WorldWideScience

Sample records for single photon atomic

  1. Single photon transport by a moving atom

    International Nuclear Information System (INIS)

    Afanasiev, A E; Melentiev, P N; Kuzin, A A; Yu Kalatskiy, A; Balykin, V I

    2017-01-01

    The results of investigation of photon transport through the subwavelength hole in the opaque screen by using single neutral atom are represented. The basis of the proposed and implemented method is the absorption of a photon by a neutral atom immediately before the subwavelength aperture, traveling of the atoms through the hole and emission of a photon on the other side of the screen. Realized method is the alternative approach to existing for photon transport through a subwavelength aperture: 1) self-sustained transmittance of a photon through the aperture according to the Bethe’s model; 2) extra ordinary transmission because of surface-plasmon excitation. (paper)

  2. Directional emission of single photons from small atomic samples

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; V. Poulsen, Uffe; Mølmer, Klaus

    2013-01-01

    We provide a formalism to describe deterministic emission of single photons with tailored spatial and temporal profiles from a regular array of multi-level atoms. We assume that a single collective excitation is initially shared by all the atoms in a metastable atomic state, and that this state i...... is coupled by a classical laser field to an optically excited state which rapidly decays to the ground atomic state. Our model accounts for the different field polarization components via re-absorption and emission of light by the Zeeman manifold of optically excited states.......We provide a formalism to describe deterministic emission of single photons with tailored spatial and temporal profiles from a regular array of multi-level atoms. We assume that a single collective excitation is initially shared by all the atoms in a metastable atomic state, and that this state...

  3. Analysis of deterministic swapping of photonic and atomic states through single-photon Raman interaction

    Science.gov (United States)

    Rosenblum, Serge; Borne, Adrien; Dayan, Barak

    2017-03-01

    The long-standing goal of deterministic quantum interactions between single photons and single atoms was recently realized in various experiments. Among these, an appealing demonstration relied on single-photon Raman interaction (SPRINT) in a three-level atom coupled to a single-mode waveguide. In essence, the interference-based process of SPRINT deterministically swaps the qubits encoded in a single photon and a single atom, without the need for additional control pulses. It can also be harnessed to construct passive entangling quantum gates, and can therefore form the basis for scalable quantum networks in which communication between the nodes is carried out only by single-photon pulses. Here we present an analytical and numerical study of SPRINT, characterizing its limitations and defining parameters for its optimal operation. Specifically, we study the effect of losses, imperfect polarization, and the presence of multiple excited states. In all cases we discuss strategies for restoring the operation of SPRINT.

  4. Quantum Logic with Cavity Photons From Single Atoms.

    Science.gov (United States)

    Holleczek, Annemarie; Barter, Oliver; Rubenok, Allison; Dilley, Jerome; Nisbet-Jones, Peter B R; Langfahl-Klabes, Gunnar; Marshall, Graham D; Sparrow, Chris; O'Brien, Jeremy L; Poulios, Konstantinos; Kuhn, Axel; Matthews, Jonathan C F

    2016-07-08

    We demonstrate quantum logic using narrow linewidth photons that are produced with an a priori nonprobabilistic scheme from a single ^{87}Rb atom strongly coupled to a high-finesse cavity. We use a controlled-not gate integrated into a photonic chip to entangle these photons, and we observe nonclassical correlations between photon detection events separated by periods exceeding the travel time across the chip by 3 orders of magnitude. This enables quantum technology that will use the properties of both narrow-band single photon sources and integrated quantum photonics.

  5. Entangled photons from single atoms and molecules

    Science.gov (United States)

    Nordén, Bengt

    2018-05-01

    The first two-photon entanglement experiment performed 50 years ago by Kocher and Commins (KC) provided isolated pairs of entangled photons from an atomic three-state fluorescence cascade. In view of questioning of Bell's theorem, data from these experiments are re-analyzed and shown sufficiently precise to confirm quantum mechanical and dismiss semi-classical theory without need for Bell's inequalities. Polarization photon correlation anisotropy (A) is useful: A is near unity as predicted quantum mechanically and well above the semi-classic range, 0 ⩽ A ⩽ 1 / 2 . Although yet to be found, one may envisage a three-state molecule emitting entangled photon pairs, in analogy with the KC atomic system. Antibunching in fluorescence from single molecules in matrix and entangled photons from quantum dots promise it be possible. Molecules can have advantages to parametric down-conversion as the latter photon distribution is Poissonian and unsuitable for producing isolated pairs of entangled photons. Analytical molecular applications of entangled light are also envisaged.

  6. Observation of Entanglement of a Single Photon with a Trapped Atom

    International Nuclear Information System (INIS)

    Volz, Juergen; Weber, Markus; Schlenk, Daniel; Rosenfeld, Wenjamin; Vrana, Johannes; Saucke, Karen; Kurtsiefer, Christian; Weinfurter, Harald

    2006-01-01

    We report the observation of entanglement between a single trapped atom and a single photon at a wavelength suitable for low-loss communication over large distances, thereby achieving a crucial step towards long range quantum networks. To verify the entanglement, we introduce a single atom state analysis. This technique is used for full state tomography of the atom-photon qubit pair. The detection efficiency and the entanglement fidelity are high enough to allow in a next step the generation of entangled atoms at large distances, ready for a final loophole-free Bell experiment

  7. Quantum optics. All-optical routing of single photons by a one-atom switch controlled by a single photon.

    Science.gov (United States)

    Shomroni, Itay; Rosenblum, Serge; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak

    2014-08-22

    The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing. Copyright © 2014, American Association for the Advancement of Science.

  8. Single photon transport by a moving atom through sub-wavelength hole

    International Nuclear Information System (INIS)

    Afanasiev, A.E.; Melentiev, P.N.; Kuzin, A.A.; Kalatskiy, A.Yu.; Balykin, V.I.

    2017-01-01

    The results of investigation of photon transport through the subwavelength hole in the opaque screen by using single neutral atom are represented. The basis of the proposed and implemented method is the absorption of a photon by a neutral atom immediately before the subwavelength aperture, traveling of the atoms through the hole and emission of a photon on the other side of the screen. Realized method is the alternative approach to existing for photon transport through a subwavelength aperture: 1) self-sustained transmittance of a photon through the aperture according to the Bethe’s model; 2) extra ordinary transmission because of surface-plasmon excitation.

  9. Fast Excitation and Photon Emission of a Single-Atom-Cavity System

    International Nuclear Information System (INIS)

    Bochmann, J.; Muecke, M.; Langfahl-Klabes, G.; Erbel, C.; Weber, B.; Specht, H. P.; Moehring, D. L.; Rempe, G.

    2008-01-01

    We report on the fast excitation of a single atom coupled to an optical cavity using laser pulses that are much shorter than all other relevant processes. The cavity frequency constitutes a control parameter that allows the creation of single photons in a superposition of two tunable frequencies. Each photon emitted from the cavity thus exhibits a pronounced amplitude modulation determined by the oscillatory energy exchange between the atom and the cavity. Our technique constitutes a versatile tool for future quantum networking experiments

  10. Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons

    Science.gov (United States)

    Wolters, Janik; Buser, Gianni; Horsley, Andrew; Béguin, Lucas; Jöckel, Andreas; Jahn, Jan-Philipp; Warburton, Richard J.; Treutlein, Philipp

    2017-08-01

    Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δ f =0.66 GHz , the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For a 50 ns storage time, we measure ηe2 e 50 ns=3.4 (3 )% end-to-end efficiency of the fiber-coupled memory, with a total intrinsic efficiency ηint=17 (3 )%. Straightforward technological improvements can boost the end-to-end-efficiency to ηe 2 e≈35 %; beyond that, increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional read-out noise level of 9 ×10-3 photons is dominated by atomic fluorescence, and for input pulses containing on average μ1=0.27 (4 ) photons, the signal to noise level would be unity.

  11. Cooperative single-photon subradiant states in a three-dimensional atomic array

    Energy Technology Data Exchange (ETDEWEB)

    Jen, H.H., E-mail: sappyjen@gmail.com

    2016-11-15

    We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative scheme for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing. - Highlights: • Cooperative single-photon subradiant states in a three-dimensional atomic array. • Subradiant state manipulation via spatially-increasing phase imprinting. • Quantum storage of light in the subradiant state in two-level atoms.

  12. Towards Long-Distance Atom-Photon Entanglement

    International Nuclear Information System (INIS)

    Rosenfeld, W.; Hocke, F.; Henkel, F.; Krug, M.; Volz, J.; Weber, M.; Weinfurter, H.

    2008-01-01

    We report the observation of entanglement between a single trapped atom and a single photon at remote locations. The degree of coherence of the entangled atom-photon pair is verified via appropriate local correlation measurements, after communicating the photon via an optical fiber link of 300 m length to a receiver 3.5 m apart. In addition, we measured the temporal evolution of the atomic density matrix after projecting the atom via a state measurement of the photon onto several well-defined spin states. We find that the state of the single atom dephases on a time scale of 150 μs, which represents an important step towards long-distance quantum networking with individual neutral atoms

  13. Deterministically swapping frequency-bin entanglement from photon-photon to atom-photon hybrid systems

    Science.gov (United States)

    Ou, Bao-Quan; Liu, Chang; Sun, Yuan; Chen, Ping-Xing

    2018-02-01

    Inspired by the recent developments of the research on the atom-photon quantum interface and energy-time entanglement between single-photon pulses, we are motivated to study the deterministic protocol for the frequency-bin entanglement of the atom-photon hybrid system, which is analogous to the frequency-bin entanglement between single-photon pulses. We show that such entanglement arises naturally in considering the interaction between a frequency-bin entangled single-photon pulse pair and a single atom coupled to an optical cavity, via straightforward atom-photon phase gate operations. Its anticipated properties and preliminary examples of its potential application in quantum networking are also demonstrated. Moreover, we construct a specific quantum entanglement witness tool to detect such extended frequency-bin entanglement from a reasonably general set of separable states, and prove its capability theoretically. We focus on the energy-time considerations throughout the analysis.

  14. Trapping a single atom with a fraction of a photon using a photonic crystal nanocavity

    NARCIS (Netherlands)

    van Oosten, D.; Kuipers, L.

    2011-01-01

    We consider the interaction between a single rubidium atom and a photonic crystal nanocavity. Because of the ultrasmall mode volume of the nanocavity, an extremely strong coupling regime can be achieved in which the atom can shift the cavity resonance by many cavity linewidths. We show that this

  15. Photon statistics of a single-atom intracavity system involving electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Rebic, S.; Parkins, A.S.; Tan, S.M.

    2002-01-01

    We explore the photon statistics of light emitted from a system comprising a single four-level atom strongly coupled to a high-finesse optical cavity mode that is driven by a coherent laser field. In the weak driving regime this system is found to exhibit a photon blockade effect. For intermediate driving strengths we find a sudden change in the photon statistics of the light emitted from the cavity. Photon antibunching switches to photon bunching over a very narrow range of intracavity photon number. It is proven that this sudden change in photon statistics occurs due to the existence of robust quantum interference of transitions between the dressed states of the atom-cavity system. Furthermore, it is shown that the strong photon bunching is a nonclassical effect for certain values of driving field strength, violating classical inequalities for field correlations

  16. Interference of Single Photons Emitted by Entangled Atoms in Free Space

    Science.gov (United States)

    Araneda, G.; Higginbottom, D. B.; Slodička, L.; Colombe, Y.; Blatt, R.

    2018-05-01

    The generation and manipulation of entanglement between isolated particles has precipitated rapid progress in quantum information processing. Entanglement is also known to play an essential role in the optical properties of atomic ensembles, but fundamental effects in the controlled emission and absorption from small, well-defined numbers of entangled emitters in free space have remained unobserved. Here we present the control of the emission rate of a single photon from a pair of distant, entangled atoms into a free-space optical mode. Changing the length of the optical path connecting the atoms modulates the single-photon emission rate in the selected mode with a visibility V =0.27 ±0.03 determined by the degree of entanglement shared between the atoms, corresponding directly to the concurrence Cρ=0.31 ±0.10 of the prepared state. This scheme, together with population measurements, provides a fully optical determination of the amount of entanglement. Furthermore, large sensitivity of the interference phase evolution points to applications of the presented scheme in high-precision gradient sensing.

  17. Single-photon sources

    International Nuclear Information System (INIS)

    Lounis, Brahim; Orrit, Michel

    2005-01-01

    The concept of the photon, central to Einstein's explanation of the photoelectric effect, is exactly 100 years old. Yet, while photons have been detected individually for more than 50 years, devices producing individual photons on demand have only appeared in the last few years. New concepts for single-photon sources, or 'photon guns', have originated from recent progress in the optical detection, characterization and manipulation of single quantum objects. Single emitters usually deliver photons one at a time. This so-called antibunching of emitted photons can arise from various mechanisms, but ensures that the probability of obtaining two or more photons at the same time remains negligible. We briefly recall basic concepts in quantum optics and discuss potential applications of single-photon states to optical processing of quantum information: cryptography, computing and communication. A photon gun's properties are significantly improved by coupling it to a resonant cavity mode, either in the Purcell or strong-coupling regimes. We briefly recall early production of single photons with atomic beams, and the operation principles of macroscopic parametric sources, which are used in an overwhelming majority of quantum-optical experiments. We then review the photophysical and spectroscopic properties and compare the advantages and weaknesses of various single nanometre-scale objects used as single-photon sources: atoms or ions in the gas phase and, in condensed matter, organic molecules, defect centres, semiconductor nanocrystals and heterostructures. As new generations of sources are developed, coupling to cavities and nano-fabrication techniques lead to improved characteristics, delivery rates and spectral ranges. Judging from the brisk pace of recent progress, we expect single photons to soon proceed from demonstrations to applications and to bring with them the first practical uses of quantum information

  18. Ramsey spectroscopy by direct use of resonant light on isotope atoms for single-photon detuning

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hoon; Choi, Mi Hyun; Moon, Ye Lin; Kim, Seung Jin; Kim, Jung Bog [Korea National University of Education, Cheongwon (Korea, Republic of)

    2014-03-15

    We demonstrate Ramsey spectroscopy with cold {sup 87}Rb atoms via a two-photon Raman process. One laser beam has a cross-over resonant frequency on the {sup 85}Rb transition and the other beam has a 6.8 GHz shifted frequency. These two laser beams fulfill the two-photon Raman resonance condition, which involves a single-photon detuning of -2.6 GHz. By implementing these two lasers on cold {sup 87}Rb atoms, we demonstrate Ramsey spectroscopy with an interrogation time of the intermediate state by using π/2 Raman pulses. In our laser system, we can change the single-photon detuning to 1.2, 4.2 or -5.6 GHz by changing the {sup 85}Rb transition line used as a locking signal and an injected sideband. The laser system that directly uses resonant light on isotope atoms will be described in this paper.

  19. Quantum interface between an atom and a photon

    International Nuclear Information System (INIS)

    Wilk, Tatjana

    2008-02-01

    A single atom strongly coupled to a high-finesse optical cavity is a versatile tool for quantum information processing. Utilized as a single-photon source, it allows one to generate single photons very efficiently in a well de ned spatio-temporal mode. In a first experiment, polarization-control over the photons is shown. A time-resolved two-photon interference experiment proves the indistinguishability of these photons - required in various quantum information processing schemes. Moreover, in a second experiment, entanglement between the polarization of the emitted photon and the population of the atomic Zeeman levels is created. Subsequent state mapping of the atomic state onto another photon results in a pair of polarization-entangled photons emitted one after the other from the cavity. Although these schemes are in principle possible in free space, the cavity boosts the efficiency by several orders of magnitude. (orig.)

  20. Quantum Interference between Autonomous Single-Photon Sources from Doppler-Broadened Atomic Ensemble

    OpenAIRE

    Jeong, Teak; Lee, Yoon-Seok; Park, Jiho; Kim, Heonoh; Moon, Han Seb

    2017-01-01

    To realize a quantum network based on quantum entanglement swapping, bright and completely autonomous sources are essentially required. Here, we experimentally demonstrate Hong-Ou-Mandel (HOM) quantum interference between two independent bright photon pairs generated via the spontaneous four-wave mixing in Doppler-broadened ladder-type 87Rb atoms. Bright autonomous heralded single photons are operated in a continuous-wave (CW) mode with no synchronization or supplemental filters. The four-fol...

  1. The atomic coilgun and single-photon cooling

    Energy Technology Data Exchange (ETDEWEB)

    Libson, Adam, E-mail: alibson@physics.utexas.edu; Bannerman, Stephen Travis; Clark, Robert J.; Mazur, Thomas R.; Raizen, Mark G. [University of Texas at Austin, Center for Nonlinear Dynamics and Department of Physics (United States)

    2012-12-15

    As the simplest atom, hydrogen has a unique role as a testing ground of fundamental physics. Precision measurements of the hydrogen atomic structure provide stringent tests of current theory, while tritium is an excellent candidate for studies of {beta}-decay and possible measurement of the neutrino rest mass. Furthermore, precision measurement of antihydrogen would allow for tests of fundamental symmetries. Methods demonstrated in our lab provide an avenue by which hydrogen isotopes can be trapped and cooled to near the recoil limit. The atomic coilgun, which we have demonstrated with metastable neon and molecular oxygen, provides a general method of stopping a supersonic beam of any paramagnetic species. This tool provides a method by which hydrogen and its isotopes can be magnetically trapped at around 100 mK using a room temperature apparatus. Another tool developed in our laboratory, single-photon cooling, allows further cooling of a trapped sample to near the recoil limit. This cooling method has already been demonstrated on a trapped sample of rubidium. We report on the progress of implementing these methods to trap and cool hydrogen isotopes, and on the prospects for using cold trapped hydrogen for precision measurements.

  2. Single-atom lasing induced atomic self-trapping

    International Nuclear Information System (INIS)

    Salzburger, T.; Ritsch, H.

    2004-01-01

    We study atomic center of mass motion and field dynamics of a single-atom laser consisting of a single incoherently pumped free atom moving in an optical high-Q resonator. For sufficient pumping, the system starts lasing whenever the atom is close to a field antinode. If the field mode eigenfrequency is larger than the atomic transition frequency, the generated laser light attracts the atom to the field antinode and cools its motion. Using quantum Monte Carlo wave function simulations, we investigate this coupled atom-field dynamics including photon recoil and cavity decay. In the regime of strong coupling, the generated field shows strong nonclassical features like photon antibunching, and the atom is spatially confined and cooled to sub-Doppler temperatures. (author)

  3. Changing optical band structure with single photons

    Science.gov (United States)

    Albrecht, Andreas; Caneva, Tommaso; Chang, Darrick E.

    2017-11-01

    Achieving strong interactions between individual photons enables a wide variety of exciting possibilities in quantum information science and many-body physics. Cold atoms interfaced with nanophotonic structures have emerged as a platform to realize novel forms of nonlinear interactions. In particular, when atoms are coupled to a photonic crystal waveguide, long-range atomic interactions can arise that are mediated by localized atom-photon bound states. We theoretically show that in such a system, the absorption of a single photon can change the band structure for a subsequent photon. This occurs because the first photon affects the atoms in the chain in an alternating fashion, thus leading to an effective period doubling of the system and a new optical band structure for the composite atom-nanophotonic system. We demonstrate how this mechanism can be engineered to realize a single-photon switch, where the first incoming photon switches the system from being highly transmissive to highly reflective, and analyze how signatures can be observed via non-classical correlations of the outgoing photon field.

  4. Distribution of quantum information between an atom and two photons

    International Nuclear Information System (INIS)

    Weber, Bernhard

    2008-01-01

    The construction of networks consisting of optically interconnected processing units is a promising way to scale up quantum information processing systems. To store quantum information, single trapped atoms are among the most proven candidates. By placing them in high finesse optical resonators, a bidirectional information exchange between the atoms and photons becomes possible with, in principle, unit efficiency. Such an interface between stationary and ying qubits constitutes a possible node of a future quantum network. The results presented in this thesis demonstrate the prospects of a quantum interface consisting of a single atom trapped within the mode of a high-finesse optical cavity. In a two-step process, we distribute entanglement between the stored atom and two subsequently emitted single photons. The long atom trapping times achieved in the system together with the high photon collection efficiency of the cavity make the applied protocol in principle deterministic, allowing for the creation of an entangled state at the push of a button. Running the protocol on this quasi-stationary quantum interface, the internal state of the atom is entangled with the polarization state of a single emitted photon. The entanglement is generated by driving a vacuum-stimulated Raman adiabatic passage between states of the coupled atom-cavity system. In a second process, the atomic part of the entangled state is mapped onto a second emitted photon using a similar technique and resulting in a polarization-entangled two-photon state. To verify and characterize the photon-photon entanglement, we measured a violation of a Bell inequality and performed a full quantum state tomography. The results prove the prior atom-photon entanglement and demonstrate a quantum information transfer between the atom and the two emitted photons. This reflects the advantages of a high-finesse cavity as a quantum interface in future quantum networks. (orig.)

  5. Distribution of quantum information between an atom and two photons

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Bernhard

    2008-11-03

    The construction of networks consisting of optically interconnected processing units is a promising way to scale up quantum information processing systems. To store quantum information, single trapped atoms are among the most proven candidates. By placing them in high finesse optical resonators, a bidirectional information exchange between the atoms and photons becomes possible with, in principle, unit efficiency. Such an interface between stationary and ying qubits constitutes a possible node of a future quantum network. The results presented in this thesis demonstrate the prospects of a quantum interface consisting of a single atom trapped within the mode of a high-finesse optical cavity. In a two-step process, we distribute entanglement between the stored atom and two subsequently emitted single photons. The long atom trapping times achieved in the system together with the high photon collection efficiency of the cavity make the applied protocol in principle deterministic, allowing for the creation of an entangled state at the push of a button. Running the protocol on this quasi-stationary quantum interface, the internal state of the atom is entangled with the polarization state of a single emitted photon. The entanglement is generated by driving a vacuum-stimulated Raman adiabatic passage between states of the coupled atom-cavity system. In a second process, the atomic part of the entangled state is mapped onto a second emitted photon using a similar technique and resulting in a polarization-entangled two-photon state. To verify and characterize the photon-photon entanglement, we measured a violation of a Bell inequality and performed a full quantum state tomography. The results prove the prior atom-photon entanglement and demonstrate a quantum information transfer between the atom and the two emitted photons. This reflects the advantages of a high-finesse cavity as a quantum interface in future quantum networks. (orig.)

  6. Photon echo with a few photons in two-level atoms

    International Nuclear Information System (INIS)

    Bonarota, M; Dajczgewand, J; Louchet-Chauvet, A; Le Gouët, J-L; Chanelière, T

    2014-01-01

    To store and retrieve signals at the single photon level, various photon echo schemes have resorted to complex preparation steps involving ancillary shelving states in multi-level atoms. For the first time, we experimentally demonstrate photon echo operation at such a low signal intensity without any preparation step, which allows us to work with mere two-level atoms. This simplified approach relies on the so-coined ‘revival of silenced echo’ (ROSE) scheme. Low noise conditions are obtained by returning the atoms to the ground state before the echo emission. In the present paper we manage ROSE in photon counting conditions, showing that very strong control fields can be compatible with extremely weak signals, making ROSE consistent with quantum memory requirements. (paper)

  7. Deterministic and Storable Single-Photon Source Based on a Quantum Memory

    International Nuclear Information System (INIS)

    Chen Shuai; Chen, Y.-A.; Strassel, Thorsten; Zhao Bo; Yuan Zhensheng; Pan Jianwei; Schmiedmayer, Joerg

    2006-01-01

    A single-photon source is realized with a cold atomic ensemble ( 87 Rb atoms). A single excitation, written in an atomic quantum memory by Raman scattering of a laser pulse, is retrieved deterministically as a single photon at a predetermined time. It is shown that the production rate of single photons can be enhanced considerably by a feedback circuit while the single-photon quality is conserved. Such a single-photon source is well suited for future large-scale realization of quantum communication and linear optical quantum computation

  8. One Photon Can Simultaneously Excite Two or More Atoms.

    Science.gov (United States)

    Garziano, Luigi; Macrì, Vincenzo; Stassi, Roberto; Di Stefano, Omar; Nori, Franco; Savasta, Salvatore

    2016-07-22

    We consider two separate atoms interacting with a single-mode optical or microwave resonator. When the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a resonant coupling between one photon and two atoms, via intermediate virtual states connected by counterrotating processes. If the resonator is prepared in its one-photon state, the photon can be jointly absorbed by the two atoms in their ground state which will both reach their excited state with a probability close to one. Like ordinary quantum Rabi oscillations, this process is coherent and reversible, so that two atoms in their excited state will undergo a downward transition jointly emitting a single cavity photon. This joint absorption and emission process can also occur with three atoms. The parameters used to investigate this process correspond to experimentally demonstrated values in circuit quantum electrodynamics systems.

  9. Simple and efficient absorption filter for single photons from a cold atom quantum memory.

    Science.gov (United States)

    Stack, Daniel T; Lee, Patricia J; Quraishi, Qudsia

    2015-03-09

    The ability to filter unwanted light signals is critical to the operation of quantum memories based on neutral atom ensembles. Here we demonstrate an efficient frequency filter which uses a vapor cell filled with (85)Rb and a buffer gas to attenuate both residual laser light and noise photons by nearly two orders of magnitude with little loss to the single photons associated with our cold (87)Rb quantum memory. This simple, passive filter provides an additional 18 dB attenuation of our pump laser and erroneous spontaneous emissions for every 1 dB loss of the single photon signal. We show that the addition of a frequency filter increases the non-classical correlations and the retrieval efficiency of our quantum memory by ≈ 35%.

  10. Single-Photon Routing for a L-Shaped Channel

    Science.gov (United States)

    Yang, Xiong; Hou, Jiao-Jiao; Wu, Chun

    2018-02-01

    We have investigated the transport properties of a single photon scattered by a two-level atom embedded in a L-shaped waveguide, which is made of two one-dimensional (1D) semi-infinite coupled-resonator waveguides (CRWs). Single photons can be directed from one CRW to the other due to spontaneous emission of the atom. The result shows that the spontaneous emission of the TLS still routes single photon from one CRW to the other; the boundary existing makes the probability of finding single photon in a CRW could reach one. Our the scheme is helpful to construct a ring quantum networks.

  11. Quantum state detection and state preparation based on cavity-enhanced nonlinear interaction of atoms with single photon

    Science.gov (United States)

    Hosseini, Mahdi

    Our ability to engineer quantum states of light and matter has significantly advanced over the past two decades, resulting in the production of both Gaussian and non-Gaussian optical states. The resulting tailored quantum states enable quantum technologies such as quantum optical communication, quantum sensing as well as quantum photonic computation. The strong nonlinear light-atom interaction is the key to deterministic quantum state preparation and quantum photonic processing. One route to enhancing the usually weak nonlinear light-atom interactions is to approach the regime of cavity quantum electrodynamics (cQED) interaction by means of high finesse optical resonators. I present results from the MIT experiment of large conditional cross-phase modulation between a signal photon, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. I also present a scheme to probabilistically change the amplitude and phase of a signal photon qubit to, in principle, arbitrary values by postselection on a control photon that has interacted with that state. Notably, small changes of the control photon polarization measurement basis by few degrees can substantially change the amplitude and phase of the signal state. Finally, I present our ongoing effort at Purdue to realize similar peculiar quantum phenomena at the single photon level on chip scale photonic systems.

  12. ‘Which-way’ collective atomic spin excitation among atomic ensembles by photon indistinguishability

    International Nuclear Information System (INIS)

    Zhang Guowan; Bian Chenglin; Chen, L Q; Ou, Z Y; Zhang Weiping

    2012-01-01

    In spontaneous Raman scattering in an atomic ensemble, a collective atomic spin wave is created in correlation with the Stokes field. When the Stokes photons from two or more such atomic ensembles are made indistinguishable, a ‘which-way’ collective atomic spin excitation is generated among the independent atomic ensembles. We demonstrate this phenomenon experimentally by reading out the atomic spin excitations and observing interference between the read-out beams. When a single-photon projective measurement is made on the indistinguishable Stokes photons, this simple scheme can be used to entangle independent atomic ensembles. Compared to other currently used methods, this scheme can be easily scaled up and has greater efficiency. (paper)

  13. Collective excitations in circular atomic configurations and single-photon traps

    International Nuclear Information System (INIS)

    Hammer, Hanno

    2004-01-01

    Correlated excitations in a plane circular configuration of identical atoms with parallel dipole moments are investigated. The collective energy eigenstates, which are formally identical to Frenkel excitons, can be computed together with their level shifts and decay rates by decomposing the atomic state space into carrier spaces for the irreducible representations of the symmetry group Z N of the circle. It is shown that the index p of these representations can be used as a quantum number analogously to the orbital angular momentum quantum number l in hydrogenlike systems. Just as the hydrogen s states are the only electronic wave functions which can occupy the central region of the Coulomb potential, the quasiparticle corresponding to a collective excitation of the atoms in the circle can occupy the central atom only for vanishing Z N quantum number p. If a central atom is present, the p=0 state splits into two and shows level crossing at certain radii; in the regions between these radii, damped quantum beats between two 'extreme' p=0 configurations occur. The physical mechanisms behind super- and subradiance at a given radius are discussed. It is shown that, beyond a certain critical number of atoms in the circle, the lifetime of the maximally subradiant state increases exponentially with the number of atoms in the configuration, making the system a natural candidate for a single-photon trap

  14. Analysis of a single-atom dipole trap

    International Nuclear Information System (INIS)

    Weber, Markus; Volz, Juergen; Saucke, Karen; Kurtsiefer, Christian; Weinfurter, Harald

    2006-01-01

    We describe a simple experimental technique which allows us to store a single 87 Rb atom in an optical dipole trap. Due to light-induced two-body collisions during the loading stage of the trap the maximum number of captured atoms is locked to one. This collisional blockade effect is confirmed by the observation of photon antibunching in the detected fluorescence light. The spectral properties of single photons emitted by the atom were studied with a narrow-band scanning cavity. We find that the atomic fluorescence spectrum is dominated by the spectral width of the exciting laser light field. In addition we observe a spectral broadening of the atomic fluorescence light due to the Doppler effect. This allows us to determine the mean kinetic energy of the trapped atom corresponding to a temperature of 105 μK. This simple single-atom trap is the key element for the generation of atom-photon entanglement required for future applications in quantum communication and a first loophole-free test of Bell's inequality

  15. The entanglement of two moving atoms interacting with a single-mode field via a three-photon process

    International Nuclear Information System (INIS)

    Chao, Wu; Mao-Fa, Fang

    2010-01-01

    In this paper, the entanglement of two moving atoms induced by a single-mode field via a three-photon process is investigated. It is shown that the entanglement is dependent on the category of the field, the average photon number N, the number p of half-wave lengths of the field mode and the atomic initial state. Also, the sudden death and the sudden birth of the entanglement are detected in this model and the results show that the existence of the sudden death and the sudden birth depends on the parameter and the category of the mode field. In addition, the three-photon process is a higher order nonlinear process. (general)

  16. Coherent single-photon absorption by single emitters coupled to one-dimensional nanophotonic waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yuntian; Wubs, Martijn; Moerk, Jesper [DTU Fotonik, Department of Photonics Engineering, Oersteds Plads, DK-2800 Kgs Lyngby (Denmark); Koenderink, A Femius, E-mail: yche@fotonik.dtu.dk [Center for Nanophotonics, FOM Institute for Atomic and Molecular Physics (AMOLF), Science Park 104, 1098 XG Amsterdam (Netherlands)

    2011-10-15

    We study the dynamics of single-photon absorption by a single emitter coupled to a one-dimensional waveguide that simultaneously provides channels for spontaneous emission (SE) decay and a channel for the input photon. We have developed a time-dependent theory that allows us to specify any input single-photon wavepacket guided by the waveguide as the initial condition, and calculate the excitation probability of the emitter, as well as the time evolution of the transmitted and reflected fields. For single-photon wavepackets with a Gaussian spectrum and temporal shape, we obtain analytical solutions for the dynamics of absorption, with maximum atomic excitation {approx}40%. We furthermore propose a terminated waveguide to aid the single-photon absorption. We found that for an emitter placed at an optimal distance from the termination, the maximum atomic excitation due to an incident single-photon wavepacket can exceed 70%. This high value is a direct consequence of the high SE {beta}-factor for emission into the waveguide. Finally, we have also explored whether waveguide dispersion could aid single-photon absorption by pulse shaping. For a Gaussian input wavepacket, we found that the absorption efficiency can be improved by a further 4% by engineering the dispersion. Efficient single-photon absorption by a single emitter has potential applications in quantum communication and quantum computation. (paper)

  17. Deterministic Single-Photon Source for Distributed Quantum Networking

    International Nuclear Information System (INIS)

    Kuhn, Axel; Hennrich, Markus; Rempe, Gerhard

    2002-01-01

    A sequence of single photons is emitted on demand from a single three-level atom strongly coupled to a high-finesse optical cavity. The photons are generated by an adiabatically driven stimulated Raman transition between two atomic ground states, with the vacuum field of the cavity stimulating one branch of the transition, and laser pulses deterministically driving the other branch. This process is unitary and therefore intrinsically reversible, which is essential for quantum communication and networking, and the photons should be appropriate for all-optical quantum information processing

  18. Atom-atom interactions around the band edge of a photonic crystal waveguide.

    Science.gov (United States)

    Hood, Jonathan D; Goban, Akihisa; Asenjo-Garcia, Ana; Lu, Mingwu; Yu, Su-Peng; Chang, Darrick E; Kimble, H J

    2016-09-20

    Tailoring the interactions between quantum emitters and single photons constitutes one of the cornerstones of quantum optics. Coupling a quantum emitter to the band edge of a photonic crystal waveguide (PCW) provides a unique platform for tuning these interactions. In particular, the cross-over from propagating fields [Formula: see text] outside the bandgap to localized fields [Formula: see text] within the bandgap should be accompanied by a transition from largely dissipative atom-atom interactions to a regime where dispersive atom-atom interactions are dominant. Here, we experimentally observe this transition by shifting the band edge frequency of the PCW relative to the [Formula: see text] line of atomic cesium for [Formula: see text] atoms trapped along the PCW. Our results are the initial demonstration of this paradigm for coherent atom-atom interactions with low dissipation into the guided mode.

  19. Periodically modulated single-photon transport in one-dimensional waveguide

    Science.gov (United States)

    Li, Xingmin; Wei, L. F.

    2018-03-01

    Single-photon transport along a one-dimension waveguide interacting with a quantum system (e.g., two-level atom) is a very useful and meaningful simplified model of the waveguide-based optical quantum devices. Thus, how to modulate the transport of the photons in the waveguide structures by adjusting certain external parameters should be particularly important. In this paper, we discuss how such a modulation could be implemented by periodically driving the energy splitting of the interacting atom and the atom-photon coupling strength. By generalizing the well developed time-independent full quantum mechanical theory in real space to the time-dependent one, we show that various sideband-transmission phenomena could be observed. This means that, with these modulations the photon has certain probabilities to transmit through the scattering atom in the other energy sidebands. Inversely, by controlling the sideband transmission the periodic modulations of the single photon waveguide devices could be designed for the future optical quantum information processing applications.

  20. Coherent control of the single-photon multichannel scattering in the dissipation case

    Science.gov (United States)

    Shi, Yun-Xia; Wang, Hang-Yu; Ma, Jin-Lou; Li, Qing; Tan, Lei

    2018-03-01

    Based on the quasi-boson approach, a model of a Λ-type three-level atom coupled to a X-shaped coupled cavity arrays (CCAs) is used to study the transport properties of a single-photon in the dissipative case, and a classical field is introduced to motivate the one transition of the Λ-type three-level atom (ΛTLA). The analytical expressions of transmission and transfer rate are obtained. Our results show that the cavity dissipation will obviously weaken the single-photon transfer rate where the incident energy of the single photon is resonant with the excited energy of the atom. Whether the cavity dissipation exists or not, the single photon can be almost confined in the incident channel at large detuning, and we can regulate the intensity of the classical field to control the total transmission of the single-photon.

  1. One color multi-photon ionization of the Gadolinium atom in near UV region

    International Nuclear Information System (INIS)

    Kim, Jin Tae; Yi, Jong Hoon; Lhee, Yong Joo; Lee, Jong Min

    1999-01-01

    We have investigated the states of the gadolinium atom in near ultra-violet (UV) region (∼410 nm) using single photon excitation using resonance ionization mass spectrometry (RIMS). Around 70 transitions among observed 180 single color multi-photon ionization signals have been assigned. Most of the multi-photon processes of the assigned ion signals are through single photon resonant three photon ionization and through two photon resonant three photon ionization. (author)

  2. Single-Shot Quantum Nondemolition Detection of Individual Itinerant Microwave Photons

    Science.gov (United States)

    Besse, Jean-Claude; Gasparinetti, Simone; Collodo, Michele C.; Walter, Theo; Kurpiers, Philipp; Pechal, Marek; Eichler, Christopher; Wallraff, Andreas

    2018-04-01

    Single-photon detection is an essential component in many experiments in quantum optics, but it remains challenging in the microwave domain. We realize a quantum nondemolition detector for propagating microwave photons and characterize its performance using a single-photon source. To this aim, we implement a cavity-assisted conditional phase gate between the incoming photon and a superconducting artificial atom. By reading out the state of this atom in a single shot, we reach an external (internal) photon-detection fidelity of 50% (71%), limited by transmission efficiency between the source and the detector (75%) and the coherence properties of the qubit. By characterizing the coherence and average number of photons in the field reflected off the detector, we demonstrate its quantum nondemolition nature. We envisage applications in generating heralded remote entanglement between qubits and for realizing logic gates between propagating microwave photons.

  3. Atom-atom interactions around the band edge of a photonic crystal waveguide

    Science.gov (United States)

    Hood, Jonathan D.; Goban, Akihisa; Asenjo-Garcia, Ana; Lu, Mingwu; Yu, Su-Peng; Chang, Darrick E.; Kimble, H. J.

    2016-09-01

    Tailoring the interactions between quantum emitters and single photons constitutes one of the cornerstones of quantum optics. Coupling a quantum emitter to the band edge of a photonic crystal waveguide (PCW) provides a unique platform for tuning these interactions. In particular, the cross-over from propagating fields E(x)∝e±ikxxE(x)∝e±ikxx outside the bandgap to localized fields E(x)∝e-κx|x|E(x)∝e-κx|x| within the bandgap should be accompanied by a transition from largely dissipative atom-atom interactions to a regime where dispersive atom-atom interactions are dominant. Here, we experimentally observe this transition by shifting the band edge frequency of the PCW relative to the D1D1 line of atomic cesium for N¯=3.0±0.5N¯=3.0±0.5 atoms trapped along the PCW. Our results are the initial demonstration of this paradigm for coherent atom-atom interactions with low dissipation into the guided mode.

  4. Temporal interference with frequency-controllable long photons from independent cold atomic sources

    Science.gov (United States)

    Qian, Peng; Gu, Zhenjie; Wen, Rong; Zhang, Weiping; Chen, J. F.

    2018-01-01

    The interference of single photons from independent sources is an essential tool in quantum information processing. However, the interfering of photons with long temporal states in a time-resolved manner has rarely been studied. This is because without transmitting spectral filters or coupling to a cavity mode single photons generated in traditional nonlinear crystals suffer from a short temporal profile below 1 ns. With spectral correlation maintained in the biphotons generated from spontaneous four-wave mixing process in cold atom clouds, here we demonstrate the temporal interference of two frequency-tunable long photons from two independent cold atomic sources. We observe and analyze the interference of frequency-mismatched photons, where the phenomenon of the quantum beat at megahertz separation is displayed. Our paper provides more details for the quantum beat of two independent narrow-band single photons, which may find potential application in frequency-encoded photonic qubits in quantum information processing.

  5. Isolating and moving single atoms using silicon nanocrystals

    Science.gov (United States)

    Carroll, Malcolm S.

    2010-09-07

    A method is disclosed for isolating single atoms of an atomic species of interest by locating the atoms within silicon nanocrystals. This can be done by implanting, on the average, a single atom of the atomic species of interest into each nanocrystal, and then measuring an electrical charge distribution on the nanocrystals with scanning capacitance microscopy (SCM) or electrostatic force microscopy (EFM) to identify and select those nanocrystals having exactly one atom of the atomic species of interest therein. The nanocrystals with the single atom of the atomic species of interest therein can be sorted and moved using an atomic force microscope (AFM) tip. The method is useful for forming nanoscale electronic and optical devices including quantum computers and single-photon light sources.

  6. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    Science.gov (United States)

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-01-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom–atom and atom–wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom–atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0−3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478

  7. Ultrabright, narrow-band photon-pair source for atomic quantum memories

    Science.gov (United States)

    Tsai, Pin-Ju; Chen, Ying-Cheng

    2018-06-01

    We demonstrate an ultrabright, narrow-band and frequency-tunable photon-pair source based on cavity-enhanced spontaneous parametric down conversion (SPDC) which is compatible with atomic transition of rubidium D 2-line (780 nm) or cesium D 2-line (852 nm). With the pump beam alternating between a high and a low power phase, the output is switching between the optical parametric oscillator (OPO) and photon-pair generation mode. We utilize the OPO output light to lock the cavity length to maintain the double resonances of signal and idler, as well as to lock the signal frequency to cesium atomic transition. With a type-II phase matching and a double-passed pump scheme such that the cluster frequency spacing is larger than the SPDC bandwidth, the photon-pair output is in a nearly single-mode operation as confirmed by a scanning Fabry–Perot interferometer with its output detected by a photomultiplier. The achieved generation and detection rates are 7.24× {10}5 and 6142 s‑1 mW‑1, respectively. The correlation time of the photon pair is 21.6(2.2) ns, corresponding to a bandwidth of 2π × 6.6(6) MHz. The spectral brightness is 1.06× {10}5 s‑1 mW‑1 MHz‑1. This is a relatively high value under a single-mode operation with the cavity-SPDC scheme. The generated single photons can be readily used in experiments related to atomic quantum memories.

  8. Single-photon switch: Controllable scattering of photons inside a one-dimensional resonator waveguide

    Science.gov (United States)

    Zhou, L.; Gong, Z. R.; Liu, Y. X.; Sun, C. P.; Nori, F.

    2010-03-01

    We analyze the coherent transport of a single photon, which propagates in a one-dimensional coupled-resonator waveguide and is scattered by a controllable two-level system located inside one of the resonators of this waveguide. Our approach, which uses discrete coordinates, unifies low and high energy effective theories for single-photon scattering. We show that the controllable two-level system can behave as a quantum switch for the coherent transport of a single photon. This study may inspire new electro-optical single-photon quantum devices. We also suggest an experimental setup based on superconducting transmission line resonators and qubits. References: L. Zhou, Z.R. Gong, Y.X. Liu, C.P. Sun, F. Nori, Controllable scattering of photons inside a one-dimensional resonator waveguide, Phys. Rev. Lett. 101, 100501 (2008). L. Zhou, H. Dong, Y.X. Liu, C.P. Sun, F. Nori, Quantum super-cavity with atomic mirrors, Phys. Rev. A 78, 063827 (2008).

  9. Measurements of sub photon cavity fields by atom interferometry; Mesures de champs au niveau du photon par interferometrie atomique

    Energy Technology Data Exchange (ETDEWEB)

    Nussenzveig, P

    1994-07-15

    Two neighbouring levels of a Rydberg atom coupled to a high quality-factor microwave cavity are an excellent tool for the study of matter-wave interactions at the most basic level. The system is so simple (a two-level atom coupled to a single mode of the field) that most phenomena can be described analytically. In this work we study dispersive effects of the non-resonant atom-cavity interaction. We have measured the linear dependence of the atomic energy level-shifts on the average photon number in the cavity. Light shifts induced by an average microwave field intensity weaker than a single photon have been observed. It has also been possible to measure the residual shift of one of the two levels of the atomic transition in the absence of an injected field: a Lamb shift due to a single mode of the field. A sensitive measurement of these energy shifts is performed by an interferometric method: the Ramsey separated oscillatory fields technique. Future experiments, in a situation of very weak field relaxation, are proposed. The quantum behavior of the field will then be dominant and it shall be possible to perform a Quantum Non-Demolition measurement of the photon number: since the interaction is non-resonant, the atoms can neither absorb nor emit photons in the cavity. The performed experiments demonstrate the sensitivity of the apparatus and set the stage for future non-demolition measurements and for the study of 'mesoscopic' Schroedinger cat states of the field, on the boundary between classical and quantum worlds. (author)

  10. Electromagnetically induced transparency and reduced speeds for single photons in a fully quantized model

    International Nuclear Information System (INIS)

    Purdy, Thomas; Ligare, Martin

    2003-01-01

    We introduce a simple model for electromagnetically induced transparency in which all fields are treated quantum mechanically. We study a system of three separated atoms at fixed positions in a one-dimensional multimode optical cavity. The first atom serves as the source for a single spontaneously emitted photon; the photon scatters from a three-level 'Λ'-configuration atom which interacts with an additional single-mode field coupling two of the atomic levels; the third atom serves as a detector of the total transmitted field. We find an analytical solution for the quantum dynamics. From the quantum amplitude describing the excitation of the detector atom we extract information that provides exact single-photon analogues to wave delays predicted by semi-classical theories. We also find complementary information in the expectation value of the electric field intensity operator

  11. Continuous-Wave Single-Photon Transistor Based on a Superconducting Circuit

    DEFF Research Database (Denmark)

    Kyriienko, Oleksandr; Sørensen, Anders Søndberg

    2016-01-01

    We propose a microwave frequency single-photon transistor which can operate under continuous wave probing and represents an efficient single microwave photon detector. It can be realized using an impedance matched system of a three level artificial ladder-type atom coupled to two microwave cavities...... and the appearance of a photon flux leaving the second cavity through a separate input-output port. The proposal does not require time variation of the probe signals, thus corresponding to a passive version of a single-photon transistor. The resulting device is robust to qubit dephasing processes, possesses low dark...

  12. Control of single-photon routing in a T-shaped waveguide by another atom

    Science.gov (United States)

    Huang, Jin-Song; Wang, Jing-Wen; Wang, Yan; Li, Yan-Ling; Huang, You-Wen

    2018-04-01

    Quantum routers with a high routing rate of much more than 0.5 are of great importance for quantum networks. We provide a scheme to perform bidirectional high routing-rate transfer in a T-shaped coupled-resonator waveguide (CRW), which extends a recent unidirectional scheme proposed by Lu et al. (Opt Express 23:22955, 2015). By locating an extra two-level atom in the infinite CRW channel of the T-shaped CRW with a three-level system, an effective potential is generated. Our numerical results show that high routing capability from the infinite CRW channel to the semi-infinite channel can be achieved, and routing capability from the semi-infinite CRW channel to the infinite channel can also be significantly enhanced, with the help of the effective potential. Therefore, the proposed double-atom configuration could be utilized as a bidirectional quantum routing controller to implement high transfer rate routing of single photons.

  13. Double electron ionization in Compton scattering of high energy photons by helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Y.; Mikhailov, A.I. [St. Petersburg Nuclear Physics Institute, Gatchina (Russian Federation)

    1995-08-01

    The cross section for double-electron ionization of two-electron atoms and ions in Compton scattering of high energy photons is calculated. It is demonstrated that its dependence on the incoming photon frequency is the same as that for single-electron ionization. The ratio of {open_quotes}double-to-single{close_quotes} ionization in Compton scattering was found to be energy independent and almost identical with the corresponding value for photoionization. For the He atom it is 1.68%. This surprising result deserves experimental verification.

  14. Coexistence of photonic and atomic Bose-Einstein condensates in ideal atomic gases

    Directory of Open Access Journals (Sweden)

    N. Boichenko

    2015-12-01

    Full Text Available We have studied conditions of photon Bose-Einstein condensate formation that is in thermodynamic equilibrium with ideal gas of two-level Bose atoms below the degeneracy temperature. Equations describing thermodynamic equilibrium in the system were formulated; critical temperatures and densities of photonic and atomic gas subsystems were obtained analytically. Coexistence conditions of these photonic and atomic Bose-Einstein condensates were found. There was predicted the possibility of an abrupt type of photon condensation in the presence of Bose condensate of ground-state atoms: it was shown that the slightest decrease of the temperature could cause a significant gathering of photons in the condensate. This case could be treated as a simple model of the situation known as "stopped light" in cold atomic gas. We also showed how population inversion of atomic levels can be created by lowering the temperature. The latter situation looks promising for light accumulation in atomic vapor at very low temperatures.

  15. Quantum physics of entangled systems: wave-particle duality and atom-photon molecules

    International Nuclear Information System (INIS)

    Rempe, G.

    2000-01-01

    One of the cornerstones of quantum physics is the wave nature of matter. It explains experimentally observed effects like interference and diffraction, occurring when an object moves from one place to another along several indistinguishable ways simultaneously. The wave nature disappears when the individual ways are distinguishable. In this case, the particle nature of the object becomes visible. To determine the particle nature quantitatively, the way of the object has to be measured. Here, large progress has been made recently with new techniques, enabling one to investigate single moving atoms in a controlled manner. Two examples are discussed in the following two sections. The first experiment describes an atom interferometer, where the way of the atom is entangled with its internal state. This allows one to explore the origin of wave-particle duality and perform a quantitative test of this fundamental principle. The second experiment reports on the observation of an atom-photon molecule, a bound state between an atom and a single photon. A fascinating aspect of this system is that it makes possible to monitor the motion of a single neutral atom in real time. (orig.)

  16. On-demand semiconductor single-photon source with near-unity indistinguishability.

    Science.gov (United States)

    He, Yu-Ming; He, Yu; Wei, Yu-Jia; Wu, Dian; Atatüre, Mete; Schneider, Christian; Höfling, Sven; Kamp, Martin; Lu, Chao-Yang; Pan, Jian-Wei

    2013-03-01

    Single-photon sources based on semiconductor quantum dots offer distinct advantages for quantum information, including a scalable solid-state platform, ultrabrightness and interconnectivity with matter qubits. A key prerequisite for their use in optical quantum computing and solid-state networks is a high level of efficiency and indistinguishability. Pulsed resonance fluorescence has been anticipated as the optimum condition for the deterministic generation of high-quality photons with vanishing effects of dephasing. Here, we generate pulsed single photons on demand from a single, microcavity-embedded quantum dot under s-shell excitation with 3 ps laser pulses. The π pulse-excited resonance-fluorescence photons have less than 0.3% background contribution and a vanishing two-photon emission probability. Non-postselective Hong-Ou-Mandel interference between two successively emitted photons is observed with a visibility of 0.97(2), comparable to trapped atoms and ions. Two single photons are further used to implement a high-fidelity quantum controlled-NOT gate.

  17. Photon-Mediated Quantum Gate between Two Neutral Atoms in an Optical Cavity

    Science.gov (United States)

    Welte, Stephan; Hacker, Bastian; Daiss, Severin; Ritter, Stephan; Rempe, Gerhard

    2018-02-01

    Quantum logic gates are fundamental building blocks of quantum computers. Their integration into quantum networks requires strong qubit coupling to network channels, as can be realized with neutral atoms and optical photons in cavity quantum electrodynamics. Here we demonstrate that the long-range interaction mediated by a flying photon performs a gate between two stationary atoms inside an optical cavity from which the photon is reflected. This single step executes the gate in 2 μ s . We show an entangling operation between the two atoms by generating a Bell state with 76(2)% fidelity. The gate also operates as a cnot. We demonstrate 74.1(1.6)% overlap between the observed and the ideal gate output, limited by the state preparation fidelity of 80.2(0.8)%. As the atoms are efficiently connected to a photonic channel, our gate paves the way towards quantum networking with multiqubit nodes and the distribution of entanglement in repeater-based long-distance quantum networks.

  18. Photon-Mediated Quantum Gate between Two Neutral Atoms in an Optical Cavity

    Directory of Open Access Journals (Sweden)

    Stephan Welte

    2018-02-01

    Full Text Available Quantum logic gates are fundamental building blocks of quantum computers. Their integration into quantum networks requires strong qubit coupling to network channels, as can be realized with neutral atoms and optical photons in cavity quantum electrodynamics. Here we demonstrate that the long-range interaction mediated by a flying photon performs a gate between two stationary atoms inside an optical cavity from which the photon is reflected. This single step executes the gate in 2  μs. We show an entangling operation between the two atoms by generating a Bell state with 76(2% fidelity. The gate also operates as a cnot. We demonstrate 74.1(1.6% overlap between the observed and the ideal gate output, limited by the state preparation fidelity of 80.2(0.8%. As the atoms are efficiently connected to a photonic channel, our gate paves the way towards quantum networking with multiqubit nodes and the distribution of entanglement in repeater-based long-distance quantum networks.

  19. Raman spectroscopy and single-photon source in an ion-cavity system

    International Nuclear Information System (INIS)

    Goncalves de Barros, H.

    2010-01-01

    The work presented in this thesis explores the interaction between a single trapped 40Ca+ ion and the electromagnetic field inside a high-finesse optical cavity. The coupling takes place via the use of a vacuum stimulated Raman transition, which transfers atomic population from the S1/2 to the D3/2 manifolds of the calcium ion producing a photon in the cavity. This photon is measured and properties of the system are evaluated. Spectroscopy measurements of the Raman transitions are performed and all possible transitions are identified for different polarizations of both drive laser and cavity fields. The system is also used to deterministically produce single photons. Simulation curves quantitatively match the experimental results within calibration error bars. The single-photon creation efficiency obtained in this work overcomes previous ion-cavity setups and is comparable to state-of-the-art systems composed of a neutral atom and a cavity operating in the strong coupling regime. (author)

  20. Quantum network with individual atoms and photons

    International Nuclear Information System (INIS)

    Rempe, G.

    2013-01-01

    Quantum physics allows a new approach to information processing. A grand challenge is the realization of a quantum network for long-distance quantum communication and large-scale quantum simulation. This paper highlights a first implementation of an elementary quantum network with two fibre-linked high-finesse optical resonators, each containing a single quasi-permanently trapped atom as a stationary quantum node. Reversible quantum state transfer between the two atoms and entanglement of the two atoms are achieved by the controlled exchange of a time-symmetric single photon. This approach to quantum networking is efficient and offers a clear perspective for scalability. It allows for arbitrary topologies and features controlled connectivity as well as, in principle, infinite-range interactions. Our system constitutes the largest man-made material quantum system to date and is an ideal test bed for fundamental investigations, e.g. quantum non-locality. (authors)

  1. Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Kuang Leman; Zhou Lan

    2003-01-01

    In this paper, we present a method to generate continuous-variable-type entangled states between photons and atoms in atomic Bose-Einstein condensate (BEC). The proposed method involves an atomic BEC with three internal states, a weak quantized probe laser, and a strong classical coupling laser, which form a three-level Λ-shaped BEC system. We consider a situation where the BEC is in electromagnetically induced transparency with the coupling laser being much stronger than the probe laser. In this case, the upper and intermediate levels are unpopulated, so that their adiabatic elimination enables an effective two-mode model involving only the atomic field at the lowest internal level and the quantized probe laser field. Atom-photon quantum entanglement is created through laser-atom and interatomic interactions, and two-photon detuning. We show how to generate atom-photon entangled coherent states and entangled states between photon (atom) coherent states and atom-(photon-) macroscopic quantum superposition (MQS) states, and between photon-MQS and atom-MQS states

  2. Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source

    International Nuclear Information System (INIS)

    Migdall, A.L.; Branning, D.; Castelletto, S.

    2002-01-01

    As typically implemented, single-photon sources cannot be made to produce single photons with high probability, while simultaneously suppressing the probability of yielding two or more photons. Because of this, single-photon sources cannot really produce single photons on demand. We describe a multiplexed system that allows the probabilities of producing one and more photons to be adjusted independently, enabling a much better approximation of a source of single photons on demand

  3. Two-electron one-photon decay rates in doubly ionized atoms

    International Nuclear Information System (INIS)

    Baptista, G.B.

    1984-01-01

    The transion rate for the two-electron one-photon and one-electron one-photon decaying processes in atoms bearing initially two K-shell vacancies were evaluated for Ne up to Zr. The two-electron one-photon decay process is considered to be the result of the interaction between the jumping electrons and their interaction with the radiation field. The calculation is performed in second order perturbation theory and the many particle states are constructed from single particle solutions. The present approach allows one to discuss several aspects of the decaying process. The results obtained for the branching ratio between the two processes reproduces reasonably well available experimental data and show an almost linear dependence on the second power of the atomic number. A comparison with other theoretical predictions is also presented for the two decaying processes and the strong dependence of the branching ratio on the initial configuration of the decaying atom is pointed out. (Author) [pt

  4. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits.

    Science.gov (United States)

    Yu, Leo; Natarajan, Chandra M; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S; Tanner, Michael G; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H; Fejer, Martin M; Yamamoto, Yoshihisa

    2015-11-24

    Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.

