspective, other strategies may be considered. This report evaluates the use of electricity for heating a dwelling, or part of it, at night when both the demand and the price are low. The stored heat is utilised in the daytime some hours later, when the electricity price is high. Essential for heat storage is the thermal time constant. The report gives a simple theoretical framework for the calculation of the time constant for a single-family house with furniture. Furthermore the comfort time constant, that is, the time for a house to cool down from a maximum to a minimum acceptable temperature, is derived. Two theoretical model houses are calculated, and the results are compared to data from empirical studies in three inhabited test houses. The results show that it was possible to store about 8 kWh/K in a house from the seventies and about 5 kWh/K in a house from the eighties. The time constants were 34 h and 53 h, respectively. During winter conditions with 0 deg C outdoor, the 'comfort' time constants with maximum and minimum indoor temperatures of 23 and 20 deg C were 6 h and 10 h. The results indicate that the maximum load-shifting potential of an average single family house is about 1 kw during 16 daytime hours shifted into 2 kw during 8 night hours. Upscaled to the one million Swedish single-family houses that can use electricity as a heating source, the maximum potential is 1000 MW daytime time-shifted into 2000 MW at night.

  9. Historical reconstruction of spatial distribution of land use/land cover in the early reclaimed time of Northeast China——Based on the HLURM model

    Science.gov (United States)

    Yang, Yuanyuan; Zhang, Shuwen; Liu, Yansui

    2017-04-01

    (Historic Land Use Reconstruction Model) to reconstruct the spatial distribution of land use in the early reclaimed time of Northeast China. HLURM model consists of four main modules: quantity control module, spatial conversion rule module, probability module and spatial allocation module. This model could produce backward projections by analyzing land use and its change in recent decades, which is a dynamically dependent approach based on three assumptions that current spatial patterns of land use are dynamically dependent on the historic one, the boundary of historic land use with human activities does not exceed the union range of each land use type, and factors for land suitability do not change over time.

  10. Single- vs. double-bundle anterior cruciate ligament reconstruction: a new aspect of knee assessment during activities involving dynamic knee rotation.

    Science.gov (United States)

    Czamara, Andrzej; Królikowska, Aleksandra; Szuba, Łukasz; Widuchowski, Wojciech; Kentel, Maciej

    2015-02-01

    Few studies have compared single-bundle (SB) and double-bundle (DB) anterior cruciate ligament reconstruction (ACLR) in the knee joint during activities involving change-of-direction maneuvers and knee rotation. This study examined whether the type of ACLR contributes to postphysiotherapy outcomes, with an emphasis on knee function assessment during activities involving dynamic knee rotation. Fifteen male patients after SB ACLR and 15 male patients after DB ACLR took part in the same physiotherapy program. Twenty-four weeks after ACLR, both groups underwent anterior laxity measurement, pivot shift tests, range of movement and joint circumference measurements, subjective assessment of pain and stability levels in the knee joint, peak torque measurement of the muscles rotating the tibia toward the femur, and a run test with maximal speed and change-of-direction maneuvers. Comparative analysis did not show any differences between the results of anterior tibial translation, pivot shift test, range of movement and joint circumference, and subjective assessment of pain and knee joint stability levels. No differences were noted between the groups in peak torque values obtained from the muscles responsible for internal and external tibial rotation or results of the run test. The data obtained from this study can be used by research teams to monitor and compare the effectiveness of various study protocols involving surgical and physiotherapy treatment. The data are especially useful when combined with the clinical assessment of patients who would like to return to sport.

  11. A comparison of pain scores and medication use in patients undergoing single-bundle or double-bundle anterior cruciate ligament reconstruction

    Science.gov (United States)

    Macdonald, Simon A.; Heard, S. Mark; Hiemstra, Laurie A.; Buchko, Gregory M.L.; Kerslake, Sarah; Sasyniuk, Treny M.

    2014-01-01

    Background No gold standard exists for the management of postoperative pain following anterior cruciate ligament reconstruction (ACLR). We compared the pain scores and medication use of patients undergoing single-bundle (SB) or double-bundle (DB) ACLR in the acute postoperative period. Pain and medication use was also analyzed for spinal versus general anesthesia approaches within both surgery types. Methods We assessed 2 separate cohorts of primary ACLR patients, SB and DB, for 14 days postoperatively. We used a standard logbook to record self-reported pain scores and medication use. Pain was assessed using a 100 mm visual analogue scale (VAS). Medications were divided into 3 categories: oral opioids, oral nonsteroidal anti-inflammatories and acetaminophen. Results A total of 88 patients undergoing SB and 41 undergoing DB ACLR were included in the study. We found no significant difference in VAS pain scores between the cohorts. Despite similar VAS pain scores, the DB cohort consumed significantly more opioid and analgesia medication (p = 0.011). Patients who underwent DB with spinal anesthesia experienced significantly less pain over the initial 14-day postoperative period than those who received general anesthesia (p postoperative period. Patients in the DB cohort experienced more pain, as evidenced by the significant difference in consumption of opioids and acetaminophen, than the SB cohort. Patients who underwent spinal anesthesia experienced less pain in the acute postoperative period than those who received general anesthesia. PMID:24869623

  12. Measurement of the W boson helicity in events with a single reconstructed top quark in pp collisions at $\\sqrt{s}$ = 8 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler,