WorldWideScience

Sample records for single reaction product

  1. Ligase-free subcloning: a versatile method to subclone polymerase chain reaction (PCR) products in a single day.

    Science.gov (United States)

    Shuldiner, A R; Tanner, K; Scott, L A; Moore, C A; Roth, J

    1991-04-01

    Often, it is convenient to subclone polymerase chain reaction (PCR) products into a plasmid vector for subsequent replication in bacteria, but conventional subcloning methods often fail. We report a rapid and versatile method to subclone PCR products directionally into a specific site of virtually any plasmid vector. The procedure requires only four primers, does not require DNA ligase, and may be accomplished in a single day. Ligase-free subcloning is performed by incorporating into the PCR primers sequences at the 5' ends that result in PCR products whose 3' ends are complementary to the 3' ends of the recipient linearized plasmid. The PCR product and the linearized plasmid are spliced together in a second PCR reaction in which Taq polymerase extends the complementary overlapping 3' ends (ligation by overlap extension). Denaturation followed by heterologous reannealing and cyclization results in a cyclic recombinant plasmid with two nicks that may be used directly to transform competent Escherichia coli. In our hands, ligase-free subcloning is rapid, and offers many advantages over existing strategies.

  2. Reaction product imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, D.W. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Over the past few years the author has investigated the photochemistry of small molecules using the photofragment imaging technique. Bond energies, spectroscopy of radicals, dissociation dynamics and branching ratios are examples of information obtained by this technique. Along with extending the technique to the study of bimolecular reactions, efforts to make the technique as quantitative as possible have been the focus of the research effort. To this end, the author has measured the bond energy of the C-H bond in acetylene, branching ratios in the dissociation of HI, the energetics of CH{sub 3}Br, CD{sub 3}Br, C{sub 2}H{sub 5}Br and C{sub 2}H{sub 5}OBr dissociation, and the alignment of the CD{sub 3} fragment from CD{sub 3}I photolysis. In an effort to extend the technique to bimolecular reactions the author has studied the reaction of H with HI and the isotopic exchange reaction between H and D{sub 2}.

  3. Study of single nucleon transfer in α + 12C reaction

    International Nuclear Information System (INIS)

    Pandey, R.; Rana, T.K.; Dey, A.; Bhattacharya, C.; Kundu, S.; Banerjee, K.; Mukherjee, G.; Ghosh, T.K.; Meena, J.K.; Pai, H.; Gohil, M.; Bhattacharya, S.; Biswas, M.

    2011-01-01

    Nucleon transfer reactions are of great significance for understanding the nuclear structure both for direct reaction studies as well as for production of nuclear states. Transfer reactions are simplest to interpret when either the initial and final state of the target nucleus has spin zero and when the conditions are such that the transition from the initial and final states occurs to a good approximation in a single step. In this paper, the measurement of angular momentum distribution and calculation of the spectroscopic factor for one nucleon transfer reaction in α + 12 C reaction have been reported

  4. Single-Atom Catalysts of Precious Metals for Electrochemical Reactions.

    Science.gov (United States)

    Kim, Jiwhan; Kim, Hee-Eun; Lee, Hyunjoo

    2018-01-10

    Single-atom catalysts (SACs), in which metal atoms are dispersed on the support without forming nanoparticles, have been used for various heterogeneous reactions and most recently for electrochemical reactions. In this Minireview, recent examples of single-atom electrocatalysts used for the oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), hydrogen evolution reaction (HER), formic acid oxidation reaction (FAOR), and methanol oxidation reaction (MOR) are introduced. Many density functional theory (DFT) simulations have predicted that SACs may be effective for CO 2 reduction to methane or methanol production while suppressing H 2 evolution, and those cases are introduced here as well. Single atoms, mainly Pt single atoms, have been deposited on TiN or TiC nanoparticles, defective graphene nanosheets, N-doped covalent triazine frameworks, graphitic carbon nitride, S-doped zeolite-templated carbon, and Sb-doped SnO 2 surfaces. Scanning transmission electron microscopy, extended X-ray absorption fine structure measurement, and in situ infrared spectroscopy have been used to detect the single-atom structure and confirm the absence of nanoparticles. SACs have shown high mass activity, minimizing the use of precious metal, and unique selectivity distinct from nanoparticle catalysts owing to the absence of ensemble sites. Additional features that SACs should possess for effective electrochemical applications were also suggested. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fundamental study on reaction of lead-bismuth eutectic and sodium. Identification of reaction products and examination of reaction behavior

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Hirakawa, Yasushi

    2003-09-01

    A simplified secondary sodium cooling system utilizing lead-bismuth eutectic as an intermediate coolant has been selected as one of candidate systems for the 'Feasibility Studies on Commercialized Fast Reactor System'. In this study, fundamental reaction experiments have been performed to understand a reaction behavior between sodium and lead-bismuth. In order to identify the reaction products and to elucidate a reaction process, sampling and X-ray diffraction analysis of the reaction products are carried out. Following results are obtained. (1) The principal reaction products which formed in sodium and lead-bismuth ternary system are BiNa 3 and Pb 4 Na 15 intermetallic compounds. These two reaction products are identified irrespective of either primary sample content or sampling temperature. (2) Pb 3 Na intermetallic compound is identified in the reaction products for the first time. (3) The principal reaction product which formed in sodium and bismuth binary system is BiNa 3 intermetallic compound. (4) The reaction products which formed in sodium and lead binary system consist of various intermetallic compounds of sodium and lead system. Single phase of an intermetallic compound can not be obtained in this system. Based on these X-ray diffraction analyses, reaction process models of formation and dissolution are proposed. (author)

  6. Action spectroscopy for single-molecule reactions - Experiments and theory

    Science.gov (United States)

    Kim, Y.; Motobayashi, K.; Frederiksen, T.; Ueba, H.; Kawai, M.

    2015-05-01

    broadening of the vibrational density of states (as described by Gaussian or Lorentzian functions) manifest themselves in Y (V) near the threshold bias voltage corresponding to a vibrational excitation responsible for reactions. A prefactor of Y (V) is explicitly derived for various types of elementary processes. Our generic formula of Y (V) also underlines the need to observe Y (V) at both bias voltage polarities, which can provide additional insight into the adsorbate projected density of states near the Fermi level within a span of the vibrational energy. The theory is applied to analysis of some highlights of the experimental results: Xe transfer, hopping of a single CO molecule on Pd(1 1 0), a dissociation of a single dimethyl disulfide (CH3S)2 and a hopping of a dissociated product, i.e., single methyl thiolate CH3S on Cu(1 1 1). It underlines that an observation of Y (V) at both bias polarities permits us to certain insight into the molecular alignment with respect to the Fermi level.

  7. Single-collision studies of energy transfer and chemical reaction

    Energy Technology Data Exchange (ETDEWEB)

    Valentini, J.J. [Columbia Univ., New York, NY (United States)

    1993-12-01

    The research focus in this group is state-to-state dynamics of reaction and energy transfer in collisions of free radicals such as H, OH, and CH{sub 3} with H{sub 2}, alkanes, alcohols and other hydrogen-containing molecules. The motivation for the work is the desire to provide a detailed understanding of the chemical dynamics of prototype reactions that are important in the production and utilization of energy sources, most importantly in combustion. The work is primarily experimental, but with an important and growing theoretical/computational component. The focus of this research program is now on reactions in which at least one of the reactants and one of the products is polyatomic. The objective is to determine how the high dimensionality of the reactants and products differentiates such reactions from atom + diatom reactions of the same kinematics and energetics. The experiments use highly time-resolved laser spectroscopic methods to prepare reactant states and analyze the states of the products on a single-collision time scale. The primary spectroscopic tool for product state analysis is coherent anti-Stokes Raman scattering (CARS) spectroscopy. CARS is used because of its generality and because the extraction of quantum state populations from CARS spectra is straightforward. The combination of the generality and easy analysis of CARS makes possible absolute cross section measurements (both state-to-state and total), a particularly valuable capability for characterizing reactive and inelastic collisions. Reactant free radicals are produced by laser photolysis of appropriate precursors. For reactant vibrational excitation stimulated Raman techniques are being developed and implemented.

  8. Exploring single electrode reactions in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, H.; Wokaun, A.; Scherer, G.G. [Paul Scherrer Institute, Electrochemistry Laboratory, 5232 Villigen (Switzerland)

    2007-01-20

    Utilising a pseudo-reference electrode in polymer electrolyte fuel cells allows for the separation of anodic and cathodic contributions to the entire cell impedance. Modelling the impedance responses by using equivalent circuits inhibits the investigation of kinetic parameters of the basic electrochemical reactions, which take place at single electrode-electrolyte interfaces. Therefore, we evaluate single electrode impedance measurements by a kinetic model, which is based on specific reaction pathways, either for the oxygen reduction reaction (ORR) or the hydrogen oxidation reaction (HOR). As a consequence, it is possible to obtain kinetic parameters for the specific reaction of interest. Furthermore, the information gained from the single electrode impedance measurements and the kinetic model can give insight into single reactions steps. In particular, the ORR has to include a chemical step in the reaction pathway. (author)

  9. Snake antivenoms: adverse reactions and production technology

    Directory of Open Access Journals (Sweden)

    VM Morais

    2009-01-01

    Full Text Available Antivenoms have been widely used for more than a century for treating snakebites and other accidents with poisonous animals. Despite their efficacy, the use of heterologous antivenoms involves the possibility of adverse reactions due to activation of the immune system. In this paper, alternatives for antivenom production already in use were evaluated in light of their ability to minimize the occurrence of adverse reactions. These effects were classified according to their molecular mechanism as: anaphylactic reactions mediated by IgE, anaphylactoid reactions caused by complement system activation, and pyrogenic reactions produced mainly by the presence of endotoxins in the final product. In the future, antivenoms may be replaced by humanized antibodies, specific neutralizing compounds or vaccination. Meanwhile, improvements in antivenom quality will be focused on the obtainment of a more purified and specific product in compliance with good manufacturing practices and at an affordable cost.

  10. Reaction Gradients Viewed Inside Single Photoactive Particles

    Science.gov (United States)

    Alpert, P.; Corral Arroyo, P.; Dou, J.; Kreiger, U.; Luo, B.; Peter, T.; Ammann, M.

    2017-12-01

    In terms of chemical selectivity and spatial resolution, a technique known as scanning transmission X-ray microscopy coupled to near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) is unmatched and will remain so for years into the future. We present a recent development coupling STXM/NEXAFS to a custom-built photochemical environmental reactor in which aerosol particles reside allowing for in situ chemical imaging. A laboratory investigation of metal-organic complex photochemistry was conducted. Transition metals are of great importance to atmospheric chemistry and aerosol photochemical aging due to their ability to catalyze oxidation reactions. Aerosol particles composed of mixtures of citric acid and iron citrate were probed for their organic carbon composition and iron oxidation state under atmospherically relevant conditions. At 40% relative humidity, oxygen diffusion and reaction was severely limited. Fe was reoxidized in the first 200 nm of the particle surface leaving reduced iron in the core. Similar gradients were observed at 60% RH, however waiting approximately 2 hours in the dark resulted in a recovery of the initial Fe(III) concentration. We draw two main conclusions from our findings. Frist, the oxidation gradients must have been the result of anoxic conditions at the interior of aerosol particles. This was predicted using a newly developed model for molecular diffusion through multiple layers with a reaction framework describing the photochemical processing of the metal organic matrix. Second, the lifetime of organic radicals in an anoxic diffusion limited organic matrix must be considerably long ( hours) to completely reoxidize iron as they wait for molecular oxygen. Long radical lifetimes in viscous organic aerosol in turn, could create high radical concentrations or favor radical-radical reactions in particles typically not considered when oxygen is plentiful. Our results impact predictions of aerosol physiochemical properties, e

  11. Energy conservation and maximal entropy production in enzyme reactions.

    Science.gov (United States)

    Dobovišek, Andrej; Vitas, Marko; Brumen, Milan; Fajmut, Aleš

    2017-08-01

    A procedure for maximization of the density of entropy production in a single stationary two-step enzyme reaction is developed. Under the constraints of mass conservation, fixed equilibrium constant of a reaction and fixed products of forward and backward enzyme rate constants the existence of maximum in the density of entropy production is demonstrated. In the state with maximal density of entropy production the optimal enzyme rate constants, the stationary concentrations of the substrate and the product, the stationary product yield as well as the stationary reaction flux are calculated. The test, whether these calculated values of the reaction parameters are consistent with their corresponding measured values, is performed for the enzyme Glucose Isomerase. It is found that calculated and measured rate constants agree within an order of magnitude, whereas the calculated reaction flux and the product yield differ from their corresponding measured values for less than 20 % and 5 %, respectively. This indicates that the enzyme Glucose Isomerase, considered in a non-equilibrium stationary state, as found in experiments using the continuous stirred tank reactors, possibly operates close to the state with the maximum in the density of entropy production. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique

    Science.gov (United States)

    Huang, Cancan; Jevric, Martyn; Borges, Anders; Olsen, Stine T.; Hamill, Joseph M.; Zheng, Jue-Ting; Yang, Yang; Rudnev, Alexander; Baghernejad, Masoud; Broekmann, Peter; Petersen, Anne Ugleholdt; Wandlowski, Thomas; Mikkelsen, Kurt V.; Solomon, Gemma C.; Brøndsted Nielsen, Mogens; Hong, Wenjing

    2017-05-01

    Charge transport by tunnelling is one of the most ubiquitous elementary processes in nature. Small structural changes in a molecular junction can lead to significant difference in the single-molecule electronic properties, offering a tremendous opportunity to examine a reaction on the single-molecule scale by monitoring the conductance changes. Here, we explore the potential of the single-molecule break junction technique in the detection of photo-thermal reaction processes of a photochromic dihydroazulene/vinylheptafulvene system. Statistical analysis of the break junction experiments provides a quantitative approach for probing the reaction kinetics and reversibility, including the occurrence of isomerization during the reaction. The product ratios observed when switching the system in the junction does not follow those observed in solution studies (both experiment and theory), suggesting that the junction environment was perturbing the process significantly. This study opens the possibility of using nano-structured environments like molecular junctions to tailor product ratios in chemical reactions.

  13. Direct single-molecule dynamic detection of chemical reactions.

    Science.gov (United States)

    Guan, Jianxin; Jia, Chuancheng; Li, Yanwei; Liu, Zitong; Wang, Jinying; Yang, Zhongyue; Gu, Chunhui; Su, Dingkai; Houk, Kendall N; Zhang, Deqing; Guo, Xuefeng

    2018-02-01

    Single-molecule detection can reveal time trajectories and reaction pathways of individual intermediates/transition states in chemical reactions and biological processes, which is of fundamental importance to elucidate their intrinsic mechanisms. We present a reliable, label-free single-molecule approach that allows us to directly explore the dynamic process of basic chemical reactions at the single-event level by using stable graphene-molecule single-molecule junctions. These junctions are constructed by covalently connecting a single molecule with a 9-fluorenone center to nanogapped graphene electrodes. For the first time, real-time single-molecule electrical measurements unambiguously show reproducible large-amplitude two-level fluctuations that are highly dependent on solvent environments in a nucleophilic addition reaction of hydroxylamine to a carbonyl group. Both theoretical simulations and ensemble experiments prove that this observation originates from the reversible transition between the reactant and a new intermediate state within a time scale of a few microseconds. These investigations open up a new route that is able to be immediately applied to probe fast single-molecule physics or biophysics with high time resolution, making an important contribution to broad fields beyond reaction chemistry.

  14. High energy photons production in nuclear reactions

    International Nuclear Information System (INIS)

    Nifenecker, H.; Pinston, J.A.

    1990-01-01

    Hard photon production, in nucleus-nucleus collisions, were studied at beam energies between 10 and 125 MeV. The main characteristics of the photon emission are deduced. They suggest that the neutron-proton collisions in the early stage of the reaction are the main source of high energy gamma-rays. An overview of the theoretical approaches is given and compared with experimental results. Theoretical attempts to include the contribution of charged pion exchange currents to photon production, in calculations of proton-nucleus-gamma and nucleus-nucleus-gamma reactions, showed suitable fitting with experimental data

  15. Catalytic effect of a single water molecule on the OH + CH2NH reaction.

    Science.gov (United States)

    Akbar Ali, Mohamad; M, Balaganesh; Lin, K C

    2018-02-07

    In recent work, there has been considerable speculation about the atmospheric reaction of methylenimine (CH 2 NH), because this compound is highly reactive, soluble in water, and sticky, thus posing severe experimental challenges. In this work, we have revisited the kinetics of the OH + CH 2 NH reaction assisted by a single water molecule. The potential energy surfaces (PESs) for the water-assisted OH + CH 2 NH reaction were calculated using the CCSD(T)//BH&HLYP/aug-cc-pVTZ levels of theory. The rate coefficients for the bimolecular reaction pathways CH 2 NHH 2 O + OH and CH 2 NH + H 2 OHO were computed using canonical variational transition state theory (CVT) with small curvature tunneling correction. The reaction without water has four elementary reaction pathways, depending on how the hydroxyl radical approaches CH 2 NH. In all cases, the reaction begins with the formation of a single pre-reactive complex before producing abstraction and addition products. When water is added, the products of the reaction do not change, and the reaction becomes quite complex, yielding four different pre-reactive complexes and eight reaction pathways. The calculated rate coefficient for the OH + CH 2 NH (water-free) reaction at 300 K is 1.7 × 10 -11 cm 3 molecule -1 s -1 and for OH + CH 2 NH (water-assisted), it is 5.1 × 10 -14 cm 3 molecule -1 s -1 . This result is similar to the isoelectronic analogous reaction OH + CH 2 O (water-assisted). In general, the effective rate coefficients of the water-assisted reaction are 2∼3 orders of magnitude smaller than water-free. Our results show that the water-assisted OH + CH 2 NH reaction cannot accelerate the reaction because the dominated water-assisted process depends parametrically on water concentration. As a result, the overall reaction rate coefficients are smaller.

  16. Single-molecule chemical reaction reveals molecular reaction kinetics and dynamics.

    Science.gov (United States)

    Zhang, Yuwei; Song, Ping; Fu, Qiang; Ruan, Mingbo; Xu, Weilin

    2014-06-25

    Understanding the microscopic elementary process of chemical reactions, especially in condensed phase, is highly desirable for improvement of efficiencies in industrial chemical processes. Here we show an approach to gaining new insights into elementary reactions in condensed phase by combining quantum chemical calculations with a single-molecule analysis. Elementary chemical reactions in liquid-phase, revealed from quantum chemical calculations, are studied by tracking the fluorescence of single dye molecules undergoing a reversible redox process. Statistical analyses of single-molecule trajectories reveal molecular reaction kinetics and dynamics of elementary reactions. The reactivity dynamic fluctuations of single molecules are evidenced and probably arise from either or both of the low-frequency approach of the molecule to the internal surface of the SiO2 nanosphere or the molecule diffusion-induced memory effect. This new approach could be applied to other chemical reactions in liquid phase to gain more insight into their molecular reaction kinetics and the dynamics of elementary steps.

  17. Reactions of uranium hexafluoride photolysis products

    Science.gov (United States)

    Lyman, John L.; Laguna, Glenn; Greiner, N. R.

    1985-01-01

    This paper confirms that the ultraviolet photolysis reactions of UF6 in the B band spectral region is simple bond cleavage to UF5 and F. The photolysis products may either recombine to UF6 or the UF5 may dimerize, and ultimately polymerize, to solid UF5 particles. We use four methods to set an upper limit for the rate constant for recombination of krUF6 and UF5 after laser photolysis of the UF6 gas sample.

  18. Single-Site Palladium(II) Catalyst for Oxidative Heck Reaction: Catalytic Performance and Kinetic Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hui; Li, Mengyang; Zhang, Guanghui; Gallagher, James R.; Huang, Zhiliang; Sun, Yu; Luo, Zhong; Chen, Hongzhong; Miller, Jeffrey T.; Zou, Ruqiang; Lei, Aiwen; Zhao, Yanli

    2015-01-01

    ABSTRACT: The development of organometallic single-site catalysts (SSCs) has inspired the designs of new heterogeneous catalysts with high efficiency. Nevertheless, the application of SSCs in certain modern organic reactions, such as C-C bond formation reactions, has still been less investigated. In this study, a single-site Pd(II) catalyst was developed, where 2,2'-bipyridine-grafted periodic mesoporous organosilica (PMO) was employed as the support of a Pd(II) complex. The overall performance of the single-site Pd(II) catalyst in the oxidative Heck reaction was then investigated. The investigation results show that the catalyst displays over 99% selectivity for the product formation with high reaction yield. Kinetic profiles further confirm its high catalytic efficiency, showing that the rate constant is nearly 40 times higher than that for the free Pd(II) salt. X-ray absorption spectroscopy reveals that the catalyst has remarkable lifetime and recyclability.

  19. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique

    DEFF Research Database (Denmark)

    Huang, Cancan; Jevric, Martyn; Borges, Anders Christian

    2017-01-01

    a quantitative approach for probing the reaction kinetics and reversibility, including the occurrence of isomerization during the reaction. The product ratios observed when switching the system in the junction does not follow those observed in solution studies (both experiment and theory), suggesting......Charge transport by tunnelling is one of the most ubiquitous elementary processes in nature. Small structural changes in a molecular junction can lead to significant difference in the single-molecule electronic properties, offering a tremendous opportunity to examine a reaction on the single......-molecule scale by monitoring the conductance changes. Here, we explore the potential of the single-molecule break junction technique in the detection of photo-thermal reaction processes of a photochromic dihydroazulene/vinylheptafulvene system. Statistical analysis of the break junction experiments provides...

  20. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-07-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

  1. Actinic radiation-curable formulations from the reaction product of organic isocyanate, poly(alkylene oxide) polyol and an unsaturated addition-polymerizable monomeric compound having a single isocyanate-reactive hydrogen group

    International Nuclear Information System (INIS)

    Howard, D.D.

    1979-01-01

    Energy-curable compositions which can be cured in the presence of air by exposure to actinic radiation contain at least one unsaturated urethane oligomer. The oligomer comprises the reaction product of at least one poly(alkylene oxide) polyol, at least one polyisocyanate, and at least one unsaturated active hydrogen-containing compound

  2. Single top quark production with CMS

    Directory of Open Access Journals (Sweden)

    Piccolo Davide

    2013-11-01

    Full Text Available Measurements of single top quark production performed using the CMS experiment [1] data collected in 2011 at centre-of-mass energies of 7 TeV and in 2012 at 8 TeV, are presented. The cross sections for the electroweak production of single top quarks in the t-channel and in association with W-bosons is measured and the results are used to place constraints on the CKM matrix element Vtb. Measurements of top quark properties in single top quark production are also presented. The results include the measurement of the charge ratio in the single top t-channel.

  3. Search for Single Top Production at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Echenard, B; Eline, A; El-Mamouni, H; Engler, A; Eppling, F J; Ewers, A; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hakobyan, R S; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Pandoulas, D; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R P; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wallraff, W; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2002-01-01

    Single top production in e^+e^- annihilations is searched for in data collected by the L3 detector at centre-of-mass energies from 189 to 209 GeV, corresponding to a total integrated luminosity of 634 pb-1. Investigating hadronic and semileptonic top decays, no evidence of single top production at LEP is obtained and upper limits on the single top cross section as a function of the centre-of-mass energy are derived. Limits on possible anomalous couplings, as well as on the scale of contact interactions responsible for single top production are determined.

  4. Single-molecule stochastic times in a reversible bimolecular reaction.

    Science.gov (United States)

    Keller, Peter; Valleriani, Angelo

    2012-08-28

    In this work, we consider the reversible reaction between reactants of species A and B to form the product C. We consider this reaction as a prototype of many pseudobiomolecular reactions in biology, such as for instance molecular motors. We derive the exact probability density for the stochastic waiting time that a molecule of species A needs until the reaction with a molecule of species B takes place. We perform this computation taking fully into account the stochastic fluctuations in the number of molecules of species B. We show that at low numbers of participating molecules, the exact probability density differs from the exponential density derived by assuming the law of mass action. Finally, we discuss the condition of detailed balance in the exact stochastic and in the approximate treatment.

  5. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst.

    Science.gov (United States)

    Wang, Liangbing; Zhang, Wenbo; Wang, Shenpeng; Gao, Zehua; Luo, Zhiheng; Wang, Xu; Zeng, Rui; Li, Aowen; Li, Hongliang; Wang, Menglin; Zheng, Xusheng; Zhu, Junfa; Zhang, Wenhua; Ma, Chao; Si, Rui; Zeng, Jie

    2016-12-22

    Rh-based heterogeneous catalysts generally have limited selectivity relative to their homogeneous counterparts in hydroformylation reactions despite of the convenience of catalyst separation in heterogeneous catalysis. Here, we develop CoO-supported Rh single-atom catalysts (Rh/CoO) with remarkable activity and selectivity towards propene hydroformylation. By increasing Rh mass loading, isolated Rh atoms switch to aggregated clusters of different atomicity. During the hydroformylation, Rh/CoO achieves the optimal selectivity of 94.4% for butyraldehyde and the highest turnover frequency number of 2,065 h -1 among the obtained atomic-scale Rh-based catalysts. Mechanistic studies reveal that a structural reconstruction of Rh single atoms in Rh/CoO occurs during the catalytic process, facilitating the adsorption and activation of reactants. In kinetic view, linear products are determined as the dominating products by analysing reaction paths deriving from the two most stable co-adsorbed configurations. As a bridge of homogeneous and heterogeneous catalysis, single-atom catalysts can be potentially applied in other industrial reactions.

  6. Electronic state selectivity in dication-molecule single electron transfer reactions: NO(2+) + NO.

    Science.gov (United States)

    Parkes, Michael A; Lockyear, Jessica F; Schröder, Detlef; Roithová, Jana; Price, Stephen D

    2011-11-07

    The single-electron transfer reaction between NO(2+) and NO, which initially forms a pair of NO(+) ions, has been studied using a position-sensitive coincidence technique. The reactivity in this class of collision system, which involves the interaction of a dication with its neutral precursor, provides a sensitive test of recent ideas concerning electronic state selectivity in dicationic single-electron transfer reactions. In stark contrast to the recently observed single-electron transfer reactivity in the analogous CO(2)(2+)/CO(2) and O(2)(2+)/O(2) collision systems, electron transfer between NO(2+) and NO generates two product NO(+) ions which behave in an identical manner, whether the ions are formed from NO(2+) or NO. This observed behaviour is in excellent accord with the recently proposed rationalization of the state selectivity in dication-molecule SET reactions using simple propensity rules involving one-electron transitions. This journal is © the Owner Societies 2011

  7. Production of medical 99 m Tc isotope via photonuclear reaction

    Science.gov (United States)

    Fujiwara, M.; Nakai, K.; Takahashi, N.; Hayakawa, T.; Shizuma, T.; Miyamoto, S.; Fan, G. T.; Takemoto, A.; Yamaguchi, M.; Nishimura, M.

    2017-01-01

    99 m Tc with a 6 hour half-life is one of the most important medical isotopes used for the Single-Photon Emission Computed Tomography (SPECT) inspection in hospitals of US, Canada, Europe and Japan. 99 m Tc isotopes are extracted by the milking method from parent 99Mo isotopes with a 66 hour half-life. The supply of 99Mo isotopes now encounters a serious crisis. Hospitals may not suitably receive 99Mo medical isotopes in near future, due to difficulties in production by research nuclear reactors. Many countries are now looking for alternative ways to generate 99Mo isotopes other than those with research reactors. We discuss a sustained availability of 99 m Tc isotopes via the nat Mo(γ, n) photonuclear reaction, and discuss to solve technical problems for extracting pure 99 m Tc isotopes from other output materials of photonuclear reactions.

  8. Single-molecule chemical reactions on DNA origami

    DEFF Research Database (Denmark)

    Voigt, Niels Vinther; Tørring, Thomas; Rotaru, Alexandru

    2010-01-01

    DNA nanotechnology and particularly DNA origami, in which long, single-stranded DNA molecules are folded into predetermined shapes, can be used to form complex self-assembled nanostructures. Although DNA itself has limited chemical, optical or electronic functionality, DNA nanostructures can serve...... on a DNA origami scaffold by atomic force microscopy. The high yields and chemoselectivities of successive cleavage and bond-forming reactions observed in these experiments demonstrate the feasibility of post-assembly chemical modification of DNA nanostructures and their potential use as locally...

  9. CP Violation in Single Top Quark Production

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Weigang [Michigan State Univ., East Lansing, MI (United States)

    2012-01-01

    We present a search for CP violation in single top quark production with the DØ experiment at the Tevatron proton-antiproton collider. CP violation in the top electroweak interaction results in different single top quark production cross sections for top and antitop quarks. We perform the search in the single top quark final state using 5.4 fb-1 of data, in the s-channel, t-channel, and for both combined. At this time, we do not see an observable CP asymmetry.

  10. Transfusion reactions in pediatric compared with adult patients: a look at rate, reaction type, and associated products.

    Science.gov (United States)

    Oakley, Fredrick D; Woods, Marcella; Arnold, Shanna; Young, Pampee P

    2015-03-01

    patients (7.9/1000 pediatric males vs. 4.3/1000 pediatric females, p reactions to all blood products between pediatric and adult populations at a single institution and supported by a single transfusion service and culture. Collectively these data provide insight into pediatric transfusion reactions and demonstrate a general increase in the incidence of transfusion reactions within the pediatric compared to adult population. © 2014 AABB.

  11. Structure of fungal oxyluciferin, the product of the bioluminescence reaction.

    Science.gov (United States)

    Purtov, K V; Osipova, Z M; Petushkov, V N; Rodionova, N S; Tsarkova, A S; Kotlobay, A A; Chepurnykh, T V; Gorokhovatsky, A Yu; Yampolsky, I V; Gitelson, J I

    2017-11-01

    The structure of fungal oxyluciferin was determined, the enzymatic bioluminescence reaction under substrate saturation conditions with discrete monitoring of formed products was conducted, and the structures of the end products of the reaction were established. On the basis of these studies, the scheme of oxyluciferin degradation to the end products was developed. The structure of fungal oxyluciferin was confirmed by counter synthesis.

  12. Search for single top production at HERA

    International Nuclear Information System (INIS)

    Brandt, G.

    2008-01-01

    A search for single top production in e p collisions using the complete high-energy data from HERA is presented. This search is based on the analysis of events containing isolated leptons (electronic or muons) and missing transverse momentum P T miss . In the absence of a signal, an upper limit on the top production cross-section σ ep→etX tuγ T miss and the measurements of W boson polarisation fractions.

  13. Production of Energetic Light Fragments in Spallation Reactions

    Directory of Open Access Journals (Sweden)

    Mashnik Stepan G.

    2014-03-01

    Full Text Available Different reaction mechanisms contribute to the production of light fragments (LF from nuclear reactions. Available models cannot accurately predict emission of LF from arbitrary reactions. However, the emission of LF is important formany applications, such as cosmic-ray-induced single event upsets, radiation protection, and cancer therapy with proton and heavy-ion beams, to name just a few. The cascade-exciton model (CEM and the Los Alamos version of the quark-gluon string model (LAQGSM, as implemented in the CEM03.03 and LAQGSM03.03 event generators used in the Los Alamos Monte Carlo transport code MCNP6, describe quite well the spectra of fragments with sizes up to 4He across a broad range of target masses and incident energies. However, they do not predict high-energy tails for LF heavier than 4He. The standard versions of CEM and LAQGSM do not account for preequilibrium emission of LF larger than 4He. The aim of our work is to extend the preequilibrium model to include such processes. We do this by including the emission of fragments heavier than 4He at the preequilibrium stage, and using an improved version of the Fermi Break-up model, providing improved agreement with various experimental data.

  14. Methods for forming complex oxidation reaction products including superconducting articles

    International Nuclear Information System (INIS)

    Rapp, R.A.; Urquhart, A.W.; Nagelberg, A.S.; Newkirk, M.S.

    1992-01-01

    This patent describes a method for producing a superconducting complex oxidation reaction product of two or more metals in an oxidized state. It comprises positioning at least one parent metal source comprising one of the metals adjacent to a permeable mass comprising at least one metal-containing compound capable of reaction to form the complex oxidation reaction product in step below, the metal component of the at least one metal-containing compound comprising at least a second of the two or more metals, and orienting the parent metal source and the permeable mass relative to each other so that formation of the complex oxidation reaction product will occur in a direction towards and into the permeable mass; and heating the parent metal source in the presence of an oxidant to a temperature region above its melting point to form a body of molten parent metal to permit infiltration and reaction of the molten parent metal into the permeable mass and with the oxidant and the at least one metal-containing compound to form the complex oxidation reaction product, and progressively drawing the molten parent metal source through the complex oxidation reaction product towards the oxidant and towards and into the adjacent permeable mass so that fresh complex oxidation reaction product continues to form within the permeable mass; and recovering the resulting complex oxidation reaction product

  15. The Heck reaction in the production of fine chemicals

    NARCIS (Netherlands)

    Vries, Johannes G. de

    2001-01-01

    An overview is given of the use of the Heck reaction for the production of fine chemicals. Five commercial products have been identified that are produced on a scale in excess of 1 ton/year. The herbicide Prosulfuron™ is produced via a Matsuda reaction of 2-sulfonatobenzenediazonium on

  16. Modeling of the interplay between single-file diffusion and conversion reaction in mesoporous systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing [Iowa State Univ., Ames, IA (United States)

    2013-01-11

    We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. A strict single-file (no passing) constraint occurs in the diffusion within such narrow pores. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice–gas model for this reaction–diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction–diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction–diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion (SFD) in this multispecies system. Noting the shortcomings of mf-RDE and h-RDE, we then develop a generalized hydrodynamic (GH) formulation of appropriate gh-RDE which incorporates an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The gh-RDE elucidate the non-exponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth. Then an extended model of a catalytic conversion reaction within a functionalized nanoporous material is developed to assess the effect of varying the reaction product – pore interior interaction from attractive to repulsive. The analysis is performed utilizing the generalized hydrodynamic formulation of the reaction-diffusion equations which can reliably capture the complex interplay between reaction and restricted transport for both irreversible and reversible reactions.

  17. Maillard reaction products in pet foods

    NARCIS (Netherlands)

    Rooijen, van C.

    2015-01-01

    Pet dogs and cats around the world are commonly fed processed commercial foods throughout their lives. Often heat treatments are used during the processing of these foods to improve nutrient digestibility, shelf life, and food safety. Processing is known to induce the Maillard reaction, in which a

  18. Maillard reaction products in pet foods

    NARCIS (Netherlands)

    Rooijen, van C.

    2015-01-01

    Pet dogs and cats around the world are commonly fed processed commercial foods throughout their lives. Often heat treatments are used during the processing of these foods to improve nutrient digestibility, shelf life, and food safety. Processing is known to induce the Maillard reaction, in which

  19. New Physics in Single-Top Production

    CERN Document Server

    Lohse, T; The ATLAS collaboration

    2014-01-01

    In this paper an overview of recent results on the search for physics beyond the Standard Model in the electro-weak top-quark production from the ATLAS, D0 , CDF and CMS collaborations is given. This includes searches for W' and b$^∗$ resonances as well as measurements of CP violation, the W helicity fractions and the top-quark polarisation in single-top production. A brief review on the search for flavour-changing neutral currents and cross-section measurements with respect to the CKM matrix element $V_{tb}$ is given.

  20. Meson production in Ф· reactions

    Indian Academy of Sciences (India)

    . For the π. · production, where our data for this beam energy are more complete than for π. ¼ production, the present data are larger than the other data especially for forward scattering where the cross section is small. The data from Weber et ...

  1. Exclusive hadron production in two photon reactions

    International Nuclear Information System (INIS)

    Poppe, M.

    1986-02-01

    This paper summarises experimental results on exclusive hadron production in two photon collisions at electron positron storage rings and attempts some interpretation. Experimental know how is described and new suggestions are made for future analyses. New model calculations on resonance form factors and pair production amplitudes are presented. The two photon vertex is decomposed such that experiments can be parameterised with the minimal number of free parameters. Selection rules for off shell photon collisions are given in addition to Yang's theorems. (orig.)

  2. Observation of Single Top Quark Production

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Cecilia E.; /Illinois U., Chicago

    2009-09-01

    The author reports on the observation of electroweak production of single top quarks in p{bar p} collisions at {radical}s = 1.96 Tev using 2.3 fb{sup -1} of data collected with the D0 detector at the fermilab Tevatron Collider. Using events containing an isolated electron or muon, missing transverse energy, two, three or four jets, with one or two of them identified as originating from the fragmentation of a b quark, the measured cross section for the process p{bar p} {yields} tb + X, tqb + X is 3.94 {+-} 0.88 pb (for a top quark mass of 170 GeV). the probability to measure a cross section at this value or higher in the absence of signal is 2.5 x 10{sup -7}, corresponding to a 5.0 standard deviation significance. Using the same dataset, the measured cross sections for the t- and the s-channel processes when determined simultaneously with no assumption on their relative production rate are 3.14{sub -0.80}{sup +0.94} pb and 1.05 {+-} 0.81 pb respectively, consistent with standard model expectations. The measured t-channel cross section has a significance of 4.8 standard deviations, representing the first evidence for the production of an individual single top process to be detected.

  3. Antioxidant activity of maillard reaction products from lysine-glucose ...

    African Journals Online (AJOL)

    Maillard reaction (MR) was carried out in L-lysine-D-glucose (Lys-Glu) model system heated at 120°C for 0 to 10 h without pH control. Optical property (UV-Vis absorbance and fluorescence) development of MR was monitored. Antioxidant activity of maillard reaction products (MRPs) was investigated by a series of in vitro ...

  4. Quantitation of Maillard reaction products in commercially available pet foods

    NARCIS (Netherlands)

    Rooijen, van C.; Bosch, G.; Poel, van der A.F.B.; Wierenga, P.A.; Alexander, L.; Hendriks, W.H.

    2014-01-01

    During processing of pet food, the Maillard reaction occurs, which reduces the bioavailability of essential amino acids such as lysine and results in the formation of advanced Maillard reaction products (MRPs). The aim of this study was to quantitate MRPs (fructoselysine (FL), carboxymethyllysine

  5. A product study of the isoprene+NO3 reaction

    Directory of Open Access Journals (Sweden)

    R. C. Cohen

    2009-07-01

    Full Text Available Oxidation of isoprene through reaction with NO3 radicals is a significant sink for isoprene that persists after dark. The main products of the reaction are multifunctional nitrates. These nitrates constitute a significant NOx sink in the nocturnal boundary layer and they likely play an important role in formation of secondary organic aerosol. Products of the isoprene+NO3 reaction will, in many locations, be abundant enough to affect nighttime radical chemistry and to persist into daytime where they may represent a source of NOx. Product formation in the isoprene + NO3 reaction was studied in a smog chamber at Purdue University. Isoprene nitrates and other hydrocarbon products were observed using Proton Transfer Reaction-Mass Spectrometry (PTR-MS and reactive nitrogen products were observed using Thermal Dissociation–Laser Induced Fluorescence (TD-LIF. The organic nitrate yield is found to be 65±12% of which the majority was nitrooxy carbonyls and the combined yield of methacrolein and methyl vinyl ketone (MACR+MVK is found to be ∼10%. PTR-MS measurements of nitrooxy carbonyls and TD-LIF measurements of total organic nitrates agreed well. The PTR-MS also observed a series of minor oxidation products which were tentatively identified and their yields quantified These other oxidation products are used as additional constraints on the reaction mechanism.

  6. Propensity approach to nonequilibrium thermodynamics of a chemical reaction network: controlling single E-coli β-galactosidase enzyme catalysis through the elementary reaction steps.

    Science.gov (United States)

    Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam

    2013-12-28

    In this work, we develop an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the elementary reaction propensities. The method is akin to the microscopic formulation of the dissipation function in terms of the Kullback-Leibler distance of phase space trajectories in Hamiltonian system. The formalism is applied to a single oligomeric enzyme kinetics at chemiostatic condition that leads the reaction system to a nonequilibrium steady state, characterized by a positive total entropy production rate. Analytical expressions are derived, relating the individual reaction contributions towards the total entropy production rate with experimentally measurable reaction velocity. Taking a real case of Escherichia coli β-galactosidase enzyme obeying Michaelis-Menten kinetics, we thoroughly analyze the temporal as well as the steady state behavior of various thermodynamic quantities for each elementary reaction. This gives a useful insight in the relative magnitudes of various energy terms and the dissipated heat to sustain a steady state of the reaction system operating far-from-equilibrium. It is also observed that, the reaction is entropy-driven at low substrate concentration and becomes energy-driven as the substrate concentration rises.

  7. EPR and NMR detection of transient radicals and reaction products

    International Nuclear Information System (INIS)

    Trifunac, A.D.

    1981-01-01

    Magnetic resonance methods in radiation chemistry are illustrated. The most recent developments in pulsed EPR and NMR studies in pulse radiolysis are outlined with emphasis on the study of transient radicals and their reaction products. 12 figures

  8. Cyclometalation reactions five-membered ring products as universal reagents

    CERN Document Server

    Omae, Iwao

    2014-01-01

    Offering unrivalled breadth of coverage on the topic, this review of cyclometalation reactions and organometallic intramolecular-coordination five-membered ring products includes discussion of vital commercial aspects such as synthetic applications.

  9. Products of reaction of OH radicals with α-pinene

    Science.gov (United States)

    Aschmann, Sara M.; Atkinson, Roger; Arey, Janet

    2002-07-01

    Products of the gas-phase reaction of α-pinene with OH radicals in the presence of NO have been investigated using gas chromatography with flame ionization detection to quantify pinonaldehyde and in situ atmospheric pressure ionization mass spectrometry in the negative ion mode to quantify selected other products as their NO2- adducts by utilizing C6-dihydroxycarbonyls and C6-hydroxynitrates formed in situ from the reaction of OH radicals with 1-hexene as an internal standard. The products quantified, and their molar formation yields, were: pinonaldehyde, 28 +/- 5% molecular weight 184 product (dihydroxycarbonyl), 19% (with an estimated uncertainty of a factor of ~2) molecular weight 200 product, 11% (with an estimated uncertainty of a factor of ~2). Together with a very approximate yield from our API-MS analyses for the formation of organic nitrates (~1%) and literature data for acetone (plus coproducts), ~65-70% of the reaction products and pathways are accounted for.

  10. Discovery of single top quark production

    Energy Technology Data Exchange (ETDEWEB)

    Gillberg, Dag [Simon Fraser Univ., Burnaby, BC (Canada)

    2009-04-01

    The top quark is by far the heaviest known fundamental particle with a mass nearing that of a gold atom. Because of this strikingly high mass, the top quark has several unique properties and might play an important role in electroweak symmetry breaking - the mechanism that gives all elementary particles mass. Creating top quarks requires access to very high energy collisions, and at present only the Tevatron collider at Fermilab is capable of reaching these energies. Until now, top quarks have only been observed produced in pairs via the strong interaction. At hadron colliders, it should also be possible to produce single top quarks via the electroweak interaction. Studies of single top quark production provide opportunities to measure the top quark spin, how top quarks mix with other quarks, and to look for new physics beyond the standard model. Because of these interesting properties, scientists have been looking for single top quarks for more than 15 years. This thesis presents the first discovery of single top quark production. An analysis is performed using 2.3 fb-1 of data recorded by the D0 detector at the Fermilab Tevatron Collider at centre-of-mass energy √s = 1.96 TeV. Boosted decision trees are used to isolate the single top signal from background, and the single top cross section is measured to be σ(p$\\bar{p}$ → tb + X, tqb + X) = 3.74-0.74+0.95 pb. Using the same analysis, a measurement of the amplitude of the CKM matrix element Vtb, governing how top and b quarks mix, is also performed. The measurement yields: |V{sub tb}|f1L| = 1.05 -0.12+0.13, where f1L is the left-handed Wtb coupling. The separation of signal from background is improved by combining the boosted decision trees with two other multivariate techniques. A new cross section measurement is performed, and the significance for the excess over the predicted background exceeds 5

  11. Improvements in Production of Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Balzano, Leandro; Resasco, Daniel E.

    2009-01-01

    A continuing program of research and development has been directed toward improvement of a prior batch process in which single-walled carbon nanotubes are formed by catalytic disproportionation of carbon monoxide in a fluidized-bed reactor. The overall effect of the improvements has been to make progress toward converting the process from a batch mode to a continuous mode and to scaling of production to larger quantities. Efforts have also been made to optimize associated purification and dispersion post processes to make them effective at large scales and to investigate means of incorporating the purified products into composite materials. The ultimate purpose of the program is to enable the production of high-quality single-walled carbon nanotubes in quantities large enough and at costs low enough to foster the further development of practical applications. The fluidized bed used in this process contains mixed-metal catalyst particles. The choice of the catalyst and the operating conditions is such that the yield of single-walled carbon nanotubes, relative to all forms of carbon (including carbon fibers, multi-walled carbon nanotubes, and graphite) produced in the disproportionation reaction is more than 90 weight percent. After the reaction, the nanotubes are dispersed in various solvents in preparation for end use, which typically involves blending into a plastic, ceramic, or other matrix to form a composite material. Notwithstanding the batch nature of the unmodified prior fluidized-bed process, the fluidized-bed reactor operates in a continuous mode during the process. The operation is almost entirely automated, utilizing mass flow controllers, a control computer running software specific to the process, and other equipment. Moreover, an important inherent advantage of fluidized- bed reactors in general is that solid particles can be added to and removed from fluidized beds during operation. For these reasons, the process and equipment were amenable to

  12. Evidence for production of single top quarks

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; /Dubna, JINR; Abbott, B.; /Oklahoma U.; Abolins, M.; /Michigan State U.; Acharya, B.S.; /Tata Inst.; Adams, M.; /Illinois U., Chicago; Adams, T.; /Florida State U.; Aguilo, E.; /Simon Fraser U.; Ahn, S.H.; /Korea U., KODEL; Ahsan, M.; /Kansas State U.; Alexeev, G.D.; /Dubna, JINR; Alkhazov, G.; /St. Petersburg, INP /Michigan U.

    2008-03-01

    We present first evidence for the production of single top quarks in the D0 detector at the Fermilab Tevatron p{bar p} collider. The standard model predicts that the electroweak interaction can produce a top quark together with an antibottom quark or light quark, without the antiparticle top quark partner that is always produced from strong coupling processes. Top quarks were first observed in pair production in 1995, and since then, single top quark production has been searched for in ever larger datasets. In this analysis, we select events from a 0.9 fb{sup -1} dataset that have an electron or muon and missing transverse energy from the decay of a W boson from the top quark decay, and two, three, or four jets, with one or two of the jets identified as originating from a b hadron decay. The selected events are mostly backgrounds such as W+jets and t{bar t} events, which we separate from the expected signals using three multivariate analysis techniques: boosted decision trees, Bayesian neural networks, and matrix element calculations. A binned likelihood fit of the signal cross section plus background to the data from the combination of the results from the three analysis methods gives a cross section for single top quark production of {sigma}(p{bar p} {yields} tb + X, tqb + X) = 4.7 {+-} 1.3 pb. The probability to measure a cross section at this value or higher in the absence of signal is 0.014%, corresponding to a 3.6 standard deviation significance. The measured cross section value is compatible at the 10% level with the standard model prediction for electroweak top quark production. We use the cross section measurement to directly determine the Cabibbo-Kobayashi-Maskawa quark mixing matrix element that describes the Wtb coupling and find |V{sub tb}f{sub 1}{sup L}| = 1.31{sub -0.21}{sup +0.25}, where f{sub 1}{sup L} is a generic vector coupling. This model-independent measurement translates into 0.68 < |V{sub tb}| {le} 1 at the 95% C.L. in the standard model.

  13. Separation and characterisation of caprolactam-formaldehyde reaction products.

    Science.gov (United States)

    Normand, Florence C; Goodall, David M; Duckett, Simon B; van Tol, Maurits F H; Nusselder, Jan-Jaap H

    2002-10-01

    Methylolation and condensation products formed in caprolactam-formaldehyde reaction mixtures have been identified using nuclear magnetic resonance (NMR) and mass spectrometry (MS). Previously unreported side-products were also detected. All of the reaction products were separated by micellar electrokinetic chromatography (MEKC) and high performance liquid chromatography (HPLC), and the separation parameters, such as efficiency and distribution constants, obtained in the two techniques were compared. For quantification, the response factors for the monomers were determined using standard calibration and hydrolysis, whilst those for the condensation products were deduced from the values of the monomers. The accurate determination of the response factors was confirmed by checking the mass balance of a known mixture.

  14. Single pion electro- and neutrino production on heavy targets

    International Nuclear Information System (INIS)

    Paschos, E. A.; Schienbein, I.; Yu, J.Y.

    2007-04-01

    We present a calculation of single pion electroproduction cross sections on heavy targets in the kinematic region of the Δ(1232) resonance. Final state interactions of the pions are taken into account using the pion multiple scattering model of Adler, Nussinov and Paschos (ANP model). For electroproduction and neutral current reactions we obtain results for carbon, oxygen, argon and iron targets and find a significant reduction of the W-spectra for π 0 as compared to the free nucleon case. On the other hand, the charged pion spectra are only little affected by final state interactions. Measurements of such cross sections with the CLAS detector at JLAB could help to improve our understanding of pion rescattering effects and serve as important/valuable input for calculations of single pion neutrino production on heavy targets relevant for current and future long baseline neutrino experiments. Two ratios, in Eq. (3.8) and (3.10), will test important properties of the model. (authors)

  15. Duff reaction on phenols: Characterization of non steam volatile products

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; DeSouza, L.; Bhattacharya, J.

    New products having structures 1 and 2 have been characterized in the Duff reaction thymol arid carvacrol. These products have been identified as 2.6'-dithymylmethane 1 and 5.5' -dicarvacryl methane 2 respectively on the basis of spectral data...

  16. Mass formula dependence of calculated spallation reaction product distributions

    International Nuclear Information System (INIS)

    Nishida, Takahiko; Nakahara, Yasuaki

    1990-01-01

    A new version of the spallation reaction simulation code NUCLEUS was developed by incorporating Uno and Yamada's mass formula. This version was used to calculate the distribution of products from the spallation of uranium nuclei by high-energy protons. The dependence of the distributions on the mass formula was examined by comparing the results with those from the original version, which is based on Cameron's mass formula and the mass table compiled by Wapstra et al. As regards the fission component of spallation products, the new version reproduces the reaction product data obtained from thin foil experiments much better, especially on the neutron excess side. (orig.) [de

  17. Chemical Characterization and Reactivity of Fuel-Oxidizer Reaction Product

    Science.gov (United States)

    David, Dennis D.; Dee, Louis A.; Beeson, Harold D.

    1997-01-01

    Fuel-oxidizer reaction product (FORP), the product of incomplete reaction of monomethylhydrazine and nitrogen tetroxide propellants prepared under laboratory conditions and from firings of Shuttle Reaction Control System thrusters, has been characterized by chemical and thermal analysis. The composition of FORP is variable but falls within a limited range of compositions that depend on three factors: the fuel-oxidizer ratio at the time of formation; whether the composition of the post-formation atmosphere is reducing or oxidizing; and the reaction or post-reaction temperature. A typical composition contains methylhydrazinium nitrate, ammonium nitrate, methylammonium nitrate, and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. Thermal decomposition reactions of the FORP compositions used in this study were unremarkable. Neither the various compositions of FORP, the pure major components of FORP, nor mixtures of FORP with propellant system corrosion products showed any unusual thermal activity when decomposed under laboratory conditions. Off-limit thruster operations were simulated by rapid mixing of liquid monomethylhydrazine and liquid nitrogen tetroxide in a confined space. These tests demonstrated that monomethylhydrazine, methylhydrazinium nitrate, ammonium nitrate, or Inconel corrosion products can induce a mixture of monomethylhydrazine and nitrogen tetroxide to produce component-damaging energies. Damaging events required FORP or metal salts to be present at the initial mixing of monomethylhydrazine and nitrogen tetroxide.

  18. Observation of Single Top Quark Production

    Energy Technology Data Exchange (ETDEWEB)

    Heinson, Ann; /UC, Riverside; Junk, Tom R.; /Fermilab

    2011-01-01

    The field of experimental particle physics has become more sophisticated over time, as fewer, larger experimental collaborations search for small signals in samples with large components of background. The search for and the observation of electroweak single top quark production by the CDF and D0 collaborations at Fermilab's Tevatron collider are an example of an elaborate effort to measure the rate of a very rare process in the presence of large backgrounds and to learn about the properties of the top quark's weak interaction. We present here the techniques used to make this groundbreaking measurement and the interpretation of the results in the context of the Standard Model.

  19. Single-particle and collective states in transfer reactions

    International Nuclear Information System (INIS)

    Lhenry, I.; Suomijaervi, T.; Giai, N. van

    1993-01-01

    The possibility to excite collective states in transfer reactions induced by heavy ions is studied. Collective states are described within the Random Phase Approximation (RPA) and the collectivity is defined according to the number of configurations contributing to a given state. The particle transfer is described within the Distorted Wave Born Approximation (DWBA). Calculations are performed for two different stripping reactions: 207 Pb( 20 Ne, 19 Ne) 208 Pb and 59 Co( 20 Ne, 19 F) 60 Ni at 48 MeV/nucleon for which experimental data are available. The calculation shows that a sizeable fraction of collective strength can be excited in these reactions. The comparison with experiment shows that this parameter-free calculation qualitatively explains the data. (author) 19 refs.; 10 figs

  20. A COMBINED REACTION/PRODUCT RECOVERY PROCESS FOR THE CONTINUOUS PRODUCTION OF BIODIESEL

    International Nuclear Information System (INIS)

    Birdwell, J.F. Jr.; McFarlane, J.; Schuh, D.L.; Tsouris, C.; Day, J.N.; Hullette, J.N.

    2009-01-01

    ports. Results from laboratory operations showed that the ASTM specification for bound acylglycerides was achieved only at extended reaction times (∼25 min) using a single-stage batch contact at elevated temperature and pressure. In the single-pass configuration, the time required gives no throughput advantage over the current batch reaction process. The limitation seems to be the presence of glycerine, which hinders complete conversion because of reversible reactions. Significant improvement in quality was indicated after a second and third passes, where product from the first stage was collected and separated from the glycerine, and further reacted with a minor addition of methanol. Chemical kinetics calculations suggest that five consecutive stages of 2 min residence time would produce better than ASTM specification fuel with no addition of methanol past the first stage. Additional stages may increase the capital investment, but the increase should be offset by reduced operating costs and a factor of 3 higher throughput. Biodiesel, a mixture of methyl esters, is made commercially from the transesterification of oil, often soy oil (see Reaction 1). The kinetics of the transesterification process is rapid; however, multiphase separations after the synthesis of the fuel can be problematic. Therefore, the process is typically run in batch mode. The biodiesel fuel and the glycerine product take several hours to separate. In addition, to push yields to completion, an excess of methoxide catalyst is typically used, which has to be removed from both the biodiesel and the glycerine phase after reaction. Washing steps are often employed to remove free fatty acids, which can lead to undesirable saponification. Standards for biodiesel purity are based either on the removal of contaminants before the oil feedstock is esterified or on the separation of unwanted by-products. Various methods have been examined to enhance either the pretreatment of biodiesel feedstocks or the

  1. Single Neutralino production at CERN LHC

    CERN Document Server

    Gounaris, George J; Porfyriadis, P I; Renard, F M

    2005-01-01

    The common belief that the lightest supersymmetric particle (LSP) might be a neutralino, providing also the main Dark Matter (DM) component, calls for maximal detail in the study of the neutralino properties. Motivated by this, we consider the direct production of a single neutralino $\\tchi^0_i$ at a high/energy hadron collider, focusing on the $\\tchi^0_1$ and $\\tchi^0_2$ cases. At Born level, the relevant subprocesses are $q\\bar q\\to \\tchi^0_i \\tilde g$, $g q\\to \\tchi^0_i \\tilde q_{L,R}$ and $q\\bar q'\\to \\tchi^0_i\\tchi^\\pm_j$; while at 1-loop, apart from radiative corrections to these processes, we consider also $gg\\to \\tchi^0_i\\tilde{g}$, for which a numerical code named PLATONgluino is released. The relative importance of these channels turns out to be extremely model dependent. Combining these results with an analogous study of the direct $\\tchi^0_i\\tchi^0_j$ pair production, should provide very sensitive tests of the SUSY models and the Dark Matter assignment.

  2. Single pi-zero production in neutrino interactions

    International Nuclear Information System (INIS)

    Chapin, T.J.

    1976-01-01

    Production of single π 0 particles in neutrino reactions was studied in an experiment at the Brookhaven National Laboratory Alternating Gradient Synchrotron. The neutral current reactions, νn → νnπ 0 and νp → νpπ 0 , and the charged current reaction, νn → μ - pπ 0 , were investigated. The neutrino detector was made up of optical spark chambers and liquid and solid scintillation counters. The π 0 is detected by observing showers from its decay into two gamma rays. Muons are distinguished from other particles by their long range without interaction. Time of flight measurement is used to discriminate against neutron background. The neutral and charged current events are discussed, and the ratio of neutral current events to charged current events is found to be 0.149 +- 0.048 after corrections. Nuclear charge exchange corrections to this result because the detector contains complex nuclei are also discussed. Kinematic distributions for the final state particles and the pπ 0 mass distribution are given

  3. Effect of reaction products on cathodic reduction of iodic acid

    International Nuclear Information System (INIS)

    Shtejnberg, G.V.; Urisson, N.A.; Revina, A.A.; Volod'ko, V.L.

    1988-01-01

    The effect of reaction products on kinetics of iodic acid reduction is investigated; reaction products are identified by the optical method. It is shown that although being similar from the qualitative viewpoint the effect on HIO 3 reduction of dissolved crystal and ''reduced'' iodine, certain quantitative differences take place, which are explained by the difference in their surface concentration. Explanation of certain sections of complex lgI, E-curve of HIO 3 reduction is given, in particular, advanced wave is related to the reduction from solution of unstable electroactive complex HIO 3 ) x (I 1 ) y or (HIO 3 ) x (I 2 ) y

  4. Cowpea Reaction to Single and Mixed Viral Infection with Blackeye ...

    African Journals Online (AJOL)

    The results of the experiment showed that mixed inoculation with the two viruses, induced greater susceptibility to the viral pathogens in the plants, compared to single virus inoculations. The study also indicated that, early viral infection at 2 WAP, was more pathogenic and resulted in higher yield losses compared with ...

  5. Rapid (ligase-free) subcloning of polymerase chain reaction products.

    Science.gov (United States)

    Shuldiner, A R; Tanner, K

    1993-01-01

    The polymerase chain reaction (PCR) is a versatile, widely used method for the production of a very large number of copies of a specific DNA molecule (1,2). For some applications, it is advantageous to subclone the PCR product into a plasmid vector for subsequent replication in bacteria (3-6). Subcloning the PCR product into a plasmid vector has several advantages: (1) the amplified fragment can be sequenced with greater reliability, (2) only one allele is sequenced per clone, and (3) the vector containing the PCR product may be used for other molecular biological experiments, e.g., in vitro transcription, radiolabeling, and further amplification in bacteria.

  6. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    Science.gov (United States)

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    addresses modeling of the arc process for fullerene and carbon nanotube production using O-D, 1-D and 2-D fluid flow models. The third part addresses simulations of the pulsed laser ablation process using time-dependent techniques in 2-D, and a steady state 2-D simulation of a continuous laser ablation process. The fourth part addresses steady state modeling in O-D and 2-D of the HiPco process. In each of the simulations, there is a variety of simplifications that are made that enable one to concentrate on one aspect or another of the process. There are simplifications that can be made to the chemical reaction models , e.g. reduction in number of species by lumping some of them together in a representative species. Other simulations are carried out by eliminating the chemistry altogether in order to concentrate on the fluid dynamics. When solving problems with a large number of species in more than one spatial dimension, it is almost imperative that the problem be decoupled by solving for the fluid dynamics to find the fluid motion and temperature history of "particles" of fluid moving through a reactor. Then one can solve the chemical rate equations with complex chemistry following the temperature and pressure history. One difficulty is that often mixing with an ambient gas is involved. Therefore, one needs to take dilution and mixing into account. This changes the ratio of carbon species to background gas. Commercially available codes may have no provision for including dilution as part of the input. One must the write special solvers for including dilution in decoupled problems. The article addresses both ful1erene production and single-walled carbon nanotube (SWNT) production. There are at least two schemes or concepts of SWNT growth. This article will only address growth in the gas phase by carbon and catalyst cluster growth and SW T formation by the addition of carbon. There are other models that conceive of SWNT growth as a phase separation process from clusters me

  7. Biodiesel production from integration between reaction and separation system: reactive distillation process.

    Science.gov (United States)

    da Silva, Nívea de Lima; Santander, Carlos Mario Garcia; Batistella, César Benedito; Filho, Rubens Maciel; Maciel, Maria Regina Wolf

    2010-05-01

    Biodiesel is a clean burning fuel derived from a renewable feedstock such as vegetable oil or animal fat. It is biodegradable, non-inflammable, non-toxic, and produces lesser carbon monoxide, sulfur dioxide, and unburned hydrocarbons than petroleum-based fuel. The purpose of the present work is to present an efficient process using reactive distillation columns applied to biodiesel production. Reactive distillation is the simultaneous implementation of reaction and separation within a single unit of column. Nowadays, it is appropriately called "Intensified Process". This combined operation is especially suited for the chemical reaction limited by equilibrium constraints, since one or more of the products of the reaction are continuously separated from the reactants. This work presents the biodiesel production from soybean oil and bioethanol by reactive distillation. Different variables affect the conventional biodiesel production process such as: catalyst concentration, reaction temperature, level of agitation, ethanol/soybean oil molar ratio, reaction time, and raw material type. In this study, the experimental design was used to optimize the following process variables: the catalyst concentration (from 0.5 wt.% to 1.5 wt.%), the ethanol/soybean oil molar ratio (from 3:1 to 9:1). The reactive column reflux rate was 83 ml/min, and the reaction time was 6 min.

  8. Two-pion production in photon-induced reactions

    Indian Academy of Sciences (India)

    A deeper understanding of the situation is anticipated from a detailed experimental study of meson photoproduction from nuclei in exclusive reactions. In the energy regime above the (1232) resonance, the dominant double pion production channels are of particular interest. Double pion photoproduction from nuclei is ...

  9. Reaction products of densified silica fume agglomerates in concrete

    International Nuclear Information System (INIS)

    Diamond, Sidney; Sahu, Sadananda; Thaulow, Niels

    2004-01-01

    Most silica fume currently used in concrete is in the dry densified form and consists of agglomerates of sizes between 10 μm and several millimeters. Many of these agglomerates may break down only partially in normal concrete mixing. Examination of various mature silica-fume-bearing concretes using backscatter mode scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis shows that such agglomerates have reacted in situ and given rise to recognizable types of reaction products filling the space within the original outline of the agglomerate. One type is 'quiescent', and usually shows no evidence of volume instability. EDX spectra indicate that the product formed within such grains is C-S-H of very low Ca/Si ratio, with modest alkali contents. Other silica fume agglomerates may undergo a distinct alkali-silica-type reaction (ASR), with the reaction product found within the original outline of the agglomerate having significantly less calcium and usually much higher alkali contents than the quiescent type. Such reacted agglomerates show evidence of local expansion, shrinkage cracking (on drying), and other features common to ASR. Both types may be found within the same concrete, sometimes in close proximity. It further appears that exposure to seawater may convert previously formed reaction products of silica fume agglomerates to magnesium silicate hydrates

  10. The Phase Behavior Effect on the Reaction Engineering of Transesterification Reactions and Reactor Design for Continuous Biodiesel Production

    Science.gov (United States)

    Csernica, Stephen N.

    transitions from two phases to a single phase, or pseudo-single phase. The transition to a single phase or pseudo-single phase is a function of the methanol content. Regardless, the maximum observed reaction rate occurs at the point of the phase transition, when the concentration of triglycerides in the methanol phase is largest. The phase transition occurs due to the accumulation of the primary product, biodiesel methyl esters. Through various experiments, it was determined that the rate of the triglyceride mass transfer into the methanol phase, as well as the solubility of triglycerides in methanol, increases with increasing methyl ester concentration. Thus, there exists some critical methyl ester concentration which favors the formation of a single or pseudo-single phase system. The effect of the by-product glycerol on the reaction kinetics was also investigated. It was determined that at low methanol to triglyceride molar ratios, glycerol acts to inhibit the reaction rate and limit the overall triglyceride conversion. This occurs because glycerol accumulates in the methanol phase, i.e. the primary reaction volume. When glycerol is at relatively high concentrations within the methanol phase, triglycerides become excluded from the reaction volume. This greatly reduces the reaction rate and limits the overall conversion. As the concentration of methanol is increased, glycerol becomes diluted and the inhibitory effects become dampened. Assuming pseudo-homogeneous phase behavior, a simple kinetic model incorporating the inhibitory effects of glycerol was proposed based on batch reactor data. The kinetic model was primarily used to theoretically compare the performance of different types of continuous flow reactors for continuous biodiesel production. It was determined that the inhibitory effects of glycerol result in the requirement of very large reactor volumes when using continuous stirred tank reactors (CSTR). The reactor volume can be greatly reduced using tubular style

  11. Hydrogen Evolution Reaction in Alkaline Solution: From Theory, Single Crystal Models, to Practical Electrocatalysts.

    Science.gov (United States)

    Zheng, Yao; Jiao, Yan; Qiao, Shizhang; Vasileff, Anthony

    2017-12-01

    The hydrogen evolution reaction (HER) is a fundamental process in electrocatalysis and plays an important role in energy conversion for the development of hydrogen-based energy sources. However, the considerably slow rate of the HER in alkaline conditions has hindered advances in water splitting techniques for high-purity hydrogen production. Differing from well documented acidic HER, the mechanistic aspects of alkaline HER are yet to be settled. Herein, we present a critical appraisal of alkaline HER electrocatalysis, with a special emphasis on the connection between fundamental surface electrochemistry on single crystal models and the derived molecular design principle for real-world electrocatalysts. By presenting some typical examples across theoretical calculations, surface characterization, and electrochemical experiments, we try to address some key ongoing debates to deliver a better understanding of alkaline HER at the atomic level. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Mass transfer with complex reversible chemical reactions I. Single reversible chemical reaction

    NARCIS (Netherlands)

    Versteeg, Geert; Kuipers, J.A.M.; van Beckum, F.P.H.; van Swaaij, Willibrordus Petrus Maria

    1989-01-01

    An improved numerical technique was used in order to develop an absorption model with which it is possible to calculate rapidly absorption rates for the phenomenon of mass transfer accompanied by a complex reversible chemical reaction. This model can be applied for the calculation of the mass

  13. High-pressure catalytic reactions over single-crystal metal surfaces

    Science.gov (United States)

    Rodriguez, JoséA.; Wayne Goodman, D.

    1991-11-01

    Studies dealing with high-pressure catalytic reactions over single-crystal surfaces are reviewed. The coupling of an apparatus for the measurement of reaction kinetics at elevated pressures with an ultrahigh vacuum system for surface analysis allows detailed study of structure sensitivity, the effects of promoters and inhibitors on catalytic activity, and, in certain cases, identification of reaction intermediates by post-reaction surface analysis. Examples are provided which demonstrate the relevance of single-crystal studies for modeling the behaviour of high-surface-area supported catalysts. Studies of CO methanation and CO oxidation over single-crystal surfaces provide convincing evidence that these reactions are structure insensitive. For structure-sensitive reactions (ammonia synthesis, alkane hydrogenolysis, alkane isomerization, water-gas shift reaction, etc.) model single-crystal studies allow correlations to be established between surface structure and catalytic activity. The effects of both electronegative (S and P) and electropositive (alkali metals) impurities upon the catalytic activity of metal single crystals for ammonia synthesis, CO methanation, alkane hydrogenolysis, ethylene epoxidation and water-gas shift are discussed. The roles of "ensemble" and "ligand" effects in bimetallic catalysts are examined in light of data obtained using surfaces prepared by vapor-depositing one metal onto a crystal face of a dissimilar metal.

  14. Studying reaction products in a lithium thionyl chloride cell

    International Nuclear Information System (INIS)

    Vol'fkovich, Yu.M.; Sosenkin, V.E.; Nikol'skaya, N.F.; Blinov, I.A.

    1999-01-01

    Change in the mass, volume and chemical composition of reaction insoluble products (RIP) formed in the course of discharge of thionyl chloride lithium cells under different conditions has been studied by the methods of gravimetry, volumetry and element analysis. It has been ascertained that the measured volume and mass of RIP essentially (by a factor of 1.1-1.8) exceed the calculated values, proceeding from the reaction stoichiometry. Besides lithium chloride and sulfur during discharge additional RIP is formed as LiAlCl 4 · SOCl 2 solvate, its share increasing with temperature decrease, increase in current density and electrolyte concentration [ru

  15. Product interactions and feedback in diffusion-controlled reactions

    Science.gov (United States)

    Roa, Rafael; Siegl, Toni; Kim, Won Kyu; Dzubiella, Joachim

    2018-02-01

    Steric or attractive interactions among reactants or between reactants and inert crowders can substantially influence the total rate of a diffusion-influenced reaction in the liquid phase. However, the role of the product species, which has typically different physical properties than the reactant species, has been disregarded so far. Here we study the effects of reactant-product and product-product interactions as well as asymmetric diffusion properties on the rate of diffusion-controlled reactions in the classical Smoluchowski-setup for chemical transformations at a perfect catalytic sphere. For this, we solve the diffusion equation with appropriate boundary conditions coupled by a mean-field approach on the second virial level to account for the particle interactions. We find that all particle spatial distributions and the total rate can change significantly, depending on the diffusion and interaction properties of the accumulated products. Complex competing and self-regulating (homeostatic) or self-amplifying effects are observed for the system, leading to both decrease and increase in the rates, as the presence of interacting products feeds back to the reactant flux and thus the rate with which the products are generated.

  16. Maillard reaction products from chitosan-xylan ionic liquid solution.

    Science.gov (United States)

    Luo, Yuqiong; Ling, Yunzhi; Wang, Xiaoying; Han, Yang; Zeng, Xianjie; Sun, Runcang

    2013-10-15

    A facile method is reported to prepare Maillard reaction products (MRPs) from chitosan and xylan in co-solvent ionic liquid. UV absorbance and fluorescence changes were regarded as indicators of the occurrence of Maillard reaction. FT-IR, NMR, XRD and TG were used to investigate the structure of chitosan-xylan conjugate. The results revealed that when chitosan reacted with xylan in ionic liquid, the hydrogen bonds in chitosan were destroyed, the facts resulted in the formation of chitosan-xylan MRPs. Moreover, when the mass ratio of chitosan to xylan was 1:1, the Maillard reaction proceeded easily. In addition, relatively high antioxidant property was also noted for the chitosan-xylan conjugate with mass ratio 1:1. So the obtained chitosan-xylan MRP is a promising antioxidant agent for food industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. [Fission product yields of 60 fissioning reactions]. Final report

    International Nuclear Information System (INIS)

    Rider, B.F.

    1995-01-01

    In keeping with the statement of work, I have examined the fission product yields of 60 fissioning reactions. In co-authorship with the UTR (University Technical Representative) Talmadge R. England ''Evaluation and Compilation of Fission Product Yields 1993,'' LA-UR-94-3106(ENDF-349) October, (1994) was published. This is an evaluated set of fission product Yields for use in calculation of decay heat curves with improved accuracy has been prepared. These evaluated yields are based on all known experimental data through 1992. Unmeasured fission product yields are calculated from charge distribution, pairing effects, and isomeric state models developed at Los Alamos National Laboratory. The current evaluation has been distributed as the ENDF/B-VI fission product yield data set

  18. Single Top-Quark Production at CDF

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    The main challenge of the single top-quark search at the Tevatron is the huge background from W+jets events and QCD events, which makes the use of advanced multivariate techniques essential. The recent single top analyses using either the matrix element method, neural networks, likelihood discriminants or boosted decision trees as well as the combination of the former three analyses will be presented...

  19. New Physics in Single-Top Production

    CERN Document Server

    Kind, OM; The ATLAS collaboration

    2013-01-01

    In this presentation for TOP 2013 the latest results on searches of physics beyond the Standard Model using single-top signatures from CDF, CMS, D0 and ATLAS are collected. This includes searches for unknown resonances like W' or b*, measurements of the W helicity fractions and top polarisation in single-top events, as well as tests for CP violation, FCNC or anomalous weak couplings.

  20. Modifications of hemoglobin and myoglobin by Maillard reaction products (MRPs.

    Directory of Open Access Journals (Sweden)

    Aristos Ioannou

    Full Text Available High performance liquid chromatography (HPLC coupled with a Fraction Collector was employed to isolate Maillard reaction products (MRPs formed in model systems comprising of asparagine and monosaccharides in the 60-180°C range. The primary MRP which is detected at 60°C is important for Acrylamide content and color/aroma development in foods and also in the field of food biotechnology for controlling the extent of the Maillard reaction with temperature. The discrete fractions of the reaction products were reacted with Hemoglobin (Hb and Myoglobin (Mb at physiological conditions and the reaction adducts were monitored by UV-vis and Attenuated Total Reflection-Fourier transform infrared (FTIR spectrophotometry. The UV-vis kinetic profiles revealed the formation of a Soret transition characteristic of a low-spin six-coordinated species and the ATR-FTIR spectrum of the Hb-MRP and Mb-MRP fractions showed modifications in the protein Amide I and II vibrations. The UV-vis and the FTIR spectra of the Hb-MRPs indicate that the six-coordinated species is a hemichrome in which the distal E7 Histidine is coordinated to the heme Fe and blocks irreversibly the ligand binding site. Although the Mb-MRPs complex is a six-coordinated species, the 1608 cm-1 FTIR band characteristic of a hemichrome was not observed.

  1. Modifications of hemoglobin and myoglobin by Maillard reaction products (MRPs).

    Science.gov (United States)

    Ioannou, Aristos; Varotsis, Constantinos

    2017-01-01

    High performance liquid chromatography (HPLC) coupled with a Fraction Collector was employed to isolate Maillard reaction products (MRPs) formed in model systems comprising of asparagine and monosaccharides in the 60-180°C range. The primary MRP which is detected at 60°C is important for Acrylamide content and color/aroma development in foods and also in the field of food biotechnology for controlling the extent of the Maillard reaction with temperature. The discrete fractions of the reaction products were reacted with Hemoglobin (Hb) and Myoglobin (Mb) at physiological conditions and the reaction adducts were monitored by UV-vis and Attenuated Total Reflection-Fourier transform infrared (FTIR) spectrophotometry. The UV-vis kinetic profiles revealed the formation of a Soret transition characteristic of a low-spin six-coordinated species and the ATR-FTIR spectrum of the Hb-MRP and Mb-MRP fractions showed modifications in the protein Amide I and II vibrations. The UV-vis and the FTIR spectra of the Hb-MRPs indicate that the six-coordinated species is a hemichrome in which the distal E7 Histidine is coordinated to the heme Fe and blocks irreversibly the ligand binding site. Although the Mb-MRPs complex is a six-coordinated species, the 1608 cm-1 FTIR band characteristic of a hemichrome was not observed.

  2. Using Multiorder Time-Correlation Functions (TCFs) To Elucidate Biomolecular Reaction Pathways from Microsecond Single-Molecule Fluorescence Experiments.

    Science.gov (United States)

    Phelps, Carey; Israels, Brett; Marsh, Morgan C; von Hippel, Peter H; Marcus, Andrew H

    2016-12-29

    Recent advances in single-molecule fluorescence imaging have made it possible to perform measurements on microsecond time scales. Such experiments have the potential to reveal detailed information about the conformational changes in biological macromolecules, including the reaction pathways and dynamics of the rearrangements involved in processes, such as sequence-specific DNA "breathing" and the assembly of protein-nucleic acid complexes. Because microsecond-resolved single-molecule trajectories often involve "sparse" data, that is, they contain relatively few data points per unit time, they cannot be easily analyzed using the standard protocols that were developed for single-molecule experiments carried out with tens-of-millisecond time resolution and high "data density." Here, we describe a generalized approach, based on time-correlation functions, to obtain kinetic information from microsecond-resolved single-molecule fluorescence measurements. This approach can be used to identify short-lived intermediates that lie on reaction pathways connecting relatively long-lived reactant and product states. As a concrete illustration of the potential of this methodology for analyzing specific macromolecular systems, we accompany the theoretical presentation with the description of a specific biologically relevant example drawn from studies of reaction mechanisms of the assembly of the single-stranded DNA binding protein of the T4 bacteriophage replication complex onto a model DNA replication fork.

  3. Reactions of newly formed fission products in the gas phase

    International Nuclear Information System (INIS)

    Strickert, R.G.

    1976-01-01

    A dynamic gas-flow system was constructed which stopped fission products in the gas phase and rapidly separated (in less than 2 sec) volatile compounds from non-volatile ones. The filter assembly designed and used was shown to stop essentially all non-volatile fission products. Between 5 percent and 20 percent of tellurium fission-product isotopes reacted with several hydrocarbon gases to form volatile compounds, which passed through the filter. With carbon monoxide gas, volatile tellurium compound(s) (probably TeCO) were also formed with similar efficiencies. The upper limits for the yields of volatile compounds formed between CO and tin and antimony fission products were shown to be less than 0.3 percent, so tellurium nuclides, not their precursors, reacted with CO. It was found that CO reacted preferentially with independently produced tellurium atoms; the reaction efficiency of beta-produced atoms was only 27 +- 3 percent of that of the independently formed atoms. The selectivity, which was independent of the over-all reaction efficiency, was shown to be due to reaction of independently formed atoms in the gas phase. The gas phase reactions are believed to occur mainly at thermal energies because of the independence of the yield upon argon moderator mole-fraction (up to 80 percent). It was shown in some experiments that about one-half of the TeCO decomposed in passing through a filter and that an appreciable fraction (approximately 20 percent) of the tellurium atoms deposited on the filter reacted agin with CO. Other tellurium atoms on the filter surface (those formed by beta decay and those formed independently but not reacting in the gas phase) also reacted with CO, but probably somewhat less efficiently than atoms formed by TeCO decomposition. No evidence was found for formation of TeCO as a direct result of beta-decay

  4. Influence of transesterification reaction temperature on biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Anna Leticia Montenegro Turtelli; Zorzeto, Thais Queiroz; Park, Kil Jin [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: annalets@agr.unicamp.br; Bevilaqua, Gabriela [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica

    2008-07-01

    Brazilian government policy has authorized the introduction of biodiesel into the national energy matrix, law no.11.097 of January 13th, 2005. It is necessary, like any new product, to invest in research which is able to cover its entire production chain (planting of oilseeds, vegetable oils extraction and chemical reactions), providing data and relevant information in order to optimize the process and solve critical issues. The objective of this work was to study the effects of temperature on crude sunflower transesterification reaction with ethanol. A central composite experimental design with five variation levels (25 deg, 32 deg, 47.5 deg, 64 deg and 70 deg C) was used and response surface methodology applied for the data analysis. The statistical analysis of the results showed that the production suffered the influence of temperature (linear and quadratic effects) and reaction time (linear and quadratic). The generated models did not show significant regression. The model generated was not well suited to the experimental data and the value of the coefficient of determination (R{sup 2}=0.52) was low. Consequently it was not possible to build the response surface. (author)

  5. N2O + CO reaction over single Ga or Ge atom embedded graphene: A DFT study

    Science.gov (United States)

    Esrafili, Mehdi D.; Vessally, Esmail

    2018-01-01

    The possibility of using a single Ga or Ge atom embedded graphene as an efficient catalyst for the reduction of N2O molecule by CO is examined. We perform density functional theory calculations to calculate adsorption energies as well as analysis of the structural and electronic properties of different species involved in the N2O + CO reaction. The large activation energy for the diffusion of the single Ga or Ge atom on the C vacancy site of graphene shows the high stability of both Ga- and Ge-embedded graphene sheets in the N2O reduction. The activation energy needed for the decomposition of N2O is calculated to be 18.4 and 14.1 kcal/mol over Ga- and Ge-embedded graphene, respectively. The results indicate that the Ge-embedded graphene may serve as an effective catalyst for the N2O reduction. Moreover, the activation energy for the disproportionation of N2O molecules that generates N2 and O2 is relatively high; so, the generation of these side products may be hindered by decreasing the temperature.

  6. Laser ion source for multi-nucleon transfer reaction products

    Science.gov (United States)

    Hirayama, Y.; Watanabe, Y. X.; Imai, N.; Ishiyama, H.; Jeong, S. C.; Miyatake, H.; Oyaizu, M.; Kimura, S.; Mukai, M.; Kim, Y. H.; Sonoda, T.; Wada, M.; Huyse, M.; Kudryavtsev, Yu.; Van Duppen, P.

    2015-06-01

    We have developed a laser ion source for the target-like fragments (TLFs) produced in multi-nucleon transfer (MNT) reactions. The operation principle of the source is based on the in-gas laser ionization and spectroscopy (IGLIS) approach. In the source TLFs are thermalized and neutralized in high pressure and high purity argon gas, and are extracted after being selectively re-ionized in a multi-step laser resonance ionization process. The laser ion source has been implemented at the KEK Isotope Separation System (KISS) for β-decay spectroscopy of neutron-rich isotopes with N = 126 of nuclear astrophysical interest. The simulations of gas flow and ion-beam optics have been performed to optimize the gas cell for efficient thermalization and fast transporting the TLFs, and the mass-separator for efficient transport with high mass-resolving power, respectively. To confirm the performances expected at the design stage, off-line experiments have been performed by using 56Fe atoms evaporated from a filament in the gas cell. The gas-transport time of 230 ms in the argon cell and the measured KISS mass-resolving power of 900 are consistent with the designed values. The high purity of the gas-cell system, which is extremely important for efficient and highly-selective production of laser ions, was achieved and confirmed from the mass distribution of the extracted ions. After the off-line tests, on-line experiments were conducted by directly injecting energetic 56Fe beam into the gas cell. After thermalization of the injected 56Fe beam, laser-produced singly-charged 56Fe+ ions were extracted. The extraction efficiency and selectivity of the gas cell in the presence of plasma induced by 56Fe beam injection as well as the time profile of the extracted ions were investigated; extraction efficiency of 0.25%, a beam purity of >99% and an extraction time of 270 ms. It has been confirmed that the performance of the KISS laser ion source is satisfactory to start the measurements of

  7. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions.

    Science.gov (United States)

    Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo

    2016-02-05

    As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ignition and growth modeling of detonation reaction zone experiments on single crystals of PETN and HMX

    Science.gov (United States)

    White, Bradley W.; Tarver, Craig M.

    2017-01-01

    It has long been known that detonating single crystals of solid explosives have much larger failure diameters than those of heterogeneous charges of the same explosive pressed or cast to 98 - 99% theoretical maximum density (TMD). In 1957, Holland et al. demonstrated that PETN single crystals have failure diameters of about 8 mm, whereas heterogeneous PETN charges have failure diameters of less than 0.5 mm. Recently, Fedorov et al. quantitatively determined nanosecond time resolved detonation reaction zone profiles of single crystals of PETN and HMX by measuring the interface particle velocity histories of the detonating crystals and LiF windows using a PDV system. The measured reaction zone time durations for PETN and HMX single crystal detonations were approximately 100 and 260 nanoseconds, respectively. These experiments provided the necessary data to develop Ignition and Growth (I&G) reactive flow model parameters for the single crystal detonation reaction zones. Using these parameters, the calculated unconfined failure diameter of a PETN single crystal was 7.5 +/- 0.5 mm, close to the 8 mm experimental value. The calculated failure diameter of an unconfined HMX single crystal was 15 +/- 1 mm. The unconfined failure diameter of an HMX single crystal has not yet been determined precisely, but Fedorov et al. detonated 14 mm diameter crystals confined by detonating a HMX-based plastic bonded explosive (PBX) without initially overdriving the HMX crystals.

  9. Chemical Structures of Novel Maillard Reaction Products under Hyperglycemic Conditions.

    Science.gov (United States)

    Imahori, Daisuke; Matsumoto, Takahiro; Kojima, Naoto; Hasei, Tomohiro; Sumii, Megumi; Sumida, Taishi; Yamashita, Masayuki; Watanabe, Tetsushi

    2018-01-01

    Two novel and two known compounds, 4-quinolylaldoxime and indole-3-aldehyde, were isolated from a reaction mixture consisting of D-glucose and L-tryptophan at physiological temperature and pH. The chemical structures of the two novel compounds were elucidated by spectroscopic analysis such as X-ray crystallography. One of the novel compound and the indole-3-aldehyde showed mutagenicity toward Salmonella typhimurium YG1024 with S9 mix. Furthermore, 4-quinolylaldoxime was detected from streptozotocin-induced diabetic rat plasma by LC-MS/MS analysis; however, the isolated compounds were not detected in rat diet extracts. To our knowledge, this is the first report in which 4-quinolylaldoxime was detected in rat plasma. These results suggest that amino-carbonyl reaction products may be formed in diabetic condition and induce genetic damage.

  10. Reaction kinetics of oxygen on single-phase alloys, oxidation of nickel and niobium alloys

    International Nuclear Information System (INIS)

    Lalauze, Rene

    1973-01-01

    This research thesis first addresses the reaction kinetics of oxygen on alloys. It presents some generalities on heterogeneous reactions (conventional theory, theory of jumps), discusses the core reaction (with the influence of pressure), discusses the influence of metal self-diffusion on metal oxidation kinetics (equilibrium conditions at the interface, hybrid diffusion regime), reports the application of the hybrid diffusion model to the study of selective oxidation of alloys (Wagner model, hybrid diffusion model) and the study of the oxidation kinetics of an alloy forming a solid solution of two oxides. The second part reports the investigation of the oxidation of single phase nickel and niobium alloys (phase α, β and γ)

  11. Single-molecule imaging of platinum ligand exchange reaction reveals reactivity distribution.

    Science.gov (United States)

    Esfandiari, N Melody; Wang, Yong; Bass, Jonathan Y; Cornell, Trevor P; Otte, Douglas A L; Cheng, Ming H; Hemminger, John C; McIntire, Theresa M; Mandelshtam, Vladimir A; Blum, Suzanne A

    2010-11-03

    Single-molecule fluorescence microscopy provided information about the real-time distribution of chemical reactivity on silicon oxide supports at the solution-surface interface, at a level of detail which would be unavailable from a traditional ensemble technique or from a technique that imaged the static physical properties of the surface. Chemical reactions on the surface were found to be uncorrelated; that is, the chemical reaction of one metal complex did not influence the location of a future chemical reaction of another metal complex.

  12. Single-Molecule Sensing with Nanopore Confinement: from Chemical Reactions to Biological Interactions.

    Science.gov (United States)

    Lin, Yao; Ying, Yi-Lun; Gao, Rui; Long, Yi-Tao

    2018-03-25

    The nanopore can generate an electrochemical confinement for single-molecule sensing which help understand the fundamental chemical principle in nanoscale dimensions. By observing the generated ionic current, individual bond-making and bond-breaking steps, single biomolecule dynamic conformational changes and electron transfer processes that occur within pore can be monitored with high temporal and current resolution. These single-molecule studies in nanopore confinement are revealing information about the fundamental chemical and biological processes that cannot be extracted from ensemble measurements. In this concept, we introduce and discuss the electrochemical confinement effects on single-molecule covalent reactions, conformational dynamics of individual molecules and host-guest interactions in protein nanopores. Then, we extend the concept of nanopore confinement effects to confine electrochemical redox reactions in solid-state nanopores for developing new sensing mechanisms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. SAM-dependent enzyme-catalysed pericyclic reactions in natural product biosynthesis

    Science.gov (United States)

    Ohashi, Masao; Liu, Fang; Hai, Yang; Chen, Mengbin; Tang, Man-Cheng; Yang, Zhongyue; Sato, Michio; Watanabe, Kenji; Houk, K. N.; Tang, Yi

    2017-09-01

    Pericyclic reactions—which proceed in a concerted fashion through a cyclic transition state—are among the most powerful synthetic transformations used to make multiple regioselective and stereoselective carbon-carbon bonds. They have been widely applied to the synthesis of biologically active complex natural products containing contiguous stereogenic carbon centres. Despite the prominence of pericyclic reactions in total synthesis, only three naturally existing enzymatic examples (the intramolecular Diels-Alder reaction, and the Cope and the Claisen rearrangements) have been characterized. Here we report a versatile S-adenosyl-L-methionine (SAM)-dependent enzyme, LepI, that can catalyse stereoselective dehydration followed by three pericyclic transformations: intramolecular Diels-Alder and hetero-Diels-Alder reactions via a single ambimodal transition state, and a retro-Claisen rearrangement. Together, these transformations lead to the formation of the dihydropyran core of the fungal natural product, leporin. Combined in vitro enzymatic characterization and computational studies provide insight into how LepI regulates these bifurcating biosynthetic reaction pathways by using SAM as the cofactor. These pathways converge to the desired biosynthetic end product via the (SAM-dependent) retro-Claisen rearrangement catalysed by LepI. We expect that more pericyclic biosynthetic enzymatic transformations remain to be discovered in naturally occurring enzyme ‘toolboxes’. The new role of the versatile cofactor SAM is likely to be found in other examples of enzyme catalysis.

  14. Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions.

    Science.gov (United States)

    Li, Xiaohui; Hu, Duan; Tan, Zhibing; Bai, Jie; Xiao, Zongyuan; Yang, Yang; Shi, Jia; Hong, Wenjing

    2017-04-01

    The major challenges of molecular electronics are the understanding and manipulation of the electron transport through the single-molecule junction. With the single-molecule break junction techniques, including scanning tunneling microscope break junction technique and mechanically controllable break junction technique, the charge transport through various single-molecule and supramolecular junctions has been studied during the dynamic fabrication and continuous characterization of molecular junctions. This review starts from the charge transport characterization of supramolecular junctions through a variety of noncovalent interactions, such as hydrogen bond, π-π interaction, and electrostatic force. We further review the recent progress in constructing highly conductive molecular junctions via chemical reactions, the response of molecular junctions to external stimuli, as well as the application of break junction techniques in controlling and monitoring chemical reactions in situ. We suggest that beyond the measurement of single molecular conductance, the single-molecule break junction techniques provide a promising access to study molecular assembly and chemical reactions at the single-molecule scale.

  15. Reaction of single-standard DNA with hydroxyl radical generated by iron(II)-ethylenediaminetetraacetic acid

    International Nuclear Information System (INIS)

    Prigodich, R.V.; Martin, C.T.

    1990-01-01

    This study demonstrates that the reaction of Fe(II)-EDTA and hydrogen peroxide with the single-stranded nucleic acids d(pT) 70 and a 29-base sequence containing a mixture of bases results in substantial damage which is not directly detected by gel electrophoresis. Cleavage of the DNA sugar backbone is enhanced significantly after the samples are incubated at 90 degree C in the presence of piperidine. The latter reaction is used in traditional Maxam-Gilbert DNA sequencing to detect base damage, and the current results are consistent with reaction of the hydroxyl radical with the bases in single-stranded DNA (although reaction with sugar may also produce adducts that are uncleaved but labile to cleavage by piperidine). We the authors propose that hydroxyl radicals may react preferentially with the nucleic acid bases in ssDNA and that reaction of the sugars in dsDNA is dominant because the bases are sequestered within the double helix. These results have implications both for the study of single-stranded DNA binding protein binding sites and for the interpretation of experiments using the hydroxyl radical to probe DNA structure or to footprint double-stranded DNA binding protein binding sites

  16. Stability results for a reaction-diffusion system with a single measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ramoul, Hichem [Centre universitaire de Khenchela, Route de Batna, BP 1252, Liberte, 40004 Khenchela (Algeria); Gaitan, Patricia [Laboratoire d' analyse, topologie, probabilites CNRS UMR 6632, Marseille (France) and Universite Aix-Marseille II (France); Cristofol, Michel [Laboratoire d' analyse, topologie, probabilites CNRS UMR 6632, Marseille, France and Universite Aix-Marseille III (France)

    2007-06-15

    For a two by two reaction-diffusion system on a bounded domain we give a simultaneous stability result for one coefficient and for the initial conditions. The key ingredient is a global Carleman-type estimate with a single observation acting on a subdomain.

  17. 40 CFR 721.3805 - Formaldehyde, reaction products with 1,3-benzenedimethanamine and bisphenol A.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, reaction products with 1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3805 Formaldehyde, reaction products... to reporting. (1) The chemical substance identified as formaldehyde, reaction products with 1,3...

  18. Tuning Catalytic Performance through a Single or Sequential Post-Synthesis Reaction(s) in a Gas Phase

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Junjun [Department; Department; Zhang, Shiran [Department; Department; Choksi, Tej [Department; Nguyen, Luan [Department; Department; Bonifacio, Cecile S. [Department; Li, Yuanyuan [Department; Zhu, Wei [Department; Department; College; Tang, Yu [Department; Department; Zhang, Yawen [College; Yang, Judith C. [Department; Greeley, Jeffrey [Department; Frenkel, Anatoly I. [Department; Tao, Franklin [Department; Department

    2016-12-05

    Catalytic performance of a bimetallic catalyst is determined by geometric structure and electronic state of the surface or even the near-surface region of the catalyst. Here we report that single and sequential postsynthesis reactions of an as-synthesized bimetallic nanoparticle catalyst in one or more gas phases can tailor surface chemistry and structure of the catalyst in a gas phase, by which catalytic performance of this bimetallic catalyst can be tuned. Pt–Cu regular nanocube (Pt–Cu RNC) and concave nanocube (Pt–Cu CNC) are chosen as models of bimetallic catalysts. Surface chemistry and catalyst structure under different reaction conditions and during catalysis were explored in gas phase of one or two reactants with ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The newly formed surface structures of Pt–Cu RNC and Pt–Cu CNC catalysts strongly depend on the reactive gas(es) used in the postsynthesis reaction(s). A reaction of Pt–Cu RNC-as synthesized with H2 at 200 °C generates a near-surface alloy consisting of a Pt skin layer, a Cu-rich subsurface, and a Pt-rich deep layer. This near-surface alloy of Pt–Cu RNC-as synthesized-H2 exhibits a much higher catalytic activity in CO oxidation in terms of a low activation barrier of 39 ± 4 kJ/mol in contrast to 128 ± 7 kJ/mol of Pt–Cu RNC-as synthesized. Here the significant decrease of activation barrier demonstrates a method to tune catalytic performances of as-synthesized bimetallic catalysts. A further reaction of Pt–Cu RNC-as synthesized-H2 with CO forms a Pt–Cu alloy surface, which exhibits quite different catalytic performance in CO oxidation. It suggests the capability of generating a different surface by using another gas. The capability of tuning surface chemistry and structure of bimetallic catalysts was also demonstrated in restructuring of Pt–Cu CNC-as synthesized.

  19. Evaluation of Neutron Induced Reactions for 32 Fission Products

    International Nuclear Information System (INIS)

    Kim, Hyeong Il

    2007-02-01

    Neutron cross sections for 32 fission products were evaluated in the neutron-incident energy range from 10 -5 eV to 20 MeV. The list of fission products consists of the priority materials for several applications, extended to cover complete isotopic chains for three elements. The full list includes 8 individual isotopes, 95 Mo, 101 Ru, 103 Rh, 105 Pd, 109 Ag, 131 Xe, 133 Cs, 141 Pr, and 24 isotopes in complete isotopic chains for Nd (8), Sm (9) and Dy (7). Our evaluation methodology covers both the low energy region and the fast neutron region.In the low energy region, our evaluations are based on the latest data published in the Atlas of Neutron Resonances. This resource was used to infer both the thermal values and the resolved resonance parameters that were validated against the capture resonance integrals. In the unresolved resonance region we performed the additional evaluation by using the averages of the resolved resonances and adjusting them to the experimental data.In the fast neutron region our evaluations are based on the nuclear reaction model code EMPIRE-2.19 validated against the experimental data. EMPIRE is the modular system of codes consisting of many nuclear reaction models, including the spherical and deformed Optical Model, Hauser-Feshbach theory with the width fluctuation correction and complete gamma-ray emission cascade, DWBA, Multi-step Direct and Multi-step Compound models, and several versions of the phenomenological preequilibrium models. The code is equipped with a power full GUI, allowing an easy access to support libraries such as RIPL and CSISRS, the graphical package, as well the utility codes for formatting and checking. In general, in our calculations we used the Reference Input Parameter Library, RIPL, for the initial set model parameters. These parameters were properly adjusted to reproduce the available experimental data taken from the CSISRS library. Our evaluations cover cross sections for almost all reaction channels

  20. Evaluation of Neutron Induced Reactions for 32 Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong Il

    2007-02-15

    Neutron cross sections for 32 fission products were evaluated in the neutron-incident energy range from 10{sup -5} eV to 20 MeV. The list of fission products consists of the priority materials for several applications, extended to cover complete isotopic chains for three elements. The full list includes 8 individual isotopes, {sup 95}Mo, {sup 101}Ru, {sup 103}Rh, {sup 105}Pd, {sup 109}Ag, {sup 131}Xe, {sup 133}Cs, {sup 141}Pr, and 24 isotopes in complete isotopic chains for Nd (8), Sm (9) and Dy (7). Our evaluation methodology covers both the low energy region and the fast neutron region.In the low energy region, our evaluations are based on the latest data published in the Atlas of Neutron Resonances. This resource was used to infer both the thermal values and the resolved resonance parameters that were validated against the capture resonance integrals. In the unresolved resonance region we performed the additional evaluation by using the averages of the resolved resonances and adjusting them to the experimental data.In the fast neutron region our evaluations are based on the nuclear reaction model code EMPIRE-2.19 validated against the experimental data. EMPIRE is the modular system of codes consisting of many nuclear reaction models, including the spherical and deformed Optical Model, Hauser-Feshbach theory with the width fluctuation correction and complete gamma-ray emission cascade, DWBA, Multi-step Direct and Multi-step Compound models, and several versions of the phenomenological preequilibrium models. The code is equipped with a power full GUI, allowing an easy access to support libraries such as RIPL and CSISRS, the graphical package, as well the utility codes for formatting and checking. In general, in our calculations we used the Reference Input Parameter Library, RIPL, for the initial set model parameters. These parameters were properly adjusted to reproduce the available experimental data taken from the CSISRS library. Our evaluations cover cross

  1. High-throughput microfluidic single-cell digital polymerase chain reaction.

    Science.gov (United States)

    White, A K; Heyries, K A; Doolin, C; Vaninsberghe, M; Hansen, C L

    2013-08-06

    Here we present an integrated microfluidic device for the high-throughput digital polymerase chain reaction (dPCR) analysis of single cells. This device allows for the parallel processing of single cells and executes all steps of analysis, including cell capture, washing, lysis, reverse transcription, and dPCR analysis. The cDNA from each single cell is distributed into a dedicated dPCR array consisting of 1020 chambers, each having a volume of 25 pL, using surface-tension-based sample partitioning. The high density of this dPCR format (118,900 chambers/cm(2)) allows the analysis of 200 single cells per run, for a total of 204,000 PCR reactions using a device footprint of 10 cm(2). Experiments using RNA dilutions show this device achieves shot-noise-limited performance in quantifying single molecules, with a dynamic range of 10(4). We performed over 1200 single-cell measurements, demonstrating the use of this platform in the absolute quantification of both high- and low-abundance mRNA transcripts, as well as micro-RNAs that are not easily measured using alternative hybridization methods. We further apply the specificity and sensitivity of single-cell dPCR to performing measurements of RNA editing events in single cells. High-throughput dPCR provides a new tool in the arsenal of single-cell analysis methods, with a unique combination of speed, precision, sensitivity, and specificity. We anticipate this approach will enable new studies where high-performance single-cell measurements are essential, including the analysis of transcriptional noise, allelic imbalance, and RNA processing.

  2. Chlorination of parabens: reaction kinetics and transformation product identification.

    Science.gov (United States)

    Mao, Qianhui; Ji, Feng; Wang, Wei; Wang, Qiquan; Hu, Zhenhu; Yuan, Shoujun

    2016-11-01

    The reactivity and fate of parabens during chlorination were investigated in this work. Chlorination kinetics of methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP) were studied in the pH range of 4.0 to 11.0 at 25 ± 1 °C. Apparent rate constants (k app ) of 9.65 × 10 -3  M -0.614 ·s -1 , 1.77 × 10 -2  M -1.019 ·s -1 , 2.98 × 10 -2  M -0.851 ·s -1 , and 1.76 × 10 -2  M -0.860 ·s -1 for MeP, EtP, PrP, and BuP, respectively, were obtained at pH 7.0. The rate constants depended on the solution pH, temperature, and NH 4 + concentration. The maximum k app was obtained at pH 8.0, and the minimum value was obtained at pH 11.0. The reaction rate constants increased with increasing temperature. When NH 4 + was added to the solution, the reaction of parabens was inhibited due to the rapid formation of chloramines. Two main transformation products, 3-chloro-parabens and 3,5-dichloro-parabens, were identified by GC-MS and LCMS-IT-TOF, and a reaction pathway was proposed. Dichlorinated parabens accumulated in solution, which is a threat to human health and the aqueous environment.

  3. Hormone production in ovarian carcinomas. Histochemical approach in stroma reaction.

    Science.gov (United States)

    Pfeiderer, A; Teufel, G

    1976-01-01

    Enzymatically active stromal cells (EASC) in different ovarian tumors are concerned with hormon production. 198 cases of ovarian tumors were investigated by different histochemical methods. Distribution of lactate-and glucose-6-phosphate-dehydrogenase was investigated by plaimetric measurement.--EASC were found in benign ovarian tumors in 48%, in malignant in 30%. They are found exclusively in ovarian tumors and are completely absent in metastases. Incidence is dependent on histological type of tumor. With regard to untreated ovarian carcinoma containing EASC, these cells cover an aerea of 1.9% (0.5-5.9%). EASC occur in a very high percentage after menopause and are reduced by chemotherapy or radioation. Incidence of EASC in ovarian tumors is in relation with postmenopausal bleeding. Glandular-cystic endometrium is noticed only in connection with EASC. There is a positive relation between the quantity of EASC and the incidence of bleeding.--EASC are characterized by a strong NADP-dependent-dehydrogenase-reaction and reactions for lactate-, malate-dehydrogenases and alcaline phosphatases. Apart from that these cells are not all uniform. It seems that the enzymatically active fibrocytes are the first step of theca-like cells which are then luteinized and finally filled up with cholesterol. Histochemistry of EASC in comparison with other steroid-producing tissues make possible, that these cells have an estrogenic and more seldomly also an androgenic activity.

  4. Maillard reaction products as antimicrobial components for packaging films.

    Science.gov (United States)

    Hauser, Carolin; Müller, Ulla; Sauer, Tanja; Augner, Kerstin; Pischetsrieder, Monika

    2014-02-15

    Active packaging foils with incorporated antimicrobial agents release the active ingredient during food storage. Maillard reaction products (MRPs) show antimicrobial activity that is at least partially mediated by H2O2. De novo generation of H2O2 by an MRP fraction, extracted from a ribose/lysine Maillard reaction mixture by 85% ethanol, was monitored at three concentrations (1.6, 16.1, and 32.3g/L) and three temperatures (4, 25, and 37 °C) between 0 and 96 h, reaching a maximum of 335 μM H2O2 (32.3g/L, 37 °C, 96 h). The active MRP fraction (16.1g/L) completely inhibited the growth of Escherichia coli for 24h and was therefore incorporated in a polyvinyl acetate-based lacquer and dispersed onto a low-density polyethylene film. The coated film generated about 100 μM H2O2 and resulted in a log-reduction of >5 log-cycles against E. coli. Thus, MRPs can be considered as active ingredients for antimicrobial packaging materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Rapid electrochemiluminescence assays of polymerase chain reaction products.

    Science.gov (United States)

    Kenten, J H; Casadei, J; Link, J; Lupold, S; Willey, J; Powell, M; Rees, A; Massey, R

    1991-09-01

    We demonstrate the first use of an electrochemiluminescent (ECL) label, [4-(N-succimidyloxycarbonylpropyl)-4'-methyl-2,2'- bipyridine]ruthenium(II) dihexafluorophosphate (Origen label; IGEN Inc.), in DNA probe assays. This label allows rapid (less than 25 min) quantification and detection of polymerase chain reaction (PCR)-amplified products from oncogenes, viruses, and cloned genes. For the PCR, we used labeled oligonucleotide primers complementary to human papiloma virus and the Ha-ras oncogene. These samples were followed by ECL analysis or hybridization with specific, Origen-labeled oligonucleotide probes. These studies demonstrate the speed, specificity, and effectiveness of the new ECL labels, compared with 32P, for nucleic acid probe applications. We describe formats involving conventional methodologies and a new format that requires no wash step, allowing simple and rapid sample analysis. These rapid assays also reduce PCR contamination, by requiring less sample handling. Improvements in ECL detectability are currently under investigation for use in DNA probe assays without amplification.

  6. Removal of triclosan via peroxidases-mediated reactions in water: Reaction kinetics, products and detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianhua; Peng, Jianbiao [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Zhang, Ya [Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of the People’s Republic of China, Nanjing 210042 (China); Ji, Yuefei [College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095 (China); Shi, Huanhuan; Mao, Liang [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Gao, Shixiang, E-mail: ecsxg@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China)

    2016-06-05

    Highlights: • Enzymatic treatment of triclosan in water by soybean and horseradish peroxidases. • pH, H{sub 2}O{sub 2} concentration and enzyme dosage affected the removal efficiency of TCS. • The removal of TCS by SBP was more efficient than that of HRP. • K{sub CAT} and K{sub CAT}/K{sub M} values for SBP toward TCS were much higher than those for HRP. • Polymers formed via radical coupling mechanism were nontoxic to the growth of alga. - Abstract: This study investigated and compared reaction kinetics, product characterization, and toxicity variation of triclosan (TCS) removal mediated by soybean peroxidase (SBP), a recognized potential peroxidase for removing phenolic pollutants, and the commonly used horseradish peroxidase (HRP) with the goal of assessing the technical feasibility of SBP-catalyzed removal of TCS. Reaction conditions such as pH, H{sub 2}O{sub 2} concentration and enzyme dosage were found to have a strong influence on the removal efficiency of TCS. SBP can retain its catalytic ability to remove TCS over broad ranges of pH and H{sub 2}O{sub 2} concentration, while the optimal pH and H{sub 2}O{sub 2} concentration were 7.0 and 8 μM, respectively. 98% TCS was removed with only 0.1 U mL{sup −1} SBP in 30 min reaction time, while an HRP dose of 0.3 U mL{sup −1} was required to achieve the similar conversion. The catalytic performance of SBP towards TCS was more efficient than that of HRP, which can be explained by catalytic rate constant (K{sub CAT}) and catalytic efficiency (K{sub CAT}/K{sub M}) for the two enzymes. MS analysis in combination with quantum chemistry computation showed that the polymerization products were generated via C−C and C−O coupling pathways. The polymers were proved to be nontoxic through growth inhibition of green alga (Scenedesmus obliquus). Taking into consideration of the enzymatic treatment cost, SBP may be a better alternative to HRP upon the removal and detoxification of TCS in water

  7. Removal of triclosan via peroxidases-mediated reactions in water: Reaction kinetics, products and detoxification

    International Nuclear Information System (INIS)

    Li, Jianhua; Peng, Jianbiao; Zhang, Ya; Ji, Yuefei; Shi, Huanhuan; Mao, Liang; Gao, Shixiang

    2016-01-01

    Highlights: • Enzymatic treatment of triclosan in water by soybean and horseradish peroxidases. • pH, H 2 O 2 concentration and enzyme dosage affected the removal efficiency of TCS. • The removal of TCS by SBP was more efficient than that of HRP. • K CAT and K CAT /K M values for SBP toward TCS were much higher than those for HRP. • Polymers formed via radical coupling mechanism were nontoxic to the growth of alga. - Abstract: This study investigated and compared reaction kinetics, product characterization, and toxicity variation of triclosan (TCS) removal mediated by soybean peroxidase (SBP), a recognized potential peroxidase for removing phenolic pollutants, and the commonly used horseradish peroxidase (HRP) with the goal of assessing the technical feasibility of SBP-catalyzed removal of TCS. Reaction conditions such as pH, H 2 O 2 concentration and enzyme dosage were found to have a strong influence on the removal efficiency of TCS. SBP can retain its catalytic ability to remove TCS over broad ranges of pH and H 2 O 2 concentration, while the optimal pH and H 2 O 2 concentration were 7.0 and 8 μM, respectively. 98% TCS was removed with only 0.1 U mL −1 SBP in 30 min reaction time, while an HRP dose of 0.3 U mL −1 was required to achieve the similar conversion. The catalytic performance of SBP towards TCS was more efficient than that of HRP, which can be explained by catalytic rate constant (K CAT ) and catalytic efficiency (K CAT /K M ) for the two enzymes. MS analysis in combination with quantum chemistry computation showed that the polymerization products were generated via C−C and C−O coupling pathways. The polymers were proved to be nontoxic through growth inhibition of green alga (Scenedesmus obliquus). Taking into consideration of the enzymatic treatment cost, SBP may be a better alternative to HRP upon the removal and detoxification of TCS in water/wastewater treatment.

  8. Monodisperse Picoliter Droplets for Low-Bias and Contamination-Free Reactions in Single-Cell Whole Genome Amplification.

    Directory of Open Access Journals (Sweden)

    Yohei Nishikawa

    Full Text Available Whole genome amplification (WGA is essential for obtaining genome sequences from single bacterial cells because the quantity of template DNA contained in a single cell is very low. Multiple displacement amplification (MDA, using Phi29 DNA polymerase and random primers, is the most widely used method for single-cell WGA. However, single-cell MDA usually results in uneven genome coverage because of amplification bias, background amplification of contaminating DNA, and formation of chimeras by linking of non-contiguous chromosomal regions. Here, we present a novel MDA method, termed droplet MDA, that minimizes amplification bias and amplification of contaminants by using picoliter-sized droplets for compartmentalized WGA reactions. Extracted DNA fragments from a lysed cell in MDA mixture are divided into 105 droplets (67 pL within minutes via flow through simple microfluidic channels. Compartmentalized genome fragments can be individually amplified in these droplets without the risk of encounter with reagent-borne or environmental contaminants. Following quality assessment of WGA products from single Escherichia coli cells, we showed that droplet MDA minimized unexpected amplification and improved the percentage of genome recovery from 59% to 89%. Our results demonstrate that microfluidic-generated droplets show potential as an efficient tool for effective amplification of low-input DNA for single-cell genomics and greatly reduce the cost and labor investment required for determination of nearly complete genome sequences of uncultured bacteria from environmental samples.

  9. Single pion production in neutrino-nucleon interactions

    Science.gov (United States)

    Kabirnezhad, M.

    2018-01-01

    This work represents an extension of the single pion production model proposed by Rein [Z. Phys. C 35, 43 (1987)., 10.1007/BF01561054]. The model consists of resonant pion production and nonresonant background contributions coming from three Born diagrams in the helicity basis. The new work includes lepton mass effects, and nonresonance interaction is described by five diagrams based on a nonlinear σ model. This work provides a full kinematic description of single pion production in the neutrino-nucleon interactions, including resonant and nonresonant interactions in the helicity basis, in order to study the interference effect.

  10. Formation of oxidized products from the reaction of gaseous phenanthrene with the OH radical in a reaction chamber

    Science.gov (United States)

    Lee, JiYi; Lane, Douglas A.

    2010-07-01

    The reaction of gas phase phenanthrene (Phen) with the OH radical in the presence of NO x was studied in a reaction chamber. A number of oxidation products were identified by two dimensional gas chromatography-time of flight mass spectrometry (GC × GC-TOFMS). Identified products included 9-fluorenone, 1,2-naphthalic anhydride, 2,2'-diformylbiphenyl, dibenzopyranone, 1, 2, 3, 4 and 9-phenanthrols, 2, 3, 4 and 9-nitrophenanthrenes, 1,4-phenanthrenequinone, 9,10-phenanthrenequinone, and 2- and 4-nitrodibenzopyranones. This is the first study to identify 1,2-naphthalic anhydride and 1,4-phenanthrenequinone as products of the gas phase reaction of Phen with the OH radical. Eight more products were tentatively identified by their mass spectral fragmentation patterns and based on the typical OH radical initiated photochemical reaction mechanisms of simple aromatic compounds and naphthalene. In the reaction chamber, particle formation of products as a function of irradiation time was measured. Phenanthrenequinones, phenanthrol, nitrophenanthrene and nitrobenzopyranone were observed predominantly in the particle phase. This implies that these oxidized products formed from the reaction of Phen with the OH radical in the chamber would be associated with particles in the atmosphere and may, therefore, have an impact on human health. Possible pathways for the formation of these products are suggested and discussed.

  11. Single-shot characterization of enzymatic reaction constants Km and kcat by an acoustic-driven, bubble-based fast micromixer

    Science.gov (United States)

    Xie, Yuliang; Ahmed, Daniel; Lapsley, Michael Ian; Lin, Sz-Chin Steven; Nawaz, Ahmad Ahsan; Wang, Lin; Huang, Tony Jun

    2014-01-01

    In this work we present an acoustofluidic approach for rapid, single-shot characterization of enzymatic reaction constants Km and kcat. The acoustofluidic design involves a bubble anchored in a horseshoe structure which can be stimulated by a piezoelectric transducer to generate vortices in the fluid. The enzyme and substrate can thus be mixed rapidly, within 100 ms, by the vortices to yield the product. Enzymatic reaction constants Km and kcat can then be obtained from the reaction rate curves for different concentrations of substrate while holding the enzyme concentration constant. We studied the enzymatic reaction for β-galactosidase and its substrate (resorufin β-D-galactopyranoside) and found Km and kcat to be 333±130 =M and 64±8 s−1 respectively, which are in agreement with published data. Our approach is valuable for studying the kinetics of high-speed enzymatic reactions and other chemical reactions. PMID:22880882

  12. Production of single-walled carbon nanotube grids

    Science.gov (United States)

    Hauge, Robert H; Xu, Ya-Qiong; Pheasant, Sean

    2013-12-03

    A method of forming a nanotube grid includes placing a plurality of catalyst nanoparticles on a grid framework, contacting the catalyst nanoparticles with a gas mixture that includes hydrogen and a carbon source in a reaction chamber, forming an activated gas from the gas mixture, heating the grid framework and activated gas, and controlling a growth time to generate a single-wall carbon nanotube array radially about the grid framework. A filter membrane may be produced by this method.

  13. Highly Durable Platinum Single-Atom Alloy Catalyst for Electrochemical Reactions

    DEFF Research Database (Denmark)

    Kim, Jiwhan; Roh, Chi-Woo; Sahoo, Suman Kalyan

    2018-01-01

    -doped tin oxide (Pt1/ATO) is synthesized by conventional incipient wetness impregnation, with up to 8 wt% Pt. The single atomic Pt structure is confirmed by high-angle annular dark field scanning tunneling electron microscopy images and extended X-ray absorption fine structure analysis results. Density......Single atomic Pt catalyst can offer efficient utilization of the expensive platinum and provide unique selectivity because it lacks ensemble sites. However, designing such a catalyst with high Pt loading and good durability is very challenging. Here, single atomic Pt catalyst supported on antimony...... functional theory calculations show that replacing Sb sites with Pt atoms in the bulk phase or at the surface of SbSn or ATO is energetically favorable. The Pt1/ATO shows superior activity and durability for formic acid oxidation reaction, compared to a commercial Pt/C catalyst. The single atomic Pt...

  14. Design of experiments on production and reaction of point defects

    Science.gov (United States)

    Kiritani, Michio

    Experiments designed by the author for the research of production and reaction of point defects during his stay in eight universities and research institutes for about forty years are reviewed. Two-step aging method elucidated the stability of vacancy cluster nucleus in quenched metals, and the deformation induced vacancies were detected by the aid of quenched-in vacancies. High-voltage electron microscopes were efficiently used as micro-laboratories, especially to do the quantitative electron microscopy to extract fundamental properties of point defects and defect interactions. Fusion neutron irradiation with a neutron source RTNS-II was a unique systematic experiment on defects produced by large collision cascades. Advantage of the use of thin foil samples for neutron irradiation was emphasized. The temperature control in fission reactor irradiation was improved to eliminate the influence of the reactor power. Temperature cycle reactor irradiation became possible, and a multi-section removable rig was constructed for systematic irradiation. The role of freely migrating point defects in microstructure evolution was detected by changing the depth of damage zone with the incidence of self-ions with glancing angles. Finally, the ultra-high-speed plastic deformation gave rise to the anomalous production of vacancies and vacancy clusters, and then to the proposal of plastic deformation of metals without dislocations.

  15. A Review of Microwave-Assisted Reactions for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Saifuddin Nomanbhay

    2017-06-01

    Full Text Available The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society’s increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective.

  16. Calculations of long-lived isomer production in neutron reactions

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Young, P.G.

    1992-01-01

    We present theoretical calculations for the production of the long-lived isomers 93m Nb (1/2-, 16 yr), 121m Sn (11/2-, 55 yr), 166m Ho (7-, 1200 yr), 184m Re (8+, 165 d), 186m Re (8+, 2x10 5 yr), 178 Hf (16+, 31 yr), 179m Hf (25/2-, 25 d), and 192m Ir (9+, 241 yr), all of which pose potential radiation activation problems in nuclear fusion reactors if produced in 14-MeV neutron-induced reactions. We consider (n,2n), (n,n'), and (n,γ) production modes and compare our results both with experimental data (where available) and systematics. We also investigate the dependence of the isomeric cross section ratio on incident neutron energy for the isomers under consideration. The statistical Hauser-Feshbach plus preequilibrium code GNASH was used for the calculations. Where discrete state experimental information was lacking, rotational band members above the isomeric state, which can be justified theoretically but have not been experimentally resolved, were reconstructed. (author). 16 refs, 10 figs, 4 tabs

  17. Measurement of charmed particle production in hadronic reactions

    CERN Multimedia

    2002-01-01

    The aim of the experiment is to measure the production cross-section for charmed particles in hadronic reactions, study their production mechanism, and search for excited charmed hadrons.\\\\ \\\\ Charmed Mesons and Baryons will be measured in $\\pi$ and $p$ interactions on Beryllium between 100 and 200 GeV/c. The trigger will be on an electron from the leptonic decay of one charmed particle by signals from the Cerenkov counter (Ce), the electron trigger calorimeter (eCal), scintillation counters, and proportional wire chambers. The accompanying charmed particle will be measured via its hadronic decay in a two-stage magnetic spectrometer with drift chambers (arms 2, 3a, 3b, 3c), two large-area multicell Cerenkov counters (C2, C3) and a large-area shower counter ($\\gamma$-CAL). The particles which can be measured and identified include $\\gamma, e, \\pi^{\\pm}, \\pi^{0}, K^{\\pm}, p, \\bar{p}$ so that a large number of hadronic decay modes of charmed particles can be studied. \\\\ \\\\ A silicon counter telescope with 5 $\\m...

  18. Improved single particle potential for transport model simulations of nuclear reactions induced by rare isotope beams

    International Nuclear Information System (INIS)

    Xu Chang; Li Baoan

    2010-01-01

    Taking into account more accurately the isospin dependence of nucleon-nucleon interactions in the in-medium many-body force term of the Gogny effective interaction, new expressions for the single-nucleon potential and the symmetry energy are derived. Effects of both the spin (isospin) and the density dependence of nuclear effective interactions on the symmetry potential and the symmetry energy are examined. It is shown that they both play a crucial role in determining the symmetry potential and the symmetry energy at suprasaturation densities. The improved single-nucleon potential will be useful for more accurate simulation of nuclear reactions induced by rare-isotope beams within transport models.

  19. Measurement of Neutron Reaction Cross Sections in Carbon using a Single Crystal Diamond Detector

    Energy Technology Data Exchange (ETDEWEB)

    Pillon, M.; Angelone, M. [Associazione EURATOM-ENEA sulla Fusione, ENEA C.R. Frascati, via E. Fermi, 45 0044 Frascati, Rome (Italy); Krasa, A.; Plompen, A. J. M.; Schillebeeckx, P. [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, - 2440 Geel (Belgium); Sergi, M. L. [Dipartimento di Fisica e Astronomia, Universita di Catania e INFN-Laboratori Nazionali del Sud, Catania (Italy)

    2011-12-13

    A single crystal diamond detector was exposed to the quasi mono-energetic neutron fields in the energy range from 7 MeV to 20.5 MeV produced by the Van de Graaff neutron generator of the EC-JRC-IRMM. Pulse Height Spectra (PHS) of the neutron interaction with the diamond (carbon) were recorded in order to derive the experimental response function of this detector to neutrons in view of its use as a compact fast neutron spectrometer. Several peaks produced by outgoing charged particles produced when neutrons interact with carbon were identified using the reaction Q-values. The corresponding nuclear reactions, such as (n,{alpha}), (n,p), (n,d) for different excitation states were identified in the PHS. The analysis of the peaks allows the derivation of some neutron reaction cross sections in carbon. The results are presented in this paper together with the associated uncertainties.

  20. Measurement of Neutron Reaction Cross Sections in Carbon using a Single Crystal Diamond Detector

    Science.gov (United States)

    Pillon, M.; Angelone, M.; Krása, A.; Plompen, A. J. M.; Schillebeeckx, P.; Sergi, M. L.

    2011-12-01

    A single crystal diamond detector was exposed to the quasi mono-energetic neutron fields in the energy range from 7 MeV to 20.5 MeV produced by the Van de Graaff neutron generator of the EC-JRC-IRMM. Pulse Height Spectra (PHS) of the neutron interaction with the diamond (carbon) were recorded in order to derive the experimental response function of this detector to neutrons in view of its use as a compact fast neutron spectrometer. Several peaks produced by outgoing charged particles produced when neutrons interact with carbon were identified using the reaction Q-values. The corresponding nuclear reactions, such as (n,α), (n,p), (n,d) for different excitation states were identified in the PHS. The analysis of the peaks allows the derivation of some neutron reaction cross sections in carbon. The results are presented in this paper together with the associated uncertainties.

  1. Single top quark production in ATLAS at the LHC

    Directory of Open Access Journals (Sweden)

    Stillings Jan A.

    2013-11-01

    Full Text Available Measurements of the single top quark production cross-sections in proton collisions with the ATLAS detector at the Large Hadron Collider are presented. The single top-quark production in the t and Wt-channels and the determination of the CKM matrix element |Vtb| are discussed. A separate measurement of the top and antitop quark cross-sections and their ratio is shown. These measurements are sensitive to the parton distribution function in the proton. In addition, limits on exotic production in single top quark processes are outlined. This also includes the search for flavour-changing neutral currents and for additional W’ bosons in the s-channel.

  2. Production of isomers in compound and transfer reactions with 4He ions

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Aksenov, N.V.; Albin, Yu.A.; Bozhikov, G.A.; Dmitriev, S.N.; Starodub, G.Ya.; Vostokin, G.K.; Carroll, J.J.

    2011-01-01

    A well-known island of nuclear isomerism appears near A = 175-180 due to the deformation alignment of single-particle orbits at high angular momentum. This sometimes results in the formation of multi-quasiparticle states with record spin that are long-lived because of 'K-hindrance', i.e., symmetry rearrangement. Production methods and spectroscopic studies of these isomers remain a challenge for modern nuclear reaction and nuclear structure physics. Activities were produced by irradiation of 176 Yb(97.6%) enriched and nat Lu targets with 35-MeV 4 He ions from the internal beam of the U200 cyclotron. Induced activities were analyzed applying methods of radiochemistry and gamma spectroscopy. Yields of compound and nucleon-transfer reactions were measured and the isomer-to-ground state ratios were deduced. Calculated results were obtained using standard procedures to reproduce the (α, xn) cross sections, and the systematic behavior of the nucleon-transfer yields was established. The isomer-to-ground state ratios for direct reactions with 4 He ions were examined, resulting in a new characterization of the reaction mechanism

  3. Gas-Solid Reaction Route toward the Production of Intermetallics from Their Corresponding Oxide Mixtures

    Directory of Open Access Journals (Sweden)

    Hesham Ahmed

    2016-08-01

    Full Text Available Near-net shape forming of metallic components from metallic powders produced in situ from reduction of corresponding pure metal oxides has not been explored to a large extent. Such a process can be probably termed in short as the “Reduction-Sintering” process. This methodology can be especially effective in producing components containing refractory metals. Additionally, in situ production of metallic powder from complex oxides containing more than one metallic element may result in in situ alloying during reduction, possibly at lower temperatures. With this motivation, in situ reduction of complex oxides mixtures containing more than one metallic element has been investigated intensively over a period of years in the department of materials science, KTH, Sweden. This review highlights the most important features of that investigation. The investigation includes not only synthesis of intermetallics and refractory metals using the gas solid reaction route but also study the reaction kinetics and mechanism. Environmentally friendly gases like H2, CH4 and N2 were used for simultaneous reduction, carburization and nitridation, respectively. Different techniques have been utilized. A thermogravimetric analyzer was used to accurately control the process conditions and obtain reaction kinetics. The fluidized bed technique has been utilized to study the possibility of bulk production of intermetallics compared to milligrams in TGA. Carburization and nitridation of nascent formed intermetallics were successfully carried out. A novel method based on material thermal property was explored to track the reaction progress and estimate the reaction kinetics. This method implies the dynamic measure of thermal diffusivity using laser flash method. These efforts end up with a successful preparation of nanograined intermetallics like Fe-Mo and Ni-W. In addition, it ends up with simultaneous reduction and synthesis of Ni-WN and Ni-WC from their oxide mixtures

  4. Light axigluon and single top production at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Chong-Xing; Cao, Shi-Yue; Zeng, Qing-Guo [Department of Physics, Liaoning Normal University,Dalian 116029 (China)

    2014-04-28

    The light axigluon model can explain the Tevatron tt-macron forward-backward asymmetry and at the same time satisfy the constraints from the electroweak precision measurement and the ATLAS and CMS data, which induces the flavor changing (FC) couplings of axigluon with the SM and new quarks. We investigate the effects of these FC couplings on the s- and t-channel single top productions at the LHC and the FC decays Z→b-macrons+bs-macron, t→cγ and cg. Our numerical results show that the light axigluon can give significantly contributions to single top production and the rare top decays t→cγ and cg.

  5. Maillard reaction products modulate gut microbiota composition in adolescents.

    Science.gov (United States)

    Seiquer, Isabel; Rubio, Luis A; Peinado, M Jesús; Delgado-Andrade, Cristina; Navarro, María Pilar

    2014-07-01

    Scarce data are available concerning effects of certain bioactive substances such as Maillard reaction products (MRP) on the gut microbiota composition, and the question of how a diet rich in MRP affects gut microbiota in humans is still open. Two experiments were conducted. In expt. 1, adolescents consumed diets either high or low in MRP in a two-period crossover trial; in expt. 2, rats were fed diets supplemented or not with MRP model-systems. Intestinal microbiota composition in fecal (adolescents) or cecal (rat) samples was assessed by qPCR analysis. Negative correlations were found in the human assay between lactobacilli numbers and dietary advanced MRP (r = -0.418 and -0.387, for hydroxymethylfurfural and carboxymethyl-lysine respectively, p microbiota composition both in humans and in rats, and the specific effects are likely to be linked to the chemical structure and dietary amounts of the different browning compounds. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Stop-Frame Filming and Discovery of Reactions at the Single-Molecule Level by Transmission Electron Microscopy

    Science.gov (United States)

    2017-01-01

    We report an approach, named chemTEM, to follow chemical transformations at the single-molecule level with the electron beam of a transmission electron microscope (TEM) applied as both a tunable source of energy and a sub-angstrom imaging probe. Deposited on graphene, disk-shaped perchlorocoronene molecules are precluded from intermolecular interactions. This allows monomolecular transformations to be studied at the single-molecule level in real time and reveals chlorine elimination and reactive aryne formation as a key initial stage of multistep reactions initiated by the 80 keV e-beam. Under the same conditions, perchlorocoronene confined within a nanotube cavity, where the molecules are situated in very close proximity to each other, enables imaging of intermolecular reactions, starting with the Diels–Alder cycloaddition of a generated aryne, followed by rearrangement of the angular adduct to a planar polyaromatic structure and the formation of a perchlorinated zigzag nanoribbon of graphene as the final product. ChemTEM enables the entire process of polycondensation, including the formation of metastable intermediates, to be captured in a one-shot “movie”. A molecule with a similar size and shape but with a different chemical composition, octathio[8]circulene, under the same conditions undergoes another type of polycondensation via thiyl biradical generation and subsequent reaction leading to polythiophene nanoribbons with irregular edges incorporating bridging sulfur atoms. Graphene or carbon nanotubes supporting the individual molecules during chemTEM studies ensure that the elastic interactions of the molecules with the e-beam are the dominant forces that initiate and drive the reactions we image. Our ab initio DFT calculations explicitly incorporating the e-beam in the theoretical model correlate with the chemTEM observations and give a mechanism for direct control not only of the type of the reaction but also of the reaction rate. Selection of the

  7. Stop-Frame Filming and Discovery of Reactions at the Single-Molecule Level by Transmission Electron Microscopy.

    Science.gov (United States)

    Chamberlain, Thomas W; Biskupek, Johannes; Skowron, Stephen T; Markevich, Alexander V; Kurasch, Simon; Reimer, Oliver; Walker, Kate E; Rance, Graham A; Feng, Xinliang; Müllen, Klaus; Turchanin, Andrey; Lebedeva, Maria A; Majouga, Alexander G; Nenajdenko, Valentin G; Kaiser, Ute; Besley, Elena; Khlobystov, Andrei N

    2017-03-28

    We report an approach, named chemTEM, to follow chemical transformations at the single-molecule level with the electron beam of a transmission electron microscope (TEM) applied as both a tunable source of energy and a sub-angstrom imaging probe. Deposited on graphene, disk-shaped perchlorocoronene molecules are precluded from intermolecular interactions. This allows monomolecular transformations to be studied at the single-molecule level in real time and reveals chlorine elimination and reactive aryne formation as a key initial stage of multistep reactions initiated by the 80 keV e-beam. Under the same conditions, perchlorocoronene confined within a nanotube cavity, where the molecules are situated in very close proximity to each other, enables imaging of intermolecular reactions, starting with the Diels-Alder cycloaddition of a generated aryne, followed by rearrangement of the angular adduct to a planar polyaromatic structure and the formation of a perchlorinated zigzag nanoribbon of graphene as the final product. ChemTEM enables the entire process of polycondensation, including the formation of metastable intermediates, to be captured in a one-shot "movie". A molecule with a similar size and shape but with a different chemical composition, octathio[8]circulene, under the same conditions undergoes another type of polycondensation via thiyl biradical generation and subsequent reaction leading to polythiophene nanoribbons with irregular edges incorporating bridging sulfur atoms. Graphene or carbon nanotubes supporting the individual molecules during chemTEM studies ensure that the elastic interactions of the molecules with the e-beam are the dominant forces that initiate and drive the reactions we image. Our ab initio DFT calculations explicitly incorporating the e-beam in the theoretical model correlate with the chemTEM observations and give a mechanism for direct control not only of the type of the reaction but also of the reaction rate. Selection of the

  8. Electrochemical Dynamics of a Single Platinum Nanoparticle Collision Event for the Hydrogen Evolution Reaction.

    Science.gov (United States)

    Xiang, Zhi-Peng; Deng, Hai-Qiang; Peljo, Pekka; Fu, Zhi-Yong; Wang, Su-Li; Mandler, Daniel; Sun, Gong-Quan; Liang, Zhen-Xing

    2018-03-19

    Chronoamperometry was used to study the dynamics of Pt nanoparticle (NP) collision with an inert ultramicroelectrode via electrocatalytic amplification (ECA) in the hydrogen evolution reaction. ECA and dynamic light scattering (DLS) results reveal that the NP colloid remains stable only at low proton concentrations (1.0 mm) under a helium (He) atmosphere, ensuring that the collision events occur at genuinely single NP level. Amperometry of single NP collisions under a He atmosphere shows that each discrete current profile of the collision event evolves from spike to staircase at more negative potentials, while a staircase response is observed at all of the applied potentials under hydrogen-containing atmospheres. The particle size distribution estimated from the diffusion-controlled current in He agrees well with electron microscopy and DLS observations. These results shed light on the interfacial dynamics of the single nanoparticle collision electrochemistry. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Analysis of reaction products formed in the gas phase reaction of E,E-2,4-hexadienal with atmospheric oxidants: Reaction mechanisms and atmospheric implications

    Science.gov (United States)

    Colmenar, I.; Martin, P.; Cabañas, B.; Salgado, S.; Martinez, E.

    2018-03-01

    An analysis of reaction products for the reaction of E,E-2,4-hexadienal with chlorine atoms (Cl) and OH and NO3 radicals has been carried out at the first time with the aim of obtaining a better understanding of the tropospheric reactivity of α,β-unsaturated carbonyl compounds. Fourier Transform Infrared (FTIR) spectroscopy and Gas Chromatography-Mass Spectrometry with a Time of Flight detector (GC-TOFMS) were used to carry out the qualitative and/or quantitative analyses. Reaction products in gas and particulate phase were observed from the reactions of E,E-2,4- hexadienal with all oxidants. E/Z-Butenedial and maleic anhydride were the main products identified in gas phase. E-butenedial calculated molar yield ranging from 4 to 10%. A significant amount of multifunctional compounds (chloro and hydroxy carbonyls) was identified. These compounds could be formed in particulate phase explaining the ∼90% of unaccounted carbon in gas phase. The reaction with Cl atoms in the presence of NOx with a long reaction time gave Peroxy Acetyl Nitrate (PAN) as an additional product, which is known for being an important specie in the generation of the photochemical smog. Nitrated compounds were the major organic products from the reaction with the NO3 radical. Based on the identified products, the reaction mechanisms have been proposed. In these mechanisms a double bond addition of the atmospheric oxidant at C4/C5 of E,E-2,4-hexadienal is the first step for tropospheric degradation.

  10. Search for anomalous Wtb couplings in single top quark production

    NARCIS (Netherlands)

    Abazov, V.M.; et al., [Unknown; de Jong, S.J.; Demarteau, M.; Houben, P.; van den Berg, P.J.

    2008-01-01

    In 0.9 fb(-1) of p(p)over-bar collisions, the D0 Collaboration presented evidence for single top quark production in events with an isolated lepton, missing transverse momentum, and two to four jets. We examine these data to study the Lorentz structure of the Wtb coupling. The standard model

  11. Extent of sensitivity of single photon production to parton distribution ...

    Indian Academy of Sciences (India)

    The single-prompt photon yield is expected to be sensitive to parton distribution function (PDF) in general and to gluon distribution in particular of the colliding hadron [2–9]. It is also considered an essential ingredient to quantify the nuclear modification of direct photon production in the relativistic nucleus–nucleus collisions ...

  12. Production of single cell proterin from brewery spent grains ...

    African Journals Online (AJOL)

    The production of single cell protein (SCP) by the propagation of the yeast, Saccharomyces cerevisae obtained from the Federal Institute of Industrial Research Oshtxli was studied by using the extract of spent grains obtained from the International Beer and Beverage Industries, Kacltuia, Nigeria as a substrate in a medium ...

  13. A single product perishing inventory model with demand interaction ...

    African Journals Online (AJOL)

    The paper describes a single perishing product inventory model in which items deteriorate in two phases and then perish. An independent demand takes place at constant rates for items in both phases. A demand for an item in Phase I not satisfied may be satisfied by an item in Phase II, based on a probability measure.