  5. Coherent effects on two-photon correlation and directional emission of two two-level atoms

    International Nuclear Information System (INIS)

    Ooi, C. H. Raymond; Kim, Byung-Gyu; Lee, Hai-Woong

    2007-01-01

    Sub- and superradiant dynamics of spontaneously decaying atoms are manifestations of collective many-body systems. We study the internal dynamics and the radiation properties of two atoms in free space. Interesting results are obtained when the atoms are separated by less than half a wavelength of the atomic transition, where the dipole-dipole interaction gives rise to new coherent effects, such as (a) coherence between two intermediate collective states, (b) oscillations in the two-photon correlation G (2) , (c) emission of two photons by one atom, and (d) the loss of directional correlation. We compare the population dynamics during the two-photon emission process with the dynamics of single-photon emission in the cases of a Λ and a V scheme. We compute the temporal correlation and angular correlation of two successively emitted photons using the G (2) for different values of atomic separation. We find antibunching when the atomic separation is a quarter wavelength λ/4. Oscillations in the temporal correlation provide a useful feature for measuring subwavelength atomic separation. Strong directional correlation between two emitted photons is found for atomic separation larger than a wavelength. We also compare the directionality of a photon spontaneously emitted by the two atoms prepared in phased-symmetric and phased-antisymmetric entangled states vertical bar ±> k 0 =e ik 0 ·r 1 vertical bar a 1 ,b 2 >±e ik 0 ·r 2 vertical bar b 1 ,a 2 > by a laser pulse with wave vector k 0 . Photon emission is directionally suppressed along k 0 for the phased-antisymmetric state. The directionality ceases for interatomic distances less than λ/2

  6. Dye molecules as single-photon sources and large optical nonlinearities on a chip

    International Nuclear Information System (INIS)

    Hwang, J; Hinds, E A

    2011-01-01

    We point out that individual organic dye molecules, deposited close to optical waveguides on a photonic chip, can act as single-photon sources. A thin silicon nitride strip waveguide is expected to collect 28% of the photons from a single dibenzoterrylene molecule. These molecules can also provide large, localized optical nonlinearities, which are enough to discriminate between one photon or two through a differential phase shift of 2 0 per photon. This new atom-photon interface may be used as a resource for processing quantum information.

  7. Stopping single photons in one-dimensional circuit quantum electrodynamics systems

    International Nuclear Information System (INIS)

    Shen, J.-T.; Povinelli, M. L.; Sandhu, Sunil; Fan Shanhui

    2007-01-01

    We propose a mechanism to stop and time reverse single photons in one-dimensional circuit quantum electrodynamics systems. As a concrete example, we exploit the large tunability of the superconducting charge quantum bit (charge qubit) to predict one-photon transport properties in multiple-qubit systems with dynamically controlled transition frequencies. In particular, two qubits coupled to a waveguide give rise to a single-photon transmission line shape that is analogous to electromagnetically induced transparency in atomic systems. Furthermore, by cascading double-qubit structures to form an array and dynamically controlling the qubit transition frequencies, a single photon can be stopped, stored, and time reversed. With a properly designed array, two photons can be stopped and stored in the system at the same time. Moreover, the unit cell of the array can be designed to be of deep subwavelength scale, miniaturizing the circuit

  8. Single-photon imaging

    CERN Document Server

    Seitz, Peter

    2011-01-01

    The acquisition and interpretation of images is a central capability in almost all scientific and technological domains. In particular, the acquisition of electromagnetic radiation, in the form of visible light, UV, infrared, X-ray, etc. is of enormous practical importance. The ultimate sensitivity in electronic imaging is the detection of individual photons. With this book, the first comprehensive review of all aspects of single-photon electronic imaging has been created. Topics include theoretical basics, semiconductor fabrication, single-photon detection principles, imager design and applications of different spectral domains. Today, the solid-state fabrication capabilities for several types of image sensors has advanced to a point, where uncoooled single-photon electronic imaging will soon become a consumer product. This book is giving a specialist´s view from different domains to the forthcoming “single-photon imaging” revolution. The various aspects of single-photon imaging are treated by internati...

  9. Single-photon imaging

    International Nuclear Information System (INIS)

    Seitz, Peter; Theuwissen, Albert J.P.

    2011-01-01

    The acquisition and interpretation of images is a central capability in almost all scientific and technological domains. In particular, the acquisition of electromagnetic radiation, in the form of visible light, UV, infrared, X-ray, etc. is of enormous practical importance. The ultimate sensitivity in electronic imaging is the detection of individual photons. With this book, the first comprehensive review of all aspects of single-photon electronic imaging has been created. Topics include theoretical basics, semiconductor fabrication, single-photon detection principles, imager design and applications of different spectral domains. Today, the solid-state fabrication capabilities for several types of image sensors has advanced to a point, where uncooled single-photon electronic imaging will soon become a consumer product. This book is giving a specialist's view from different domains to the forthcoming ''single-photon imaging'' revolution. The various aspects of single-photon imaging are treated by internationally renowned, leading scientists and technologists who have all pioneered their respective fields. (orig.)

  10. Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center

    Energy Technology Data Exchange (ETDEWEB)

    Liebermeister, Lars, E-mail: lars.liebermeister@physik.uni-muenchen.de; Petersen, Fabian; Münchow, Asmus v.; Burchardt, Daniel; Hermelbracht, Juliane; Tashima, Toshiyuki [Fakultät für Physik, Ludwig-Maximilians-Universität München, 80799 München (Germany); Schell, Andreas W.; Benson, Oliver [Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin (Germany); Meinhardt, Thomas; Krueger, Anke [Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg (Germany); Wilhelm Conrad Roentgen Research Center for Complex Materials Systems, Universität Würzburg, 97074 Würzburg (Germany); Stiebeiner, Ariane; Rauschenbeutel, Arno [Atominstitut, Technische Universität Wien, 1020 Wien (Austria); Weinfurter, Harald; Weber, Markus, E-mail: markusweber@lmu.de [Fakultät für Physik, Ludwig-Maximilians-Universität München, 80799 München (Germany); Max-Planck-Institut für Quantenoptik, 85748 Garching (Germany)

    2014-01-20

    A diamond nano-crystal hosting a single nitrogen vacancy (NV) center is optically selected with a confocal scanning microscope and positioned deterministically onto the subwavelength-diameter waist of a tapered optical fiber (TOF) with the help of an atomic force microscope. Based on this nano-manipulation technique, we experimentally demonstrate the evanescent coupling of single fluorescence photons emitted by a single NV-center to the guided mode of the TOF. By comparing photon count rates of the fiber-guided and the free-space modes and with the help of numerical finite-difference time domain simulations, we determine a lower and upper bound for the coupling efficiency of (9.5 ± 0.6)% and (10.4 ± 0.7)%, respectively. Our results are a promising starting point for future integration of single photon sources into photonic quantum networks and applications in quantum information science.

  11. Single Photon Double Ionization of Atomic Oxygen

    Science.gov (United States)

    Wickramarathna, Madhushani; Gorczyca, Thomas; Ballance, Connor; Stolte, Wayne

    2017-04-01

    Single photon double ionization cross sections are calculated using an R-matrix with pseudostates (RMPS) method which was recently applied by Gorczyca et al. for the double photoionization of helium. With the convergence of these theoretical calculations for the simple case of helium, we extend this methodology to consider the more complex case of oxygen double photoionization. We compare our calculated results with recent measurements at the Advanced Light Source, as well as earlier experimental measurements. Our RMPS results agree well, qualitatively, with the experimental measurements, but there exist outstanding discrepancies to be addressed. This project is supported by NASA APRA award NNX17AD41G.

  12. Laser guiding of cold atoms in photonic crystals

    International Nuclear Information System (INIS)

    Tarasishin, A V; Magnitskiy, Sergey A; Shuvaev, V A; Zheltikov, Aleksei M

    2000-01-01

    The possibility of using photonic crystals with a lattice defect for the laser guiding of cold atoms is analysed. We have found a configuration of a photonic-crystal lattice and a defect ensuring the distribution of a potential in the defect mode of the photonic crystal allowing the guiding of cold atoms along the defect due to the dipole force acting on atoms. Based on quantitative estimates, we have demonstrated that photonic crystals with a lattice defect permit the guiding of atoms with much higher transverse temperatures and a much higher transverse localisation degree than in the case of hollow-core fibres. (laser applications and other topics in quantum electronics)

  13. Scalable quantum information processing with photons and atoms

    Science.gov (United States)

    Pan, Jian-Wei

    Over the past three decades, the promises of super-fast quantum computing and secure quantum cryptography have spurred a world-wide interest in quantum information, generating fascinating quantum technologies for coherent manipulation of individual quantum systems. However, the distance of fiber-based quantum communications is limited due to intrinsic fiber loss and decreasing of entanglement quality. Moreover, probabilistic single-photon source and entanglement source demand exponentially increased overheads for scalable quantum information processing. To overcome these problems, we are taking two paths in parallel: quantum repeaters and through satellite. We used the decoy-state QKD protocol to close the loophole of imperfect photon source, and used the measurement-device-independent QKD protocol to close the loophole of imperfect photon detectors--two main loopholes in quantum cryptograph. Based on these techniques, we are now building world's biggest quantum secure communication backbone, from Beijing to Shanghai, with a distance exceeding 2000 km. Meanwhile, we are developing practically useful quantum repeaters that combine entanglement swapping, entanglement purification, and quantum memory for the ultra-long distance quantum communication. The second line is satellite-based global quantum communication, taking advantage of the negligible photon loss and decoherence in the atmosphere. We realized teleportation and entanglement distribution over 100 km, and later on a rapidly moving platform. We are also making efforts toward the generation of multiphoton entanglement and its use in teleportation of multiple properties of a single quantum particle, topological error correction, quantum algorithms for solving systems of linear equations and machine learning. Finally, I will talk about our recent experiments on quantum simulations on ultracold atoms. On the one hand, by applying an optical Raman lattice technique, we realized a two-dimensional spin-obit (SO

  14. Two-photon decay in heavy atoms and ions

    International Nuclear Information System (INIS)

    Mokler, P.H.; Dunford, R.W

    2003-08-01

    We review the status of and comment on current developments in the field of two-photon decay in atomic physics research. Recent work has focused on two-photon decays in highly-charged ions and two-photon decay of inner-shell vacancies in heavy neutral atoms. We emphasize the importance of measuring the shape of the continuum emission in two-photon decay as a probe of relativistic effects in the strong central fields found in heavy atomic systems. New experimental approaches and their consequences will be discussed. (orig.)

  15. Long-Distance Single Photon Transmission from a Trapped Ion via Quantum Frequency Conversion

    Science.gov (United States)

    Walker, Thomas; Miyanishi, Koichiro; Ikuta, Rikizo; Takahashi, Hiroki; Vartabi Kashanian, Samir; Tsujimoto, Yoshiaki; Hayasaka, Kazuhiro; Yamamoto, Takashi; Imoto, Nobuyuki; Keller, Matthias

    2018-05-01

    Trapped atomic ions are ideal single photon emitters with long-lived internal states which can be entangled with emitted photons. Coupling the ion to an optical cavity enables the efficient emission of single photons into a single spatial mode and grants control over their temporal shape. These features are key for quantum information processing and quantum communication. However, the photons emitted by these systems are unsuitable for long-distance transmission due to their wavelengths. Here we report the transmission of single photons from a single 40Ca+ ion coupled to an optical cavity over a 10 km optical fiber via frequency conversion from 866 nm to the telecom C band at 1530 nm. We observe nonclassical photon statistics of the direct cavity emission, the converted photons, and the 10 km transmitted photons, as well as the preservation of the photons' temporal shape throughout. This telecommunication-ready system can be a key component for long-distance quantum communication as well as future cloud quantum computation.

  16. Microscopic theory of cavity-enhanced single-photon emission from optical two-photon Raman processes

    Science.gov (United States)

    Breddermann, Dominik; Praschan, Tom; Heinze, Dirk; Binder, Rolf; Schumacher, Stefan

    2018-03-01

    We consider cavity-enhanced single-photon generation from stimulated two-photon Raman processes in three-level systems. We compare four fundamental system configurations, one Λ -, one V-, and two ladder (Ξ -) configurations. These can be realized as subsystems of a single quantum dot or of quantum-dot molecules. For a new microscopic understanding of the Raman process, we analyze the Heisenberg equation of motion applying the cluster-expansion scheme. Within this formalism an exact and rigorous definition of a cavity-enhanced Raman photon via its corresponding Raman correlation is possible. This definition for example enables us to systematically investigate the on-demand potential of Raman-transition-based single-photon sources. The four system arrangements can be divided into two subclasses, Λ -type and V-type, which exhibit strongly different Raman-emission characteristics and Raman-emission probabilities. Moreover, our approach reveals whether the Raman path generates a single photon or just induces destructive quantum interference with other excitation paths. Based on our findings and as a first application, we gain a more detailed understanding of experimental data from the literature. Our analysis and results are also transferable to the case of atomic three-level-resonator systems and can be extended to more complicated multilevel schemes.

  17. Laser-cooled atoms inside a hollow-core photonic-crystal fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Peyronel, Thibault

    2011-01-01

    We describe the loading of laser-cooled rubidium atoms into a single-mode hollow-core photonic-crystal fiber. Inside the fiber, the atoms are confined by a far-detuned optical trap and probed by a weak resonant beam. We describe different loading methods and compare their trade-offs in terms...... of implementation complexity and atom-loading efficiency. The most efficient procedure results in loading of ∼30,000 rubidium atoms, which creates a medium with an optical depth of ∼180 inside the fiber. Compared to our earlier study this represents a sixfold increase in the maximum achieved optical depth...

  18. Room-Temperature Single-photon level Memory for Polarization States

    Science.gov (United States)

    Kupchak, Connor; Mittiga, Thomas; Jordaan, Bertus; Namazi, Mehdi; Nölleke, Christian; Figueroa, Eden

    2015-01-01

    An optical quantum memory is a stationary device that is capable of storing and recreating photonic qubits with a higher fidelity than any classical device. Thus far, these two requirements have been fulfilled for polarization qubits in systems based on cold atoms and cryogenically cooled crystals. Here, we report a room-temperature memory capable of storing arbitrary polarization qubits with a signal-to-background ratio higher than 1 and an average fidelity surpassing the classical benchmark for weak laser pulses containing 1.6 photons on average, without taking into account non-unitary operation. Our results demonstrate that a common vapor cell can reach the low background noise levels necessary for polarization qubit storage using single-photon level light, and propels atomic-vapor systems towards a level of functionality akin to other quantum information processing architectures.

  19. Double electron ionization in Compton scattering of high energy photons by helium atoms

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Mikhailov, A.I.

    1995-01-01

    The cross section for double-electron ionization of two-electron atoms and ions in Compton scattering of high energy photons is calculated. It is demonstrated that its dependence on the incoming photon frequency is the same as that for single-electron ionization. The ratio of open-quotes double-to-singleclose quotes ionization in Compton scattering was found to be energy independent and almost identical with the corresponding value for photoionization. For the He atom it is 1.68%. This surprising result deserves experimental verification

  20. Manipulating atoms with photons

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, C.N.

    1998-01-01

    The article is a translation of the lecture delivered on the occasion of the 1997 Nobel Prize awarding ceremony. The physical mechanisms which allow manipulating of neutral atoms with laser photons are described. A remark is also made concerning several possible applications of ultra-cool atoms and streams of future research. The article is completed by Prof. Cohen-Tannoudji's autobiography. (Z.J.)

  1. Photon mass attenuation coefficients, effective atomic numbers and ...

    Indian Academy of Sciences (India)

    of atomic number Z was performed using the logarithmic regression analysis of the data measured by the authors and reported earlier. The best-fit coefficients so obtained in the photon ..... This photon build-up is a function of thickness and atomic number of the sample and also the incident photon energy, which combine to ...

  2. Atom–atom interactions around the band edge of a photonic crystal waveguide

    Science.gov (United States)

    Hood, Jonathan D.; Goban, Akihisa; Asenjo-Garcia, Ana; Lu, Mingwu; Yu, Su-Peng; Chang, Darrick E.; Kimble, H. J.

    2016-01-01

    Tailoring the interactions between quantum emitters and single photons constitutes one of the cornerstones of quantum optics. Coupling a quantum emitter to the band edge of a photonic crystal waveguide (PCW) provides a unique platform for tuning these interactions. In particular, the cross-over from propagating fields E(x)∝e±ikxx outside the bandgap to localized fields E(x)∝e−κx|x| within the bandgap should be accompanied by a transition from largely dissipative atom–atom interactions to a regime where dispersive atom–atom interactions are dominant. Here, we experimentally observe this transition by shifting the band edge frequency of the PCW relative to the D1 line of atomic cesium for N¯=3.0±0.5 atoms trapped along the PCW. Our results are the initial demonstration of this paradigm for coherent atom–atom interactions with low dissipation into the guided mode. PMID:27582467

  3. Coupled-resonator waveguide perfect transport single-photon by interatomic dipole-dipole interaction

    Science.gov (United States)

    Yan, Guo-an; Lu, Hua; Qiao, Hao-xue; Chen, Ai-xi; Wu, Wan-qing

    2018-06-01

    We theoretically investigate single-photon coherent transport in a one-dimensional coupled-resonator waveguide coupled to two quantum emitters with dipole-dipole interactions. The numerical simulations demonstrate that the transmission spectrum of the photon depends on the two atoms dipole-dipole interactions and the photon-atom couplings. The dipole-dipole interactions may change the dip positions in the spectra and the coupling strength may broaden the frequency band width in the transmission spectrum. We further demonstrate that the typical transmission spectra split into two dips due to the dipole-dipole interactions. This phenomenon may be used to manufacture new quantum waveguide devices.

  4. Exponential Improvement in Photon Storage Fidelities Using Subradiance and “Selective Radiance” in Atomic Arrays

    Directory of Open Access Journals (Sweden)

    A. Asenjo-Garcia

    2017-08-01

    Full Text Available A central goal within quantum optics is to realize efficient, controlled interactions between photons and atomic media. A fundamental limit in nearly all applications based on such systems arises from spontaneous emission, in which photons are absorbed by atoms and then rescattered into undesired channels. In typical theoretical treatments of atomic ensembles, it is assumed that this rescattering occurs independently, and at a rate given by a single isolated atom, which in turn gives rise to standard limits of fidelity in applications such as quantum memories for light or photonic quantum gates. However, this assumption can in fact be dramatically violated. In particular, it has long been known that spontaneous emission of a collective atomic excitation can be significantly suppressed through strong interference in emission between atoms. While this concept of “subradiance” is not new, thus far the techniques to exploit the effect have not been well understood. In this work, we provide a comprehensive treatment of this problem. First, we show that in ordered atomic arrays in free space, subradiant states acquire an elegant interpretation in terms of optical modes that are guided by the array, which only emit due to scattering from the ends of the finite system. We also go beyond the typically studied regime of a single atomic excitation and elucidate the properties of subradiant states in the many-excitation limit. Finally, we introduce the new concept of “selective radiance.” Whereas subradiant states experience a reduced coupling to all optical modes, selectively radiant states are tailored to simultaneously radiate efficiently into a desired channel while scattering into undesired channels is suppressed, thus enabling an enhanced atom-light interface. We show that these states naturally appear in chains of atoms coupled to nanophotonic structures, and we analyze the performance of photon storage exploiting such states. We find

  5. Precise single-qubit control of the reflection phase of a photon mediated by a strongly-coupled ancilla–cavity system

    Science.gov (United States)

    Motzoi, F.; Mølmer, K.

    2018-05-01

    We propose to use the interaction between a single qubit atom and a surrounding ensemble of three level atoms to control the phase of light reflected by an optical cavity. Our scheme employs an ensemble dark resonance that is perturbed by the qubit atom to yield a single-atom single photon gate. We show here that off-resonant excitation towards Rydberg states with strong dipolar interactions offers experimentally-viable regimes of operations with low errors (in the 10‑3 range) as required for fault-tolerant optical-photon, gate-based quantum computation. We also propose and analyze an implementation within microwave circuit-QED, where a strongly-coupled ancilla superconducting qubit can be used in the place of the atomic ensemble to provide high-fidelity coupling to microwave photons.

  6. Filling of double vacancy in the K atomic shell with emission of one single photon

    International Nuclear Information System (INIS)

    Jalbert, G.

    1978-12-01

    A method was developed to calculate the transition rate for two-electron one-photon K(sub αα) transition (2s 2p → 1s 2 ). The method was tested for Ni with two K-shell vacancies in the initial state. The (sub αα) rate is calculated within the framework of a single system formed by the atom and the radiation. The transition is originated in the interactiion between the parts of that system. In the dipole approximation, the transition rate is obtained from the second order term of the time dependente perturbation theory. Hartree-Fock-Slater wave functions were used in the calculations for Ni. The results are compared with the available theoretical and experimental information. (Author) [pt

  7. Spectrum of a one-atom laser in photonic crystals

    International Nuclear Information System (INIS)

    Florescu, Lucia

    2006-01-01

    The emission spectrum of a single-emitter laser in a photonic crystal is presented. We consider a coherently pumped two-level emitter strongly coupled to a high-quality microcavity engineered within a photonic crystal. We show that the cavity spectrum consists of both elastic and inelastic components, for which we derive analytical expressions. Our study reveals enhanced, spectrally narrower emission resulting from the radiation reservoir of the photonic crystal. The cavity field spectral characteristics are fundamentally distinct from those of a corresponding microcavity in ordinary vacuum. At high pump intensities and for large discontinuities in the photon density of states between Mollow spectral components of atomic resonance fluorescence, the emitted intensity originating from the elastic spectral component increases with the intensity of the pump and the elastic component dominates the spectrum. In the case of a vanishing photon density of states in the spectral range surrounding the lower Mollow sideband and no dipolar dephasing, the cavity spectrum is elastic

  8. Single photon emission tomography

    International Nuclear Information System (INIS)

    Buvat, Irene

    2011-09-01

    The objective of this lecture is to present the single photon emission computed tomography (SPECT) imaging technique. Content: 1 - Introduction: anatomic, functional and molecular imaging; Principle and role of functional or molecular imaging; 2 - Radiotracers: chemical and physical constraints, main emitters, radioisotopes production, emitters type and imaging techniques; 3 - Single photon emission computed tomography: gamma cameras and their components, gamma camera specifications, planar single photon imaging characteristics, gamma camera and tomography; 4 - Quantification in single photon emission tomography: attenuation, scattering, un-stationary spatial resolution, partial volume effect, movements, others; 5 - Synthesis and conclusion

  9. Single photon ECT

    International Nuclear Information System (INIS)

    Maeda, Toshio; Matsuda, Hiroshi; Tada, Akira; Bunko, Hisashi; Koizumi, Kiyoshi

    1982-01-01

    The detectability of lesions located deep in a body or overlapped with a physiologically increased activity improve with the help of single photon ECT. In some cases, the ECT is superior to the conventional gamma camera images and X-ray CT scans in the evaluation of the location and size of lesion. The single photon ECT of the brain compares favorably with the contrast enhansed X-ray CT scans. The most important adaptation of the single photon ECT are the detection of recurrent brain tumors after craniotomy and the evaluation of ischemic heart diseases. (author)

  10. Single photon sources with single semiconductor quantum dots

    Science.gov (United States)

    Shan, Guang-Cun; Yin, Zhang-Qi; Shek, Chan Hung; Huang, Wei

    2014-04-01

    In this contribution, we briefly recall the basic concepts of quantum optics and properties of semiconductor quantum dot (QD) which are necessary to the understanding of the physics of single-photon generation with single QDs. Firstly, we address the theory of quantum emitter-cavity system, the fluorescence and optical properties of semiconductor QDs, and the photon statistics as well as optical properties of the QDs. We then review the localization of single semiconductor QDs in quantum confined optical microcavity systems to achieve their overall optical properties and performances in terms of strong coupling regime, efficiency, directionality, and polarization control. Furthermore, we will discuss the recent progress on the fabrication of single photon sources, and various approaches for embedding single QDs into microcavities or photonic crystal nanocavities and show how to extend the wavelength range. We focus in particular on new generations of electrically driven QD single photon source leading to high repetition rates, strong coupling regime, and high collection efficiencies at elevated temperature operation. Besides, new developments of room temperature single photon emission in the strong coupling regime are reviewed. The generation of indistinguishable photons and remaining challenges for practical single-photon sources are also discussed.

  11. Single-photon superradiance and cooperative Lamb shift in an optoelectronic device (Conference Presentation)

    Science.gov (United States)

    Sirtori, Carlo

    2017-02-01

    Superradiance is one of the many fascinating phenomena predicted by quantum electrodynamics that have first been experimentally demonstrated in atomic systems and more recently in condensed matter systems like quantum dots, superconducting q-bits, cyclotron transitions and plasma oscillations in quantum wells (QWs). It occurs when a dense collection of N identical two-level emitters are phased via the exchange of photons, giving rise to enhanced light-matter interaction, hence to a faster emission rate. Of great interest is the regime where the ensemble interacts with one photon only and therefore all of the atoms, but one, are in the ground state. In this case the quantum superposition of all possible configurations produces a symmetric state that decays radiatively with a rate N times larger than that of the individual oscillators. This phenomenon, called single photon superradiance, results from the exchange of real photons among the N emitters. Yet, to single photon superradiance is also associated another collective effect that renormalizes the emission frequency, known as cooperative Lamb shift. In this work, we show that single photon superradiance and cooperative Lamb shift can be engineered in a semiconductor device by coupling spatially separated plasma resonances arising from the collective motion of confined electrons in QWs. These resonances hold a giant dipole along the growth direction z and have no mutual Coulomb coupling. They thus behave as a collection of macro-atoms on different positions along the z axis. Our device is therefore a test bench to simulate the low excitation regime of quantum electrodynamics.

  12. Construction of a single atom trap for quantum information protocols

    Science.gov (United States)

    Shea, Margaret E.; Baker, Paul M.; Gauthier, Daniel J.; Duke Physics Department Team

    2016-05-01

    The field of quantum information science addresses outstanding problems such as achieving fundamentally secure communication and solving computationally hard problems. Great progress has been made in the field, particularly using photons coupled to ions and super conducting qubits. Neutral atoms are also interesting for these applications and though the technology for control of neutrals lags behind that of trapped ions, they offer some key advantages: primarily coupling to optical frequencies closer to the telecom band than trapped ions or superconducting qubits. Here we report progress on constructing a single atom trap for 87 Rb. This system is a promising platform for studying the technical problems facing neutral atom quantum computing. For example, most protocols destroy the trap when reading out the neutral atom's state; we will investigate an alternative non-destructive state detection scheme. We detail the experimental systems involved and the challenges addressed in trapping a single atom. All of our hardware components are off the shelf and relatively inexpensive. Unlike many other systems, we place a high numerical aperture lens inside our vacuum system to increase photon collection efficiency. We gratefully acknowledge the financial support of the ARO through Grant # W911NF1520047.

  13. Collective effects of nuclei in single X-ray photon superradiance

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiangjin

    2016-07-28

    This thesis is dedicated to the study of collective effects of nuclei in single X-ray photon superradiance. To this end we investigate aspects of superradiance in both nuclear forward scattering and in thin-film cavities with an embedded {sup 57}Fe nuclear layer. A general theoretical framework is developed to investigate a single-photon cooperative emission from a cloud of resonant systems, atoms or nuclei, in the presence of magnetic hyperfine splitting. In the limit of a thick sample, we present our results for two means to coherently control the collective single X-ray photon emission in nuclear forward scattering. In the limit of a thin sample in a thin-film cavity with embedded resonant nuclei, we find out that unlike the magnetic hyperfine splitting of a single atom or nucleus, interesting collective effects may occur which modify the hyperfine level structure. In addition, for a certain parameter regime a spectrum reminiscent of electromagnetically induced transparency (EIT) can be achieved. Based on this EIT-like effect, a theoretical control mechanism for stopping X-ray pulses in the thin-film X-ray cavity is put forward. Finally, we show theoretically that for the case of two nuclear ensembles in the thin-film cavity, pseudo-Rabi splitting due to the strong coupling between the two layers should occur. The latter findings are confirmed by preliminary experimental data.

  14. Photon correlation in single-photon frequency upconversion.

    Science.gov (United States)

    Gu, Xiaorong; Huang, Kun; Pan, Haifeng; Wu, E; Zeng, Heping

    2012-01-30

    We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.

  15. Optical π phase shift created with a single-photon pulse.

    Science.gov (United States)

    Tiarks, Daniel; Schmidt, Steffen; Rempe, Gerhard; Dürr, Stephan

    2016-04-01

    A deterministic photon-photon quantum logic gate is a long-standing goal. Building such a gate becomes possible if a light pulse containing only one photon imprints a phase shift of π onto another light field. We experimentally demonstrate the generation of such a π phase shift with a single-photon pulse. A first light pulse containing less than one photon on average is stored in an atomic gas. Rydberg blockade combined with electromagnetically induced transparency creates a phase shift for a second light pulse, which propagates through the medium. We measure the π phase shift of the second pulse when we postselect the data upon the detection of a retrieved photon from the first pulse. This demonstrates a crucial step toward a photon-photon gate and offers a variety of applications in the field of quantum information processing.