  14. Kinetics of Single-Enzyme Reactions on Vesicles: Role of Substrate Aggregation

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2015-03-01

    Enzymatic reactions occurring in vivo on lipid membranes can be influenced by various factors including macromolecular crowding in general and substrate aggregation in particular. In academic studies, the role of these factors can experimentally be clarified by tracking single-enzyme kinetics occurring on individual lipid vesicles. To extend the conceptual basis for such experiments, we analyze herein the corresponding kinetics mathematically with emphasis on the role of substrate aggregation. In general, the aggregation may occur on different length scales. Small aggregates may e.g. contain a few proteins or peptides while large aggregates may be mesoscopic as in the case of lipid domains which can be formed in the membranes composed of different lipids. We present a kinetic model describing comprehensively the effect of aggregation of the former type on the dependence of the reaction rate on substrate membrane concentration. The results obtained with physically reasonable parameters indicate that the aggregation-related deviations from the conventional Michaelis-Menten kinetics may be appreciable. Special Issue Comments: This theoretical article is focused on single-enzyme reactions occurring in parallel with substrate aggregation on individual vesicles. This subject is related to a few Special Issue articles concerning enzyme dynamics6,7 and function8 and mathematical aspects of stochastic kinetics.9

  15. Search for Single Top Quark Production at HERA

    CERN Document Server

    Aaron, F D; Alexa, C; Alimujiang, K; Andreev, V; Antunovic, B; Asmone, A; Backovic, S; Baghdasaryan, A; Barrelet, E; Bartel, W; Begzsuren, K; Belousov, A; Bizot, J C; Boudry, V; Bozovic-Jelisavcic, I; Bracinik, J; Brandt, G; Brinkmann, M; Brisson, V; Bruncko, D; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Cantun Avila, K B; Cassol-Brunner, F; Cerny, K; Cerny, V; Chekelian, V; Cholewa, A; Contreras, J G; Coughlan, J A; Cozzika, G; Cvach, J; Dainton, J B; Daum, K; Deak, M; de Boer, Y; Delcourt, B; Del Degan, M; Delvax, J; De Roeck, A; De Wolf, E A; Diaconu, C; Dodonov, V; Dossanov, A; Dubak, A; Eckerlin, G; Efremenko, V; Egli, S; Eliseev, A; Elsen, E; Falkiewicz, A; Favart, L; Fedotov, A; Felst, R; Feltesse, J; Ferencei, J; Fischer, D J; Fleischer, M; Fomenko, A; Gabathuler, E; Gayler, J; Ghazaryan, S; Glazov, A; Glushkov, I; Goerlich, L; Gogitidze, N; Gouzevitch, M; Grab, C; Greenshaw, T; Grell, B R; Grindhammer, G; Habib, S; Haidt, D; Helebrant, C; Henderson, R C W; Hennekemper, E; Henschel, H; Herbst, M; Herrera, G; Hildebrandt, M; Hiller, K H; Hoffmann, D; Horisberger, R; Hreus, T; Jacquet, M; Janssen, M E; Janssen, X; Jonsson, L; Jung, Andreas Werner; Jung, H; Kapichine, M; Katzy, J; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Kluge, T; Knutsson, A; Kogler, R; Kostka, P; Kraemer, M; Krastev, K; Kretzschmar, J; Kropivnitskaya, A; Kruger, K; Kutak, K; Landon, M P J; Lange, W; Lastovicka-Medin, G; Laycock, P; Lebedev, A; Leibenguth, G; Lendermann, V; Levonian, S; Li, G; Lipka, K; Liptaj, A; List, B; List, J; Loktionova, N; Lopez-Fernandez, R; Lubimov, V; Lytkin, L; Makankine, A; Malinovski, E; Marage, P; Marti, Ll; Martyn, H U.; Maxfield, S J; Mehta, A; Meyer, A B; Meyer, H; Meyer, H; Meyer, J; Michels, V; Mikocki, S; Milcewicz-Mika, I; Moreau, F; Morozov, A; Morris, J V; Mozer, Matthias Ulrich; Mudrinic, M; Muller, K; Murin, P; Naumann, Th; Newman, P R; Niebuhr, C; Nikiforov, A; Nowak, G; Nowak, K; Nozicka, M; Olivier, B; Olsson, J E; Osman, S; Ozerov, D; Palichik, V; Panagoulias, I; Pandurovic, M; Papadopoulou, Th; Pascaud, C; Patel, G D; Pejchal, O; Perez, E; Petrukhin, A; Picuric, I; Piec, S; Pitzl, D; Placakyte, R; Pokorny, B; Polifka, R; Povh, B; Preda, T; Radescu, V; Rahmat, A J; Raicevic, N; Raspiareza, A; Ravdandorj, T; Reimer, P; Rizvi, E; Robmann, P; Roland, B; Roosen, R; Rostovtsev, A; Rotaru, M; Ruiz Tabasco, J E; Rurikova, Z; Rusakov, S; Salek, D; Sankey, D P C; Sauter, M; Sauvan, E; Schmitt, S; Schmitz, C; Schoeffel, L; Schoning, A; Schultz-Coulon, H C; Sefkow, F; Shaw-West, R N; Shtarkov, L N; Shushkevich, S; Sloan, T; Smiljanic, Ivan; Soloviev, Y; Sopicki, P; South, D; Spaskov, V; Specka, Arnd E; Staykova, Z; Steder, M; Stella, B; Stoicea, G; Straumann, U.; Sunar, D; Sykora, T; Tchoulakov, V; Thompson, G; Thompson, P D; Toll, T; Tomasz, F; Tran, T H; Traynor, D; Trinh, T N; Truol, P; Tsakov, I; Tseepeldorj, B; Turnau, J; Urban, K; Valkarova, A; Vallee, C; Van Mechelen, P; Vargas Trevino, A; Vazdik, Y; Vinokurova, S; Volchinski, V; von den Driesch, M; Wegener, D; Wissing, Ch; Wunsch, E; Zacek, J; Zalesak, J; Zhang, Z; Zhokin, A; Zimmermann, T; Zohrabyan, H; Zomer, F; Zus, R

    2009-01-01

    A search for single top quark production is performed in the full ep data sample collected by the H1 experiment at HERA, corresponding to an integrated luminosity of 474 pb^-1. Decays of top quarks into a b quark and a W boson with subsequent leptonic or hadronic decay of the W are investigated. A multivariate analysis is performed to discriminate top quark production from Standard Model background processes. An upper limit on the top quark production cross section via flavour changing neutral current processes sigma (ep -> etX) < 0.25 pb is established at 95% CL. Limits on the anomalous coupling kappa_{tu gamma} are derived.

  16. Top pair and single top production in ATLAS

    CERN Document Server

    Fabbri, Federica; The ATLAS collaboration

    2017-01-01

    Measurements of inclusive and differential top-quark production cross sections in proton-proton collisions at a center of mass energy of 8 TeV and 13 TeV at the Large Hadron Collider using the ATLAS detector are presented. The inclusive measurements of top quark pair and single top quark production are compared to the best available theoretical calculations. Differential measurements of the kinematic properties of top quark events are also discussed. These measurements, including results using boosted top quarks, probe our understanding of top quark production up to the TeV scale.

  17. Volume production of polarization controlled single-mode VCSELs

    Science.gov (United States)

    Grabherr, Martin; King, Roger; Jäger, Roland; Wiedenmann, Dieter; Gerlach, Philipp; Duckeck, Denise; Wimmer, Christian

    2008-02-01

    Over the past 3 years laser based tracking systems for optical PC mice have outnumbered the traditional VCSEL market datacom by far. Whereas VCSEL for datacom in the 850 nm regime emit in multipe transverse modes, all laser based tracking systems demand for single-mode operation which require advanced manufacturing technology. Next generation tracking systems even require single-polarization characteristics in order to avoid unwanted movement of the pointer due to polarization flips. High volume manufacturing and optimized production methods are crucial for achieving the addressed technical and commercial targets of this consumer market. The resulting ideal laser source which emits single-mode and single-polarization at low cost is also a promising platform for further applications like tuneable diode laser absorption spectroscopy (TDLAS) or miniature atomic clocks when adapted to the according wavelengths.

  18. Gamma ray line production from cosmic ray spallation reactions

    Science.gov (United States)

    Silberberg, R.; Tsao, C. H.; Letaw, J. R.

    1985-01-01

    The gamma ray line intensities due to cosmic ray spallation reactions in clouds, the galactic disk and accreting binary pulsars are calculated. With the most favorable plausible assumptions, only a few lines may be detectable to the level of 0.0000001 per sq. cm per sec. The intensities are compared with those generated in nuclear excitation reactions.

  19. Sporicidal Effects of Iodine-oxide Thermite Reaction Products

    Science.gov (United States)

    Russell, Rod; Bless, Stephan; Blinkova, Alexandra; Chen, Tiffany; InstituteAdvanced Tehnology Collaboration; Dept of Molecular Genetics; Microbiology-UT Austin Collaboration; Chemistry; Biochemistry-UT Austin Collaboration

    2011-06-01

    Iodine pentoxide-aluminum thermite reactions have been driven by impacts at 1000 m/s on steel plates 3 mm or thicker. The activation energy of this material reaction is 197 J/g. The reactivity is increased by reducing grain size. This reaction releases iodine gas that is known to be a sporicide. In order to test the impact reactions for sporicidal effects, reactions took place in closed chambers containing dried Bacillus subtilis spores. The reduction in colony-forming units was dependent on the exposure time; long exposure times resulted in a 105 decrease in germination rate. This was shown to be due to the gas exposure and not the heat or turbulence. Sporicidal effectiveness was increased by adding neodymium and saran resin. The sporicidal effect is very dependent on exposure time, ranging from about 90% kill for times on the order of a second to 99.99% for one-hour times.

  20. Studying Chemical Reactions, One Bond at a Time, with Single Molecule AFM Techniques

    Science.gov (United States)

    Fernandez, Julio M.

    2008-03-01

    The mechanisms by which mechanical forces regulate the kinetics of a chemical reaction are unknown. In my lecture I will demonstrate how we use single molecule force-clamp spectroscopy and protein engineering to study the effect of force on the kinetics of thiol/disulfide exchange. Reduction of disulfide bond via the thiol/disulfide exchange chemical reaction is crucial in regulating protein function and is of common occurrence in mechanically stressed proteins. While reduction is thought to proceed through a substitution nucleophilic bimolecular (SN2) reaction, the role of a mechanical force in modulating this chemical reaction is unknown. We apply a constant stretching force to single engineered disulfide bonds and measure their rate of reduction by dithiothreitol (DTT). We find that while the reduction rate is linearly dependent on the concentration of DTT, it is exponentially dependent on the applied force, increasing 10-fold over a 300 pN range. This result predicts that the disulfide bond lengthens by 0.34 å at the transition state of the thiol/disulfide exchange reaction. In addition to DTT, we also study the reduction of the engineered disulfide bond by the E. coli enzyme thioredoxin (Trx). Thioredoxins are enzymes that catalyze disulfide bond reduction in all organisms. As before, we apply a mechanical force in the range of 25-450 pN to the engineered disulfide bond substrate and monitor the reduction of these bonds by individual enzymes. In sharp contrast with the data obtained with DTT, we now observe two alternative forms of the catalytic reaction, the first requiring a reorientation of the substrate disulfide bond, causing a shortening of the substrate polypeptide by 0.76±0.07 å, and the second elongating the substrate disulfide bond by 0.21±0.01 å. These results support the view that the Trx active site regulates the geometry of the participating sulfur atoms, with sub-ångström precision, in order to achieve efficient catalysis. Single molecule

  1. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule.

    Science.gov (United States)

    Zheng, Peng; Arantes, Guilherme M; Field, Martin J; Li, Hongbin

    2015-06-25

    Metalloproteins play indispensable roles in biology owing to the versatile chemical reactivity of metal centres. However, studying their reactivity in many metalloproteins is challenging, as protein three-dimensional structure encloses labile metal centres, thus limiting their access to reactants and impeding direct measurements. Here we demonstrate the use of single-molecule atomic force microscopy to induce partial unfolding to expose metal centres in metalloproteins to aqueous solution, thus allowing for studying their chemical reactivity in aqueous solution for the first time. As a proof-of-principle, we demonstrate two chemical reactions for the FeS4 centre in rubredoxin: electrophilic protonation and nucleophilic ligand substitution. Our results show that protonation and ligand substitution result in mechanical destabilization of the FeS4 centre. Quantum chemical calculations corroborated experimental results and revealed detailed reaction mechanisms. We anticipate that this novel approach will provide insights into chemical reactivity of metal centres in metalloproteins under biologically more relevant conditions.

  2. Measurement of adenosine triphosphate (ATP) content in single red blood cells using the firefly bioluminescent reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kostuk, R.K.; Muhs, A.G.; Kirkpatrick, F.H.; Gabel, C.W.

    1977-01-01

    A unique optical instrument is described which uses the firefly bioluminscent reaction to measure adenosine triphosphate (ATP) levels in single red blood cells. The method allows chemical content level to be associated with individual cell features. The optical instrument consists of a phase contrast microscope to view cells, a pulsed argon-ion laser to rupture the cell membrane, and a photon counting system to measure the bioluminescent yield. The technique has been calibrated against a standard ATP measurement using bulk analysis methods. The ATP loss mechanism for blood cells in a controlled depletion experiment was also investigated.

  3. Rapid Identification of Bioactive Carbohydrazide Reaction Products by an LC-DAD-SPE-NMR Approach

    Directory of Open Access Journals (Sweden)

    Iva Habinovec

    2015-12-01

    Full Text Available On-line coupling of high performance liquid chromatography with diode array detection to solid phase extraction combined with nuclear magnetic resonance (LC-DAD-SPE-NMR was used to monitor carbohydrazide condensation reaction progress. First, a chromatographic method was developed and optimised and individual peak separation was readily achieved by using an isocratic acetonitrile-phosphate buffer mobile phase. Subsequently, separated compounds were trapped on SPE cartridges and dried with nitrogen gas. Peak elution was then performed with deuterated acetonitrile and sent for NMR analysis. Single and multiple trapping options were applied. One- and two-dimensional NMR spectra were recorded using a Prodigy cryoprobe. It was demonstrated that LC-DAD-SPE-NMR setup was proved very useful for rapid and unambiguous identification of the reaction products and for determination of their structure. By using Prodigy cryoprobe in NMR measurements we were able to detect and identify compounds present at microgram level thus proving a high sensitivity of this methodology for monitoring reactions of bioactive molecules and drugs.

  4. Thermally reversible single-crystal to single-crystal transformation of mononuclear to dinuclear Zn(II) complexes by [2+2] cycloaddition reaction.

    Science.gov (United States)

    Medishetty, Raghavender; Yap, Terence Teck Sheng; Koh, Lip Lin; Vittal, Jagadese J

    2013-10-25

    Two Zn(II) complexes of trans-4-styrylpyridine ligands undergo [2+2] cycloaddition reaction forming Zn(II) complex dimers in a single-crystal to single-crystal (SCSC) manner which were thermally reversible. The dimers are presumed to be the stable intermediates in the formation of 1D coordination polymers upon prolonged exposure to UV light.

  5. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    International Nuclear Information System (INIS)

    Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    A successive anchoring of Ti(NMe 2 ) 4 , cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, 13 C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands. - Graphical abstract: The ligand-tailored silica supported “single site” titanium complexes were synthesized by SOMC strategy and fully characterized. Their catalytic activity were evaluated by benzaldehyde silylcyanation. - Highlights: • Single-site silica supported Ti active species was prepared by SOMC technique. • O-donor ligand tailored Ti surface species was synthesized. • The surface species was characterized by XPS, 13 C CP-MAS NMR, XANES etc. • Catalytic activity of the Ti active species in silylcyanation reaction was evaluated

  6. Search for anomalous production of single photons at $\\sqrt{s}$ = 130 and 136 GeV

    CERN Document Server

    Adam, W; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barate, R; Barbi, M S; Barbiellini, Guido; Bardin, Dimitri Yuri; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Berggren, M; Bertini, D; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Buys, A; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Djama, F; Dolbeau, J; Dönszelmann, M; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Durand, J D; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrer, A; Fichet, S; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gibbs, M; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Grosdidier, G; Grzelak, K; Gumenyuk, S A; Gunnarsson, P; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Karlsson, M; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Köne, B; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Kramer, P H; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Last, I; Laugier, J P; Lauhakangas, R; Leser, G; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Libby, J; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Merk, M; Meroni, C; Meyer, S; Meyer, W T; Myagkov, A; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Novák, M; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Petrovykh, M; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Pindo, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sahr, O; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schimmelpfennig, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Serbelloni, L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Weierstall, M; Weilhammer, Peter; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zucchelli, G C; Zumerle, G; Wiele

    1996-01-01

    This letter reports the results of the measurement of single photon production in the reaction $e^+e^- \\rightarrow \\gamma +$ invisible particles at centre-of-mass energies $\\sqrt{s}=$~130 and 136 GeV and an integrated luminosity of 5.83~pb$

  7. Reaction production + AMS: An alternative method to study low energy reactions. 26Al as a test case

    Science.gov (United States)

    Acosta, L.; Araujo-Escalona, V.; Chávez, E.; Andrade, E.; Barrón-Palos, L.; Favela, F.; Flores, M. A.; García-Ramírez, J.; Huerta, A.; de Lucio, O.; Méndez-García, C.; Ortiz, M. E.; Padilla, S.; Sánchez-Benítez, A. M.; Santa Rita, P.; Solís, C.

    2018-01-01

    Considering the importance of the 26Al nuclei in Astrophysics, in this work, preliminary results regarding a campaign of measurements related with this radioisotope production, are presented. We have taken advantage of two different facilities: first, the radio-nucleus is produced by means of irradiation of targets selected in correlation with particular reactions; once the enrichment with 26Al was made, the targets are analyzed in an AMS machine to obtain the concentration of 26Al produced during the irradiation. With this off-line method, it is possible to measure acceptable small cross sections of a selected low energy reaction. In this work, our preliminary results for three different energies of 28Si(d,α)26Al reaction cross sections are shown, as well as our first considerations to commence with measurements of 25Mg(p,γ)26Al reaction cross sections below 1 MeV.

  8. Single top quark production and properties at hadron colliders

    CERN Document Server

    Skovpen, Kirill

    2016-01-01

    The results of cross section measurements for electroweak production of top quarks in t channel, s channel, and in association with W-boson are presented from LHC and Tevatron experiments. These measurements are used to place constraints on the CKM matrix element $V_{tb}$. Top quark polarization is studied in the measurement of the top quark spin asymmetry in single top events. Anomalous structure of top quark coupling is probed.

  9. Single Boson Production Cross Section Measurements in CMS

    CERN Document Server

    INSPIRE-00571407

    2017-01-01

    Measurements of single boson production cross sections are presented. They are based on proton-proton collision data at 8 and 13 TeV recorded with the CMS detector at the LHC. Inclusive and differential cross sections with respect to various observables are measured in various phase spaces.These measurements are compared to perturbative QCD predictions and generally show good agreement with the prediction.

  10. Exploiting the tetrazine-norbornene reaction for single polymer chain collapse

    Science.gov (United States)

    Hansell, Claire F.; Lu, Annhelen; Patterson, Joseph P.; O'Reilly, Rachel K.

    2014-03-01

    Single chain polymer nanoparticles (SCNPs) have been formed using polystyrenes decorated with pendent norbornenes and a bifunctional tetrazine crosslinker. Characterisation by size exclusion chromatography and 1H NMR gives evidence for the formation of SCNPs by the tetrazine-norbornene reaction, whilst light scattering, neutron scattering, transmission electron microscopy and atomic force microscopy show that discrete well-defined nanoparticles are formed and their size in solution calculated.Single chain polymer nanoparticles (SCNPs) have been formed using polystyrenes decorated with pendent norbornenes and a bifunctional tetrazine crosslinker. Characterisation by size exclusion chromatography and 1H NMR gives evidence for the formation of SCNPs by the tetrazine-norbornene reaction, whilst light scattering, neutron scattering, transmission electron microscopy and atomic force microscopy show that discrete well-defined nanoparticles are formed and their size in solution calculated. Electronic supplementary information (ESI) available: Further synthetic detail, 1H and 13C NMR spectra, control experiments, TEM images, SANS and DLS data. See DOI: 10.1039/c3nr06706h

  11. Microfluidic Fabrication of Porous Polymer Microspheres: Dual Reactions in Single Droplets

    KAUST Repository

    Gong, Xiuqing

    2009-06-16

    We report the microfluidic fabrication of macroporous polymer microspheres via the simultaneous reactions within single droplets, induced by LTV irradiation. The aqueous phase of the reaction is the decomposition of H 2O2 to yield oxygen, whereas the organic phase is the polymerization of NO A 61, ethylene glycol dimethacrylate (EGDMA), and tri (propylene glycol) diacrylate (TPGDA) precursors. We first used a liquid polymer precursor to encapsulate a multiple number of magnetic Fe3O 4 colloidal suspension (MCS) droplets in a core-shell structure, for the purpose of studying the number of such encapsulated droplets that can be reliably controlled through the variation of flow rates. It was found that the formation of one shell with one, two, three, or more encapsulated droplets is possible. Subsequently, the H2O2 solution was encapsulated in the same way, after which we investigated its decomposition under UV irradiation, which simultaneously induces the polymerization of the encapsulating shell. Because the H2O2 decomposition leads to the release of oxygen, porous microspheres were obtained from a combined H2O2 decomposition/polymer precursor polymerization reaction. The multiplicity of the initially encapsulated H2O 2 droplets ensures the homogeneous distribution of the pores. The pores inside the micrometer-sized spheres range from several micrometers to tens of micrometers, and the maximum internal void volume fraction can attain 70%, similar to that of high polymerized high internal phase emulsion (polyHIPE). © 2009 American Chemical Society.

  12. Fully automated radiosynthesis of [18F]Fluoromisonidazole with single neutral alumina column purification: optimization of reaction parameters

    International Nuclear Information System (INIS)

    Nandy, S.K.; Rajan, M.G.R.

    2010-01-01

    1-H-1-(3-[ 18 F]fluoro-2-hydroxypropyl)-2-nitroimidazole ([ 18 F]FMISO), is the most used hypoxia-imaging agent in oncology and we have recently reported a fully automated procedure for its synthesis using the Nuclear Interface FDG module and a single neutral alumina column for purification. Using 1-(2'-nitro-1'-imidazolyl)-2-O-tetra-hydropyranyl-3-O- toluenesulfonylpropanediol (NITTP) as the precursor, we have investigated the yield of [ 18 F]FMISO using different reaction times, temperatures, and the amount of precursor. The overall yield was 48.4 ± 1.2% (n = 3), (without decay correction) obtained using 10 mg NITTP with the radio-fluorination carried out at 145 deg C for 3 min followed by acid hydrolysis for 3 min at 125 deg C in a total synthesis time of 32 ± 1 min. Increasing the precursor amount to 25 mg did not improve the overall yield under identical reaction conditions, with the decay uncorrected yield being 46.8 ± 1.6% (n = 3), but rather made the production less economical. It was also observed that the yield increased linearly with the amount of NITTP used, from 2.5 to 10 mg and plateaued from 10 to 25 mg. Radio-fluorination efficiency at four different conditions was also compared. It was also observed by radio thin layer chromatography (radio-TLC) that the duration of radio-fluorination of NITTP, not the radio-fluorination temperature favoured the formation of labeled thermally degraded product, but the single neutral alumina column purification was sufficient enough to obtain [ 18 F]FMISO devoid of any radiochemical as well as cold impurities. (author)

  13. Production of nanocrystalline metal powders via combustion reaction synthesis

    Science.gov (United States)

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.; Kim, Jin Yong

    2017-10-31

    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  14. Simulating colonic survival of probiotics in single-strain products compared to multi-strain products.

    Science.gov (United States)

    Forssten, S D; Ouwehand, A C

    2017-01-01

    Background : Probiotic formulations can be single- or multi-strain. Commercially, multi-strain preparations have been suggested to have improved functionality over single-strain cultures. Probiotics are often tested as single-strain preparations but may subsequently be commercially formulated as multi-strain products. Objective : The aim of this study was to determine what happens at the site of action, the intestine, with probiotics as single- compared to multi-strain preparations. The human gastrointestinal tract contains a broad mixture of different microbes which may affect the survival of different probiotics in different ways. Design : The current study was performed to evaluate, in an in vitro colon simulation, whether probiotics influence each other's survival when they are taken as a combination of several strains (HOWARU Restore; Lactobacillus acidophilus NCFM, Lactobacillus paracasei Lpc-37, Bifidobacterium lactis Bl-04 and B. lactis Bi-07) compared to the strains as single preparations. Results : All strains could be detected after the colon simulations and there were no substantial differences in levels of the same strain when comparing single- and multi-strain products. Conclusions : It can be concluded that probiotics do not have an antagonistic effect on each other's survival when used in a multi-strain product compared to a single-strain product, at least within a microbiota in a simulated colonic environment.

  15. Uncovering the single top: observation of electroweak top quark production

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Jorge Armando [Michigan State Univ., East Lansing, MI (United States)

    2009-01-01

    The top quark is generally produced in quark and anti-quark pairs. However, the Standard Model also predicts the production of only one top quark which is mediated by the electroweak interaction, known as 'Single Top'. Single Top quark production is important because it provides a unique and direct way to measure the CKM matrix element Vtb, and can be used to explore physics possibilities beyond the Standard Model predictions. This dissertation presents the results of the observation of Single Top using 2.3 fb-1 of Data collected with the D0 detector at the Fermilab Tevatron collider. The analysis includes the Single Top muon+jets and electron+jets final states and employs Boosted Decision Tress as a method to separate the signal from the background. The resulting Single Top cross section measurement is: (1) σ(p$\\bar{p}$→ tb + X, tqb + X) = 3.74-0.74+0.95 pb, where the errors include both statistical and systematic uncertainties. The probability to measure a cross section at this value or higher in the absence of signal is p = 1.9 x 10-6. This corresponds to a standard deviation Gaussian equivalence of 4.6. When combining this result with two other analysis methods, the resulting cross section measurement is: (2) σ(p$\\bar{p}$ → tb + X, tqb + X) = 3.94 ± 0.88 pb, and the corresponding measurement significance is 5.0 standard deviations.

  16. Identification ofListeriaSpp. Strains Isolated from Meat Products and Meat Production Plants by Multiplex Polymerase Chain Reaction.

    Science.gov (United States)

    Mazza, Roberta; Piras, Francesca; Ladu, Daniela; Putzolu, Miriam; Consolati, Simonetta Gianna; Mazzette, Rina

    2015-11-02

    Listeriosis is a foodborne disease caused by Listeria monocytogenes and is considered as a serious health problem, due to the severity of symptoms and the high mortality rate. Recently, other Listeria species have been associated with disease in human and animals. The aim of this study was to develop a multiplex polymerase chain reaction (PCR) in order to simultaneously detect six Listeria species (L. grayi , L. welshimeri , L. ivanovii , L. monocytogenes , L. seeligeri , L. innocua) in a single reaction. One hundred eighteen Listeria spp . strains, isolated from meat products (sausages) and processing plants (surfaces in contact and not in contact with meat), were included in the study. All the strains were submitted to biochemical identification using the API Listeria system. A multiplex PCR was developed with the aim to identify the six species of Listeria . PCR allowed to uniquely identify strains that had expressed a doubtful profile with API Listeria The results suggest that the multiplex PCR could represent a rapid and sensitive screening test, a reliable method for the detection of all Listeria species, both in contaminated food and in clinical samples, and also a tool that could be used for epidemiological purposes in food-borne outbreaks. A further application could be the development of a PCR that can be directly applied to the pre-enrichment broth.

  17. Kinetics and reaction engineering of levulinic acid production from aqueous glucose solutions.

    Science.gov (United States)

    Weingarten, Ronen; Cho, Joungmo; Xing, Rong; Conner, William Curtis; Huber, George W

    2012-07-01

    We have developed a kinetic model for aqueous-phase production of levulinic acid from glucose using a homogeneous acid catalyst. The proposed model shows a good fit with experimental data collected in this study in a batch reactor. The model was also fitted to steady-state data obtained in a plug flow reactor (PFR) and a continuously stirred tank reactor (CSTR). The kinetic model consists of four key steps: (1) glucose dehydration to form 5-hydroxymethylfurfural (HMF); (2) glucose reversion/degradation reactions to produce humins (highly polymerized insoluble carbonaceous species); (3) HMF rehydration to form levulinic acid and formic acid; and (4) HMF degradation to form humins. We use our model to predict the optimal reactor design and operating conditions for HMF and levulinic acid production in a continuous reactor system. Higher temperatures (180-200 °C) and shorter reaction times (less than 1 min) are essential to maximize the HMF content. In contrast, relatively low temperatures (140-160 °C) and longer residence times (above 100 min) are essential for maximum levulinic acid yield. We estimate that a maximum HMF carbon yield of 14% can be obtained in a PFR at 200 °C and a reaction time of 10 s. Levulinic acid can be produced at 57% carbon yield (68% of the theoretical yield) in a PFR at 149 °C and a residence time of 500 min. A system of two consecutive PFR reactors shows a higher performance than a PFR and CSTR combination. However, compared to a single PFR, there is no distinct advantage to implement a system of two consecutive reactors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Measurement of single top quark production with CMS

    CERN Document Server

    Andrea, Jeremy

    2018-01-01

    Several measurements of single top quark production in proton-proton collisions at the LHC at centre-of-mass energies of 7, 8 and 13 TeV, using data collected with the CMS experiment, are presented. The analyses investigate separately the productions of top via t-channel exchange, in association with a W boson (tW) or via the s-channel. Final states with at least one charged lepton and one b-jet are explored to measure inclusive production cross sections. Fiducial and differential cross section measurements in the t-channel are also reported. The measurements can be used to constrain directly the Vtb CKM matrix element by comparing with the most precise standard model theory predictions. Measurements of rare processes involving a top quark and a neutral EWK boson (Z or photon) are also discussed.

  19. Determination of 68Ga production parameters by different reactions ...

    Indian Academy of Sciences (India)

    Gallium-68 (1/2 = 68 min, + = 89%) is an important positron-emitting radionuclide for positron emission tomography and used in nuclear medicine for diagnosing tumours. This study gives a suitable reaction to produce 68Ga. Gallium-68 excitation function via 68Zn(, ) 68Ga, 68Zn(, 2) 68Ga, 70Zn(, 3) 68Ga and ...

  20. Neutral-beam species determination from nuclear reaction products

    Science.gov (United States)

    Ruby, Lawrence; Stearns, J. Warren; Pyle, Robert V.

    1986-08-01

    Recent measurements designed to measure neutral-beam species by nuclear reaction analysis are reported. The detection system and several experiments intended to improve resolution and reduce noise are described. Results obtained at the LBL neutral-beam engineering test facility are discussed and compared with the predictions of optical Doppler-shift spectroscopy.

  1. Determination of 68Ga production parameters by different reactions ...

    Indian Academy of Sciences (India)

    , P.O. Box 31485-498, Karaj, Iran ... radionuclide for positron emission tomography and used in nuclear medicine for diagnos- ing tumours. .... tion of isotope impurities is not possible by chemical methods, so this reaction is not carrier free for ...

  2. Two-pion production in photon-induced reactions

    Indian Academy of Sciences (India)

    photoproduction from nuclei is also used to investigate the in-medium modification of meson–meson interactions. ... the observation of an in-medium modification of the vector meson masses can pro- vide a unique .... similar behavior is found in (γ,π+π0) reactions, shown in the right panel of figure 3. Additionally, the peak in ...

  3. Protonation Reaction of Benzonitrile Radical Anion and Absorption of Product

    DEFF Research Database (Denmark)

    Holcman, Jerzy; Sehested, Knud

    1975-01-01

    The rate constant for the protonation of benzonitrile radical anions formed in pulse radiolysis of aqueous benzonitrile solutions is (3.5 ± 0.5)× 1010 dm3 mol–1 s–1. A new 270 nm absorption band is attributed to the protonated benzonitrile anion. The pK of the protonation reaction is determined t...

  4. Structure and Reactions of 11Be: Many-Body Basis for Single-Neutron Halo

    Science.gov (United States)

    Barranco, F.; Potel, G.; Broglia, R. A.; Vigezzi, E.

    2017-08-01

    The exotic nucleus 11Be has been extensively studied and much experimental information is available on the structure of this system. We treat, within the framework of renormalized nuclear field theory in both configuration and 3D space, the mixing of bound and continuum single-particle states through the coupling to collective vibrations of the 10Be core. We also take care of the Pauli principle acting not only between the single valence particle explicitly considered and those participating in the collective states, but also between fermions involved in two-phonon virtual states dressing the single-particle motion. In this way, it is possible to simultaneously and quantitatively account for the energies of the 1 /2+ , 1 /2- low-lying states, the centroid and line shape of the 5 /2+ resonance and the one-nucleon stripping and pickup absolute differential cross sections involving 11Be as either target or residual nucleus. Also for the dipole transition connecting the 1 /2+ and 1 /2- parity inverted levels as well as the isotopic shift of the charge radius. Theory provides a unified and exhaustive nuclear structure and reaction characterization of the many-body effects which are at the basis of this paradigmatic one-neutron halo system.

  5. Oxidation kinetics of reaction products formed in uranium metal corrosion

    International Nuclear Information System (INIS)

    Totemeier, T. C.

    1998-01-01

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O 2 and Ar-20%O 2 were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates

  6. Flow cytofluorometric analysis of enzyme reactions based on quenching of fluorescence by the final reaction product: detection of glucose-6-phosphate dehydrogenase deficiency in human erythrocytes

    NARCIS (Netherlands)

    van Noorden, C. J.; Dolbeare, F.; Aten, J. A.

    1989-01-01

    We developed a method for accurate cytofluorometric analysis of the final reaction product of enzyme reactions in individual cells. Glucose-6-phosphate dehydrogenase (G6PD) activity in human erythrocytes was demonstrated cytochemically, and the amount of final reaction product (formazan) per cell

  7. Effect of an allophanic soil on humification reactions between catechol and glycine: Spectroscopic investigations of reaction products

    Science.gov (United States)

    Fukushima, Masami; Miura, Akitaka; Sasaki, Masahide; Izumo, Kenji

    2009-01-01

    Adduction of amino acids to phenols is a possible humification reaction pathway [F.J. Stevenson, Humus Chemistry: Genesis, Composition, Reaction, second ed., Wiley, New York, 1994, pp. 188-211; M.C. Wang, P.M. Huang, Sci. Total Environ. 62 (1987) 435; M.C. Wang, P.M. Huang, Soil Sci. Soc. Am. J. 55 (1991) 1156; M.C. Wang, P.M. Huang, Geoderma 112 (2003) 31; M.C. Wang, P.M. Huang, Geoderma 124 (2005) 415]. To elucidate the reaction kinetics and products of abiotic humification, the effects of an allophanic soil on the adduction of amino acids to phenols were investigated using catechol (CT) and glycine (Gly) as a model phenol and amino acid, respectively. An aqueous solution containing CT and Gly (pH 7.0) in the presence of allophanic soil was incubated for 2 weeks, and the kinetics of the humification reactions were monitored by analysis of absorptivity at 600 nm ( E600). A mixture of CT and Gly in the absence of allophanic soil was used as a control. The E600 value increased markedly in the presence of allophanic soil. In addition, unreacted CT was detected in the control reaction mixture, but not in the allophane-containing reaction mixture. Under the sterilized conditions, absorbance at 600 nm for the control reaction mixture was significantly smaller than that for the allophanic soil-containing reaction mixture, which indicates there was no microbial participation during incubation. These results indicate that the allophanic soil effectively facilitated humification reactions between CT and Gly. The reaction mixtures were acidified and humic-like acid (HLA) was isolated as a precipitate. The elemental composition, acidic functional group contents, molecular weight, FT-IR, solid-state CP-MAS 13C NMR, and 1H NMR spectra of the purified HLAs were analyzed. The results of these analyses indicate that the nitrogen atom of Gly binds to the aromatic carbon of CT in the HLA products.

  8. Oil Reservoir Production Optimization using Single Shooting and ESDIRK Methods

    DEFF Research Database (Denmark)

    Capolei, Andrea; Völcker, Carsten; Frydendall, Jan

    2012-01-01

    the injections and oil production such that flow is uniform in a given geological structure. Even in the case of conventional water flooding, feedback based optimal control technologies may enable higher oil recovery than with conventional operational strategies. The optimal control problems that must be solved......Conventional recovery techniques enable recovery of 10-50% of the oil in an oil field. Advances in smart well technology and enhanced oil recovery techniques enable significant larger recovery. To realize this potential, feedback model-based optimal control technologies are needed to manipulate...... are large-scale problems and require specialized numerical algorithms. In this paper, we combine a single shooting optimization algorithm based on sequential quadratic programming (SQP) with explicit singly diagonally implicit Runge-Kutta (ESDIRK) integration methods and the a continuous adjoint method...

  9. A performance comparison of single product kanban control systems

    Directory of Open Access Journals (Sweden)

    Alvin Ang

    2015-01-01

    Full Text Available This paper presents a simulation experiment comparing the Single Stage, Single Product Base Stock (BS, Traditional Kanban Control System (TKCS and Extended Kanban Control System (EKCS. The results showed that BS incurs the highest cost in all scenarios; while EKCS is found to be effective only in a very niche scenario. TKCS is still a very powerful factory management system to date; and EKCS did not perform exceptionally well. The only time EKCS did outperform TKCS was during low demand arrival rates and low Backorder (Cb and Shortage costs (Cs. That is because during then, it holds no stock. The most important discovery made here is that EKCS becomes TKCS once it has base stock (or dispatched kanbans. The results have also evinced the strength of the pure kanban system, the TKCS over BS. Hence managers using BS should consider upgrading to TKCS to save cost.

  10. Utility of spectral measurements of secondary reaction products

    International Nuclear Information System (INIS)

    Heidbrink, W.E.

    1986-02-01

    The spectra of 15 MeV protons and 14 MeV neutrons produced in the burnup of 0.8 MeV 3 He ions and 1 MeV tritons through the d( 3 He,p)α and d(t,n)α fusion reactions contain information on the velocity distributions of the energetic 3 He ions and tritons. 11 refs., 2 figs

  11. Production strategies and applications of microbial single cell oils

    Directory of Open Access Journals (Sweden)

    Katrin Ochsenreither

    2016-10-01

    Full Text Available Polyunsaturated fatty acids (PUFAs of the -3 and -6 class (e.g. -linolenic acid, linoleic acid are essential for maintaining biofunctions in mammalians like humans. Due to the fact that humans cannot synthesize these essential fatty acids, they must be taken up from different food sources. Classical sources for these fatty acids are porcine liver and fish oil. However, microbial lipids or single cell oils, produced by oleaginous microorganisms such as algae, fungi and bacteria, are a promising source as well. These single cell oils can be used for many valuable chemicals with applications not only for nutrition but also for fuels and are therefore an ideal basis for a bio-based economy. A crucial point for the establishment of microbial lipids utilization is the cost-effective production and purification of fuels or products of higher value. The fermentative production can be realized by submerged (SmF or solid state fermentation (SSF. The yield and the composition of the obtained microbial lipids depend on the type of fermentation and the particular conditions (e.g. medium, pH-value, temperature, aeration, nitrogen source. From an economical point of view, waste or by-product streams can be used as cheap and renewable carbon and nitrogen sources. In general, downstream processing costs are one of the major obstacles to be solved for full economic efficiency of microbial lipids. For the extraction of lipids from microbial biomass cell disruption is most important, because efficiency of cell disruption directly influences subsequent downstream operations and overall extraction efficiencies. A multitude of cell disruption and lipid extraction methods are available, conventional as well as newly emerging methods, which will be described and discussed in terms of large scale applicability, their potential in a modern biorefinery and their influence on product quality. Furthermore, an overview is given about applications of microbial lipids

  12. Production Strategies and Applications of Microbial Single Cell Oils.

    Science.gov (United States)

    Ochsenreither, Katrin; Glück, Claudia; Stressler, Timo; Fischer, Lutz; Syldatk, Christoph

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) of the ω-3 and ω-6 class (e.g., α-linolenic acid, linoleic acid) are essential for maintaining biofunctions in mammalians like humans. Due to the fact that humans cannot synthesize these essential fatty acids, they must be taken up from different food sources. Classical sources for these fatty acids are porcine liver and fish oil. However, microbial lipids or single cell oils, produced by oleaginous microorganisms such as algae, fungi and bacteria, are a promising source as well. These single cell oils can be used for many valuable chemicals with applications not only for nutrition but also for fuels and are therefore an ideal basis for a bio-based economy. A crucial point for the establishment of microbial lipids utilization is the cost-effective production and purification of fuels or products of higher value. The fermentative production can be realized by submerged (SmF) or solid state fermentation (SSF). The yield and the composition of the obtained microbial lipids depend on the type of fermentation and the particular conditions (e.g., medium, pH-value, temperature, aeration, nitrogen source). From an economical point of view, waste or by-product streams can be used as cheap and renewable carbon and nitrogen sources. In general, downstream processing costs are one of the major obstacles to be solved for full economic efficiency of microbial lipids. For the extraction of lipids from microbial biomass cell disruption is most important, because efficiency of cell disruption directly influences subsequent downstream operations and overall extraction efficiencies. A multitude of cell disruption and lipid extraction methods are available, conventional as well as newly emerging methods, which will be described and discussed in terms of large scale applicability, their potential in a modern biorefinery and their influence on product quality. Furthermore, an overview is given about applications of microbial lipids or derived fatty

  13. Quasifree (p , 2 p ) Reactions on Oxygen Isotopes: Observation of Isospin Independence of the Reduced Single-Particle Strength

    Science.gov (United States)

    Atar, L.; Paschalis, S.; Barbieri, C.; Bertulani, C. A.; Díaz Fernández, P.; Holl, M.; Najafi, M. A.; Panin, V.; Alvarez-Pol, H.; Aumann, T.; Avdeichikov, V.; Beceiro-Novo, S.; Bemmerer, D.; Benlliure, J.; Boillos, J. M.; Boretzky, K.; Borge, M. J. G.; Caamaño, M.; Caesar, C.; Casarejos, E.; Catford, W.; Cederkall, J.; Chartier, M.; Chulkov, L.; Cortina-Gil, D.; Cravo, E.; Crespo, R.; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estrade, A.; Farinon, F.; Fraile, L. M.; Freer, M.; Galaviz Redondo, D.; Geissel, H.; Gernhäuser, R.; Golubev, P.; Göbel, K.; Hagdahl, J.; Heftrich, T.; Heil, M.; Heine, M.; Heinz, A.; Henriques, A.; Hufnagel, A.; Ignatov, A.; Johansson, H. T.; Jonson, B.; Kahlbow, J.; Kalantar-Nayestanaki, N.; Kanungo, R.; Kelic-Heil, A.; Knyazev, A.; Kröll, T.; Kurz, N.; Labiche, M.; Langer, C.; Le Bleis, T.; Lemmon, R.; Lindberg, S.; Machado, J.; Marganiec-Gałązka, J.; Movsesyan, A.; Nacher, E.; Nikolskii, E. Y.; Nilsson, T.; Nociforo, C.; Perea, A.; Petri, M.; Pietri, S.; Plag, R.; Reifarth, R.; Ribeiro, G.; Rigollet, C.; Rossi, D. M.; Röder, M.; Savran, D.; Scheit, H.; Simon, H.; Sorlin, O.; Syndikus, I.; Taylor, J. T.; Tengblad, O.; Thies, R.; Togano, Y.; Vandebrouck, M.; Velho, P.; Volkov, V.; Wagner, A.; Wamers, F.; Weick, H.; Wheldon, C.; Wilson, G. L.; Winfield, J. S.; Woods, P.; Yakorev, D.; Zhukov, M.; Zilges, A.; Zuber, K.; R3B Collaboration

    2018-01-01

    Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R3B /LAND setup with incident beam energies in the range of 300 - 450 MeV /u . The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type O A (p ,2 p )N-1A have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry.

  14. Product inhibition of enzymatic hydrolysis of cellulose: are we running the reactions all wrong?

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2012-01-01

    Enzyme catalyzed deconstruction of cellulose to glucose is an important technology step in lignocellulose-to-ethanol processing as well as in the future biorefinery based production of novel products to replace fossil oil based chemistry. The main goals of the enzymatic biomass saccharification...... include high substrate conversion (maximal yields), maximal enzyme efficiency, maximal volumetric reactor productivity, minimal equipment investment, minimal size, and short reaction time. The classic batch type STR reactions used for enzymatic cellulose hydrolysis prevent these goals to be fulfilled...

  15. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang, E-mail: gfzhang@snnu.edu.cn; Gao, Ziwei, E-mail: zwgao@snnu.edu.cn

    2015-01-15

    A successive anchoring of Ti(NMe{sub 2}){sub 4}, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, {sup 13}C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands. - Graphical abstract: The ligand-tailored silica supported “single site” titanium complexes were synthesized by SOMC strategy and fully characterized. Their catalytic activity were evaluated by benzaldehyde silylcyanation. - Highlights: • Single-site silica supported Ti active species was prepared by SOMC technique. • O-donor ligand tailored Ti surface species was synthesized. • The surface species was characterized by XPS, {sup 13}C CP-MAS NMR, XANES etc. • Catalytic activity of the Ti active species in silylcyanation reaction was evaluated.

  16. Origin of Nanobubbles Electrochemically Formed in a Magnetic Field: Ionic Vacancy Production in Electrode Reaction

    Science.gov (United States)

    Aogaki, Ryoichi; Sugiyama, Atsushi; Miura, Makoto; Oshikiri, Yoshinobu; Miura, Miki; Morimoto, Ryoichi; Takagi, Satoshi; Mogi, Iwao; Yamauchi, Yusuke

    2016-07-01

    As a process complementing conventional electrode reactions, ionic vacancy production in electrode reaction was theoretically examined; whether reaction is anodic or cathodic, based on the momentum conservation by Newton’s second law of motion, electron transfer necessarily leads to the emission of original embryo vacancies, and dielectric polarization endows to them the same electric charge as trans- ferred in the reaction. Then, the emitted embryo vacancies immediately receive the thermal relaxation of solution particles to develop steady-state vacancies. After the vacancy production, nanobubbles are created by the collision of the vacancies in a vertical magnetic field.

  17. Analysis of a Buchwald-Hartwig amination: reaction for pharmaceutical production

    DEFF Research Database (Denmark)

    Christensen, Henrik

    is to increase the understanding of the chem­ical reaction mechanisms and kinetics for the Buchwald-Hartwig amination reaction. Also, to develop methods for application of these mechanisms and kinetics to optimize and scale up an organic synthesis to an industrial phar­maceutical production. The Buchwald......The Buchwald-Hartwig amination reaction is widely used in the production of N-arylated amines in the pharmaceutical industry. The reaction is betweenan aryl halogen and a primary or secondary amine in the presence of a base and a homogeneous catalyst giving the desired N-arylated amine. Due to mild...

  18. Analysis of a Buckwald-Hartwig amination: reaction for pharmaceutical production

    DEFF Research Database (Denmark)

    Christensen, Henrik; Kiil, Søren; Dam-Johansen, Kim

    is to increase the understanding of the chem­ical reaction mechanisms and kinetics for the Buchwald-Hartwig amination reaction. Also, to develop methods for application of these mechanisms and kinetics to optimize and scale up an organic synthesis to an industrial phar­maceutical production. The Buchwald......The Buchwald-Hartwig amination reaction is widely used in the production of N-arylated amines in the pharmaceutical industry. The reaction is betweenan aryl halogen and a primary or secondary amine in the presence of a base and a homogeneous catalyst giving the desired N-arylated amine. Due to mild...

  19. Understanding the Oxygen Reduction Reaction on a Y/Pt(111) Single Crystal

    DEFF Research Database (Denmark)

    Ulrikkeholm, Elisabeth Therese; Johansson, Tobias Peter; Malacrida, Paolo

    2014-01-01

    Polymer electrolyte membrane fuel cells (PEMFC) hold promise as a zero-emission source of power, particularly suitable for automotive vehicles. However, the high loading of Pt required to catalyse the oxygen reduction reaction (ORR) at the PEMFC cathode, prevents the commercialisation of this tec......Polymer electrolyte membrane fuel cells (PEMFC) hold promise as a zero-emission source of power, particularly suitable for automotive vehicles. However, the high loading of Pt required to catalyse the oxygen reduction reaction (ORR) at the PEMFC cathode, prevents the commercialisation...... of this technology. Improving the activity of Pt by alloying it with other metals could decrease the loading of Pt. An earlier theoretical study conducted at our laboratory identified PtxY as an active and stable catalyst for oxygen reduction. Experiments conducted on sputter-cleaned polycrystalline Pt3Y confirmed...... was significantly different from our initial expectations. In order to understand this phenomenon, we investigated a Y/Pt(111) single crystal, formed by depositing large amounts of Y om Pt(111) under ultra-high vacuum (UHV) conditions and annealing to high temperatures. We subsequently characterised the surface...

  20. A detector system for studying nuclear reactions relevant to Single Event Effects

    Energy Technology Data Exchange (ETDEWEB)

    Murin, Yu. [V.G. Khlopin Radium Institute, 2nd Murinski 28, 194021 St. Petersburg (Russian Federation)]. E-mail: murin@jinr.ru; Babain, Yu. [V.G. Khlopin Radium Institute, 2nd Murinski 28, 194021 St. Petersburg (Russian Federation); Chubarov, M. [V.G. Khlopin Radium Institute, 2nd Murinski 28, 194021 St. Petersburg (Russian Federation); Tuboltsev, Yu. [V.G. Khlopin Radium Institute, 2nd Murinski 28, 194021 St. Petersburg (Russian Federation); Pljuschev, V. [V.G. Khlopin Radium Institute, 2nd Murinski 28, 194021 St. Petersburg (Russian Federation); Zubkov, M. [V.G. Khlopin Radium Institute, 2nd Murinski 28, 194021 St. Petersburg (Russian Federation); Nomokonov, P. [High Energy Laboratory, Joint Institute for Nuclear Research, 141980 Moscow Region (Russian Federation); Voronin, A. [Moscow State University, 119992 Moscow (Russian Federation); Merkin, M. [Moscow State University, 119992 Moscow (Russian Federation); Kondratiev, V. [St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Olsson, N.; Blomgren, J. [Department of Neutron Research, Uppsala University, Box 525, SE 751 20 Uppsala (Sweden); Westerberg, L. [Department of Physics, Uppsala University, Box 530, SE 751 21 Uppsala (Sweden); Ekstroem, C.; Kolozhvari, A. [The Svedberg Laboratory, Uppsala University, Box 533, SE 751 21 Uppsala (Sweden); Jaederstroem, H. [Department of Nuclear and Particle Physics, Uppsala University, Box 531, SE 751 21 Uppsala (Sweden); Jakobsson, B.; Golubev, P. [Department of Physics, Lund University, Box 118, SE 221 00 Lund (Sweden); Bargholz, Chr.; Geren, L.; Tegner, P.-E.; Zartova, I. [Department of Physics, Stockholm University, AlbaNova, SE 10691 Stockholm (Sweden); Budzanowski, A.; Czech, B.; Skwirczynska, I. [H. Niewodniczanski Institute of Nuclear Physics, PL 31 342 Cracow (Poland); Tang, H.H.K. [IBM, T.J. Watson Research Center, Yorktown Heights, NY 10598 (United States)

    2007-08-01

    We describe a device to study reactions relevant for the Single Event Effect (SEE) in microelectronics by means of 200A and 300AMeV, inverse kinematics, Si+H and Si+D reactions. The work is focused on the possibility to measure Z=2-14 projectile fragments as efficiently as possible. During commissioning and first experiments the fourth quadrant of the CELSIUS storage ring acted as a spectrometer to register fragments in two planes of Si strip detectors in the angular region 0{sup a}t -0.6{sup a}t. A combination of ring-structured and sector-structured Si strip detector planes operated at angles 0.6{sup a}t-1.1{sup a}t. For specific event tagging a Si+ phoswich scintillator wall operated in the range 3.9{sup a}t-11.7{sup a}t and Si {delta}E-E telescopes of CHICSi type operated at large angles.

  1. Reaction pathway towards formation of cobalt single chain magnets and nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, G.; Desilva, Rohini M.; Palshin, V. [Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, LA 70806 (United States); Desilva, N. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Palmer, G. [Department of Biochemistry and Cell Biology, Rice University, MS 140, 6100 Main street, Houston, TX 77251 (United States); Kumar, Challa S.S.R., E-mail: ckumar1@lsu.ed [Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, LA 70806 (United States)

    2010-03-15

    With the advent of molecular magnets the quest for suitable high density magnetic storage materials has fuelled further research in this area. Here in this report, we present a detailed mechanistic investigation of thermal decomposition of cyclopentadienyl cobalt [CoCp(CO){sub 2}] precursor where Cp is the cyclopentadienyl moiety. The reaction revealed the formation of cobalt nanoparticles (Co-NPs) through an isolable reaction intermediate characterized as a Single Chain Magnet (SCM), [Co(Cp){sub 2}]{sub 2}CoCl{sub 4} (1). The SQUID magnetic measurements showed the presence of very strong antiferromagnetic interactions between Co{sup 2+} ions. The zero-field cooled (ZFC) and field cooled (FC) magnetization curves branch out below 5 K and there is evidence for frequency dependent complex susceptibility along with a maximum observed around 2.5 K. The optical studies indicated that the Co{sup 2+} d-d transition is influenced by the polarity of the solvents. The cobalt nanoparticles (Co-NPs) were obtained, either directly from 1 or from its precursor. They are spherical in shape with a mean size 15 nm, have fcc crystal structure and were found to be ferromagnetic at room temperature.

  2. Single particle transfer reactions: what can they tell us about vibrational states

    International Nuclear Information System (INIS)

    Hering, W.R.

    1975-01-01

    The topic discussed concerns single particle transfer reactions (SPTR) which are, in general, used to study SP states. However, good SP states are rare objects in nature and people who try to look for them have often to settle with something less than ideal. Indeed the picture of a pure SP state is physically not even reasonable. It means that a nucleon is moving around a core nucleus which stays in its ground state: a process which one could call equivalent to elastic scattering of a nucleon which is not free but rather in a bound state. However it is shown that inelastic scattering is a very strong competitor to elastic scattering if the nucleus possesses states of high collectivity. Thus one would expect inelastic scattering to happen also while the nucleon is bound. This is a very intuitive picture of what is called the fragmentation of SP states. A final state psi sub(B) is populated by the transfer reaction A + a → B + b where psi sub(B) = α 1 phi 1 phi sub(A)(0) + α 2 phi 2 phi sub(A)(lambda). Hence the population of psi sub(B) automatically involves the collective state phi sub(A)(lambda). A discussion of how one can get information about phi sub(A)(lambda) out of the experimental data is given. (Auth.)

  3. Hard single diffractive jet production at D0

    International Nuclear Information System (INIS)

    Abachi, S.; Abbott, B.; Abolins, M.

    1996-08-01

    Preliminary results from the D null experiment on jet production with forward rapidity gaps in p anti p collisions are presented. A class of dijet events with a forward rapidity gap is observed at center-of-mass energies √s = 1800 GeV and 630 GeV. The number of events with rapidity gaps at both center-of-mass energies is significantly greater than the expectation from multiplicity fluctuations and is consistent with a hard single diffractive process. A small class of events with two forward gaps and central dijets is also observed at 1800 GeV. This topology is consistent with hard double pomeron exchange

  4. Single and Double Top Quark Production at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Wicke, Daniel; CDF, for the; collaborations, D0

    2010-06-01

    The CDF and D0 experiments have measured single and double top quark production in ppbar collisions at the Tevatron at a centre-of-mass energy of 1.96TeV. The applied methods are used to constrain properties of the top quark and to search for new physics. Several methods of signal to background separation and of the estimation of the background contributions are discussed. Experimental results using an integraged luminosity up to 5.3fb{sup -1} are presented.

  5. Single particle tracking-based reaction progress kinetic analysis reveals a series of molecular mechanisms of cetuximab-induced EGFR processes in a single living cell.

    Science.gov (United States)

    Kim, Do-Hyeon; Kim, Dong-Kyun; Zhou, Kai; Park, Soyeon; Kwon, Yonghoon; Jeong, Min Gyu; Lee, Nam Ki; Ryu, Sung Ho

    2017-07-01

    Cellular processes occur through the orchestration of multi-step molecular reactions. Reaction progress kinetic analysis (RPKA) can provide the mechanistic details to elucidate the multi-step molecular reactions. However, current tools have limited ability to simultaneously monitor dynamic variations in multiple complex states at the single molecule level to apply RPKA in living cells. In this research, a single particle tracking-based reaction progress kinetic analysis (sptRPKA) was developed to simultaneously determine the kinetics of multiple states of protein complexes in the membrane of a single living cell. The subpopulation ratios of different states were quantitatively (and statistically) reliably extracted from the diffusion coefficient distribution rapidly acquired by single particle tracking at constant and high density over a long period of time using super-resolution microscopy. Using sptRPKA, a series of molecular mechanisms of epidermal growth factor receptor (EGFR) cellular processing induced by cetuximab were investigated. By comprehensively measuring the rate constants and cooperativity of the molecular reactions involving four EGFR complex states, a previously unknown intermediate state was identified that represents the rate limiting step responsible for the selectivity of cetuximab-induced EGFR endocytosis to cancer cells.

  6. Electrochemistry of single nanobubbles. Estimating the critical size of bubble-forming nuclei for gas-evolving electrode reactions.

    Science.gov (United States)

    German, Sean R; Edwards, Martin A; Chen, Qianjin; Liu, Yuwen; Luo, Long; White, Henry S

    2016-12-12

    In this article, we address the fundamental question: "What is the critical size of a single cluster of gas molecules that grows and becomes a stable (or continuously growing) gas bubble during gas evolving reactions?" Electrochemical reactions that produce dissolved gas molecules are ubiquitous in electrochemical technologies, e.g., water electrolysis, photoelectrochemistry, chlorine production, corrosion, and often lead to the formation of gaseous bubbles. Herein, we demonstrate that electrochemical measurements of the dissolved gas concentration, at the instant prior to nucleation of an individual nanobubble of H 2 , N 2 , or O 2 at a Pt nanodisk electrode, can be analyzed using classical thermodynamic relationships (Henry's law and the Young-Laplace equation - including non-ideal corrections) to provide an estimate of the size of the gas bubble nucleus that grows into a stable bubble. We further demonstrate that this critical nucleus size is independent of the radius of the Pt nanodisk employed (gas. For example, the measured critical surface concentration of H 2 of ∼0.23 M at the instant of bubble formation corresponds to a critical H 2 nucleus that has a radius of ∼3.6 nm, an internal pressure of ∼350 atm, and contains ∼1700 H 2 molecules. The data are consistent with stochastic fluctuations in the density of dissolved gas, at or near the Pt/solution interface, controlling the rate of bubble nucleation. We discuss the growth of the nucleus as a diffusion-limited process and how that process is affected by proximity to an electrode producing ∼10 11 gas molecules per second. Our study demonstrates the advantages of studying a single-entity, i.e., an individual nanobubble, in understanding and quantifying complex physicochemical phenomena.

  7. Aspects of the atmospheric chemistry of alkylnaphthalenes, phenanthrene and their atmospheric reaction products

    Science.gov (United States)

    Wang, Lin

    Polycyclic aromatic hydrocarbons (PAHs) and their oxygenated and nitrated derivatives, observed in ambient atmospheres, are confirmed or suspected mutagens and animal carcinogens. They can undergo atmospheric chemical transformation processes, including photolysis and reactions with hydroxyl (OH) radicals, nitrate (NO3) radicals, Cl atoms and ozone (O3). In this work, atmospheric reactions were simulated in environmental chambers to study the atmospheric chemistry of naphthalene, alkylnaphthalenes, phenanthrene and their atmospheric reaction products, using chromatographic and spectroscopic techniques. Ambient measurements were conducted to assess the presence of atmospheric reaction products that were identified under laboratory conditions. Rate constants for the gas phase reactions of Cl atoms with naphthalene and alkylnaphthalenes were measured. The measured deuterium isotope effects and product yields indicate the reactions proceed by initial H- (or D-) atom abstraction. The products of the gas-phase reactions of OH radicals with naphthalene and alkylnaphthalenes were investigated. The major reaction products are ring-opened dicarbonyls that are 32 mass units higher in molecular weight than the parent compound, one or more ring-opened dicarbonyls of lower molecular weight resulting from loss of two beta-carbons and associated alkyl groups, and ring-containing compounds that may be epoxides. Phthalic anhydride and alkyl-substituted phthalic anhydrides were observed as second-generation products. A subsequent study investigated the photolysis and OH radical reactions of products formed from the OH radical-initiated reactions of naphthalene and alkylnaphthalenes, including phthaldialdehyde, 2-acetylbenzaldehyde and 1,2-diacetylbenzene. Environmental chamber studies have also been carried out to study the oxygenated and nitrated products from the gas-phase reactions of naphthalene and alkylnaphthalenes with NO3 radicals. Observed profiles of dimethyl

  8. Single and double polymerase chain reaction for detection of bovine viral diarrhea virus in tissue culture and sera.

    Science.gov (United States)

    Alansari, H; Brock, K V; Potgieter, L N

    1993-04-01

    Bovine viral diarrhea virus (BVDV) is an ubiquitous pathogen of cattle and has been reported in other ruminants. It is also frequently present in laboratory and biological materials as an adventitious agent. This virus is difficult to detect in some specimens, especially in the presence of specific antibody and when the virus is present in low concentrations. In this paper, we describe a single polymerase chain reaction (PCR) to amplify virus sequences from infected cell culture and a nested double PCR to detect small concentrations of several virus strains in sera. Total cellular RNA was extracted from cell cultures infected with the cytopathic strain 72 and noncytopathic strain 2724 of BVDV. Ten different genomic sequences along the length of the viral RNA ranging in size from 397 to 1,016 base pairs (bp) were successfully amplified by PCR. A 404-bp probe made from amplified product from the 3' end hybridized specifically with the RNA of several BVDV strains blotted on nylon filters. Viral RNA was extracted from serum and amplified using 2 sets of degenerate nested primers designed from the 3' end of the viral genome in a double PCR protocol. Double amplification of the viral sequences greatly enhanced the sensitivity of the detection of many strains present in serum. Advantages of using double PCR over single PCR and virus isolation is discussed.

  9. The reaction of Criegee intermediate CH2OO with water dimer: primary products and atmospheric impact.

    Science.gov (United States)

    Sheps, Leonid; Rotavera, Brandon; Eskola, Arkke J; Osborn, David L; Taatjes, Craig A; Au, Kendrew; Shallcross, Dudley E; Khan, M Anwar H; Percival, Carl J

    2017-08-23

    The rapid reaction of the smallest Criegee intermediate, CH 2 OO, with water dimers is the dominant removal mechanism for CH 2 OO in the Earth's atmosphere, but its products are not well understood. This reaction was recently suggested as a significant source of the most abundant tropospheric organic acid, formic acid (HCOOH), which is consistently underpredicted by atmospheric models. However, using time-resolved measurements of reaction kinetics by UV absorption and product analysis by photoionization mass spectrometry, we show that the primary products of this reaction are formaldehyde and hydroxymethyl hydroperoxide (HMHP), with direct HCOOH yields of less than 10%. Incorporating our results into a global chemistry-transport model further reduces HCOOH levels by 10-90%, relative to previous modeling assumptions, which indicates that the reaction CH 2 OO + water dimer by itself cannot resolve the discrepancy between the measured and predicted HCOOH levels.

  10. The effects of reactants ratios, reaction temperatures and times on Maillard reaction products of the L-ascorbic acid/L-glutamic acid system

    Directory of Open Access Journals (Sweden)

    Yong-Yan ZHOU

    2016-01-01

    Full Text Available Abstract The transformation law of the Maillard reaction products with three different reactants ratios - equimolar reactants, excess L-glutamic acid and excess L-ascorbic acid reaction respectively, five different temperatures, and different time conditions for the L-ascorbic acid / L-glutamic acid system were investigated. Results showed that, the increase of the reaction time and temperature led to the increase of the browning products, uncoloured intermediate products, as well as aroma compounds. Compared with the equimolar reaction system, the excess L-ascorbic acid reaction system produced more browning products and uncoloured intermediate products, while the aroma compounds production remained the same. In the excess L-glutamic acid system, the uncoloured intermediate products increased slightly, the browning products remained the same, while the aroma compounds increased.

  11. Reactions of 3-Formylchromone with Active Methylene and Methyl Compounds and Some Subsequent Reactions of the Resulting Condensation Products

    Directory of Open Access Journals (Sweden)

    M. Lácova

    2005-08-01

    Full Text Available This review presents a survey of the condensations of 3-formylchromone with various active methylene and methyl compounds, e.g. malonic or barbituric acid derivatives, five-membered heterocycles, etc. The utilisation of the condensation products for the synthesis of different heterocyclic systems, which is based on the ability of the γ-pyrone ring to be opened by the nucleophilic attack is also reviewed. Finally, the applications of microwave irradiation as an unconventional method of reaction activation in the synthesis of condensation products is described and the biological activity of some chromone derivatives is noted.

  12. Production of the H dibaryon via the (K-, K+) reaction on a C-12 target

    NARCIS (Netherlands)

    Shyam, R.; Scholten, O.; Thomas, A. W.

    2013-01-01

    We study the production of the stable six-quark H dibaryon via the (K-, K+) reaction on a C-12 target within a covariant effective Lagrangian model. The calculations are performed within a factorization approximation, in which the full production amplitude is written as a product of the amplitudes

  13. Process for chemical reaction of amino acids and amides yielding selective conversion products

    Science.gov (United States)

    Holladay, Jonathan E [Kennewick, WA

    2006-05-23

    The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.

  14. Advances of zeolite based membrane for hydrogen production via water gas shift reaction

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-07-01

    Hydrogen is considered as a promising energy vector which can be obtained from various renewable sources. However, an efficient hydrogen production technology is still challenging. One technology to produce hydrogen with very high capacity with low cost is through water gas shift (WGS) reaction. Water gas shift reaction is an equilibrium reaction that produces hydrogen from syngas mixture by the introduction of steam. Conventional WGS reaction employs two or more reactors in series with inter-cooling to maximize conversion for a given volume of catalyst. Membrane reactor as new technology can cope several drawbacks of conventional reactor by removing reaction product and the reaction will favour towards product formation. Zeolite has properties namely high temperature, chemical resistant, and low price makes it suitable for membrane reactor applications. Moreover, it has been employed for years as hydrogen selective layer. This review paper is focusing on the development of membrane reactor for efficient water gas shift reaction to produce high purity hydrogen and carbon dioxide. Development of membrane reactor is discussed further related to its modification towards efficient reaction and separation from WGS reaction mixture. Moreover, zeolite framework suitable for WGS membrane reactor will be discussed more deeply.

  15. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by reacting the dyes, either alone or in combination, with a vinyl alcohol/methyl methacrylate copolymer, so...

  16. Mapping Students' Conceptual Modes When Thinking about Chemical Reactions Used to Make a Desired Product

    Science.gov (United States)

    Weinrich, M. L.; Talanquer, V.

    2015-01-01

    The central goal of this qualitative research study was to uncover major implicit assumptions that students with different levels of training in the discipline apply when thinking and making decisions about chemical reactions used to make a desired product. In particular, we elicited different ways of conceptualizing why chemical reactions happen…

  17. Recent applications of intramolecular Diels-Alder reactions to natural product synthesis

    DEFF Research Database (Denmark)

    Juhl, M.; Tanner, David Ackland

    2009-01-01

    This tutorial review presents some recent examples of intramolecular Diels-Alder (IMDA) reactions as key complexity-generating steps in the total synthesis of structurally intricate natural products. The opportunities afforded by transannular (TADA) versions of the IMDA reaction in complex molecule...

  18. Direct photon production in heavy-ion reactions at SPS and RHIC

    Indian Academy of Sciences (India)

    ... direct photon production in heavy ion reactions is given. A brief survey of early direct photon limits from SPS experiments is presented. The first measurement of direct photons in heavy ion reactions from the WA98 collaboration is discussed and compared to theoretical calculations. An outlook on the perspective of photon ...

  19. Chemical methods and techniques to monitor early Maillard reaction in milk products; A review.

    Science.gov (United States)

    Aalaei, Kataneh; Rayner, Marilyn; Sjöholm, Ingegerd

    2018-01-23

    Maillard reaction is an extensively studied, yet unresolved chemical reaction that occurs as a result of application of the heat and during the storage of foods. The formation of advanced glycation end products (AGEs) has been the focus of several investigations recently. These molecules which are formed at the advanced stage of the Maillard reaction, are suspected to be involved in autoimmune diseases in humans. Therefore, understanding to which extent this reaction occurs in foods, is of vital significance. Because of their composition, milk products are ideal media for this reaction, especially when application of heat and prolonged storage are considered. Thus, in this work several chemical approaches to monitor this reaction in an early stage are reviewed. This is mostly done regarding available lysine blockage which takes place in the very beginning of the reaction. The most popular methods and their applications to various products are reviewed. The methods including their modifications are described in detail and their findings are discussed. The present paper provides an insight into the history of the most frequently-used methods and provides an overview on the indicators of the Maillard reaction in the early stage with its focus on milk products and especially milk powders.

  20. Reaction of ethane with deuterium over platinum(111) single-crystal surfaces

    International Nuclear Information System (INIS)

    Zaera, F.; Somorhai, G.A.

    1985-01-01

    Deuterium exchange and hydrogenolysis of ethane were studied over (111) platinum surfaces under atmospheric pressures and a temperature range of 475-625 K. Activation energies of 19 kcal/mol for exchange and 34 kcal/mol for hydrogenolysis were obtained. The exchange reaction rates displayed kinetic orders with respect to deuterium and ethane partial pressures of -0.55 and 1.2, respectively. The exchange production distribution was U-shaped, peaking at one and six deuterium atoms per ethane molecule, similar to results reported for other forms of platinum, e.g., supported, films, and foils. The pressure of ethylidyne moieties on the surface was inferred from low-energy electron diffraction and thermal desorption spectroscopy. A mechanism is proposed to explain the experimental results, in which ethylidyne constitutes an intermediate in one of two competitive pathways. 31 references, 9 figures, 3 tables

  1. [Vigilance for veterinary medicinal products: Reports of adverse reactions in the year 2016].

    Science.gov (United States)

    Müntener, C R; Müntener, C; Kupper, J; Naegeli, H; Gassner, B

    2017-11-01

    A total of 253 reports of adverse reactions to veterinary medicinal products were received during the year 2016 representing a decrease of 13% compared to the previous year (292 reports). The majority of the reports described reactions affecting companion animals (178 dogs and 32 cats) as well as cattle (17 reports) and horses (10 reports). Most of the reactions reported were linked to the use of antiparasitics (145 reports), hormone products (26 reports) and antiinfectives (10 reports). 32 reports were generated from consultations with Tox Info Suisse in Zürich and involved mainly the excessive intake of flavoured tablets and, in some cases, the use of reconverted products (applied to another species than that authorized). Five signals were identified from the reports, which resulted in revisions of the product information in the sections addressing contraindications or adverse reactions.

  2. Liquid composition having ammonia borane and decomposing to form hydrogen and liquid reaction product

    Science.gov (United States)

    Davis, Benjamin L; Rekken, Brian D

    2014-04-01

    Liquid compositions of ammonia borane and a suitably chosen amine borane material were prepared and subjected to conditions suitable for their thermal decomposition in a closed system that resulted in hydrogen and a liquid reaction product.

  3. Radioactive nuclide production and isomeric state branching ratios in P + W reactions to 200 mev

    International Nuclear Information System (INIS)

    Young, P.G.; Chadwick, M.B.

    1995-01-01

    Calculations of nuclide yields from spallation reactions usually assume that the products are formed in their ground states. We are performing calculations of product yields from proton reactions on tungsten isotopes that explicitly account for formation of the residual nuclei in excited states. The Hauser-Feshbach statistical/preequilibrium code GNASH, with full accounting for angular momentum conservation and electromagnetic transitions, is utilized in the calculations. We present preliminary results for isomer branching ratios for proton reactions to 200 MeV for several products including the 31-y, 16+ state in l78 Hf and the 25-d, 25/2- state in 179 Hf. Knowledge of such branching ratios, might be important for concepts such as accelerator production of tritium that utilize intermediate-energy proton reactions on tungsten

  4. Multistrange baryon production in heavy ion reactions at the SPS

    Czech Academy of Sciences Publication Activity Database

    Antinori, F.; Beusch, W.; Bloodworth, I.J.; Staroba, Pavel; Závada, Petr

    2001-01-01

    Roč. 685, - (2001), 407c-413c ISSN 0375-9474 Institutional research plan: CEZ:AV0Z1010920 Keywords : enhanced production * strange particles * phase transition * hadronic matter * Quark Gluon Plasma Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 2.074, year: 2001

  5. Vector meson production in γγ reactions

    International Nuclear Information System (INIS)

    Maor, U.

    1988-01-01

    This paper summarizes and assesses the state of knowledge on the low energy interaction of quasi- real photons (no tag) leading to the production of two vector mesons. According to the author, there is now an almost complete knowledge on the 9 possible γγ → V 1 V 2 channels

  6. Chemical alterations taken place during deep-fat frying based on certain reaction products: a review.

    Science.gov (United States)

    Zhang, Qing; Saleh, Ahmed S M; Chen, Jing; Shen, Qun

    2012-09-01

    Deep-fat frying at 180 °C or above is one of the most common food processing methods used for preparing of human kind foods worldwide. However, a serial of complex reactions such as oxidation, hydrolysis, isomerization, and polymerization take place during the deep-fat frying course and influence quality attributes of the final product such as flavor, texture, shelf life and nutrient composition. The influence of these reactions results from a number of their products including volatile compounds, hydrolysis products, oxidized triacylglycerol monomers, cyclic compounds, trans configuration compounds, polymers, sterol derivatives, nitrogen- and sulphur-containing heterocyclic compounds, acrylamide, etc. which are present in both frying oil and the fried food. In addition, these reactions are interacted and influenced by various impact factors such as frying oil type, frying conditions (time, temperature, fryer, etc.) and fried material type. Based on the published literatures, three main organic chemical reaction mechanisms namely hemolytic, heterolytic and concerted reaction were identified and supposed to elucidate the complex chemical alterations during deep-fat frying. However, well understanding the mechanisms of these reactions and their products under different conditions helps to control the deep-fat frying processing; therefore, producing healthy fried foods. By means of comprehensively consulting the papers which previously studied on the chemical changes occurred during deep-fat frying process, the major reaction products and corresponding chemical alterations were reviewed in this work. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Mathematical Modeling Applied Transesterification Reaction Product of Synthesis from Animal Fats and Vegetable Oil

    OpenAIRE

    Letícia Thaís Chendynski; Universidade Estadual de Londrina; Karina G. Angilelli; Universidade Estadual de Londrina; Bruna A. D. Ferreira; Unversidade Esadual de Londrina; Dionisio Borsato; Universidade Estadual de Londrina

    2009-01-01

    The high availability and low cost of animal fat have promoted industrial interest as a partial substitute for soybean oil for transesterification reaction product of synthesis, to reduce costs and maximize profits. This study aimed to apply experimental design for biodiesel production from a mixture of soybean oil, poultry fat, beef tallow and pork lard in order to obtain predictive equations to model the transesterification reaction yield, cloud point, pour point and oxidative stability, wi...

  8. Applications of a single-molecule detection in early disease diagnosis and enzymatic reaction study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiangwei [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Various single-molecule techniques were utilized for ultra-sensitive early diagnosis of viral DNA and antigen and basic mechanism study of enzymatic reactions. DNA of human papilloma virus (HPV) served as the screening target in a flow system. Alexa Fluor 532 (AF532) labeled single-stranded DNA probes were hybridized to the target HPV-16 DNA in solution. The individual hybridized molecules were imaged with an intensified charge-coupled device (ICCD) in two ways. In the single-color mode, target molecules were detected via fluorescence from hybridized probes only. This system could detect HPV-16 DNA in the presence of human genomic DNA down to 0.7 copy/cell and had a linear dynamic range of over 6 orders of magnitude. In the dual-color mode, fluorescence resonance energy transfer (FRET) was employed to achieve zero false-positive count. We also showed that DNA extracts from Pap test specimens did not interfere with the system. A surface-based method was used to improve the throughput of the flow system. HPV-16 DNA was hybridized to probes on a glass surface and detected with a total internal reflection fluorescence (TIRF) microscope. In the single-probe mode, the whole genome and target DNA were fluorescently labeled before hybridization, and the detection limit is similar to the flow system. In the dual-probe mode, a second probe was introduced. The linear dynamic range covers 1.44-7000 copies/cell, which is typical of early infection to near-cancer stages. The dual-probe method was tested with a crudely prepared sample. Even with reduced hybridization efficiency caused by the interference of cellular materials, we were still able to differentiate infected cells from healthy cells. Detection and quantification of viral antigen with a novel single-molecule immunosorbent assay (SMISA) was achieved. Antigen from human immunodeficiency virus type 1(HIV-1) was chosen to be the target in this study. The target was sandwiched between a monoclonal capture antibody and a

  9. Lambda-HYPERNUCLEAR PRODUCTION IN (K(stop)(-), pi) REACTIONS

    Czech Academy of Sciences Publication Activity Database

    Krejčiřík, Vojtěch; Cieplý, Aleš

    2011-01-01

    Roč. 26, 3-4 (2011), s. 663-664 ISSN 0217-751X. [11th International Workshop on Meson Production , Properties and Interaction. Krakow, 10.06.2010-15.06.2010] R&D Projects: GA ČR GA202/09/1441 Institutional research plan: CEZ:AV0Z10480505 Keywords : Hypernuclei * DWIA * chiral model Subject RIV: BE - Theoretical Physics Impact factor: 1.053, year: 2011

  10. Unusual products in the reactions of phosphorus(III) compounds ...

    Indian Academy of Sciences (India)

    Further studies are needed to substan- tiate this assertion, however. The P(III) isocyanate CH2(6-t-Bu-4-Me-C6H2O)2. P-NCO (9) reacted with DEAD/DIAD in an entirely different way resulting in the formation of the cyclic products 24a–b, presumably via betaine in a step- wise fashion (scheme 4).9 The corresponding iso-.

  11. Aromatic products from reaction of lignin model compounds with UV-alkaline peroxide

    International Nuclear Information System (INIS)

    Sun, Y.P.; Wallis, A.F.A.; Nguyen, K.L.

    1997-01-01

    A series of guaiacyl and syringyl lignin model compounds and their methylated analogues were reacted with alkaline hydrogen peroxide while irradiating with UV light at 254 nm. The aromatic products obtained were investigated by gas chromatography-mass spectrometry (GC-MS). Guaiacol, syringol and veratrol gave no detectable aromatic products. However, syringol methyl ether gave small amounts of aromatic products, resulting from ring substitution and methoxyl displacement by hydroxyl radicals. Reaction of vanillin and syringaldehyde gave the Dakin reaction products, methoxy-1,4-hydroquinones, while reaction of their methyl ethers yielded benzoic acids. Acetoguaiacone, acetosyringone and their methyl ethers afforded several hydroxylated aromatic products, but no aromatic products were identified in the reaction mixtures from guaiacylpropane and syringylpropane. In contrast, veratrylpropane gave a mixture from which 17 aromatic hydroxylated compounds were identified. It is concluded that for phenolic lignin model compounds, particularly those possessing electrondonating aromatic ring substituents, ring-cleavage reactions involving superoxide radical anions are dominant, whereas for non-phenolic lignin models, hydroxylation reactions through attack of hydroxyl radicals prevail

  12. Single-shot characterization of enzymatic reaction constants Km and kcat by an acoustic-driven, bubble-based fast micromixer.

    Science.gov (United States)

    Xie, Yuliang; Ahmed, Daniel; Lapsley, Michael Ian; Lin, Sz-Chin Steven; Nawaz, Ahmad Ahsan; Wang, Lin; Huang, Tony Jun

    2012-09-04

    In this work we present an acoustofluidic approach for rapid, single-shot characterization of enzymatic reaction constants K(m) and k(cat). The acoustofluidic design involves a bubble anchored in a horseshoe structure which can be stimulated by a piezoelectric transducer to generate vortices in the fluid. The enzyme and substrate can thus be mixed rapidly, within 100 ms, by the vortices to yield the product. Enzymatic reaction constants K(m) and k(cat) can then be obtained from the reaction rate curves for different concentrations of substrate while holding the enzyme concentration constant. We studied the enzymatic reaction for β-galactosidase and its substrate (resorufin-β-D-galactopyranoside) and found K(m) and k(cat) to be 333 ± 130 μM and 64 ± 8 s(-1), respectively, which are in agreement with published data. Our approach is valuable for studying the kinetics of high-speed enzymatic reactions and other chemical reactions.

  13. Accurate quantification of microRNA via single strand displacement reaction on DNA origami motif.

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    Full Text Available DNA origami is an emerging technology that assembles hundreds of staple strands and one single-strand DNA into certain nanopattern. It has been widely used in various fields including detection of biological molecules such as DNA, RNA and proteins. MicroRNAs (miRNAs play important roles in post-transcriptional gene repression as well as many other biological processes such as cell growth and differentiation. Alterations of miRNAs' expression contribute to many human diseases. However, it is still a challenge to quantitatively detect miRNAs by origami technology. In this study, we developed a novel approach based on streptavidin and quantum dots binding complex (STV-QDs labeled single strand displacement reaction on DNA origami to quantitatively detect the concentration of miRNAs. We illustrated a linear relationship between the concentration of an exemplary miRNA as miRNA-133 and the STV-QDs hybridization efficiency; the results demonstrated that it is an accurate nano-scale miRNA quantifier motif. In addition, both symmetrical rectangular motif and asymmetrical China-map motif were tested. With significant linearity in both motifs, our experiments suggested that DNA Origami motif with arbitrary shape can be utilized in this method. Since this DNA origami-based method we developed owns the unique advantages of simple, time-and-material-saving, potentially multi-targets testing in one motif and relatively accurate for certain impurity samples as counted directly by atomic force microscopy rather than fluorescence signal detection, it may be widely used in quantification of miRNAs.

  14. Accurate Quantification of microRNA via Single Strand Displacement Reaction on DNA Origami Motif

    Science.gov (United States)

    Lou, Jingyu; Li, Weidong; Li, Sheng; Zhu, Hongxin; Yang, Lun; Zhang, Aiping; He, Lin; Li, Can

    2013-01-01

    DNA origami is an emerging technology that assembles hundreds of staple strands and one single-strand DNA into certain nanopattern. It has been widely used in various fields including detection of biological molecules such as DNA, RNA and proteins. MicroRNAs (miRNAs) play important roles in post-transcriptional gene repression as well as many other biological processes such as cell growth and differentiation. Alterations of miRNAs' expression contribute to many human diseases. However, it is still a challenge to quantitatively detect miRNAs by origami technology. In this study, we developed a novel approach based on streptavidin and quantum dots binding complex (STV-QDs) labeled single strand displacement reaction on DNA origami to quantitatively detect the concentration of miRNAs. We illustrated a linear relationship between the concentration of an exemplary miRNA as miRNA-133 and the STV-QDs hybridization efficiency; the results demonstrated that it is an accurate nano-scale miRNA quantifier motif. In addition, both symmetrical rectangular motif and asymmetrical China-map motif were tested. With significant linearity in both motifs, our experiments suggested that DNA Origami motif with arbitrary shape can be utilized in this method. Since this DNA origami-based method we developed owns the unique advantages of simple, time-and-material-saving, potentially multi-targets testing in one motif and relatively accurate for certain impurity samples as counted directly by atomic force microscopy rather than fluorescence signal detection, it may be widely used in quantification of miRNAs. PMID:23990889

  15. arXiv Single top-quark production with SHERPA

    CERN Document Server

    Bothmann, Enrico; Schönherr, Marek

    2018-03-15

    We present results at next-to-leading order accuracy in QCD for single top-quark production in the t, s and tW channels at the lhc at a centre-of-mass energy of 8TeV, obtained with the sherpa event generator. We find them in very good agreement with measured values and quantify their theory uncertainties. Uncertainties stemming from the choice between the four- and the five-flavour scheme are found to be typically of the order of 5–10% over large ranges of phase space. We discuss the impact of parton distribution functions, and in particular of the bottom PDF. We also show how different cuts on QCD radiation patterns improve the signal-to-background ratio in realistic fiducial volumes.

  16. Ground reaction forces and knee kinetics during single and repeated badminton lunges.

    Science.gov (United States)

    Lam, Wing Kai; Ding, Rui; Qu, Yi

    2017-03-01

    Repeated movement (RM) lunge that frequently executed in badminton might be used for footwear evaluation. This study examined the influence of single movement (SM) and RM lunges on the ground reaction forces (GRFs) and knee kinetics during the braking phase of a badminton lunge step. Thirteen male university badminton players performed left-forward lunges in both SM and RM sessions. Force platform and motion capturing system were used to measure GRFs and knee kinetics variables. Paired t-test was performed to determine any significant differences between SM and RM lunges regarding mean and coefficient of variation (CV) in each variable. The kinetics results indicated that compared to SM lunges, the RM lunges had shorter contact time and generated smaller maximum loading rate of impact force, peak knee anterior-posterior force, and peak knee sagittal moment but generated larger peak horizontal resultant forces (Ps forces (Ps < 0.05). These results suggested that the RM testing protocols had a distinct loading response and adaptation pattern during lunge and that the RM protocol showed higher within-trial reliability, which may be beneficial for the knee joint loading evaluation under different interventions.

  17. A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species.

    Science.gov (United States)

    Peng, Rui; Zhao, Xiao-Qiang

    2016-02-01

    In this article, we are concerned with a nonlocal reaction-diffusion-advection model which describes the evolution of a single phytoplankton species in a eutrophic vertical water column where the species relies solely on light for its metabolism. The new feature of our modeling equation lies in that the incident light intensity and the death rate are assumed to be time periodic with a common period. We first establish a threshold type result on the global dynamics of this model in terms of the basic reproduction number R0. Then we derive various characterizations of R0 with respect to the vertical turbulent diffusion rate, the sinking or buoyant rate and the water column depth, respectively, which in turn give rather precise conditions to determine whether the phytoplankton persist or become extinct. Our theoretical results not only extend the existing ones for the time-independent case, but also reveal new interesting effects of the modeling parameters and the time-periodic heterogeneous environment on persistence and extinction of the phytoplankton species, and thereby suggest important implications for phytoplankton growth control.

  18. Single hole spectroscopic strength in 98Ru through the 99Ru(d,t) reaction

    International Nuclear Information System (INIS)

    Rodrigues, M.R.D.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L.; Barbosa, M.D.L.; Silva, G.B. da; Ukita, G.M.

    2002-01-01

    The 99 Ru(d,t) 98 Ru reaction was measured for the first time at 16 MeV incident energy with the Sao Paulo Pelletron-Enge-spectrograph facility employing the nuclear emulsion technique. In all, up to 3.5 MeV, 23 levels were detected, eight of them new; angular distributions are presented for all of them. Least squares fits of distorted wave Born approximation one-neutron pickup predictions to the rather well structured experimental angular distributions enabled the determination of l transfers and of the corresponding spectroscopic factors for 19 of these states, some being tentative attributions. Only transfers of l=0, 2, and 4 were observed. Several states were populated through single l transfers. A pure l=2 transfer is associated with the 2 1 + level and with several other states which are considered collective, as well as with the (4 + ) state at 2.277 MeV, which presents the highest spectroscopic strength. Considering five valence neutrons above the N=50 core, only 41% of the spectroscopic strength expected for 99 Ru was detected

  19. Reaction

    African Journals Online (AJOL)

    abp

    19 oct. 2017 ... Axillary block is an easy and recommended technique in children. Its use in children with acute hepatitis A is not risk free especially when associated with sedation using remifentanil and propofol. Similarly, the presence of a single hydatid cyst allows general anesthesia with mono- pulmonary ventilation.

  20. Isotope effects on product polarization and reaction mechanism in the Li + HF(v = 0, j = 0) → LiF + H reaction

    Science.gov (United States)

    Yue, Xian-Fang; Wang, Mei-Shan

    2012-09-01

    Isotope effects on product polarization and reaction mechanism in the title reaction and its isotopic variants are investigated by employing the quasiclassical trajectory method. At a collision energy of 363 meV, the calculated differential cross sections display a strongly forward scattering in the Li + HF(v = 0, j = 0) → LiF + H reaction, but both the forward and sideways scatterings in the Li + DF(v = 0, j = 0) → LiF + D and Li + TF(v = 0, j = 0) → LiF + T reactions. Analysis of trajectories propagation along the time reveals that the Li + HF and Li + DF reactions proceed predominantly by the direct reaction mechanism. This is consistent with the experimental results of Becker et al. however, the Li + TF reaction undergoes both the direct and indirect reaction mechanisms. The product polarization shows a monotonically decreasing behavior with increasing the mass of the hydrogen isotopes.

  1. Investigation of photochemical reaction products of glucose formed during direct UV detection in CE.

    Science.gov (United States)

    Schmid, Thomas; Himmelsbach, Markus; Buchberger, Wolfgang W

    2016-04-01

    In CE, saccharides are accessible to direct UV detection due to a photochemical reaction in the detection window of the separation capillary resulting in the formation of UV absorbing substances. Employing a CE method that allows long in-capillary irradiation with subsequent UV and MS detection, the present study could identify several reaction products of glucose. Among these were UV absorbing substances so far unknown to be formed during direct UV detection with the chemical formulas C4 H6 O2 , C5 H6 O4 , C5 H8 O3, and C6 H8 O5 . Investigations of the impact of the irradiation time revealed differences between these reaction products suggesting differing reaction mechanisms especially for the smallest products. More detailed information could be obtained by experiments with isotope-labeled substrates performed to determine the parts of glucose that are converted to the particular reaction products. In addition, structural formulas for the reaction products were suggested based on HPLC-MS/MS measurements of off-line irradiated glucose solutions which revealed the existence of functional groups such as carboxylic acid or aldehyde groups. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Single nanowire resistive nano-heater for highly localized thermo-chemical reactions: localized hierarchical heterojunction nanowire growth.

    Science.gov (United States)

    Yeo, Junyeob; Kim, Gunho; Hong, Sukjoon; Lee, Jinhwan; Kwon, Jinhyeong; Lee, Habeom; Park, Heeseung; Manoroktul, Wanit; Lee, Ming-Tsang; Lee, Bong Jae; Grigoropoulos, Costas P; Ko, Seung Hwan

    2014-12-29

    A single nanowire resistive nano-heater (RNH) is fabricated, and it is demonstrated that the RNH can induce highly localized temperature fields, which can trigger highly localized thermo-chemical reactions to grow hierarchical nanowires directly at the desired specific spot such as ZnO nanowire branch growth on a single Ag nanowire. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Eta and dilepton production in heavy-ion reactions

    International Nuclear Information System (INIS)

    Wolf, G.; Cassing, W.; Mosel, U.

    1992-01-01

    We present a nonperturbative dynamical study of η-meson and pion production in heavy-ion collisions from 1 to 2 GeV/A bombarding energy. The dynamical evolution of the nucleus-nucleus collision is described by a transport equation of the Boltzmann-Uehling-Uhlenbeck type. Our model evolves phase-space distribution functions for nucleons, Δ's, N(1440)'s, N(1535)'s, pions and η's with their isospin degrees of freedom. Furthermore, we show results for dilepton yields in heavy-ion collisions at bombarding energies of 1 and 2 GeV/A. All known sources of dileptons are taken into account. We investigate in particular the sensitivity of the calculated yields to predicted changes of the ρ meson in dense matter and discuss the feasibility to measure the time-like electromagnetic form factor of hadrons and their medium-dependence through the observation of dileptons. (orig.)

  4. The incidence of perioperative hypersensitivity reactions: a single-center, prospective, cohort study.

    Science.gov (United States)

    Berroa, Felicia; Lafuente, Alberto; Javaloyes, Gracia; Cabrera-Freitag, Paula; de la Borbolla, Juan M; Moncada, Rafael; Goikoetxea, Maria J; Sanz, Maria L; Ferrer, Marta; Gastaminza, Gabriel

    2015-07-01

    The incidence of perioperative hypersensitivity reactions, which can be life-threatening, ranges from 1 in 20,000 to 1 in 1361. These reactions are usually classified as IgE or non-IgE mediated. The aim of this study was to determine the incidence of allergic reactions during general anesthesia in our hospital, to establish the incidence of the allergic reactions for each drug used, to assess the frequency of IgE-mediated reactions in even mild reactions, and to compare the degree of agreement between anesthesiologist suspicion and allergy diagnosis. We included patients diagnosed with a clinical hypersensitivity reaction during a procedure under general anesthesia over a 30-month period (February 2008 to August 2010). Plasma histamine and serum tryptase concentrations were determined in these patients. We performed skin tests to diagnose the causative agent. Data from the hospital electronic prescribing system were collected to determine the ratio of reactions for each drug. During the study period, 16,946 anesthetic procedures were performed (53% involved males; mean age, 51.6 years). Forty-four perianesthetic reactions were recorded, and the ratio of reactions was 1 in 385 operations (95% confidence interval, 1/529-1/287). Twenty-five reactions (25/44; 57%) occurred during the induction of anesthesia. Twenty-one reactions (21/44; 48%) were mild, involving only skin, and 23 of 44 (52%) were anaphylactic reactions. Four of 10 patients who had only a rash experienced IgE-mediated reactions. Five surgeries (11%) were suspended because of the severity of the reactions. Fifteen reactions (15/30; 50%) were IgE mediated, and, in 2 of 30 (7%), a non-IgE agent was found (cold urticaria and nonsteroidal anti-inflammatory drug intolerance). The ratio of reactions for each drug was as follows: protamine, 1 in 468; cisatracurium, 1 in 1388; amoxicillin-clavulanate, 1 in 1968; atracurium, 1 in 2039; and dipyrone, 1 in 3159. Perioperative reactions are more common than

  5. Limonene ozonolysis in the presence of nitric oxide: Gas-phase reaction products and yields

    Science.gov (United States)

    Ham, Jason E.; Harrison, Joel C.; Jackson, Stephen R.; Wells, J. R.

    2016-05-01

    The reaction products from limonene ozonolysis were investigated using the new carbonyl derivatization agent, O-tert-butylhydroxylamine hydrochloride (TBOX). With ozone (O3) as the limiting reagent, five carbonyl compounds were detected. The yields of the carbonyl compounds are discussed with and without the presence of a hydroxyl radical (OHrad) scavenger, giving insight into the influence secondary OH radicals have on limonene ozonolysis products. The observed reaction product yields for limonaketone (LimaKet), 7-hydroxyl-6-oxo-3-(prop-1-en-2-yl)heptanal (7H6O), and 2-acetyl-5-oxohexanal (2A5O) were unchanged suggesting OHrad generated by the limonene + O3 reaction does not contribute to their formation. The molar yields of 3-isopropenyl-6-oxo-heptanal (IPOH) and 3-acetyl-6-oxoheptanal (3A6O) decreased by 68% and >95%; respectively, when OHrad was removed. This suggests that OHrad radicals significantly impact the formation of these products. Nitric oxide (NO) did not significantly affect the molar yields of limonaketone or IPOH. However, NO (20 ppb) considerably decreased the molar reaction product yields of 7H6O (62%), 2A5O (63%), and 3A6O (47%), suggesting NO reacted with peroxyl intermediates, generated during limonene ozonolysis, to form other carbonyls (not detected) or organic nitrates. These studies give insight into the transformation of limonene and its reaction products that can lead to indoor exposures.

  6. Single intermediate vector boson production in $e^{+}e^{-}$ collisions at $\\sqrt{s}$ = 183 - 209 GeV

    CERN Document Server

    Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, D; Barker, G J; Baroncelli, A; Battaglia, M; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N; Benvenuti, A C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F; Chapkin, M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L; Di Ciaccio, L; Di Simone, A; Doroba, K; Drees, J; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J; Gandelman, M; García, C; Gavillet, P; Gazis, E; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E C; Kernel, G; Kersevan, B P; Kerzel, U; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, R; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Pozdnyakov, V; Pukhaeva, N; Pullia, A; Rames, J; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Roudeau, P; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Sander, C; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sisakian, A; Smadja, G; Smirnova, O; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Remortel, N; Van Vulpen, I; Vegni, G; Veloso, F; Venus, W; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, P; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zupan, M

    2006-01-01

    The production of single charged and neutral intermediate vector bosons in e+e- collisions has been studied in the data collected by the DELPHI experiment at LEP at centre-of-mass energies between 183 and 209 GeV, corresponding to an integrated luminosity of about 640 pb^{-1}. The measured cross-sections for the reactions, determined in limited kinematic regions, are in agreement with the Standard Model predictions.

  7. Single Intermediate Vector Boson Production in $e^+ e^-$ collisions at $\\sqrt{s}$ = 183 and 189 GeV

    CERN Document Server

    Abreu, P.; Adye, T.; Adzic, P.; Ajinenko, I.; Albrecht, Z.; Alderweireld, T.; Alekseev, G.D.; Alemany, R.; Allmendinger, T.; Allport, P.P.; Almehed, S.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Anassontzis, E.G.; Andersson, P.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barao, F.; Barbiellini, G.; Barbier, R.; Bardin, Dmitri Yu.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Bellunato, T.; Belokopytov, Yu.; Benekos, N.C.; Benvenuti, A.C.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bilenky, Mikhail S.; Bloch, D.; Blom, H.M.; Bol, L.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Bosio, C.; Botner, O.; Boudinov, E.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bozovic, I.; Bozzo, M.; Bracko, M.; Branchini, P.; Brenner, R.A.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buschmann, P.; Caccia, M.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Carroll, L.; Caso, C.; Castillo Gimenez, M.V.; Cattai, A.; Cavallo, F.R.; Chapkin, M.; Charpentier, P.; Checchia, P.; Chelkov, G.A.; Chierici, R.; Chliapnikov, P.; Chochula, P.; Chorowicz, V.; Chudoba, J.; Cieslik, K.; Collins, P.; Contri, R.; Cortina, E.; Cosme, G.; Cossutti, F.; Costa, M.; Crawley, H.B.; Crennell, D.; Croix, J.; Crosetti, G.; Cuevas Maestro, J.; Czellar, S.; D'Hondt, J.; Dalmau, J.; Davenport, M.; Da Silva, W.; Della Ricca, G.; Delpierre, P.; Demaria, N.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Min, A.; De Paula, L.; Dijkstra, H.; Di Ciaccio, L.; Doroba, K.; Dracos, M.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Engel, J.P.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferrer-Ribas, E.; Ferro, F.; Firestone, A.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fontanelli, F.; Franek, B.; Frodesen, A.G.; Fruhwirth, R.; Fulda-Quenzer, F.; Fuster, J.; Galloni, A.; Gamba, D.; Gamblin, S.; Gandelman, M.; Garcia, C.; Gaspar, C.; Gaspar, M.; Gasparini, U.; Gavillet, P.; Gazis, Evangelos; Gele, D.; Geralis, T.; Ghodbane, N.; Gil Botella, Ines; Glege, F.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Gonzalez Caballero, I.; Gopal, G.; Gorn, L.; Gouz, Yu.; Gracco, V.; Grahl, J.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hahn, F.; Hahn, S.; Haider, S.; Hallgren, A.; Hamacher, K.; Hansen, J.; Harris, F.J.; Haug, S.; Hauler, F.; Hedberg, V.; Heising, S.; Hernandez, J.J.; Herquet, P.; Herr, H.; Hertz, O.; Higon, E.; Holmgren, S.O.; Holt, P.J.; Hoorelbeke, S.; Houlden, M.; Hrubec, J.; Hughes, G.J.; Hultqvist, K.; Jackson, John Neil; Jacobsson, R.; Jalocha, P.; Jarlskog, C.; Jarlskog, G.; Jarry, P.; Jean-Marie, B.; Jeans, D.; Johansson, Erik Karl; Jonsson, P.; Joram, C.; Juillot, P.; Jungermann, L.; Kapusta, Frederic; Karafasoulis, K.; Katsanevas, S.; Katsoufis, E.C.; Keranen, R.; Kernel, G.; Kersevan, B.P.; Khokhlov, Yu.A.; Khomenko, B.A.; Khovanski, N.N.; Kiiskinen, A.; King, B.; Kinvig, A.; Kjaer, N.J.; Klapp, O.; Kluit, P.; Kokkinias, P.; Kostioukhine, V.; Kourkoumelis, C.; Kouznetsov, O.; Krammer, M.; Kriznic, E.; Krumstein, Z.; Kubinec, P.; Kucharczyk, M.; Kurowska, J.; Lamsa, J.W.; Laugier, J.P.; Leder, G.; Ledroit, Fabienne; Leinonen, L.; Leisos, A.; Leitner, R.; Lenzen, G.; Lepeltier, V.; Lesiak, T.; Lethuillier, M.; Libby, J.; Liebig, W.; Liko, D.; Lipniacka, A.; Lippi, I.; Loken, J.G.; Lopes, J.H.; Lopez, J.M.; Lopez-Fernandez, R.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Mahon, J.R.; Maio, A.; Malek, A.; Maltezos, S.; Malychev, V.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Marti i Garcia, S.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Matthiae, G.; Mazzucato, F.; Mazzucato, M.; McCubbin, M.; McKay, R.; McNulty, R.; McPherson, G.; Merle, E.; Meroni, C.; Meyer, W.T.; Miagkov, A.; Migliore, E.; Mirabito, L.; Mitaroff, W.A.; Mjoernmark, U.; Moa, T.; Moch, M.; Monig, Klaus; Monge, M.R.; Montenegro, J.; Moraes, D.; Morettini, P.; Morton, G.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.M.; Murray, W.J.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.L.; Nawrocki, K.; Negri, P.; Nemecek, S.; Neufeld, N.; Nicolaidou, R.; Niezurawski, P.; Nikolenko, M.; Nomokonov, V.; Nygren, A.; Obraztsov, V.; Olshevski, A.G.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Pain, R.; Paiva, R.; Palacios, J.; Palka, H.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Pavel, T.; Pegoraro, M.; Peralta, L.; Perepelitsa, V.; Pernicka, M.; Perrotta, A.; Petridou, C.; Petrolini, A.; Phillips, H.T.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Privitera, P.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Ragazzi, S.; Rahmani, H.; Ratoff, P.N.; Read, Alexander L.; Rebecchi, P.; Redaelli, Nicola Giuseppe; Regler, M.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.B.; Resvanis, L.K.; Richard, F.; Ridky, J.; Rinaudo, G.; Ripp-Baudot, Isabelle; Romero, A.; Ronchese, P.; Rosenberg, E.I.; Rosinsky, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ruiz, A.; Saarikko, H.; Sacquin, Y.; Sadovsky, A.; Sajot, G.; Salmi, L.; Salt, J.; Sampsonidis, D.; Sannino, M.; Savoy-Navarro, A.; Schwanda, C.; Schwemling, P.; Schwering, B.; Schwickerath, U.; Scuri, Fabrizio; Seager, P.; Sedykh, Y.; Segar, A.M.; Sekulin, R.; Sette, G.; Shellard, R.C.; Siebel, M.; Simard, L.; Simonetto, F.; Sisakian, A.N.; Smadja, G.; Smirnov, N.; Smirnova, O.; Smith, G.R.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Spiriti, E.; Stanescu, C.; Stanitzki, M.; Stevenson, K.; Stocchi, A.; Strauss, J.; Strub, R.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Tabarelli, T.; Taffard, A.; Tegenfeldt, F.; Terranova, F.; Timmermans, Jan; Tinti, N.; Tkatchev, L.G.; Tobin, M.; Todorova, S.; Tome, B.; Tonazzo, A.; Tortora, L.; Tortosa, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Ullaland, O.; Uvarov, V.; Valenti, G.; Vallazza, E.; Van Dam, Piet; Van den Boeck, W.; Van Eldik, J.; Van Lysebetten, A.; Van Remortel, N.; Van Vulpen, I.; Vegni, G.; Ventura, L.; Venus, W.; Verbeure, F.; Verdier, P.; Verlato, M.; Vertogradov, L.S.; Verzi, V.; Vilanova, D.; Vitale, L.; Vlasov, E.; Vodopianov, A.S.; Voulgaris, G.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.H.; Wilkinson, G.R.; Winter, M.; Witek, M.; Wolf, G.; Yi, J.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zevgolatakos, E.; Zimine, N.I.; Zintchenko, A.; Zoller, P.; Zumerle, G.; Zupan, M.; Krammer, Manfred

    2001-01-01

    The cross-sections for the production of single charged and neutral intermediate vector bosons were measured using integrated luminosities of 52~pb$^{-1}$ and 154~pb$^{-1}$ collected by the DELPHI experiment at centre-of-mass energies of 182.6~GeV and 188.6~GeV, respectively. The cross-sections for the reactions were determined in limited kinematic regions. The results found are in agreement with the Standard Model predictions for these channels.

  8. Animal DNA identification in food products and animal feed by real time polymerase chain reaction method

    Directory of Open Access Journals (Sweden)

    Людмила Мар’янівна Іщенко

    2016-11-01

    Full Text Available Approbation of diagnostic tests for species identification of beef, pork and chicken by real time polymerase chain reaction method was done. Meat food, including heat treated and animal feed, was used for research. The fact of inconsistencies was revealed for product composition of some meat products that is marked by manufacturer 

  9. Maillard reaction products of rice protein hydrolysates with mono-, oligo- and polysaccharides

    Science.gov (United States)

    Rice protein, a byproduct of rice syrup production, is abundant but, its lack of functionality prevents its wide use as a food ingredient. Maillard reaction products of (MRPs) hydrolysates from the limited hydrolysis of rice protein (LHRP) and various mono-, oligo- and polysaccharides were evaluat...

  10. Production of 100Sn in fusion reactions via cluster emission channels

    Directory of Open Access Journals (Sweden)

    Kalandarov Sh. A.

    2015-01-01

    Full Text Available The possibilities of production of the doubly magic nucleus 100Sn in complete fusion and quasifission reactions with stable and radioactive ion beams are investigated within a dinuclear system model. The excitation functions for production of the exotic nuclei 100−103Sn via cluster emission channels are predicted for future experiments.

  11. Combining the catalytic enantioselective reaction of visible-light-generated radicals with a by-product utilization system.

    Science.gov (United States)

    Huang, Xiaoqiang; Luo, Shipeng; Burghaus, Olaf; Webster, Richard D; Harms, Klaus; Meggers, Eric

    2017-10-01

    We report an unusual reaction design in which a chiral bis-cyclometalated rhodium(iii) complex enables the stereocontrolled chemistry of photo-generated carbon-centered radicals and at the same time catalyzes an enantioselective sulfonyl radical addition to an alkene. Specifically, employing inexpensive and readily available Hantzsch esters as the photoredox mediator, Rh-coordinated prochiral radicals generated by a selective photoinduced single electron reduction are trapped by allyl sulfones in a highly stereocontrolled fashion, providing radical allylation products with up to 97% ee. The hereby formed fragmented sulfonyl radicals are utilized via an enantioselective radical addition to form chiral sulfones, which minimizes waste generation.

  12. Reaction-time-resolved measurements of laser-induced fluorescence in a shock tube with a single laser pulse

    Science.gov (United States)

    Zabeti, S.; Fikri, M.; Schulz, C.

    2017-11-01

    Shock tubes allow for the study of ultra-fast gas-phase reactions on the microsecond time scale. Because the repetition rate of the experiments is low, it is crucial to gain as much information as possible from each individual measurement. While reaction-time-resolved species concentration and temperature measurements with fast absorption methods are established, conventional laser-induced fluorescence (LIF) measurements with pulsed lasers provide data only at a single reaction time. Therefore, fluorescence methods have rarely been used in shock-tube diagnostics. In this paper, a novel experimental concept is presented that allows reaction-time-resolved LIF measurements with one single laser pulse using a test section that is equipped with several optical ports. After the passage of the shock wave, the reactive mixture is excited along the center of the tube with a 266-nm laser beam directed through a window in the end wall of the shock tube. The emitted LIF signal is collected through elongated sidewall windows and focused onto the entrance slit of an imaging spectrometer coupled to an intensified CCD camera. The one-dimensional spatial resolution of the measurement translates into a reaction-time-resolved measurement while the species information can be gained from the spectral axis of the detected two-dimensional image. Anisole pyrolysis was selected as the benchmark reaction to demonstrate the new apparatus.

  13. Hydrogen production by the high temperature combination of the water gas shift and CO{sub 2} absorption reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bretado, M.A.E.; Vigil, M.D.D.; Gutierrez, J.S.; Ortiz, A.L.; Collins-Martinez, V. [Centro de Investigacion en Materiales Avanzados, Chihuahua, Chih (Mexico). Dept. de Quimica de Materiales

    2009-01-15

    Hydrogen is an important raw material for the chemical and petroleum industry. An important research field has surfaced, dealing with the production of high purity hydrogen for power generation purposes through fuel cells. Industrial technologies for hydrogen production are based on the use of fossil fuels, with catalytic steam methane reforming being the most important process together with partial oxidation of hydrocarbons and the integrated combined coal gasification cycle. Hydrogen production through the water gas shift (WGS) reaction requires two consecutive catalytic steps followed by carbon dioxide (CO{sub 2}) separation. However, combination of the WGS reaction and CO{sub 2} capture by a solid absorbent opens the opportunity to produce high purity hydrogen in one single step called absorption enhanced WGS or AEWGS. In theory, this process would not require a catalyst. This paper presented an experimental study of AEWGS using a quartz-made fixed bed reactor. The CO{sub 2} absorbents tested in this study were calcined dolomite, (CaOMgO) and sodium zirconate (Na{sub 2}ZrO{sub 3}). The paper described the experimental study, with particular reference to the thermodynamic analysis that determined the equilibrium conditions of the systems CO/H{sub 2}O (WGS) and CO/absorbent/H{sub 2} (AEWGS); synthesis and characterization; and the fixed bed reaction system. Results were determined by X-ray diffraction, BET surface area and crystallite size, and reaction evaluation. It was concluded that at reaction conditions, dolomite can efficiently remove CO{sub 2} at partial pressures three times lower than with the use of Na{sub 2}ZrO{sub 3} as absorbent. 24 refs., 1 tab., 6 figs.

  14. Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies

    Directory of Open Access Journals (Sweden)

    Edelheit Oded

    2009-06-01

    Full Text Available Abstract Background In protein engineering, site-directed mutagenesis methods are used to generate DNA sequences with mutated codons, insertions or deletions. In a widely used method, mutations are generated by PCR using a pair of oligonucleotide primers designed with mismatching nucleotides at the center of the primers. In this method, primer-primer annealing may prevent cloning of mutant cDNAs. To circumvent this problem we developed an alternative procedure that does not use forward-reverse primer pair in the same reaction. Results In initial studies we used a double-primer PCR mutagenesis protocol, but sequencing of products showed tandem repeats of primer in cloned DNA. We developed an alternative method that starts with two Single-Primer Reactions IN Parallel using high-fidelity Pwo DNA polymerase. Thus, we call the method with the acronym SPRINP. The SPRINP reactions are then combined, denatured at 95°C, and slowly cooled, promoting random annealing of the parental DNA and the newly synthesized strands. The products are digested with DpnI that digests methylated parental strands, and then transformed into E. coli. Using this method we generated >40 mutants in cDNAs coding for human Epithelial Na+ Channel (ENaC subunits. The method has been tested for 1–3 bp codon mutation and insertion of a 27 bp epitope tag into cDNAs. Conclusion The SPRINP mutagenesis protocol yields mutants reliably and with high fidelity. The use of a single primer in each amplification reaction increases the probability of success of primers relative to previous methods employing a forward and reverse primer pair in the same reaction.

  15. Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies.

    Science.gov (United States)

    Edelheit, Oded; Hanukoglu, Aaron; Hanukoglu, Israel

    2009-06-30

    In protein engineering, site-directed mutagenesis methods are used to generate DNA sequences with mutated codons, insertions or deletions. In a widely used method, mutations are generated by PCR using a pair of oligonucleotide primers designed with mismatching nucleotides at the center of the primers. In this method, primer-primer annealing may prevent cloning of mutant cDNAs. To circumvent this problem we developed an alternative procedure that does not use forward-reverse primer pair in the same reaction. In initial studies we used a double-primer PCR mutagenesis protocol, but sequencing of products showed tandem repeats of primer in cloned DNA. We developed an alternative method that starts with two Single-Primer Reactions IN Parallel using high-fidelity Pwo DNA polymerase. Thus, we call the method with the acronym SPRINP. The SPRINP reactions are then combined, denatured at 95 degrees C, and slowly cooled, promoting random annealing of the parental DNA and the newly synthesized strands. The products are digested with DpnI that digests methylated parental strands, and then transformed into E. coli. Using this method we generated >40 mutants in cDNAs coding for human Epithelial Na+ Channel (ENaC) subunits. The method has been tested for 1-3 bp codon mutation and insertion of a 27 bp epitope tag into cDNAs. The SPRINP mutagenesis protocol yields mutants reliably and with high fidelity. The use of a single primer in each amplification reaction increases the probability of success of primers relative to previous methods employing a forward and reverse primer pair in the same reaction.

  16. The determination of neutral reaction-products in ion-molecule collisions at pressures to 1.3 mbar

    International Nuclear Information System (INIS)

    Hoffmann, P.; Bowitz, R.; Nessel, R.

    1980-01-01

    An apparatus has been designed and built up to investigate reactions of accelerated ions with a neutral gas target. It was of great importance to analyze the neutral reaction products. Such reactions and these products played a significant role in the identification of the elements 104 and 105 by ZVARA et al. Preliminary results are reported for the systems Ar + +H 2 and Kr + +CO 2 , in which neutral reaction products could be identified. (author)

  17. Three-dimensional on-chip continuous-flow polymerase chain reaction employing a single heater.

    Science.gov (United States)

    Wu, Wenming; Lee, Nae Yoon

    2011-06-01

    Multi-step temperature control in a polymerase chain reaction (PCR) is a limiting factor in device miniaturization and portability. In this study, we propose the fabrication of a three-dimensional (3D) microdevice employing a single heater to minimize temperature control required for an on-chip continuous-flow PCR as well as the overall footprint by stacking the device in multi-layers. Two poly(dimethylsiloxane) (PDMS) layers with differing thicknesses are vertically stacked with their microchannel-engraved sides facing down. Through-holes are made in the thicker PDMS layer, which is sandwiched between a glass substrate at the bottom and the thinner PDMS layer at the top. In this way, a fluidic conduit is realized in a 3D configuration. The assembled 3D microdevice is then placed onto a heater glass-side down. The interface of the two PDMS layers displays a relatively lower temperature than that of the PDMS and glass layers due to the low thermal conductivity of the PDMS and its physical distance from the heater. The denaturation temperature can be controlled by adjusting the temperature of the heater, while the annealing/extension temperature can be controlled automatically by molding the thicker bottom PDMS layer into the appropriate thickness calculated using a numerical derivation proposed in this study. In this way, a cumbersome temperature measurement step is eliminated. DNA amplification was successfully carried out using the proposed 3D fluidic microdevice, and the intensity of the resulting amplicon was comparable to that obtained using a thermal cycler. This novel concept of adopting a single heating source greatly simplifies the temperature control issue present in an on-chip continuous-flow PCR. It also allows the use of a commercialized hot plate as a potential heat source, paving the way for device miniaturization and portability in a highly cost-effective manner. In this study, a simple and facile technique to make arrays of through-holes for the

  18. Quantum Chemical Study of the Reaction of C+ with Interstellar Ice: Predictions of Vibrational and Electronic Spectra of Reaction Products

    Science.gov (United States)

    Woon, David E.

    2015-06-01

    The C+ cation (CII) is the dominant form of carbon in diffuse clouds and an important tracer for star formation in molecular clouds. We studied the low energy deposition of C+ on ice using density functional theory calculations on water clusters as large as 18 H2O. Barrierless reactions occur with water to form two dominant sets of products: HOC + H3O+ and CO- + 2H3O+. In order to provide testable predictions, we have computed both vibrational and electronic spectra for pure ice and processed ice clusters. While vibrational spectroscopy is expected to be able to discern that C+ has reacted with ice by the addition of H3O+ features not present in pure ice, it does not provided characteristic bands that would discern between HOC and CO-. On the other hand, predictions of electronic spectra suggest that low energy absorptions may occur for CO- and not HOC, making it possible to distinguish one product from the other.

  19. Optimization of {sup 67}Cu production via {sup 70}Zn(p,α) reaction using Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye Hong; Yoo, Jae Jun; Chun, Kwon Soo; An, Gwang Il; Park, Hyun; Kim, Byung Il [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Park, Sung Ho [Dept. of Neurosurgery, Ulsan University Hospital, Ulsan (Korea, Republic of)

    2014-11-15

    Copper-67(T{sub 1/2} =61.9 h,) is a radioisotope with significant potential for therapeutic application in nuclear medicine. This radionuclide emits β -particles with a maximum energy of 561.7 keV (mean E{sub β}-= 141 keV) and γ-rays of 91.266 keV (7.0 %), 93.311 keV (16.1 %) and 184.577 keV (48.7 %). These γ-rays emitted from {sup 67}Cu make it suitable for imaging the tracer distribution by single photon emission computed tomography (SPECT) and dosimetry calculations. The Monte Carlo code MCNPX was used to model the interaction of proton radiation with a zinc target for the production of {sup 67}Cu. The optimum irradiation condition of the solid target to obtain high production rate of {sup 67}Cu was investigated. Theoretical production yields were predicted for the {sup 70}Zn(p,α){sup 67}Cu reactions over a broad range of energy levels using MCNPX and SRIM codes. The results of these calculations were compared with published data for the same reactions. Reasonable agreement between the experimental and theoretical production yields was obtained. The results of the simulations confirmed that the MCNPX code is a useful and accurate tool for the prediction of medical radioisotope production and the optimization of the target design.

  20. Evaluation of canine adverse food reactions by patch testing with single proteins, single carbohydrates and commercial foods.

    Science.gov (United States)

    Johansen, Cornelia; Mariani, Claire; Mueller, Ralf S

    2017-10-01

    Adverse food reaction (AFR) is an important differential diagnosis for the pruritic dog. It is usually diagnosed by feeding an elimination diet with a novel protein and carbohydrate source for eight weeks followed by subsequent food provocation. A previous study demonstrated that patch testing dogs with foods had a high sensitivity and negative predictability for selection of elimination diet ingredients. The aim of this study was to investigate patch testing with proteins, carbohydrates and dry commercial dog food in dogs to determine whether there was value in patch testing to aid the diagnosis of canine adverse food reaction. Twenty five privately owned dogs, with confirmed AFR, underwent provocation trials with selected food antigens and patch testing. For proteins, carbohydrates and dry dog food the sensitivity of patch testing was 100%, 70% and 22.2%, respectively; the negative predictive values of patch testing were 100%, 79% and 72%. The positive predictive values of patch testing for proteins and carbohydrates were 75% and 74%, respectively. This study confirmed that patch testing may be useful for the selection of a suitable protein source for an elimination diet in dogs with suspected AFR, but not as a diagnostic tool for canine AFR. Results for proteins are more reliable than for carbohydrates and the majority of positive patch test reactions were observed with raw protein. Patch testing with commercial dog food does not seem to be useful. © 2017 ESVD and ACVD.

  1. Degradation of (14)C-labeled few layer graphene via Fenton reaction: Reaction rates, characterization of reaction products, and potential ecological effects.

    Science.gov (United States)

    Feng, Yiping; Lu, Kun; Mao, Liang; Guo, Xiangke; Gao, Shixiang; Petersen, Elijah J

    2015-11-01

    Graphene has attracted considerable commercial interest due to its numerous potential applications. It is inevitable that graphene will be released into the environment during the production and usage of graphene-enabled consumer products, but the potential transformations of graphene in the environment are not well understood. In this study, (14)C-labeled few layer graphene (FLG) enabled quantitative measurements of FLG degradation rates induced by the iron/hydrogen peroxide induced Fenton reaction. Quantification of (14)CO2 production from (14)C-labeled FLG revealed significant degradation of FLG after 3 days with high H2O2 (200 mmol L(-1)) and iron (100 μmol L(-1)) concentrations but substantially lower rates under environmentally relevant conditions (0.2-20 mmol L(-1) H2O2 and 4 μmol L(-1) Fe(3+)). Importantly, the carbon-14 labeling technique allowed for quantification of the FLG degradation rate at concentrations nearly four orders of magnitude lower than those typically used in other studies. These measurements revealed substantially faster degradation rates at lower FLG concentrations and thus studies with higher FLG concentrations may underestimate the degradation rates. Analysis of structural changes to FLG using multiple orthogonal methods revealed significant FLG oxidation and multiple reaction byproducts. Lastly, assessment of accumulation of the degraded FLG and intermediates using aquatic organism Daphnia magna revealed substantially decreased body burdens, which implied that the changes to FLG caused by the Fenton reaction may dramatically impact its potential ecological effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Production and study of new neutron rich heavy nuclei in multinucleon transfer reactions

    Directory of Open Access Journals (Sweden)

    Zagrebaev V.I.

    2013-12-01

    Full Text Available Problems of production and study of new neutron-enriched heavy nuclei are discussed. Low-energy multinucleon transfer reactions are shown to be quite appropriate for this purpose. Reactions with actinide beams and targets are of special interest for synthesis of new neutron-enriched transfermium nuclei and not-yet-known nuclei with closed neutron shell N = 126 having the largest impact on the astrophysical r-process. The estimated cross sections for the production of these nuclei look very promising for planning such experiments at currently available accelerators. These experiments, however, are rather expensive and difficult to perform because of low intensities of the massive projectile beams and problems of separating and detecting the heavy reaction products. Thus, realistic predictions of the corresponding cross sections for different projectile-target combinations are definitely required. Some uncertainty still remains in the values of several parameters used for describing the low-energy nuclear dynamics. This uncertainty does not allow one to perform very accurate predictions for the productions of new heavier-than-target (trans-target nuclei in multinucle on transfer reactions. Nevertheless these predictions are rather promising (large cross sections to start such experiments at available accelerators if the problem of separation of heavy transfer reaction products would be solved.

  3. Reaction of zearalenone and α-zearalenol with allyl isothiocyanate, characterization of reaction products, their bioaccessibility and bioavailability in vitro.

    Science.gov (United States)

    Bordin, K; Saladino, F; Fernández-Blanco, C; Ruiz, M J; Mañes, J; Fernández-Franzón, M; Meca, G; Luciano, F B

    2017-02-15

    This study investigates the reduction of zearalenone (ZEA) and α-zearalenol (α-ZOL) on a solution model using allyl isothiocyanate (AITC) and also determines the bioaccessibility and bioavailability of the reaction products isolated and identified by MS-LIT. Mycotoxin reductions were dose-dependent, and ZEA levels decreased more than α-ZOL, ranging from 0.2 to 96.9% and 0 to 89.5% respectively, with no difference (p⩽0.05) between pH 4 and 7. Overall, simulated gastric bioaccessibility was higher than duodenal bioaccessibility for both mycotoxins and mycotoxin-AITC conjugates, with duodenal fractions representing ⩾63.5% of the original concentration. Simulated bioavailability of reaction products (α-ZOL/ZEA-AITC) were lower than 42.13%, but significantly higher than the original mycotoxins. The cytotoxicity of α-ZOL and ZEA in Caco-2/TC7 cells was also evaluated, with toxic effects observed at higher levels than 75μM. Further studies should be performed to evaluate the toxicity and estrogenic effect of α-ZOL/ZEA-AITC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Production of specific structured lipids by enzymatic interesterification: optimization of the reaction by response surface design

    DEFF Research Database (Denmark)

    Xu, Xuebing; Skands, Anja Rebecca Havegaard; Adler-Nissen, Jens

    1998-01-01

    Rapeseed oil and capric acid were interesterified in solvent-free media catalyzed by Lipozyme IM (Rhizomucor miehei) to produce specific-structured lipids (SSLs). The process was optimized by response surface design concerning the effects of acyl migration and the by-products of diacylglycerols...... (DAGs). A five-factor response surface design was used to evaluate the influences of five major factors and their relationships. The five factors were water content (Wc, wt% based on enzyme used), reaction temperature (Te,°C), enzyme load (El, wt% based on substrates), reaction time (Tr, hour....... Thus we conclude that the quadratic response models adequately expressed the reaction. Based on the models, the reaction was optimized for the maximum net incorporation and minimum DAG content. The reaction and the control of water content or water activity (Aw) was also discussed....

  5. Bioactive Properties of Maillard Reaction Products Generated From Food Protein-derived Peptides.

    Science.gov (United States)

    Arihara, K; Zhou, L; Ohata, M

    Food protein-derived peptides are promising food ingredients for developing functional foods, since various bioactive peptides are released from food proteins. The Maillard reaction, which plays an important role in most processed foods, generates various chemical components during processing. Although changes of amino acids or proteins and reduced sugars by the Maillard reaction have been studied extensively, such changes of peptides by the Maillard reaction are still not resolved enough. Since food protein-derived peptides are widely utilized in many processed foods, it deserves concern and research on the changes of peptides by the Maillard reaction in foods during processing or storage. This chapter initially overviewed food protein-derived bioactive peptides. Then, Maillard reaction products generated from peptides are discussed. We focused particularly on their bioactivities. © 2017 Elsevier Inc. All rights reserved.

  6. Production of specific structured lipids by enzymatic interesterification: optimization of the reaction by response surface design

    DEFF Research Database (Denmark)

    Xu, Xuebing; Skands, Anja Rebecca Havegaard; Adler-Nissen, Jens

    1998-01-01

    (DAGs). A five-factor response surface design was used to evaluate the influences of five major factors and their relationships. The five factors were water content (Wc, wt% based on enzyme used), reaction temperature (Te,°C), enzyme load (El, wt% based on substrates), reaction time (Tr, hour....... Thus we conclude that the quadratic response models adequately expressed the reaction. Based on the models, the reaction was optimized for the maximum net incorporation and minimum DAG content. The reaction and the control of water content or water activity (Aw) was also discussed.......Rapeseed oil and capric acid were interesterified in solvent-free media catalyzed by Lipozyme IM (Rhizomucor miehei) to produce specific-structured lipids (SSLs). The process was optimized by response surface design concerning the effects of acyl migration and the by-products of diacylglycerols...

  7. Optimization of the production of ethyl esters by ultrasound assisted reaction of soybean oil and ethanol

    OpenAIRE

    Rodrigues,S.; Mazzone,L. C. A.; Santos,F. F. P.; Cruz,M. G. A.; Fernandes,F. A. N.

    2009-01-01

    Biodiesel is a renewable liquid fuel that can be produced by a transesterification reaction between a vegetable oil and an alcohol. This paper evaluates and optimizes the production of ethyl esters (biodiesel) from soybean oil and ethanol. The reaction was carried out by applying ultrasound under atmospheric pressure and ambient temperature. Response surface methodology was used to evaluate the influence of alcohol to oil molar ratio and catalyst concentration on the yield of conversion of so...

  8. Reactions of the CN radical with benzene and toluene: product detection and low-temperature kinetics.

    Science.gov (United States)

    Trevitt, Adam J; Goulay, Fabien; Taatjes, Craig A; Osborn, David L; Leone, Stephen R

    2010-02-04

    Low-temperature rate coefficients are measured for the CN + benzene and CN + toluene reactions using the pulsed Laval nozzle expansion technique coupled with laser-induced fluorescence detection. The CN + benzene reaction rate coefficient at 105, 165, and 295 K is found to be relatively constant over this temperature range, (3.9-4.9) x 10(-10) cm(3) molecule(-1) s(-1). These rapid kinetics, along with the observed negligible temperature dependence, are consistent with a barrierless reaction entrance channel and reaction efficiencies approaching unity. The CN + toluene reaction is measured to have a rate coefficient of 1.3 x 10(-10) cm(3) molecule(-1) s(-1) at 105 K. At room temperature, nonexponential decay profiles are observed for this reaction that may suggest significant back-dissociation of intermediate complexes. In separate experiments, the products of these reactions are probed at room temperature using synchrotron VUV photoionization mass spectrometry. For CN + benzene, cyanobenzene (C(6)H(5)CN) is the only product recorded with no detectable evidence for a C(6)H(5) + HCN product channel. In the case of CN + toluene, cyanotoluene (NCC(6)H(4)CH(3)) constitutes the only detected product. It is not possible to differentiate among the ortho, meta, and para isomers of cyanotoluene because of their similar ionization energies and the approximately 40 meV photon energy resolution of the experiment. There is no significant detection of benzyl radicals (C(6)H(5)CH(2)) that would suggest a H-abstraction or a HCN elimination channel is prominent at these conditions. As both reactions are measured to be rapid at 105 K, appearing to have barrierless entrance channels, it follows that they will proceed efficiently at the temperatures of Saturn's moon Titan ( approximately 100 K) and are also likely to proceed at the temperature of interstellar clouds (10-20 K).

  9. Few-Body Reactions in Nuclear Astrophysics: application to 6He and 9Be production

    OpenAIRE

    Jensen A.S.; Fedorov D.V.; Garrido E.; de Diego R.

    2010-01-01

    In this work we obtain the astrophysical reaction and production rates for the two-particle radiative capture processes α + n + n → 6He + γ and α + α + n → 9Be + γ. The hyperspherical adiabatic expansion method is used. The four-body recombination reactions α + α + n + n → 6He + α, α + n + n + n → 6He + n, α + α + n + n → 9Be + n and α + α + α + n → 9Be + α are also investigated.

  10. Attempt to confirm superheavy element production in the 48Ca +238U reaction

    Energy Technology Data Exchange (ETDEWEB)

    Gregorich, K.E.; Loveland, W.; Peterson, D.; Zielinski, P.M.; Nelson, S.L.; Chung, Y.H.; Dullmann, Ch.E.; Folden III, C.M.; Aleklett,K.; Eichler, R.; Hoffman D.C.; Omtvedt, J.P.; Pang, G.K.; Schwantes,J.M.; Soverna, S.; Sprunger, P.; Sudowe, R.; Wilson, R.E.; Nitsche, H.

    2005-03-24

    An attempt to confirm production of superheavy elements in the reaction of 48Ca beams with actinide targets has been performed using the 238U(48Ca,3n)283112 reaction. Two 48Ca projectile energies were used, that spanned the energy range where the largest cross sections have been reported for this reaction. No spontaneous fission events were observed. No alpha decay chains consistent with either reported or theoretically predicted element 112 decay properties were observed. The cross section limits reached are significantly smaller than the recently reported cross sections.

  11. Study of reactions for the production of uranium titrafluoride and uranium hexafluoride

    International Nuclear Information System (INIS)

    Guzella, M.F.R.

    1985-01-01

    The main production processes of uranium hexafluoride in pilot plants and industrial facilities are described. The known reactions confirmed in laboratory experiments that lead to Uf 6 or other intermediate fluorides are discussed. For the purpose of determining a thermodinamically feasible reaction involving the sulfur hexafluoride as fluorinating agent, a mock-up facility was designed and constructed as a part of the R and D work planned at the CDTN (Nuclebras Center for Nuclear Technology Development). IN the uranium tatrafluoride synthesis employing U 3 O 8 and SF 6 several experimental parameters are studied. The reaction time, gasflow, temperature and stoechiometic relations among reagents are described in detail. (Author) [pt

  12. Comprehensive characterisation of products from cobalt catalysed Fischer-Tropsch reaction

    Energy Technology Data Exchange (ETDEWEB)

    Marion, M.C.; Bertoncini, F.; Hugues, F.; Forestiere, A. [IFP, Vernaison (France)

    2006-07-01

    Fischer-Tropsch reaction synthesis has been studied in presence of supported cobalt catalysts. The experimental work has been performed by using a slurry pilot plant. All the gaseous and liquid products, including by-products recovered in the water phase produced, have been analysed in order to determine the whole products distribution and the catalyst selectivity. Apart from paraffin which are the main products obtained via cobalt-catalyzed Fischer-Tropsch synthesis, olefins and oxygenates by-products present also their own distribution. These detailed data are available thanks to new dedicated analytical methods developed in IFP laboratories. (orig.)

  13. Toxicological analysis of limonene reaction products using an in vitro exposure system

    Science.gov (United States)

    Anderson, Stacey E.; Khurshid, Shahana S.; Meade, B. Jean; Lukomska, Ewa; Wells, J.R.

    2015-01-01

    Epidemiological investigations suggest a link between exposure to indoor air chemicals and adverse health effects. Consumer products contain reactive chemicals which can form secondary pollutants which may contribute to these effects. The reaction of limonene and ozone is a well characterized example of this type of indoor air chemistry. The studies described here characterize an in vitro model using an epithelial cell line (A549) or differentiated epithelial tissue (MucilAir™). The model is used to investigate adverse effects following exposure to combinations of limonene and ozone. In A549 cells, exposure to both the parent compounds and reaction products resulted in alterations in inflammatory cytokine production. A one hour exposure to limonene + ozone resulted in decreased proliferation when compared to cells exposed to limonene alone. Repeated dose exposures of limonene or limonene + ozone were conducted on MucilAir™ tissue. No change in proliferation was observed but increases in cytokine production were observed for both the parent compounds and reaction products. Factors such as exposure duration, chemical concentration, and sampling time point were identified to influence result outcome. These findings suggest that exposure to reaction products may produce more severe effects compared to the parent compound. PMID:23220291

  14. [Vigilance for veterinary medicinal products: Reports of adverse reactions in the year 2015].

    Science.gov (United States)

    Müntener, C; Kupper, J; Naegeli, H; Gassner, B

    2016-11-01

    A total of 292 adverse reactions to veterinary medicinal products were reported during the year 2015. This represents an increase of 9% compared to the previous year (268 reports). Similar to previous years, most of the reactions reported were linked to the use of antiparasitics (55.1%), non-steroidal anti-inflammatory products (8.9%) or antiinfectives (9.3%). The affected animal species were primarily dogs (198 reports) and cats (42 reports), followed by cattle (31 reports) and horses (8 reports). Additional 42 reports were provided within the frame of consultations with Tox Info Suisse in Zürich and involved mainly the excessive intake of flavored tablets. Eight signals were identified from the reports received or the periodic safety update reports. They resulted in revisions of the product information in sections addressing contraindications, adverse reactions or withdrawal times.

  15. Fast and quantitative differentiation of single-base mismatched DNA by initial reaction rate of catalytic hairpin assembly.

    Science.gov (United States)

    Li, Chenxi; Li, Yixin; Xu, Xiao; Wang, Xinyi; Chen, Yang; Yang, Xiaoda; Liu, Feng; Li, Na

    2014-10-15

    The widely used catalytic hairpin assembly (CHA) amplification strategy generally needs several hours to accomplish one measurement based on the prevailingly used maximum intensity detection mode, making it less practical for assays where high throughput or speed is desired. To make the best use of the kinetic specificity of toehold domain for circuit reaction initiation, we developed a mathematical model and proposed an initial reaction rate detection mode to quantitatively differentiate the single-base mismatch. Using the kinetic mode, assay time can be reduced substantially to 10 min for one measurement with the comparable sensitivity and single-base mismatch differentiating ability as were obtained by the maximum intensity detection mode. This initial reaction rate based approach not only provided a fast and quantitative differentiation of single-base mismatch, but also helped in-depth understanding of the CHA system, which will be beneficial to the design of highly sensitive and specific toehold-mediated hybridization reactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Quasiclassical trajectory study of the Cl +CH4 reaction dynamics on a quadratic configuration interaction with single and double excitation interpolated potential energy surface

    Science.gov (United States)

    Castillo, J. F.; Aoiz, F. J.; Bañares, L.

    2006-09-01

    An ab initio interpolated potential energy surface (PES) for the Cl +CH4 reactive system has been constructed using the interpolation method of Collins and co-workers [J. Chem. Phys. 102, 5647 (1995); 108, 8302 (1998); 111, 816 (1999); Theor. Chem. Acc. 108, 313 (2002)]. The ab initio calculations have been performed using quadratic configuration interaction with single and double excitation theory to build the PES. A simple scaling all correlation technique has been used to obtain a PES which yields a barrier height and reaction energy in good agreement with high level ab initio calculations and experimental measurements. Using these interpolated PESs, a detailed quasiclassical trajectory study of integral and differential cross sections, product rovibrational populations, and internal energy distributions has been carried out for the Cl +CH4 and Cl +CD4 reactions, and the theoretical results have been compared with the available experimental data. It has been shown that the calculated total reaction cross sections versus collision energy for the Cl +CH4 and Cl +CD4 reactions is very sensitive to the barrier height. Besides, due to the zero-point energy (ZPE) leakage of the CH4 molecule to the reaction coordinate in the quasiclassical trajectory (QCT) calculations, the reaction threshold falls below the barrier height of the PES. The ZPE leakage leads to CH3 and HCl coproducts with internal energy below its corresponding ZPEs. We have shown that a Gaussian binning (GB) analysis of the trajectories yields excitation functions in somehow better agreement with the experimental determinations. The HCl(v'=0) and DCl(v'=0) rotational distributions are as well very sensitive to the ZPE problem. The GB correction narrows and shifts the rotational distributions to lower values of the rotational quantum numbers. However, the present QCT rotational distributions are still hotter than the experimental distributions. In both reactions the angular distributions shift from

  17. Dietary Maillard reaction products and their fermented products reduce cardiovascular risk in an animal model.

    Science.gov (United States)

    Oh, N S; Park, M R; Lee, K W; Kim, S H; Kim, Y

    2015-08-01

    This study examined the effects of Maillard reaction products (MRP) and MRP fermented by lactic acid bacteria on antioxidants and their enhancement of cardiovascular health in ICR mouse and rat models. In previous in vitro studies, the selected lactic acid bacteria were shown to significantly affect the activity of MRP. The expression of genes (e.g., superoxide dismutase, catalase, and glutathione peroxidase) related to antioxidant activity was upregulated by Maillard-reacted sodium caseinate (cMRP), and cMRP fermented by Lactobacillus fermentum H9 (F-cMRP) synergistically increased the expression of catalase and superoxide dismutase when compared with the high-cholesterol-diet group. Bleeding time, the assay for determination of antithrombotic activity, was significantly prolonged by Maillard-reacted whey protein concentration (wMRP) and wMRP fermented by Lactobacillus gasseri H10 (F-wMRP), similar to the bleeding time of the aspirin group (positive control). In addition, the acute pulmonary thromboembolism-induced mice overcame severe body paralysis or death in both the wMRP and the F-wMRP groups. In the serum-level experiment, cMRP and F-cMRP significantly reduced the serum total and low-density lipoprotein cholesterol levels and triglycerides but had only a slight effect on high-density lipoprotein cholesterol. The levels of aspartate transaminase and alanine transaminase also declined in the cMRP and F-cMRP intake groups compared with the high-cholesterol-diet group. In particular, F-cMRP showed the highest reducing effects on triglycerides, aspartate transaminase, and alanine transaminase. Moreover, the expression of cholesterol-related genes in the F-cMRP group demonstrated greater effects than for the cMRP group in the level of cholesterol 7 α-hydroxylase (CYP7A1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), and low-density lipoprotein receptors compared with the high-cholesterol-diet group. The protective role of cMRP and F-cMRP in the high

  18. Enrichment of semiconducting single-walled carbon nanotubes by carbothermic reaction for use in all-nanotube field effect transistors.