  16. Scalable quantum information processing with atomic ensembles and flying photons

    International Nuclear Information System (INIS)

    Mei Feng; Yu Yafei; Feng Mang; Zhang Zhiming

    2009-01-01

    We present a scheme for scalable quantum information processing with atomic ensembles and flying photons. Using the Rydberg blockade, we encode the qubits in the collective atomic states, which could be manipulated fast and easily due to the enhanced interaction in comparison to the single-atom case. We demonstrate that our proposed gating could be applied to generation of two-dimensional cluster states for measurement-based quantum computation. Moreover, the atomic ensembles also function as quantum repeaters useful for long-distance quantum state transfer. We show the possibility of our scheme to work in bad cavity or in weak coupling regime, which could much relax the experimental requirement. The efficient coherent operations on the ensemble qubits enable our scheme to be switchable between quantum computation and quantum communication using atomic ensembles.

  17. Superconducting Single Photon Detectors

    NARCIS (Netherlands)

    Dorenbos, S.N.

    2011-01-01

    This thesis is about the development of a detector for single photons, particles of light. New techniques are being developed that require high performance single photon detection, such as quantum cryptography, single molecule detection, optical radar, ballistic imaging, circuit testing and

  18. Thermoelectric single-photon detector

    International Nuclear Information System (INIS)

    Kuzanyan, A A; Petrosyan, V A; Kuzanyan, A S

    2012-01-01

    The ability to detect a single photon is the ultimate level of sensitivity in the measurement of optical radiation. Sensors capable of detecting single photons and determining their energy have many scientific and technological applications. Kondo-enhanced Seebeck effect cryogenic detectors are based on thermoelectric heat-to-voltage conversion and voltage readout. We evaluate the prospects of CeB 6 and (La,Ce)B 6 hexaboride crystals for their application as a sensitive element in this type of detectors. We conclude that such detectors can register a single UV photon, have a fast count rate (up to 45 MHz) and a high spectral resolution of 0.1 eV. We calculate the electric potential generated along the thermoelectric sensor upon registering a UV single photon.

  19. Single-Photon Technologies Based on Quantum-Dots in Photonic Crystals

    DEFF Research Database (Denmark)

    Lehmann, Tau Bernstorff

    -photon purity under quasi-resonantexcitation. Furthermore the waveguide based platform demonstrates indistinguishable single-photonsat timescales up to 13 ns.A setup for active demultiplexing of single-photons to a three-fold single-photon state is proposed.Using a fast electro-optical modulator, single...

  20. Single-photon sources based on single molecules in solids

    International Nuclear Information System (INIS)

    Moerner, W E

    2004-01-01

    Single molecules in suitable host crystals have been demonstrated to be useful single-photon emitters both at liquid-helium temperatures and at room temperature. The low-temperature source achieved controllable emission of single photons from a single terrylene molecule in p-terphenyl by an adiabatic rapid passage technique. In contrast with almost all other single-molecule systems, terrylene single molecules show extremely high photostability under continuous, high-intensity irradiation. A room-temperature source utilizing this material has been demonstrated, in which fast pumping into vibrational sidebands of the electronically excited state achieved efficient inversion of the emissive level. This source yielded a single-photon emission probability p(1) of 0.86 at a detected count rate near 300 000 photons s -1 , with very small probability of emission of more than one photon. Thus, single molecules in solids can be considered as contenders for applications of single-photon sources such as quantum key distribution

  1. Atomization efficiency and photon yield in laser-induced breakdown spectroscopy analysis of single nanoparticles in an optical trap

    Science.gov (United States)

    Purohit, Pablo; Fortes, Francisco J.; Laserna, J. Javier

    2017-04-01

    Laser-induced breakdown spectroscopy (LIBS) was employed for investigating the influence of particle size on the dissociation efficiency and the absolute production of photons per mass unit of airborne solid graphite spheres under single-particle regime. Particles of average diameter of 400 nm were probed and compared with 2 μm particles. Samples were first catapulted into aerosol form and then secluded in an optical trap set by a 532 nm laser. Trap stability was quantified before subjecting particles to LIBS analysis. Fine alignment of the different lines comprising the optical catapulting-optical trapping-laser-induced breakdown spectroscopy instrument and tuning of excitation parameters conditioning the LIBS signal such as fluence and acquisition delay are described in detail with the ultimate goal of acquiring clear spectroscopic data on masses as low as 75 fg. The atomization efficiency and the photon yield increase as the particle size becomes smaller. Time-resolved plasma imaging studies were conducted to elucidate the mechanisms leading to particle disintegration and excitation.

  2. CMOS-compatible photonic devices for single-photon generation

    Directory of Open Access Journals (Sweden)

    Xiong Chunle

    2016-09-01

    Full Text Available Sources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal–oxide–semiconductor (CMOS-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon and processes that are compatible with CMOS fabrication facilities for the generation of single photons.

  3. Heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Song, Guo-Zhu; Zhang, Mei; Ai, Qing; Yang, Guo-Jian [Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875 (China); Alsaedi, Ahmed; Hobiny, Aatef [NAAM-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Deng, Fu-Guo, E-mail: fgdeng@bnu.edu.cn [Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875 (China); NAAM-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2017-03-15

    We propose a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We show the details by implementing nonlocal entanglement generation, entanglement swapping, and entanglement purification modules with atoms in waveguides, and discuss the feasibility of the repeater with currently achievable technology. In our scheme, the faulty events can be discarded by detecting the polarization of the photons. That is, our protocols are accomplished with a fidelity of 100% in principle, which is advantageous for implementing realistic long-distance quantum communication. Moreover, additional atomic qubits are not required, but only a single-photon medium. Our scheme is scalable and attractive since it can be realized in solid-state quantum systems. With the great progress on controlling atom-waveguide systems, the repeater may be very useful in quantum information processing in the future.

  4. Accessing photon number via an atomic time interval

    International Nuclear Information System (INIS)

    Camparo, J.C.; Coffer, J.G.

    2002-01-01

    We show that Rabi resonances can be used to assess field strength in terms of time at the atomic level. Rabi resonances are enhancements in the amplitude of atomic population oscillations when the Rabi frequency, Ω, 'matches' a field-modulation frequency, ω m . We demonstrate that Ω=2κω m and find that κ=1.03±0.05. Since Ω is defined by field strength (i.e., photon number) through atomic constants, and ω m may be referenced to an atomic clock, our work shows that Rabi resonances provide a connection between time and photon number

  5. Atomic Evolution and Entanglement of Two Qubits in Photon Superfluid

    Science.gov (United States)

    Yin, Miao; Zhang, Xiongfeng; Deng, Yunlong; Deng, Huaqiu

    2018-03-01

    By using reservoir theory, we investigate the evolution of an atom placed in photon superfluid and study the entanglement properties of two qubits interacting with photon superfluid. It is found that the atomic decay rate in photon superfluid changes periodically with position of the atom and the decay rate can be inhibited compared to that in usual electromagnetic environment without photon superfluid. It is also found that when two atoms are separately immersed in their own local photon-superfluid reservoir, the entanglement sudden death or birth occurs or not only depends on the initial state of the qubits. What is more, we find a possible case that the concurrence between two qubits can remain a constant value by choosing proper values of parameters of the system, which may provide a new way to preserve quantum entanglement.

  6. Multi-photon absorption limits to heralded single photon sources

    Science.gov (United States)

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; De Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.

    2013-01-01

    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources. PMID:24186400

  7. Single-atom detection on a chip: from realization to application

    Energy Technology Data Exchange (ETDEWEB)

    Stibor, A; Bender, H; Kuehnhold, S; Fortagh, J; Zimmermann, C; Guenther, A, E-mail: aguenth@pit.physik.uni-tuebingen.d [CQ Center for Collective Quantum Phenomena and their Applications, Eberhard-Karls-Universitaet Tuebingen, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany)

    2010-06-15

    In this paper, we describe the preparation and detection of ultracold atoms on a microchip with single-atom sensitivity. The detection scheme is based on multi-photon ionization of atoms and the subsequent guiding of the generated ions by ion optics to a channel electron multiplier. We resolve single atoms with a detection efficiency above 60%. The detector is suitable for real-time observations of static and dynamic processes in ultracold quantum gases. Although the ionization is destructive, sampling a small subset of the atomic distribution is sufficient for the determination of the desired information. We take full high-resolution spectra of ultracold atoms by ionizing only 5% of the atoms. Using an additional microwave near 6.8 GHz, the detection scheme becomes energy, position and state selective. This can be used for in situ determination of the energy distribution and temperature of atom clouds inside the trap and applied for future correlation measurements.

  8. Two-photon double ionization of the helium atom by ultrashort pulses

    International Nuclear Information System (INIS)

    Palacios, Alicia; Horner, Daniel A.; Rescigno, Thomas N.; McCurdy, C. William

    2010-01-01

    Two-photon double ionization of the helium atom was the subject of early experiments at FLASH and will be the subject of future benchmark measurements of the associated electron angular and energy distributions. As the photon energy of a single femtosecond pulse is raised from the threshold for two-photon double ionization at 39.5 eV to beyond the sequential ionization threshold at 54.4 eV, the electron ejection dynamics change from the highly correlated motion associated with nonsequential absorption to the much less correlated sequential ionization process. The signatures of both processes have been predicted in accurate ab initio calculations of the joint angular and energy distributions of the electrons, and those predictions contain some surprises. The dominant terms that contribute to sequential ionization make their presence apparent several eV below that threshold. In two-color pump probe experiments with short pulses whose central frequencies require that the sequential ionization process necessarily dominates, a two-electron interference pattern emerges that depends on the pulse delay and the spin state of the atom.

  9. High brightness single photon sources based on photonic wires

    DEFF Research Database (Denmark)

    Claudon, J.; Bleuse, J.; Bazin, M.

    2009-01-01

    We present a novel single-photon-source based on the emission of a semiconductor quantum dot embedded in a single-mode photonic wire. This geometry ensures a very large coupling (> 95%) of the spontaneous emission to the guided mode. Numerical simulations show that a photon collection efficiency...

  10. CdSe quantum dot in vertical ZnSe nanowire and photonic wire for efficient single-photon emission

    DEFF Research Database (Denmark)

    Cremel, Thibault; Bellet-Amalric, Edith; Cagnon, Laurent

    conformal dielectric coating of Al2O3 on the NW-QDs using Atomic Layer Deposition so that a photonic wire is formed with the CdSe QD deterministically positioned on its axis. The collection enhancement effect is studied by measuring the emission (with pulse excitation, at saturation intensity) of single...

  11. Frequency-Stabilized Source of Single Photons from a Solid-State Qubit

    Directory of Open Access Journals (Sweden)

    Jonathan H. Prechtel

    2013-10-01

    Full Text Available Single quantum dots are solid-state emitters that mimic two-level atoms but with a highly enhanced spontaneous emission rate. A single quantum dot is the basis for a potentially excellent single-photon source. One outstanding problem is that there is considerable noise in the emission frequency, making it very difficult to couple the quantum dot to another quantum system. We solve this problem here with a dynamic feedback technique that locks the quantum-dot emission frequency to a reference. The incoherent scattering (resonance fluorescence represents the single-photon output, whereas the coherent scattering (Rayleigh scattering is used for the feedback control. The fluctuations in emission frequency are reduced to 20 MHz, just approximately 5% of the quantum-dot optical linewidth, even over several hours. By eliminating the 1/f-like noise, the relative fluctuations in quantum-dot noise power are reduced to approximately 10^{-5} at low frequency. Under these conditions, the antibunching dip in the resonance fluorescence is described extremely well by the two-level atom result. The technique represents a way of removing charge noise from a quantum device.

  12. On-demand semiconductor source of 780-nm single photons with controlled temporal wave packets

    Science.gov (United States)

    Béguin, Lucas; Jahn, Jan-Philipp; Wolters, Janik; Reindl, Marcus; Huo, Yongheng; Trotta, Rinaldo; Rastelli, Armando; Ding, Fei; Schmidt, Oliver G.; Treutlein, Philipp; Warburton, Richard J.

    2018-05-01

    We report on a fast, bandwidth-tunable single-photon source based on an epitaxial GaAs quantum dot. Exploiting spontaneous spin-flip Raman transitions, single photons at 780 nm are generated on demand with tailored temporal profiles of durations exceeding the intrinsic quantum dot lifetime by up to three orders of magnitude. Second-order correlation measurements show a low multiphoton emission probability [g2(0 ) ˜0.10 -0.15 ] at a generation rate up to 10 MHz. We observe Raman photons with linewidths as low as 200 MHz, which is narrow compared to the 1.1-GHz linewidth measured in resonance fluorescence. The generation of such narrow-band single photons with controlled temporal shapes at the rubidium wavelength is a crucial step towards the development of an optimized hybrid semiconductor-atom interface.

  13. On the influence of resonance photon scattering on atom interference

    International Nuclear Information System (INIS)

    Bozic, M; Arsenovic, D; Sanz, A S; Davidovic, M

    2010-01-01

    Here, the influence of resonance photon-atom scattering on the atom interference pattern at the exit of a three-grating Mach-Zehnder interferometer is studied. It is assumed that the scattering process does not destroy the atomic wave function describing the state of the atom before the scattering process takes place, but only induces a certain shift and change of its phase. We find that the visibility of the interference strongly depends on the statistical distribution of transferred momenta to the atom during the photon-atom scattering event. This also explains the experimentally observed (Chapman et al 1995 Phys. Rev. Lett. 75 2783) dependence of the visibility on the ratio d p /λ i =y' 12 (2π/kdλ i ), where y' 12 is the distance between the place where the scattering event occurs and the first grating, k is the wave number of the atomic centre-of-mass motion, d is the grating constant and λ i is the photon wavelength. Furthermore, it is remarkable that photon-atom scattering events happen experimentally within the Fresnel region, i.e. the near-field region, associated with the first grating, which should be taken into account when drawing conclusions about the relevance of 'which-way' information for the interference visibility.

  14. Approximate and Conditional Teleportation of an Unknown Atomic State Without Bell-State Measurement with Two-Photon Interaction

    Institute of Scientific and Technical Information of China (English)

    CHEN Chang-Yong

    2006-01-01

    A scheme for approximately and conditionally teleporting an unknown atomic state via two-photon interaction in cavity QED is proposed. It is the extension of the scheme of Ref. [11] [Phys. Rev. A 69 (2004) 064302], which is based on Jaynes-Cummings model in QED and where only a time point of system evolution and the corresponding fidelity implementing the teleportation are given. In our scheme, the two-photon interaction Jaynes-Cummings model is used to realize the approximate and conditional teleportation. Our scheme does not involve the Bell-state measurement and an additional atom, only requiring two atoms and one single-mode cavity. The fidelity of the scheme is higher than that of Ref. [11]. The scheme may be generalized to not only the teleportation of the state of a cavity mode to another mode by means of a single atom but also the teleportation of the state of a trapped ion.

  15. Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon.

    Science.gov (United States)

    McConnell, Robert; Zhang, Hao; Hu, Jiazhong; Ćuk, Senka; Vuletić, Vladan

    2015-03-26

    Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. Metrologically useful entangled states of large atomic ensembles have been experimentally realized, but these states display Gaussian spin distribution functions with a non-negative Wigner quasiprobability distribution function. Non-Gaussian entangled states have been produced in small ensembles of ions, and very recently in large atomic ensembles. Here we generate entanglement in a large atomic ensemble via an interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function--an important hallmark of non-classicality--and verify an entanglement depth (the minimum number of mutually entangled atoms) of 2,910 ± 190 out of 3,100 atoms. Attaining such a negative Wigner function and the mutual entanglement of virtually all atoms is unprecedented for an ensemble containing more than a few particles. Although the achieved purity of the state is slightly below the threshold for entanglement-induced metrological gain, further technical improvement should allow the generation of states that surpass this threshold, and of more complex Schrödinger cat states for quantum metrology and information processing. More generally, our results demonstrate the power of heralded methods for entanglement generation, and illustrate how the information contained in a single photon can drastically alter the quantum state of a large system.

  16. Coherent excitation of a single atom to a Rydberg state

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Gaëtan, Alpha; Evellin, Charles

    2010-01-01

    We present the coherent excitation of a single Rubidium atom to the Rydberg state 58d3/2 using a two-photon transition. The experimental setup is described in detail, as are experimental techniques and procedures. The coherence of the excitation is revealed by observing Rabi oscillations between...

  17. Molecular engineering with artificial atoms: designing a material platform for scalable quantum spintronics and photonics

    Science.gov (United States)

    Doty, Matthew F.; Ma, Xiangyu; Zide, Joshua M. O.; Bryant, Garnett W.

    2017-09-01

    Self-assembled InAs Quantum Dots (QDs) are often called "artificial atoms" and have long been of interest as components of quantum photonic and spintronic devices. Although there has been substantial progress in demonstrating optical control of both single spins confined to a single QD and entanglement between two separated QDs, the path toward scalable quantum photonic devices based on spins remains challenging. Quantum Dot Molecules, which consist of two closely-spaced InAs QDs, have unique properties that can be engineered with the solid state analog of molecular engineering in which the composition, size, and location of both the QDs and the intervening barrier are controlled during growth. Moreover, applied electric, magnetic, and optical fields can be used to modulate, in situ, both the spin and optical properties of the molecular states. We describe how the unique photonic properties of engineered Quantum Dot Molecules can be leveraged to overcome long-standing challenges to the creation of scalable quantum devices that manipulate single spins via photonics.

  18. Strategies for real-time position control of a single atom in cavity QED

    International Nuclear Information System (INIS)

    Lynn, T W; Birnbaum, K; Kimble, H J

    2005-01-01

    Recent realizations of single-atom trapping and tracking in cavity QED open the door for feedback schemes which actively stabilize the motion of a single atom in real time. We present feedback algorithms for cooling the radial component of motion for a single atom trapped by strong coupling to single-photon fields in an optical cavity. Performance of various algorithms is studied through simulations of single-atom trajectories, with full dynamical and measurement noise included. Closed loop feedback algorithms compare favourably to open loop 'switching' analogues, demonstrating the importance of applying actual position information in real time. The high optical information rate in current experiments enables real-time tracking that approaches the standard quantum limit for broadband position measurements, suggesting that realistic active feedback schemes may reach a regime where measurement backaction appreciably alters the motional dynamics

  19. Quantum information processing with atoms and photons

    International Nuclear Information System (INIS)

    Monroe, C.

    2003-01-01

    Quantum information processors exploit the quantum features of superposition and entanglement for applications not possible in classical devices, offering the potential for significant improvements in the communication and processing of information. Experimental realization of large-scale quantum information processors remains a long term vision, as the required nearly pure quantum behaviour is observed only in exotic hardware such as individual laser-cooled atoms and isolated photons. But recent theoretical and experimental advances suggest that cold atoms and individual photons may lead the way towards bigger and better quantum information processors, effectively building mesoscopic versions of Schroedinger's cat' from the bottom up. (author)

  20. Nanodiamond Emitters of Single Photons

    Directory of Open Access Journals (Sweden)

    Vlasov I.I.

    2015-01-01

    Full Text Available Luminescence properties of single color centers were studied in nanodiamonds of different origin. It was found that single photon emitters could be realized even in molecularsized diamond (less than 2 nm capable of housing stable luminescent center “silicon-vacancy.” First results on incorporation of single-photon emitters based on luminescent nanodiamonds in plasmonic nanoantennas to enhance the photon count rate and directionality, diminish the fluorescence decay time, and provide polarization selectivity are presented.

  1. Controllable optical bistability in photonic-crystal one-atom laser

    International Nuclear Information System (INIS)

    Guo Xiaoyong; Lue Shuchen

    2009-01-01

    We investigate the property of optical bistability in a photonic-crystal one-atom laser when nonlinear microcavity is present. The physical system consists of a coherently driven two-level light emitter strongly coupled to a high-quality microcavity which is embedded within a photonic crystal and another coherent probing field which has incident into the microcavity. In our case, the microcavity is fabricated by nonlinear material and placed as an impurity in photonic crystal. This study reveals that such a system can exhibit optical bistability. The dependence of threshold value and hysteresis loop on the photonic band gap of the photonic crystal, driving field Rabi frequency and dephasing processes, are studied. Our results clearly illustrate the ability to control optical bistability through suitable photonic-crystal architectures and external coherent driving field, and this study suggests that in a photonic-crystal nonlinear microcavity, the one-atom laser acts as an effective controllable bistable device in the design of all-light digital computing systems in the near future.

  2. Precision in single atom localization via Raman-driven coherence: Role of detuning and phase shift

    Energy Technology Data Exchange (ETDEWEB)

    Rahmatullah,; Qamar, Sajid, E-mail: sajid_qamar@comsats.edu.pk

    2013-10-01

    Role of detuning and phase shift associated with the standing-wave driving fields is revisited for precision position measurement of single atom during its motion through two standing-wave fields. A four-level atomic system in diamond configuration is considered where the intermediate levels are coupled to upper and lower level via standing-wave driving fields and atomic decay channels, respectively. The former is responsible for the generation of quantum mechanical coherence via two-photon Raman transition while the latter leads to spontaneous emission of a photon. Due to standing-wave driving fields the atom–field interaction becomes position-dependent and measurement of the frequency of spontaneously emitted photon gives the position information of the atom. The unique position of the atom with much higher spatial resolution, i.e., of the order of λ/100 is observed using detuning and phase shift associated with the standing-wave driving fields.

  3. Heralded entanglement of two remote atoms

    Science.gov (United States)

    Krug, Michael; Hofmann, Julian; Ortegel, Norbert; Gerard, Lea; Redeker, Kai; Henkel, Florian; Rosenfeld, Wenjamin; Weber, Markus; Weinfurter, Harald

    2012-06-01

    Entanglement between atomic quantum memories at remote locations will be a key resource for future applications in quantum communication. One possibility to generate such entanglement over large distances is entanglement swapping starting from two quantum memories each entangled with a photon. The photons can be transported to a Bell-state measurement where after the atomic quantum memories are projected onto an entangled state. We have set up two independently operated single atom experiments separated by 20 m. Via a spontaneous decay process each quantum memory, in our case a single Rb-87 atom, emits a single photon whose polarization is entangled with the atomic spin. The photons one emitted from each atom are collected into single-mode optical fibers guided to a non-polarizing 50-50 beam-splitter and detected by avalanche photodetectors. Bunching of indistinguishable photons allows to perform a Bell-state measurement on the photons. Conditioned on the registration of particular two-photon coincidences the spin states of both atoms are measured. The observed correlations clearly prove the entanglement of the two atoms. This is a first step towards creating a basic node of a quantum network as well as a key prerequisite for a future loophole-free test of Bell's inequality.

  4. Single-photon decision maker

    Science.gov (United States)

    Naruse, Makoto; Berthel, Martin; Drezet, Aurélien; Huant, Serge; Aono, Masashi; Hori, Hirokazu; Kim, Song-Ju

    2015-08-01

    Decision making is critical in our daily lives and for society in general and is finding evermore practical applications in information and communication technologies. Herein, we demonstrate experimentally that single photons can be used to make decisions in uncertain, dynamically changing environments. Using a nitrogen-vacancy in a nanodiamond as a single-photon source, we demonstrate the decision-making capability by solving the multi-armed bandit problem. This capability is directly and immediately associated with single-photon detection in the proposed architecture, leading to adequate and adaptive autonomous decision making. This study makes it possible to create systems that benefit from the quantum nature of light to perform practical and vital intelligent functions.

  5. Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm

    Science.gov (United States)

    Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.

    1988-01-01

    Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.

  6. A practical theoretical formalism for atomic multielectron processes: direct multiple ionization by a single auger decay or by impact of a single electron or photon

    Science.gov (United States)

    Liu, Pengfei; Zeng, Jiaolong; Yuan, Jianmin

    2018-04-01

    Multiple electron processes occur widely in atoms, molecules, clusters, and condensed matters when they are interacting with energetic particles or intense laser fields. Direct multielectron processes (DMEP) are the most complicated among the general multiple electron processes and are the most difficult to describe theoretically. In this work, a unified and accurate theoretical formalism is proposed on the DMEP of atoms including the multiple auger decay and multiple ionization by an impact of a single electron or a single photon based on the atomic collision theory described by a correlated many-body Green's function. Such a practical treatment is made possible by taking consideration of the different coherence features of the atoms (matter waves) in the initial and final states. We first explain how the coherence characteristics of the ejected continuum electrons is largely destructed, by taking the electron impact direct double ionization process as an example. The direct double ionization process is completely different from the single ionization where the complete interference can be maintained. The detailed expressions are obtained for the energy correlations among the continuum electrons and energy resolved differential and integral cross sections according to the separation of knock-out (KO) and shake-off (SO) mechanisms for the electron impact direct double ionization, direct double and triple auger decay, and double and triple photoionization (TPI) processes. Extension to higher order DMEP than triple ionization is straight forward by adding contributions of the following KO and SO processes. The approach is applied to investigate the electron impact double ionization processes of C+, N+, and O+, the direct double and triple auger decay of the K-shell excited states of C+ 1s2{s}22{p}2{}2D and {}2P, and the double and TPI of lithium. Comparisons with the experimental and other theoretical investigations wherever available in the literature show that our

  7. Single atom oscillations

    International Nuclear Information System (INIS)

    Wiorkowski, P.; Walther, H.

    1990-01-01

    Modern methods of laser spectroscopy allow the study of single atoms or ions in an unperturbed environment. This has opened up interesting new experiments, among them the detailed study of radiation-atom coupling. In this paper, the following two experiments dealing with this problem are reviewed: the single-atom maser and the study of the resonance fluorescence of a single stored ion. The simplest and most fundamental system for studying radiation-matter coupling is a single two-level atom interacting with a single mode of an electromagnetic field in a cavity. This problem received a great deal of attention shortly after the maser was invented

  8. High-Dimensional Single-Photon Quantum Gates: Concepts and Experiments.

    Science.gov (United States)

    Babazadeh, Amin; Erhard, Manuel; Wang, Feiran; Malik, Mehul; Nouroozi, Rahman; Krenn, Mario; Zeilinger, Anton

    2017-11-03

    Transformations on quantum states form a basic building block of every quantum information system. From photonic polarization to two-level atoms, complete sets of quantum gates for a variety of qubit systems are well known. For multilevel quantum systems beyond qubits, the situation is more challenging. The orbital angular momentum modes of photons comprise one such high-dimensional system for which generation and measurement techniques are well studied. However, arbitrary transformations for such quantum states are not known. Here we experimentally demonstrate a four-dimensional generalization of the Pauli X gate and all of its integer powers on single photons carrying orbital angular momentum. Together with the well-known Z gate, this forms the first complete set of high-dimensional quantum gates implemented experimentally. The concept of the X gate is based on independent access to quantum states with different parities and can thus be generalized to other photonic degrees of freedom and potentially also to other quantum systems.

  9. Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector

    Energy Technology Data Exchange (ETDEWEB)

    Shcheslavskiy, V., E-mail: vis@becker-hickl.de; Becker, W. [Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Morozov, P.; Divochiy, A. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Vakhtomin, Yu. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); Smirnov, K. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); National Research University Higher School of Economics, 20 Myasnitskaya St., Moscow 101000 (Russian Federation)

    2016-05-15

    Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ∼15% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels with counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board.

  10. Single-photon manipulation in Nanophotonic Circuits

    DEFF Research Database (Denmark)

    Hansen, Sofie Lindskov

    Quantum dots in photonic nanostructures has long been known to be a very powerful and versatile solid-state platform for conducting quantum optics experiments. The present PhD thesis describes experimental demonstrations of single-photon generation and subsequent manipulation all realized...... on a gallium arsenide platform. This platform offers near-unity coupling between embedded single-photon emitters and a photonic mode, as well as the ability to suppress decoherence mechanisms, making it highly suited for quantum information applications. In this thesis we show how a single-photon router can...... be realized on a chip with embedded quantum dots. This allows for on-chip generation and manipulation of single photons. The router consists of an on-chip interferometer where the phase difference between the arms of the interferometer is controlled electrically. The response time of the device...

  11. Large conditional single-photon cross-phase modulation

    Science.gov (United States)

    Hosseini, Mahdi; Duan, Yiheng; Vuletić, Vladan

    2016-01-01

    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of π/6 (and up to π/3 by postselection on photons that remain in the system longer than average) between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. By upgrading to a state-of-the-art cavity, our system can reach a coherent phase shift of π at low loss, enabling deterministic and universal photonic quantum logic. PMID:27519798

  12. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus

    International Nuclear Information System (INIS)

    Song, Minsoo; Yoon, Tai Hyun

    2013-01-01

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s 2 1 S 0 ↔ 6s7s 1 S 0 ) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm 3 and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s 1 S 0 state via the intercombination 6s6p 3 P 1 state with a high signal-to-noise ratio even at the temperature of 340 °C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle.