    Science.gov (United States)

    Li, Shisheng; Liu, Chang; Hou, Peng-Xiang; Sun, Dong-Ming; Cheng, Hui-Ming

    2012-11-27

    Selective removal of metallic single-walled carbon nanotubes (SWCNTs) and consequent enrichment of semiconducting SWCNTs were achieved through an efficient carbothermic reaction with a NiO thin film at a relatively low temperature of 350 °C. All-SWCNT field effect transistors (FETs) were fabricated with the aid of a patterned NiO mask, in which the as-grown SWCNTs behaving as source/drain electrodes and the remaining semiconducting SWCNTs that survive in the carbothermic reaction as a channel material. The all-SWCNT FETs demonstrate improved current ON/OFF ratios of ∼10(3).

  19. Production of longer lived radionuclides in deuteron induced reactions on niobium

    International Nuclear Information System (INIS)

    Tarkanyi, F.; Hermanne, A.; Ditroi, F.; Takacs, S.; Kiraly, B.; Baba, M.; Ohtsuki, T.; Kovalev, S.F.; Ignatyuk, A.V.

    2007-01-01

    Production of residual radionuclides in deuteron induced reactions is important for medical radioisotope production, accelerator technology and activation analysis. In the frame of a systematic study of deuteron induced reactions on different metals we present here the integral excitation functions of 93 Nb(d, x) 93m Mo, 92m,91m,90 Nb, 89,88 Zr and 90m Y up to 40 MeV, all measured for the first time. Results obtained with the nuclear model code ALICE-IPPE are compared to the experimental data and show an acceptable agreement

  20. Neutral pion production in the 16O+27Al reaction at 94 MeV/nucleon

    International Nuclear Information System (INIS)

    Badala, A.; Barbera, R.; Palmeri, A.; Pappalardo, G.S.; Riggi, F.; Russo, A.C.; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Del Zoppo, A.; Finocchiaro, P.; Maiolino, C.; Migneco, E.; Piattelli, P.; Russo, G.; Sapienza, P.; Peghaire, A.

    1993-01-01

    The production of neutral pions in the reaction 16 O+ 27 Al at 94 MeV/nucleon was studied with a multidetector, which includes 180 BaF 2 modules. Kinetic energy spectra for several laboratory angles were measured. The total cross section for neutral pion production was deduced. Results were compared with previous findings on charged pions from the same reaction at the same energy and with the prediction of a dynamical model based on the numerical solution of the Boltzmann-Nordheim-Vlasov equation

  1. Production of lactic acid from C6-polyols by alkaline hydrothermal reactions

    International Nuclear Information System (INIS)

    Zhou Huazhen; Jin Fangming; Wu Bing; Cao Jianglin; Duan Xiaokun; Kishita, Atsushi

    2010-01-01

    Production of lactic acid from C6-polyols (Mannitol) under alkaline hydrothermal conditions was investigated. Experiments were performed to examine the difference in the production of lactic acid between C6-polyols and C3-polyols (glycerine), as well as C6-aldoses (glucose). Results showed that the yield of lactic acid from C6-polyols was lower than that from both glycerine and glucose. It indicated that long chain polyols might follow a different reaction pathway from that of glycerine. Further investigation is needed to clarify the reaction mechanism and improve the relatively low lactic acid acid yield from C6-polyols.

  2. Product analysis of the gas-phase reaction of β-caryophyllene with ozone

    Science.gov (United States)

    Calogirou, A.; Kotzias, D.; Kettrup, A.

    The semivolatile ketoaldehydes 3,3-dimethyl-y-methylene-2-(3-oxobutyl)-cyclobutanebutanal 1 and 3,3-dimethyl-γ-oxo-2-(3-oxobutyl)-cyclobutanebutanal 2 and formaldehyde have been identified as the main products of the reaction of ß-caryophyllene with ozone in the gas phase. In minor amounts 9-methylene-,t,12,12-trimethyl-5-oxabicyclo[8.2.0.0.s]dodecane 3 was also formed. Nature and yields of these carbonyl products are discussed in terms of oxidation mechanisms involving the gas-phase reaction with ozone and OH radicals.

  3. Comparative analysis of single-step and two-step biodiesel production using supercritical methanol on laboratory-scale

    International Nuclear Information System (INIS)

    Micic, Radoslav D.; Tomić, Milan D.; Kiss, Ferenc E.; Martinovic, Ferenc L.; Simikić, Mirko Ð.; Molnar, Tibor T.

    2016-01-01

    Highlights: • Single-step supercritical transesterification compared to the two-step process. • Two-step process: oil hydrolysis and subsequent supercritical methyl esterification. • Experiments were conducted in a laboratory-scale batch reactor. • Higher biodiesel yields in two-step process at milder reaction conditions. • Two-step process has potential to be cost-competitive with the single-step process. - Abstract: Single-step supercritical transesterification and two-step biodiesel production process consisting of oil hydrolysis and subsequent supercritical methyl esterification were studied and compared. For this purpose, comparative experiments were conducted in a laboratory-scale batch reactor and optimal reaction conditions (temperature, pressure, molar ratio and time) were determined. Results indicate that in comparison to a single-step transesterification, methyl esterification (second step of the two-step process) produces higher biodiesel yields (95 wt% vs. 91 wt%) at lower temperatures (270 °C vs. 350 °C), pressures (8 MPa vs. 12 MPa) and methanol to oil molar ratios (1:20 vs. 1:42). This can be explained by the fact that the reaction system consisting of free fatty acid (FFA) and methanol achieves supercritical condition at milder reaction conditions. Furthermore, the dissolved FFA increases the acidity of supercritical methanol and acts as an acid catalyst that increases the reaction rate. There is a direct correlation between FFA content of the product obtained in hydrolysis and biodiesel yields in methyl esterification. Therefore, the reaction parameters of hydrolysis were optimized to yield the highest FFA content at 12 MPa, 250 °C and 1:20 oil to water molar ratio. Results of direct material and energy costs comparison suggest that the process based on the two-step reaction has the potential to be cost-competitive with the process based on single-step supercritical transesterification. Higher biodiesel yields, similar or lower energy

  4. Production and application of therapeutic radioisotopes. Activity on the related nuclear reaction data

    International Nuclear Information System (INIS)

    Tarkanyi, F.

    2002-01-01

    Full text: The Charged Particle Nuclear Data (CPND) Group in the ATOMKI has been involved in measurement, compilation, evaluation and application of nuclear reaction data for more than 15 years. The main field of activity is charged particle induced reactions. The research is mainly focused on non-energy related applications: medical radioisotope production, monitoring the parameters of charged particle beams, thin layer activation to control wear and corrosion. Last years we have started to extend our activities to measurements of fast neutron reaction data and charged particle reaction data related to waste transmutation. The CPND Group itself has extended experimental experience at the Debrecen MGC 20E cyclotron and at other accelerators in collaboration with universities in Hungary or laboratories in Germany (INC, Forschungszentrum Juelich), Belgium (Cyclotron Laboratory, Vrije Universiteit of Brussels), Japan (CYRIC, Tohoku University, Sendai and National Institute of Radiological Sciences, Chiba), Finland (Cyclotron Lab., Abo Akademi, Turku), Czech Republic (Nuclear Research Institute, Rez) and South-Africa (National Accelerator Centre, Faure). Activities in the field of compilation and data evaluation are done in close collaboration with IAEA in the frame of independent projects and of the Nuclear Reaction Data Center Network. Eight scientists (six physicists and two chemists) are contributing to the nuclear data project (most of them only part-time). An important field of the nuclear data activity actually lies in the medical radioisotope production. The members of ATOMKI CPND group are involved in every day radioisotope production of diagnostic radioisotopes for PET and SPECT. The team was also involved in the IAEA-CRP on development of a recommended database for production of diagnostic radioisotopes reactions for nuclear medicine by charged particle induced reactions and presently is engaged in the extension and upgrading of this database. In the field

  5. Regulatory Notes on Impact of Excipients on Drug Products and the Maillard Reaction.

    Science.gov (United States)

    Chowdhury, Dipak K; Sarker, Haripada; Schwartz, Paul

    2018-02-01

    In general, it is an important criterion that excipients remain inert throughout the shelf life of the formulated pharmaceutical product. However, depending on the functionality in chemical structure of active drug and excipients, they may undergo interaction. The well-known Maillard reaction occurs between a primary amine with lactose at high temperature to produce brown pigments. The reactivity of Maillard reaction may vary depending on the concentration as well as other conditions. Commercially, there are products where the active pharmaceutical ingredient is a primary amine and contains less than 75% lactose along with inactive excipients. This product does not show Maillard reaction during its shelf life of around 2 years at ambient conditions. However, when the same type of product contains more than 95 % lactose as an excipient, then there is a possibility of interactions though it is not visible in the initial year. Therefore, this regulatory note discusses involvement of different factors of a known drug-excipient interactions with case studies and provides an overview on how the concentration of lactose in the pharmaceutical product is important in addition to temperature and moisture in Maillard reaction.

  6. Worldwide withdrawal of medicinal products because of adverse drug reactions: a systematic review and analysis.

    Science.gov (United States)

    Onakpoya, Igho J; Heneghan, Carl J; Aronson, Jeffrey K

    2016-07-01

    We have systematically identified medicinal products withdrawn worldwide because of adverse drug reactions, assessed the level of evidence used for making the withdrawal decisions, and explored the patterns of withdrawals over time. We searched PubMed, the WHO database of withdrawn products, and selected texts. We included products that were withdrawn after launch from 1950 onwards, excluding non-human and over-the-counter medicines. We assessed the levels of evidence on which withdrawals were based using the Oxford Center for Evidence Based Medicine Levels of Evidence. Of 353 medicinal products withdrawn from any country, only 40 were withdrawn worldwide. Anecdotal reports were cited as evidence for withdrawal in 30 (75%) and deaths occurred in 27 (68%). Hepatic, cardiac, and nervous system toxicity accounted for over 60% of withdrawals. In 28 cases, the first withdrawal was initiated by the manufacturer. The median interval between the first report of an adverse drug reaction that led to withdrawal and the first withdrawal was 1 year (range 0-43 years). Worldwide withdrawals occurred within 1 year after the first withdrawal in any country. In conclusion, the time it takes for drugs to be withdrawn worldwide after reports of adverse drug reactions has shortened over time. However, there are inconsistencies in current withdrawal procedures when adverse drug reactions are suspected. A uniform method for establishing worldwide withdrawal of approved medicinal products when adverse drug reactions are suspected should be developed, to facilitate global withdrawals. Rapid synthesis of the evidence on harms should be a priority when serious adverse reactions are suspected.

  7. Study of Reaction Forces in a Single Sided Linear Induction Motor (SLIM)

    Science.gov (United States)

    1974-01-01

    SLIM reaction forces were measured on a laboratory model having aluminum and aluminum-iron secondaries and the results were correlated with the theoretical forces derived for different idealized SLIM models. The first part of the report discusses wav...

  8. 9 CFR 381.445 - Guidelines for voluntary nutrition labeling of single-ingredient, raw products.

    Science.gov (United States)

    2010-01-01

    ... INSPECTION REGULATIONS Nutrition Labeling § 381.445 Guidelines for voluntary nutrition labeling of single-ingredient, raw products. (a) Nutrition information on the cuts of single-ingredient, raw poultry products... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Guidelines for voluntary nutrition...

  9. 9 CFR 317.345 - Guidelines for voluntary nutrition labeling of single-ingredient, raw products.

    Science.gov (United States)

    2010-01-01

    ... DEVICES, AND CONTAINERS Nutrition Labeling § 317.345 Guidelines for voluntary nutrition labeling of single-ingredient, raw products. (a) Nutrition information on the cuts of single-ingredient, raw meat products... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Guidelines for voluntary nutrition...

  10. Enhancement of cutaneous delayed hypersensitivity reactions by a single exposure to UV-A or PUVA

    International Nuclear Information System (INIS)

    Moberg, S.; Mobacken, H.

    1982-01-01

    The influence of irradiation with UV-A and PUVA (8-methoxy-psoralen and UV-A) on delayed hypersensitivity reactions to microbial antigens was studied in healthy human individuals. Skin reactions to Candida albicans antigen and PPD were enhanced by UV-A als well as by PUVA compared with nonirradiated tests. A statistically significant difference was reached with UV-A for both antigens. For PUVA, erythemogenic doses to Candida tests produced a significant increase of response. (orig.)

  11. Catalyst deactivation due to deposition of reaction products in macropores during hydroprocessing of petroleum residuals

    Energy Technology Data Exchange (ETDEWEB)

    Khang, S.J.; Mosby, J.F.

    1986-04-01

    A pore-filling model is proposed to describe deactivation of hydroprocessing catalysts of a wide-pore structure in well-mixed and plug-flow reactors where the catalyst pellets are deactivated due to slow and uniform deposition of reaction products (mostly metal compounds) in their macropores. The model based on no mass-transfer restriction in the main channels of the pores incorporates additional active sites created by metal compounds in the deposited layers and has been shown to have two parameters of the similar type of the Thiele modulus. The model along with lumped reaction kinetics is applied for hydroprocessing reactions in trickle-bed reactors and provides reasonable deactivation curves for desulfurization and demetallation reaction when less than 50% of the original pore volume is filled with metal compounds.

  12. 76 FR 76890 - Nutrition Labeling of Single-Ingredient Products and Ground or Chopped Meat and Poultry Products...

    Science.gov (United States)

    2011-12-09

    .... FSIS-2005-0018] Nutrition Labeling of Single-Ingredient Products and Ground or Chopped Meat and Poultry... (FSIS) is delaying the effective date of the final regulations that require nutrition labeling of the major cuts of single-ingredient, raw meat and poultry products and ground or chopped meat and poultry...

  13. Characterization of ionic liquid‐based biocatalytic two‐phase reaction system for production of biodiesel

    DEFF Research Database (Denmark)

    Prabhavathi Devi, Bethala Lakshmi Anu; Guo, Zheng; Xu, Xuebing

    2011-01-01

    The property of a variety of ionic liquids (ILs) as reaction media was evaluated for the production of biodiesel by enzymatic methanolysis of rapeseed oil. The IL Ammoeng 102, containing tetraaminum cation with C18 acyl and oligoethyleneglycol units, was found to be capable of forming oil....../IL biphasic reaction system by mixing with substrates, which is highly effective for the production of biodiesel with more than 98% biodiesel yield and nearly 100% conversion of oil. Conductor‐like screening model for real solvent (COSMO‐RS) in silico prediction of substrate solubility and simulation...... of partition coefficient change vs. reaction evolution indicated that the amphiphilic property of Ammoeng 102 might be responsible for creating efficient interaction of immiscible substrates; while big difference of partition coefficients of generated biodiesel and glycerol between the two phases suggests...

  14. PAH formation under single collision conditions: reaction of phenyl radical and 1,3-butadiene to form 1,4-dihydronaphthalene.

    Science.gov (United States)

    Kaiser, R I; Parker, D S N; Zhang, F; Landera, A; Kislov, V V; Mebel, A M

    2012-05-03

    The crossed beam reactions of the phenyl radical (C(6)H(5), X(2)A(1)) with 1,3-butadiene (C(4)H(6), X(1)A(g)) and D6-1,3-butadiene (C(4)D(6), X(1)A(g)) as well as of the D5-phenyl radical (C(6)D(5), X(2)A(1)) with 2,3-D2-1,3-butadiene and 1,1,4,4-D4-1,3-butadiene were carried out under single collision conditions at collision energies of about 55 kJ mol(-1). Experimentally, the bicyclic 1,4-dihydronaphthalene molecule was identified as a major product of this reaction (58 ± 15%) with the 1-phenyl-1,3-butadiene contributing 34 ± 10%. The reaction is initiated by a barrierless addition of the phenyl radical to the terminal carbon atom of the 1,3-butadiene (C1/C4) to form a bound intermediate; the latter underwent hydrogen elimination from the terminal CH(2) group of the 1,3-butadiene molecule leading to 1-phenyl-trans-1,3-butadiene through a submerged barrier. The dominant product, 1,4-dihydronaphthalene, is formed via an isomerization of the adduct by ring closure and emission of the hydrogen atom from the phenyl moiety at the bridging carbon atom through a tight exit transition state located about 31 kJ mol(-1) above the separated products. The hydrogen atom was found to leave the decomposing complex almost parallel to the total angular momentum vector and perpendicularly to the rotation plane of the decomposing intermediate. The defacto barrierless formation of the 1,4-dihydronaphthalene molecule involving a single collision between a phenyl radical and 1,3-butadiene represents an important step in the formation of polycyclic aromatic hydrocarbons (PAHs) and their partially hydrogenated counterparts in combustion and interstellar chemistry.

  15. The use of a single inertial sensor to estimate 3-dimensional ground reaction force during accelerative running tasks.

    Science.gov (United States)

    Gurchiek, Reed D; McGinnis, Ryan S; Needle, Alan R; McBride, Jeffrey M; van Werkhoven, Herman

    2017-08-16

    The purpose of this investigation was to determine the feasibility of using a single inertial measurement unit (IMU) placed on the sacrum to estimate 3-dimensional ground reaction force (F) during linear acceleration and change of direction tasks. Force plate measurements of F and estimates from the proposed IMU method were collected while subjects (n=15) performed a standing sprint start (SS) and a 45° change of direction task (COD). Error in the IMU estimate of step-averaged component and resultant F was quantified by comparison to estimates from the force plate using Bland-Altman 95% limits of agreement (LOA), root mean square error (RMSE), Pearson's product-moment correlation coefficient (r), and the effect size (ES) of the differences between the two systems. RMSE of the IMU estimate of step-average F ranged from 37.70 N to 77.05 N with ES between 0.04 and 0.47 for SS while for COD, RMSE was between 54.19 N to 182.92 N with ES between 0.08 and 1.69. Correlation coefficients between the IMU and force plate measurements were significant (p≤0.05) for all values (r=0.53 to 0.95) except the medio-lateral component of step-average F. The average angular error in the IMU estimate of the orientation of step-average F was ≤10° for all tasks. The results of this study suggest the proposed IMU method may be used to estimate sagittal plane components and magnitude of step-average F during a linear standing sprint start as well as the vertical component and magnitude of step-average F during a 45° change of direction task. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Characterization of cement minerals, cements and their reaction products at the atomic and nano scale

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Hall, Christopher

    2008-01-01

    Recent advances and highlights in characterization methods are reviewed for cement minerals, cements and their reaction products. The emphasis is on X-ray and neutron diffraction, and on nuclear magnetic resonance methods, although X-ray absorption and Raman spectroscopies are discussed briefly...

  17. Age-related accumulation of Maillard reaction products in human articular cartilage collagen

    NARCIS (Netherlands)

    Verzijl, N.; Degroot, J.; Oldehinkel, E.; Bank, R. A.; Thorpe, S. R.; Baynes, J. W.; Bayliss, M. T.; Bijlsma, J. W.; Lafeber, F. P.; TeKoppele, J. M.

    2000-01-01

    Non-enzymic modification of tissue proteins by reducing sugars, the so-called Maillard reaction, is a prominent feature of aging. In articular cartilage, relatively high levels of the advanced glycation end product (AGE) pentosidine accumulate with age. Higher pentosidine levels have been associated

  18. Rapid and sensitive detection of Campylobacter spp. in chicken products by using the polymerase chain reaction

    NARCIS (Netherlands)

    Giesendorf, B A; Quint, W G; Henkens, M H; Stegeman, H; Huf, F A; Niesters, H G

    1992-01-01

    The polymerase chain reaction (PCR) after a short enrichment culture was used to detect Campylobacter spp. in chicken products. After the 16S rRNA gene sequence of Campylobacter jejuni was determined and compared with known sequences from other enterobacteria, a primer and probe combination was

  19. Return handling options and order quantities for single period products

    NARCIS (Netherlands)

    D. Vlachos (Dimitrios); R. Dekker (Rommert)

    2000-01-01

    textabstractProducts which are sold through E-commerce or mail sales catalogues tend to have a much higher return rate than traditional products. The returns are especially problematic for seasonal products. To support decision making in these situations we study various options, which may be

  20. A study of reactions of sulfur dioxide in the gaseous phase. Production and evolution of aerosols resulting from these reactions

    International Nuclear Information System (INIS)

    Boulaud, Denis

    1977-01-01

    The reactions of sulfur dioxide in the gaseous phase with atmospheric pollutants (NO x ; hydrocarbons) were studied. Experiments showed that NO 2 contribution was significant and suggested that SO 2 transformation into sulfuric acid and sulfates might occur through oxidising agents mainly hydroxyl (OH) and hydro-peroxyl (HO 2 ) radicals. The production and evolution of the resulting aerosols was also studied. It was demonstrated that the effect of water vapour on particle production was significant and that primary embryos were formed from the hetero-molecular homogeneous nucleation acting on water vapour and very likely on sulfuric acid. There was a semi-quantitative agreement between our experimental results and some theoretical investigations on nucleation rate of the system (H 2 O - H 2 SO 4 ). The subsequent growth of particles was studied in a simulation chamber. Finally a model of sulfuric acid vapour evolution in presence of atmospheric aerosols made it possible to extend the previous results as far as possible to the case of atmosphere and then to compare the importance of homogeneous and heterogeneous nucleation of the vapours according to atmospheric conditions. (author) [fr

  1. The Effects of Thermonuclear Reaction Rate Variations on 26Al Production in Massive Stars: A Sensitivity Study

    Science.gov (United States)

    Iliadis, Christian; Champagne, Art; Chieffi, Alessandro; Limongi, Marco

    2011-03-01

    We investigate the effects of thermonuclear reaction rate variations on 26Al production in massive stars. The dominant production sites in such events were recently investigated by using stellar model calculations: explosive neon-carbon burning, convective shell carbon burning, and convective core hydrogen burning. Post-processing nucleosynthesis calculations are performed for each of these sites by adopting temperature-density-time profiles from recent stellar evolution models. For each profile, we individually multiplied the rates of all relevant reactions by factors of 10, 2, 0.5, and 0.1, and analyzed the resulting abundance changes of 26Al. In total, we performed ≈900 nuclear reaction network calculations. Our simulations are based on a next-generation nuclear physics library, called STARLIB, which contains a recent evaluation of Monte Carlo reaction rates. Particular attention is paid to quantifying the rate uncertainties of those reactions that most sensitively influence 26Al production. For stellar modelers our results indicate to what degree predictions of 26Al nucleosynthesis depend on currently uncertain nuclear physics input, while for nuclear experimentalists our results represent a guide for future measurements. We also investigate equilibration effects of 26Al. In all previous massive star investigations, either a single species or two species of 26Al were taken into account, depending on whether thermal equilibrium was achieved or not. These are two extreme assumptions, and in a hot stellar plasma the ground and isomeric states may communicate via γ-ray transitions involving higher-lying 26Al levels. We tabulate the results of our reaction rate sensitivity study for each of the three distinct massive star sites referred to above. It is found that several current reaction rate uncertainties influence the production of 26Al. Particularly important reactions are 26Al(n,p)26Mg, 25Mg(α,n)28Si, 24Mg(n,γ)25Mg, and 23Na(α,p)26Mg. These reactions

  2. Determination of residual zirconia in the reaction product of zircon formation from zirconia and silica

    International Nuclear Information System (INIS)

    Hashiba, Minoru; Miura, Eiji; Nurishi, Yukio; Hibino, Taizo

    1978-01-01

    A new chemical method for the determination of zirconia in the reaction product of zircon formation from zirconia and silica is presented in this paper. The reaction product was fused in the temperature range between 400 0 C, and 450 0 C by ammonium sulfate (zirconia/ammonium sulfate = 1/10, weight). Zirconia was extracted by 4N H 2 SO 4 aqueous solution. After the residue was separated by filter paper containing filter pulp, it was washed by hot water thoroughly. By adding aqueous ammonia water to the combined filtrate, zirconium hydroxide was precipitated gelatinously. The precipitate was ignited in platinum crucible at 1000 0 C and the zirconia obtained was weighed. It was confirmed by the following experiments that the present method is very reliable for quantitative determination of residual zirconia. Firstly, in both zirconia and various mixtures of zircon and silica, the recovery of zirconia is about (99.6 +- 0.2)%. Secondly, the reaction for equimolar mixture of zirconia and silica was conducted at several temperatures between 1350 0 C and 1500 0 C. The quantity of residual zirconia on the way of the reaction was reasonably determined by the present method. In conclusion, the present method can be applicable for the study on the reaction mechanism of zircon formation from zirconia and silica. (auth.)

  3. An investigation of oxidation products and SOA yields from OH + pesticide reactions

    Science.gov (United States)

    Murschell, T.; Friedman, B.; Link, M.; Farmer, D.

    2016-12-01

    Pesticides are used globally in agricultural and residential areas. After application and/or volatilization from a surface, these compounds can be transported over long distances in the atmosphere. However, their chemical fate, including oxidation and gas-particle partitioning in the atmosphere, is not well understood. We present gas and particle measurements of oxidation products from pesticide + OH reactions using a dynamic solution injection system coupled to an Oxidative Flow Reactor. Products were detected with a High Resolution Time of Flight Iodide Chemical Mass Spectrometer (HR-ToF-CIMS) and a Size Mobility Particle Scanner (SMPS). The OFR allows pesticides to react with variable OH radical exposures, ranging from the equivalent of one day to a full week of atmospheric oxidative aging. In this work, we explore pesticide oxidation products from reaction with OH and ozone, and compare those products to photolysis reactions. Pesticides of similar chemical structures were explored, including acetochlor / metolachlor and permethrin / cypermethrin, to explore mechanistic differences. We present chemical parameters including average product oxidation state, average oxygen to carbon ratio, and potential secondary organic aerosol formation for each of these compounds.

  4. Induction of mitotic gene conversion by browning reaction products and its modulation by naturally occurring agents.

    Science.gov (United States)

    Rosin, M P; Stich, H F; Powrie, W D; Wu, C H

    1982-05-01

    Mitotic gene conversion in the D7 strain of Saccharomyces cerevisiae was significantly enhanced by exposure to non-enzymatic browning reaction products. These products were formed during the heating of sugar (caramelization reaction) or sugar-amino acid mixtures (Maillard reaction) at temperatures normally used during the cooking of food. Several modulating factors of this convertogenic activity were identified. These factors included two main groups: (1) trace metals which are widely distributed in the environment; and (2) several cellular enzymatic systems. The convertogenic activities of a heated glucose-lysine mixture and a commercial caramel powder were completely suppresses when yeast were concurrently exposed to these products and to either FeIII or CuII. Equimolar concentrations of MnII or sodium selenite had no effect on the convertogenic activity of the products of either model system. Horse-radish peroxidase, beef liver catalase and rat liver S9 preparations each decreased the frequency of gene conversion induced by the caramel powder and the heated glucose-lysine products. This modulating activity of the enzymes was lost if they were heat-inactivated. These studies indicate the presence of a variety of protective mechanisms which can modify genotoxic components in complex food mixtures.

  5. Investigation of the use of Maillard reaction inhibitors for the production of patatin-carbohydrate conjugates.

    Science.gov (United States)

    Seo, Sooyoun; Karboune, Salwa

    2014-12-17

    Selected Maillard reaction inhibitors, including aminoguanidine, cysteine, pyridoxamine, and sodium bisulfite, were evaluated for their effect on the production of carbohydrate conjugated proteins with less cross-linking/browning. Patatin (PTT), a major potato protein, was glycated with galactose, xylose, galactooligosaccharides, xylooligosaccharides, galactan, and xylan under controlled conditions. The effectiveness of the inhibitors to control the glycation reaction was assessed by monitoring the glycation extent, the protein cross-linking, and the formation of dicarbonyl compounds. Sodium bisulfite was the most effective inhibitor for PTT-galactose and PTT-xylan reaction systems (reaction control ratios of 210.0 and 12.8). On the other hand, aminoguanidine and cysteine led to the highest reaction control ratios for the PTT-xylose/xylooligosaccharide (160.0 and 143.0) and PTT-galactooligosaccharides/galactan (663.0 and 71.0) reaction systems, respectively. The use of cysteine and aminoguanidine as inhibitors led to 1.7-99.4% decreases in the particle size distribution of the PTT conjugates and to 0.4-9.3% increases in their relative digestibility, per 5% blocked lysine.

  6. Single Top quark production cross section using ATLAS detector at the LHC

    CERN Document Server

    Estrada Pastor, Oscar; The ATLAS collaboration

    2018-01-01

    Measurements of single top-quark production in proton-proton collisions are presented based on the 8 TeV and 13 TeV ATLAS datasets. In the leading order process, a W boson is exchanged in the t-channel. The cross-section for the production of single top-quarks and single anti-top-quarks, their ratio, as well as differential cross-section measurements are also reported. These analyses include limits on anomalous contributions to the Wtb vertex and measurement of the top quark polarization. Measurements of the inclusive and differential cross-sections for the production of a single top quark in association with a W boson, the second largest single-top production mode, are also presented. Finally, evidence for s-channel single-top production in the 8 TeV ATLAS dataset is presented. All measurements are compared to state-of-the-art theoretical calculations.

  7. Thermonuclear breakup reactions of light nuclei. II - Gamma-ray line production and other applications

    Science.gov (United States)

    Guessoum, Nidhal

    1989-01-01

    The main consequence of nuclear breakup reactions in high-temperature plasmas is shown to be to reduce the production of the gamma-ray lines, due to the breakup of these species at high temperature. Results of the emissivities of all the relevant gamma-ray lines are discussed. It is shown that the magnitude of the breakup effect on the line emissivities depends strongly on temperature, but more importantly on the plasma density and on the available time for the ion processes. Other effects considered include the production of neutrons (from the breakup of helium) and its consequences (such as the production of gamma rays from n-capture reactions and dynamical effects in accretion disk plasmas).

  8. Encapsulation of ascorbic acid promotes the reduction of Maillard reaction products in UHT milk.

    Science.gov (United States)

    Troise, Antonio Dario; Vitiello, Daniele; Tsang, Catherine; Fiore, Alberto

    2016-06-15

    The presence of amino groups and carbonyls renders fortified milk with ascorbic acid particularly susceptible to the reduction of available lysine and to the formation of Maillard reaction products (MRPs), as Nε-(carboxyethyl)-l-lysine (CEL), Nε-(carboxymethyl)-l-lysine (CML), Amadori products (APs) and off-flavors. A novel approach was proposed to control the Maillard reaction (MR) in fortified milk: ascorbic acid was encapsulated in a lipid coating and the effects were tested after a lab scale UHT treatment. Encapsulation promoted a delayed release of ascorbic acid and a reduction in the formation of MRPs. Total lysine increased up to 45% in milk with encapsulated ascorbic acid, while reductions in CML, CEL and furosine ranged from 10% to 53% compared with control samples. The effects were also investigated towards the formation of amide-AGEs (advanced glycation end products) by high resolution mass spectrometry (HRMS) revealing that several mechanisms coincide with the MR in the presence of ascorbic acid.

  9. Reaction of Gaseous Mercury with Molecular Iodine and Iodine Radicals: Kinetics, Product Studies, and Atmospheric Implication

    Science.gov (United States)

    Raofie, F.; Ariya, P.

    2006-12-01

    Mercury is assumed to be present in the Earth's planetary atmosphere mainly in its elemental form. The chemical transformation of mercury in the atmosphere may influence its bioaccumulation in the human food chain as well as its global cycling. We carried out the first kinetic and product studies of the reactions of gaseous mercury with molecular iodine and iodine radicals at atmospheric pressure of ~740 Torr and at 296 ± 2 K in air and N2. Iodine radicals were formed using UV photolysis of CH2I2 (300 ≤ λ ≤ 400 nm)Kinetics of the reaction was studied using absolute and relative rate techniques by gas chromatography with mass spectroscopic detection (GC-MS). The measured rate constants for reaction Hg0 with I2 and I were (1.27 ± 0.58)× 10^{-19},≤ (3.78 ± 1.25) × 10^{-13 cm3 molecule-1s-1, respectively. The reaction products were analyzed in the gas phase, from the suspended aerosols, and from wall of the reaction chamber using chemical ionization and electron impact mass spectrometer, a gas chromatograph with coupled to a mass spectrometer, a MALDI-TOF mass spectrometer, a cold vapor atomic fluorescence spectrometer (CVAFS), and a high resolution transmission electron microscope (HRTEM) coupled to an energy dispersive spectrometer (EDS). The major reaction products identified was HgI2 that were collected as wall deposits or in form of aerosols. We herein discuss the implication of our results to the chemistry of atmospheric mercury and its potential implications in the biogeochemical cycling of mercury.

  10. [Incidence rate of adverse reaction/event by Qingkailing injection: a Meta-analysis of single rate].

    Science.gov (United States)

    Ai, Chun-ling; Xie, Yan-ming; Li, Ming-quan; Wang, Lian-xin; Liao, Xing

    2015-12-01

    To systematically review the incidence rate of adverse drug reaction/event by Qingkailing injection. Such databases as the PubMed, EMbase, the Cochrane library, CNKI, VIP WanFang data and CBM were searched by computer from foundation to July 30, 2015. Two reviewers independently screened literature according to the inclusion and exclusion criteria, extracted data and cross check data. Then, Meta-analysis was performed by using the R 3.2.0 software, subgroup sensitivity analysis was performed based on age, mode of medicine, observation time and research quality. Sixty-three studies involving 9,793 patients with Qingkailing injection were included, 367 cases of adverse reactions/events were reported in total. The incidence rate of adverse reaction in skin and mucosa group was 2% [95% CI (0.02; 0.03)]; the digestive system adverse reaction was 6% [95% CI(0.05; 0.07); the injection site adverse reaction was 4% [95% CI (0.02; 0.07)]. In the digestive system as the main types of adverse reactions/events, incidence of children and adults were 4.6% [0.021 1; 0.097 7] and 6.9% [0.053 5; 0.089 8], respectively. Adverse reactions to skin and mucous membrane damage as the main performance/event type, the observation time > 7 days and ≤ 7 days incidence of 3% [0.012 9; 0.068 3] and 1.9% [0.007 8; 0.046 1], respectively. Subgroup analysis showed that different types of adverse reactions, combination in the incidence of adverse reactions/events were higher than that of single drug, the difference was statistically significant (P reactions occur, and clinical rational drug use, such as combination, age and other fators, and the influence factors vary in different populations. Therefore, clinical doctors for children and the elderly use special care was required for a clear and open spirit injection, the implementation of individualized medication.

  11. Return handling options and order quantities for single period products

    OpenAIRE

    Vlachos, D.; Dekker, R.

    2000-01-01

    textabstractProducts which are sold through E-commerce or mail sales catalogues tend to have a much higher return rate than traditional products. The returns are especially problematic for seasonal products. To support decision making in these situations we study various options, which may be considered as strategic decisions, on handling the increased return flow. Closed form analytic expressions for optimal order quantities are obtained by solving the models developed for each option. Decis...

  12. Pressure Dependent Product Formation in the Photochemically Initiated Allyl + Allyl Reaction

    Directory of Open Access Journals (Sweden)

    Thomas Zeuch

    2013-11-01

    Full Text Available Photochemically driven reactions involving unsaturated radicals produce a thick global layer of organic haze on Titan, Saturn’s largest moon. The allyl radical self-reaction is an example for this type of chemistry and was examined at room temperature from an experimental and kinetic modelling perspective. The experiments were performed in a static reactor with a volume of 5 L under wall free conditions. The allyl radicals were produced from laser flash photolysis of three different precursors allyl bromide (C3H5Br, allyl chloride (C3H5Cl, and 1,5-hexadiene (CH2CH(CH22CHCH2 at 193 nm. Stable products were identified by their characteristic vibrational modes and quantified using FTIR spectroscopy. In addition to the (re- combination pathway C3H5+C3H5 → C6H10 we found at low pressures around 1 mbar the highest final product yields for allene and propene for the precursor C3H5Br. A kinetic analysis indicates that the end product formation is influenced by specific reaction kinetics of photochemically activated allyl radicals. Above 10 mbar the (re- combination pathway becomes dominant. These findings exemplify the specificities of reaction kinetics involving chemically activated species, which for certain conditions cannot be simply deduced from combustion kinetics or atmospheric chemistry on Earth.

  13. Mass transfer with complex reversible chemical reactions—I. Single reversible chemical reaction

    NARCIS (Netherlands)

    Versteeg, G.F.; Kuipers, J.A.M.; Beckum, F.P.H. van; Swaaij, W.P.M. van

    1989-01-01

    An improved numerical technique was used in order to develop an absorption model with which it is possible to calculate rapidly absorption rates for the phenomenon of mass transfer accompanied by a complex reversible chemical reaction. This model can be applied for the calculation of the mass

  14. Transfer products from the reactions of heavy ions with heavy nuclei

    International Nuclear Information System (INIS)

    Thomas, K.E. III.

    1979-11-01

    Production of nuclides heavier than the target from 86 Kr- and 136 Xe-induced reactions with 181 Ta and 238 U was investigated. Attempts were made to produce new neutron-excess Np and Pu isotopes by the deep inelastic mechanism. No evidence was found for 242 Np or 247 Pu. Estimates were made for the production of 242 Np, 247 Pu, and 248 Am from heavy-ion reactions with uranium targets. Comparisons of reactions of 86 Kr and 136 Xe ions with thick 181 Ta targets and 86 Kr, 136 Xe and 238 U ions with thick 238 U targets indicate that the most probable products are not dependent on the projectile. The most probable products can be predicted by the equation Z - Z/sub target/ = 0.43 (A - A/sub target/) + 1.0. The major effect of the projectile is the magnitude of the production cross section of the heavy products. Based on these results, estimates are made of the most probable mass of element 114 produced from heavy-ion reactions with 248 Cm and 254 Es targets. These estimates give the mass number of element 114 as approx. 287 if produced in heavy-ion reactions with these very heavy targets. Excitation functions of gold and bismuth isotopes arising from 86 Kr- and 136 Xe-induced reactions with thin 181 Ta targets were measured. These results indicate that the shape and location (in Z and A above the target) of the isotopic distributions are not strongly dependent on the projectile incident energy. Also, the nuclidic cross sections are found to increase with an increase in projectile energy to a maximum at approximately 1.4 to 1.5 times the Coulomb barrier. Above this maximum, the nuclidic cross sections are found to decrease with an increase in projectile energy. This decrease in cross section is believed to be due to fission of the heavy products caused by high excitation energy and angular momentum. 111 references, 39 figures, 34 tables

  15. An Investigation of the Complexity of Maillard Reaction Product Profiles from the Thermal Reaction of Amino Acids with Sucrose Using High Resolution Mass Spectrometry.

    Science.gov (United States)

    Golon, Agnieszka; Kropf, Christian; Vockenroth, Inga; Kuhnert, Nikolai

    2014-08-07

    Thermal treatment of food changes its chemical composition drastically with the formation of "so-called" Maillard reaction products, being responsible for the sensory properties of food, along with detrimental and beneficial health effects. In this contribution, we will describe the reactivity of several amino acids, including arginine, lysine, aspartic acid, tyrosine, serine and cysteine, with carbohydrates. The analytical strategy employed involves high and ultra-high resolution mass spectrometry followed by chemometric-type data analysis. The different reactivity of amino acids towards carbohydrates has been observed with cysteine and serine, resulting in complex MS spectra with thousands of detectable reaction products. Several compounds have been tentatively identified, including caramelization reaction products, adducts of amino acids with carbohydrates, their dehydration and hydration products, disproportionation products and aromatic compounds based on molecular formula considerations.

  16. An Investigation of the Complexity of Maillard Reaction Product Profiles from the Thermal Reaction of Amino Acids with Sucrose Using High Resolution Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Agnieszka Golon

    2014-08-01

    Full Text Available Thermal treatment of food changes its chemical composition drastically with the formation of “so-called” Maillard reaction products, being responsible for the sensory properties of food, along with detrimental and beneficial health effects. In this contribution, we will describe the reactivity of several amino acids, including arginine, lysine, aspartic acid, tyrosine, serine and cysteine, with carbohydrates. The analytical strategy employed involves high and ultra-high resolution mass spectrometry followed by chemometric-type data analysis. The different reactivity of amino acids towards carbohydrates has been observed with cysteine and serine, resulting in complex MS spectra with thousands of detectable reaction products. Several compounds have been tentatively identified, including caramelization reaction products, adducts of amino acids with carbohydrates, their dehydration and hydration products, disproportionation products and aromatic compounds based on molecular formula considerations.

  17. Customized Pull Systems for Single-Product Flow Lines

    NARCIS (Netherlands)

    Gaury, E.G.A.; Kleijnen, J.P.C.; Pierreval, H.

    1998-01-01

    Traditionally pull production systems are managed through classic control systems such as Kanban, Conwip, or Base stock, but this paper proposes ‘customized’ pull control. Customization means that a given production line is managed through a pull control system that in principle connects each stage

  18. Search for Single Top Production in $e^{+}e^{-}$ Collisions at $\\sqrt{s}$ = 189 - 202 GeV

    CERN Document Server

    Barate, R; Ghez, P; Goy, C; Jézéquel, S; Lees, J P; Martin, F; Merle, E; Minard, M N; Pietrzyk, B; Alemany, R; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Morawitz, P; Pacheco, A; Riu, I; Ruiz, H; Colaleo, A; Creanza, D; De Palma, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Boix, G; Buchmüller, O L; Cattaneo, M; Cerutti, F; Ciulli, V; Davies, G; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Gianotti, F; Greening, T C; Halley, A W; Hansen, J B; Harvey, J; Janot, P; Jost, B; Kado, M; Leroy, O; Maley, P; Mato, P; Minten, Adolf G; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Spagnolo, P; Tejessy, W; Teubert, F; Tournefier, E; Valassi, Andrea; Wright, A E; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Dessagne, S; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Pascolo, J M; Perret, P; Podlyski, F; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Swynghedauw, M; Tanaka, R; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Chalmers, M; Kennedy, J; Lynch, J G; Negus, P; O'Shea, V; Räven, B; Smith, D; Teixeira-Dias, P; Thompson, A S; Ward, J J; Cavanaugh, R J; Dhamotharan, S; Geweniger, C; Hanke, P; Hepp, V; Kluge, E E; Leibenguth, G; Putzer, A; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Marinelli, N; Martin, E B; Nash, J; Nowell, J; Przysiezniak, H; Sciabà, A; Sedgbeer, J K; Thompson, J C; Thomson, E; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Buck, P G; Ellis, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Robertson, N A; Smizanska, M; Williams, M I; Giehl, I; Hölldorfer, F; Jakobs, K; Kleinknecht, K; Kröcker, M; Müller, A S; Nürnberger, H A; Quast, G; Renk, B; Rohne, E; Sander, H G; Schmeling, S; Wachsmuth, H W; Zeitnitz, C; Ziegler, T; Bonissent, A; Carr, J; Coyle, P; Ealet, A; Fouchez, D; Payre, P; Rousseau, D; Tilquin, A; Aleppo, M; Antonelli, M; Gilardoni, S S; Ragusa, F; Büscher, V; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Azzurri, P; Boucrot, J; Callot, O; Chen, S; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Lefrançois, J; Serin, L; Veillet, J J; Videau, I; De Vivie de Régie, J B; Zerwas, D; Bagliesi, G; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sguazzoni, G; Tenchini, Roberto; Venturi, A; Verdini, P G; Blair, G A; Coles, J; Cowan, G D; Green, M G; Hutchcroft, D E; Jones, L T; Medcalf, T; Strong, J A; Botterill, David R; Clifft, R W; Edgecock, T R; Norton, P R; Tomalin, I R; Bloch-Devaux, B; Colas, P; Fabbro, B; Faïf, G; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Seager, P; Trabelsi, A; Tuchming, B; Vallage, B; Black, S N; Dann, J H; Loomis, C; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Hodgson, P N; Lehto, M H; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Grupen, Claus; Hess, J; Misiejuk, A; Prange, G; Sieler, U; Borean, C; Giannini, G; Gobbo, B; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Von Wimmersperg-Töller, J H; Wu Sau Lan; Wu, X; Zobernig, G

    2000-01-01

    The single top production via flavour changing neutral currents in the reactions ee -> t c/u is searched for in approximately 411 pb-1 of data collected by ALEPH at centre-of-mass energies in the range between 189 and 202 GeV. In total, 58 events are selected in the data to be compared with 50.3 expected from Standard Model backgrounds. No deviation from the Standard Model expectation is observed. A 95\\%~CL upper limit of 0.72 pb on the single top production cross section at 202 GeV is derived assuming a top mass of 174 GeV/c^2 and a 100% branching ratio of the top decay into bW. A model dependent limit on the flavour-changing couplings kZ and kg is obtained by combining all centre-of-mass energies.

  19. Formation of 6-methyl-1,4-dihydronaphthalene in the reaction of the p-tolyl radical with 1,3-butadiene under single-collision conditions.

    Science.gov (United States)

    Parker, Dorian S N; Dangi, Beni B; Kaiser, Ralf I; Jamal, Adeel; Ryazantsev, Mikhail; Morokuma, Keiji

    2014-12-26

    Crossed molecular beam reactions of p-tolyl (C7H7) plus 1,3-butadiene (C4H6), p-tolyl (C7H7) plus 1,3-butadiene-d6 (C4D6), and p-tolyl-d7 (C7D7) plus 1,3-butadiene (C4H6) were carried out under single-collision conditions at collision energies of about 55 kJ mol(-1). 6-Methyl-1,4-dihydronaphthalene was identified as the major reaction product formed at fractions of about 94% with the monocyclic isomer (trans-1-p-tolyl-1,3-butadiene) contributing only about 6%. The reaction is initiated by barrierless addition of the p-tolyl radical to the terminal carbon atom of the 1,3-butadiene via a van der Waals complex. The collision complex isomerizes via cyclization to a bicyclic intermediate, which then ejects a hydrogen atom from the bridging carbon to form 6-methyl-1,4-dihydronaphthalene through a tight exit transition state located about 27 kJ mol(-1) above the separated products. This is the dominant channel under the present experimental conditions. Alternatively, the collision complex can also undergo hydrogen ejection to form trans-1-p-tolyl-1,3-butadiene; this is a minor contributor to the present experiment. The de facto barrierless formation of a methyl-substituted aromatic hydrocarbons by dehydrogenation via a single event represents an important step in the formation of polycyclic aromatic hydrocarbons (PAHs) and their partially hydrogenated analogues in combustion flames and the interstellar medium.

  20. Single-pion production in pp collisions at 0.95 GeV/c (II)

    International Nuclear Information System (INIS)

    Abd El-Samad, S.; Bilger, R.; Clement, H.; Dietrich, M.; Doroshkevich, E.; Ehrhardt, K.; Erhardt, A.; Kress, J.; Meier, R.; Wagner, G.J.; Weidlich, U.; Zhang, G.; Brinkmann, K.T.; Freiesleben, H.; Jaekel, R.; Jakob, B.; Karsch, L.; Kuhlmann, E.; Schulte-Wissermann, M.; Sun, G.Y.; Dshemuchadse, S.; Eyrich, W.; Hauffe, J.; Schroeder, W.; Stinzing, F.; Waechter, J.; Wagner, M.; Wirth, S.; Filippi, A.; Marcello, S.; Fritsch, M.; Geyer, R.; Gillitzer, A.; Hesselbarth, D.; Kilian, K.; Marwinski, S.; Morsch, H.P.; Ritman, J.; Roderburg, E.; Moeller, K.; Naumann, L.; Schoenmeier, P.; Wilms, A.

    2009-01-01

    The single-pion production reactions pp→dπ + , pp→npπ + and pp→ppπ 0 were measured at a beam momentum of 0.95GeV/c (T p ∼400 MeV) using the short version of the COSY-TOF spectrometer. The central calorimeter provided particle identification, energy determination and neutron detection in addition to time-of-flight and angle measurements from other detector parts. Thus all pion production channels were recorded with 1-4 overconstraints. The main emphasis is put on the presentation and discussion of the npπ + channel, since the results on the other channels have already been published previously. The total and differential cross-sections obtained are compared to theoretical calculations. In contrast to the ppπ 0 channel we observe in the npπ + channel a strong influence of the Δ excitation. In particular, the pion angular distribution exhibits a (3 cos 2 Θ+1)-dependence, typical for a pure s-channel Δ excitation and identical to that observed in the dπ + channel. Since the latter is understood by a s-channel resonance in the 1 D 2 pn partial wave, we discuss an analogous scenario for the pnπ + channel. (orig.)

  1. Expression, production and renaturation of a functional single-chain ...

    African Journals Online (AJOL)

    The single-chain variable antibody fragment (scFv) against human intercellular adhesion molecule-1 (ICAM-1) was expressed at a high level in Escherichia coli as inclusion bodies. We attempted to refold the scFv by ion-exchange chromatography (IEC), dialysis and dilution. The results show that the column ...

  2. Improvement of Torque Production in Single-Phase Induction Motors ...

    African Journals Online (AJOL)

    Existing single phase induction motors exhibit low starting torque. Moreover, during accelerating time and at steady state, they produce a significant level of torque pulsations which gives rise to noise and vibration in the machine. As part of efforts to mitigate these problems, a performance improvement strategy using a PWM ...

  3. Extent of sensitivity of single photon production to parton distribution ...

    Indian Academy of Sciences (India)

    The prompt photon cross-section is found to be described equally well by all the PDFs within the experimental errors at the RHIC and the LHC energies. The deviation in the single-prompt photon yield for different PDF sets is within ±20% when compared to CTEQ4M, indicating the upper bound of uncertainty in determining ...

  4. Single Assignment C (SAC): High Productivity meets High Performance

    NARCIS (Netherlands)

    Grelck, C.; Zsók, V.; Horváth, Z.; Plasmeijer, R.

    2012-01-01

    We present the ins and outs of the purely functional, data parallel programming language SaC (Single Assignment C). SaC defines state- and side-effect-free semantics on top of a syntax resembling that of imperative languages like C/C++/C# or Java: functional programming with curly brackets. In

  5. Production of a phage-displayed single chain variable fragment ...

    African Journals Online (AJOL)

    Purpose: To develop specific single chain variable fragments (scFv) against infectious bursal disease virus (IBDV) via phage display technology. Methods: Purified viruses were initially applied for iterative panning rounds of scFv phage display libraries. The binding ability of the selected scFv antibody fragments against the ...

  6. Reaction of the (111) faces of single-crystal indium phosphide with alkylating agents: evidence for selective reaction of the p-rich face

    Energy Technology Data Exchange (ETDEWEB)

    Spool, A.M.; Daube, K.A.; Mallouk, T.E.; Belmont, J.A.; Wrighton, M.S.

    1986-05-28

    We wish to report that the P-rich, (111)B, face of single-crystal InP, but not the In-rich, (111)A, face of the same crystal, reacts with molecular reagents to yield surface-bound material derived from the apparent alkylation of a surface P atom. Exploitation of surface functional groups has been demonstrated to be very important in the attachment of molecular reagents and polymers to electrode surfaces. Electrodes derivatized with molecules have potential uses in analysis, fuel cells, electrosynthetic cells, and photoelectrochemical cells. We now wish to present evidence showing that an important photoelectrode material, InP, can be functionalized with molecules by reaction of the P-rich, (111)B, face with alkylating reagents.

  7. Study of Ozone-Initiated Limonene Reaction Products by Low Temperature Plasma Ionization Mass Spectrometry

    Science.gov (United States)

    Nørgaard, Asger W.; Vibenholt, Anni; Benassi, Mario; Clausen, Per Axel; Wolkoff, Peder

    2013-07-01

    Limonene and its ozone-initiated reaction products were investigated in situ by low temperature plasma (LTP) ionization quadrupole time-of-flight (QTOF) mass spectrometry. Helium was used as discharge gas and the protruding plasma generated ~850 ppb ozone in front of the glass tube by reaction with the ambient oxygen. Limonene applied to filter paper was placed in front of the LTP afterglow and the MS inlet. Instantly, a wide range of reaction products appeared, ranging from m/ z 139 to ca. 1000 in the positive mode and m/ z 115 to ca. 600 in the negative mode. Key monomeric oxidation products including levulinic acid, 4-acetyl-1-methylcyclohexene, limonene oxide, 3-isopropenyl-6-oxo-heptanal, and the secondary ozonide of limonene could be identified by collision-induced dissociation. Oligomeric products ranged from the nonoxidized dimer of limonene (C20H30) and up to the hexamer with 10 oxygen atoms (C60H90O10). The use of LTP for in situ ozonolysis and ionization represents a new and versatile approach for the assessment of ozone-initiated terpene chemistry.

  8. Apparatus for production, measurement and reaction studies of dissociated gases at elevated temperatures

    Science.gov (United States)

    Christian, J. D.; Gilbreath, W. P.

    1975-01-01

    An apparatus is described which is used for the controlled production, characterization, and study of dissociated gases in a microwave discharge at elevated temperatures. A unique feature is the ability to produce and study a microwave discharge plasma in the heated zone. This allows elevated temperature reactions to be studied in high concentrations of dissociated gases. Further, the system permits weight change measurements of specimens in the plasma, thus facilitating reaction rate determinations. Included is a description of a cavity for use on a 50-mm diameter cylindrical reactor. The effects of flow rate, pressure, temperature, power, metal sample, and sampling position on dissociation percentage of oxygen in the apparatus are described as well as a technique for sample temperature measurements in the plasma which permits determination of high temperature recombination coefficients and reaction rates.

  9. [Vigilance for veterinary medicinal products: declarations of adverse reactions in the year 2009].

    Science.gov (United States)

    Müntener, C R; Bruckner, L; Stürer, A; Althaus, F R; Caduff-Janosa, P

    2010-12-01

    During the year 2009, 134 reports of suspected adverse drug reactions (ADRs) to veterinary medicinal products (VMPs) were received (106 in the year 2008). The distribution according to species and drug classes remained in line with previous years. Companion animals were involved in most of the reports (46 % dogs, 19 % cats), followed by cattle or calves (22 %). Antiparasitic drugs made the biggest part with 30 % of the reports, followed by antiinfectives (19 %) and hormones (13 %). Some reactions following their use are specifically discussed. 95 additional enquiries about ADRs of VMPs were received by the Swiss Toxicological Information Centre in Zürich. Most of them concerned dogs or cats and antiparasitics or anti-inflammatory drugs. In the vaccinovigilance program, a total of 1020 reports were received, of which 1000 were related to the vaccination against blue tongue disease. The most frequently reported adverse reactions were aborts, mastitis or alterations of milk quality and they are specifically discussed.

  10. Optimization of the production of ethyl esters by ultrasound assisted reaction of soybean oil and ethanol

    Directory of Open Access Journals (Sweden)

    S. Rodrigues

    2009-06-01

    Full Text Available Biodiesel is a renewable liquid fuel that can be produced by a transesterification reaction between a vegetable oil and an alcohol. This paper evaluates and optimizes the production of ethyl esters (biodiesel from soybean oil and ethanol. The reaction was carried out by applying ultrasound under atmospheric pressure and ambient temperature. Response surface methodology was used to evaluate the influence of alcohol to oil molar ratio and catalyst concentration on the yield of conversion of soybean oil into ethyl esters. The process resulted in a maximum yield of 91.8% after 30 minutes of reaction. The process variables alcohol to oil ratio and catalyst to oil ratio were statistically significant regarding the yield of ethyl esters. The optimal operating condition was obtained applying an alcohol to oil molar ratio of 10.2 and a catalyst to oil weight ratio of 0.0035.

  11. Product distributions for some thermal energy charge transfer reactions of rare gas ions

    Science.gov (United States)

    Anicich, V. G.; Laudenslager, J. B.; Huntress, W. T., Jr.; Futrell, J. H.

    1977-01-01

    Ion cyclotron resonance methods were used to measure the product distributions for thermal-energy charge-transfer reactions of He(+), Ne(+), and Ar(+) ions with N2, O2, CO, NO, CO2, and N2O. Except for the He(+)-N2 reaction, no molecular ions were formed by thermal-energy charge transfer from He(+) and Ne(+) with these target molecules. The propensity for dissociative ionization channels in these highly exothermic charge-transfer reactions at thermal energies contrasts with the propensity for formation of parent molecular ions observed in photoionization experiments and in high-energy charge-transfer processes. This difference is explained in terms of more stringent requirements for energy resonance and favorable Franck-Condon factors at thermal ion velocities.

  12. Fluorescent Carbon Dots Derived from Maillard Reaction Products: Their Properties, Biodistribution, Cytotoxicity, and Antioxidant Activity.

    Science.gov (United States)

    Li, Dongmei; Na, Xiaokang; Wang, Haitao; Xie, Yisha; Cong, Shuang; Song, Yukun; Xu, Xianbing; Zhu, Bei-Wei; Tan, Mingqian

    2018-02-14

    Food-borne nanoparticles have received great attention because of their unique physicochemical properties and potential health risk. In this study, carbon dots (CDs) formed during one of the most important chemical reactions in the food processing field, the Maillard reaction from the model system including glucose and lysine, were investigated. The CDs purified from Maillard reaction products emitted a strong blue fluorescence under ultraviolet light with a fluorescent quantum yield of 16.30%. In addition, they were roughly spherical, with sizes of around 4.3 nm, and mainly composed of carbon, oxygen, hydrogen, and nitrogen. Their surface groups such as hydroxyl, amino, and carboxyl groups were found to possibly enable CDs to scavenge DPPH and hydroxyl radicals. Furthermore, the cytotoxicity assessment of CDs showed that they could readily enter HepG2 cells while causing negligible cell death at low concentration. However, high CDs concentrations were highly cytotoxic and led to cell death via interference of the glycolytic pathway.

  13. Molecular electronics of a single photosystem I reaction center: Studies with scanning tunneling microscopy and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, I.; Lee, J.W.; Warmack, R.J.; Allison, D.P.; Greenbaum, E. [Oak Ridge National Lab., TN (United States)

    1995-03-14

    Thylakoids and photosystem I (PSI) reaction centers were imaged by scanning tunneling microscopy. The thylakoids were isolated from spinach chloroplasts, and PSI reaction centers were extracted from thylakoid membranes. Because thylakoids are relatively thick nonconductors, they were sputter-coated with Pd/Au before imaging. PSI photosynthetic centers and chemically platinized PSI were investigated without sputter-coating. They were mounted on flat gold substrates that had been treated with mercaptoacetic acid to help bind the proteins. With tunneling spectroscopy, the PSI centers displayed a semiconductor-like response with a band gap of 1.8 eV. Lightly platinized (platinized for 1 hr) centers displayed diode-like conduction that resulted in dramatic contrast changes between images taken with opposite bias voltages. The electronic properties of this system were stable under long-term storage. 42 refs., 7 figs.

  14. A single residue controls electron transfer gating in photosynthetic reaction centers

    Czech Academy of Sciences Publication Activity Database

    Shlyk, O.; Samish, I.; Matěnová, M.; Dulebo, A.; Poláková, H.; Kaftan, David; Scherz, A.

    2017-01-01

    Roč. 7, MAR 16 (2017), s. 1-13, č. článku 44580. ISSN 2045-2322 R&D Projects: GA ČR GA15-00703S; GA MŠk(CZ) LO1416 Institutional support: RVO:61388971 Keywords : BACTERIAL REACTION CENTERS * INDUCED STRUCTURAL-CHANGES * ATOMIC-FORCE MICROSCOPE Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.259, year: 2016

  15. US smokers' reactions to a brief trial of oral nicotine products

    Directory of Open Access Journals (Sweden)

    Mahoney Martin C

    2011-01-01

    Full Text Available Abstract Background It has been suggested that cigarette smokers will switch to alternative oral nicotine delivery products to reduce their health risks if informed of the relative risk difference. However, it is important to assess how smokers are likely to use cigarette alternatives before making predictions about their potential to promote individual or population harm reduction. Objectives This study examines smokers' interest in using a smokeless tobacco or a nicotine replacement product as a substitute for their cigarettes. Methods The study included 67 adult cigarette smokers, not currently interested in quitting, who were given an opportunity to sample four alternative oral nicotine products: 1 Camel Snus, 2 Marlboro Snus, 3 Stonewall dissolvable tobacco tablets, and 4 Commit nicotine lozenges. At visit 1, subjects were presented information about the relative benefits/risks of oral nicotine delivery compared to cigarettes. At visit 2, subjects were given a supply of each of the four products to sample at home for a week. At visit 3, subjects received a one-week supply of their preferred product to see if using such products reduced or eliminated cigarette use. Results After multiple product sampling, participants preferred the Commit lozenges over the three smokeless tobacco products (p = 0.011. Following the one week single-product trial experience, GEE models controlling for gender, age, level of education, baseline cigarettes use, and alternative product chosen, indicated a significant decline in cigarettes smoked per day across one week of single-product sampling (p Conclusions Findings from this study show that smokers, who are currently unwilling to make a quit attempt, may be willing to use alternative products in the short term as a temporary substitute for smoking. However, this use is more likely to be for partial substitution (i.e. they will continue to smoke, albeit at a lower rate rather than complete substitution. Of the

  16. Production of multi-, oligo- and single-pore membranes using a continuous ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Apel, P.Yu., E-mail: apel@nrmail.jinr.ru [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 141980 Dubna (Russian Federation); Dubna International University, Universitetskaya Str. 19, 141980 Dubna (Russian Federation); Ivanov, O.M.; Lizunov, N.E.; Mamonova, T.I.; Nechaev, A.N. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 141980 Dubna (Russian Federation); Olejniczak, K. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 141980 Dubna (Russian Federation); Faculty of Chemistry, Nicolaus Copernicus University, Gagarina Str. 7, 87-100 Torun (Poland); Vacik, J. [Nuclear Physics Institute, ASCR, v.v.i., 25068 Řež (Czech Republic); Dmitriev, S.N. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 141980 Dubna (Russian Federation)

    2015-12-15

    Ion track membranes (ITM) have attracted significant interest over the past two decades due to their numerous applications in physical, biological, chemical, biochemical and medical experimental works. A particular feature of ITM technology is the possibility to fabricate samples with a predetermined number of pores, including single-pore membranes. The present report describes a procedure that allowed for the production of multi-, oligo- and single-pore membranes using a continuous ion beam from an IC-100 cyclotron. The beam was scanned over a set of small diaphragms, from 17 to ∼1000 μm in diameter. Ions passed through the apertures and impinged two sandwiched polymer foils, with the total thickness close to the ion range in the polymer. The foils were pulled across the ion beam at a constant speed. The ratio between the transport speed and the scanning frequency determined the distance between irradiation spots. The beam intensity and the aperture diameters were adjusted such that either several, one or no ions passed through the diaphragms during one half-period of scanning. After irradiation, the lower foil was separated from the upper foil and was etched to obtain pores 6–8 μm in diameter. The pores were found using a color chemical reaction between two reagents placed on opposite sides of the foil. The located pores were further confirmed using SEM and optical microscopy. The numbers of tracks in the irradiation spots were consistent with the Poisson statistics. Samples with single or few tracks obtained in this way were employed to study fine phenomena in ion track nanopores.

  17. Use of Helium Production to Screen Glow Discharges for Low Energy Nuclear Reactions (LENR)

    Science.gov (United States)

    Passell, Thomas O.

    2011-03-01

    My working hypothesis of the conditions required to observe low energy nuclear reactions (LENR) follows: 1) High fluxes of deuterium atoms through interfaces of grains of metals that readily accommodate movement of hydrogen atoms interstitially is the driving variable that produces the widely observed episodes of excess heat above the total of all input energy. 2) This deuterium atom flux has been most often achieved at high electrochemical current densities on highly deuterium-loaded palladium cathodes but is clearly possible in other experimental arrangements in which the metal is interfacing gaseous deuterium, as in an electrical glow discharge. 3) Since the excess heat episodes must be producing the product(s) of some nuclear fusion reaction(s) screening of options may be easier with measurement of those ``ashes'' than the observance of the excess heat. 4) All but a few of the exothermic fusion reactions known among the first 5 elements produce He-4. Hence helium-4 appearance in an experiment may be the most efficient indicator of some fusion reaction without commitment on which reaction is occurring. This set of hypotheses led me to produce a series of sealed tubes of wire electrodes of metals known to absorb hydrogen and operate them for 100 days at the 1 watt power level using deuterium gas pressures of ~ 100 torr powered by 40 Khz AC power supplies. Observation of helium will be by measurement of helium optical emission lines through the glass envelope surrounding the discharge. The results of the first 18 months of this effort will be described.

  18. Experimental study of the reactions of limonene with OH and OD radicals: kinetics and products.

    Science.gov (United States)

    Braure, Tristan; Bedjanian, Yuri; Romanias, Manolis N; Morin, Julien; Riffault, Véronique; Tomas, Alexandre; Coddeville, Patrice

    2014-10-09

    The kinetics of the reactions of limonene with OH and OD radicals has been studied using a low-pressure flow tube reactor coupled with a quadrupole mass spectrometer: OH + C10H16 → products (1), OD + C10H16 → products (2). The rate constants of the title reactions were determined using four different approaches: either monitoring the kinetics of OH (OD) radicals or limonene consumption in excess of limonene or of the radicals, respectively (absolute method), and by the relative rate method using either the reaction OH (OD) + Br2 or OH (OD) + DMDS (dimethyl disulfide) as the reference one and following HOBr (DOBr) formation or DMDS and limonene consumption, respectively. As a result of the absolute and relative measurements, the overall rate coefficients, k1 = (3.0 ± 0.5) × 10(-11) exp((515 ± 50)/T) and k2 = (2.5 ± 0.6) × 10(-11) exp((575 ± 60)/T) cm(3) molecule(-1) s(-1), were determined at a pressure of 1 Torr of helium over the temperature ranges 220-360 and 233-353 K, respectively. k1 was found to be pressure independent over the range 0.5-5 Torr. There are two possible pathways for the reaction between OH (OD) and limonene: addition of the radical to one of the limonene double bonds (reactions 1a and 2a ) and abstraction of a hydrogen atom (reactions 1b and 2b ), resulting in the formation of H2O (HOD). Measurements of the HOD yield as a function of temperature led to the following branching ratio of the H atom abstraction channel: k2b/k2 = (0.07 ± 0.03) × exp((460 ± 140)/T) for T = (253-355) K.

  19. Limonene and its ozone-initiated reaction products attenuate allergic lung inflammation in mice.

    Science.gov (United States)

    Hansen, Jitka S; Nørgaard, Asger W; Koponen, Ismo K; Sørli, Jorid B; Paidi, Maya D; Hansen, Søren W K; Clausen, Per Axel; Nielsen, Gunnar D; Wolkoff, Peder; Larsen, Søren Thor

    2016-11-01

    Inhalation of indoor air pollutants may cause airway irritation and inflammation and is suspected to worsen allergic reactions. Inflammation may be due to mucosal damage, upper (sensory) and lower (pulmonary) airway irritation due to activation of the trigeminal and vagal nerves, respectively, and to neurogenic inflammation. The terpene, d-limonene, is used as a fragrance in numerous consumer products. When limonene reacts with the pulmonary irritant ozone, a complex mixture of gas and particle phase products is formed, which causes sensory irritation. This study investigated whether limonene, ozone or the reaction mixture can exacerbate allergic lung inflammation and whether airway irritation is enhanced in allergic BALB/cJ mice. Naïve and allergic (ovalbumin sensitized) mice were exposed via inhalation for three consecutive days to clean air, ozone, limonene or an ozone-limonene reaction mixture. Sensory and pulmonary irritation was investigated in addition to ovalbumin-specific antibodies, inflammatory cells, total protein and surfactant protein D in bronchoalveolar lavage fluid and hemeoxygenase-1 and cytokines in lung tissue. Overall, airway allergy was not exacerbated by any of the exposures. In contrast, it was found that limonene and the ozone-limonene reaction mixture reduced allergic inflammation possibly due to antioxidant properties. Ozone induced sensory irritation in both naïve and allergic mice. However, allergic but not naïve mice were protected from pulmonary irritation induced by ozone. This study showed that irritation responses might be modulated by airway allergy. However, aggravation of allergic symptoms was observed by neither exposure to ozone nor exposure to ozone-initiated limonene reaction products. In contrast, anti-inflammatory properties of the tested limonene-containing pollutants might attenuate airway allergy.

  20. Product distributions, rate constants, and mechanisms of LiH +H reactions

    Science.gov (United States)

    Defazio, Paolo; Petrongolo, Carlo; Gamallo, Pablo; González, Miguel

    2005-06-01

    We present a quantum-mechanical investigation of the LiH depletion reaction LiH +H→Li+H2 and of the H exchange reaction LiH +H'→LiH'+H. We report product distributions, rate constant, and mechanism of the former, and rate constant and mechanism of the latter reaction. We use the potential-energy surface by Dunne et al. [Chem. Phys. Lett. 336, 1 (2001)], the real-wave-packet method by Gray and Balint-Kurti [J. Chem. Phys. 108, 950 (1998)], and the J-shifting approximation. The H21 nuclear-spin statistics and progressions of vib-rotational states (v',j') rule both initial-state-resolved and thermal product distributions, which have saw-toothed shapes with odd j' preferred with respect to even j'. At high collision energies and temperatures, we obtain a regular 3-to-1 intensity alternation of rotational states. At low collision energies and temperatures, the degeneracy and density of many H2 levels can, however, give more irregular distributions. During the collision, the energy flows from the reactant translational mode to the product vibration and recoil ones. The rate constants of both reactions are not Arrhenius type because the reactions are barrier-less. The low-temperature, LiH depletion rate constant is larger than the H exchange one, whereas the contrary holds at high temperature. The real-time mechanisms show the nuclear rearrangements of the nonreactive channel and of the reactive ones, and point out that the LiH depletion is preferred over the H exchange at short times. This confirms the rate-constant results.

  1. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y.S. [Arizona State Univ., Mesa, AZ (United States)

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  2. State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production

    International Nuclear Information System (INIS)

    Amini, Zeynab; Ilham, Zul; Ong, Hwai Chyuan; Mazaheri, Hoora; Chen, Wei-Hsin

    2017-01-01

    Highlights: • Enzymatic transesterification process is less energy intensive and robust. • Nano-materials are promising immobilization supports for lipase. • Packed-bed reactors are appropriate for scale-up use. • Potential recombinant, whole cell and recombinant whole cell lipases were enlisted. • Genetic engineering is a promising prospect in biodiesel area. - Abstract: The world demand for fuel as energy sources have arisen the need for generating alternatives such as biofuel. Biodiesel is a renewable fuel used particularly in diesel engines. Currently, biodiesel is mainly produced through transesterification reactions catalyzed by chemical catalysts, which produces higher fatty acid alkyl esters in shorter reaction time. Although extensive investigations on enzymatic transesterification by downstream processing were carried out, enzymatic transesterification has yet to be used in scale-up since commercial lipases are chiefly limited to the cost as well as long reaction time. While numerous lipases were studied and proven to have the high catalytic capacity, still enzymatic reaction requires more investigation. To fill this gap, finding optimal conditions for the reaction such as alcohol and oil choice, water content, reaction time and temperature through proper reaction modelling and simulations as well as the appropriate design and use of reactors for large scale production are crucial issues that need to be accurately addressed. Furthermore, lipase concentration, alternative lipase resources through whole cell technology and genetic engineering, recent immobilizing materials including nanoparticles, and the capacity of enzyme to be reused are important criteria to be neatly investigated. The present work reviews the current biodiesel feedstock, catalysis, general and novel immobilizing materials, bioreactors for enzymatic transesterification, potential lipase resources, intensification technics, and process modelling for enzymatic

  3. Coherent production of two and three pions in pd reactions at 19 GeV/c

    International Nuclear Information System (INIS)

    Bakken, V.; Gennow, H.; Lundborg, P.; Maekelae, J.; Moellerud, R.; Pimiae, M.; Sellden, B.; Sundell, E.; Tuominemi, J.K.

    1976-10-01

    The coherent reactions pd→pdπ + π - , pd→pdπ + π - π 0 and pd→ndπ + π + π - are studied. In the two first reactions strong production of Δ ++ (1236) is observed. Production of d* 0 and d* + is observed in the first and second reactions respectively. The forward slope of the t-distribution of the pπ + π - system in the pd→pdπ + π - channel decreases with increasing mass. The 1500 and 1700 MeV enhancements in the pπ + π - mass spectrum of this channel are studied. Assuming that the Gribov-Morrison rule holds, it is found that by analysing the moments of the decay angular distributions that the resonances N(1470), N(1520) and N(1688) are the most likely resonances to be identified with these enhancements. Evidence is found against s-channel helicity conservation and some evidence against t-channel helicity conservation. The decay parameters of the Δ ++ (1236) in the reaction pd→Δ ++ π - d are in good agreement with the predictions of a one-pion exchange model. (Auth.)

  4. Uses of alpha particles, especially in nuclear reaction studies and medical radionuclide production

    Energy Technology Data Exchange (ETDEWEB)

    Qaim, Syed M.; Spahn, Ingo; Scholten, Bernhard; Neumaier, Bernd [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Neurowissenschaften und Medizin (INM), Nuklearchemie (INM-5)

    2016-11-01

    Alpha particles exhibit three important characteristics: scattering, ionisation and activation. This article briefly discusses those properties and outlines their major applications. Among others, α-particles are used in elemental analysis, investigation and improvement of materials properties, nuclear reaction studies and medical radionuclide production. The latter two topics, dealing with activation of target materials, are treated in some detail in this paper. Measurements of excitation functions of α-particle induced reactions shed some light on their reaction mechanisms, and studies of isomeric cross sections reveal the probability of population of high-spin nuclear levels. Regarding medical radionuclides, an overview is presented of the isotopes commonly produced using α-particle beams. Consideration is also given to some routes which could be potentially useful for production of a few other radionuclides. The significance of α-particle induced reactions to produce a few high-spin isomeric states, decaying by emission of low-energy conversion or Auger electrons, which are of interest in localized internal radiotherapy, is outlined. The α-particle beam, thus broadens the scope of nuclear chemistry research related to development of non-standard positron emitters and therapeutic radionuclides.

  5. Demonstration of physical phenomenas and scavenging activity from d-psicose and methionine maillard reaction products

    Directory of Open Access Journals (Sweden)

    Arum Tiyas Suminar

    2017-01-01

    Full Text Available Maillard reaction has been well understood as a non-enzymatic reaction between reducing sugars and amino acids to generate the Maillard reaction products (MRPs. This study is aimed to demonstrate the browning intensity, color development, spectra measurements, scavenging activity, and the correlation between browning intensity and scavenging activity of the MRPs generated from D-Psicose and Methionine (Psi-Met at 50℃. The browning intensity of MRPs was investigated based on the absorbance using spectrophotometer at 420 nm, the color development was observed using digital colorimeter to gained L*a*b* value then calculated as browning index, the spectra development was analyzed using spectrophotometer at 190 - 750 nm, and the scavenging activity was determined with ABTS method using spectrophotometer at 734 nm. The browning intensity, color development, and scavenging activity were improved along with the increase in heating process. Based on spectra analysis, MRPs from Psi-Met was initially detected at 21 h and Psi at 24 h of heating treatment, which indicating that Psi-Met have faster and better reaction than Psi during heating process. Positive non-linear and significant correlation between browning intensity and scavenging activity were assigned. This finding may provide beneficial information of D-psicose and MRPs to the next scientific research and to the food industries which applies MRPs in their products.

  6. Search for anomalous Wtb couplings in single top quark production

    Czech Academy of Sciences Publication Activity Database

    Abazov, V. M.; Abbott, B.; Abolins, M.; Kupčo, Alexander; Lokajíček, Miloš

    2008-01-01

    Roč. 101, č. 22 (2008), 221801/1-221801/7 ISSN 0031-9007 R&D Projects: GA MŠk LA08047; GA MŠk 1P05LA257; GA MŠk LC527 Institutional research plan: CEZ:AV0Z10100502 Keywords : collisions * D0 * single top quark * Lorentz structure Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 7.180, year: 2008

  7. Effect of Solvents on the Product Distribution and Reaction Rate of a Buchwald-Hartwig Amination Reaction

    DEFF Research Database (Denmark)

    Christensen, H.; Kiil, Søren; Dam-Johansen, Kim

    2006-01-01

    The Buchwald-Hartwig amination reaction between p-bromotoluene and piperazine in the presence of the homogeneous catalytic system Pd(dba)(2)/(+/-)-BINAP and the base NaO-t-Bu was investigated in two different classes of solvents: aprotic, nonpolar and aprotic, polar. The reaction was carried out...... solvent for the Buchwald-Hartwig amination reaction under the conditions applied was m-xylene....

  8. Measurement of single photon production in e[sup +]e[sup -] collisions near the Z[sup 0] resonance

    Energy Technology Data Exchange (ETDEWEB)

    Akers, R. (Manchester Univ. (United Kingdom). Dept. of Physics); Alexander, G.; Allison, J.; Anderson, K.J.; Arcelli, S.; Asai, S.; Astbury, A.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, R.J.; Bartoldus, R.; Batley, J.R.; Beaudoin, G.; Beck, A.; Beck, G.A.; Becker, J.; Beeston, C.; Behnke, T.; Bell, K.W.; Bella, G.; Bentkowski, P.; Bentvelsen, S.; Berlich, P.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Bock, P.; Bosch, H.M.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brown, R.M.; Buijs, A.; Burckhart, H.J.; Burgard, C.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlesworth, C.; Charlton, D.G.; Chu, S.L.; Clarke, P.E.L.; Clayton, J.C.; Clowes, S.G.; Cohen, I.; Conboy, J.E.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallapiccola, C.; Darling, C.; Dallavalle, G.M.; Jong, S. de; Deng, H.; Dittmar, M.; Dixit, M.S.; Couto e Silva, E. do; Duchovni, E.; Duboscq, J.E.; Duckeck, G.; Duerdoth, I.P.; Dunwoody, U.C.; Elcombe, P.A.; Estabrooks, P.G.; Et; OPAL Collaboration

    1995-01-01

    A measurement of the single photon production cross-section is presented based on a data-sample of 40.5 pb[sup -1] collected with the OPAL detector at centre-of-mass energies within 3 GeV of the Z[sup 0] mass. Single photon events arise from initial state radiation and the production of an ''invisible'' final state consisting of neutrinos or possibly particles such as sneutrinos or photinos. The single photon topology is also sensitive to new Z[sup 0] decays such as Z[sup 0] [yields] anti [nu][nu][sup *] [yields] anti [nu][nu][gamma] or Z[sup 0] [yields] [gamma]X, X [yields] invisible particles. A total of 447 single photon candidates were observed with energy exceeding 1.75 GeV in the polar angle region vertical stroke cos [theta]vertical stroke < 0.7. The estimated background from processes with visible reaction products, mainly e[sup +]e[sup -] [yields] e[sup +]e[sup -][gamma], is 37 [+-] 6 events. Interpreting the cross-sections as being solely due to Z[sup 0] decay to invisible particles and the expected W-contributions, the Z[sup 0] invisible width is determined to be 539 [+-] 26 [+-] 17 MeV corresponding to N[sub [nu

  9. Entropy production of a steady-growth cell with catalytic reactions

    Science.gov (United States)

    Himeoka, Yusuke; Kaneko, Kunihiko

    2014-10-01

    Cells generally convert external nutrient resources to support metabolism and growth. Understanding the thermodynamic efficiency of this conversion is essential to determine the general characteristics of cellular growth. Using a simple protocell model with catalytic reaction dynamics to synthesize the necessary enzyme and membrane components from nutrients, the entropy production per unit-cell-volume growth is calculated analytically and numerically based on the rate equation for chemical kinetics and linear nonequilibrium thermodynamics. The minimal entropy production per unit-cell growth is found to be achieved at a nonzero nutrient uptake rate rather than at a quasistatic limit as in the standard Carnot engine. This difference appears because the equilibration mediated by the enzyme exists only within cells that grow through enzyme and membrane synthesis. Optimal nutrient uptake is also confirmed by protocell models with many chemical components synthesized through a catalytic reaction network. The possible relevance of the identified optimal uptake to optimal yield for cellular growth is also discussed.

  10. Manifestation of shell structure in the characteristics of the products of the reaction Zn+Sn

    Energy Technology Data Exchange (ETDEWEB)

    Zodan, H.; Luk' yanov, S. M.; Penionzhkevich, Y. E.; Salamatin, V. S.; Chubaryan, G. G.; Heidel, K.; Pop, A.; Schilling, K. D.; Will, E.; Gippner, P.; and others

    1989-01-01

    We report measurements of the yield of products as a function of their mass and total kinetic energy (TKE) in reactions induced by /sup 64/Zn ions in targets of silver, tin, and lanthanum at various beam energies above the Coulomb barrier. In the dependences presented for reactions with magic nuclei of tin, in contrast to those measured in other targets, a yield of projectile-like and target-like products is observed at TKE values less than the entrance Coulomb barrier. The observed properties of the spectrum shapes can be associated with the structure of the interacting nuclei, specifically with the /ital Z/=50 shell of tin nuclei, which is responsible for preserving the individual properties of the target nuclei.

  11. Products of aqueous vitamin B5 (pantothenic acid) formed by free radical reactions

    Science.gov (United States)

    Schittl, H.; Quint, R. M.; Getoff, N.

    2007-10-01

    The radiolysis of aqueous vitamin B5 (pantothenic acid) has been investigated under various experimental conditions. The highest vitamin degradation ( G=3.22) was observed in solutions saturated with N 2O, where 90% OH radicals are operating. As final products, the following were established: aldehydes, carboxylic acids and ammonia. Their yield strongly depends on the presence/absence of air as well as on N 2O (used to convert e aq- into OH) and was determined as a function of absorbed radiation dose. HPLC-analysis showed that in all media, a main product is formed, having the highest yield in aerated solutions. Based on the chemical analysis, it appears that the OH radicals are most involved in the degradation process. A precise sequence of the reaction steps could not be given presently, because of the implication of many simultaneous reactions.

  12. Products of aqueous vitamin B5 (pantothenic acid) formed by free radical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Schittl, H. [Section of Radiation Biology, Department of Nutritional Sciences, University of Vienna, Althanstr. 14, UZA II, A-1090 Vienna (Austria); Quint, R.M. [Section of Radiation Biology, Department of Nutritional Sciences, University of Vienna, Althanstr. 14, UZA II, A-1090 Vienna (Austria); Getoff, N. [Section of Radiation Biology, Department of Nutritional Sciences, University of Vienna, Althanstr. 14, UZA II, A-1090 Vienna (Austria)]. E-mail: nikola.getoff@univie.ac.at

    2007-10-15

    The radiolysis of aqueous vitamin B5 (pantothenic acid) has been investigated under various experimental conditions. The highest vitamin degradation (G=3.22) was observed in solutions saturated with N{sub 2}O, where 90% OH radicals are operating. As final products, the following were established: aldehydes, carboxylic acids and ammonia. Their yield strongly depends on the presence/absence of air as well as on N{sub 2}O (used to convert e{sub aq} {sup -} into OH) and was determined as a function of absorbed radiation dose. HPLC-analysis showed that in all media, a main product is formed, having the highest yield in aerated solutions. Based on the chemical analysis, it appears that the OH radicals are most involved in the degradation process. A precise sequence of the reaction steps could not be given presently, because of the implication of many simultaneous reactions.

  13. Expansion of chemical space for natural products by uncommon P450 reactions.

    Science.gov (United States)

    Zhang, Xingwang; Li, Shengying

    2017-08-30

    Covering: 2000 to 2017Cytochrome P450 enzymes (P450s) are the most versatile biocatalysts in nature. The catalytic competence of these extraordinary hemoproteins is broadly harnessed by numerous chemical defenders such as bacteria, fungi, and plants for the generation of diverse and complex natural products. Rather than the common tailoring reactions (e.g. hydroxylation and epoxidation) mediated by the majority of biosynthetic P450s, in this review, we will focus on the unusual P450 enzymes in relation to new chemistry, skeleton construction, and structure re-shaping via their own unique catalytic power or the intriguing protein-protein interactions between P450s and other proteins. These uncommon P450 reactions lead to a higher level of chemical space expansion for natural products, through which a broader spectrum of bioactivities can be gained by the host organisms.

  14. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, polymer with aliphatic... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4...

  15. 40 CFR 721.5560 - Formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz[c...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, polymer with... Formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz oxaphosphorin-6... identified as formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz...

  16. Understanding the Oxygen Reduction Reaction on a Y/Pt(111) Single Crystal

    DEFF Research Database (Denmark)

    Ulrikkeholm, Elisabeth Therese; Johansson, Tobias Peter; Malacrida, Paolo

    2014-01-01

    was significantly different from our initial expectations. In order to understand this phenomenon, we investigated a Y/Pt(111) single crystal, formed by depositing large amounts of Y om Pt(111) under ultra-high vacuum (UHV) conditions and annealing to high temperatures. We subsequently characterised the surface...

  17. Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts.

    Science.gov (United States)

    Yin, Peiqun; Yao, Tao; Wu, Yuen; Zheng, Lirong; Lin, Yue; Liu, Wei; Ju, Huanxin; Zhu, Junfa; Hong, Xun; Deng, Zhaoxiang; Zhou, Gang; Wei, Shiqiang; Li, Yadong

    2016-08-26

    A new strategy for achieving stable Co single atoms (SAs) on nitrogen-doped porous carbon with high metal loading over 4 wt % is reported. The strategy is based on a pyrolysis process of predesigned bimetallic Zn/Co metal-organic frameworks, during which Co can be reduced by carbonization of the organic linker and Zn is selectively evaporated away at high temperatures above 800 °C. The spherical aberration correction electron microscopy and extended X-ray absorption fine structure measurements both confirm the atomic dispersion of Co atoms stabilized by as-generated N-doped porous carbon. Surprisingly, the obtained Co-Nx single sites exhibit superior ORR performance with a half-wave potential (0.881 V) that is more positive than commercial Pt/C (0.811 V) and most reported non-precious metal catalysts. Durability tests revealed that the Co single atoms exhibit outstanding chemical stability during electrocatalysis and thermal stability that resists sintering at 900 °C. Our findings open up a new routine for general and practical synthesis of a variety of materials bearing single atoms, which could facilitate new discoveries at the atomic scale in condensed materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Rutherford backscattering, nuclear reaction and channeling studies of nitrogen implanted single-crystal stainless steel

    International Nuclear Information System (INIS)

    Ferguson, M.M.; Ewan, G.T.; Mitchell, I.V.; Plattner, H.H.

    1983-01-01

    The three different methods were used to investigate a single crystal of stainless steel implanted to different doses by 40 keV 15 N 2 + ions. Conclusions are drawn on the position of nitrogen; comparison is made with implantation of deuterium and neon. (G.Q.)

  19. A model of reaction field in gas-injected arc-in-water method to synthesize single-walled carbon nanohorns: Influence of water temperature

    International Nuclear Information System (INIS)

    Poonjarernsilp, Chantamanee; Sano, Noriaki; Tamon, Hajime; Charinpanitkul, Tawatchai

    2009-01-01

    The method to synthesize single-walled carbon nanohorns (SWCNHs) using gas-injected arc in water (GI-AIW) has been experimentally studied. GI-AIW is known as one of the cost-effective methods to obtain SWCNHs. It was revealed that the yield of SWCNHs significantly decreases with the increase in water temperature although the purity of SWCNHs is not dependent on the temperature change. Then the model of relevant reactions in the GI-AIW system was proposed by accounting the emission of carbon vapor, formation of SWCNHs, and diffusion of water vapor in three zones inside the cathode hole (arc plasma zone, quenching zone, and downstream zone). The side reaction between H 2 O and C produces H 2 gas and consumes a certain amount of carbon vapor, resulting in the hindered SWCNH formation. Moreover the observation of the optical spectra emitting from the arc plasma zone strongly supported that the H 2 generating reaction does not occur at arc plasma zone since N 2 flow can purge H 2 O out. The model proposed in this study can precisely explain the correlation between H 2 gas production and water temperature.

  20. Kinetic modelling of hydrocracking catalytic reactions by the single events theory; Modelisation cinetique des reactions catalytiques d`hydrocraquage par la theorie des evenements constitutifs

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, J.M.

    1998-11-23

    Kinetic modelling of petroleum hydrocracking is particularly difficult given the complexity of the feedstocks. There are two distinct classes of kinetics models: lumped empirical models and detailed molecular models. The productivity of lumped empirical models is generally not very accurate, and the number of kinetic parameters increases rapidly with the number of lumps. A promising new methodology is the use of kinetic modelling based on the single events theory. Due to the molecular approach, a finite and limited number of kinetic parameters can describe the kinetic behaviour of the hydrocracking of heavy feedstock. The parameters are independent of the feedstock. However, the available analytical methods are not able to identify the products on the molecular level. This can be accounted for by means of an posteriori lamping technique, which incorporates the detailed knowledge of the elementary step network. Thus, the lumped kinetic parameters are directly calculated from the fundamental kinetic coefficients and the single event model is reduced to a re-lumped molecular model. Until now, the ability of the method to extrapolate to higher carbon numbers had not been demonstrated. In addition, no study had been published for three phase (gas-liquid-solid) systems and a complex feedstock. The objective of this work is to validate the `single events` method using a paraffinic feedstock. First of all, a series of experiments was conducted on a model compound (hexadecane) in order to estimate the fundamental kinetic parameters for acyclic molecules. To validate the single event approach, these estimated kinetic coefficients were used to simulate hydrocracking of a paraffinic mixture ranging from C11 to C18. The simulation results were then compared to the results obtained from the hydrocracking experiments. The comparison allowed to validate the model for acyclic molecules and to demonstrate that the model is applicable to compounds with higher carbon numbers. (author

  1. Experiences on removal of sodium-water reaction products in SWAT-3

    International Nuclear Information System (INIS)

    Tanabe, H.; Hiroi, H.; Sato, M.; Otaka, J.

    2002-01-01

    This report summarizes experiences and information concerning the removal of sodium water reaction products (SMRP) obtained through large leak tests of the Steam Generator Safety Test Facility (SWAT-3) at PNC/OEC, which were conducted to validate the safety design of steam generators of a prototype LMFBR Monju. The following three problems are discussed here: (1) drainability of SWRP, (2) removal of SWRP by using a cold trap, and (3) steam cleaning of SWRP. (author)

  2. Measurement of reaction cross sections of fission products induced by DT neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Daisuke; Murata, Isao; Takahashi, Akito [Osaka Univ., Suita (Japan)

    1998-03-01

    With the view of future application of fusion reactor to incineration of fission products, we have measured the {sup 129}I(n,2n){sup 128}I reaction cross section by DT neutrons with the activation method. The measured cross section was compared with the evaluated nuclear data of JENDL-3.2. From the result, it was confirmed that the evaluation overestimated the cross section by about 20-40%. (author)

  3. Mechanism of heavy-ion reactions and the production of superheavy nuclei

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1976-01-01

    The statics and dynamics of very-heavy-ion reactions, with special emphasis on those aspects associated with the production of superheavy nuclei are discussed. Cross sections for forming compound nuclei in symmetric heavy-ion collisions of the 150 Nd + 150 Nd 300 200 types are calculated by the use of the criterion that the dynamical trajectory for the fusing system must pass inside the fission saddle point in a multidimensional space in order to form a compound nucleus

  4. Thermochemical effect of fission products on sodium - MOX fuel reaction: The case of niobium

    Science.gov (United States)

    Costin, Dan T.; Desgranges, Lionel; Cabello-Ortiga, Victor; Hedberg, Marcus; Halleröd, Jenny; Retegan, Teodora; Ekberg, Christian

    2018-03-01

    The influence of niobium on the sodium MOX fuel chemical interaction was studied by different heat treatments of airtight capsules containing fresh MOX, sodium and a niobium strip. The characterisation results evidenced a two-step process with first MOX oxidation and then MOX reduction. This result was interpreted by considering the formation of sodium niobiate that captures oxygen from the MOX. This interpretation is used to discuss the influence of niobium as fission product on the sodium -irradiated MOX fuel reaction.

  5. Scheduling a Single Mobile Robot Incorporated into Production Environment

    DEFF Research Database (Denmark)

    Dang, Vinh Quang; Nielsen, Izabela Ewa; Steger-Jensen, Kenn

    2013-01-01

    Eco-production and logistics with environmental consciousness are playing a larger role in manufacturing firms. They involve scheduling, planning, developing and implementing manufacturing processes and technologies that are required not only to keep productivity high but also to respond....... This chapter deals with the problem of finding optimal operating sequence in a manufacturing cell of a mobile robot with manipulation arm that feeds materials to feeders. The “Bartender Concept” is discussed to show the cooperation between the mobile robot and industrial environment. The performance criterion...... is to minimize total traveling time of the robot with the smallest consumed amount of battery energy in a given planning horizon. A mixed-integer programming (MIP) model is developed to find the optimal solutions for the problem. Two case studies are implemented at an impeller production line to demonstrate...

  6. Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air

    Directory of Open Access Journals (Sweden)

    M. Ehn

    2012-06-01

    Full Text Available High molecular weight (300–650 Da naturally charged negative ions have previously been observed at a boreal forest site in Hyytiälä, Finland. The long-term measurements conducted in this work showed that these ions are observed practically every night between spring and autumn in Hyytiälä. The ambient mass spectral patterns could be reproduced in striking detail during additional measurements of α-pinene (C10H16 oxidation at low-OH conditions in the Jülich Plant Atmosphere Chamber (JPAC. The ions were identified as clusters of the nitrate ion (NO3 and α-pinene oxidation products reaching oxygen to carbon ratios of 0.7–1.3, while retaining most of the initial ten carbon atoms. Attributing the ions to clusters instead of single molecules was based on additional observations of the same extremely oxidized organics in clusters with HSO4 (Hyytiälä and C3F5O2 (JPAC. The most abundant products in the ion spectra were identified as C10H14O7, C10H14O9, C10H16O9, and C10H14O11. The mechanism responsible for forming these molecules is still not clear, but the initial reaction is most likely ozone attack at the double bond, as the ions are mainly observed under dark conditions. β-pinene also formed highly oxidized products under the same conditions, but less efficiently, and mainly C9 compounds which were not observed in Hyytiälä, where β-pinene on average is 4–5 times less abundant than α-pinene. Further, to explain the high O/C together with the relatively high H/C, we propose that geminal diols and/or hydroperoxide groups may be important. We estimate that the night-time concentration of the sum of the neutral extremely oxidized products is on the order of 0.1–1 ppt (~10

  7. Studies of Nuclei Close to 132Sn Using Single-Neutron Transfer Reactions

    International Nuclear Information System (INIS)

    Jones, K.L.; Pain, S.D.; Kozub, R.L.; Adekola, Aderemi S.; Bardayan, Daniel W.; Blackmon, Jeff C.; Catford, Wilton N.; Chae, K.Y.; Chipps, K.; Cizewski, J.A.; Erikson, Luke; Gaddis, A.L.; Greife, U.; Grzywacz, R.K.; Harlin, Christopher W.; Hatarik, Robert; Howard, Joshua A.; James, J.; Kapler, R.; Krolas, W.; Liang, J. Felix; Ma, Zhanwen; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D.; O'Malley, Patrick; Patterson, N.P.; Paulauskas, Stanley; Shapira, Dan; Shriner, J.F. Jr.; Sikora, M.; Sissom, D.J.; Smith, Michael Scott; Swan, T.P.; Thomas, J.S.; Wilson, Gemma L.

    2009-01-01

    Neutron transfer reactions were performed in inverse kinematics using radioactive ion beams of 132Sn, 130Sn, and 134Te and deuterated polyethylene targets. Preliminary results are presented. The Q-value spectra for 133Sn, 131Sn and 135Te reveal a number of previously unobserved peaks. The angular distributions are compatible with the expected lf7/2 nature of the ground state of 133Sn, and 2p3/2 for the 3.4 MeV state in 131Sn.

  8. Single Top quark production cross section and properties using the ATLAS detector at the LHC

    CERN Document Server

    Pedraza Lopez, Sebastian; The ATLAS collaboration

    2015-01-01

    Measurements of single top-quark production in proton proton collisions at 7 and 8 TeV are presented. In the leading order process, a W boson is exchanged in the t-channel. The single top-quark and anti-top total production cross sections, their ratio, as well as a measurement of the inclusive production cross section is presented. In addition, a measurement of the production cross section of a single top quark in association with a W boson is presented. All measurements are compared to state-of-the-art theoretical calculations and the CKM matrix element |Vtb| is determined. In addition, the s-channel production is explored and limits on exotic production in single top quark processes are discussed. This includes the search for flavor changing neutral currents and the search for additional W’ bosons or a search for monotops.

  9. Enhanced ultrastructural visualization of the horseradish peroxidase-tetramethylbenzidine reaction product.

    Science.gov (United States)

    Henry, M A; Westrum, L E; Johnson, L R

    1985-12-01

    Ultrastructural visualization of the horseradish peroxidase-tetramethylbenzidine (HRP-TMB) reaction product within trigeminal ganglion cells and brain stem axons and terminals following HRP injections into the pulpal chambers of cat teeth is enhanced by utilization of a modified osmication procedure that converts the reaction product to a markedly stable and electron-dense form. The results following the use of the modified osmication procedure (pH 5.0 phosphate buffer at 20 degrees C for 12 hours) are compared to results obtained by following Carson's osmication protocol (Carson KA, Mesulam M-M: J Histochem Cytochem 30:425, 1982; Carson KA, Mesulam M-M: In Tracing Neural Connections with Horseradish Peroxidase. Edited by M-M Mesulam. J Wiley, Chichester, England, 1982, p 153-184) (pH 6.0 phosphate buffer at 45 degrees C for 45 min). The results suggest that the conversion of the HRP-TMB reaction product to an electron-dense form during osmication is intimately associated with the pH of the phosphate buffer and the total time of osmication.

  10. Polymerase-endonuclease amplification reaction (PEAR for large-scale enzymatic production of antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Xiaolong Wang

    Full Text Available Antisense oligonucleotides targeting microRNAs or their mRNA targets prove to be powerful tools for molecular biology research and may eventually emerge as new therapeutic agents. Synthetic oligonucleotides are often contaminated with highly homologous failure sequences. Synthesis of a certain oligonucleotide is difficult to scale up because it requires expensive equipment, hazardous chemicals and a tedious purification process. Here we report a novel thermocyclic reaction, polymerase-endonuclease amplification reaction (PEAR, for the amplification of oligonucleotides. A target oligonucleotide and a tandem repeated antisense probe are subjected to repeated cycles of denaturing, annealing, elongation and cleaving, in which thermostable DNA polymerase elongation and strand slipping generate duplex tandem repeats, and thermostable endonuclease (PspGI cleavage releases monomeric duplex oligonucleotides. Each round of PEAR achieves over 100-fold amplification. The product can be used in one more round of PEAR directly, and the process can be further repeated. In addition to avoiding dangerous materials and improved product purity, this reaction is easy to scale up and amenable to full automation. PEAR has the potential to be a useful tool for large-scale production of antisense oligonucleotide drugs.

  11. Ozonation of imidacloprid in aqueous solutions: reaction monitoring and identification of degradation products.

    Science.gov (United States)

    Bourgin, Marc; Violleau, Frédéric; Debrauwer, Laurent; Albet, Joël

    2011-06-15

    This paper presents the degradation of imidacloprid by ozonation. Solutions of 39.0 μg/mL imidacloprid were prepared either by dissolution of standard or by dilution of Gaucho Blé(®) seed loading solution and then ozonated under different conditions. The concentration of imidacloprid and oxidation products in both solutions was monitored by HPLC-UV as a function of the treatment time for a concentration of 100g/m(3) of ozone in the inlet gas. No significant difference was observed: in both cases, imidacloprid degradation was a pseudo-first order reaction with similar reaction rates (0.129-0.147 min(-1)), degradation by-products with the same HPLC retention times were observed and their concentrations as a function of the treatment time followed a very similar trend. The study of ozone concentration in the inlet gas (from 25 to 100g/m(3)) showed that imidacloprid degradation is also a first-order reaction with respect to ozone. The ozonation by-products were then collected and identified by ESI(+)-MS. A degradation pathway of imidacloprid was finally proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Crystal structure of an EAL domain in complex with reaction product 5'-pGpG.

    Science.gov (United States)

    Robert-Paganin, Julien; Nonin-Lecomte, Sylvie; Réty, Stéphane

    2012-01-01

    FimX is a large multidomain protein containing an EAL domain and involved in twitching motility in Pseudomonas aeruginosa. We present here two crystallographic structures of the EAL domain of FimX (residues 438-686): one of the apo form and the other of a complex with 5'-pGpG, the reaction product of the hydrolysis of c-di-GMP. In both crystal forms, the EAL domains form a dimer delimiting a large cavity encompassing the catalytic pockets. The ligand is trapped in this cavity by its sugar phosphate moiety. We confirmed by NMR that the guanine bases are not involved in the interaction in solution. We solved here the first structure of an EAL domain bound to the reaction product 5'-pGpG. Though isolated FimX EAL domain has a very low catalytic activity, which would not be significant compared to other catalytic EAL domains, the structure with the product of the reaction can provides some hints in the mechanism of hydrolysis of the c-di-GMP by EAL domains.

  13. Crystal structure of an EAL domain in complex with reaction product 5'-pGpG.

    Directory of Open Access Journals (Sweden)

    Julien Robert-Paganin

    Full Text Available FimX is a large multidomain protein containing an EAL domain and involved in twitching motility in Pseudomonas aeruginosa. We present here two crystallographic structures of the EAL domain of FimX (residues 438-686: one of the apo form and the other of a complex with 5'-pGpG, the reaction product of the hydrolysis of c-di-GMP. In both crystal forms, the EAL domains form a dimer delimiting a large cavity encompassing the catalytic pockets. The ligand is trapped in this cavity by its sugar phosphate moiety. We confirmed by NMR that the guanine bases are not involved in the interaction in solution. We solved here the first structure of an EAL domain bound to the reaction product 5'-pGpG. Though isolated FimX EAL domain has a very low catalytic activity, which would not be significant compared to other catalytic EAL domains, the structure with the product of the reaction can provides some hints in the mechanism of hydrolysis of the c-di-GMP by EAL domains.

  14. Effects of extrusion, infrared and microwave processing on Maillard reaction products and phenolic compounds in soybean.

    Science.gov (United States)

    Zilić, Slađana; Mogol, Burçe Ataç; Akıllıoğlu, Gül; Serpen, Arda; Delić, Nenad; Gökmen, Vural

    2014-01-15

    The Maillard reaction indicators furosine, hydroxymethylfurfural (HMF), acrylamide and color were determined to evaluate heat effects induced during extrusion, infrared and microwave heating of soybean. In addition, the present paper aimed to study changes in the phenolic compounds, as well as in the overall antioxidant properties of different soybean products in relation to heating at 45-140 °C during the processes. Soybean proteins were highly sensible to Maillard reaction and furosine was rapidly formed under slight heating conditions during extrusion and infrared heating. Microwave heating at lower temperatures for a longer time yielded lower acrylamide levels in the final soybean products, as a result of its partial degradation. However, during infrared heating, acrylamide formation greatly increased with decreasing moisture content. After a short time of extrusion and infrared heating at 140 °C and microwave heating at 135 °C for 5 min, concentrations of HMF increased to 11.34, 26.21 and 34.97 µg g(-1), respectively. The heating conditions caused formation of acrylamide, HMF and furosine in high concentration. The results indicate that the complex structure of soybeans provides protection of phenolic compounds from thermal degradation, and that Maillard reaction products improved the antioxidant properties of heat-treated soybean. © 2013 Society of Chemical Industry.

  15. Biodiesel Fuel Production by the Transesterification Reaction of Soybean Oil Using Immobilized Lipase

    Science.gov (United States)

    Bernardes, Otávio L.; Bevilaqua, Juliana V.; Leal, Márcia C. M. R.; Freire, Denise M. G.; Langone, Marta A. P.

    The enzymatic alcoholysis of soybean oil with methanol and ethanol was investigated using a commercial, immobilized lipase (Lipozyme RM IM). The effect of alcohol (methanol or ethanol), enzyme concentration, molar ratio of alcohol to soybean oil, solvent, and temperature on biodiesel production was determined. The best conditions were obtained in a solvent-free system with ethanol/oil molar ratio of 3.0, temperature of 50°C, and enzyme concentration of 7.0% (w/w). Three-step batch ethanolysis was most effective for the production of biodiesel. Ethyl esters yield was about 60% after 4 h of reaction.

  16. Estimate of production of medical isotopes by photo-neutron reaction at the Canadian Light Source

    Science.gov (United States)

    Szpunar, B.; Rangacharyulu, C.; Daté, S.; Ejiri, H.

    2013-11-01

    In contrast to conventional bremsstrahlung photon beam sources, laser backscatter photon sources at electron synchrotrons provide the capability to selectively tune photons to energies of interest. This feature, coupled with the ubiquitous giant dipole resonance excitations of atomic nuclei, promises a fertile method of nuclear isotope production. In this article, we present the results of simulations of production of the medical/industrial isotopes 196Au, 192Ir and 99Mo by (γ,n) reactions. We employ FLUKA Monte Carlo code along with the simulated photon flux for a beamline at the Canadian Light Source in conjunction with a CO2 laser system.

  17. Mass resolved angular distribution of fission products in 20Ne + 232Th reaction

    International Nuclear Information System (INIS)

    Tripathi, R.; Sodaye, S.; Sudarshan, K.; Kumar, Amit; Guin, R.

    2011-01-01

    Mass resolved angular distribution of fission products was measured in 20 Ne + 232 Th reaction at beam energy of 120 MeV. A preliminary analysis of the angular distribution data of fission products shows higher average anisotropy compared to that calculated using statistical theory. A signature of rise in anisotropy near symmetry, as reported in earlier studies in literature, is also seen. Further study is in progress to get more detailed information about the contribution from non-compound nucleus fission and dependence of angular anisotropy on asymmetry of mass division

  18. 75 FR 82148 - Nutrition Labeling of Single-Ingredient Products and Ground or Chopped Meat and Poultry Products

    Science.gov (United States)

    2010-12-29

    ... poultry products inspection regulations to require nutrition labeling of the major cuts of single... cuts: This final rule requires nutrition labeling of the major cuts of single-ingredient, raw meat and... in the voluntary nutrition labeling program to provide nutrition labeling for the major cuts of...

  19. Effect of additives on mineral trioxide aggregate setting reaction product formation.

    Science.gov (United States)

    Zapf, Angela M; Chedella, Sharath C V; Berzins, David W

    2015-01-01

    Mineral trioxide aggregate (MTA) sets via hydration of calcium silicates to yield calcium silicate hydrates and calcium hydroxide (Ca[OH]2). However, a drawback of MTA is its long setting time. Therefore, many additives have been suggested to reduce the setting time. The effect those additives have on setting reaction product formation has been ignored. The objective was to examine the effect additives have on MTA's setting time and setting reaction using differential scanning calorimetry (DSC). MTA powder was prepared with distilled water (control), phosphate buffered saline, 5% calcium chloride (CaCl2), 3% sodium hypochlorite (NaOCl), or lidocaine in a 3:1 mixture and placed in crucibles for DSC evaluation. The setting exothermic reactions were evaluated at 37°C for 8 hours to determine the setting time. Separate samples were stored and evaluated using dynamic DSC scans (37°C→640°C at10°C/min) at 1 day, 1 week, 1 month, and 3 months (n = 9/group/time). Dynamic DSC quantifies the reaction product formed from the amount of heat required to decompose it. Thermographic peaks were integrated to determine enthalpy, which was analyzed with analysis of variance/Tukey test (α = 0.05). Isothermal DSC identified 2 main exothermal peaks occurring at 44 ± 12 and 343 ± 57 minutes for the control. Only the CaCl2 additive was an accelerant, which was observed by a greater exothermic peak at 101 ± 11 minutes, indicating a decreased setting time. The dynamic DSC scans produced an endothermic peak around 450°C-550°C attributed to Ca(OH)2 decomposition. The use of a few additives (NaOCl and lidocaine) resulted in significantly less Ca(OH)2 product formation. DSC was used to discriminate calcium hydroxide formation in MTA mixed with various additives and showed NaOCl and lidocaine are detrimental to MTA reaction product formation, whereas CaCl2 accelerated the reaction. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Reactions and single-particle structure of nuclei near the drip lines

    International Nuclear Information System (INIS)

    Hansen, P.G.; Sherrill, B.M.

    2001-01-01

    The techniques that have allowed the study of reactions of nuclei situated at or near the neutron or proton drip line are described. Nuclei situated just inside the drip line have low nucleon separation energies and, at most, a few bound states. If the angular momentum in addition is small, large halo states are formed where the wave function of the valency nucleon extends far beyond the nuclear radius. We begin with examples of the properties of nuclear halos and of their study in radioactive-beam experiments. We then turn to the continuum states existing above the particle threshold and also discuss the possibility of exciting them from the halo states in processes that may be thought of as 'collateral damage'. Finally, we show that the experience from studies of halo states has pointed to knockout reactions as a new way to perform spectroscopic studies of more deeply bound non-halo states. Examples are given of measurements of l values and spectroscopic factors

  1. RH and H2 production in reactions between ROH and small molybdenum oxide cluster anions.

    Science.gov (United States)

    Waller, Sarah E; Jarrold, Caroline C

    2014-09-18

    To test recent computational studies on the mechanism of metal oxide cluster anion reactions with water [Ramabhadran, R. O.; et al. J. Phys. Chem. Lett. 2010, 1, 3066; Ramabhadran, R. O.; et al. J. Am. Chem. Soc. 2013, 135, 17039], the reactivity of molybdenum oxo–cluster anions, Mo(x)O(y)(–) (x = 1 – 4; y ≤ 3x) toward both methanol (MeOH) and ethanol (EtOH) has been studied using mass spectrometric analysis of products formed in a high-pressure, fast-flow reactor. The size-dependent product distributions are compared to previous Mo(x)O(y)(–) + H2O/D2O reactivity studies, with particular emphasis on the Mo2O(y)(–) and Mo3O(y)(–) series. In general, sequential oxidation, Mo(x)O(y)(–) + ROH → Mo(x)O(y+1)(–) + RH, and addition reactions, Mo(x)O(y)(–) + ROH → Mo(x)O(y+1)RH(–), largely corresponded with previously studied Mo(x)O(y)(–) + H2O/D2O reactions [Rothgeb, D. W., Mann, J. E., and Jarrold, C. C. J. Chem. Phys. 2010, 133, 054305], though with much lower rate constants than those determined for Mo(x)O(y)(–) + H2O/D2O reactions. This finding is consistent with the computational studies that suggested that −H mobility on the cluster–water complex was an important feature in the overall reactivity. There were several notable differences between cluster–ROH and cluster–water reactions associated with lower R–OH bond dissociation energies relative to the HO–H dissociation energy.

  2. Zinc Enolate/Sulfinate Prepared from a Single-Run Reaction Using Zinc Dust with O-Tosylated 4-Hydroxy Coumarin and Pyrone

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ueon Sang; Joo, Seong-Ryu; Kim, Seung-Hoi [Dankook University, Cheonan (Korea, Republic of)

    2016-07-15

    We demonstrated the preparation of new zinc complexes, 2-oxo-2H-chromen-4-yloxy tosylzinc (I), and 6-methyl-2-oxo-2H-pyran-4-yloxy tosylzinc (II), by the oxidative addition of readily available zinc dust into the corresponding 4-tosylated coumarin (A) and pyrone (B), respectively. Of special interest, the thus-obtained zinc complexes showed an electrophile-dependent reactivity. The subsequent coupling reactions of I and II with a variety of acid chlorides provided the O-acylation product in moderate yields. More interestingly, it should be emphasized that the thus-prepared zinc complexes (I and II) functioned both as zinc enolate and zinc sulfinate, providing C(3)-disubstituted product (b) and sulfone (c), respectively, from a single-run reaction when I or II was treated with benzyl halides. Even though somewhat low yields were achieved under the nonoptimized conditions, the novel zinc complexes present another potential application for zinc reagents. Versatile applications of this discovery are currently underway.

  3. An Immunofluorescence-Assisted Microfluidic Single Cell Quantitative Reverse Transcription Polymerase Chain Reaction Analysis of Tumour Cells Separated from Blood

    Directory of Open Access Journals (Sweden)

    Kazunori Hoshino

    2015-11-01

    Full Text Available Circulating tumour cells (CTCs are important indicators of metastatic cancer and may provide critical information for individualized treatment. As CTCs are usually very rare, the techniques to obtain information from very small numbers of cells are crucial. Here, we propose a method to perform a single cell quantitative reverse transcription polymerase chain reaction (qPCR analysis of rare tumour cells. We utilized a microfluidic immunomagnetic assay to separate cancer cells from blood. A combination of detailed immunofluorescence and laser microdissection enabled the precise selection of individual cells. Cancer cells that were spiked into blood were successfully separated and picked up for a single cell PCR analysis. The breast cancer cell lines MCF7, SKBR3 and MDAMB231 were tested with 10 different genes. The result of the single cell analysis matched the results from a few thousand cells. Some markers (e.g., ER, HER2 that are commonly used for cancer identification showed relatively large deviations in expression levels. However, others (e.g., GRB7 showed deviations that are small enough to supplement single cell disease profiling.

  4. Search for single photons from supersymmetric particle production

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, E.; Ford, W.T.; Qi, N.; Read A.L. Jr.; Smith, J.G.; Camporesi, T.; De Sangro, R.; Marini, A.; Peruzzi, I.; Piccolo, M.; Ronga, F.; Blume, H.T.; Hurst, R.B.; Venuti, J.P.; Wald, H.B.; Weinstein, R.; Band, H.R.; Gettner, M.W.; Goderre, G.P.; Meyer, O.A.; Moromisato, J.H.; Polvado, R.O.; Shambroom, W.D.; Sleeman, J.C.; von Goeler, E.; Ash, W.W.; Chadwick, G.B.; Clearwater, S.H.; Coombes, R.W.; Kaye, H.S.; Lau, K.H.; Leedy, R.E.; Lynch, H.L.; Messner, R.L.; Moss, L.J.; Muller, F.; Nelson, H.N.; Ritson, D.M.; Rosenberg, L.J.; Wiser, D.E.; Zdarko, R.W.; Groom, D.E.; Lee, H.Y.; Delfino, M.C.; Heltsley, B.K.; Johnson, J.R.; Lavine, T.L.; Maruyama, T.; Prepost, R.

    1985-03-18

    A search in e/sup +/e/sup -/ annihilation for final states which contain only a single energetic photon has been performed at ..sqrt..s = 29 GeV with the MAC detector at PEP. The upper limit on an anomalous signal has been interpreted in terms of mass limits for supersymmetric particles under the assumption of radiative pair paroduction of either supersymmetric photons or neutrinos. For the supersymmetric electron (e) this limit is m/sub e/>37 GeV/c/sup 2/ at the 90% confidence level if M/sub e//sub L/ = m/sub e//sub R/ and the supersymmetric photo (gamma-tilde) has m/sub gamma-tilde/ = 0.

  5. Advance Planning of Form Properties in the Written Production of Single and Multiple Words

    Science.gov (United States)

    Damian, Markus F.; Stadthagen-Gonzalez, Hans

    2009-01-01

    Three experiments investigated the scope of advance planning in written production. Experiment 1 manipulated phonological factors in single word written production, and Experiments 2 and 3 did the same in the production of adjective-noun utterances. In all three experiments, effects on latencies were found which mirrored those previously…

  6. The reaction of lithium metal vapor with single walled carbon nanotubes of large diameters

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Kavan, Ladislav; Dunsch, L.

    2009-01-01

    Roč. 246, 11-12 (2009), s. 2428-2431 ISSN 0370-1972 R&D Projects: GA AV ČR IAA400400911; GA AV ČR KAN200100801; GA AV ČR IAA400400804; GA ČR GC203/07/J067; GA MŠk LC510 Institutional research plan: CEZ:AV0Z40400503 Keywords : lithium * single walled carbon nanotubes * Raman spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 1.150, year: 2009

  7. Deuteron-induced reactions generated by intense lasers for PET isotope production

    Science.gov (United States)

    Kimura, Sachie; Bonasera, Aldo

    2011-05-01

    We investigate the feasibility of using laser accelerated protons/deuterons for positron emission tomography (PET) isotope production by means of the nuclear reactions 11B(p, n) 11C and 10B(d, n) 11C. The second reaction has a positive Q-value and no energy threshold. One can, therefore, make use of the lower energy part of the laser-generated deuterons, which includes the majority of the accelerated deuterons. By assuming that the deuteron spectra are similar to the proton spectra, the 11C produced from the reaction 10B(d, n) 11C is estimated to be 7.4×10 9 per laser-shot at the Titan laser at Lawrence Livermore National Laboratory. Meanwhile a high-repetition table-top laser irradiation is estimated to generate 3.5×10 711C per shot from the same reaction. In terms of the 11C activity, it is about 2×10 4 Bq per shot. If this laser delivers kHz, the activity is integrated to 1 GBq after 3 min. The number is sufficient for the practical application in medical imaging for PET.

  8. Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase

    Science.gov (United States)

    Broussard, Tyler C.; Pakhomova, Svetlana; Neau, David B.; Bonnot, Ross; Waldrop, Grover L.

    2015-01-01

    Acetyl-CoA carboxylase catalyzes the first and regulated step in fatty acid synthesis. In most Gram-negative and Gram-positive bacteria, the enzyme is composed of three proteins: biotin carboxylase, a biotin carboxyl carrier protein (BCCP), and carboxyltransferase. The reaction mechanism involves two half-reactions with biotin carboxylase catalyzing the ATP-dependent carboxylation of biotin-BCCP in the first reaction. In the second reaction, carboxyltransferase catalyzes the transfer of the carboxyl group from biotin-BCCP to acetyl-CoA to form malonyl-CoA. In this report, high-resolution crystal structures of biotin carboxylase from Haemophilus influenzae were determined with bicarbonate, the ATP analogue AMPPCP; the carboxyphosphate intermediate analogues, phosphonoacetamide and phosphonoformate; the products ADP and phosphate; and the carboxybiotin analogue N1′-methoxycarbonyl biotin methyl ester. The structures have a common theme in that bicarbonate, phosphate, and the methyl ester of the carboxyl group of N1′-methoxycarbonyl biotin methyl ester all bound in the same pocket in the active site of biotin carboxylase and as such utilize the same set of amino acids for binding. This finding suggests a catalytic mechanism for biotin carboxylase in which the binding pocket that binds tetrahedral phosphate also accommodates and stabilizes a tetrahedral dianionic transition state resulting from direct transfer of CO2 from the carboxyphosphate intermediate to biotin. PMID:26020841

  9. Unique Pattern of Protein-Bound Maillard Reaction Products in Manuka (Leptospermum scoparium) Honey.

    Science.gov (United States)

    Hellwig, Michael; Rückriemen, Jana; Sandner, Daniel; Henle, Thomas

    2017-05-03

    As a unique feature, honey from the New Zealand manuka tree (Leptospermum scoparium) contains substantial amounts of dihydroxyacetone (DHA) and methylglyoxal (MGO). Although MGO is a reactive intermediate in the Maillard reaction, very little is known about reactions of MGO with honey proteins. We hypothesized that the abundance of MGO should result in a particular pattern of protein-bound Maillard reaction products (MRPs) in manuka honey. A protein-rich high-molecular-weight fraction was isolated from 12 manuka and 8 non-manuka honeys and hydrolyzed enzymatically. By HPLC-MS/MS, 8 MRPs, namely, N-ε-fructosyllysine, N-ε-maltulosyllysine, carboxymethyllysine, carboxyethyllysine (CEL), pyrraline, formyline, maltosine, and methylglyoxal-derived hydroimidazolone 1 (MG-H1), were quantitated. Compared to non-manuka honeys, the manuka honeys were characterized by high concentrations of CEL and MG-H1, whereas the formation of N-ε-fructosyllysine was suppressed, indicating concurrence reactions of glucose and MGO at the ε-amino group of protein-bound lysine. Up to 31% of the lysine and 8% of the arginine residues, respectively, in the manuka honey protein can be modified to CEL and MG-H1, respectively. CEL and MG-H1 concentrations correlated strongly with the MGO concentration of the honeys. Manuka honey possesses a special pattern of protein-bound MRPs, which might be used to prove the reliability of labeled MGO levels in honeys and possibly enable the detection of fraudulent MGO or DHA addition to honey.

  10. ASR prevention — Effect of aluminum and lithium ions on the reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Leemann, Andreas, E-mail: andreas.leemann@empa.ch [Laboratory for Concrete/Construction Chemistry, Empa, Swiss Federal Laboratories for Material Science and Technology, Überlandstr. 129, 8600 Dübendorf (Switzerland); Bernard, Laetitia [Laboratory for Nanoscale Materials Science, Empa, Swiss Federal Laboratories for Material Science and Technology, Überlandstr. 129, 8600 Dübendorf (Switzerland); Alahrache, Salaheddine; Winnefeld, Frank [Laboratory for Concrete/Construction Chemistry, Empa, Swiss Federal Laboratories for Material Science and Technology, Überlandstr. 129, 8600 Dübendorf (Switzerland)

    2015-10-15

    In spite of the recent progress in the understanding of the mechanisms enabling aluminum-containing SCM like metakaolin and added LiNO{sub 3} to limit the extent of ASR in mortar and concrete, some gaps still remain. They concern mainly the effect of aluminum-containing SCM on the formed ASR products and the influence of aggregate characteristics on the effectiveness of LiNO{sub 3}. In this study, a model system, concrete and mortar were investigated by pore solution analysis, TGA, XRD, NMR, SEM combined with EDX and ToF-SIMS to address these questions. The amount of aluminum present in the pore solution of concrete and mortar is only able to slow down SiO{sub 2} dissolution but not to alter morphology, structure and composition of the reaction products. LiNO{sub 3} can suppress ASR by forming dense products protecting reactive minerals from further reaction. But its effectiveness is decreasing with increasing specific surface area of the reactive minerals in aggregates. - Highlights: • Aluminum of SCM slows down SiO{sub 2} dissolution. • Aluminum of SCM does not alter morphology and structure of ASR product. • ASR suppressing effect of LiNO{sub 3} depends on specific surface area of the aggregates.

  11. Carbon Dioxide Utilization by the Five-Membered Ring Products of Cyclometalation Reactions.

    Science.gov (United States)

    Omae, Iwao

    2016-04-01

    In carbon dioxide utilization by cyclometalated five-membered ring products, the following compounds are used in four types of applications: 1. 2-Phenylpyrazole iridium compounds, pincer phosphine iridium compounds and 2-phenylimidazoline iridium compounds are used as catalysts for both formic acid production from CO 2 and H 2 , and hydrogen production from the formic acid. This formic acid can be a useful agent for H 2 production and storage for fuel cell electric vehicles. 2. Other chemicals, e.g. , dimethyl carbonate, methane, methanol and CO, are produced with dimethylaminomethylphenyltin compounds, pincer phosphine iridium compounds, pincer phosphine nickel compound and ruthenium carbene compound or 2-phenylpyridine iridium compounds, and phenylbenzothiazole iridium compounds as the catalysts for the reactions with CO 2 . 3. The five-membered ring intermediates of cyclometalation reactions with the conventional substrates react with carbon dioxide to afford their many types of carboxylic acid derivatives. 4. Carbon dioxide is easily immobilized at room temperature with immobilizing agents such as pincer phosphine nickel compounds, pincer phosphine palladium compounds, pincer N , N -dimethylaminomethyltin compounds and tris(2-pyridylthio)methane zinc compounds.

  12. Carbon Dioxide Utilization by the Five-Membered Ring Products of Cyclometalation Reactions

    Science.gov (United States)

    Omae, Iwao

    2016-01-01

    In carbon dioxide utilization by cyclometalated five-membered ring products, the following compounds are used in four types of applications: 1. 2-Phenylpyrazole iridium compounds, pincer phosphine iridium compounds and 2-phenylimidazoline iridium compounds are used as catalysts for both formic acid production from CO2 and H2, and hydrogen production from the formic acid. This formic acid can be a useful agent for H2 production and storage for fuel cell electric vehicles. 2. Other chemicals, e.g., dimethyl carbonate, methane, methanol and CO, are produced with dimethylaminomethylphenyltin compounds, pincer phosphine iridium compounds, pincer phosphine nickel compound and ruthenium carbene compound or 2-phenylpyridine iridium compounds, and phenylbenzothiazole iridium compounds as the catalysts for the reactions with CO2. 3. The five-membered ring intermediates of cyclometalation reactions with the conventional substrates react with carbon dioxide to afford their many types of carboxylic acid derivatives. 4. Carbon dioxide is easily immobilized at room temperature with immobilizing agents such as pincer phosphine nickel compounds, pincer phosphine palladium compounds, pincer N,N-dimethylaminomethyltin compounds and tris(2-pyridylthio)methane zinc compounds. PMID:28503084

  13. ASR prevention — Effect of aluminum and lithium ions on the reaction products

    International Nuclear Information System (INIS)

    Leemann, Andreas; Bernard, Laetitia; Alahrache, Salaheddine; Winnefeld, Frank

    2015-01-01

    In spite of the recent progress in the understanding of the mechanisms enabling aluminum-containing SCM like metakaolin and added LiNO 3 to limit the extent of ASR in mortar and concrete, some gaps still remain. They concern mainly the effect of aluminum-containing SCM on the formed ASR products and the influence of aggregate characteristics on the effectiveness of LiNO 3 . In this study, a model system, concrete and mortar were investigated by pore solution analysis, TGA, XRD, NMR, SEM combined with EDX and ToF-SIMS to address these questions. The amount of aluminum present in the pore solution of concrete and mortar is only able to slow down SiO 2 dissolution but not to alter morphology, structure and composition of the reaction products. LiNO 3 can suppress ASR by forming dense products protecting reactive minerals from further reaction. But its effectiveness is decreasing with increasing specific surface area of the reactive minerals in aggregates. - Highlights: • Aluminum of SCM slows down SiO 2 dissolution. • Aluminum of SCM does not alter morphology and structure of ASR product. • ASR suppressing effect of LiNO 3 depends on specific surface area of the aggregates

  14. Isoscalar single-pion production in the region of Roper and d⁎(2380 resonances

    Directory of Open Access Journals (Sweden)

    P. Adlarson

    2017-11-01

    Full Text Available Exclusive measurements of the quasi-free pn→ppπ− and pp→ppπ0 reactions have been performed by means of pd collisions at Tp=1.2 GeV using the WASA detector setup at COSY. Total and differential cross sections have been obtained covering the energy region Tp=0.95–1.3 GeV (s=2.3–2.46 GeV, which includes the regions of Δ(1232, N⁎(1440 and d⁎(2380 resonance excitations. From these measurements the isoscalar single-pion production has been extracted, for which data existed so far only below Tp=1 GeV. We observe a substantial increase of this cross section around 1 GeV, which can be related to the Roper resonance N⁎(1440, the strength of which shows up isolated from the Δ resonance in the isoscalar (NπI=0 invariant-mass spectrum. No evidence for a decay of the dibaryon resonance d⁎(2380 into the isoscalar (NNπI=0 channel is found. An upper limit of 180 μb (90% C.L. corresponding to a branching ratio of 9% has been deduced.

  15. Production and study of heavy neutron rich nuclei formed in multi-nucleon transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Zagrebaev, V. I.; Zemlyanoy, S. G., E-mail: zemlya@jinr.ru; Kozulin, E. M. [Joint Institute for Nuclear Research, FLNR (Russian Federation); Kudryavtsev, Yu. [Instituut voor Kern-en Stralingsfysica (Belgium); Fedosseev, V. [CERN (Switzerland); Bark, R. [Nat. Research Foundation, iThemba LABS (South Africa); Othman, H. A. [Menoufiya University, Physics Department, Faculty of Science (Egypt)

    2013-04-15

    A new setup is proposed to produce and investigate heavy neutron-rich nuclei located along the neutron closed shell N = 126. This 'blank spot' of the nuclear map can be reached neither in fusion-fission reactions nor in fragmentation processes widely used nowadays for the production of exotic nuclei. The present limits of the upper part of the nuclear map are very close to stability while the unexplored area of heavy neutron-rich nuclides along the neutron closed shell N = 126 is extremely important for nuclear astrophysics investigations and, in particular, for the understanding of the r-process of astrophysical nucleosynthesis. A new way was recently proposed for the production of these nuclei via low-energy multi-nucleon transfer reactions. The estimated yields of neutron-rich nuclei are found to be rather high in such reactions and several tens of new nuclides can be produced, for example, in the near-barrier collision of 136Xe with 208Pb. This setup could definitely open a new opportunity in the studies at heavy-ion facilities and will have significant impact on future experiments.

  16. Size and asymmetry of the reaction entrance channel: Influence on the probability of neck production

    Science.gov (United States)

    Milazzo, P. M.; Vannini, G.; Agodi, C.; Alba, R.; Bellia, G.; Colonna, N.; Coniglione, R.; Del Zoppo, A.; Finocchiaro, P.; Gramegna, F.; Iori, I.; Maiolino, C.; Margagliotti, G. V.; Mastinu, P. F.; Migneco, E.; Moroni, A.; Piattelli, P.; Rui, R.; Santonocito, D.; Sapienza, P.

    2005-06-01

    The results of experiments performed to investigate the Ni + Al, Ni + Ni, Ni + Ag reactions at 30 MeV / nucleon are presented. From the study of dissipative midperipheral collisions, it has been possible to detect events in which intermediate mass fragments (IMF) production takes place. The decay of a quasi-projectile has been identified; its excitation energy leads to a multifragmentation totally described in terms of a statistical disassembly of a thermalized system ( T≃4 MeV, E≃4 MeV/nucleon). Moreover, for the systems Ni + Ni, Ni + Ag, in the same nuclear reaction, a source with velocity intermediate between that of the quasi-projectile and that of the quasi-target, emitting IMF, is observed. The fragments produced by this source are more neutron rich than the average matter of the overall system, and have a charge distribution different, with respect to those statistically emitted from the quasi-projectile. The above features can be considered as a signature of the dynamical origin of the midvelocity emission. The results of this analysis show that IMF can be produced via different mechanisms simultaneously present within the same collision. Moreover, once fixed the characteristics of the quasi-projectile in the three considered reactions (in size, excitation energy and temperature), one observes that the probability of a partner IMF production via dynamical mechanism has a threshold (not present in the Ni + Al case) and increases with the size of the target nucleus.

  17. Size and asymmetry of the reaction entrance channel: Influence on the probability of neck production

    International Nuclear Information System (INIS)

    Milazzo, P.M.; Vannini, G.; Agodi, C.; Alba, R.; Bellia, G.; Colonna, N.; Coniglione, R.; Del Zoppo, A.; Finocchiaro, P.; Gramegna, F.; Iori, I.; Maiolino, C.; Margagliotti, G.V.; Mastinu, P.F.; Migneco, E.; Moroni, A.; Piattelli, P.; Rui, R.; Santonocito, D.; Sapienza, P.

    2005-01-01

    The results of experiments performed to investigate the Ni+Al, Ni+Ni, Ni+Ag reactions at 30 MeV/nucleon are presented. From the study of dissipative midperipheral collisions, it has been possible to detect events in which intermediate mass fragments (IMF) production takes place. The decay of a quasi-projectile has been identified; its excitation energy leads to a multifragmentation totally described in terms of a statistical disassembly of a thermalized system (T∼4 MeV, E * ∼4 MeV/nucleon). Moreover, for the systems Ni+Ni, Ni+Ag, in the same nuclear reaction, a source with velocity intermediate between that of the quasi-projectile and that of the quasi-target, emitting IMF, is observed. The fragments produced by this source are more neutron rich than the average matter of the overall system, and have a charge distribution different, with respect to those statistically emitted from the quasi-projectile. The above features can be considered as a signature of the dynamical origin of the midvelocity emission. The results of this analysis show that IMF can be produced via different mechanisms simultaneously present within the same collision. Moreover, once fixed the characteristics of the quasi-projectile in the three considered reactions (in size, excitation energy and temperature), one observes that the probability of a partner IMF production via dynamical mechanism has a threshold (not present in the Ni+Al case) and increases with the size of the target nucleus

  18. Raman Spectroscopy of Serpentine and Reaction Products at High Pressure Using a Diamond Anvil Cell

    Science.gov (United States)

    Burgess, K.; Zinin, P.; Odake, S.; Fryer, P.; Hellebrand, E.

    2012-12-01

    Serpentine is one of the most abundant hydrous phases in the altered subducting plate, and contributes a large portion of the water flux in subduction zones. Measuring and understanding the structural changes in serpentine with pressure aids our understanding of the processes ongoing in oceanic crust and subduction zones. We have conducted high-pressure/high-temperature experiments on serpentine and its dehydration reaction products using a diamond anvil cell. We used the multifunctional in-situ measurement system equipped with a Raman device and laser heating system at the University of Hawaii. Well-characterized natural serpentinite was used in the study. Pressure was determined using the shift of the fluorescence line of a ruby placed next to the sample. Raman spectra of serpentine were obtained at higher pressures than previously published, up to 15 GPa; the peak shift with pressure fits the model determined by Auzende et al. [2004] at lower pressures. Heating was done at several different pressures up to 20 GPa, and reaction products were identified using Raman. Micro-Raman techniques allow us to determine reaction progress and heterogeneity within natural samples containing olivine and serpentine. Auzende, A-L., I. Daniel, B. Reynard, C. Lemaire, F. Guyot (2004). High-pressure behavior of serpentine minerals: a Raman spectroscopic study. Phys. Chem. Minerals 31 269-277.

  19. A dataset of 200 structured product labels annotated for adverse drug reactions.

    Science.gov (United States)

    Demner-Fushman, Dina; Shooshan, Sonya E; Rodriguez, Laritza; Aronson, Alan R; Lang, Francois; Rogers, Willie; Roberts, Kirk; Tonning, Joseph

    2018-01-30

    Adverse drug reactions (ADRs), unintended and sometimes dangerous effects that a drug may have, are one of the leading causes of morbidity and mortality during medical care. To date, there is no structured machine-readable authoritative source of known ADRs. The United States Food and Drug Administration (FDA) partnered with the National Library of Medicine to create a pilot dataset containing standardised information about known adverse reactions for 200 FDA-approved drugs. The Structured Product Labels (SPLs), the documents FDA uses to exchange information about drugs and other products, were manually annotated for adverse reactions at the mention level to facilitate development and evaluation of text mining tools for extraction of ADRs from all SPLs. The ADRs were then normalised to the Unified Medical Language System (UMLS) and to the Medical Dictionary for Regulatory Activities (MedDRA). We present the curation process and the structure of the publicly available database SPL-ADR-200db containing 5,098 distinct ADRs. The database is available at https://bionlp.nlm.nih.gov/tac2017adversereactions/; the code for preparing and validating the data is available at https://github.com/lhncbc/fda-ars.

  20. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    Science.gov (United States)

    Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    A successive anchoring of Ti(NMe2)4, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1‧-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, 13C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands.

  1. Multiphasic Reaction Modeling for Polypropylene Production in a Pilot-Scale Catalytic Reactor

    Directory of Open Access Journals (Sweden)

    Mohammad Jakir Hossain Khan

    2016-06-01

    Full Text Available In this study, a novel multiphasic model for the calculation of the polypropylene production in a complicated hydrodynamic and the physiochemical environments has been formulated, confirmed and validated. This is a first research attempt that describes the development of the dual-phasic phenomena, the impact of the optimal process conditions on the production rate of polypropylene and the fluidized bed dynamic details which could be concurrently obtained after solving the model coupled with the CFD (computational fluid dynamics model, the basic mathematical model and the moment equations. Furthermore, we have established the quantitative relationship between the operational condition and the dynamic gas–solid behavior in actual reaction environments. Our results state that the proposed model could be applied for generalizing the production rate of the polymer from a chemical procedure to pilot-scale chemical reaction engineering. However, it was assumed that the solids present in the bubble phase and the reactant gas present in the emulsion phase improved the multiphasic model, thus taking into account that the polymerization took place mutually in the emulsion besides the bubble phase. It was observed that with respect to the experimental extent of the superficial gas velocity and the Ziegler-Natta feed rate, the ratio of the polymer produced as compared to the overall rate of production was approximately in the range of 9%–11%. This is a significant amount and it should not be ignored. We also carried out the simulation studies for comparing the data of the CFD-dependent dual-phasic model, the emulsion phase model, the dynamic bubble model and the experimental results. It was noted that the improved dual-phasic model and the CFD model were able to predict more constricted and safer windows at similar conditions as compared to the experimental results. Our work is unique, as the integrated developed model is able to offer clearer ideas

  2. Methane production from coal by a single methanogen

    Science.gov (United States)

    Sakata, S.; Mayumi, D.; Mochimaru, H.; Tamaki, H.; Yamamoto, K.; Yoshioka, H.; Suzuki, Y.; Kamagata, Y.