  13. Mapping of the atomic hydrogen density in combustion processes at atmospheric pressure by two-photon polarization spectroscopy

    International Nuclear Information System (INIS)

    Steiger, A.; Gruetzmacher, K.; Steiger, M.; Gonzalo, A.B.; Rosa, M.I. de la

    2001-01-01

    With laser spectroscopic techniques used so far, quantitative measurements of atomic number densities in flames and other combustion processes at atmospheric pressure yield no satisfying results because high quenching rates remarkably reduce the signal size and the results suffer from large uncertainties. Whereas, two-photon polarization spectroscopy is not limited by quenching, as the polarization signal is a direct measure of the two-photon absorption. This sensitive laser technique with high spatial and temporal resolution has been applied to determine absolute number densities and the kinetic temperatures of atomic hydrogen in flames for the first time. The great potential of this method of measurement comes into its own only in conjunction with laser radiation of highest possible spectral quality, i.e. single-frequency ns-pulses with peak irradiance of up to 1 GW/cm 2 tunable around 243 nm for 1S-2S two-photon transition of atomic hydrogen

  14. Two-photon decay of K-shell vacancy states in heavy atoms

    International Nuclear Information System (INIS)

    Ilakovac, K.; Uroic, M.; Majer, M.; Pasic, S.; Vukovic, B.

    2006-01-01

    Two-photon decay has been extensively studied in atomic, nuclear and particle physics since the 1930s when the problem of stability of the 2s state of the hydrogen atom emerged. Since then, many theoretical and experimental investigations have been made on hydrogen and one-electron (H-like) ions and on helium and two-electron (He-like) ions. The work on two-photon decay in many-electron systems involving inner shells started about 30 years ago and, in the meantime, two-photon decay of the K-shell vacancy state has been the subject of many theoretical and experimental studies. Experimental results have been obtained for 2s->1s and higher-state electron ->1s two-photon transitions in molybdenum, and for 2s -> 1s, 3s -> 1s, 3d -> 1s and 4sd -> 1s two-photon transitions in silver, xenon, hafnium and mercury. Nonrelativistic and relativistic calculations of the processes have been made. The relativistic calculations for transitions in molybdenum, silver and xenon atoms are in a reasonable agreement with the experimental results, but some problems remain to be solved. A review of investigations of two-photon transitions in atomic systems is presented

  15. On the exchange of orbital angular momentum between twisted photons and atomic electrons

    International Nuclear Information System (INIS)

    Davis, Basil S; Kaplan, L; McGuire, J H

    2013-01-01

    We obtain an expression for the matrix element for scattering of a twisted (Laguerre–Gaussian profile) photon from a hydrogen atom. We consider photons incoming with an orbital angular momentum (OAM) of ℓħ, carried by a factor of e iℓϕ not present in a plane-wave or pure Gaussian profile beam. The nature of the transfer of +2ℓ units of OAM from the photon to the azimuthal atomic quantum number of the atom is investigated. We obtain simple formulas for these OAM flip transitions for elastic forward scattering of twisted photons when the photon wavelength λ is large compared with the atomic target size a, and small compared with the Rayleigh range z R , which characterizes the collimation length of the twisted photon beam. (paper)

  16. To test photon statistics by atomic beam deflection

    International Nuclear Information System (INIS)

    Wang Yuzhu; Chen Yudan; Huang Weigang; Liu Liang

    1985-02-01

    There exists a simple relation between the photon statistics in resonance fluorescence and the statistics of the momentum transferred to an atom by a plane travelling wave [Cook, R.J., Opt. Commun., 35, 347(1980)]. Using an atomic beam deflection by light pressure, we have observed sub-Poissonian statistics in resonance fluorescence of two-level atoms. (author)

  17. A novel high-efficiency single-mode quantum dot single photon source

    DEFF Research Database (Denmark)

    Gerard, J.M.; Gregersen, Niels; Nielsen, Torben Roland

    2008-01-01

    We present a novel single-mode single photon source exploiting the emission of a semiconductor quantum dot (QD) located inside a photonic wire. Besides an excellent coupling (>95%) of QD spontaneous emission to the fundamental guided mode [1], we show that a single photon collection efficiency...... above 80% within a 0.5 numerical aperture can be achieved using a bottom Bragg mirror and a tapering of the nanowire tip. Because this photon collection strategy does not exploit the Purcell effect, it could also be efficiently applied to broadband single photon emitters such as F-centers in diamond....

  18. Solid-state single-photon emitters

    Science.gov (United States)

    Aharonovich, Igor; Englund, Dirk; Toth, Milos

    2016-10-01

    Single-photon emitters play an important role in many leading quantum technologies. There is still no 'ideal' on-demand single-photon emitter, but a plethora of promising material systems have been developed, and several have transitioned from proof-of-concept to engineering efforts with steadily improving performance. Here, we review recent progress in the race towards true single-photon emitters required for a range of quantum information processing applications. We focus on solid-state systems including quantum dots, defects in solids, two-dimensional hosts and carbon nanotubes, as these are well positioned to benefit from recent breakthroughs in nanofabrication and materials growth techniques. We consider the main challenges and key advantages of each platform, with a focus on scalable on-chip integration and fabrication of identical sources on photonic circuits.

  19. Bloch Oscillations in the Chains of Artificial Atoms Dressed with Photons

    Directory of Open Access Journals (Sweden)

    Ilay Levie

    2018-06-01

    Full Text Available We present a model of one-dimensional chain of two-level artificial atoms driven with DC field and quantum light simultaneously in a strong coupling regime. The interaction of atoms with light leads to electron-photon entanglement (dressing of the atoms with light. The driving via dc field leads to the Bloch oscillations (BO in the chain of dressed atoms. We consider the mutual influence of dressing and BO and show that scenario of oscillations dramatically differs from predicted by the Jaynes-Cummings and Bloch-Zener models. We study the evolution of the population inversion, tunneling current, photon probability distribution, mean number of photons, and photon number variance, and show the influence of BO on the quantum-statistical characteristics of light. For example, the collapse-revivals picture and vacuum Rabi-oscillations are strongly modulated with Bloch frequency. As a result, quantum properties of light and degree of electron-photon entanglement become controllable via adiabatic dc field turning. On the other hand, the low-frequency tunneling current depends on the quantum light statistics (in particular, for coherent initial state it is modulated accordingly the collapse-revivals picture. The developed model is universal with respect to the physical origin of artificial atom and frequency range of atom-light interaction. The model is adapted to the 2D-heterostructures (THz frequencies, semiconductor quantum dots (optical range, and Josephson junctions (microwaves. The data for numerical simulations are taken from recently published experiments. The obtained results open a new way in quantum state engineering and nano-photonic spectroscopy.

  20. Two-photon emission and multiphoton absorption by atoms

    International Nuclear Information System (INIS)

    Mu, X.

    1988-01-01

    This thesis consists of investigations of two problems concerning photon-atom interactions. The first topic deals with two-photon transitions in atomic inner shells. An independent-particle model has been used to describe the two-photon transitions between different inner-shell electron states. The first relativistic self-consistent-field calculation of these transition rates in Ag, Mo, and Xe has been carried out. The theoretical results are compared with recent measurements. Good agreement with measured rates is found except in some cases where more reliable experiments still need to be done. The second topic is multiphoton multiionization of atoms. The maximum entropy principle has been employed in this theoretical investigation. A detailed statistical analysis of measured ionic charge distributions produced in strong laser pulses has been carried out. The results of this analysis indicates that the charge-state distribution is a Poissonian, rather than the binomial which prevails under infrared radiation, and hence that ionization occurs stepwise during the pulse. This result is shown to be consistent with experimental data

  1. Computational Modeling of Photonic Crystal Microcavity Single-Photon Emitters

    Science.gov (United States)

    Saulnier, Nicole A.

    Conventional cryptography is based on algorithms that are mathematically complex and difficult to solve, such as factoring large numbers. The advent of a quantum computer would render these schemes useless. As scientists work to develop a quantum computer, cryptographers are developing new schemes for unconditionally secure cryptography. Quantum key distribution has emerged as one of the potential replacements of classical cryptography. It relics on the fact that measurement of a quantum bit changes the state of the bit and undetected eavesdropping is impossible. Single polarized photons can be used as the quantum bits, such that a quantum system would in some ways mirror the classical communication scheme. The quantum key distribution system would include components that create, transmit and detect single polarized photons. The focus of this work is on the development of an efficient single-photon source. This source is comprised of a single quantum dot inside of a photonic crystal microcavity. To better understand the physics behind the device, a computational model is developed. The model uses Finite-Difference Time-Domain methods to analyze the electromagnetic field distribution in photonic crystal microcavities. It uses an 8-band k · p perturbation theory to compute the energy band structure of the epitaxially grown quantum dots. We discuss a method that combines the results of these two calculations for determining the spontaneous emission lifetime of a quantum dot in bulk material or in a microcavity. The computational models developed in this thesis are used to identify and characterize microcavities for potential use in a single-photon source. The computational tools developed are also used to investigate novel photonic crystal microcavities that incorporate 1D distributed Bragg reflectors for vertical confinement. It is found that the spontaneous emission enhancement in the quasi-3D cavities can be significantly greater than in traditional suspended slab

  2. Photon statistics characterization of a single-photon source

    International Nuclear Information System (INIS)

    Alleaume, R; Treussart, F; Courty, J-M; Roch, J-F

    2004-01-01

    In a recent experiment, we reported the time-domain intensity noise measurement of a single-photon source relying on single-molecule fluorescence control. In this paper, we present data processing starting from photocount timestamps. The theoretical analytical expression of the time-dependent Mandel parameter Q(T) of an intermittent single-photon source is derived from ON↔OFF dynamics. Finally, source intensity noise analysis, using the Mandel parameter, is quantitatively compared with the usual approach relying on the time autocorrelation function, both methods yielding the same molecular dynamical parameters

  3. Time profile of harmonics generated by a single atom in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Antoine, P.; Piraux, B.; Maquet, A.

    1995-01-01

    We show that the time profile of the harmonics emitted by a single atom exposed to a strong electromagnetic field may be obtained through a wavelet or a Gabor analysis of the acceleration of the atomic dipole. This analysis is extremely sensitive to the details of the dynamics and sheds some light on the competition between the atomic excitation or ionization processes and photon emission. For illustration we study the interaction of atomic hydrogen with an intense laser pulse

  4. Universal quantum gates for photon-atom hybrid systems assisted by bad cavities

    Science.gov (United States)

    Wang, Guan-Yu; Liu, Qian; Wei, Hai-Rui; Li, Tao; Ai, Qing; Deng, Fu-Guo

    2016-01-01

    We present two deterministic schemes for constructing a CNOT gate and a Toffoli gate on photon-atom and photon-atom-atom hybrid quantum systems assisted by bad cavities, respectively. They are achieved by cavity-assisted photon scattering and work in the intermediate coupling region with bad cavities, which relaxes the difficulty of their implementation in experiment. Also, bad cavities are feasible for fast quantum operations and reading out information. Compared with previous works, our schemes do not need any auxiliary qubits and measurements. Moreover, the schematic setups for these gates are simple, especially that for our Toffoli gate as only a quarter wave packet is used to interact the photon with each of the atoms every time. These atom-cavity systems can be used as the quantum nodes in long-distance quantum communication as their relatively long coherence time is suitable for multi-time operations between the photon and the system. Our calculations show that the average fidelities and efficiencies of our two universal hybrid quantum gates are high with current experimental technology. PMID:27067992

  5. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Song, Minsoo; Yoon, Tai Hyun [Department of Physics, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2013-02-15

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s{sup 2} {sup 1}S{sub 0}{r_reversible} 6s7s {sup 1}S{sub 0}) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm{sup 3} and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s{sup 1}S{sub 0} state via the intercombination 6s6p{sup 3}P{sub 1} state with a high signal-to-noise ratio even at the temperature of 340 Degree-Sign C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle.

  6. Generation of Fourier-transform-limited heralded single photons

    International Nuclear Information System (INIS)

    U'Ren, Alfred B.; Jeronimo-Moreno, Yasser; Garcia-Gracia, Hipolito

    2007-01-01

    In this paper we study the spectral (temporal) properties of heralded single photon wave packets, triggered by the detection of an idler photon in the process of parametric down conversion. The generated single photons are studied within the framework of the chronocyclic Wigner function, from which the single photon spectral width and temporal duration can be computed. We derive specific conditions on the two-photon joint spectral amplitude which result in both pure and Fourier-transform-limited heralded single photons. Likewise, we present specific source geometries which lead to the fulfillment of these conditions and show that one of these geometries leads, for a given pump bandwidth, to the temporally shortest possible heralded single photon wave packets

  7. Single-photon generator for optical telecommunication wavelength

    International Nuclear Information System (INIS)

    Usuki, T; Sakuma, Y; Hirose, S; Takemoto, K; Yokoyama, N; Miyazawa, T; Takatsu, M; Arakawa, Y

    2006-01-01

    We report on the generation of single-photon pulses from a single InAs/InP quantum dot in telecommunication bands (1.3-1.55 μm: higher transmittance through an optical fiber). First we prepared InAs quantum dots on InP (0 0 1) substrates in a low-pressure MOCVD by using a so-called InP 'double-cap' procedure. The quantum dots have well-controlled photo emission wavelength in the telecommunication bands. We also developed a single-photon emitter in which quantum dots were embedded. Numerical simulation designed the emitter to realize efficient injection of the emitted photons into a single-mode optical fiber. Using a Hanbury-Brown and Twiss technique has proved that the photons through the fiber were single photons

  8. Five-photon ionization of atomic hydrogen at wavelengths around the threshold for four-photon ionization

    International Nuclear Information System (INIS)

    Gontier, Y.; Trahin, M.; Wolff-Rottke, B.; Rottke, H.; Welge, K.H.; Feldmann, D.

    1992-01-01

    Theoretical and experimental studies show the strong influence of the three-photon nearly resonant 2p state on four- and five-photon ionization of atomic hydrogen near the threshold for four-photon ionization. Changes in five-photon ionization occur when the four-photon ionization channel opens. The angular distributions of photoelectrons from five-photon ionization of H are studied at five wavelengths which cover the range from four-photon resonance with high-lying Rydberg states (n≥10) to direct four-photon ionization into the continuum. The role of resonances in this ionization process is discussed. A fair agreement is found in comparing experimental and theoretical results

  9. Tunable-Range, Photon-Mediated Atomic Interactions in Multimode Cavity QED

    Directory of Open Access Journals (Sweden)

    Varun D. Vaidya

    2018-01-01

    Full Text Available Optical cavity QED provides a platform with which to explore quantum many-body physics in driven-dissipative systems. Single-mode cavities provide strong, infinite-range photon-mediated interactions among intracavity atoms. However, these global all-to-all couplings are limiting from the perspective of exploring quantum many-body physics beyond the mean-field approximation. The present work demonstrates that local couplings can be created using multimode cavity QED. This is established through measurements of the threshold of a superradiant, self-organization phase transition versus atomic position. Specifically, we experimentally show that the interference of near-degenerate cavity modes leads to both a strong and tunable-range interaction between Bose-Einstein condensates (BECs trapped within the cavity. We exploit the symmetry of a confocal cavity to measure the interaction between real BECs and their virtual images without unwanted contributions arising from the merger of real BECs. Atom-atom coupling may be tuned from short range to long range. This capability paves the way toward future explorations of exotic, strongly correlated systems such as quantum liquid crystals and driven-dissipative spin glasses.

  10. Scattering of photons from atomic electrons

    International Nuclear Information System (INIS)

    Pratt, R.H.; Zhou, B.; Bergstrom, P.M. Jr.; Pisk, K.; Suric, T.

    1990-01-01

    Validity of simpler approaches for elastic and inelastic photon scattering by atoms and ions is assessed by comparison with second-order S-matrix predictions. A simple scheme for elastic scattering based on angle-independent anomalous scattering factors has been found to give useful predictions near and below photoeffect thresholds. In inelastic scattering, major deviations are found from A 2 -based calculations. Extension of free-atom and free-ion cross sections to the dense plasma regime is discussed. 20 refs., 6 figs

  11. Single photons on demand

    International Nuclear Information System (INIS)

    Grangier, P.; Abram, I.

    2004-01-01

    Quantum cryptography and information processing are set to benefit from developments in novel light sources that can emit photons one by one. Quantum mechanics has gained a reputation for making counter-intuitive predictions. But we rarely get the chance to witness these effects directly because, being humans, we are simply too big. Take light, for example. The light sources that are familiar to us, such as those used in lighting and imaging or in CD and DVD players, are so huge that they emit billions and billions of photons. But what if there was a light source that emitted just one photon at a time? Over the past few years, new types of light source that are able to emit photons one by one have been emerging from laboratories around the world. Pulses of light composed of a single photon correspond to power flows in the femtowatt range - a million billion times less than that of a table lamp. The driving force behind the development of these single-photon sources is a range of novel applications that take advantage of the quantum nature of light. Quantum states of superposed and entangled photons could lead the way to guaranteed-secure communication, to information processing with unprecedented speed and efficiency, and to new schemes for quantum teleportation. (U.K.)

  12. A single-atom quantum memory.

    Science.gov (United States)

    Specht, Holger P; Nölleke, Christian; Reiserer, Andreas; Uphoff, Manuel; Figueroa, Eden; Ritter, Stephan; Rempe, Gerhard

    2011-05-12

    The faithful storage of a quantum bit (qubit) of light is essential for long-distance quantum communication, quantum networking and distributed quantum computing. The required optical quantum memory must be able to receive and recreate the photonic qubit; additionally, it must store an unknown quantum state of light better than any classical device. So far, these two requirements have been met only by ensembles of material particles that store the information in collective excitations. Recent developments, however, have paved the way for an approach in which the information exchange occurs between single quanta of light and matter. This single-particle approach allows the material qubit to be addressed, which has fundamental advantages for realistic implementations. First, it enables a heralding mechanism that signals the successful storage of a photon by means of state detection; this can be used to combat inevitable losses and finite efficiencies. Second, it allows for individual qubit manipulations, opening up avenues for in situ processing of the stored quantum information. Here we demonstrate the most fundamental implementation of such a quantum memory, by mapping arbitrary polarization states of light into and out of a single atom trapped inside an optical cavity. The memory performance is tested with weak coherent pulses and analysed using full quantum process tomography. The average fidelity is measured to be 93%, and low decoherence rates result in qubit coherence times exceeding 180  microseconds. This makes our system a versatile quantum node with excellent prospects for applications in optical quantum gates and quantum repeaters.

  13. Stratum corneum lipid organization as observed by atomic force, confocal and two-photon excitation fluorescence microscopy

    DEFF Research Database (Denmark)

    Norlén, Lars; Plasencia Gil, Maria Inés; Bagatolli, Luis

    2008-01-01

    -related biophysical techniques (e.g. atomic force microscopy and confocal/two-photon excitation fluorescence microscopy), it was recently shown that reconstituted membranes composed of extracted decontaminated human stratum corneum lipids do not form a fluid phase, but exclusively a single-gel phase that segregates...

  14. On-demand single-photon state generation via nonlinear absorption

    International Nuclear Information System (INIS)

    Hong Tao; Jack, Michael W.; Yamashita, Makoto

    2004-01-01

    We propose a method for producing on-demand single-photon states based on collision-induced exchanges of photons and unbalanced linear absorption between two single-mode light fields. These two effects result in an effective nonlinear absorption of photons in one of the modes, which can lead to single-photon states. A quantum nonlinear attenuator based on such a mechanism can absorb photons in a normal input light pulse and terminate the absorption at a single-photon state. Because the output light pulses containing single photons preserve the properties of the input pulses, we expect this method to be a means for building a highly controllable single-photon source

  15. Absolute atomic hydrogen density distribution in a hollow cathode discharge by two-photon polarization spectroscopy

    International Nuclear Information System (INIS)

    Gonzalo, A B; Rosa, M I de la; Perez, C; Mar, S; Gruetzmacher, K

    2004-01-01

    We report on quantitative measurements of ground-state atomic hydrogen densities in a stationary plasma far off thermodynamic equilibrium, generated in a hollow cathode discharge, by two-photon polarization spectroscopy via the 1S-2S transition. Absolute densities are obtained using a well established calibration method based on the non-resonant two-photon polarization signal of xenon gas at room temperature, which serves as the reference at the wavelength of the hydrogen transition. This study is dedicated to demonstrating the capability of two-photon polarization spectroscopy close to the detection limit. Therefore, it requires single-longitudinal mode UV-laser radiation provided by an advanced UV-laser spectrometer

  16. Entanglement between atomic thermal states and coherent or squeezed photons in a damping cavity

    Science.gov (United States)

    Yadollahi, F.; Safaiee, R.; Golshan, M. M.

    2018-02-01

    In the present study, the standard Jaynes-Cummings model, in a lossy cavity, is employed to characterize the entanglement between atoms and photons when the former is initially in a thermal state (mixed ensemble) while the latter is described by either coherent or squeezed distributions. The whole system is thus assumed to be in equilibrium with a heat reservoir at a finite temperature T, and the measure of negativity is used to determine the time evolution of atom-photon entanglement. To this end, the master equation for the density matrix, in the secular approximation, is solved and a partial transposition of the result is made. The degree of atom-photon entanglement is then numerically computed, through the negativity, as a function of time and temperature. To justify the behavior of atom-photon entanglement, moreover, we employ the so obtained total density matrix to compute and analyze the time evolution of the initial photonic coherent or squeezed probability distributions and the squeezing parameters. On more practical points, our results demonstrate that as the initial photon mean number increases, the atom-photon entanglement decays at a faster pace for the coherent distribution compared to the squeezed one. Moreover, it is shown that the degree of atom-photon entanglement is much higher and more stable for the squeezed distribution than that for the coherent one. Consequently, we conclude that the time intervals during which the atom-photon entanglement is distillable is longer for the squeezed distribution. It is also illustrated that as the temperature increases the rate of approaching separability is faster for the coherent initial distribution. The novel point of the present report is the calculation of dynamical density matrix (containing all physical information) for the combined system of atom-photon in a lossy cavity, as well as the corresponding negativity, at a finite temperature.

  17. Spatial Multiplexing of Atom-Photon Entanglement Sources using Feedforward Control and Switching Networks.

    Science.gov (United States)

    Tian, Long; Xu, Zhongxiao; Chen, Lirong; Ge, Wei; Yuan, Haoxiang; Wen, Yafei; Wang, Shengzhi; Li, Shujing; Wang, Hai

    2017-09-29

    The light-matter quantum interface that can create quantum correlations or entanglement between a photon and one atomic collective excitation is a fundamental building block for a quantum repeater. The intrinsic limit is that the probability of preparing such nonclassical atom-photon correlations has to be kept low in order to suppress multiexcitation. To enhance this probability without introducing multiexcitation errors, a promising scheme is to apply multimode memories to the interface. Significant progress has been made in temporal, spectral, and spatial multiplexing memories, but the enhanced probability for generating the entangled atom-photon pair has not been experimentally realized. Here, by using six spin-wave-photon entanglement sources, a switching network, and feedforward control, we build a multiplexed light-matter interface and then demonstrate a ∼sixfold (∼fourfold) probability increase in generating entangled atom-photon (photon-photon) pairs. The measured compositive Bell parameter for the multiplexed interface is 2.49±0.03 combined with a memory lifetime of up to ∼51  μs.

  18. Combined atomic force microscopy and photoluminescence imaging to select single InAs/GaAs quantum dots for quantum photonic devices.

    Science.gov (United States)

    Sapienza, Luca; Liu, Jin; Song, Jin Dong; Fält, Stefan; Wegscheider, Werner; Badolato, Antonio; Srinivasan, Kartik

    2017-07-24

    We report on a combined photoluminescence imaging and atomic force microscopy study of single, isolated self-assembled InAs quantum dots. The motivation of this work is to determine an approach that allows to assess single quantum dots as candidates for quantum nanophotonic devices. By combining optical and scanning probe characterization techniques, we find that single quantum dots often appear in the vicinity of comparatively large topographic features. Despite this, the quantum dots generally do not exhibit significant differences in their non-resonantly pumped emission spectra in comparison to quantum dots appearing in defect-free regions, and this behavior is observed across multiple wafers produced in different growth chambers. Such large surface features are nevertheless a detriment to applications in which single quantum dots are embedded within nanofabricated photonic devices: they are likely to cause large spectral shifts in the wavelength of cavity modes designed to resonantly enhance the quantum dot emission, thereby resulting in a nominally perfectly-fabricated single quantum dot device failing to behave in accordance with design. We anticipate that the approach of screening quantum dots not only based on their optical properties, but also their surrounding surface topographies, will be necessary to improve the yield of single quantum dot nanophotonic devices.

  19. Approaches to single photon detection

    International Nuclear Information System (INIS)

    Thew, R.T.; Curtz, N.; Eraerds, P.; Walenta, N.; Gautier, J.-D.; Koller, E.; Zhang, J.; Gisin, N.; Zbinden, H.

    2009-01-01

    We present recent results on our development of single photon detectors, including: gated and free-running InGaAs/InP avalanche photodiodes (APDs); hybrid detection systems based on sum-frequency generation (SFG) and Si APDs-SFG-Si APDs; and SSPDs (superconducting single photon detectors), for telecom wavelengths; as well as SiPM (Silicon photomultiplier) detectors operating in the visible regime.

  20. Processus d'interaction entre photons et atomes

    CERN Document Server

    Fellot, Dominique

    1996-01-01

    This work expounds the basic force interactions between photons and atoms, as well as an analysis of more complex processes. Various theoretical methods are introduced and illustrated with simple systems that help broach that subject.

  1. Multiple-Event, Single-Photon Counting Imaging Sensor

    Science.gov (United States)

    Zheng, Xinyu; Cunningham, Thomas J.; Sun, Chao; Wang, Kang L.

    2011-01-01

    The single-photon counting imaging sensor is typically an array of silicon Geiger-mode avalanche photodiodes that are monolithically integrated with CMOS (complementary metal oxide semiconductor) readout, signal processing, and addressing circuits located in each pixel and the peripheral area of the chip. The major problem is its single-event method for photon count number registration. A single-event single-photon counting imaging array only allows registration of up to one photon count in each of its pixels during a frame time, i.e., the interval between two successive pixel reset operations. Since the frame time can t be too short, this will lead to very low dynamic range and make the sensor merely useful for very low flux environments. The second problem of the prior technique is a limited fill factor resulting from consumption of chip area by the monolithically integrated CMOS readout in pixels. The resulting low photon collection efficiency will substantially ruin any benefit gained from the very sensitive single-photon counting detection. The single-photon counting imaging sensor developed in this work has a novel multiple-event architecture, which allows each of its pixels to register as more than one million (or more) photon-counting events during a frame time. Because of a consequently boosted dynamic range, the imaging array of the invention is capable of performing single-photon counting under ultra-low light through high-flux environments. On the other hand, since the multiple-event architecture is implemented in a hybrid structure, back-illumination and close-to-unity fill factor can be realized, and maximized quantum efficiency can also be achieved in the detector array.

  2. Optical Microcavity: Sensing down to Single Molecules and Atoms

    Directory of Open Access Journals (Sweden)

    Shu-Yu Su

    2011-02-01

    Full Text Available This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments, microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

  3. Pressure broadening of atomic oxygen two-photon absorption laser induced fluorescence

    NARCIS (Netherlands)

    Marinov, D.; Drag, C.; Blondel, C.; Guaitella, O.; Golda, J.; Klarenaar, B.L.M.; Engeln, R.A.H.; Schulz-von der Gathen, V.; Booth, J.-P.

    2016-01-01

    Atomic oxygen, considered to be a determining reactant in plasma applications at ambient pressure, is routinely detected by two-photon absorption laser induced fluorescence (TALIF). Here, pressure broadening of the (2p 4 3 P 2  →  3p 3 P J=0,1,2) two-photon transition in oxygen atoms was

  4. Analytical Absorption Cross-Section for Photon by a Hydrogen 2s Atom

    International Nuclear Information System (INIS)

    Ndinya, Boniface Otieno; Okeyo, Stephen Onyango

    2011-01-01

    We calculate the absorption cross-section for photon by a hydrogen 2s atom using the quantum-classical approximation for the total photo cross-section of many electron atoms. With the application of the first-order term of the Baker-Hausdorf expansion, the absorption cross-section for the hydrogen 2s atom decreases to a minimum, the Cooper pair minimum, at low photon energy. Such a minimum is absent in the exact absorption cross-section for photon by a hydrogen 2s atom. We have extended the calculation for the absorption cross-section of the hydrogen 2s atom using the quantum-classical approximation for the total photo cross-section of many electron to include the second-order term of the Baker-Hausdorf expansion and observed a great reduction in the dip associated with the Cooper pair minimum at the zero crossing. (atomic and molecular physics)

  5. Two-photon cooling of magnesium atoms

    DEFF Research Database (Denmark)

    Malossi, N.; Damkjær, S.; Hansen, P. L.

    2005-01-01

    A two-photon mechanism for cooling atoms below the Doppler temperature is analyzed. We consider the magnesium ladder system (3s2)S01¿(3s3p)P11 at 285.2nm followed by the (3s3p)P11¿(3s3d)D21 transition at 880.7nm . For the ladder system quantum coherence effects may become important. Combined with...... and experiment is excellent. In addition, by properly choosing the Rabi frequencies of the two optical transitions a velocity independent atomic dark state is observed....