    2017-12-01

    Previous geochemical studies indicate that biogenic methane greatly contributes to the formation of coalbed methane (CBM). It is unclear, however, what part of coal is used for the methane production and what types of microbes mediate the process. Here we hypothesized that methylotrophic methanogens use methoxylated aromatic compounds (MACs) derived from lignin. We incubated 11 species of methanogens belonging to order Methanosarcinales with 7 types of MACs. Two strains of methanogens, i.e., Methermicoccus shengliensis AmaM and ZC-1, produced methane from the MACs. In fact, these methanogens used over 30 types of commercially available MACs in addition to methanol and methylamines. To date, it is widely believed that methanogens use very limited number of small compounds such as hydrogen plus carbon dioxide, acetate, and methanol, and only three methanogenic pathways are recognized accordingly. Here, in contrast, two Methermicoccus strains used many types of MACs. We therefore propose this "methoxydotrophic" process as the fourth methanogenic pathway. Incubation of AmaM with 2-methoxybenzoate resulted in methanogenesis associated with the stoichiometric production of 2-hydroxybenzoate. Incubation with 2-methoxy-[7-13C] benzoate and with [13C] bicarbonate indicated that two thirds of methane carbon derived from the methoxy group and one third from CO2. Furthermore, incubation with [2-13C] acetate resulted in significant increases of 13C in both methane and CO2. These results suggest the occurrence of O-demethylation, CO2 reduction and acetyl-CoA metabolism in the methoxydotrophic methanogenesis. Furthermore, incubation of AmaM with lignite, subbituminous or bituminous coals in the bicarbonate-buffered media revealed that AmaM produced methane directly from coals via the methoxydotrophic pathway. Although 4 types of MACs were detected in the coal media in addition to methanol and methylamines, their total concentrations were too low to account for the methane

  3. Single-molecule Imaging Analysis of Elementary Reaction Steps of Trichoderma reesei Cellobiohydrolase I (Cel7A) Hydrolyzing Crystalline Cellulose Iα and IIII*

    Science.gov (United States)

    Shibafuji, Yusuke; Nakamura, Akihiko; Uchihashi, Takayuki; Sugimoto, Naohisa; Fukuda, Shingo; Watanabe, Hiroki; Samejima, Masahiro; Ando, Toshio; Noji, Hiroyuki; Koivula, Anu; Igarashi, Kiyohiko; Iino, Ryota

    2014-01-01

    Trichoderma reesei cellobiohydrolase I (TrCel7A) is a molecular motor that directly hydrolyzes crystalline celluloses into water-soluble cellobioses. It has recently drawn attention as a tool that could be used to convert cellulosic materials into biofuel. However, detailed mechanisms of action, including elementary reaction steps such as binding, processive hydrolysis, and dissociation, have not been thoroughly explored because of the inherent challenges associated with monitoring reactions occurring at the solid/liquid interface. The crystalline cellulose Iα and IIII were previously reported as substrates with different crystalline forms and different susceptibilities to hydrolysis by TrCel7A. In this study, we observed that different susceptibilities of cellulose Iα and IIII are highly dependent on enzyme concentration, and at nanomolar enzyme concentration, TrCel7A shows similar rates of hydrolysis against cellulose Iα and IIII. Using single-molecule fluorescence microscopy and high speed atomic force microscopy, we also determined kinetic constants of the elementary reaction steps for TrCel7A against cellulose Iα and IIII. These measurements were performed at picomolar enzyme concentration in which density of TrCel7A on crystalline cellulose was very low. Under this condition, TrCel7A displayed similar binding and dissociation rate constants for cellulose Iα and IIII and similar fractions of productive binding on cellulose Iα and IIII. Furthermore, once productively bound, TrCel7A processively hydrolyzes and moves along cellulose Iα and IIII with similar translational rates. With structural models of cellulose Iα and IIII, we propose that different susceptibilities at high TrCel7A concentration arise from surface properties of substrate, including ratio of hydrophobic surface and number of available lanes. PMID:24692563

  4. Studies of short-lived products of spallation fission reactions at TRIUMF

    CERN Document Server

    Bischoff, G; D'Auria, J M; Dautet, H; Lee, J K P; Pate, B D; Wiesehahn, W

    1976-01-01

    The gas-jet recoil transport technique has been used to transport products from spallation and fission reactions from a target chamber to a shielded location for nuclear spectroscopic studies. These involve X- beta - gamma coincidence measurements and (shortly) time- of-flight mass spectroscopy. It has been deduced that the proton beam at present intensities has no appreciable effect on the ability of ethylene and other cluster-producing gases to transport radioactivity. Preliminary results will be presented for shortlived fission products from uranium, and for spallation products of iodine and argon. The latter were obtained from the bombardment of gas and aerosol targets mixed with the transporting gas in the target chamber, which appears to be a generally useful technique.

  5. Versatile Gap Mode Plasmon under ATR Geometry towards Single Molecule Raman, Laser Trapping and Photocatalytic Reactions.

    Science.gov (United States)

    Futamata, Masayuki; Akai, Keitaro; Iida, Chiaki; Akiba, Natsumi

    2017-01-01

    We have investigated various aspects of a gap mode plasmon to establish it as an analytical tool. First, markedly large (10 7 - 10 9 ) enhancement factors for the Raman scattering intensity from a thiophenol (TP) monolayer sandwiched by Ag films on a prism and silver nanoparticles (AgNPs) were obtained under attenuated total reflection (ATR) geometry. Second, AgNPs with a radius of ∼20 nm were optically trapped and immobilized on TP-covered Ag films under a gap mode resonance with extremely weak laser power density of ∼1 μW/μm 2 at 532 nm. The observed optical trapping and immobilization were theoretically rationalized using a dipole-dipole coupling and van der Waals interaction between AgNPs and Ag films. Third, p-alkyl TP molecules such as p-methyl TP, p-ethyl TP, p-isopropyl TP, and p-tertiary butyl TP were photocatalytically oxidized into p-carboxyl TP, whereas o- and m-methyl TP did not show such reactions.

  6. Heterogeneous kinetics, products, and mechanisms of ferulic acid particles in the reaction with NO3 radicals

    Science.gov (United States)

    Liu, Changgeng; Zhang, Peng; Wen, Xiaoying; Wu, Bin

    2017-03-01

    Methoxyphenols, as an important component of wood burning, are produced by lignin pyrolysis and considered to be the potential tracers for wood smoke emissions. In this work, the heterogeneous reaction between ferulic acid particles and NO3 radicals was investigated. Six products including oxalic acid, 4-vinylguaiacol, vanillin, 5-nitrovanillin, 5-nitroferulic acid, and caffeic acid were confirmed by gas chromatography-mass spectrometry (GC-MS). In addition, the reaction mechanisms were proposed and the main pathways were NO3 electrophilic addition to olefin and the meta-position to the hydroxyl group. The uptake coefficient of NO3 radicals on ferulic acid particles was 0.17 ± 0.02 and the effective rate constant under experimental conditions was (1.71 ± 0.08) × 10-12 cm3 molecule-1 s-1. The results indicate that ferulic acid degradation by NO3 can be an important sink at night.

  7. Reaction Mechanism of Tar Evolution in Biomass Steam Gasification for Hydrogen Production

    International Nuclear Information System (INIS)

    Shingo Katayama; Masahiro Suzuki; Atsushi Tsutsumi

    2006-01-01

    Reaction mechanism of tar evolution in steam gasification of biomass was investigated with a continuous cross-flow moving bed type differential reactor, in which tar and gases can be fractionated according to reaction time. We estimated that time profile of tar and gas evolution in the gasification of cellulose, xylan, and lignin, and compared it with experimental product time profile of real biomass gasification. The experimental tar evolution rate is different from estimated tar evolution rate. The estimated tar evolution rate has a peak at 20 s. On the other hand, the experimental tar evolution rate at 20 s is little, and tar at initial stage includes more water-soluble and water-insoluble compounds. It can be concluded that in the real biomass steam gasification the evolution of tar from cellulose and lignin component was found to be precipitated by that from hemi-cellulose component. (authors)

  8. Reaction products between Bi-Sr-Ca-Cu-oxide thick films and alumina substrates

    International Nuclear Information System (INIS)

    Alarco, J.A.; Ilushechkin, A.; Yamashita, T.; Bhargava, A.; Barry, J.; Mackinnon, I.D.R.

    1997-01-01

    The structure and composition of reaction products between Bi-Sr-Ca-Cu-oxide (BSCCO) thick films and alumina substrates have been characterized using a combination of electron diffraction, scanning electron microscopy and energy dispersive X-ray spectrometry (EDX). Sr and Ca are found to be the most reactive cations with alumina. Sr 4 Al 6 O 12 SO 4 is formed between the alumina substrates and BSCCO thick films prepared from paste with composition close to Bi-2212 (and Bi-2212+10 wt.% Ag). For paste with composition close to Bi(Pb)-2223 +20 wt.% Ag, a new phase with f.c.c. structure, lattice parameter about a=24.5 A and approximate composition Al 3 Sr 2 CaBi 2 CuO x has been identified in the interface region. Understanding and control of these reactions is essential for growth of high quality BSCCO thick films on alumina. (orig.)

  9. An update on measurements of helium-production reactions with a spallation neutron source

    International Nuclear Information System (INIS)

    Haight, R.C.; Bateman, F.B.; Chadwick, M.B.

    1995-01-01

    This report gives the status, updated since the last Research Coordination Meeting, of alpha-particle production cross sections, emission spectra and angular distributions which we are measuring at the spallation source of fast neutrons at the Los Alamos Meson Physics Facility (LAMPF). Detectors at angles of 30, 60, 90 and 135 degrees are used to identify alpha particles, measure their energy spectra, and indicate the time-of-flight, and hence the energy, of the neutrons inducing the reaction. The useful neutron energy ranges from less than 1 MeV to approximately 50 MeV for the present experimental setup. Targets under study at present include C, N, 0, 27 Al, Si, 51 V, 56 Fe, 59 CO, 58,60 Ni, 89 Y and 93 Nb. Data for 59 Co have been re-analyzed. The results illustrate the capabilities of the approach, agreement with literature values, and comparisons with nuclear reaction model calculations

  10. Single-site SBA-15 supported zirconium catalysts. Synthesis, characterization and toward cyanosilylation reaction

    International Nuclear Information System (INIS)

    Xu, Wei; Yu, Bo; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    Graphical abstract: Ligand-modified signal-site SBA-15 supported zirconium catalysts were synthesized by SOMC method and characterized by a variety of techniques. The zirconium surface complexes show high catalytic efficiency for cyanosilylation of benzaldehyde. - Highlights: • Some Zr active species have been anchored on the surface of SBA-15 by SOMC technique. • The structures of the Zr species have been characterized by a variety of techniques. • The anchored Zr species are single-sited surface complexes. • The Zr surface complexes are catalytic active for cyanosilylation of benzaldehyde. - Abstract: A successive anchoring of Zr(NMe 2 ) 4 , cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on dehydroxylated SBA-15 pretreated at 500 °C for 16 h (SBA-15 -500 ) was conducted by SOMC strategy in moderate conditions. The dehydoxylation of SBA-15 was monitored by in situ Fourier transform infrared spectroscopy (in situ FT-IR). The ligand-modified SBA-15 -500 supported zirconium complexes were characterized by in situ FT-IR, 13 C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MAS) and elemental analysis in detail, verifying that the surface zirconium species are single-sited. The catalytic activity of these complexes was evaluated by cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the structure of surface species and the configuration of the ligands

  11. Single-site SBA-15 supported zirconium catalysts. Synthesis, characterization and toward cyanosilylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei; Yu, Bo; Zhang, Ying; Chen, Xi; Zhang, Guofang, E-mail: gfzhang@snnu.edu.cn; Gao, Ziwei, E-mail: zwgao@snnu.edu.cn

    2015-01-15

    Graphical abstract: Ligand-modified signal-site SBA-15 supported zirconium catalysts were synthesized by SOMC method and characterized by a variety of techniques. The zirconium surface complexes show high catalytic efficiency for cyanosilylation of benzaldehyde. - Highlights: • Some Zr active species have been anchored on the surface of SBA-15 by SOMC technique. • The structures of the Zr species have been characterized by a variety of techniques. • The anchored Zr species are single-sited surface complexes. • The Zr surface complexes are catalytic active for cyanosilylation of benzaldehyde. - Abstract: A successive anchoring of Zr(NMe{sub 2}){sub 4}, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on dehydroxylated SBA-15 pretreated at 500 °C for 16 h (SBA-15{sub -500}) was conducted by SOMC strategy in moderate conditions. The dehydoxylation of SBA-15 was monitored by in situ Fourier transform infrared spectroscopy (in situ FT-IR). The ligand-modified SBA-15{sub -500} supported zirconium complexes were characterized by in situ FT-IR, {sup 13}C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MAS) and elemental analysis in detail, verifying that the surface zirconium species are single-sited. The catalytic activity of these complexes was evaluated by cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the structure of surface species and the configuration of the ligands.

  12. Rapid Removal of Tetrabromobisphenol A by Ozonation in Water: Oxidation Products, Reaction Pathways and Toxicity Assessment.

    Directory of Open Access Journals (Sweden)

    Ruijuan Qu

    Full Text Available Tetrabromobisphenol A (TBBPA is one of the most widely used brominated flame retardants and has attracted more and more attention. In this work, the parent TBBPA with an initial concentration of 100 mg/L was completely removed after 6 min of ozonation at pH 8.0, and alkaline conditions favored a more rapid removal than acidic and neutral conditions. The presence of typical anions and humic acid did not significantly affect the degradation of TBBPA. The quenching test using isopropanol indicated that direct ozone oxidation played a dominant role during this process. Seventeen reaction intermediates and products were identified using an electrospray time-of-flight mass spectrometer. Notably, the generation of 2,4,6-tribromophenol was first observed in the degradation process of TBBPA. The evolution of reaction products showed that ozonation is an efficient treatment for removal of both TBBPA and intermediates. Sequential transformation of organic bromine to bromide and bromate was confirmed by ion chromatography analysis. Two primary reaction pathways that involve cleavage of central carbon atom and benzene ring cleavage concomitant with debromination were thus proposed and further justified by calculations of frontier electron densities. Furthermore, the total organic carbon data suggested a low mineralization rate, even after the complete removal of TBBPA. Meanwhile, the acute aqueous toxicity of reaction solutions to Photobacterium Phosphoreum and Daphnia magna was rapidly decreased during ozonation. In addition, no obvious difference in the attenuation of TBBPA was found by ozone oxidation using different water matrices, and the effectiveness in natural waters further demonstrates that ozonation can be adopted as a promising technique to treat TBBPA-contaminated waters.

  13. Chemical Characterization and Reactivity Testing of Fuel-Oxidizer Reaction Product (Test Report)

    Science.gov (United States)

    1996-01-01

    The product of incomplete reaction of monomethylhydrazine (MMH) and nitrogen tetroxide (NTO) propellants, or fuel-oxidizer reaction product (FORP), has been hypothesized as a contributory cause of an anomaly which occurred in the chamber pressure (PC) transducer tube on the Reaction Control Subsystem (RCS) aft thruster 467 on flight STS-51. A small hole was found in the titanium-alloy PC tube at the first bend below the pressure transducer. It was surmised that the hole may have been caused by heat and pressure resulting from ignition of FORP. The NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) was requested to define the chemical characteristics of FORP, characterize its reactivity, and simulate the events in a controlled environment which may have lead to the Pc-tube failure. Samples of FORP were obtained from the gas-phase reaction of MMH with NTO under laboratory conditions, the pulsed firings of RCS thrusters with modified PC tubes using varied oxidizer or fuel lead times, and the nominal RCS thruster firings at WSTF and Kaiser-Marquardt. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), accelerating rate calorimetry (ARC), ion chromatography (IC), inductively coupled plasma (ICP) spectrometry, thermogravimetric analysis (TGA) coupled to FTIR (TGA/FTIR), and mechanical impact testing were used to qualitatively and quantitatively characterize the chemical, thermal, and ignition properties of FORP. These studies showed that the composition of FORP is variable but falls within a limited range of compositions that depends on the fuel loxidizer ratio at the time of formation, composition of the post-formation atmosphere (reducing or oxidizing), and reaction or postreaction temperature. A typical composition contains methylhydrazinium nitrate (MMHN), ammonium nitrate (AN), methylammonium nitrate (MAN), and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. The thermal decomposition

  14. Oxidation of triclosan by ferrate: Reaction kinetics, products identification and toxicity evaluation

    International Nuclear Information System (INIS)

    Yang Bin; Ying Guangguo; Zhao Jianliang; Zhang Lijuan; Fang Yixiang; Nghiem, Long Duc

    2011-01-01

    Research highlights: → Triclosan reacted rapidly with ferrate. → Oxidation resulted in a decrease in algal toxicity. → No inhibition of algae growth from ferrate. - Abstract: The oxidation of triclosan by commercial grade aqueous ferrate (Fe(VI)) was investigated and the reaction kinetics as a function of pH (7.0-10.0) were experimentally determined. Intermediate products of the oxidation process were characterized using both GC-MS and RRLC-MS/MS techniques. Changes in toxicity during the oxidation process of triclosan using Fe(VI) were investigated using Pseudokirchneriella subcapitata growth inhibition tests. The results show that triclosan reacted rapidly with Fe(VI), with the apparent second-order rate constant, k app , being 754.7 M -1 s -1 at pH 7. At a stoichiometric ratio of 10:1 (Fe(VI):triclosan), complete removal of triclosan was achieved. Species-specific rate constants, k, were determined for reaction of Fe(VI) with both the protonated and deprotonated triclosan species. The value of k determined for neutral triclosan was 6.7(±1.9) x 10 2 M -1 s -1 , while that measured for anionic triclosan was 7.6(±0.6) x 10 3 M -1 s -1 . The proposed mechanism for the oxidation of triclosan by the Fe(VI) involves the scission of ether bond and phenoxy radical addition reaction. Coupling reaction may also occur during Fe(VI) degradation of triclosan. Overall, the degradation processes of triclosan resulted in a significant decrease in algal toxicity. The toxicity tests showed that Fe(VI) itself dosed in the reaction did not inhibit green algae growth.

  15. Oxidation of triclosan by ferrate: Reaction kinetics, products identification and toxicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yang Bin [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Ying Guangguo, E-mail: guang-guo.ying@csiro.au [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Zhao Jianliang; Zhang Lijuan; Fang Yixiang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Nghiem, Long Duc [School of Civil Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2011-02-15

    Research highlights: {yields} Triclosan reacted rapidly with ferrate. {yields} Oxidation resulted in a decrease in algal toxicity. {yields} No inhibition of algae growth from ferrate. - Abstract: The oxidation of triclosan by commercial grade aqueous ferrate (Fe(VI)) was investigated and the reaction kinetics as a function of pH (7.0-10.0) were experimentally determined. Intermediate products of the oxidation process were characterized using both GC-MS and RRLC-MS/MS techniques. Changes in toxicity during the oxidation process of triclosan using Fe(VI) were investigated using Pseudokirchneriella subcapitata growth inhibition tests. The results show that triclosan reacted rapidly with Fe(VI), with the apparent second-order rate constant, k{sub app}, being 754.7 M{sup -1} s{sup -1} at pH 7. At a stoichiometric ratio of 10:1 (Fe(VI):triclosan), complete removal of triclosan was achieved. Species-specific rate constants, k, were determined for reaction of Fe(VI) with both the protonated and deprotonated triclosan species. The value of k determined for neutral triclosan was 6.7({+-}1.9) x 10{sup 2} M{sup -1} s{sup -1}, while that measured for anionic triclosan was 7.6({+-}0.6) x 10{sup 3} M{sup -1} s{sup -1}. The proposed mechanism for the oxidation of triclosan by the Fe(VI) involves the scission of ether bond and phenoxy radical addition reaction. Coupling reaction may also occur during Fe(VI) degradation of triclosan. Overall, the degradation processes of triclosan resulted in a significant decrease in algal toxicity. The toxicity tests showed that Fe(VI) itself dosed in the reaction did not inhibit green algae growth.

  16. Preventive effect of fermented Maillard reaction products from milk proteins in cardiovascular health.

    Science.gov (United States)

    Oh, N S; Kwon, H S; Lee, H A; Joung, J Y; Lee, J Y; Lee, K B; Shin, Y K; Baick, S C; Park, M R; Kim, Y; Lee, K W; Kim, S H

    2014-01-01

    The aim of this study was to determine the dual effect of Maillard reaction and fermentation on the preventive cardiovascular effects of milk proteins. Maillard reaction products (MRP) were prepared from the reaction between milk proteins, such as whey protein concentrates (WPC) and sodium caseinate (SC), and lactose. The hydrolysates of MRP were obtained from fermentation by lactic acid bacteria (LAB; i.e., Lactobacillus gasseri H10, L. gasseri H11, Lactobacillus fermentum H4, and L. fermentum H9, where human-isolated strains were designated H1 to H15), which had excellent proteolytic and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities (>20%). The antioxidant activity of MRP was greater than that of intact proteins in assays of the reaction with 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and trivalent ferric ions; moreover, the effect of MRP was synergistically improved by fermentation. The Maillard reaction dramatically increased the level of antithrombotic activity and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) inhibitory effect of milk proteins, but did not change the level of activity for micellar cholesterol solubility. Furthermore, specific biological properties were enhanced by fermentation. Lactobacillus gasseri H11 demonstrated the greatest activity for thrombin and HMGR inhibition in Maillard-reacted WPC, by 42 and 33%, respectively, whereas hydrolysates of Maillard-reacted SC fermented by L. fermentum H9 demonstrated the highest reduction rate for micellar cholesterol solubility, at 52%. In addition, the small compounds that were likely released by fermentation of MRP were identified by size-exclusion chromatography. Therefore, MRP and hydrolysates of fermented MRP could be used to reduce cardiovascular risks. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Safety assessment of Maillard reaction products of chicken bone hydrolysate using Sprague-Dawley rats

    Directory of Open Access Journals (Sweden)

    Jin-Zhi Wang

    2016-03-01

    Full Text Available Background: The Maillard reaction products of chicken bone hydrolysate (MRPB containing 38% protein, which is a derived product from chicken bone, is usually used as a flavor enhancer or food ingredient. In the face of a paucity of reported data regarding the safety profile of controversial Maillard reaction products, the potential health effects of MRPB were evaluated in a subchronic rodent feeding study. Methods: Sprague–Dawley rats (SD, 5/sex/group were administered diets containing 9, 3, 1, or 0% of MRPB derived from chicken bone for 13 weeks. Results: During the 13-week treatment period, no mortality occurred, and no remarkable changes in general condition and behavior were observed. The consumption of MRPB did not have any effect on body weight or feed and water consumption. At the same time, there was no significant increase in the weights of the heart, liver, lung, kidney, spleen, small intestine, and thymus in groups for both sexes. Serological examination showed serum alanine aminotransferase in both sexes was decreased significantly, indicating liver cell protection. No treatment-related histopathological differences were observed between the control and test groups. Conclusion: Based on the results of this study, the addition of 9% MRPB in the diet had no adverse effect on both male and female SD rats during the 90-day observation. Those results would provide useful information on the safety of a meaty flavor enhancer from bone residue as a byproduct of meat industry.

  18. Cross section formulae on single W and Z boson productions in electron-positron collisions

    International Nuclear Information System (INIS)

    Katuya, Mituaki

    1987-01-01

    The formulae are given for the transverse momentum distributions and total cross sections for the single W boson and Z boson productions in electron-positron collisions by using the equivalent photon approximation. (author)

  19. Evaluation of the Cortical Bone Reaction Around of Implants Using a Single-Use Final Drill: A Histologic Study.

    Science.gov (United States)

    Gehrke, Sergio Alexandre

    2015-07-01

    This study was designed to compare the cortical bone reaction following traditional osteotomy or the use of a single-use final drill in the osseointegration of implants in the tibia of rabbits. For this study, 48 conical implants, of standard surface type and design and manufactured by the same company, were inserted into the tibiae of 12 rabbits and removed after 30 or 60 days for histologic analysis. Two test groups were prepared according to the drill sequence used for the osteotomy at the preparation sites: in the control group was used a conventional drill sequence with several uses, whereas the test group (tesG) used a single-use final drill. The bone-to-implant contact and qualitative factors of the resulting cortical bone were assessed. Both techniques produced good implant integration. Differences in the linear bone-to-implant contact were observed between the drilling procedures as time elapsed in vivo, with the tesG appearing to have clinical advantages. Both groups exhibited new bone in quantity and in quality; however, the tesG exhibited a higher level of new bone deposition than the control group. Within the limitations of this study, the findings suggest that the use of a single-use final drill leads to better and faster organization of the cortical bone area during the evaluated period and may avoid the possible problems that can be caused by worn drills.

  20. Quantifying VOC-Reaction Tracers, Ozone Production, and Continuing Aerosol Production Rates in Urban and Far-Downwind Atmospheres

    Science.gov (United States)

    Chatfield, Robert; Ren, X.; Brune, W.; Fried, A.; Schwab, J.

    2008-01-01

    reaction products) and aerosol production, looking for VOC's that might be most implicated. All three variables j(sub rads), [HCHO], and [NO] are relatively easily measured in widespread air pollution monitoring networks, and all are deducible form space-borne observations, though estimation of [NO] from [NO2] (the species observable from space) may require care. We report also on airborne and surface observations of HCHO, suggesting that concentrated (urban) and more diffuse (forest) sources may be distinguishable from space. The use of the 3.58 micron microwindow for HCHO remote sensing should allow much sharper resolution of HCHO than the UV. UV sensing requires large and expensive instruments, but even these seem justified since formaldehyde is so informative.

  1. Relating gas chromatographic profiles to sensory measurements describing the end products of the Maillard reaction.

    Science.gov (United States)

    Stanimirova, I; Boucon, C; Walczak, B

    2011-01-30

    Often in analytical practice, a set of samples is described by different types of measurements in the hope that a comprehensive characterisation of samples will provide a more complete picture and will help in determining the similarities among samples. The main focus is then on how to combine the information described by different measurement variables and how to analyse it simultaneously. In other words, the main goal is to find a common representation of samples that emphasises the individual and common properties of the different blocks of variables. Several methods can be adopted for the simultaneous analysis of multiblock data with a common object mode. These are: consensus principal component analysis (CPCA), SUM-PCA, multiple factor analysis (MFA) and structuration des tableaux à trois indices de la statistique (STATIS).In this article we present a comparison of the performances of these methods for data describing the chemistry and sensory profiles of the Maillard reaction products. The aroma compounds formed during the reaction of thermal heating between one or two selected amino acids and one or two reducing sugars have been analysed by head space gas chromatography and the intensity and nature of the odour of the resulting products has been evaluated according to selected descriptors by a panel of sensory experts.The results showed that using the information of the chromatographic and sensory data in conjunction enhanced the interpretability of the data. SUM-PCA and more specifically multiple factor analysis, MFA, allowed for a detailed study of the similarities of mixtures in terms of reaction products and sensory profiles. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. On-chip real-time single-copy polymerase chain reaction in picoliter droplets

    Energy Technology Data Exchange (ETDEWEB)

    Beer, N R; Hindson, B; Wheeler, E; Hall, S B; Rose, K A; Kennedy, I; Colston, B

    2007-04-20

    The first lab-on-chip system for picoliter droplet generation and PCR amplification with real-time fluorescence detection has performed PCR in isolated droplets at volumes 10{sup 6} smaller than commercial real-time PCR systems. The system utilized a shearing T-junction in a silicon device to generate a stream of monodisperse picoliter droplets that were isolated from the microfluidic channel walls and each other by the oil phase carrier. An off-chip valving system stopped the droplets on-chip, allowing them to be thermal cycled through the PCR protocol without droplet motion. With this system a 10-pL droplet, encapsulating less than one copy of viral genomic DNA through Poisson statistics, showed real-time PCR amplification curves with a cycle threshold of {approx}18, twenty cycles earlier than commercial instruments. This combination of the established real-time PCR assay with digital microfluidics is ideal for isolating single-copy nucleic acids in a complex environment.

  3. Single-site SBA-15 supported zirconium catalysts. Synthesis, characterization and toward cyanosilylation reaction

    Science.gov (United States)

    Xu, Wei; Yu, Bo; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    A successive anchoring of Zr(NMe2)4, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1‧-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on dehydroxylated SBA-15 pretreated at 500 °C for 16 h (SBA-15-500) was conducted by SOMC strategy in moderate conditions. The dehydoxylation of SBA-15 was monitored by in situ Fourier transform infrared spectroscopy (in situ FT-IR). The ligand-modified SBA-15-500 supported zirconium complexes were characterized by in situ FT-IR, 13C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MAS) and elemental analysis in detail, verifying that the surface zirconium species are single-sited. The catalytic activity of these complexes was evaluated by cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the structure of surface species and the configuration of the ligands.

  4. Single transverse-spin asymmetry in high transverse momentum pion production in pp collisions

    DEFF Research Database (Denmark)

    Kouvaris, Christoforos; Qiu, Jian-Wei; Vogelsang, Werner

    2006-01-01

    We study the single-spin (left-right) asymmetry in single-inclusive pion production in hadronic scattering. This asymmetry is power-suppressed in the transverse momentum of the produced pion and can be analyzed in terms of twist-three parton correlation functions in the proton. We present new...

  5. Evaluation of the single radiosensitivity in patients subjected to medical exposure that show severe skin reactions

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Vallerga, M.B.; Portas, M.; Perez, M.R.

    2006-01-01

    The Burnt Hospital of the Buenos Aires City Government (HQGCBA) it is a hospital of reference of the Net of Medical Responses in Radiological Emergencies of the Argentine Republic. In the mark of an agreement among the HQGCBA and the Authority Regulatory Nuclear (ARN), it is in execution a study protocol for the one boarding diagnoses and therapeutic of radioinduced cutaneous leisure. They exist individual variations that can condition the response to the ionizing radiations (IR), so much in accidental exposures as having programmed (radiotherapy, radiology interventionist). In this context, the individual radiosensitivity is evaluated in the patients signed up in this protocol that presented sharp or late cutaneous reactions, with grades of severity 3-4 (approaches EORTC/RTOG). The capacity of repair of the DNA was evaluated in outlying blood lymphocytes irradiated in vitro (2 Gy, gamma of Co-60) by means of the micronucleus techniques and comet essay in alkaline conditions. In this work two cases in those that is applied this study protocol, the therapeutic answer and its correlate with the discoveries of the radiosensitivity tests is presented. Case 1: patient of feminine sex, subjected to external radiotherapy by a breast infiltrating ductal carcinoma; developed sharp cutaneous radiotoxicity grade 3 (confluent humid epithelitis) that motivate the interruption of the treatment. Case 2: patient of masculine sex, subjected to a coronary angioplasty (interventionist radiology); developed late cutaneous radiotoxicity grade 4 (ulceration in dorsal region). Both patients were treated with topical trolamine associated to systemic administration of pentoxiphiline and antioxidants. The therapeutic answer is evaluated by means of clinical pursuit, photographic serial register and complementary exams (thermography and ultrasonography of high frequency). In the case 1 the answer was very favorable, with precocious local improvement and complete remission of symptoms and

  6. Production of 139Ce by the 139La(p,n)139Ce reaction

    International Nuclear Information System (INIS)

    Ishioka, Noriko S.; Sekine, Toshiaki; Izumo, Mishiroku; Hashimoto, Kazuyuki; Kobayashi, Katsutoshi; Matsuoka, Hiromitsu

    2002-01-01

    To produce a carrier-free 139 Ce to be used as an efficiency-calibration source for Ge detectors, a target-preparation method and a chemical separation method were studied. It was found that commercially available powders of lanthanum-oxide and lanthanum metal are applicable to a target material in the nuclear reaction 139 La(p,n) 139 Ce. In the separation of 139 Ce from an irradiated lanthanum target, a solvent-extraction method and an ion-exchange method gave final products in good chemical purity. (author)

  7. Production of terbium-152 by heavy ion reactions and proton induced spallation

    CERN Document Server

    Allen, B J; Sarkar, S; Beyer, G; Morel, Christian; Byrne, A P

    2001-01-01

    Terbium-152 (Tb-152) is of potential value as a radiotracer for radiolanthanides in positron emission tomography. We report the production of Tb-152 by heavy ion reactions at the ANU Tandem accelerator, and by the spallation method at the CERN proton accelerator using the on-line ISOLDE separator, obtaining microcurie and millicurie yields, respectively. After purification, a phantom image in PET is obtained which shows the feasibility of using Tb-152 for monitoring the kinetics of Tb-149 and other radiolanthanides. However, the current availability of this radioisotope will be restricted to major nuclear physics research centres. (7 refs).

  8. Coherent anti-Stokes Raman scattering (CARS) detection or hot atom reaction product internal energy distributions

    International Nuclear Information System (INIS)

    Quick, C.R. Jr.; Moore, D.S.

    1983-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is being utilized to investigate the rovibrational energy distributions produced by reactive and nonreactive collisions of translationally hot atoms with simple molecules. Translationally hot H atoms are produced by ArF laser photolysis of HBr. Using CARS we have monitored, in a state-specific and time-resolved manner, rotational excitation of HBr (v = 0), vibrational excitation of HBr and H 2 , rovibrational excitation of H 2 produced by the reaction H + HBr → H 2 + Br, and Br atom production by photolysis of HBr

  9. Reaction of aryne with aza-Morita–Baylis–Hillman adducts: Synthesis of 4-quinolones and N-arylation products

    Directory of Open Access Journals (Sweden)

    Li-Li Liu

    2017-05-01

    Full Text Available The reaction of aryne with aza-Morita–Baylis–Hillman (aza-MBH adducts has been studied. Aryne reacts with aza-MBH adducts through a cascade insertion–cyclization–ene reaction to produce 4-quinolones in 18–44% yields; meanwhile, aza-MBH adducts undergo N-insertion reaction with aryne to afford N-arylation products in 27–77% yields.

  10. Altering Reservoir Wettability to Improve Production from Single Wells

    Energy Technology Data Exchange (ETDEWEB)

    W. W. Weiss

    2006-09-30

    tests were conducted in an area of the field that has not met production expectations. The dataset on the 23 Phosphoria well surfactant soaks was updated. An analysis of the oil decline curves indicted that 4.5 lb of chemical produced a barrel of incremental oil. The AI analysis supports the adage 'good wells are the best candidates.' The generally better performance of surfactant in the high permeability core laboratory tests supports this observation. AI correlations were developed to predict the response to water-frac stimulations in a tight San Andres reservoir. The correlations maybe useful in the design of Cedar Creek Anticline surfactant soak treatments planned for next year. Nuclear Magnetic Resonance scans of dolomite cores to measure porosity and saturation during the high temperature laboratory work were acquired. The scans could not be correlated with physical measurement using either conventional or AI methods.

  11. Catalytic hydrogen production from fossil fuels via the water gas shift reaction

    International Nuclear Information System (INIS)

    Gradisher, Logan; Dutcher, Bryce; Fan, Maohong

    2015-01-01

    Highlights: • Hydrogen is a clean alternative to hydrocarbon fuels. • Hydrogen is primarily produced with the water gas shift reaction. • Development of water gas shift catalysts is essential to the energy industry. • This work summarizes recent progress in water gas shift catalyst research. - Abstract: The production of hydrogen is a highly researched topic for many reasons. First of all, it is a clean fuel that can be used instead of hydrocarbons, which produce CO 2 , a greenhouse gas emission that is thought to be the reason for climate change in the world. The largest source of hydrogen is the water gas shift (WGS) reaction, where CO and water are mixed over a catalyst to produce the desired hydrogen. Many researchers have focused on development of WGS catalysts with different metals. The most notable of these metals are precious and rare earth metals which, when combined, have unique properties for the WGS reaction. Research in this area is very important to the energy industry and the future of energy around the world. However, the progress made recently has not been reviewed, and this review was designed to fill the gap

  12. Product energy deposition of CN + alkane H abstraction reactions in gas and solution phases

    Science.gov (United States)

    Glowacki, David R.; Orr-Ewing, Andrew J.; Harvey, Jeremy N.

    2011-06-01

    In this work, we report the first theoretical studies of post-transition state dynamics for reaction of CN with polyatomic organic species. Using electronic structure theory, a newly developed analytic reactive PES, a recently implemented rare-event acceleration algorithm, and a normal mode projection scheme, we carried out and analyzed quasi-classical and classical non-equilibrium molecular dynamics simulations of the reactions CN + propane (R1) and CN + cyclohexane (R2). For (R2), we carried out simulations in both the gas phase and in a CH2Cl2 solvent. Analysis of the results suggests that the solvent perturbations to the (R2) reactive free energy surface are small, leading to product energy partitioning in the solvent that is similar to the gas phase. The distribution of molecular geometries at the respective gas and solution phase variational association transition states is very similar, leading to nascent HCN which is vibrationally excited in both its CH stretching and HCN bending coordinates. This study highlights the fact that significant non-equilibrium energy distributions may follow in the wake of solution phase bimolecular reactions, and may persist for hundreds of picoseconds despite frictional damping. Consideration of non-thermal distributions is often neglected in descriptions of condensed-phase reactivity; the extent to which the present intriguing observations are widespread remains an interesting question.

  13. Fast Reactions of Aluminum and Explosive Decomposition Products in a Post-Detonation Environment

    Science.gov (United States)

    Tappan, Bryce; Manner, Virginia; Lloyd, Joseph; Pemberton, Steven; Explosives Applications; Special Projects Team

    2011-06-01

    In order to determine the reaction behavior of Al in HMX/cast-cured binder formulations shortly after the passage of the detonation, a series of cylinder tests was performed on formulations with varying amounts of 2 μm spherical Al as well as LiF (an inert surrogate for Al). In these studies, both detonation velocity and cylinder expansion velocity are measured in order to determine exactly how and when Al contributes to the explosive event, particularly in the presence of oxidizing/energetic binders. The U.S. Army ARDEC at Picatinny has recently coined the term ``combined effects explosives'' for these materials as they demonstrate both high metal pushing capability and high blast ability. This study is aimed at developing a fundamental understanding of the reaction of Al with explosives decomposition products, where both the detonation and post-detonation environment are analyzed. Reaction rates of Al metal are determined via comparison of predicted performance based on thermoequilibrium calculations. The JWL equation of state, detonation velocities, wall velocities, and parameters at the C-J plane are some of the parameters that will be discussed.

  14. Analysis of reaction products of food contaminants and ingredients: Bisphenol A diglycidyl ether (BADGE) in canned foods

    NARCIS (Netherlands)

    Coulier, L.; Bradley, E.L.; Bas, R.C.; Verhoeckx, K.C.M.; Driffield, M.; Harmer, N.; Castle, L.

    2010-01-01

    Bisphenol A diglycidyl ether (BADGE) is an epoxide that is used as a starting substance in the manufacture of can coatings for food-contact applications. Following migration from the can coating into food, BADGE levels decay and new reaction products are formed by reaction with food ingredients. The

  15. 40 CFR 721.3830 - Formaldehyde, reaction products with an alkylated phenol and an aliphatic amine (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, reaction products with... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3830 Formaldehyde, reaction... new uses subject to reporting. (1) The chemical substance identified generically as Formaldehyde...

  16. pH-Controlled Oxidation of an Aromatic Ketone: Structural Elucidation of the Products of Two Green Chemical Reactions

    Science.gov (United States)

    Ballard, C. Eric

    2010-01-01

    A laboratory experiment emphasizing the structural elucidation of organic compounds has been developed as a discovery exercise. The "unknown" compounds are the products of the pH-controlled oxidation of 4'-methoxyacetophenone with bleach. The chemoselectivity of this reaction is highly dependent on the pH of the reaction media: under basic…

  17. Molecular extinction coefficients of lead sulfide and polymerized diaminobenzidine as final reaction products of histochemical phosphatase reactions

    NARCIS (Netherlands)

    van Noorden, C. J.; Jonges, G. N.

    1992-01-01

    Molar extinction coefficients of precipitated lead sulfide (PbS) and polymerized diaminobenzidine (polyDAB) have been determined at wavelengths of 450 nm and 480 nm, respectively, for quantitative histochemical analysis of phosphatase reactions. These values are essential for the conversion of

  18. Compact Ag@Fe3O4 Core-shell Nanoparticles by Means of Single-step Thermal Decomposition Reaction

    Science.gov (United States)

    Brollo, Maria Eugênia F.; López-Ruiz, Román; Muraca, Diego; Figueroa, Santiago J. A.; Pirota, Kleber R.; Knobel, Marcelo

    2014-10-01

    A temperature pause introduced in a simple single-step thermal decomposition of iron, with the presence of silver seeds formed in the same reaction mixture, gives rise to novel compact heterostructures: brick-like Ag@Fe3O4 core-shell nanoparticles. This novel method is relatively easy to implement, and could contribute to overcome the challenge of obtaining a multifunctional heteroparticle in which a noble metal is surrounded by magnetite. Structural analyses of the samples show 4 nm silver nanoparticles wrapped within compact cubic external structures of Fe oxide, with curious rectangular shape. The magnetic properties indicate a near superparamagnetic like behavior with a weak hysteresis at room temperature. The value of the anisotropy involved makes these particles candidates to potential applications in nanomedicine.

  19. Proton induced reactions on natural Pb targets. A potential new cyclotron method for 201Tl production

    International Nuclear Information System (INIS)

    Lagunas-Solar, M.C.; Little, F.E.; Jungerman, J.A.

    1981-01-01

    The basis for a new cyclotron method for production of no-carrier-added 201 Tl, from its grandparent 201 Bi via the Pb(p,xn) 201 Bi → 201 Pb → 201 Tl reaction is presented here. Thick-target yields (μCi/μAh) for the 201 Pb and 200 Pb induced radioactivities were measured over the 65- to 43-MeV proton-energy range. The experimental data indicate that the 201 Tl yields could be optimized by using Pb targets enriched in 206 Pb, 207 Pb, and, or 208 Pb, which are expected to provide greater overall yields than current methods, as well as material of high-chemical, radiochemical and radionuclidic quality for radiopharmaceutical production. (author)

  20. Revised Production Rates for Na-22 and Mn-54 in Meteorites Using Cross Sections Measured for Neutron-induced Reactions

    Science.gov (United States)

    Sisterson, J. M.; Kim, K. J.; Reedy, R. C.

    2004-01-01

    The interactions of galactic cosmic rays (GCR) with extraterrestrial bodies produce small amounts of radionuclides and stable isotopes. The production rates of many relatively short-lived radionuclides, including 2.6-year Na-22 and 312-day Mn-54, have been measured in several meteorites collected very soon after they fell. Theoretical models used to calculate production rates for comparison with the measured values rely on input data containing good cross section measurements for all relevant reactions. Most GCR particles are protons, but secondary neutrons make most cosmogenic nuclides. Calculated production rates using only cross sections for proton-induced reactions do not agree well with measurements. One possible explanation is that the contribution to the production rate from reactions initiated by secondary neutrons produced in primary GCR interactions should be included explicitly. This, however, is difficult to do because so few of the relevant cross sections for neutron-induced reactions have been measured.

  1. Single determinantal reaction theory as a Schroedinger analog: the time-dependent S-matrix Hartree-Fock method

    International Nuclear Information System (INIS)

    Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.; Kan, K.K.

    1979-01-01

    It is suggested that the TDHF method be viewed, not as an approximation to but as a model of the exact Schroedinger system; that is, as a gedanken many-body experiment whose analysis with digital computers provides data worthy in itself of theoretical study. From such a viewpoint attention is focused on the structural analogies of the TDHF system with the exact theory rather than upon its quantitative equivalence, and the TDHF many-body system is studied as a challenge of its own which, although much simpler than the realistic problem, may still offer complexity enough to educate theorists in the present state of knowledge. In this spirit, the TDHF description of continuum reactions can be restructured from an initial-value problem into a form analogous to the S-matrix version of the Schroedinger theory. The resulting TD-S-HF theory involves only self-consistent single determinantal solutions of the TDHF equations and invokes time averaging to obtain a consistent interpretation of the TDHF analogs of quantities which are constant in the exact theory, such as the S-matrix and the asymptotic reaction channel characteristics. Periodic solutions then play the role of stationary eigenstates in the construction of suitable asymptotic reaction channels. If these periodic channel states occur only at discrete energies, then the resulting channels are mutually orthogonal (on the time average) and the theory exhibits a structure fully analogous to the exact theory. In certain special cases where the periodic solutions are known to occur as an energy continuum, the requirement that the periodicity of the channel solutions be gauge invariant provides a natural requantization condition which (suggestively) turns out to be identical with the Bohr-Sommerfeld quantization rule. 11 references

  2. High-Pressure Catalytic Reactions of C6 Hydrocarbons on PlatinumSingle-Crystals and nanoparticles: A Sum Frequency Generation VibrationalSpectroscopic and Kinetic Study

    Energy Technology Data Exchange (ETDEWEB)

    Bratlie, Kaitlin [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Catalytic reactions of cyclohexene, benzene, n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene on platinum catalysts were monitored in situ via sum frequency generation (SFG) vibrational spectroscopy and gas chromatography (GC). SFG is a surface specific vibrational spectroscopic tool capable of monitoring submonolayer coverages under reaction conditions without gas-phase interference. SFG was used to identify the surface intermediates present during catalytic processes on Pt(111) and Pt(100) single-crystals and on cubic and cuboctahedra Pt nanoparticles in the Torr pressure regime and at high temperatures (300K-450K). At low pressures (<10-6 Torr), cyclohexene hydrogenated and dehydrogenates to form cyclohexyl (C6H11) and π-allyl C6H9, respectively, on Pt(100). Increasing pressures to 1.5 Torr form cyclohexyl, π-allyl C6H9, and 1,4-cyclohexadiene, illustrating the necessity to investigate catalytic reactions at high-pressures. Simultaneously, GC was used to acquire turnover rates that were correlated to reactive intermediates observed spectroscopically. Benzene hydrogenation on Pt(111) and Pt(100) illustrated structure sensitivity via both vibrational spectroscopy and kinetics. Both cyclohexane and cyclohexene were produced on Pt(111), while only cyclohexane was formed on Pt(100). Additionally, π-allyl c-C6H9 was found only on Pt(100), indicating that cyclohexene rapidly dehydrogenates on the (100) surface. The structure insensitive production of cyclohexane was found to exhibit a compensation effect and was analyzed using the selective energy transfer (SET) model. The SET model suggests that the Pt-H system donates energy to the E2u mode of free benzene, which leads to catalysis. Linear C6 (n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene) hydrocarbons were also investigated in the presence and absence of excess hydrogen on Pt

  3. Products and mechanism of the reaction of Cl atoms with unsaturated alcohols

    Science.gov (United States)

    Rodríguez, Ana; Rodríguez, Diana; Soto, Amparo; Bravo, Iván; Diaz-de-Mera, Yolanda; Notario, Alberto; Aranda, Alfonso

    2012-04-01

    The products of the chlorine atom initiated oxidation of different unsaturated alcohols were determined at atmospheric pressure and ambient temperature, in a 400 L teflon reaction chamber using GC-FID and GC-MS for the analysis. The major products detected (with molar yields in brackets) are: chloroacetaldehyde (50 ± 8%) and acrolein (27 ± 2%) from allyl alcohol; acetaldehyde (77 ± 11%), chloroacetaldehyde (75 ± 18%), and methyl vinyl ketone (17 ± 2%) from 3-buten-2-ol; acetone (55 ± 4%) and chloroacetaldehyde (59 ± 8%) from 2-methyl-3-buten-2-ol; chloroacetone (18 ± 1%) and methacrolein (8 ± 1%) from 2-methyl-2-propen-1-ol; acetaldehyde (20 ± 1%), crotonaldehyde (6 ± 3%), 3-choloro-4-hydroxy-2-butanone (2 ± 2%) and 2-chloro-propanal (4 ± 5%) from crotyl alcohol; and acetone (24 ± 3%) from 3-methyl-2-buten-1-ol. The experimental data suggests that addition of Cl to the double bond of the unsaturated alcohol is the dominant reaction pathway compared to the H-abstraction channel.

  4. Microorganisms and Maillard reaction products: a review of the literature and recent findings.

    Science.gov (United States)

    Helou, Cynthia; Marier, David; Jacolot, Philippe; Abdennebi-Najar, Latifa; Niquet-Léridon, Céline; Tessier, Frédéric J; Gadonna-Widehem, Pascale

    2014-02-01

    Research on the impact of Maillard reaction products (MRPs) on microorganisms has been reported in the literature for the last 60 years. In the current study, the impact of an MRP-rich medium on the growth of three strains of Escherichia coli was measured by comparing two classic methods for studying the growth of bacteria (plate counting and optical density at 600 nm) and by tracing MRP utilisation. Early stage and advanced MRPs in the culture media were assessed by quantifying furosine and N (ε) -carboxymethyllysine (CML) levels, respectively, using chromatographic methods. These measures were performed prior to and during bacterial growth to estimate the potential use of these MRPs by Escherichia coli CIP 54.8. Glucose and lysine, the two MRP precursors used in the MRP-rich medium, were also quantified by chromatographic means. Compared to control media, increased lag phases and decreased growth rates were observed in the MRP-rich medium for two out of the three Escherichia coli strains tested. In contrast, one strain isolated from the faeces of a piglet fed on a MRP-rich diet was not influenced by the presence of MRPs in the medium. Overall, CML as well as the products obtained by the thermal degradation of glucose and lysine, regardless of the Maillard reaction, did not affect the growth of the three strains tested. In addition, no degradation of fructoselysine or CML was found in the presence of Escherichia coli CIP 54.8.

  5. Evaluation of tissue reaction, cell viability and cytokine production induced by Sealapex Plus

    Directory of Open Access Journals (Sweden)

    João Eduardo Gomes-Filho

    2011-08-01

    Full Text Available OBJECTIVE: The aim of this study was to investigate the effects of mineral trioxide aggregate (MTA, Sealapex, and a combination of Sealapex and MTA (Sealapex Plus on the reaction of subcutaneous connective tissue of rats, and on cell viability and cytokine production in mouse fibroblasts. MATERIAL AND METHODS: The tissue reaction was carried out with dentin tubes containing the materials implanted in the dorsal connective tissue of rats. The histological analysis was performed after 7 and 30 days. Millipore culture plate inserts with polyethylene tubes filled with materials were placed into 24-well cell culture plates with mouse fibroblasts to evaluate the cell viability by MTT assay. ELISA assays were also performed after 24 h of exposure of the mouse fibroblasts to set material disks. RESULTS: Histopathologic examination showed Von Kossa-positive granules that were birefringent to polarized light for all the studied materials at the tube openings. No material inhibited the cell viability in the in vitro test. It was detected IL-6 production in all root-end filling materials. MTA and Sealapex Plus induced a slight raise of mean levels of IL-1β. CONCLUSIONS: The results suggest that Sealapex Plus is biocompatible and stimulates the mineralization of the tissue.

  6. Nuclear reactions and application to production rates of krypton in extraterrestrial materials

    International Nuclear Information System (INIS)

    Lavielle, B.

    1982-01-01

    Noble gases have been largely outgassed from most solar system materials through several heating processes. Consequently, their cosmogenic component, produced by cosmic-ray-induced nuclear reactions near the surface of atmosphere-free planetary objects, is detectable in meteorites and lunar samples. This work deals with the production of cosmogenic Krypton in the four main targets Zr, Y, Sr and Rb. Excitation functions of Krypton isotopes with A = 78, 80, 81, 82, 83, 84, 85 and 86 were mass-spectrometrically measured in Y and Zr targets bombarded with 0.059, 0.075, 0.168, 0.200, 1.0, 2.5 and 24 GeV protons. Also the Krypton relative cross sections were measured in Sr at 0.168 GeV. The results, combined with a general survey of nuclear reactions in Ga to Nb targets, permitted the development of new systematics in order to estimate unknown cross-sections in Rb and Sr. Measured and estimated excitation functions allowed to calculate the concentrations and isotopic ratios of cosmogenic Krypton in same well-documented lunar samples. Compared to observed values in 9 rocks, 83 Kr is predicted with a precision better than 33% and the production ratios sup(i)Kr/ 83 Kr are predicted to better than 25%. Also it is concluded that the cosmogenic ratios 86 Kr/ 83 Kr and 81 Kr/ 83 Kr are dependent on the main target elements concentrations [fr

  7. Single top-quark production cross-section using the ATLAS detector at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00395821; The ATLAS collaboration

    2017-01-01

    Measurements of single top-quark production in proton–proton collisions are presented based on the 8 TeV and 13 TeV ATLAS datasets. In the leading-order process, a $W$ boson is exchanged in the $t$-channel. The fiducial cross-sections measurements for the production of single top-quarks and single anti-top-quarks, as well as the total cross-sections and their ratios are presented. At 8 TeV, differential cross-section measurements of the $t$-channel process are also reported, these analyses include limits on anomalous contributions to the $Wtb$ vertex and measurement of the top quark polarization. A measurement of the production cross-section of a single top quark in association with a $W$ boson, the second largest single-top production mode, is also presented. Finally, evidence for $s$-channel single-top production in the 8 TeV ATLAS dataset is presented. All measurements are compared to state-of-the-art theoretical calculations.

  8. Forecasting demand for single-period products : A case study in the apparel industry

    NARCIS (Netherlands)

    Mostard, Julien; Teunter, Ruud; de Koster, Rene

    2011-01-01

    The problem considered is that of forecasting demand for single-period products before the period starts. We study this problem for the case of a mail order apparel company that needs to order its products pre-season. The lack of historical demand data implies that other sources of data are needed.

  9. Search for single-top production in ep collisions at HERA

    CERN Document Server

    Abramowicz, H.

    2012-02-14

    A search for single-top production, $ep \\rightarrow etX$, has been performed with the ZEUS detector at HERA using data corresponding to an integrated luminosity of $0.37\\fbi$. No evidence for top production was found, consistent with the expectation from the Standard Model. Limits were computed for single-top production via flavour changing neutral current transitions. The result was combined with a previous ZEUS result yielding a total luminosity of 0.50fb-1. A 95% credibility level upper limit of 0.13 pb was obtained for the cross section at the centre-of-mass energy of $\\sqrt{s}=315\\gev$.

  10. Low-temperature synthesis of single-domain Sr-hexaferrite particles by solid-state reaction route

    Energy Technology Data Exchange (ETDEWEB)

    Soezeri, Hueseyin [TUBITAK-UME, National Metrology Institute, PO Box 54, 41470, Gebze-Kocaeli (Turkey); Baykal, Abduelhadi [Department of Chemistry, Fatih University, B. Cekmece, 34500 Istanbul (Turkey); BioNanoTechnology R and D Center, Fatih University, B. Cekmece, 34500 Istanbul (Turkey); Uenal, Bayram [BioNanoTechnology R and D Center, Fatih University, B. Cekmece, 34500 Istanbul (Turkey); Department of Electrical and Electronics Engineering, Fatih University, B. Cekmece, 34500 Istanbul (Turkey)

    2012-10-15

    Sr-hexaferrite particles have been synthesized by conventional solid-state reaction route at low temperatures by boron addition that is used as an inhibitor for crystal growth. The effect of boron concentration on the structural, magnetic and electrical properties of Sr-hexaferrite particles are investigated by X-ray crystallography, scanning electron microscopy, magnetization and conductivity measurements. Saturation magnetization of Sr-hexaferrite increases up to 1 wt% boron addition, while coercivity becomes maximum with a boron amount of 2 wt%. Then, both magnetic parameters start to decrease with higher boron concentrations. Single-domain and single-phase powders have been obtained in the sample containing 1 wt% of boron that is sintered at 1050 C. Impedance spectroscopies reveal that the dc conductivity increases tremendously with boron addition, while the ac conductivity increases with elevated temperature. The ac conductivity obeys roughly the power law of angular frequency in which tendencies change with temperature at low and medium temperature. Furthermore, higher contents of the dopant over approximately 2.0 wt% cause its temperature independency at higher frequencies. These are due to the grain size and secondary phase of hexaferrites that increases with the increase in boron amount. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst: Probing the Origin of Activity for Oxygen Evolution Reaction.

    Science.gov (United States)

    Zhang, Jingfang; Liu, Jieyu; Xi, Lifei; Yu, Yifu; Chen, Ning; Sun, Shuhui; Wang, Weichao; Lange, Kathrin M; Zhang, Bin

    2018-03-21

    A fundamental understanding of the origin of oxygen evolution reaction (OER) activity of transition-metal-based electrocatalysts, especially for single precious metal atoms supported on layered double hydroxides (LDHs), is highly required for the design of efficient electrocatalysts toward further energy conversion technologies. Here, we aim toward single-atom Au supported on NiFe LDH ( s Au/NiFe LDH) to clarify the activity origin of LDHs system and a 6-fold OER activity enhancement by 0.4 wt % s Au decoration. Combining with theoretical calculations, the active behavior of NiFe LDH results from the in situ generated NiFe oxyhydroxide from LDH during the OER process. With the presence of s Au, s Au/NiFe LDH possesses an overpotential of 0.21 V in contrast to the calculated result (0.18 V). We ascribe the excellent OER activity of s Au/NiFe LDH to the charge redistribution of active Fe as well as its surrounding atoms causing by the neighboring s Au on NiFe oxyhydroxide stabilized by interfacial CO 3 2- and H 2 O interfacing with LDH.

  12. Gas-Phase Photolysis of Pyruvic Acid: The Effect of Pressure on Reaction Rates and Products.

    Science.gov (United States)

    Reed Harris, Allison E; Doussin, Jean-Francois; Carpenter, Barry K; Vaida, Veronica

    2016-12-29

    In this work, we investigate the impact of pressure and oxygen on the kinetics of and products from the gas-phase photolysis of pyruvic acid. The results reveal a decrease in the photolysis quantum yield as pressure of air or nitrogen is increased, a trend not yet documented in the literature. A Stern-Volmer analysis demonstrates this effect is due to deactivation of the singlet state of pyruvic acid when the photolysis is performed in nitrogen, and from quenching of both the singlet and triplet state in air. Consistent with previous studies, acetaldehyde and CO 2 are observed as the major products; however, other products, most notably acetic acid, are also identified in this work. The yield of acetic acid increases with increasing pressure of buffer gas, an effect that is amplified by the presence of oxygen. At least two mechanisms are necessary to explain the acetic acid, including one that requires reaction of photolysis intermediates with O 2 . These findings extend the fundamental understanding of the gas-phase photochemistry of pyruvic acid, highlighting the importance of pressure on the photolysis quantum yields and products.

  13. Reaction of isoprene on thin sulfuric acid films: kinetics, uptake, and product analysis.

    Science.gov (United States)

    Connelly, Brandon M; Tolbert, Margaret A

    2010-06-15

    A high vacuum Knudsen flow reactor was used to determine the reactive uptake coefficient, gamma, of isoprene on sulfuric acid films as a function of sulfuric acid weight percent, temperature, and relative humidity. No discernible dependence was observed for gamma over the range of temperatures (220 - 265 K) and pressures (10(-7) Torr -10(-4) Torr) studied. However, the uptake coefficient increased with increased sulfuric acid concentration between the range of 78 wt % (gamma(i) approximately 10(-4)) and 93 wt % (gamma(i) approximately 10(-3)). In addition to the Knudsen Cell, a bulk study was conducted between 60 and 85 wt % H(2)SO(4) to quantify uptake at lower acid concentrations and to determine reaction products. After exposing sulfuric acid to gaseous isoprene the condensed phase products were extracted and analyzed using gas chromatography/mass spectrometry (GC/MS). Isoprene was observed to polymerize in the sulfuric acid and form yellow/red colored monoterpenes and cyclic sesquiterpenes. Finally, addition of water to the 85 wt % sulfuric acid/isoprene product mixture released these terpenes from the condensed phase into the gas phase. Together these experiments imply that direct isoprene uptake will not produce significant SOA; however, terpene production from the small uptake may be relevant for ultrafine particles and could affect growth and nucleation.

  14. Study of correlation of PDF uncertainty in single top and top pair production at the LHC

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    The incomplete knowledge of parton distribution functions is an important source of systematic uncertainty for top-quark measurements, including top-quark pair and single top-quark production cross sections, as well as for analyses that have a large background from these processes. The correlation of the parton-distribution-function uncertainty is studied for top-quark pair production and single top-quark production in association with a W boson, in final states with two reconstructed leptons. Four types of correlation are studied: between total production cross-sections, between cross-section and acceptance correction, between the two processes for common selection requirements, and between different jet multiplicity requirements. The uncertainty correlation is evaluated for several sets of parton distribution functions using simulated samples of top-quark pair and single top-quark events.

  15. Overview of suspected adverse reactions to veterinary medicinal products reported in South Africa (March 2002 – February 2003

    Directory of Open Access Journals (Sweden)

    V. Naidoo

    2003-07-01

    Full Text Available The Veterinary Pharmacovigilance and Medicines Information Centre is responsible for the monitoring of veterinary adverse drug reactions in South Africa. An overview of reports of suspected adverse drug reactions received by the centre during the period March 2002 to February 2003 is given. In total, 40 reports were received. This had declined from the previous year. Most reports involved suspected adverse reactions that occurred in dogs and cats. Most of the products implicated were Stock Remedies. The animal owner predominantly administered these products. Only 1 report was received from a veterinary pharmaceutical company. Increasing numbers of reports are being received from veterinarians.

  16. Single top quark production cross-section and properties using the ATLAS detector at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00358737; The ATLAS collaboration

    2015-01-01

    ATLAS measurements of single top-quark processes are summarized. Measurements using data at 7 and 8 TeV collisions from the LHC are presented. The measurements are performed using the semi-leptonic decay mode of the top-quark. Production cross-sections and the $\\left|V_{tb}\\right|$ CKM matrix element extraction are shown. All measurements are compared to theoretical calculations. In addition, the $s$-channel production mode is explored along with limits on exotic production modes.

  17. Low dose endotoxin priming is accountable for coagulation abnormalities and organ damage observed in the Shwartzman reaction. A comparison between a single-dose endotoxemia model and a double-hit endotoxin-induced Shwartzman reaction

    Directory of Open Access Journals (Sweden)

    Cate Hugo

    2006-08-01

    Full Text Available Abstract The clinical response of sepsis to a systemic inflammatory infection may be complicated by disseminated intravascular coagulation or DIC. In order to experimentally study the syndrome of DIC, we aimed for a severe sepsis model complicated by disseminated coagulation. Most -simplified- experimental models describing coagulation abnormalities as a consequence of sepsis are based on single dose endotoxemia. The so called-Shwartzman reaction contrarily, is elicited by a low dose endotoxin priming followed by an LPS challenge and is characterized by pathological manifestations that represent the syndrome of DIC. In order to investigate whether the Shwartzman reaction is superior to a single endotoxin challenge as a model for sepsis-induced DIC and to determine what the pathological effect is of an encounter of low endotoxin prior to an LPS challenge, we undertook the present study. In this study we demonstrate that low-dose endotoxin priming prior to an LPS challenge in the Shwartzman reaction is accountable for micro-vascular thrombosis in lung and liver and subsequent (multi- organ failure, not observed after a single-dose endotoxin challenge, which indicates that the Shwartzman reaction is well suited-model to study sepsis-induced DIC adversities. Remarkably, only minor differences in the innate immune response were established between the single-dose endotoxin challenge and the Shwartzman reaction.

  18. Ozone-initiated terpene reaction products in five European offices: replacement of a floor cleaning agent.

    Science.gov (United States)

    Nørgaard, A W; Kofoed-Sørensen, V; Mandin, C; Ventura, G; Mabilia, R; Perreca, E; Cattaneo, A; Spinazzè, A; Mihucz, V G; Szigeti, T; de Kluizenaar, Y; Cornelissen, H J M; Trantallidi, M; Carrer, P; Sakellaris, I; Bartzis, J; Wolkoff, P

    2014-11-18

    Cleaning agents often emit terpenes that react rapidly with ozone. These ozone-initiated reactions, which occur in the gas-phase and on surfaces, produce a host of gaseous and particulate oxygenated compounds with possible adverse health effects in the eyes and airways. Within the European Union (EU) project OFFICAIR, common ozone-initiated reaction products were measured before and after the replacement of the regular floor cleaning agent with a preselected low emitting floor cleaning agent in four offices located in four EU countries. One reference office in a fifth country did not use any floor cleaning agent. Limonene, α-pinene, 3-carene, dihydromyrcenol, geraniol, linalool, and α-terpineol were targeted for measurement together with the common terpene oxidation products formaldehyde, 4-acetyl-1-methylcyclohexene (4-AMCH), 3-isopropenyl-6-oxo-heptanal (IPOH), 6-methyl-5-heptene-2-one, (6-MHO), 4-oxopentanal (4-OPA), and dihydrocarvone (DHC). Two-hour air samples on Tenax TA and DNPH cartridges were taken in the morning, noon, and in the afternoon and analyzed by thermal desorption combined with gas chromatography/mass spectrometry and HPLC/UV analysis, respectively. Ozone was measured in all sites. All the regular cleaning agents emitted terpenes, mainly limonene and linalool. After the replacement of the cleaning agent, substantially lower concentrations of limonene and formaldehyde were observed. Some of the oxidation product concentrations, in particular that of 4-OPA, were also reduced in line with limonene. Maximum 2 h averaged concentrations of formaldehyde, 4-AMCH, 6-MHO, and IPOH would not give rise to acute eye irritation-related symptoms in office workers; similarly, 6-AMCH, DHC and 4-OPA would not result in airflow limitation to the airways.

  19. Wave packet calculation of cross sections, product state distributions and branching ratios for the O(1D)+HCl reaction

    International Nuclear Information System (INIS)

    Piermarini, V.; Balint-Kurti, G.G.; Gray, S.K.; Gogtas, F.; Lagana, A.; Hernandez, M.

    2001-01-01

    Time-dependent quantum mechanical calculations have been carried out to estimate the total reactive cross sections, product branching ratios, and product quantum state distributions for the O( 1 D) + HCl reaction using both reactant and product Jacobi coordinates. The potential energy surface of T. Martinez et al. (Phys. Chem. Chem. Phys. 2000, 2, 589) has been used in the calculations. The theoretical predictions are compared with experimental results and with the results of classical trajectory calculations on the same surface. The comparisons demonstrate the suitability of the potential energy surface and provide useful insights into the reaction mechanism. The calculations using product Jacobi coordinates are the first calculations for this system which permit the prediction of state-to-state reaction probabilities and of product quantum state distributions

  20. New functionalities of Maillard reaction products as emulsifiers and encapsulating agents, and the processing parameters: a brief review.

    Science.gov (United States)

    Lee, Yee-Ying; Tang, Teck-Kim; Phuah, Eng-Tong; Alitheen, Noorjahan Banu Mohamed; Tan, Chin-Ping; Lai, Oi-Ming

    2017-03-01

    Non-enzymatic browning has been a wide and interesting research area in the food industry, ranging from the complexity of the reaction to its applications in the food industry as well as its ever-debatable health effects. This review provides a new perspective to the Maillard reaction apart from its ubiquitous function in enhancing food flavour, taste and appearance. It focuses on the recent application of Maillard reaction products as an inexpensive and excellent source of emulsifiers as well as superior encapsulating matrices for the entrapment of bioactive compounds. Additionally, it will also discuss the latest approaches employed to perform the Maillard reaction as well as several important reaction parameters that need to be taken into consideration when conducting the Maillard reaction. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Production of neutron-rich nuclides in the vicinity of N = 126 shell closure in multinucleon transfer reactions

    Directory of Open Access Journals (Sweden)

    Karpov Alexander

    2017-01-01

    Full Text Available Multinucleon transfer in low-energy nucleus-nucleus collisions is widely discussed as a method of production of yet-unknown neutron-rich nuclei hardly accessible (or inaccessible by other methods. Modeling of complicated dynamics of nuclear reactions induced by heavy ions is done within a multidimensional dynamical model of nucleus-nucleus collisions based on the Langevin equations. The model gives a continuous description of the system evolution starting from the well-separated target and projectile in the entrance channel of the reaction up to the formation of final reaction products. In this paper, rather recent sets of experimental data for the 136Xe+198Pt,208Pb reactions are analyzed together with the production cross sections for neutron-rich nuclei in the vicinity of the N = 126 magic shell.

  2. Observation of prompt single muon production by 400 GeV protons

    International Nuclear Information System (INIS)

    Merritt, K.W.B.

    1981-01-01

    The observation of prompt single muon production from 400 GeV protons interacting in an iron target is reported. The experiment used a variable-density calorimeter made of iron plates and plastic scintillator as a target, followed by a large-acceptance muon identifier and an iron toroidal spectrometer. Single muon and dimuon events were separated with good efficiency using the muon identifier, and the rate of prompt single muons was measured by varying the density of the target-calorimeter, thereby changing the relative rate of prompt and non-prompt single muon production. Prompt single muon signals were observed in two different kinematic regions-p/sub μ/ 1 GeV/c and 10 GeV/c 0.5 GeV/c. Approximate equality was found between the prompt lμ - and prompt lμ - signal in the high p region (in the high p 1 region, only positive muons were accepted by the trigger). The observed cross section in both regions was approx. 70 nb/nucleon, assuming linear A dependence for the production of the prompt muons. Hadronic production of charmed particles was the most likely source of the prompt muons; other possible sources could not account for the large rates observed. Three different models for charm production-uncorrelated D production, correlated DD production, and diffractive production of Λ/sub c/ - D pairs-are compared to the data and used to calculate cross sections. Within the DD model, the range of kinematic parameters allowed by the data is determined and the corresponding range of cross sections is 20 to 70 μb/nucleon. The results of this experiment are compared with other experimental results and with theoretical predictions of charm production

  3. Taste-Active Maillard Reaction Products in Roasted Garlic (Allium sativum).

    Science.gov (United States)

    Wakamatsu, Junichiro; Stark, Timo D; Hofmann, Thomas

    2016-07-27

    In order to gain first insight into candidate Maillard reaction products formed upon thermal processing of garlic, mixtures of glucose and S-allyl-l-cysteine, the major sulfur-containing amino acid in garlic, were low-moisture heated, and nine major reaction products were isolated. LC-TOF-MS, 1D/2D NMR, and CD spectroscopy led to their identification as acortatarin A (1), pollenopyrroside A (2), epi-acortatarin A (3), xylapyrroside A (4), 5-hydroxymethyl-1-[(5-hydroxymethyl-2-furanyl)methyl]-1H-pyrrole-2-carbalde-hyde (5), 3-(allylthio)-2-(2-formyl-5-hydroxymethyl-1H-pyrrol-1-yl)propanoic acid (6), (4S)-4-(allylthiomethyl)-3,4-dihydro-3-oxo-1H-pyrrolo[2,1-c][1,4]oxazine-6-carbaldehyde (7), (2R)-3-(allylthio)-2-[(4R)-4-(allylthiomethyl)-6-formyl-3-oxo-3,4-dihydropyrrolo-[1,2-a]pyrazin-2(1H)-yl]propanoic acid (8), and (2R)-3-(allylthio)-2-((4S)-4-(allylthiomethyl)-6-formyl-3-oxo-3,4-dihydropyrrolo-[1,2-a]pyrazin-2(1H)-yl)propanoic acid (9). Among the Maillard reaction products identified, compounds 5-9 have not previously been published. The thermal generation of the literature known spiroalkaloids 1-4 is reported for the first time. Sensory analysis revealed a bitter taste with thresholds between 0.5 and 785 μmol/kg for 1-5 and 7-9. Compound 6 did not show any intrinsic taste (water) but exhibited a strong mouthfullness (kokumi) enhancing activity above 186 μmol/kg. LC-MS/MS analysis showed 1-9 to be generated upon pan-frying of garlic with the highest concentration of 793.7 μmol/kg found for 6, thus exceeding its kokumi threshold by a factor of 4 and giving evidence for its potential taste modulation activity in processed garlic preparations.

  4. Single-cell screening of photosynthetic growth and lactate production by cyanobacteria

    DEFF Research Database (Denmark)

    Hammar, Petter; Angermayr, S. Andreas; Sjostrom, Staffan L.

    2015-01-01

    Background: Photosynthetic cyanobacteria are attractive for a range of biotechnological applications including biofuel production. However, due to slow growth, screening of mutant libraries using microtiter plates is not feasible.Results: We present a method for high-throughput, single......-cell analysis and sorting of genetically engineered l-lactate-producing strains of Synechocystis sp. PCC6803. A microfluidic device is used to encapsulate single cells in picoliter droplets, assay the droplets for L-lactate production, and sort strains with high productivity. We demonstrate the separation...... of low- and high-producing reference strains, as well as enrichment of a more productive L-lactate-synthesizing population after UV-induced mutagenesis. The droplet platform also revealed population heterogeneity in photosynthetic growth and lactate production, as well as the presence of metabolically...

  5. Spontaneously Reported Adverse Reactions for Herbal Medicinal Products and Natural Remedies in Sweden 2007-15: Report from the Medical Products Agency.

    Science.gov (United States)

    Svedlund, Erika; Larsson, Maria; Hägerkvist, Robert

    2017-06-01

    In relation to the extensive use of herbal medicinal products in self-care, the safety information is limited and there is a need for improvement. This study describes spontaneously reported adverse reactions related to herbal medicinal products and natural remedies in Sweden. To evaluate the characteristics and frequency of adverse events recorded by the Swedish Medical Products Agency, where herbal medicinal products and natural remedies were suspected as causative agents. Adverse drug reactions reported to the Swedish Medical Product Agency during 2007-15 related to approved herbal medicinal products or natural remedies were included and analysed in the retrospective study. Reports had been assessed for causality when they were lodged and only reports that had been assessed as at least possible were included in the study. In total, 116 reports (concerning 259 adverse reactions) related to herbal medicinal products or natural remedies were found in the Swedish national pharmacovigilance database. The active ingredients most frequently suspected during the study period were black cohosh rhizome (15 reports), purple coneflower herb (14 reports) and a combination of extracts of pollen (13 reports). Adverse reactions related to skin and subcutaneous tissue were the most commonly reported reactions. No previously unknown safety problems have been discovered in the present study. This finding could be explained by a thorough pre-approval assessment of medicinal products and the fact that most herbal preparations in medicinal products have been in clinical use for many years (for traditional herbal medicinal products, the requirements are ≥30 years), i.e. adverse reactions are acknowledged and assessed before approval.

  6. Studies on the nitroso-glyoxylate reaction. Relative hydroxamic acid production by glyoxylate, pyruvate, and formaldehyde in reactions with 4-nitrosobiphenyl.

    Science.gov (United States)

    Corbett, M D; Corbett, B R

    1993-01-01

    The pH rate profiles for the reactions of 4-nitrosobiphenyl with three carbonyl substrates in aqueous buffers were determined by use of chromatographic and spectrophotometric methods. Glyoxylate and formaldehyde caused the conversion of 4-nitrosobiphenyl to N-(4-biphenyl)-formohydroxamic acid, while pyruvate resulted in the production of N-(4-biphenyl)acetohydroxamic acid. The dramatic effect of pH on the kinetics of these reactions provided considerable information concerning the nature of these reactions. The reactions with pyruvate and formaldehyde displayed similar pH rate profiles and were significant only at acidic pH. Glyoxylate displayed a pH rate profile that differed markedly from those of pyruvate and formaldehyde as the pH was increased beyond 2.0. The ability of glyoxylate to convert 4-nitrosobiphenyl to the hydroxamic acid increased rapidly in the pH range 2.0-4.0, above which the pH dependency was constant. This biphasic appearance of the pH rate profile was unique to glyoxylate, since the reactions of pyruvate and formaldehyde became extremely slow as solution neutrality was approached. A second substrate, 4-chloronitrosobenzene, displayed similar pH rate profiles in its reactions with these carbonyl substrates. For 4-nitrosobiphenyl, hydroxamic acid formation by glyoxylate was 10(4) times faster than that by pyruvate at neutral pH, but only about 3-fold faster at pH 1.0. The appearance of the pH rate profile for glyoxylate suggested that this alpha-oxo acid reacts with nitrosoarenes at neutrality via a pathway that is insignificant for pyruvate or formaldehyde. Thus, the nitroso-glyoxylate reaction is unique to this alpha-oxo acid under physiological pH conditions.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Innovative water treatment system coupled with energy production using photo-Fenton reaction.

    Science.gov (United States)

    Tokumura, M; Morito, R; Shimizu, A; Kawase, Y

    2009-01-01

    The treatment of colored effluent coupled with energy production using a modified photo-Fenton process has been examined. Fe and carbon plates were employed as an anode and cathode, respectively. In acidic solution, Fe plates would corrode, which leads to elute ferrous ion from Fe plates into the solution and to yield hydrogen gas at the cathode and to generate an electric energy. The eluted ferrous ion could be used for the photo-Fenton reaction. As a result, decolorization of colored effluent and production of electricity and hydrogen could be carried out simultaneously and effectively. It was found that the Orange II concentration in the colored effluent flow decreased up to 84.2% of inlet concentration at 0.8 of relative position in the liquid flow path of continuous photo-reactor. In our proposed system, the energy production, such as an electric power and a hydrogen gas, can be generated at the same time as the decolorization of colored effluent. The produced electric power was 16.5 Wh kg(-1)-Fe(reacted). The produced hydrogen gas was estimated as 13 g-H(2) kg(-1)-Fe(reacted).

  8. Observation of Exotic Meson Production in the Reaction {pi}{sup -}p {yields} {eta}

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, E. I.; Stienike, D. L.; Ryabchikov, D. I.; Adams, G. S.; Adams, T.; Bar-Yam, Z.; Bishop, J. M.; Bodyagin, V. A.; Brown, D. S.; Cason, N. M. (and others)

    2001-04-30

    An amplitude analysis of an exclusive sample of 5765 events from the reaction {pi}{sup -}p{yields}{eta}{prime}{pi}{sup -}p at 18 GeV/c is described. The {eta}{prime}{pi}{sup -} production is dominated by natural parity exchange and by three partial waves: those with J{sup PC}=1{sup -+} , 2{sup ++} , and 4{sup ++} . A mass-dependent analysis of the partial-wave amplitudes indicates the production of the a{sub 2}(1320) meson as well as the a{sub 4}(2040) meson, observed for the first time decaying to {eta}{prime}{pi}{sup -} . The dominant, exotic (non-q{bar q}) 1{sup -+} partial wave is shown to be resonant with a mass of 1.597{+-}0.010{sup +0.045}{sub -0.010} GeV/c{sup 2} and a width of 0.340{+-}0.040{+-}0.050 GeV /c{sup 2} . This exotic state, the {pi}{sub 1}(1600) , is produced with a t dependence which is different from that of the a{sub 2}(1320) meson, indicating differences between the production mechanisms for the two states.

  9. Study of neutral current reactions with production of a pion induced by muon antineutrinos

    International Nuclear Information System (INIS)

    Guyonnet, J.L.

    1981-03-01

    In this work we have studied the 4 production reactions of a pion induced by muon anti-neutrino collisions with nucleons: anti-ν μ p → anti-ν μ pπ 0 or anti-ν μ nπ + and anti-ν μ n → anti-ν μ nπ 0 or anti-ν μ pπ - . We have processed experimental data from the Gargamelle cloud chamber to assess the pion production cross-sections. Our results are consistent with the theoretical predictions of the Adler model and of the Fogli and Nardulli model within the framework of the Weinberg and Salam unified theory. As for the isospin structure of the weak hadronic neutral current, the iso-vectorial component is highlighted in the invariant mass spectra in the channels pπ 0 and pπ - . Our results show that the isospin structure is not purely isoscalar or purely iso-vectorial but rather a mix of I = 0 and I = 1. We confirm that the sign of the product of the 2 coupling constants u L *d L is negative. (A.C.)

  10. Meteorites, Organics and Fischer-Tropsch Type Reaction: Production and Destruction

    Science.gov (United States)

    Johnson, Natasha M.; Burton, A. S.; Nurth, J. A., III

    2011-01-01

    There has been an ongoing debate about the relative importance about the various chemical reactions that fonned organics in the early solar system. One proposed method that has long been recognized as a potential source of organics is Fischer-Tropsch type (FTT) synthesis. This process is commonly used in industry to produce fuels (i.e., complex hydrocarbons) by catalytic hydrogenation of carbon monoxide. Hill and Nuth were the first to publish results of FTT experiments that also included Haber-Bosch (HB) processes (hydrogenation of nitrogen. Their findings included the production of nitrilebearing compounds as well as trace amounts of methyl amine. Previous experience with these reactions revealed that the organic coating deposited on the grains is also an efficient catalyst and that the coating is composed of insoluble organic matter (10M) and could be reminiscent of the organic matrix found in some meteorites. This current set of FTT-styled experiments tracks the evolution of a set of organics, amino acids, in detail.

  11. The Production of Biodiesel and Bio-kerosene from Coconut Oil Using Microwave Assisted Reaction

    Science.gov (United States)

    SAIFUDDIN, N.; SITI FAZLILI, A.; KUMARAN, P.; PEI-JUA, N.; PRIATHASHINI, P.

    2016-03-01

    Biofuels including biodiesel, an alternative fuel, is renewable, environmentally friendly, non-toxic and low emissions. The raw material used in this work was coconut oil, which contained saturated fatty acids about 90% with high percentage of medium chain (C8-C12), especially lauric acid and myristic acid. The purpose of this research was to study the effect of power and NaOH catalyst in transesterification assisted by microwave for production of biofuels (biodiesel and bio-kerosene) derived from coconut oil. The reaction was performed with oil and methanol using mole ratio of 1:6, catalyst concentration of 0.6% with microwave power at 100W, 180W, 300W, 450W, 600W, and 850W. The reaction time was set at of 3, 5, 7, 10 and 15 min. The results showed that microwave could accelerate the transesterification process to produce biodiesel and bio-kerosene using NaOH catalyst. The highest yield of biodiesel was 97.17 %, or 99.05 % conversion at 5 min and 100W microwave power. Meanwhile, the bio-kerosene obtained was 65% after distillation.

  12. An update on measurements of helium-production reactions with a spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Haight, R.C.; Bateman, F.B.; Chadwick, M.B. [and others

    1995-10-01

    This report gives the status, updated since the last Research Coordination Meeting, of alpha-particle production cross sections, emission spectra and angular distributions which we are measuring at the spallation source of fast neutrons at the Los Alamos Meson Physics Facility (LAMPF). Detectors at angles of 30, 60, 90 and 135{degrees} are used to identify alpha particles, measure their energy spectra, and indicate the time-of-flight, and hence the energy, of the neutrons inducing the reaction. The useful neutron energy ranges from less than 1 MeV to approximately 50 MeV for the present experimental setup. Targets under study at present include C, N, 0, {sup 27}Al, Si, {sup 51}V, {sup 56}Fe, {sup 59}CO, {sup 58,60}Ni, {sup 89}Y and {sup 93}Nb. Data for {sup 59}Co have been re-analyzed. The results illustrate the capabilities of the approach, agreement with literature values, and comparisons with nuclear reaction model calculations.

  13. Methyl Ester Production via Heterogeneous Acid-Catalyzed Simultaneous Transesterification and Esterification Reactions

    Science.gov (United States)

    Indrayanah, S.; Erwin; Marsih, I. N.; Suprapto; Murwani, I. K.

    2017-05-01

    The heterogeneous acid catalysts (MgF2 and ZnF2) have been used to catalyze the simultaneous transesterification and esterification reactions of crude palm oil (CPO) with methanol. Catalysts were synthesized by sol-gel method (combination of fluorolysis and hydrolysis). The physicochemical, structural, textural, thermal stability of the prepared catalysts was investigated by N2 adsorption-desorption, XRD, FT-IR, SEM and TG/DTG. Both MgF2 and ZnF2 have rutile structures with a different phase. The surface area of ZnF2 is smaller than that of MgF2, but the pore size and volume of ZnF2 are larger than those of MgF2. However, these materials are thermally stable. The performance of the catalysts is determined from the yield of catalysts toward the formation of methyl ester determined based on the product of methyl ester obtained from the reaction. The catalytic activity of ZnF2 is higher than MgF2 amounted to 85.21% and 26.82% with the optimum condition. The high activity of ZnF2 could be attributed to its pore diameter and pore volume but was not correlated with its surface area. The yield of methyl ester decreased along with the increase in molar ratio of methanol/CPO from 85.21 to 80.99 for ZnF2, respectively.

  14. Increase of rutin antioxidant activity by generating Maillard reaction products with lysine.

    Science.gov (United States)

    Zhang, Ru; Zhang, Bian-Ling; He, Ting; Yi, Ting; Yang, Ji-Ping; He, Bin

    2016-06-01

    Rutin exists in medicinal herbs, fruits, vegetables, and a number of plant-derived sources. Dietary sources containing rutin are considered beneficial because of their potential protective roles in multiple diseases related to oxidative stresses. In the present study, the change and antioxidation activity of rutin in Maillard reaction with lysine through a heating process were investigated. There is release of glucose and rhamnose that interact with lysine to give Maillard reaction products (MRPs), while rutin is converted to less-polar quercetin and a small quantity of isoquercitrin. Because of their high cell-membrane permeability, the rutin-lysine MRPs increase the free radical-scavenging activity in HepG2 cells, showing cellular antioxidant activity against Cu(2+)-induced oxidative stress higher than that of rutin. Furthermore, the MRPs significantly increased the Cu/Zn SOD (superoxide dismutase) activity and Cu/Zn SOD gene expression of HepG2 cells, consequently enhancing antioxidation activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Phenolic-containing mannich base reaction products and fuel compositions containing same

    Energy Technology Data Exchange (ETDEWEB)

    Chibnik, S.

    1989-02-21

    This patent describes a product of reaction suitable for use as a liquid hydrocarbyl fuel additive made by reacting a performed Mannich base with a reactive compound selected from hydrocarbyl thiols having at least one reactive hydrogen, the reaction being carried out with an equivalent amount of Mannich Base, or with a molar ratio varying 1 to 1 to about 2 to 1 of Mannich Base to thiol at temperatures varying from about 25/sup 0/ to about 250/sup 0/C. the Mannich base having been prepared from (1) a phenol, (2) a C/sub 1/-C/sub 8/ alkyl aldehyde and (3) an amine having a lower boiling point than that of the reactive thiol, the phenol having the following generalized structural formula: where R/sup 2/ and R/sup 3/ are the same or different and are hydrogen or C/sub 1/ to about C/sub 18/ alkyl or tertiary alkyl and R/sup 4/ is H or C/sub 1/ to about C/sub 30/ hydrocarbyl.

  16. Using surface-enhanced Raman spectroscopy and electrochemically driven melting to discriminate Yersinia pestis from Y. pseudotuberculosis based on single nucleotide polymorphisms within unpurified polymerase chain reaction amplicons.

    Science.gov (United States)

    Papadopoulou, Evanthia; Goodchild, Sarah A; Cleary, David W; Weller, Simon A; Gale, Nittaya; Stubberfield, Michael R; Brown, Tom; Bartlett, Philip N

    2015-02-03

    The development of sensors for the detection of pathogen-specific DNA, including relevant species/strain level discrimination, is critical in molecular diagnostics with major impacts in areas such as bioterrorism and food safety. Herein, we use electrochemically driven denaturation assays monitored by surface-enhanced Raman spectroscopy (SERS) to target single nucleotide polymorphisms (SNPs) that distinguish DNA amplicons generated from Yersinia pestis, the causative agent of plague, from the closely related species Y. pseudotuberculosis. Two assays targeting SNPs within the groEL and metH genes of these two species have been successfully designed. Polymerase chain reaction (PCR) was used to produce Texas Red labeled single-stranded DNA (ssDNA) amplicons of 262 and 251 bases for the groEL and metH targets, respectively. These amplicons were used in an unpurified form to hybridize to immobilized probes then subjected to electrochemically driven melting. In all cases electrochemically driven melting was able to discriminate between fully homologous DNA and that containing SNPs. The metH assay was particularly challenging due to the presence of only a single base mismatch in the middle of the 251 base long PCR amplicon. However, manipulation of assay conditions (conducting the electrochemical experiments at 10 °C) resulted in greater discrimination between the complementary and mismatched DNA. Replicate data were collected and analyzed for each duplex on different days, using different batches of PCR product and different sphere segment void (SSV) substrates. Despite the variability introduced by these differences, the assays are shown to be reliable and robust providing a new platform for strain discrimination using unpurified PCR samples.

  17. An integrated multi−period planning of the production and transportation of multiple petroleum products in a single pipeline system

    Directory of Open Access Journals (Sweden)

    Alberto Herrán

    2011-01-01

    Full Text Available A multiproduct pipeline provides an economic way to transport large volumes of refined petroleum products over long distances. In such a pipeline, different products are pumped back−to−back without any separation device between them. The sequence and lengths of such pumping runs must be carefully selected in order to meet market demands while minimizing pipeline operational costs and satisfying several constraints. The production planning and scheduling of the products at the refinery must also be synchronized with the transportation in order to avoid the usage of the system at some peak−hour time intervals. In this paper, we propose a multi−period mixed integer nonlinear programming (MINLP model for an optimal planning and scheduling of the production and transportation of multiple petroleum products from a refinery plant connected to several depots through a single pipeline system. The objective of this work is to generalize the mixed integer linear programming (MILP formulation proposed by Cafaro and Cerdá (2004, Computers and Chemical Engineering where only a single planning period was considered and the production planning and scheduling was not part of the decision process. Numerical examples show how the use of a single period model for a given time period may lead to infeasible solutions when it is used for the upcoming periods. These examples also show how integrating production planning with the transportation and the use of a multi−period model may result in a cost saving compared to using a single−period model for each period, independently.

  18. Selective Production of Renewable para-Xylene by Tungsten Carbide Catalyzed Atom-Economic Cascade Reactions.

    Science.gov (United States)

    Dai, Tao; Li, Changzhi; Li, Lin; Zhao, Zongbao Kent; Zhang, Bo; Cong, Yu; Wang, Aiqin

    2018-02-12

    Tungsten carbide was employed as the catalyst in an atom-economic and renewable synthesis of para-xylene with excellent selectivity and yield from 4-methyl-3-cyclohexene-1-carbonylaldehyde (4-MCHCA). This intermediate is the product of the Diels-Alder reaction between the two readily available bio-based building blocks acrolein and isoprene. Our results suggest that 4-MCHCA undergoes a novel dehydroaromatization-hydrodeoxygenation cascade process by intramolecular hydrogen transfer that does not involve an external hydrogen source, and that the hydrodeoxygenation occurs through the direct dissociation of the C=O bond on the W 2 C surface. Notably, this process is readily applicable to the synthesis of various (multi)methylated arenes from bio-based building blocks, thus potentially providing a petroleum-independent solution to valuable aromatic compounds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Radionuclide production from lead by neutron-induced reactions up to 175 MeV

    CERN Document Server

    Glasser, W; Neumann, S; Schuhmacher, H; Dangendorf, V; Nolte, R; Herpers, U; Smirnov, A N; Ryzhov, I; Prokofiev, A V; Malmborg, P; Kollar, D; Meulders, J P

    2002-01-01

    Activation experiments with quasi mono-energetic neutrons produced by the /sup 7/Li(p, n)/sup 7/Be reaction with proton-energies between 36.4 and 178.8 MeV were performed at UCL and TSL in order to determine cross sections for the production of residual nuclides from 13 target elements. The targets were irradiated in well-characterized neutron fields monitored by various measuring techniques. Residual nuclide abundances were determined by gamma -spectrometry. Cross sections were derived from them by an iterative method based on measured and calculated neutron spectra inside the target stacks and starting from "guess" excitation functions calculated by the ALICE- IPPE code. First results for the target element lead are presented. (20 refs).

  20. The quantum-chemical investigation of N-cyclization reaction mechanism for epichlorohydrin aminolysis products

    Directory of Open Access Journals (Sweden)

    Andrey V. Tokar

    2014-12-01

    Full Text Available The mechanism of intramolecular cyclization for products of epichlorohydrin aminolysis by secondary amines has been investigated at ab initio level of theory. By comparative analysis of energetic characteristics, which obtained in vacuo as well as in acetonitrile solution with the trace quantities of water as an «active» solvation partner of reaction, it has been shown a decisive role of solvent, which occurs mainly at the expense of the polarizable effects for nonspecific solvation. Indeed, the addition to the substrate of one water molecule have decreased corresponding EACT values only 24.1 kJ/mol, while the appearance of acetonitrile surroundings have the same influence ~42.0 kJ/mol. The results of calculations are in good agreement with that data, which have been obtained for such type modeling previously.

  1. Broadband Microwave Study of Reaction Intermediates and Products Through the Pyrolysis of Oxygenated Biofuels

    Science.gov (United States)

    Abeysekera, Chamara; Hernandez-Castillo, Alicia O.; Fritz, Sean; Zwier, Timothy S.

    2017-06-01

    The rapidly growing list of potential plant-derived biofuels creates a challenge for the scientific community to provide a molecular-scale understanding of their combustion. Development of accurate combustion models rests on a foundation of experimental data on the kinetics and product branching ratios of their individual reaction steps. Therefore, new spectroscopic tools are necessary to selectively detect and characterize fuel components and reactive intermediates generated by pyrolysis and combustion. Substituted furans, including furanic ethers, are considered second-generation biofuel candidates. Following the work of the Ellison group, an 8-18 GHz microwave study was carried out on the unimolecular and bimolecular decomposition of the smallest furanic ether, 2-methoxy furan, and it`s pyrolysis intermediate, the 2-furanyloxy radical, formed in a high-temperature pyrolysis source coupled to a supersonic expansion. Details of the experimental setup and analysis of the spectrum of the radical will be discussed.

  2. Status of helium-production reaction studies with a spallation neutron source

    International Nuclear Information System (INIS)

    Haight, R.C.; Bateman, F.B.; Chadwick, M.B.

    1994-01-01

    Alpha--particle production cross sections and spectra are being measured at the spallation source of fast neutrons at the Los Alamos Meson Physics Facility (LAMPF). Detectors at angles of 30, 60, 90 and 135 degree are used to identify alpha particles, measure their energy spectra, and indicate the time-of-flight, and hence the energy, of the neutrons inducing the reaction. The useful neutron energy ranges from less than 1 MeV to approximately 50 MeV for the present experimental setup. Targets under study at present include C, N, O, 27 Al, Si, 51 V, 56 Fe, 59 Co, 58,60 Ni, 89 Y and 93 Nb. Results for 59 Co illustrate the capabilities of the approach

  3. The Dubna double-arm time-of-flight spectrometer for heavy-ion reaction products

    International Nuclear Information System (INIS)

    Schilling, K.D.; Gippner, P.; Seidel, W.; Stary, F.; Will, E.; Heidel, K.; Lukyanov, S.M.; Penionzhkevich, Yu.E.; Salamatin, V.S.; Sodan, H.; Chubarian, G.G.

    1986-05-01

    The double-arm time-of-flight spectrometer DEMAS designed for the detection and identification of heavy-ion reaction products at incident energies below 10 MeV/amu is presented. Based on the kinematic coincidence method, the relevant physical information is obtained from the measurement of the two correlated velocity vectors of the binary fragments. Construction and performance of the different detector systems applied to measure the time-of-flight values, the position coordinates and the kinetic energies of both fragments are presented in detail. The description of the data acquisition and analysing procedures is followed by the discussion of some experimental examples to demonstrate the spectrometer performance. A mass resolution of typically 4 - 5 amu (fwhm) is routinely achieved. (author)

  4. Magnetophoretic potential at the movement of cluster products of electrochemical reactions in an inhomogeneous magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Gorobets, O. Yu., E-mail: pitbm@ukr.net; Gorobets, Yu. I., E-mail: Gorobets@imag.kiev.ua [National Technical University of Ukraine “KPI”, Peremogy Avenue 37, Kyiv 03056 (Ukraine); Institute of Magnetism NAS of Ukraine and National Academy of Sciences of Ukraine, Vernadsky Avenue, 36-b, Kyiv 03142 (Ukraine); Rospotniuk, V. P. [National Technical University of Ukraine “KPI”, Peremogy Avenue 37, Kyiv 03056 (Ukraine)

    2015-08-21

    An electric field arises from the influence of a nonuniform static magnetic field on charged colloid particles with magnetic susceptibility different from that of the surrounding liquid. It arises, for example, under the influence of a nonuniform static magnetic field in clusters of electrochemical reaction products created during metal etching, deposition, and corrosion processes without an external electric current passing through an electrolyte near a magnetized electrode surface. The corresponding potential consists of a Nernst potential of inhomogeneous distribution of concentration of colloid particles and a magnetophoretic potential (MPP). This potential has been calculated using a thermodynamic approach based on the equations of thermodynamics of nonequilibrium systems and the Onsager relations for a mass flow of correlated magnetic clusters under a gradient magnetic force in the electrolyte. The conditions under which the MPP contribution to the total electric potential may be significant are discussed with a reference to the example of a corroding spherical ferromagnetic steel electrode.

  5. Pion production and absorption in nuclear reactions. I. The vertex function

    International Nuclear Information System (INIS)

    Nutt, W.T.; Shakin, C.M.

    1977-01-01

    We have performed a model calculation of the pion-nucleon vertex function for the case in which one nucleon is allowed to go far off its mass shell. We discuss the relevance of this vertex function for the calculation of pion production and absorption in nuclear reactions, such as (π + ,p), (p,π + ), and for the pionic disintegration of the deuteron. The model used is based upon an approximation to an exact equation for the vertex function derived from a field-theoretic model with pseudoscalar coupling. Our calculations indicate a strong dependence of the vertex function on the invariant mass of the off-shell nucleon. The results are dominated by the presence of the 1470 MeV, P 11 resonance

  6. Single Top-Quark Production Cross Section Using the ATLAS Detector at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00239978; The ATLAS collaboration

    2016-01-01

    Recent measurements of the production of single top quarks in proton--proton collisions at centre-of-mass energies of $\\sqrt{s}=7\\,\\mathrm{TeV}$, $8\\,\\mathrm{TeV}$ and $13\\,\\mathrm{TeV}$ with the ATLAS detector at the LHC are presented. Four measurements of the production cross sections for single top quarks via the $s$- and $t$-channel exchange of a $W$ boson as well as in association with a \\Wboson{} are discussed. The results are compared to state-of-the-art theoretical calculations, and used to extract the value of the CKM matrix element $V_{tb}$. Recently found evidence for the production of single top quarks in the $s$-channel at $8\\,\\mathrm{TeV}$ is presented. Finally, the determination of anomalous couplings at the $W\\!-\\!t\\!-\\!b$ vertex from an analysis of top-quark decays is shown.

  7. Autonomy of image and use of single or multiple sense modalities in original verbal image production.

    Science.gov (United States)

    Khatena, J

    1978-06-01

    The use of a single or of multiple sense modalities in the production of original verbal images as related to autonomy of imagery was explored. 72 college adults were administered Onomatopoeia and Images and the Gordon Test of Visual Imagery Control. A modified scoring procedure for the Gordon scale differentiated imagers who were moderate or low in autonomy. The two groups produced original verbal images using multiple sense modalities more frequently than a single modality.

  8. Measurement of single top production in pp collisions at 7 TeV with ...

    Indian Academy of Sciences (India)

    2012-11-08

    Nov 8, 2012 ... 1223–1226. Measurement of single top production in pp collisions ... The measurement of t-channel single top cross-section in proton–proton collisions at ... channel μ. 2D,. 50.9. 50.9. ±. 104.1. -1. =7 TeV, L=35.9 pb s. CMS. Figure 1. Comparison of the cross-section measurements in all channels in the 2D-.

  9. Direct Production of High $p_T$ Single Photons at the CERN Intersecting Storage Rings

    CERN Document Server

    Diakonou, M; Resvanis, L.K.; Filippas, T.A.; Fokitis, E.; Trakkas, C.; Cnops, A.M.; Cobb, J.H.; Fowler, E.C.; Hood, D.M.; Iwata, S.; Palmer, R.B.; Rahm, D.C.; Rehak, P.; Stumer, I.; Fabjan, C.W.; Fields, T.; Lissauer, D.; Mannelli, I.; Molzon, W.; Mouzourakis, P.; Nakamura, K.; Nappi, A.; Willis, W.J.

    1979-01-01

    Single photon production in pp collisions at 30 < √ s < 62 GeV has been measured with liquid-argon-lead calorimeters at the CERN ISR. This process remains approximately constant with increasing √ s . For fixed √ s , the single photon to π 0 ratio increases strongly with increase in p T . The γ π 0 ratio is about 0.2 for p T above 4.5 GeV/c.

  10. Mitigation of ASR by the use of LiNO{sub 3}—Characterization of the reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Leemann, Andreas, E-mail: andreas.leemann@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstr. 129, 8600 Dübendorf (Switzerland); Lörtscher, Luzia [Institute for Surface Science and Technology (D-MATL), ETH Zurich, Schafmattstr. 6, 8093 Zurich (Switzerland); Bernard, Laetitia; Le Saout, Gwenn; Lothenbach, Barbara [Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstr. 129, 8600 Dübendorf (Switzerland); Espinosa-Marzal, Rosa M. [Institute for Surface Science and Technology (D-MATL), ETH Zurich, Schafmattstr. 6, 8093 Zurich (Switzerland)

    2014-05-01

    The influence of the LiNO{sub 3} on the ASR product was studied both in a model system and in mortars. In the model system, the addition of LiNO{sub 3} decreases the dissolution rate and the solubility of silica. Lithium changes the 2-dimensional cross-linked (Q{sub 3} dominated) network of the ASR product into a less structured, Q{sub 2} dominated product, likely by adopting the role of calcium. In the mortar samples the addition of LiNO{sub 3} decreases expansion and significantly influences the chemical composition and the morphology of the reaction product. Lithium decreases the calcium, sodium and potassium content and changes the relatively porous plate-like reaction product into a dense one without texture. The findings in the mortars indicate that the ASR-suppressing effect of lithium is caused by the lower potential of the reaction product to swell. Furthermore, it forms a protective barrier after an initial reaction slowing down ASR. - Highlights: • Detection of lithium in ASR product by ToF-SIMS • Relation between composition of pore solution and ASR product • Identification of ASR suppressing mechanisms of LiNO{sub 3}.

  11. Mitigation of ASR by the use of LiNO3—Characterization of the reaction products

    International Nuclear Information System (INIS)

    Leemann, Andreas; Lörtscher, Luzia; Bernard, Laetitia; Le Saout, Gwenn; Lothenbach, Barbara; Espinosa-Marzal, Rosa M.

    2014-01-01

    The influence of the LiNO 3 on the ASR product was studied both in a model system and in mortars. In the model system, the addition of LiNO 3 decreases the dissolution rate and the solubility of silica. Lithium changes the 2-dimensional cross-linked (Q 3 dominated) network of the ASR product into a less structured, Q 2 dominated product, likely by adopting the role of calcium. In the mortar samples the addition of LiNO 3 decreases expansion and significantly influences the chemical composition and the morphology of the reaction product. Lithium decreases the calcium, sodium and potassium content and changes the relatively porous plate-like reaction product into a dense one without texture. The findings in the mortars indicate that the ASR-suppressing effect of lithium is caused by the lower potential of the reaction product to swell. Furthermore, it forms a protective barrier after an initial reaction slowing down ASR. - Highlights: • Detection of lithium in ASR product by ToF-SIMS • Relation between composition of pore solution and ASR product • Identification of ASR suppressing mechanisms of LiNO 3

  12. Blow-Out Velocities of Solutions of Hydrocarbons and Boron Hydride - Hydrocarbon Reaction Products in a 1 7/8-Inch-Diameter Combustor

    Science.gov (United States)

    Morris, James F.; Lord, Albert M.

    1957-01-01

    Blow-out velocities were determined for JP-4 solutions containing: (1) 10 % ethylene - decaborane reaction product, (2) 10% and 20% acetylene - diborane reaction product, and (3) 5.5%, 15.7%, and 30.7% methylacetylene - diborane reaction product. These were compared with blow-out velocities for JP-4, propylene oxide, and neohexane and previously reported data for JP-4 solutions of pentaborane. For those reaction products investigated, the blow-out velocities at a fixed equivalence ratio were higher for those materials containing higher boron concentrations; that is, blow-out velocity increased in the following order: (1) methylacetylene - diborane, (2) acetylene - diborane, and (3) ethylene - decaborane reaction products.

  13. Factors associated with acute oral mucosal reaction induced by radiotherapy in head and neck squamous cell carcinoma: A retrospective single-center experience.

    Science.gov (United States)

    Tao, Zhenchao; Gao, Jin; Qian, Liting; Huang, Yifan; Zhou, Yan; Yang, Liping; He, Jian; Yang, Jing; Wang, Ru; Zhang, Yangyang

    2017-12-01

    To investigate risk factors for acute oral mucosal reaction during head and neck squamous cell carcinoma radiotherapy.A retrospective study of patients with head and neck squamous cell carcinoma who underwent radiotherapy from November 2013 to May 2016 in Anhui Provincial Cancer Hospital was conducted. Data on the occurrence and severity of acute oral mucositis were extracted from clinical records. Based on the Radiation Therapy Oncology Group (RTOG) grading of acute radiation mucosal injury, the patients were assigned into acute reaction (grades 2-4) and minimum reaction (grades 0-1) groups. Preradiotherapy characteristics and treatment factors were compared between the 2 groups. Multivariate logistic regression analysis was used to detect the independent factors associated with acute oral mucosal reactions.Eighty patients completed radiotherapy during the study period. Oral mucosal reactions were recorded as 25, 31, and 24 cases of grades 1, 2, and 3 injuries, respectively. Significant differences between acute reaction and minimum reaction groups were detected in cancer lymph node (N) staging, smoking and diabetes history, pretreatment platelet count and T-Helper/T-Suppressor lymphocyte (Th/Ts) ratio, concurrent chemotherapy, and total and single irradiation doses.Multivariate analysis showed that N stage, smoking history, single dose parapharyngeal irradiation, and pretreatment platelet count were independent risk factors for acute radiation induced oral mucosal reaction. Smoking history, higher grading of N stage, higher single dose irradiation, and lower preirradiation platelet count may increase the risk and severity of acute radiation oral mucosal reaction in radiotherapy of head and neck cancer patients. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  14. Application of noncatalytic gas-solid reactions for a single pellet of changing size to the modeling of fluidized-bed combustion of coal char containing sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Rehmat, A.; Saxena, S.C.; Land, R.H.

    1980-09-01

    A mechanistic model is developed for coal char combustion, with sulfur retention by limestone or dolomite sorbent, in a gas fluidized bed employing noncatalytic single pellet gas-solid reactions. The shrinking core model is employed to describe the kinetics of chemical reactions taking place on a single pellet; changes in pellet size as the reaction proceeds are considered. The solids are assumed to be in back-mix condition whereas the gas flow is regarded to be in plug flow. Most char combustion occurs near the gas distributor plate (at the bottom of the bed), where the bubbles are small and consequently the mass transfer rate is high. For such a case, the analysis is considerably simplified by ignoring the bubble phase since it plays an insignificant role in the overall rate of carbon conversion. Bubble-free operation is also encounterd in the turbulent regime, where the gas flow is quite high and classical bubbles do not exist. Formulation of the model includes setting up heat and mass balance equations pertaining to a single particle (1) exposed to a varying reactant concentration along the height of the bed and (2) whose size changes during reaction. These equations are then solved numerically to account for particles of all sizes in the bed in obtaining the overall carbon conversion efficiency and resultant sulfur retention. In particular, the influence on sorbent requirement of several fluid-bed variables such as oxygen concentration profile, particle size, reaction rate for sulfation reaction, and suflur adsorption efficiency are examined.

  15. The quantification of free Amadori compounds and amino acids allows to model the bound Maillard reaction products formation in soybean products

    NARCIS (Netherlands)

    Troise, Antonio Dario; Wiltafsky, Markus; Fogliano, Vincenzo; Vitaglione, Paola

    2018-01-01

    The quantification of protein bound Maillard reaction products (MRPs) is still a challenge in food chemistry. Protein hydrolysis is the bottleneck step: it is time consuming and the protein degradation is not always complete. In this study, the quantitation of free amino acids and Amadori products

  16. Single top measurements at the LHC: $s$-channel and $Wt$ production

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00214457; The ATLAS collaboration

    2016-01-01

    This paper summarises the latest experimental results on single top quark physics by the ATLAS and CMS collaborations using LHC proton--proton collisions at $\\sqrt{s}=8 \\rm \\ TeV$. Searches for single top-quark production in the $s$-channel and associated $Wt$ mode are presented and a determination of the CKM matrix element $|V_{tb}|$ is discussed. Evidence for $s$-channel production is reported by the ATLAS collaboration and the $Wt$ process has been observed at the LHC.

  17. Single-Event Transgene Product Levels Predict Levels in Genetically Modified Breeding Stacks.

    Science.gov (United States)

    Gampala, Satyalinga Srinivas; Fast, Brandon J; Richey, Kimberly A; Gao, Zhifang; Hill, Ryan; Wulfkuhle, Bryant; Shan, Guomin; Bradfisch, Greg A; Herman, Rod A

    2017-09-13

    The concentration of transgene products (proteins and double-stranded RNA) in genetically modified (GM) crop tissues is measured to support food, feed, and environmental risk assessments. Measurement of transgene product concentrations in breeding stacks of previously assessed and approved GM events is required by many regulatory authorities to evaluate unexpected transgene interactions that might affect expression. Research was conducted to determine how well concentrations of transgene products in single GM events predict levels in breeding stacks composed of these events. The concentrations of transgene products were compared between GM maize, soybean, and cotton breeding stacks (MON-87427 × MON-89034 × DAS-Ø15Ø7-1 × MON-87411 × DAS-59122-7 × DAS-40278-9 corn, DAS-81419-2 × DAS-44406-6 soybean, and DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 × MON-88913-8 × DAS-81910-7 cotton) and their component single events (MON-87427, MON-89034, DAS-Ø15Ø7-1, MON-87411, DAS-59122-7, and DAS-40278-9 corn, DAS-81419-2, and DAS-44406-6 soybean, and DAS-21023-5, DAS-24236-5, SYN-IR102-7, MON-88913-8, and DAS-81910-7 cotton). Comparisons were made within a crop and transgene product across plant tissue types and were also made across transgene products in each breeding stack for grain/seed. Scatter plots were generated comparing expression in the stacks to their component events, and the percent of variability accounted for by the line of identity (y = x) was calculated (coefficient of identity, I 2 ). Results support transgene concentrations in single events predicting similar concentrations in breeding stacks containing the single events. Therefore, food, feed, and environmental risk assessments based on concentrations of transgene products in single GM events are generally applicable to breeding stacks composed of these events.

  18. Guanine radical reaction processes: a computational description of proton transfer in X-irradiated 9-ethylguanine single crystals.

    Science.gov (United States)

    Jayatilaka, Nayana; Nelson, William H

    2008-12-25

    Computational methods based on DFT procedures have been used to investigate proton-transfer processes in irradiated 9-ethylguanine crystals. Previous experimental results from X-irradiation and study of this system at 10 K found significant concentrations of two main products, R1, formed by N7-hydrogenation of the purine ring, and R2, the primary one-electron oxidation product (Jayatilaka, N.; Nelson, W. H. J. Phys. Chem. B 2007, 111, 7887). The objective of this work is to describe the processes leading to these products using computational methods that take into account molecular packing and bulk dielectric properties. The basic concept is that a proton will transfer following ionization if the net electronic energy of the system, consisting of the donor plus the acceptor plus any intervening molecules, becomes lower. Three approaches were used to investigate this concept, two based on energies computed for single molecules and one based on energies computed for two-molecule clusters arranged as in the crystals. The results are that the methods successfully predict the observed behavior, that it is energetically favorable on one-electron reduction for proton H1 to transfer from a neutral molecule to N7 of the neighbor, forming the N7-hydrogenated product, and that there is virtually no energy advantage for a proton to transfer upon one-electron oxidation. The results also support the proposal that the C8 H-addition radical, found only upon irradiation at 300 K, was the product of intramolecular transfer of the H7 proton to C8 in a process apparently requiring sufficient thermal energy for activation. Finally, the computations predict hyperfine couplings and tensors in very good agreement with those from experiment, thereby providing additional evidence for the success of the computations in describing the experimental observations.

  19. Reaction F + C2H4: Rate Constant and Yields of the Reaction Products as a Function of Temperature over 298-950 K.

    Science.gov (United States)

    Bedjanian, Yuri

    2018-03-29

    The kinetics and products of the reaction of F + C 2 H 4 have been studied in a discharge flow reactor combined with an electron impact ionization mass spectrometer at nearly 2 Torr total pressure of helium in the temperature range 298-950 K. The total rate constant of the reaction, k 1 = (1.78 ± 0.30) × 10 -10 cm 3 molecule -1 s -1 , determined under pseudo-first-order conditions, monitoring the kinetics of F atom consumption in excess of C 2 H 4 , was found to be temperature independent in the temperature range used. H, C 2 H 3 F, and HF were identified as the reaction products. Absolute measurements of the yields of these species allowed to determine the branching ratios, k 1b / k 1 = (0.73 ± 0.07) exp(-(425 ± 45)/ T) and k 1a / k 1 = 1 - (0.73 ± 0.07) exp(-(425 ± 45)/ T) and partial rate constants for addition-elimination (H + C 2 H 3 F) and H atom abstraction (HF + C 2 H 3 ) pathways of the title reaction: k 1a = (0.80 ± 0.07) × 10 -10 exp(189 ± 37/ T) and k 1b = (1.26 ± 0.13) × 10 -10 exp(-414 ± 45/ T) cm 3 molecule -1 s -1 , respectively, at T = 298-950 K and with 2σ quoted uncertainties. The overall reaction rate constant can be adequately described by both the temperature independent value and as a sum of k 1a and k 1b . The kinetic and mechanistic data from the present study are discussed in comparison with previous absolute and relative measurements and theoretical calculations.

  20. HCN elimination from vinyl cyanide: product energy partitioning, the role of hydrogen-deuterium exchange reactions and a new pathway.

    Science.gov (United States)

    Vázquez, Saulo A; Martínez-Núñez, Emilio

    2015-03-14

    The different HCN elimination pathways from vinyl cyanide (VCN) are studied in this paper using RRKM, Kinetic Monte Carlo (KMC), and quasi-classical trajectory (QCT) calculations. A new HCN elimination pathway proves to be very competitive with the traditional 3-center and 4-center mechanisms, particularly at low excitation energies. However, low excitation energies have never been experimentally explored, and the high and low excitation regions are dynamically different. The KMC simulations carried out using singly deuterated VCN (CH2=CD-CN) at 148 kcal mol(-1) show the importance of hydrogen-deuterium exchange reactions: both DCN and HCN will be produced in any of the 1,1 and 1,2 elimination pathways. The QCT simulation results obtained for the 3-center pathway are in agreement with the available experimental results, with the 4-center results showing much more excitation of the products. In general, our results seem to be consistent with a photodissociation mechanism at 193 nm, where the molecule dissociates (at least the HCN elimination pathways) in the ground electronic state. However, our simulations assume that internal conversion is a fully statistical process, i.e., the HCN elimination channels proceed on the ground electronic state according to RRKM theory, which might not be the case. In future studies it would be of interest to include the photo-prepared electronically excited state(s) in the dynamics simulations.

  1. The C(3P) + NH3 Reaction in Interstellar Chemistry. I. Investigation of the Product Formation Channels

    Science.gov (United States)

    Bourgalais, Jérémy; Capron, Michael; Abhinavam Kailasanathan, Ranjith Kumar; Osborn, David L.; Hickson, Kevin M.; Loison, Jean-Christophe; Wakelam, Valentine; Goulay, Fabien; Le Picard, Sébastien D.

    2015-10-01

    The product formation channels of ground state carbon atoms, C(3P), reacting with ammonia, NH3, have been investigated using two complementary experiments and electronic structure calculations. Reaction products are detected in a gas flow tube experiment (330 K, 4 Torr) using tunable vacuum-ultraviolet (VUV) photoionization coupled with time of flight mass spectrometry. Temporal profiles of the species formed and photoionization spectra are used to identify primary products of the C + NH3 reaction. In addition, H-atom formation is monitored by VUV laser induced fluorescence (LIF) from room temperature to 50 K in a supersonic gas flow generated by the Laval nozzle technique. Electronic structure calculations are performed to derive intermediates, transition states, and complexes formed along the reaction coordinate. The combination of photoionization and LIF experiments supported by theoretical calculations indicate that in the temperature and pressure range investigated, the H + H2CN production channel represents 100% of the product yield for this reaction. Kinetics measurements of the title reaction down to 50 K and the effect of the new rate constants on interstellar nitrogen hydride abundances using a model of dense interstellar clouds are reported in Paper II.

  2. Single top quarks at the Tevatron and observation of the s-channel production mode

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The presentation gives an overview of single-top-quark production at the Tevatron proton-antiproton collider. The talk covers measurements of the total s+t channel production cross section and the extraction of the CKM matrix element |V_tb|. Furthermore, separate analyses of the s-channel and t-channel production modes are discussed. The data correspond to total integrated luminosities of up to 9.7 fb-1 per experiment and represent in most cases the full Run-II dataset. Through a combination of the CDF and D0 measurements the first observation of single-top-quark production in the s-channel is claimed. This is particularly highlighted in the seminar.

  3. Probing the Higgs self coupling via single Higgs production at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Degrassi, G. [Dipartimento di Matematica e Fisica, Università di Roma Tre andINFN, sezione di Roma Tre,Via della Vasca Navale 84, I-00146 Rome (Italy); Giardino, P.P. [Physics Department, Brookhaven National Laboratory,20 Pennsylvania St., Upton NY 11742 (United States); Maltoni, F.; Pagani, D. [Centre for Cosmology, Particle Physics and Phenomenology (CP3),Université Catholique de Louvain,B-1348 Louvain-la-Neuve (Belgium)

    2016-12-16

    We propose a method to determine the trilinear Higgs self coupling that is alternative to the direct measurement of Higgs pair production total cross sections and differential distributions. The method relies on the effects that electroweak loops featuring an anomalous trilinear coupling would imprint on single Higgs production at the LHC. We first calculate these contributions to all the phenomenologically relevant Higgs production (ggF, VBF, WH, ZH, tt̄H) and decay (γγ, WW{sup ∗}/ZZ{sup ∗}→4f, bb̄, ττ) modes at the LHC and then estimate the sensitivity to the trilinear coupling via a one-parameter fit to the single Higgs measurements at the LHC 8 TeV. We find that the bounds on the self coupling are already competitive with those from Higgs pair production and will be further improved in the current and next LHC runs.

  4. Rational Design of Single Molybdenum Atoms Anchored on N-Doped Carbon for Effective Hydrogen Evolution Reaction.

    Science.gov (United States)

    Chen, Wenxing; Pei, Jiajing; He, Chun-Ting; Wan, Jiawei; Ren, Hanlin; Zhu, Youqi; Wang, Yu; Dong, Juncai; Tian, Shubo; Cheong, Weng-Chon; Lu, Siqi; Zheng, Lirong; Zheng, Xusheng; Yan, Wensheng; Zhuang, Zhongbin; Chen, Chen; Peng, Qing; Wang, Dingsheng; Li, Yadong

    2017-12-11

    The highly efficient electrochemical hydrogen evolution reaction (HER) provides a promising pathway to resolve energy and environment problems. An electrocatalyst was designed with single Mo atoms (Mo-SAs) supported on N-doped carbon having outstanding HER performance. The structure of the catalyst was probed by aberration-corrected scanning transmission electron microscopy (AC-STEM) and X-ray absorption fine structure (XAFS) spectroscopy, indicating the formation of Mo-SAs anchored with one nitrogen atom and two carbon atoms (Mo 1 N 1 C 2 ). Importantly, the Mo 1 N 1 C 2 catalyst displayed much more excellent activity compared with Mo 2 C and MoN, and better stability than commercial Pt/C. Density functional theory (DFT) calculation revealed that the unique structure of Mo 1 N 1 C 2 moiety played a crucial effect to improve the HER performance. This work opens up new opportunities for the preparation and application of highly active and stable Mo-based HER catalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shwetha Ramkumar; Mahesh Iyer; Danny Wong; Himanshu Gupta; Bartev Sakadjian; Liang-Lhih Fan

    2008-09-30

    High purity hydrogen is commercially produced from syngas by the Water Gas Shift Reaction (WGSR) in high and low temperature shift reactors using iron oxide and copper catalysts respectively. However, the WGSR is thermodynamically limited at high temperatures towards hydrogen production necessitating excess steam addition and catalytic operation. In the calcium looping process, the equilibrium limited WGSR is driven forward by the incessant removal of CO{sub 2} by-product through the carbonation of calcium oxide. At high pressures, this process obviates the need for a catalyst and excess steam requirement, thereby removing the costs related to the procurement and deactivation of the catalyst and steam generation. Thermodynamic analysis for the combined WGS and carbonation reaction was conducted. The combined WGS and carbonation reaction was investigated at varying pressures, temperatures and S/C ratios using a bench scale reactor system. It was found that the purity of hydrogen increases with the increase in pressure and at a pressure of 300 psig, almost 100% hydrogen is produced. It was also found that at high pressures, high purity hydrogen can be produced using stoichiometric quantities of steam. On comparing the catalytic and non catalytic modes of operation in the presence of calcium oxide, it was found that there was no difference in the purity of hydrogen produced at elevated pressures. Multicyclic reaction and regeneration experiments were also conducted and it was found that the purity of hydrogen remains almost constant after a few cycles.

  6. Production of hydrogen in the reaction between aluminum and water in the presence of NaOH and KOH

    Directory of Open Access Journals (Sweden)

    C. B. Porciúncula

    2012-06-01

    Full Text Available The objective of this work is to investigate the production of hydrogen as an energy source by means of the reaction of aluminum with water. This reaction only occurs in the presence of NaOH and KOH, which behave as catalysts. The main advantages of using aluminum for indirect energy storage are: recyclability, non-toxicity and easiness to shape. Alkali concentrations varying from 1 to 3 mol.L-1 were applied to different metallic samples, either foil (0.02 mm thick or plates (0.5 and 1 mm thick, and reaction temperatures between 295 and 345 K were tested. The results show that the reaction is strongly influenced by temperature, alkali concentration and metal shape. NaOH commonly promotes faster reactions and higher real yields than KOH.

  7. A search for single electron production in electron positron annihilation at E = 29 GeV

    International Nuclear Information System (INIS)

    Steele, T.R.

    1989-09-01

    This thesis presents experimental results from the ASP detector which took data on e + e - interactions in the PEP storage ring at SLAC. Its design was particularly suitable for searching for production of supersymmetric particles. The motivations for and phenomenology of Supersymmetry are discussed. In particular, the production of a single supersymmetric electron (''selectron'', e) in combination with a supersymmetric photon (''photino'', γ) would result in events in which a single electron and no other particles are observed in the detector at an e + e - collider such as PEP, provided the masses of these particles are not too large. Such events would also result from the production of a single supersymmetric W-boson (''wino'', W) in combination with a supersymmetric neutrino (''sneutrino'', ν). These processes make it possible to search for electrons and winos with masses greater than the beam energy. Observation of these unusual events would distinctly indicate the production of new particles. The ASP detector was designed to be hermetic and to provide efficient event reconstruction for low multiplicity events. The detector is described and its performance is evaluated; it is found to be well-suited to this study. The data sample collected with the detector was thoroughly analyzed for evidence of single-electron events. The various possible background processes are considered and Monte Carlo calculations of the distributions from single selectron and single wino production are presented. Using this information an efficient off-line event selection process was developed, and it is described in detail. 82 refs., 41 figs., 4 tabs

  8. Effect of ammonia on methane production pathways and reaction rates in acetate-fed biogas processes.

    Science.gov (United States)

    Hao, L P; Mazéas, L; Lü, F; Grossin-Debattista, J; He, P J; Bouchez, T

    2017-04-01

    In order to understand the correlation between ammonia and methanogenesis metabolism, methane production pathways and their specific rates were studied at total ammonium nitrogen (TAN) concentrations of 0.14-9 g/L in three methanogenic sludges fed with acetate, at both mesophilic and thermophilic conditions. Results showed that high levels of TAN had significant inhibition on methanogenesis; this could, however, be recovered via syntrophic acetate oxidation (SAO) coupled with Hydrogenotrophic Methanogenesis (HM) performed by acetate oxidizing syntrophs or through Acetoclastic Methanogenesis (AM) catalyzed by Methanosarcinaceae, after a long lag phase >50 d. Free ammonia (NH 3 ) was the active component for this inhibition, of which 200 mg/L is suggested as the threshold for the pathway shift from AM to SAO-HM. Methane production rate via SAO-HM at TAN of 7-9 g/L was about 5-9-fold lower than that of AM at TAN of 0.14 g/L, which was also lower than the rate of AM pathway recovered at TAN of 7 g/L in the incubations with a French mesophilic inoculum. Thermophilic condition favored the establishment of the SAO-catalyzing microbial community, as indicated by the higher reaction rate and shorter lag phase. The operational strategy is thus suggested to be adjusted when NH 3 exceeds 200 mg/L.

  9. Production of single superphosphate labeled with 34S Produção de superfosfato simples marcado com 34S

    Directory of Open Access Journals (Sweden)

    Alexssandra Luiza Rodrigues Molina Rossete

    2008-02-01

    Full Text Available Single superphosphate is currently one of the mostly used fertilizers as an alternative source for phosphorus and sulphur. Sulphur presents four stable isotopes (32S, 33S, 34S, and 36S with natural abundances of 95.00; 0.76; 4.22; and 0.014% in atoms, respectively. Single superphosphate labeled with the 34S isotope was obtained from a chemical reaction in stoichiometric amounts between Ca(H2PO42 and Ca34SO4.2H2O. Calcium sulphate (Ca34SO4.2H2O was enriched with 5.85 ± 0.01 atoms % of 34S. The Ca(H2PO42 reagent was obtained from a reaction between CaCl2.2H2O and H3PO4. The reaction between the Ca(H2PO42 thus produced and the labeled Ca34SO4.2H2O compound was then performed to obtain the 34S-labeled single surperphosphate. The thermal decomposition of the labeled superphosphate for the production of gaseous 34SO2 was carried out under a vacuum line at 900ºC in the presence of NaPO3. The isotopic determination of S (atoms % of 34S was carried out on an ATLAS-MAT model CH-4 mass spectrometer. The production yield of Ca(H2PO42 and labeled single superphosphate were approximately 97 and 99% respectively, and the purity level of the labeled single superphosphate was estimated as 96%. No isotopic fractionation was observed in the production process of 34S-labeled single superphosphate.O superfosfato simples é um dos fertilizantes mais utilizados atualmente como fonte de fósforo e uma alternativa para enxofre. O enxofre apresenta quatro isótopos estáveis, 32S, 33S, 34S e 36S, com abundância natural de 95,00; 0,76; 4,22 e 0,014% em átomos, respectivamente. O superfosfato simples marcado com 34S foi obtido a partir da reação química em proporção estequiométrica entre o Ca(H2PO42 e o Ca34SO4.2H2O. O Ca34SO4.2H2O foi enriquecido com 5,85 ± 0,01% em átomos de 34S. O Ca(H2PO42 foi obtido a partir da reação entre CaCl2.2H2O com o H3PO4. A decomposição térmica do superfosfato marcado para produção do 34SO2 gasoso foi realizada em linha de

  10. Examining the rudimentary steps of the oxygen reduction reaction on single-atomic Pt using Ti-based non-oxide supports

    DEFF Research Database (Denmark)

    Tak, Young Joo; Yang, Sungeun; Lee, Hyunjoo

    2018-01-01

    In the attempt to reduce the high-cost and improve the overall durability of Pt-based electrocatalysts for the oxygen reduction reaction (ORR), density-functional theory (DFT) calculations have been performed to study the energetics of the elementary steps that occur during ORR on TiN(100)- and T...... of the single-atom Pt catalyst, and directly influences the rudimentary ORR steps on these single-atom platinized supports....

  11. Chemical modification of a bitumen and its non-fuel uses. [Reactions of tar sand asphaltenes in synthesis of non-fuel products

    Energy Technology Data Exchange (ETDEWEB)

    Moschopedis, S.E.; Speight, J.G.

    1974-01-01

    Simple reactions are described whereby tar sand bitumen can be converted to a whole range of materials. Examples are given to illustrate the non-fuel uses of the products. The following reactions of Athabasca asphaltenes are considered: oxidation, halogenation, sulfonation and sulfomethylation, phosphorylation, hydrogenation, reactions with S and O, reactions with metal salts, and miscellaneous chemical conversions. (JGB)

  12. Incoherent production reactions of positive and negative ions in matrix-assisted laser desorption/ionization.

    Science.gov (United States)

    Liu, Bo-Hong; Lee, Yuan Tseh; Wang, Yi-Sheng

    2009-06-01

    Utilizing synchronized dual-polarity matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, we found good evidence of the incoherent production of positive and negative matrix ions. Using thin, homogeneous 2,5-dehydroxybenzoic acid (DHB) matrix films, positive and negative matrix ions were found to appear at different threshold laser fluences. The presence of molecular matrix ions of single charge polarity suggests that the existence of DHB ion-pairs may not be a prerequisite in MALDI. Photoelectrons induced by the laser excitation may assist the production of negative DHB ions, as shown in experiments conducted with stainless steel and glass substrates. At high laser fluences, the relative yield of positive and negative matrix ions remained constant when homogeneous matrix films were used, but it fluctuated significantly with inhomogeneous crystal morphology. This result is also inconsistent with the hypothesis that matrix ion-pairs are essential primary ions. Evidence from both low and high laser fluences suggests that the productions of positive and negative matrix ions in MALDI may occur via independent pathways.

  13. Dynamic optimization approach for integrated supplier selection and tracking control of single product inventory system with product discount

    Science.gov (United States)

    Sutrisno; Widowati; Heru Tjahjana, R.

    2017-01-01

    In this paper, we propose a mathematical model in the form of dynamic/multi-stage optimization to solve an integrated supplier selection problem and tracking control problem of single product inventory system with product discount. The product discount will be stated as a piece-wise linear function. We use dynamic programming to solve this proposed optimization to determine the optimal supplier and the optimal product volume that will be purchased from the optimal supplier for each time period so that the inventory level tracks a reference trajectory given by decision maker with minimal total cost. We give a numerical experiment to evaluate the proposed model. From the result, the optimal supplier was determined for each time period and the inventory level follows the given reference well.

  14. Kinetic Study on Peptide-Bound Pyrraline Formation and Elimination in the Maillard Reaction Using Single- and Multiple-Response Models.

    Science.gov (United States)

    Liang, Zhili; Li, Lin; Qi, Haiping; Zhang, Zhenbo Xu Xia; Li, Bing

    2016-10-01

    Pyrraline, an advanced glycation end product (AGE), is related to some chronic diseases and can be employed as an indicator for heat damage in food processing. In this study, the impact of changing the reactant concentration and ratio on the kinetic parameters describing peptide-bound pyrraline (pep-pyr) formation and elimination was evaluated in the Lys-Gly/glucose model systems, with microwave heating treatment ranging from 120 to 200 °C. The maximum pep-pyr concentration increased as follows: 200 °C ˂ 180 °C ˂ 160 °C ˂ 120 °C ˂ 140 °C. First, the pep-pyr formation and elimination was modeled by using a single-response modelling. The formation rate constant (k F ) of pep-pyr was independent of the initial concentration of the reactants and ratios. However, the elimination rate constant of pep-pyr (k E ) increased with increasing reactant concentrations. Second, a multiresponse modelling was performed to illustrate the pathways of pep-pyr formation and elimination. Two adapted models can fit to the experimental data with the goodness-of-fit ranging from 0.663 to 0.920. Glucose-to-fructose isomerization rather than glucose-to-mannose epimerization was detected in an equimolar model system and the model system with an excess of any of the reactants. The caramelization reaction was negligible in the equimolar systems and the model systems with an excess of peptide. The reaction rate constant of glucose-to-fructose isomerization was independent of the initial reactant ratios. It was more difficult for pep-pyr elimination in the model system with an excess of peptide than that in the other 2 model systems (the equimolar system and the system with an excess of glucose), whereas a reverse result in pep-pyr formation was obtained. © 2016 Institute of Food Technologists®.

  15. Studies of the Atmospheric Chemsitry of Energy-Related Volatile Organic Compounds and of their Atmospheric Reaction Products

    Energy Technology Data Exchange (ETDEWEB)

    Roger Atkinson; Janet Arey

    2007-04-14

    The focus of this contract was to investigate selected aspects of the atmospheric chemistry of volatile organic compounds (VOCs) emitted into the atmosphere from energy-related sources as well as from biogenic sources. The classes of VOCs studied were polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs, the biogenic VOCs isoprene, 2-methyl-3-buten-2-ol and cis-3-hexen-1-ol, alkenes (including alkenes emitted from vegetation) and their oxygenated atmospheric reaction products, and a series of oxygenated carbonyl and hydroxycarbonyl compounds formed as atmospheric reaction products of aromatic hydrocarbons and other VOCs. Large volume reaction chambers were used to investigate the kinetics and/or products of photolysis and of the gas-phase reactions of these organic compounds with hydroxyl (OH) radicals, nitrate (NO3) radicals, and ozone (O3), using an array of analytical instrumentation to analyze the reactants and products (including gas chromatography, in situ Fourier transform infrared spectroscopy, and direct air sampling atmospheric pressure ionization tandem mass spectrometry). The following studies were carried out. The photolysis rates of 1- and 2-nitronaphthalene and of eleven isomeric methylnitronaphthalenes were measured indoors using blacklamp irradiation and outdoors using natural sunlight. Rate constants were measured for the gas-phase reactions of OH radicals, Cl atoms and NO3 radicals with naphthalene, 1- and 2-methylnaphthalene, 1- and 2-ethylnaphthalene and the ten dimethylnaphthalene isomers. Rate constants were measured for the gas-phase reactions of OH radicals with four unsaturated carbonyls and with a series of hydroxyaldehydes formed as atmospheric reaction products of other VOCs, and for the gas-phase reactions of O3 with a series of cycloalkenes. Products of the gas-phase reactions of OH radicals and O3 with a series of biogenically emitted VOCs were identified and quantified. Ambient atmospheric measurements of the concentrations of a

  16. Reduction and Analysis of Low Temperature Shift Heterogeneous Catalyst for Water Gas Reaction in Ammonia Production

    Directory of Open Access Journals (Sweden)

    Zečević, N.

    2013-09-01

    Full Text Available In order to obtain additional quantities of hydrogen after the reforming reactions of natural gas and protect the ammonia synthesis catalyst, it is crucial to achieve and maintain maximum possible activity, selectivity and stability of the low temperature shift catalyst for conversion of water gas reaction during its lifetime. Whereas the heterogeneous catalyst comes in oxidized form, it is of the utmost importance to conduct the reduction procedure properly. The proper reduction procedure and continuous analysis of its performance would ensure the required activity, selectivity and stability throughout the catalyst’s service time. For the proper reduction procedure ofthe low temperature shift catalyst, in addition to process equipment, also necessary is a reliable and realistic system for temperature measurements, which will be effective for monitoring the exothermal temperature curves through all catalyst bed layers. For efficiency evaluation of low shift temperature catalyst reduction and its optimization, it is necessary to determine at regular time intervals the temperature approach to equilibrium and temperature profiles of individual layers by means of "S" and "die off" temperature exothermal curves. Based on the obtained data, the optimum inlet temperature could be determined, in order to maximally extend the service life of the heterogeneous catalyst as much as possible, and achieve the optimum equilibrium for conversion of the water gas. This paper presents the methodology for in situ reduction of the low temperature shift heterogeneous catalyst and the developed system for monitoring its individual layers to achieve the minimum possible content of carbon monoxide at the exit of the reactor. The developed system for temperature monitoring through heterogeneous catalyst layers provides the proper procedure for reduction and adjustment of optimum process working conditions for the catalyst by the continuous increase of reactor inlet

  17. Preparation, characterization and toxicology properties of α- and β-chitosan Maillard reaction products nanoparticles.

    Science.gov (United States)

    Zhang, Hongcai; Zhang, Yiwen; Bao, Erjaing; Zhao, Yanyun

    2016-08-01

    In this study, β-chitosan (CS) Maillard reaction (MR) NPs was prepared to improve the water solubility of CS NPs. The α- and β-CS MR was firstly induced by high intensity ultrasound-assisted (UA) water-bath heating at 80°C for 8h. The α- and β-CS Maillard reaction products (MRPs NPs were then prepared by ionic gelation method between the positively charged primary amino groups of CS and the negatively charged groups of sodium tripolyphosphate (TPP). The α- and β-CS MRPs NPs had particle size of 42.49 and 61.74nm, and Zeta-potential of 27.43 and 35.13mV, respectively. The prepared α- and β-CS MRPs NPs was characterized by transmission electron microscope (TEM), Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA)-differential scanning calorimetry (DSC) to verify whether α- and β-CS MRPs has been incorporated into the CS NPs. The α- and β-CS MRPs NPs exhibited no significant difference (p>0.05) in antioxidant activity compared with α- and β-CS MRPs at the same concentration based on reducing power, DPPH radical scavenging activity, and ORAC values. The cytotoxicity test of α- and β-CS MRPs NPs showed good cell viability (70.86-99.16%) of human pulmonary microvascular endothelial cells (HLMVEC) at the concentration range from 0.12 to 1mg/mL, and fluorescein-5-isothiocyanate (FITC)-α- and β-CS MRPs NPs maintained the morphological characteristics of living cells. These results showed that α- and β-CS MRPs NPs can be used as water-soluble antioxidant substances for applications in food and other fields. Copyright © 2016. Published by Elsevier B.V.

  18. Bio imaging of intracellular NO production in single bone cells after mechanical stimulation

    NARCIS (Netherlands)

    Vatsa, A.; Mizuno, D.; Smit, T.H.; Schmidt, C.; Mac Kintosh, F.C.; Klein-Nulend, J.

    2006-01-01

    We show the intracellular upregulation of NO production after mechanical stimulation, an essential chemical signal in bone remodeling. This is done in real time using the fluorescent chromophore DAR-4M AM. Differences in cellular response to mechanical stimulation of different regions of a single

  19. Economic Optimizing Control for Single-Cell Protein Production in a U-Loop Reactor

    DEFF Research Database (Denmark)

    Drejer, André; Ritschel, Tobias Kasper Skovborg; Jørgensen, Sten Bay

    2017-01-01

    The production of single-cell protein (SCP) in a U-loop reactor by a methanotroph is a cost efficient sustainable alternative to protein from fish meal obtained by over-fishing the oceans. SCP serves as animal feed. In this paper, we present a mathematical model that describes the dynamics of SCP...

  20. Single-cell screening of photosynthetic growth and lactate production by cyanobacteria

    NARCIS (Netherlands)

    Hammar, P.; Angermayr, S.A.; Sjostrom, S.L.; van der Meer, J.; Hellingwerf, K.J.; Hudson, E.P.; Joensson, H.N.

    2015-01-01

    BACKGROUND: Photosynthetic cyanobacteria are attractive for a range of biotechnological applications including biofuel production. However, due to slow growth, screening of mutant libraries using microtiter plates is not feasible. RESULTS: We present a method for high-throughput, single-cell