  6. Two-photon transitions in hydrogen atoms embedded in weakly coupled plasmas

    International Nuclear Information System (INIS)

    Paul, S.; Ho, Y. K.

    2008-01-01

    The pseudostate method has been applied to calculate energy eigenvalues and corresponding eigenfunctions of the hydrogen atom in Debye plasma environments. Resonant two-photon transition rates from the ground state of atomic hydrogen to 2s and 3s excited states have been computed as a function of photon frequency in the length and velocity gauges for different Debye lengths. A two-photon transparency is found in correspondence to each resonance for 1s-3s. The transparency frequency and resonance enhancement frequency vary significantly with the Debye length.

  7. Single-photon two-qubit entangled states: Preparation and measurement

    International Nuclear Information System (INIS)

    Kim, Yoon-Ho

    2003-01-01

    We implement experimentally a deterministic method to prepare and measure the so-called single-photon two-qubit entangled states or single-photon Bell states, in which the polarization and the spatial modes of a single photon each represent a quantum bit. All four single-photon Bell states can be easily prepared and measured deterministically using linear optical elements alone. We also discuss how this method can be used for the recently proposed single-photon two-qubit quantum cryptography scheme

  8. Coherent single-photon absorption by single emitters coupled to 1D nanophotonic waveguides

    DEFF Research Database (Denmark)

    Chen, Yuntian; Wubs, Martijn; Mørk, Jesper

    2012-01-01

    We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption.......We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption....

  9. Single Photon Sources in Silicon Carbide

    International Nuclear Information System (INIS)

    Brett Johnson

    2014-01-01

    Single photon sources in semiconductors are highly sought after as they constitute the building blocks of a diverse range of emerging technologies such as integrated quantum information processing, quantum metrology and quantum photonics. In this presentation, we show the first observation of single photon emission from deep level defects in silicon carbide (SiC). The single photon emission is photo-stable at room temperature and surprisingly bright. This represents an exciting alternative to diamond color centers since SiC possesses well-established growth and device engineering protocols. The defect is assigned to the carbon vacancy-antisite pair which gives rise to the AB photoluminescence lines. We discuss its photo-physical properties and their fabrication via electron irradiation. Preliminary measurements on 3C SiC nano-structures will also be discussed. (author)

  10. Photonic and Quantum Interactions of Atomic-Scale Junctions

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, the fundamental quantum and photonic interactions of bimetallic atomic-scale junctions (ASJs) will be explored, with three major space...

  11. Atomic spectroscopy with twisted photons: Separation of M 1 -E 2 mixed multipoles

    Science.gov (United States)

    Afanasev, Andrei; Carlson, Carl E.; Solyanik, Maria

    2018-02-01

    We analyze atomic photoexcitation into the discrete states by twisted photons, or photons carrying extra orbital angular momentum along their direction of propagation. From the angular momentum and parity considerations, we are able to relate twisted-photon photoexcitation amplitudes to their plane-wave analogs, independently of the details of the atomic wave functions. We analyze the photoabsorption cross sections of mixed-multipolarity E 2 -M 1 transitions in ionized atoms and found fundamental differences coming from the photon topology. Our theoretical analysis demonstrates that it is possible to extract the relative transition rates of different multipolar contributions by measuring the photoexcitation rate as a function of the atom's position (or impact parameter) with respect to the optical vortex center. The proposed technique for separation of multipoles can be implemented if the target's atom position is resolved with subwavelength accuracy; for example, with Paul traps. Numerical examples are presented for Boron-like highly charged ions.

  12. Extreme Ultraviolet to Visible Dispersed Single Photon Detection for Highly Sensitive Sensing of Fundamental Processes in Diverse Samples

    Directory of Open Access Journals (Sweden)

    Andreas Hans

    2018-05-01

    Full Text Available The detection of a single photon is the most sensitive method for sensing of photon emission. A common technique for single photon detection uses microchannel plate arrays combined with photocathodes and position sensitive anodes. Here, we report on the combination of such detectors with grating diffraction spectrometers, constituting a low-noise wavelength resolving photon spectroscopy apparatus with versatile applicability. We recapitulate the operation principle of such detectors and present the details of the experimental set-up, which we use to investigate fundamental mechanisms in atomic and molecular systems after excitation with tuneable synchrotron radiation. Extensions for time and polarization resolved measurements are described and examples of recent applications in current research are given.

  13. Photon-Induced Spin-Orbit Coupling in Ultracold Atoms inside Optical Cavity

    Directory of Open Access Journals (Sweden)

    Lin Dong

    2015-05-01

    Full Text Available We consider an atom inside a ring cavity, where a plane-wave cavity field together with an external coherent laser beam induces a two-photon Raman transition between two hyperfine ground states of the atom. This cavity-assisted Raman transition induces effective coupling between atom’s internal degrees of freedom and its center-of-mass motion. In the meantime, atomic dynamics exerts a back-action to cavity photons. We investigate the properties of this system by adopting a mean-field and a full quantum approach, and show that the interplay between the atomic dynamics and the cavity field gives rise to intriguing nonlinear phenomena.

  14. One- and two-photon single ionization of 1D helium: resolving the role of individual decay channels and resonance states

    Energy Technology Data Exchange (ETDEWEB)

    Neimanns, Vera; Zimmermann, Klaus; Joerder, Felix; Buchleitner, Andreas [Albert-Ludwigs-Univ., Freiburg im Breisgau (Germany). Quantum Optics and Statistics; Lugan, Pierre [Laboratory of Theoretical Physics of Nanosystems, Institute of Theoretical Physics, EPF Lausanne (Switzerland)

    2012-07-01

    We combine the method of complex rotation and Floquet theory to analyze the multiphoton ionization of helium atoms in strong laser fields. We focus on 1D Z{sup 2+}e{sup -}e{sup -} helium to highlight the methods that allow us to extract the partial decay rates associated with various decay channels. In the regime of one-photon single ionization, we study the dependence of the partial rates associated with the singly ionized He{sup +}(N) states on the field frequency. We show that the electron-electron interaction provides couplings to higher single-ionization continua. Finally, we examine two-photon single-ionization processes, and analyze the role of the internal electronic structure of the atom, specifically the signature of resonant coupling to intermediate bound states on the decay rates.

  15. Two photon spectroscopy of rubidium atoms in a magneto-optic trap

    International Nuclear Information System (INIS)

    Fretel, E.

    1997-01-01

    Two photon transitions without doppler effect can be used as an atomic reference. The aim of this work is to study two photon transitions of rubidium atoms in a magneto-optical trap. The chosen transition is from the level 5 2 S 1/2 toward the level 5 2 D 5/2 . The magneto-optical trap is achieved by using 3 pairs of perpendicular laser beams and by setting a magnetic field gradient. About 10 18 atoms are trapped and cooled in a 1 mm 3 volume. In a first stage we have realized an optical double resonance experiment from the level 5 2 S 1/2 toward the level 5 2 D 5/2 by populating the intermediate level 5 2 P 3/2 . Then we have studied the two photon transition in this cluster of cold atoms. A particular setting of the experiment allows to reduce the effect of ray broadening and shifting due to the magnetic field of the trap

  16. Transmitting more than 10 bit with a single photon

    NARCIS (Netherlands)

    Tentrup, T.B.H.; Hummel, T.; Wolterink, T.A.W.; Uppu, R.; Mosk, Allard; Pinkse, P.W.H.

    2017-01-01

    Encoding information in the position of single photons has no known limits, given infinite resources. Using a heralded single-photon source and a spatial light modulator (SLM), we steer single photons to specific positions in a virtual grid on a large-area spatially resolving photon-counting

  17. Waveguide superconducting single-photon autocorrelators for quantum photonic applications

    NARCIS (Netherlands)

    Sahin, D.; Gaggero, A.; Frucci, G.; Jahanmirinejad, S.; Sprengers, J.P.; Mattioli, F.; Leoni, R.; Beetz, J.; Lermer, M.; Kamp, M.; Höfling, S.; Fiore, A.; Hasan, Z.U.; Hemmer, P.R.; Lee, H.; Santori, C.M.

    2013-01-01

    We report a novel component for integrated quantum photonic applications, a waveguide single-photon autocorrelator. It is based on two superconducting nanowire detectors patterned onto the same GaAs ridge waveguide. Combining the electrical output of the two detectors in a correlation card enables

  18. Direct detection of a single photon by humans

    Science.gov (United States)

    Tinsley, Jonathan N.; Molodtsov, Maxim I.; Prevedel, Robert; Wartmann, David; Espigulé-Pons, Jofre; Lauwers, Mattias; Vaziri, Alipasha

    2016-01-01

    Despite investigations for over 70 years, the absolute limits of human vision have remained unclear. Rod cells respond to individual photons, yet whether a single-photon incident on the eye can be perceived by a human subject has remained a fundamental open question. Here we report that humans can detect a single-photon incident on the cornea with a probability significantly above chance. This was achieved by implementing a combination of a psychophysics procedure with a quantum light source that can generate single-photon states of light. We further discover that the probability of reporting a single photon is modulated by the presence of an earlier photon, suggesting a priming process that temporarily enhances the effective gain of the visual system on the timescale of seconds. PMID:27434854

  19. Two-photon Doppler cooling of alkaline-earth-metal and ytterbium atoms

    International Nuclear Information System (INIS)

    Magno, Wictor C.; Cavasso Filho, Reinaldo L.; Cruz, Flavio C.

    2003-01-01

    The possibility of laser cooling of alkaline-earth-metal atoms and ytterbium atoms using a two-photon transition is analyzed. We consider a 1 S 0 - 1 S 0 transition with excitation in near resonance with the 1 P 1 level. This greatly increases the two-photon transition rate, allowing an effective transfer of momentum. The experimental implementation of this technique is discussed and we show that for calcium, for example, two-photon cooling can be used to achieve a Doppler limit of 123 μK. The efficiency of this cooling scheme and the main loss mechanisms are analyzed

  20. Fast recognition of single molecules based on single-event photon statistics

    International Nuclear Information System (INIS)

    Dong Shuangli; Huang Tao; Liu Yuan; Wang Jun; Zhang Guofeng; Xiao Liantuan; Jia Suotang

    2007-01-01

    Mandel's Q parameter, which is determined from single-event photon statistics, provides an alternative way to recognize single molecules with fluorescence detection, other than the second-order correlation function. It is shown that the Q parameter of an assumed ideal double-molecule fluorescence with the same average photon number as that of the sample fluorescence can act as the criterion for single-molecule recognition. The influence of signal-to-background ratio and the error estimates for photon statistics are also presented. We have applied this method to ascertain single Cy5 dye molecules within hundreds of milliseconds

  1. Nonlinear optics at the single-photon level inside a hollow core fiber

    DEFF Research Database (Denmark)

    Hofferberth, Sebastian; Peyronel, Thibault; Liang, Qiyu

    2011-01-01

    Cold atoms inside a hollow core fiber provide an unique system for studying optical nonlinearities at the few-photon level. Confinement of both atoms and photons inside the fiber core to a diameter of just a few wavelengths results in high electric field intensity per photon and large optical...

  2. Ionization of atoms by high energy photons

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Ioffe, A.F.

    1994-01-01

    Photoionization of atoms by high energy photons is considered. It is emphasized that in this frequency region the cross section and other characteristics of the process are strongly effected by electron shell polarization and rearrangement effects, including that due to inner vacancy Auger decay. In the effects of nuclear structure could be important and noticeable, i.e. of virtual or real excitation of the nucleus degrees of freedom and of the Quantum Electrodynamics vacuum. Ionization accompanied by secondary photon emission (Compton ionization) is analyzed in the considered domain of energies

  3. Diamond-based single-photon emitters

    International Nuclear Information System (INIS)

    Aharonovich, I; Castelletto, S; Simpson, D A; Su, C-H; Greentree, A D; Prawer, S

    2011-01-01

    The exploitation of emerging quantum technologies requires efficient fabrication of key building blocks. Sources of single photons are extremely important across many applications as they can serve as vectors for quantum information-thereby allowing long-range (perhaps even global-scale) quantum states to be made and manipulated for tasks such as quantum communication or distributed quantum computation. At the single-emitter level, quantum sources also afford new possibilities in terms of nanoscopy and bio-marking. Color centers in diamond are prominent candidates to generate and manipulate quantum states of light, as they are a photostable solid-state source of single photons at room temperature. In this review, we discuss the state of the art of diamond-based single-photon emitters and highlight their fabrication methodologies. We present the experimental techniques used to characterize the quantum emitters and discuss their photophysical properties. We outline a number of applications including quantum key distribution, bio-marking and sub-diffraction imaging, where diamond-based single emitters are playing a crucial role. We conclude with a discussion of the main challenges and perspectives for employing diamond emitters in quantum information processing.

  4. Dynamical Evolution of Properties for Atom and Field in the Process of Two-Photon Absorption and Emission Between Atomic Levels

    Science.gov (United States)

    Wang, Jian-ming; Xu, Xue-xiang

    2018-04-01

    Using dressed state method, we cleverly solve the dynamics of atom-field interaction in the process of two-photon absorption and emission between atomic levels. Here we suppose that the atom is initially in the ground state and the optical field is initially in Fock state, coherent state or thermal state, respectively. The properties of the atom, including the population in excited state and ground state, the atom inversion, and the properties for optical field, including the photon number distribution, the mean photon number, the second-order correlation function and the Wigner function, are discussed in detail. We derive their analytical expressions and then make numerical analysis for them. In contrast with Jaynes-Cummings model, some similar results, such as quantum Rabi oscillation, revival and collapse, are also exhibit in our considered model. Besides, some novel nonclassical states are generated.

  5. Understanding strong-field coherent control: Measuring single-atom versus collective dynamics

    International Nuclear Information System (INIS)

    Trallero-Herrero, Carlos; Weinacht, Thomas; Spanner, Michael

    2006-01-01

    We compare the results of two strong field coherent control experiments: one which optimizes multi-photon population transfer in atomic sodium (from the 3s to the 4s state, measured by spontaneous emission from the 3p-3s transition) with one that optimizes stimulated emission on the 3p-3s transition in an ensemble of sodium atoms. Both experiments make use of intense, shaped ultrafast laser pulses discovered by a Genetic Algorithm inside a learning control loop. Optimization leads to improvements in the spontaneous and stimulated emission yields of about 4 and 10 4 , respectively, over an unshaped pulse. We interpret these results by modeling both the single atom dynamics as well as the stimulated emission buildup through numerical integration of Schroedinger's and Maxwell's equations. Our interpretation leads to the conclusion that modest yields for controlling single quantum systems can lead to dramatic effects whenever an ensemble of such systems acts collectively following controlled impulsive excitation

  6. Possibility of single biomolecule imaging with coherent amplification of weak scattering x-ray photons.

    Science.gov (United States)

    Shintake, Tsumoru

    2008-10-01

    The number of photons produced by coherent x-ray scattering from a single biomolecule is very small because of its extremely small elastic-scattering cross section and low damage threshold. Even with a high x-ray flux of 3 x 10;{12} photons per 100-nm -diameter spot and an ultrashort pulse of 10 fs driven by a future x-ray free electron laser (x-ray FEL), it has been predicted that only a few 100 photons will be produced from the scattering of a single lysozyme molecule. In observations of scattered x rays on a detector, the transfer of energy from wave to matter is accompanied by the quantization of the photon energy. Unfortunately, x rays have a high photon energy of 12 keV at wavelengths of 1A , which is required for atomic resolution imaging. Therefore, the number of photoionization events is small, which limits the resolution of imaging of a single biomolecule. In this paper, I propose a method: instead of directly observing the photons scattered from the sample, we amplify the scattered waves by superimposing an intense coherent reference pump wave on it and record the resulting interference pattern on a planar x-ray detector. Using a nanosized gold particle as a reference pump wave source, we can collect 10;{4}-10;{5} photons in single shot imaging where the signal from a single biomolecule is amplified and recorded as two-dimensional diffraction intensity data. An iterative phase retrieval technique can be used to recover the phase information and reconstruct the image of the single biomolecule and the gold particle at the same time. In order to precisely reconstruct a faint image of the single biomolecule in Angstrom resolution, whose intensity is much lower than that of the bright gold particle, I propose a technique that combines iterative phase retrieval on the reference pump wave and the digital Fourier transform holography on the sample. By using a large number of holography data, the three-dimensional electron density map can be assembled.

  7. Preparation and tomographic reconstruction of an arbitrary single-photon path qubit

    International Nuclear Information System (INIS)

    Baek, So-Young; Kim, Yoon-Ho

    2011-01-01

    We report methods for preparation and tomographic reconstruction of an arbitrary single-photon path qubit. The arbitrary single-photon path qubit is prepared losslessly by passing the heralded single-photon state from spontaneous parametric down-conversion through variable beam splitter. Quantum state tomography of the single-photon path qubit is implemented by introducing path-projection measurements based on the first-order single-photon quantum interference. Using the state preparation and path-projection measurements methods for the single-photon path qubit, we demonstrate preparation and complete tomographic reconstruction of the single-photon path qubit with arbitrary purity. -- Highlights: → We report methods for preparation and tomographic reconstruction of an arbitrary single-photon path qubit. → We implement path-projection measurements based on the first-order single-photon quantum interference. → We demonstrate preparation and complete tomographic reconstruction of the single-photon path qubit with arbitrary purity.

  8. Angle sensitive single photon avalanche diode

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Changhyuk, E-mail: cl678@cornell.edu; Johnson, Ben, E-mail: bcj25@cornell.edu; Molnar, Alyosha, E-mail: am699@cornell.edu [Electrical and Computer Engineering, Cornell University, Ithaca, New York 14850 (United States)

    2015-06-08

    An ideal light sensor would provide exact information on intensity, timing, location, and angle of incoming photons. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information and can be implemented at a pixel-scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses or diffraction gratings) that are capable of encoding both spatial and angular information of incident light. In this letter, we describe the implementation of such a grating structure on SPADs to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) built in a standard CMOS process. While the underlying SPAD structure provides high sensitivity, the time information of the two layers of diffraction gratings above offers angle-sensitivity. Such a unique combination of SPAD and diffraction gratings expands the sensing dimensions to pave a path towards lens-less 3-D imaging and light-field time-of-flight imaging.

  9. Einstein-Podolsky-Rosen Entanglement of Narrowband Photons from Cold Atoms

    OpenAIRE

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-01-01

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrowband photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrowband photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate co...

  10. Theoretical study on the photocatalytic properties of graphene oxide with single Au atom adsorption

    Science.gov (United States)

    Ju, Lin; Dai, Ying; Wei, Wei; Li, Mengmeng; Jin, Cui; Huang, Baibiao

    2018-03-01

    The photocatalytic properties of graphene oxide (GO) with single Au atom adsorption are studied via the first-principles calculations based on the density functional theory. The present study addresses the origin of enhancement in photocatalytic efficiency of GO derived from single Au atom depositing. Compared with the clean one, the work function of the single Au atom adsorbed GO is lowered due to the charge transfer from Au to GO, indicating enhanced surface activity. The Au atom plays as an electron trapping center and a mediating role in charge transfer from photon excited GO to target species. The photogenerated electron-hole pairs can be separated effectively. For the GO configuration with atomic Au dispersion, there are some states introduced in the band gap, which are predominantly composed of Au 6s states. Through the in-gap state, the photo-generated electron transfer from the valence band of clean GO to the conductive band more easily. In addition, the reduction of the gap in the system is also presented in the current work, which indicates that the single Au atom adsorption improves light absorption for the GO based photocatalyst. These theoretical results are valuable for the future applications of GO materials as photocatalyst for water splitting.

  11. Electro-optic routing of photons from a single quantum dot in photonic integrated circuits

    Science.gov (United States)

    Midolo, Leonardo; Hansen, Sofie L.; Zhang, Weili; Papon, Camille; Schott, Rüdiger; Ludwig, Arne; Wieck, Andreas D.; Lodahl, Peter; Stobbe, Søren

    2017-12-01

    Recent breakthroughs in solid-state photonic quantum technologies enable generating and detecting single photons with near-unity efficiency as required for a range of photonic quantum technologies. The lack of methods to simultaneously generate and control photons within the same chip, however, has formed a main obstacle to achieving efficient multi-qubit gates and to harness the advantages of chip-scale quantum photonics. Here we propose and demonstrate an integrated voltage-controlled phase shifter based on the electro-optic effect in suspended photonic waveguides with embedded quantum emitters. The phase control allows building a compact Mach-Zehnder interferometer with two orthogonal arms, taking advantage of the anisotropic electro-optic response in gallium arsenide. Photons emitted by single self-assembled quantum dots can be actively routed into the two outputs of the interferometer. These results, together with the observed sub-microsecond response time, constitute a significant step towards chip-scale single-photon-source de-multiplexing, fiber-loop boson sampling, and linear optical quantum computing.

  12. Single-photon light detection with transition-edge sensors

    International Nuclear Information System (INIS)

    Rajteri, M.; Taralli, E.; Portesi, C.; Monticone, E.

    2008-01-01

    Transition-Edge Sensors (TESs) are micro calorimeters that measure the energy of incident single-photons by the resistance increase of a superconducting film biased within the superconducting-to-normal transition. TES are able to detect single photons from x-ray to IR with an intrinsic energy resolution and photon-number discrimination capability. Metrological, astronomical and quantum communication applications are the fields where these properties can be particularly important. In this work, we report about characterization of different TESs based on Ti films. Single-photons have been detected from 200 nm to 800 nm working at T c ∼ 100 m K. Using a pulsed laser at 690 nm we have demonstrated the capability to resolve up to five photons.

  13. Two-photon polarization Fourier spectroscopy of metastable atomic hydrogen

    International Nuclear Information System (INIS)

    Duncan, A.J.; Beyer, H.-J.; Kleinpoppen, H.; Sheikh, Z.A,; B-Z Univ., Multan

    1997-01-01

    A novel Fourier-transform spectroscopic method using two-photon polarization to determine the spectral distribution of the two photons emitted in the spontaneous decay of metastable atomic hydrogen is described. The method uses birefringent retardation plates and takes advantage of the subtle interplay between the spectral properties and the entangled polarization properties of the radiation emitted in the decay. Assuming the validity of the theoretical spectral distribution, it is shown that the experimental results agree well with theory. On the other hand, success in solving the inverse problem of determining the spectral distribution from the experimental results is limited by the small number of experimental points. However, making reasonable assumptions it is deduced that the observed spectrum is characterized by a broadband signal of width (0.43 ± 0.06) x 10 16 rad s -1 and centre angular frequency (0.77 ± 0.03) x 10 16 rad s -1 in good agreement with the predictions of 0.489 x 10 16 rad s -1 and 0.775 x 10 16 rad s -1 , respectively, obtained from the theoretical spectral distribution modified to take account of the absorption of the two-photon radiation in air. The values of 1.5 fs for the coherence time and 440 nm for the coherence length for single photons of the two-photon pair which are obtained from the measured bandwidth imply that, in the ideal case, these values are determined by the essentially zero lifetime of the virtual intermediate state of the decay process rather than the long lifetime of the metastable state which, it is suggested, determines the coherence time and coherence length appropriate to certain types of fourth-order interference experiments. (Author)

  14. Analysis of angular momentum properties of photons emitted in fundamental atomic processes

    Science.gov (United States)

    Zaytsev, V. A.; Surzhykov, A. S.; Shabaev, V. M.; Stöhlker, Th.

    2018-04-01

    Many atomic processes result in the emission of photons. Analysis of the properties of emitted photons, such as energy and angular distribution as well as polarization, is regarded as a powerful tool for gaining more insight into the physics of corresponding processes. Another characteristic of light is the projection of its angular momentum upon propagation direction. This property has attracted a special attention over the past decades due to studies of twisted (or vortex) light beams. Measurements being sensitive to this projection may provide valuable information about the role of angular momentum in the fundamental atomic processes. Here we describe a simple theoretical method for determination of the angular momentum properties of the photons emitted in various atomic processes. This method is based on the evaluation of expectation value of the total angular momentum projection operator. To illustrate the method, we apply it to the textbook examples of plane-wave, spherical-wave, and Bessel light. Moreover, we investigate the projection of angular momentum for the photons emitted in the process of the radiative recombination with ionic targets. It is found that the recombination photons do carry a nonzero projection of the orbital angular momentum.

  15. Efficient generation of single and entangled photons on a silicon photonic integrated chip

    International Nuclear Information System (INIS)

    Mower, Jacob; Englund, Dirk

    2011-01-01

    We present a protocol for generating on-demand, indistinguishable single photons on a silicon photonic integrated chip. The source is a time-multiplexed spontaneous parametric down-conversion element that allows optimization of single-photon versus multiphoton emission while realizing high output rate and indistinguishability. We minimize both the scaling of active elements and the scaling of active element loss with multiplexing. We then discuss detection strategies and data processing to further optimize the procedure. We simulate an improvement in single-photon-generation efficiency over previous time-multiplexing protocols, assuming existing fabrication capabilities. We then apply this system to generate heralded Bell states. The generation efficiency of both nonclassical states could be increased substantially with improved fabrication procedures.

  16. ENDF/B-6 Photon Atomic Interaction Data Library

    International Nuclear Information System (INIS)

    Lemmel, H.D.

    1990-09-01

    The ENDF/B-6 version of the Photo-Atomic Interaction Data Library of the Livermore Evaluated Photon Data Library (EPDL) contains pair and triplet cross-sections, photoelectric cross-sections, atom form factors, coherent scattering cross-sections and some other data for all the elements from Z=1 to 100. The data library is available on magnetic tape costfree from the IAEA Nuclear Data Section. The library supersedes the earlier photo-atomic data library by the US Radiation Shielding Information Center RSIC that was included in the data libraries ENDF/B-5 and JEF-1. (author). Refs, figs and tabs

  17. Coupling of single quantum dots to a photonic crystal waveguide

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian

    Efficient and high quality single-photon sources is a key element in quantum information processing using photons. As a consequence, much current research is focused on realizing all-solid-state nanophotonic single-photon sources. Single photons can be harvested with high efficiency if the emitter...... is coupled efficiently to a single enhanced mode. One popular approach has been to couple single quantum dots to a nanocavity but a limiting factor in this configuration is that in order to apply the photon it should subsequently be coupled out of the cavity, reducing the overall efficiency significantly...

  18. Three-photon laser spectroscopy of even-parity bound states of samarium atom

    International Nuclear Information System (INIS)

    Gomonaj, O.Yi.; Kudelich, O.Yi.

    2002-01-01

    The energy spectrum of highly-excited even-parity bound states of a Sm atom, lying in the energy range 34421.1 - 36031.8 cm -1 , is investigated using three-photon resonance-ionization spectroscopy. The energies and total momenta of 48 levels are determined. Eight new levels not observed before are discovered. Thirteen intense two-photon transitions, which can be used in the schemes of Sm atom effective photoionization, are observed

  19. Controlling light emission from single-photon sources using photonic nanowires

    DEFF Research Database (Denmark)

    Gregersen, Niels; Chen, Yuntian; Mørk, Jesper

    2012-01-01

    The photonic nanowire has recently emerged as an promising alternative to microcavity-based single-photon source designs. In this simple structure, a geometrical effect ensures a strong coupling between an embedded emitter and the optical mode of interest and a combination of tapers and mirrors a...

  20. Single-photon three-qubit quantum logic using spatial light modulators.

    Science.gov (United States)

    Kagalwala, Kumel H; Di Giuseppe, Giovanni; Abouraddy, Ayman F; Saleh, Bahaa E A

    2017-09-29

    The information-carrying capacity of a single photon can be vastly expanded by exploiting its multiple degrees of freedom: spatial, temporal, and polarization. Although multiple qubits can be encoded per photon, to date only two-qubit single-photon quantum operations have been realized. Here, we report an experimental demonstration of three-qubit single-photon, linear, deterministic quantum gates that exploit photon polarization and the two-dimensional spatial-parity-symmetry of the transverse single-photon field. These gates are implemented using a polarization-sensitive spatial light modulator that provides a robust, non-interferometric, versatile platform for implementing controlled unitary gates. Polarization here represents the control qubit for either separable or entangling unitary operations on the two spatial-parity target qubits. Such gates help generate maximally entangled three-qubit Greenberger-Horne-Zeilinger and W states, which is confirmed by tomographical reconstruction of single-photon density matrices. This strategy provides access to a wide range of three-qubit states and operations for use in few-qubit quantum information processing protocols.Photons are essential for quantum information processing, but to date only two-qubit single-photon operations have been realized. Here the authors demonstrate experimentally a three-qubit single-photon linear deterministic quantum gate by exploiting polarization along with spatial-parity symmetry.

  1. Two-color ghost interference with photon pairs generated in hot atoms

    Directory of Open Access Journals (Sweden)

    Dong-Sheng Ding

    2012-09-01

    Full Text Available We report on an experimental observation of a two-photon ghost interference experiment. A distinguishing feature of our experiment is that the photons are generated via a non-degenerated spontaneous four-wave mixing process in a hot atomic ensemble; therefore the photon has narrow bandwidth. Besides, there is a large difference in frequency between two photons in a pair. Our works may be important to achieve more secure, large transmission capacity long-distance quantum communication.

  2. Recyclable amplification for single-photon entanglement from photon loss and decoherence

    Science.gov (United States)

    Zhou, Lan; Chen, Ling-Quan; Zhong, Wei; Sheng, Yu-Bo

    2018-01-01

    We put forward a highly efficient recyclable single-photon assisted amplification protocol, which can protect single-photon entanglement (SPE) from photon loss and decoherence. Making use of quantum nondemolition detection gates constructed with the help of cross-Kerr nonlinearity, our protocol has some attractive advantages. First, the parties can recover less-entangled SPE to be maximally entangled SPE, and reduce photon loss simultaneously. Second, if the protocol fails, the parties can repeat the protocol to reuse some discarded items, which can increase the success probability. Third, when the protocol is successful, they can similarly repeat the protocol to further increase the fidelity of the SPE. Thereby, our protocol provides a possible way to obtain high entanglement, high fidelity and high success probability simultaneously. In particular, our protocol shows higher success probability in the practical high photon loss channel. Based on the above features, our amplification protocol has potential for future application in long-distance quantum communication.

  3. Waveguide-Coupled Superconducting Nanowire Single-Photon Detectors

    Science.gov (United States)

    Beyer, Andrew D.; Briggs, Ryan M.; Marsili, Francesco; Cohen, Justin D.; Meenehan, Sean M.; Painter, Oskar J.; Shaw, Matthew D.

    2015-01-01

    We have demonstrated WSi-based superconducting nanowire single-photon detectors coupled to SiNx waveguides with integrated ring resonators. This photonics platform enables the implementation of robust and efficient photon-counting detectors with fine spectral resolution near 1550 nm.

  4. A new two-photon mechanism of the formation of a continuous spectrum of photons emitted by secondary emission products of atomic particles

    International Nuclear Information System (INIS)

    Veksler, V.I.

    1986-01-01

    A two-photon mechanism of the formation of a continuous spectrum of photons emitted by products of metal sputtering is considered. The following process of the two-photon mechanism is considered: the continuous spectrum is formed under quadrupole two-photon transitions in sputtered excited atoms having vacancies at the d level in atoms of transition metals or at the of level in lanthanides found against the filled conduction band. It is shown that the suggested mechanism should play an essential role in the formation of the continuous spectrum of optical radiation

  5. Heralded noiseless amplification for single-photon entangled state with polarization feature

    Science.gov (United States)

    Wang, Dan-Dan; Jin, Yu-Yu; Qin, Sheng-Xian; Zu, Hao; Zhou, Lan; Zhong, Wei; Sheng, Yu-Bo

    2018-03-01

    Heralded noiseless amplification is a promising method to overcome the transmission photon loss in practical noisy quantum channel and can effectively lengthen the quantum communication distance. Single-photon entanglement is an important resource in current quantum communications. Here, we construct two single-photon-assisted heralded noiseless amplification protocols for the single-photon two-mode entangled state and single-photon three-mode W state, respectively, where the single-photon qubit has an arbitrary unknown polarization feature. After the amplification, the fidelity of the single-photon entangled state can be increased, while the polarization feature of the single-photon qubit can be well remained. Both the two protocols only require the linear optical elements, so that they can be realized under current experimental condition. Our protocols may be useful in current and future quantum information processing.

  6. New Generation of Superconducting Nanowire Single-Photon Detectors

    Directory of Open Access Journals (Sweden)

    Goltsman G.N.

    2015-01-01

    Full Text Available We present an overview of recent results for new generation of infrared and optical superconducting nanowire single-photon detectors (SNSPDs that has already demonstrated a performance that makes them devices-of-choice for many applications. SNSPDs provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, SNSPDs are also compatible with an integrated optical platform as a crucial requirement for applications in emerging quantum photonic technologies. By embedding SNSPDs in nanophotonic circuits we realize waveguide integrated single photon detectors which unite all desirable detector properties in a single device.

  7. Nonperturbative theory of single/multiphoton processes in atoms and molecules induced by intense laser fields

    International Nuclear Information System (INIS)

    Lau, A.M.F.

    1975-04-01

    A quantum nonperturbative theory is given for the problem of a general n discrete-level atomic/molecular system interacting with a strong single-mode/multimode radiation field. The atomic/molecular energy-level structures are modified due to interaction with the laser field. These energy level shifts are derived in the rigorous solution to the adiabatic eigenvalue problem of the charge--field system, involving a simple iterative procedure. The task of solution is simplified by recurrence relations between matrices connecting probability amplitudes of successive photon numbers. New formulae for calculating probability of single/multiphoton transitions between three resonant shifted levels and between some cases of two near-resonant shifted levels are derived. This general formalism can be applied to calculate transition probabilities of various atomic/molecular photo processes of interest. Numerical values are obtained for the inelastic cross section of the slow-collisional process Li + H and for dissociation cross section of LiH molecule. The transition probabilities of Na (3s → 5s by absorption of two photon of lambda = 0.60233μ -- 0.602396 μ) and of Li (2s → 3s by absorption of eight photons of lambda = 2.9406 μ -- 2.945 μ) irradiated by a strong pulse are calculated. Finally, a parametric study is carried out for the process where a molecular system is interacting with two intense radiation fields of different wavelengths. Owing to potential barrier shift due to the much more intense field, the molecular system penetrates into an otherwise inaccessible region in the potential level where it is allowed to radiate to a lower level by emitting photons at a second wavelength. (12 figures, 6 tables) (U.S.)

  8. Electric field imaging of single atoms

    Science.gov (United States)

    Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi

    2017-01-01

    In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures. PMID:28555629

  9. Entanglement and quantum superposition induced by a single photon

    Science.gov (United States)

    Lü, Xin-You; Zhu, Gui-Lei; Zheng, Li-Li; Wu, Ying

    2018-03-01

    We predict the occurrence of single-photon-induced entanglement and quantum superposition in a hybrid quantum model, introducing an optomechanical coupling into the Rabi model. Originally, it comes from the photon-dependent quantum property of the ground state featured by the proposed hybrid model. It is associated with a single-photon-induced quantum phase transition, and is immune to the A2 term of the spin-field interaction. Moreover, the obtained quantum superposition state is actually a squeezed cat state, which can significantly enhance precision in quantum metrology. This work offers an approach to manipulate entanglement and quantum superposition with a single photon, which might have potential applications in the engineering of new single-photon quantum devices, and also fundamentally broaden the regime of cavity QED.

  10. Single-Photon Source for Quantum Information Based on Single Dye Molecule Fluorescence in Liquid Crystal Host

    International Nuclear Information System (INIS)

    Lukishova, S.G.; Knox, R.P.; Freivald, P.; McNamara, A.; Boyd, R.W.; Stroud, Jr. C.R.; Schmid, A.W.; Marshall, K.L.

    2006-01-01

    This paper describes a new application for liquid crystals: quantum information technology. A deterministically polarized single-photon source that efficiently produces photons exhibiting antibunching is a pivotal hardware element in absolutely secure quantum communication. Planar-aligned nematic liquid crystal hosts deterministically align the single dye molecules which produce deterministically polarized single (antibunched) photons. In addition, 1-D photonic bandgap cholesteric liquid crystals will increase single-photon source efficiency. The experiments and challenges in the observation of deterministically polarized fluorescence from single dye molecules in planar-aligned glassy nematic-liquid-crystal oligomer as well as photon antibunching in glassy cholesteric oligomer are described for the first time

  11. Mitigating radiation damage of single photon detectors for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Anisimova, Elena; Higgins, Brendon L.; Bourgoin, Jean-Philippe [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Cranmer, Miles [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); Choi, Eric [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); Magellan Aerospace, Ottawa, ON (Canada); Hudson, Danya; Piche, Louis P.; Scott, Alan [Honeywell Aerospace (formerly COM DEV Ltd.), Ottawa, ON (Canada); Makarov, Vadim [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON (Canada); Jennewein, Thomas [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Canadian Institute for Advanced Research, Quantum Information Science Program, Toronto, ON (Canada)

    2017-12-15

    Single-photon detectors in space must retain useful performance characteristics despite being bombarded with sub-atomic particles. Mitigating the effects of this space radiation is vital to enabling new space applications which require high-fidelity single-photon detection. To this end, we conducted proton radiation tests of various models of avalanche photodiodes (APDs) and one model of photomultiplier tube potentially suitable for satellite-based quantum communications. The samples were irradiated with 106 MeV protons at doses approximately equivalent to lifetimes of 0.6, 6, 12 and 24 months in a low-Earth polar orbit. Although most detection properties were preserved, including efficiency, timing jitter and afterpulsing probability, all APD samples demonstrated significant increases in dark count rate (DCR) due to radiation-induced damage, many orders of magnitude higher than the 200 counts per second (cps) required for ground-to-satellite quantum communications. We then successfully demonstrated the mitigation of this DCR degradation through the use of deep cooling, to as low as -86 C. This achieved DCR below the required 200 cps over the 24 months orbit duration. DCR was further reduced by thermal annealing at temperatures of +50 to +100 C. (orig.)

  12. Nanofabrication of Plasmonic Circuits Containing Single Photon Sources

    DEFF Research Database (Denmark)

    Siampour, Hamidreza; Kumar, Shailesh; Bozhevolnyi, Sergey I.

    2017-01-01

    Nanofabrication of photonic components based on dielectric loaded surface plasmon polariton waveguides (DLSPPWs) excited by single nitrogen vacancy (NV) centers in nanodiamonds is demonstrated. DLSPPW circuits are built around NV containing nanodiamonds, which are certified to be single-photon...... emitters, using electron-beam lithography of hydrogen silsesquioxane (HSQ) resist on silver-coated silicon substrates. A propagation length of 20 ± 5 μm for the NV single-photon emission is measured with DLSPPWs. A 5-fold enhancement in the total decay rate, and 58% coupling efficiency to the DLSPPW mode...

  13. Influence of the virtual photon field on the squeezing properties of an atom laser

    International Nuclear Information System (INIS)

    Jian-Gang, Zhao; Chang-Yong, Sun; Ling-Hua, Wen; Bao-Long, Liang

    2009-01-01

    This paper investigates the squeezing properties of an atom laser without rotating-wave approximation in the system of a binomial states field interacting with a two-level atomic Bose–Einstein condensate. It discusses the influences of atomic eigenfrequency, the interaction intensity between the optical field and atoms, parameter of the binomial states field and virtual photon field on the squeezing properties. The results show that two quadrature components of an atom laser can be squeezed periodically. The duration and the degree of squeezing an atom laser have something to do with the atomic eigenfrequency and the parameter of the binomial states field, respectively. The collapse and revival frequency of atom laser fluctuation depends on the interaction intensity between the optical field and atoms. The effect of the virtual photon field deepens the depth of squeezing an atom laser

  14. CeB6 Sensor for Thermoelectric Single-Photon Detector

    Directory of Open Access Journals (Sweden)

    Armen KUZANIAN

    2015-08-01

    Full Text Available Interest in single-photon detectors has recently sharply increased. The most developed single-photon detectors are currently based on superconductors. Following the theory, thermoelectric single-photon detectors can compete with superconducting detectors. The operational principle of thermoelectric detector is based on photon absorption by absorber as a result of which a temperature gradient is generated across the sensor. In this work we present the results of computer modeling of heat distribution processes after absorption of a photon of 1 keV - 1 eV energy in different areas of the absorber for different geometries of tungsten absorber and cerium hexaboride sensor. The time dependence of the temperature difference between the ends of the thermoelectric sensor and electric potential appearing across the sensor are calculated. The results of calculations show that it is realistic to detect single photons from IR to X-ray and determine their energy. Count rates up to hundreds gigahertz can be achieved.

  15. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms

    Science.gov (United States)

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-01

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  16. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms.

    Science.gov (United States)

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-16

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  17. Atom-field dressed states in slow-light waveguide QED

    Science.gov (United States)

    Calajó, Giuseppe; Ciccarello, Francesco; Chang, Darrick; Rabl, Peter

    2016-03-01

    We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multiphoton dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide both a qualitative and quantitative description of the essential strong-coupling processes in waveguide QED systems, which are currently being developed in the optical and microwave regimes.

  18. Sub-megahertz linewidth single photon source

    Directory of Open Access Journals (Sweden)

    Markus Rambach

    2016-12-01

    Full Text Available We report 100% duty cycle generation of sub-MHz single photon pairs at the rubidium D1 line using cavity-enhanced spontaneous parametric downconversion. The temporal intensity cross correlation function exhibits a bandwidth of 666±16 kHz for the single photons, an order of magnitude below the natural linewidth of the target transition. A half-wave plate inside our cavity helps to achieve triple resonance between pump, signal, and idler photon, reducing the bandwidth and simplifying the locking scheme. Additionally, stabilisation of the cavity to the pump frequency enables the 100% duty cycle. The quantum nature of the source is confirmed by the idler-triggered second-order autocorrelation function at τ=0 to be gs,s(2(0= 0.016±0.002 for a heralding rate of 5 kHz. The generated photons are well-suited for storage in quantum memory schemes with sub-natural linewidths, such as gradient echo memories.

  19. Semi-quantum Dialogue Based on Single Photons

    Science.gov (United States)

    Ye, Tian-Yu; Ye, Chong-Qiang

    2018-02-01

    In this paper, we propose two semi-quantum dialogue (SQD) protocols by using single photons as the quantum carriers, where one requires the classical party to possess the measurement capability and the other does not have this requirement. The security toward active attacks from an outside Eve in the first SQD protocol is guaranteed by the complete robustness of present semi-quantum key distribution (SQKD) protocols, the classical one-time pad encryption, the classical party's randomization operation and the decoy photon technology. The information leakage problem of the first SQD protocol is overcome by the classical party' classical basis measurements on the single photons carrying messages which makes him share their initial states with the quantum party. The security toward active attacks from Eve in the second SQD protocol is guaranteed by the classical party's randomization operation, the complete robustness of present SQKD protocol and the classical one-time pad encryption. The information leakage problem of the second SQD protocol is overcome by the quantum party' classical basis measurements on each two adjacent single photons carrying messages which makes her share their initial states with the classical party. Compared with the traditional information leakage resistant QD protocols, the advantage of the proposed SQD protocols lies in that they only require one party to have quantum capabilities. Compared with the existing SQD protocol, the advantage of the proposed SQD protocols lies in that they only employ single photons rather than two-photon entangled states as the quantum carriers. The proposed SQD protocols can be implemented with present quantum technologies.

  20. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm

    Energy Technology Data Exchange (ETDEWEB)

    Scarcella, Carmelo; Tosi, Alberto, E-mail: alberto.tosi@polimi.it; Villa, Federica; Tisa, Simone; Zappa, Franco [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)

    2013-12-15

    We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 μm active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.

  1. The general expression for the transition amplitude of two-photon ionization of atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Karule, E [Institute of Atomic Physics and Spectroscopy, University of Latvia, Raina Boulevard 19, Riga, LV-1586 (Latvia); Moine, B [Universite Paris Sud, 91405 Orsay Cedex (France)

    2003-05-28

    Two-photon ionization of atomic hydrogen with an excess photon is revisited. The non-relativistic dipole approximation and Coulomb Green function (CGF) formalism are applied. Using the CGF Sturmian expansion straightforwardly, one gets the radial transition amplitude in the form of an infinite sum over Gauss hypergeometric functions which are polynomials. It is convergent if all intermediate states are in the discrete spectrum. In the case of two-photon ionization with an excess photon, when photoionization is also possible, intermediate states are in the continuum. We performed the explicit summation over intermediate states and got a simple general expression for the radial transition amplitude in the form of a finite sum over Appell hypergeometric functions, which are not polynomials. An Appell function may be expressed as an infinite sum over Gauss functions. In the case of ionization by an excess photon, Gauss functions are transformed to give a convergent radial transition amplitude for the whole region. The generalized cross sections for two-photon above-threshold ionization of atomic hydrogen in the ground state and excited states calculated by us agree very well with results of previous calculations. Generalized cross sections for two-photon ionization of positronium in the ground state are obtained by scaling those for atomic hydrogen.

  2. A high-efficiency electrically-pumped single-photon source based on a photonics nanowire

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Torben Roland; Mørk, Jesper

    An electrically-pumped single-photon source design with a predicted efficiency of 89% is proposed. The design is based on a quantum dot embedded in a photonic nanowire with tailored ends and optimized contact electrodes. Unlike cavity-based approaches, the photonic nanowire features broadband...

  3. From Photons to Atoms - The Electromagnetic Nature of Matter

    OpenAIRE

    Funaro, Daniele

    2012-01-01

    Motivated by a revision of the classical equations of electromagnetism that allow for the inclusion of solitary waves in the solution space, the material collected in these notes examine the consequences of adopting the modified model in the description of atomic structures. The possibility of handling "photons" in a deterministic way opens indeed a chance for reviewing the foundations of quantum physics. Atoms and molecules are described as aggregations of nuclei and electrons joined through...

  4. Towards the coupling of single photons from dye molecules to a photonic waveguide

    Science.gov (United States)

    Polisseni, Claudio; Kho, Kiang Wei; Major, Kyle; Grandi, Samuele; Boisser, Sebastien; Hwang, Jaesuk; Clark, Alex; Hinds, Edward

    Single photons are very attractive for quantum information processing given their long coherence time and their ability to carry information in many degrees of freedom. A current challenge is the efficient generation of single photons in a photonic chip in order to scale up the complexity of quantum operations. We have proposed that a dibenzoterrylene (DBT) molecule inside an anthracene (AC) crystal could couple lifetime-limited indistinguishable single photons into a photonic waveguide if deposited in its vicinity. In this talk I describe the recent progress towards the realization of this proposal. A new method has been developed for evaporating AC and DBT to produce crystals that are wide and thin. The crystals are typically several microns across and have remarkably uniform thickness, which we control between 20 and 150 nm. The crystal growth is carried out in a glove bag in order to exclude oxygen, which improves the photostability of the DBT molecules by orders of magnitude. We image the fluorescence of single DBT molecules using confocal microscopy and analyse the polarization of this light to determine the alignment of the molecules. I will report on our efforts to control the alignement of the molecules by aligning the host matrix with the substrate.

  5. Two-dimensional 'photon fluid': effective photon-photon interaction and physical realizations

    International Nuclear Information System (INIS)

    Chiao, R Y; Hansson, T H; Leinaas, J M; Viefers, S

    2004-01-01

    We describe a recently developed effective theory for atom-mediated photon-photon interactions in a two-dimensional 'photon fluid' confined to a Fabry-Perot resonator. The photons in the lowest longitudinal cavity mode will appear as massive bosons interacting via a renormalized delta-function potential with a strength determined by physical parameters such as the density of atoms and the detuning of the photons relative to the resonance frequency of the atoms. We discuss novel quantum phenomena for photons, such as Bose-Einstein condensation and bound state formation, as well as possible experimental scenarios based on Rydberg atoms in a microwave cavity, or alkali atoms in an optical cavity

  6. Inner-shell ionization of atoms by electron, positron and photon impacts

    International Nuclear Information System (INIS)

    Khare, S.P.; Sinha, P.; Wadehra, J.M.

    1994-01-01

    Plane wave Born approximation with Coulomb, relativistic and exchange corrections is employed to obtain L1-, L2- and L3-subshell ionization cross sections of several atoms due to electron and positron impacts for projectile energy varying from the threshold of ionization to 60 times the threshold energy. Photoionization cross sections for all the three L-subshells of the atoms are also calculated using the hydrogenic approximation for the atomic wave functions. For L3-subshell the present cross sections due to electron impact are in good agreement with a number of experimental data for different atoms over the entire energy range investigated. For L1- and L2-subshells the present calculations yield qualitative agreement with the experimental data. The agreement between the present results and the limited experimental data for positron impact is also satisfactory. The hydrogenic approximation for the L-subshell photoionization is found to be good at small photon energies but it underestimates the cross sections at large photon energies. (orig.)

  7. High-quality asynchronous heralded single-photon source at telecom wavelength

    International Nuclear Information System (INIS)

    Fasel, Sylvain; Alibart, Olivier; Tanzilli, Sebastien; Baldi, Pascal; Beveratos, Alexios; Gisin, Nicolas; Zbinden, Hugo

    2004-01-01

    We report on the experimental realization and characterization of an asynchronous heralded single-photon source based on spontaneous parametric down-conversion. Photons at 1550 nm are heralded as being inside a single-mode fibre with more than 60% probability, and the multi-photon emission probability is reduced by a factor of up to more than 500 compared to Poissonian light sources. These figures of merit, together with the choice of telecom wavelength for the heralded photons, are compatible with practical applications needing very efficient and robust single-photon sources

  8. Atomic-cascade photons and quantum-mechanical nonlocality

    International Nuclear Information System (INIS)

    Bell, J.S.

    1995-01-01

    In recent years there have been several experiments on polarization correlation between photons emitted in atomic cascades. They are supposed to bear on the notion that the consequences of events do not propagate faster than light. This notion is difficult to reconcile with quantum-mechanical predictions for idealized versions of the experiments in question. The present Comment offers a brief introduction to the situation. (author)

  9. Single-photon source engineering using a Modal Method

    DEFF Research Database (Denmark)

    Gregersen, Niels

    Solid-state sources of single indistinguishable photons are of great interest for quantum information applications. The semiconductor quantum dot embedded in a host material represents an attractive platform to realize such a single-photon source (SPS). A near-unity efficiency, defined as the num...... nanowire SPSs...

  10. Single-photon detector operating under extremely high background photon flux conditions

    International Nuclear Information System (INIS)

    Prochazka, Ivan; Sopko, Bruno; Blazej, Josef

    2009-01-01

    We are reporting our results in research and development in the field of avalanche semiconductor single-photon detectors and their application. Our goal was a development of a solid-state photon-counting detector capable of high-precision photon arrival time tagging in extremely harsh operating conditions. The background photon flux exceeding 10 9 photons per second hitting the detector active area should not avoid the useful signal detection and recognition on the signal level of units of photons per second. This is background photon flux about two orders of magnitude higher than what the conventional solid-state photon counters accept. The detection timing resolution should be better than 100 ps and the delay stability should be on picosecond level. We have developed and tested the active quenched and gated avalanche structure on silicon providing the required features in connection with the K14 detection chips. The detector is capable of gated operation under the conditions of background photon flux of 5x10 9 photons per second. The operational detector tolerates long term exposures to the input photon flux exceeding 10 15 photons (>1 mW) per second without damage.

  11. Single Photon Avalanche Diodes: Towards the Large Bidimensional Arrays

    Directory of Open Access Journals (Sweden)

    Emilio Sciacca

    2008-08-01

    Full Text Available Single photon detection is one of the most challenging goals of photonics. In recent years, the study of ultra-fast and/or low-intensity phenomena has received renewed attention from the academic and industrial communities. Intense research activity has been focused on bio-imaging applications, bio-luminescence, bio-scattering methods, and, more in general, on several applications requiring high speed operation and high timing resolution. In this paper we present design and characterization of bi-dimensional arrays of a next generation of single photon avalanche diodes (SPADs. Single photon sensitivity, dark noise, afterpulsing and timing resolution of the single SPAD have been examined in several experimental conditions. Moreover, the effects arising from their integration and the readout mode have also been deeply investigated.

  12. Saturated two-photon absorption by atoms in a perturber gas

    International Nuclear Information System (INIS)

    Nienhuis, G.

    1980-01-01

    We derive a general expression for the two-photon absorption spectrum of a three-state atom excited by two mono-chromatic radiation fields. Collisional line-broadening effects are incorporated, and the result allows inclusion of profiles with a validity outside the impact limit. Results of previous work are recovered in the appropriate limits. Saturation affects the different lines in the two-photon absorption spectrum in a different fashion. (orig.)

  13. Single photon imaging at ultra-high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Bellazzini, R. [INFN sez. Pisa, Pisa (Italy); Spandre, G. [INFN sez. Pisa, Pisa (Italy)], E-mail: Gloria.Spandre@pi.infn.it; Minuti, M.; Brez, A.; Baldini, L.; Latronico, L.; Omodei, N.; Sgro, C.; Bregeon, J.; Razzano, M.; Pinchera, M. [INFN sez. Pisa, Pisa (Italy); Tremsin, A.; McPhate, J.; Vallerga, J.V.; Siegmund, O. [SSL, Berkeley (United States)

    2008-06-11

    We present a detection system capable of imaging both single photon/positive ion and multiple coincidence photons/positive ions with extremely high spatial resolution. In this detector the photoelectrons excited by the incoming photons are multiplied by microchannel plate(s) (MCP). The process of multiplication is spatially constrained within an MCP pore, which can be as small as 4 {mu}m for commercially available MCPs. An electron cloud originated by a single photoelectron is then encoded by a pixellated custom analog ASIC consisting of 105 K charge sensitive pixels of 50 {mu}m in size arranged on a hexagonal grid. Each pixel registers the charge with an accuracy of <100 electrons rms. Computation of the event centroid from the readout charges results in an accurate event position. A large number of simultaneous photons spatially separated by {approx}0.4 mm can be detected simultaneously allowing multiple coincidence operation for the experiments where a large number of incoming photons/positive ions have to be detected simultaneously. The experimental results prove that the spatial resolution of the readout system itself is {approx}3 {mu}m FWHM enabling detection resolution better than 6 {mu}m for the small pore MCPs. An attractive feature of the detection system is its capability to register the timing of each incoming photon/positive ion (in single photon detection mode) or of the first incoming particle (for the multiple coincidence detection) with an accuracy of {approx}130 ps FWHM. There is also virtually no dark count noise in the detection system making it suitable for low count rate applications.

  14. Giant Lamb shift in photonic crystals

    International Nuclear Information System (INIS)

    Wang Xuehua; Kivshar, Yuri S.; Gu Benyuan

    2004-01-01

    We obtain a general result for the Lamb shift of excited states of multilevel atoms in inhomogeneous electromagnetic structures and apply it to study atomic hydrogen in inverse-opal photonic crystals. We find that the photonic-crystal environment can lead to very large values of the Lamb shift, as compared to the case of vacuum. We also suggest that the position-dependent Lamb shift should extend from a single level to a miniband for an assembly of atoms with random distribution in space, similar to the velocity-dependent Doppler effect in atomic/molecular gases

  15. A Single Atom Antenna

    International Nuclear Information System (INIS)

    Trinter, Florian; Williams, Joshua B; Weller, Miriam; Waitz, Markus; Pitzer, Martin; Voigtsberger, Jörg; Schober, Carl; Kastirke, Gregor; Müller, Christian; Goihl, Christoph; Burzynski, Phillip; Wiegandt, Florian; Wallauer, Robert; Kalinin, Anton; Schmidt, Lothar Ph H; Schöffler, Markus S; Jahnke, Till; Dörner, Reinhard; Chiang, Ying-Chih; Gokhberg, Kirill

    2015-01-01

    Here we demonstrate the smallest possible implementation of an antenna-receiver complex which consists of a single (helium) atom acting as the antenna and a second (neon) atom acting as a receiver. (paper)

  16. Amplitudes and state parameters from ion- and atom-atom excitation processes

    International Nuclear Information System (INIS)

    Andersen, T.; Horsdal-Pedersen, E.

    1984-01-01

    This chapter examines single collisions between two atomic species, one of which is initially in a 1 S state (there is only one initial spin channel). The collisions are characterized by a definite scattering plane and a definite orientation. Topics considered include an angular correlation between scattered particles and autoionization electrons or polarized photons emitted from states excited in atomic collisions (photon emission, electron emission, selectivity excited target atoms), experimental methods for obtaining information on the alignment and orientation parameters of atoms or ions excited in specific collisions, results of experiments and numerical calculations (quasi-oneelectron systems, He + -He collisions, other collision systems), and future aspects and possible applications of the polarizedphoton, scattered-particle coincidence techniques to atomic spectroscopy

  17. Graphene-Based Josephson-Junction Single-Photon Detector

    Science.gov (United States)

    Walsh, Evan D.; Efetov, Dmitri K.; Lee, Gil-Ho; Heuck, Mikkel; Crossno, Jesse; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung

    2017-08-01

    We propose to use graphene-based Josephson junctions (GJJs) to detect single photons in a wide electromagnetic spectrum from visible to radio frequencies. Our approach takes advantage of the exceptionally low electronic heat capacity of monolayer graphene and its constricted thermal conductance to its phonon degrees of freedom. Such a system could provide high-sensitivity photon detection required for research areas including quantum information processing and radio astronomy. As an example, we present our device concepts for GJJ single-photon detectors in both the microwave and infrared regimes. The dark count rate and intrinsic quantum efficiency are computed based on parameters from a measured GJJ, demonstrating feasibility within existing technologies.

  18. Low-frequency-field-induced spontaneous-emission interference in a two-level atom placed in an anisotropic photonic crystal

    International Nuclear Information System (INIS)

    Li Gaoxiang; Evers, Joerg; Keitel, Christoph H

    2005-01-01

    We investigate the spontaneous-emission properties of a two-level atom embedded in a three-dimensional anisotropic photonic crystal. In addition to the modified density of states, the atom is driven by a coherent intense low-frequency field (LFF), which creates additional multiphoton decay channels with the exchange of two low-frequency photons and one spontaneous photon during an atomic transition. Due to the low frequency of the applied field, the various transition pathways may interfere with each other and thus give rise to a modified system dynamics. We find that even if all the atomic (bare and induced) transition frequencies are in the conducting band of the photonic crystal, there still may exist a photon-atom bound state in coexistence with propagating modes. The system also allows us to generate narrow lines in the spontaneous-emission spectrum. This spectrum is a function of the distance of the observer from the atom due to the band gap in the photonic crystal. The system properties depend on three characteristic frequencies, which are influenced by quantum interference effects. Thus these results can be attributed to a combination of interference and band-gap effects

  19. Nonresonant absorption of one photon by one atom and resonant absorption of two photons by two atoms

    International Nuclear Information System (INIS)

    Mizushima, Masataka

    1990-01-01

    When a radiation field of frequency ω 1 interacts with atoms, etch of which has a transition frequency ω ba =(E b -E a )/h, with ω 1 -ω ba =Δ≠0, nonresonant absorption can take place with probability P 1 inversely proportional to Δ 2 (a pressure broadening). When another radiation field of frequency ω 2 , such that ω 1 +ω 2 =2ω ba, interacts simultaneously with the gas a resonant two-photon absorption can take place in addition to the nonresonant absorption. The probability of this two-photon absorption process, P 2 , is found to be inversely proportional to Δ 4 . If Ω=| | is the Rabi frequency of the transition, it is found that P 2 /(P 1 (Δ)+P 1 (-Δ)) is given by 12 {Ω(-Δ)Ω(-Δ)} 2 / {Δ 2 (Ω(-Δ) 2 + Ω(Δ) 2 )}. (author)

  20. Ultrafast electrical control of a resonantly driven single photon source

    International Nuclear Information System (INIS)

    Cao, Y.; Bennett, A. J.; Ellis, D. J. P.; Shields, A. J.; Farrer, I.; Ritchie, D. A.

    2014-01-01

    We demonstrate generation of a pulsed stream of electrically triggered single photons in resonance fluorescence, by applying high frequency electrical pulses to a single quantum dot in a p-i-n diode under resonant laser excitation. Single photon emission was verified, with the probability of multiple photon emission reduced to 2.8%. We show that despite the presence of charge noise in the emission spectrum of the dot, resonant excitation acts as a “filter” to generate narrow bandwidth photons

  1. Atomic physics at the Advanced Photon Source: Workshop report

    International Nuclear Information System (INIS)

    1990-10-01

    The first Workshop on Atomic Physics at the Advanced Photon Source was held at Argonne National Laboratory on March 29--30, 1990. The unprecedented brightness of the Advanced Photon Source (APS) in the hard X-ray region is expected to make possible a vast array of new research opportunities for the atomic-physics community. Starting with discussions of the history and current status of the field, presentations were made on various future directions for research with hard X-rays interacting with atoms, ions, clusters, and solids. Also important were the discussions on the design and status of the four next-generation rings coming on line during the 1990's: the ALS 1.6 GeV ring at Berkeley; the ESRF 6.0-GeV ring at Grenoble (1993); the APS 7.0-GeV ring at Argonne (1995); and the SPring-8 8.0-GeV ring in Japan (1998). The participation of more than one hundred scientists from domestic as well as foreign institutions demonstrated a strong interest in this field. We plan to organize follow-up workshops in the future emphasizing specific research topics

  2. Two photon emission by hydrogen-like atoms in high temperature plasmas

    International Nuclear Information System (INIS)

    Costescu, A.; Manzatu, I.; Dinu, C.; Mihailescu, I.N.

    1981-08-01

    New exact solutions and a rather simple polynomial expression of the power emitted in the two photon transition from a metastable 2s state to the ground state of a hydrogen-like atom were infered with the aid of the Coulomb Green's function method. It was shown that the two photon decay represents under certain circumstances a significant power loss mechanism. (authors)

  3. High-speed single-photon signaling for daytime QKD

    Science.gov (United States)

    Bienfang, Joshua; Restelli, Alessandro; Clark, Charles

    2011-03-01

    The distribution of quantum-generated cryptographic key at high throughputs can be critically limited by the performance of the systems' single-photon detectors. While noise and afterpulsing are considerations for all single-photon QKD systems, high-transmission rate systems also have critical detector timing-resolution and recovery time requirements. We present experimental results exploiting the high timing resolution and count-rate stability of modified single-photon avalanche diodes (SPADs) in our GHz QKD system operating over a 1.5 km free-space link that demonstrate the ability to apply extremely short temporal gates, enabling daytime free-space QKD with a 4% QBER. We also discuss recent advances in gating techniques for InGaAs SPADs that are suitable for high-speed fiber-based QKD. We present afterpulse-probability measurements that demonstrate the ability to support single-photon count rates above 100 MHz with low afterpulse probability. These results will benefit the design and characterization of free-space and fiber QKD systems. A. Restelli, J.C. Bienfang A. Mink, and C.W. Clark, IEEE J. Sel. Topics in Quant. Electron 16, 1084 (2010).

  4. Elastic and inelastic photon scattering on the atomic nuclei

    International Nuclear Information System (INIS)

    Piskarev, I.M.

    1982-01-01

    Works on investigation of elastic and inelastic scattering of photons on heavy and intermediate nuclei are briefly reviewed. Theoretical problems of nuclear and electron Tompson, Releev and Delbrueck scatterings as well as nuclear resonance scattering are briefly discussed. It is shown that differential cross section of coherent elastic scattering is expressed by means of partial amplitudes of shown processes. Experimental investigations on elastic scattering in the region of threshold energies of photonucleon reactions are described. Problems of theoretical description of elastic scattering in different variants of collective models are considered. Discussed are works, investigating channels of inelastic photon scattering with excitation of nuclear Raman effect. It is noted that to describe channels of inelastic photon scattering it is necessary to use models, that correctly regard the microscopic structure of giant resonance levels to obtain information on the nature of these levels. Investigations of processes of photon elastic and inelastic scattering connected with fundamental characteristics of atomic nucleus, permit to obtain valuable spectroscopic information on high-lying levels of nucleus. Detail investigation of photon scattering in a wide range of energies is necessary [ru

  5. Single photon SWAP gate using electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Yavuz, D.D.

    2005-01-01

    We describe a scheme that performs a SWAP gate between two photons at different wavelengths with near 100% fidelity. The essential idea is the preparation of a near-maximal atomic coherence using electromagnetically induced transparency

  6. Single-photon emission tomography and cerebral blood flow

    International Nuclear Information System (INIS)

    Celsis, P.; Chan, M.; Marc-Vergnes, J.P.; Sveinsdottir, E.; Goldman, T.G.; Henriksen, L.; Paulson, O.B.; Stokely, E.M.; Lassen, N.A.

    1982-01-01

    This paper illustrates the capabilities of single-photon emission tomography in imaging local cerebral blood flows in man. The results purport the conclusion that a fairly good improvement has been achieved when compared to stationary detectors and that single-photon emission tomography is a well-suited tool for studying cerebral hemodynamics, especially within the framework of clinical studies [fr

  7. Resonance fluorescence and quantum jumps in single atoms: Testing the randomness of quantum mechanics

    International Nuclear Information System (INIS)

    Erber, T.; Hammerling, P.; Hockney, G.; Porrati, M.; Putterman, S.; La Jolla Institute, La Jolla, California 92037; Department of Physics, University of California, Los Angeles, California 90024)

    1989-01-01

    When a single trapped 198 Hg + ion is illuminated by two lasers, each tuned to an approximate transition, the resulting fluorescence switches on and off in a series of pulses resembling a bistable telegraph. This intermittent fluorescence can also be obtained by optical pumping with a single laser. Quantum jumps between successive atomic levels may be traced directly with multiple-resonance fluorescence. Atomic transition rates and photon antibunching distributions can be inferred from the pulse statistics and compared with quantum theory. Stochastic tests also indicate that the quantum telegraphs are good random number generators. During periods when the fluorescence is switched off, the radiationless atomic currents that generate the telegraph signals can be adjusted by varying the laser illumination: if this coherent evolution of the wave functions is sustained over sufficiently long time intervals, novel interactive precision measurements, near the limits of the time-energy uncertainty relations, are possible. Copyright 1989 Academic Press, Inc

  8. Optical properties of an atomic ensemble coupled to a band edge of a photonic crystal waveguide

    Science.gov (United States)

    Munro, Ewan; Kwek, Leong Chuan; Chang, Darrick E.

    2017-08-01

    We study the optical properties of an ensemble of two-level atoms coupled to a 1D photonic crystal waveguide (PCW), which mediates long-range coherent dipole-dipole interactions between the atoms. We show that the long-range interactions can dramatically alter the linear and nonlinear optical behavior, as compared to a typical atomic ensemble. In particular, in the linear regime, we find that the transmission spectrum contains multiple transmission dips, whose properties we characterize. Moreover, we show how the linear spectrum may be used to infer the number of atoms present in the system, constituting an important experimental tool in a regime where techniques for conventional ensembles break down. We also show that some of the transmission dips are associated with an effective ‘two-level’ resonance that forms due to the long-range interactions. In particular, under strong global driving and appropriate conditions, we find that the atomic ensemble is only capable of absorbing and emitting single collective excitations at a time. Our results are of direct relevance to atom-PCW experiments that should soon be realizable.

  9. QUANTUM NETWORKS WITH SINGLE ATOMS, PHOTONS AND PHONONS

    Science.gov (United States)

    2016-10-04

    there is interference between two different transport channels. For instance, in a cavity far from resonance, there is interference arising from all...recovers the well-known form of a Beer -Lambert law, reading T (∆A)/T0(∆A) = exp [ −N ln ∆ 2 A + (Γ′ + Γ1D)2/4 ∆2A + Γ′2/4 ] ’ exp [ − OD1 + (2∆A/Γ′)2...Elements of Quantum Optics. Springer-Verlag, Berlin, 2007. [39] J.-T. Shen and S. Fan. Coherent photon transport from spontaneous emission in one

  10. Atomic dynamics with photon-dressed core states

    International Nuclear Information System (INIS)

    Robicheaux, F.

    1993-01-01

    This paper describes the atomic dynamics when a Rydberg atom is in a laser field which is resonant with a dipole-allowed core transition. The main approximation is to completely ignore the (short-range, direct) interaction of the outer electron with the resonant laser which is the same approximation used with great success in calculating the spectrum due to isolated core excitations (ICE). The atom autoionizes when the core absorbs a photon, because the electron can then inelastically scatter from the excited core state, gaining enough energy to escape the atom. Despite neglecting the direct interaction between the outermost electron and the laser, the laser profoundly affects the autoionization dynamics. This effect is incorporated through a frame transformation between the dressed and undressed core states which only utilizes the field free atomic scattering parameters. A two-color experiment is proposed which might be able to measure nonperturbative effects arising from the dressed core states. The usual ICE transition rate is obtained through a perturbative expansion. Generic effects are examined through a model problem. A calculation of the Mg spectrum when the driving laser is tuned to the 3s 1/2- 3p 1/2 or the 3s 1/2- 3p 3/2 transition is presented

  11. Interfering Heralded Single Photons from Two Separate Silicon Nanowires Pumped at Different Wavelengths

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2016-08-01

    Full Text Available Practical quantum photonic applications require on-demand single photon sources. As one possible solution, active temporal and wavelength multiplexing has been proposed to build an on-demand single photon source. In this scheme, heralded single photons are generated from different pump wavelengths in many temporal modes. However, the indistinguishability of these heralded single photons has not yet been experimentally confirmed. In this work, we achieve 88% ± 8% Hong–Ou–Mandel quantum interference visibility from heralded single photons generated from two separate silicon nanowires pumped at different wavelengths. This demonstrates that active temporal and wavelength multiplexing could generate indistinguishable heralded single photons.

  12. The photonic nanowire: an emerging platform for highly efficient single-photon sources for quantum information applications

    DEFF Research Database (Denmark)

    Gregersen, Niels; Munsch, Mathieu; Malik, Nitin S.

    2013-01-01

    Efficient coupling between a localized quantum emitter and a well defined optical channel represents a powerful route to realize single-photon sources and spin-photon interfaces. The tailored fiber-like photonic nanowire embedding a single quantum dot has recently demonstrated an appealing...... potential. However, the device requires a delicate, sharp needle-like taper with performance sensitive to minute geometrical details. To overcome this limitation we demonstrate the photonic trumpet, exploiting an opposite tapering strategy. The trumpet features a strongly Gaussian far-field emission...

  13. Single-photon interference experiment for high schools

    Science.gov (United States)

    Bondani, Maria

    2014-07-01

    We follow the reductio ad absurdum reasoning described in the book "Sneaking a Look at God's Cards" by Giancarlo Ghirardi to demonstrate the wave-particle duality of light in a Mach-Zehnder interferometric setup analog to the conventional Young double-slit experiment. We aim at showing the double nature of light by measuring the existence of interference fringes down to the single-photon level. The setup includes a strongly attenuated laser, polarizing beam splitters, half-waveplates, polarizers and single-photon detectors.

  14. On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits.

    Science.gov (United States)

    Elshaari, Ali W; Zadeh, Iman Esmaeil; Fognini, Andreas; Reimer, Michael E; Dalacu, Dan; Poole, Philip J; Zwiller, Val; Jöns, Klaus D

    2017-08-30

    Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III-V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each platform has unique advantages and limitations; however, all implementations face major challenges with filtering of individual quantum states, scalable integration, deterministic multiplexing of selected quantum emitters, and on-chip excitation suppression. Here we overcome all of these challenges with a hybrid and scalable approach, where single III-V quantum emitters are positioned and deterministically integrated in a complementary metal-oxide-semiconductor-compatible photonic circuit. We demonstrate reconfigurable on-chip single-photon filtering and wavelength division multiplexing with a foot print one million times smaller than similar table-top approaches, while offering excitation suppression of more than 95 dB and efficient routing of single photons over a bandwidth of 40 nm. Our work marks an important step to harvest quantum optical technologies' full potential.Combining different integration platforms on the same chip is currently one of the main challenges for quantum technologies. Here, Elshaari et al. show III-V Quantum Dots embedded in nanowires operating in a CMOS compatible circuit, with controlled on-chip filtering and tunable routing.

  15. Calculation of the 1s-2s two-photon excitation cross-section in atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Celik, G.; Celik, E.; Kilic, H.S. [Selcuk Univ., Dept. of Physics, Faculty of Arts and Science (Turkey)

    2008-12-15

    The two-photon excitation cross-section of atomic hydrogen is calculated using explicit summation over intermediate states within the framework of dipole approximation. The matrix element for two-photon excitation is transformed into finite sums, consisting of the product of a radial and angular part. Nine intermediate states are employed in the calculation of the transition matrix element. The two-photon excitation cross-section obtained for the transition 1s{sup 2}S{sub 1/2}-2s{sup 2}S{sub 1/2} in atomic hydrogen is in good agreement with the literature. (authors)

  16. Calculation of the 1s-2s two-photon excitation cross-section in atomic hydrogen

    International Nuclear Information System (INIS)

    Celik, G.; Celik, E.; Kilic, H.S.

    2008-01-01

    The two-photon excitation cross-section of atomic hydrogen is calculated using explicit summation over intermediate states within the framework of dipole approximation. The matrix element for two-photon excitation is transformed into finite sums, consisting of the product of a radial and angular part. Nine intermediate states are employed in the calculation of the transition matrix element. The two-photon excitation cross-section obtained for the transition 1s 2 S 1/2 -2s 2 S 1/2 in atomic hydrogen is in good agreement with the literature. (authors)

  17. Optimal multi-photon phase sensing with a single interference fringe

    Science.gov (United States)

    Xiang, G. Y.; Hofmann, H. F.; Pryde, G. J.

    2013-01-01

    Quantum entanglement can help to increase the precision of optical phase measurements beyond the shot noise limit (SNL) to the ultimate Heisenberg limit. However, the N-photon parity measurements required to achieve this optimal sensitivity are extremely difficult to realize with current photon detection technologies, requiring high-fidelity resolution of N + 1 different photon distributions between the output ports. Recent experimental demonstrations of precision beyond the SNL have therefore used only one or two photon-number detection patterns instead of parity measurements. Here we investigate the achievable phase sensitivity of the simple and efficient single interference fringe detection technique. We show that the maximally-entangled “NOON” state does not achieve optimal phase sensitivity when N > 4, rather, we show that the Holland-Burnett state is optimal. We experimentally demonstrate this enhanced sensitivity using a single photon-counted fringe of the six-photon Holland-Burnett state. Specifically, our single-fringe six-photon measurement achieves a phase variance three times below the SNL. PMID:24067490

  18. Source of single photons and interferometry with one photon. From the Young's slit experiment to the delayed choice

    International Nuclear Information System (INIS)

    Jacques, V.

    2007-11-01

    This manuscript is divided in two independent parts. In the first part, we study the wave-particle duality for a single photon emitted by the triggered photoluminescence of a single NV color center in a diamond nano-crystal. We first present the realization of a single-photon interference experiment using a Fresnel's bi-prism, in a scheme equivalent to the standard Young's double-slit textbook experiment. We then discuss the complementarity between interference and which-path information in this two-path interferometer. We finally describe the experimental realization of Wheeler's delayed-choice Gedanken experiment, which is a fascinating and subtle illustration of wave-particle duality. The second part of the manuscript is devoted to the efficiency improvement of single-photon sources. We first describe the implementation of a new single-photon source based on the photoluminescence of a single nickel-related defect center in diamond. The photophysical properties of such defect make this single-photon source well adapted to open-air quantum cryptography. We finally demonstrate an original method that leads to an improvement of single-molecule photo stability at room temperature. (author)

  19. Multi-photon creation and single-photon annihilation of electron-positron pairs

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Huayu

    2011-04-27

    In this thesis we study multi-photon e{sup +}e{sup -} pair production in a trident process, and singlephoton e{sup +}e{sup -} pair annihilation in a triple interaction. The pair production is considered in the collision of a relativistic electron with a strong laser beam, and calculated within the theory of laser-dressed quantum electrodynamics. A regularization method is developed systematically for the resonance problem arising in the multi-photon process. Total production rates, positron spectra, and relative contributions of different reaction channels are obtained in various interaction regimes. Our calculation shows good agreement with existing experimental data from SLAC, and adds further insights into the experimental findings. Besides, we study the process in a manifestly nonperturbative domain, whose accessibility to future all-optical experiments based on laser acceleration is shown. In the single-photon e{sup +}e{sup -} pair annihilation, the recoil momentum is absorbed by a spectator particle. Various kinematic configurations of the three incoming particles are examined. Under certain conditions, the emitted photon exhibits distinct angular and polarization distributions which could facilitate the detection of the process. Considering an equilibrium relativistic e{sup +}e{sup -} plasma, it is found that the single-photon process becomes the dominant annihilation channel for plasma temperatures above 3 MeV. Multi-particle correlation effects are therefore essential for the e{sup +}e{sup -} dynamics at very high density. (orig.)

  20. Multi-photon creation and single-photon annihilation of electron-positron pairs

    International Nuclear Information System (INIS)

    Hu, Huayu

    2011-01-01

    In this thesis we study multi-photon e + e - pair production in a trident process, and singlephoton e + e - pair annihilation in a triple interaction. The pair production is considered in the collision of a relativistic electron with a strong laser beam, and calculated within the theory of laser-dressed quantum electrodynamics. A regularization method is developed systematically for the resonance problem arising in the multi-photon process. Total production rates, positron spectra, and relative contributions of different reaction channels are obtained in various interaction regimes. Our calculation shows good agreement with existing experimental data from SLAC, and adds further insights into the experimental findings. Besides, we study the process in a manifestly nonperturbative domain, whose accessibility to future all-optical experiments based on laser acceleration is shown. In the single-photon e + e - pair annihilation, the recoil momentum is absorbed by a spectator particle. Various kinematic configurations of the three incoming particles are examined. Under certain conditions, the emitted photon exhibits distinct angular and polarization distributions which could facilitate the detection of the process. Considering an equilibrium relativistic e + e - plasma, it is found that the single-photon process becomes the dominant annihilation channel for plasma temperatures above 3 MeV. Multi-particle correlation effects are therefore essential for the e + e - dynamics at very high density. (orig.)

  1. Highly efficient photonic nanowire single-photon sources for quantum information applications

    DEFF Research Database (Denmark)

    Gregersen, Niels; Claudon, J.; Munsch, M.

    2013-01-01

    to a collection efficiency of only 1-2 %, and efficient light extraction thus poses a major challenge in SPS engineering. Initial efforts to improve the efficiency have exploited cavity quantum electrodynamics (cQED) to efficiently couple the emitted photons to the optical cavity mode. An alternative approach......Within the emerging field of optical quantum information processing, the current challenge is to construct the basic building blocks for the quantum computing and communication systems. A key component is the singlephoton source (SPS) capable of emitting single photons on demand. Ideally, the SPS...... must feature near-unity efficiency, where the efficiency is defined as the number of detected photons per trigger, the probability g(2)(τ=0) of multi-photon emission events should be 0 and the emitted photons are required to be indistinguishable. An optically or electrically triggered quantum light...

  2. Increasing the collection efficiency of time-correlated single-photon counting with single-photon avalanche diodes using immersion lenses.

    Science.gov (United States)

    Pichette, Charles; Giudice, Andrea; Thibault, Simon; Bérubé-Lauzière, Yves

    2016-11-20

    Single-photon avalanche diodes (SPADs) achieving high timing resolution (≈20-50  ps) developed for time-correlated single-photon counting (TCSPC) generally have very small photosensitive areas (25-100 μm in diameter). This limits the achievable photon counting rate and signal-to-noise ratio and may lead to long counting times. This is detrimental in applications requiring several measurements, such as fluorescence lifetime imaging (FLIM) microscopy, which requires scanning, and time-domain diffuse optical tomography (TD-DOT). We show in this work that the use of an immersion lens directly affixed onto the photosensitive area of the SPAD helps alleviate this problem by allowing more light to be concentrated onto the detector. Following careful optical design and simulations, our experimental results show that it is actually possible to achieve the predicted theoretical increase in the photon counting rate (we achieve a factor of ≈4 here). This work is of high relevance in high timing resolution TCSPC with small photosensitive area detectors and should find widespread interest in FLIM and TD-DOT with SPADs.

  3. Single-atom-resolved fluorescence imaging of an atomic Mott insulator

    DEFF Research Database (Denmark)

    Sherson, Jacob; Weitenberg, Christof; Andres, Manuel

    2010-01-01

    in situ images of a quantum fluid in which each underlying quantum particle is detected. Here we report fluorescence imaging of strongly interacting bosonic Mott insulators in an optical lattice with single-atom and single-site resolution. From our images, we fully reconstruct the atom distribution...

  4. Teleportation of a Superposition of Three Orthogonal States of an Atom via Photon Interference

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shi-Biao

    2006-01-01

    We propose a scheme to teleport a superposition of three states of an atom trapped in a cavity to a second atom trapped in a remote cavity. The scheme is based on the detection of photons leaking from the cavities after the atom-cavity interaction.

  5. The polarization-angular structure and elliptical dichroism of the cross sections for three-photon bound-bound transitions in atoms

    International Nuclear Information System (INIS)

    Manakov, N.L.; Merem'yanin, A.V.

    1997-01-01

    Using the electric dipole approximation, we present, in invariant form, the cross section of an arbitrary three-photon transition between the discrete states of an atom with total angular momenta J i and J f . The cross section contains scalar and mixed products of the photon polarization vectors, and invariant atomic parameters dependent only on the photon frequencies. We determine the number of independent atomic parameters at fixed values of J i and J f and obtain their explicit expressions in terms of the reduced composite dipole matrix elements. The polarization dependence of the cross sections is expressed in terms of the degrees l and ξ of linear and circular photon polarizations. We analyze the phenomenon of dissipation-induced circular dichroism in three-photon processes, i.e., the difference Δ of the cross sections for opposite signs of the degree of circular polarization of all the photons. We study in detail the case of two identical photons and the phenomenon of elliptical dichroism, when Δ∼lξ holds and dichroism occurs only when the photons are elliptically polarized, with 0< vertical bar ξ vertical bar <1. Finally, we discuss the dissipation-induced effects of atom polarization in three-photon processes involving linearly polarized or unpolarized photons

  6. Correlated Photon Emission from Multiatom Rydberg Dark States

    DEFF Research Database (Denmark)

    Pritchard, J.D.; Adams, C.S.; Mølmer, Klaus

    2012-01-01

    We consider three-level atoms driven by two resonant light fields in a ladder scheme where the upper level is a highly excited Rydberg state. We show that the dipole-dipole interactions between Rydberg excited atoms prevents the formation of single particle dark states and leads to strongly corre...... correlated photon pairs from atoms separated by distances large compared to the emission wavelength. For a pair of atoms, this enables realization of an efficient photon-pair source with on average one pair every 30 μs....

  7. Latest Advances in the Generation of Single Photons in Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Albert Boretti

    2016-06-01

    Full Text Available The major barrier for optical quantum information technologies is the absence of reliable single photons sources providing non-classical light states on demand which can be easily and reliably integrated with standard processing protocols for quantum device fabrication. New methods of generation at room temperature of single photons are therefore needed. Heralded single photon sources are presently being sought based on different methods built on different materials. Silicon Carbide (SiC has the potentials to serve as the preferred material for quantum applications. Here, we review the latest advances in single photon generation at room temperatures based on SiC.

  8. Single photon searches at PEP

    Energy Technology Data Exchange (ETDEWEB)

    Hollebeek, R.

    1985-12-01

    The MAC and ASP searches for events with a single photon and no other observed particles are reviewed. New results on the number of neutrino generations and limits on selection, photino, squark and gluino masses from the ASP experiment are presented.

  9. Single photon searches at PEP

    International Nuclear Information System (INIS)

    Hollebeek, R.

    1985-12-01

    The MAC and ASP searches for events with a single photon and no other observed particles are reviewed. New results on the number of neutrino generations and limits on selection, photino, squark and gluino masses from the ASP experiment are presented

  10. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide

    DEFF Research Database (Denmark)

    Daveau, Raphaël S.; Balram, Krishna C.; Pregnolato, Tommaso

    2017-01-01

    Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide (PCWG) singlephoton source relying on evanescent coupling of the light field from a tapered...

  11. Towards deterministic optical quantum computation with coherently driven atomic ensembles

    International Nuclear Information System (INIS)

    Petrosyan, David

    2005-01-01

    Scalable and efficient quantum computation with photonic qubits requires (i) deterministic sources of single photons, (ii) giant nonlinearities capable of entangling pairs of photons, and (iii) reliable single-photon detectors. In addition, an optical quantum computer would need a robust reversible photon storage device. Here we discuss several related techniques, based on the coherent manipulation of atomic ensembles in the regime of electromagnetically induced transparency, that are capable of implementing all of the above prerequisites for deterministic optical quantum computation with single photons

  12. Circuit QED with qutrits: Coupling three or more atoms via virtual-photon exchange

    Science.gov (United States)

    Zhao, Peng; Tan, Xinsheng; Yu, Haifeng; Zhu, Shi-Liang; Yu, Yang

    2017-10-01

    We present a model to describe a generic circuit QED system which consists of multiple artificial three-level atoms, namely, qutrits, strongly coupled to a cavity mode. When the state transition of the atoms disobeys the selection rules the process that does not conserve the number of excitations can happen determinatively. Therefore, we can realize coherent exchange interaction among three or more atoms mediated by the exchange of virtual photons. In addition, we generalize the one-cavity-mode mediated interactions to the multicavity situation, providing a method to entangle atoms located in different cavities. Using experimentally feasible parameters, we investigate the dynamics of the model including three cyclic-transition three-level atoms, for which the two lowest energy levels can be treated as qubits. Hence, we have found that two qubits can jointly exchange excitation with one qubit in a coherent and reversible way. In the whole process, the population in the third level of atoms is negligible and the cavity photon number is far smaller than 1. Our model provides a feasible scheme to couple multiple distant atoms together, which may find applications in quantum information processing.

  13. K-shell ionization and double-ionization of Au atoms with 1.33 MeV photons

    International Nuclear Information System (INIS)

    Belkacem, A.; Dauvergne, D.; Feinberg, B.; Ionescu, D.; Maddi, J.; Sorensen, A.H.

    2000-01-01

    At relativistic energies, the cross section for the atomic photoelectric effect drops off as does the cross section for liberating any bound electron through Compton scattering. However, when the photon energy exceeds twice the rest mass of the electron, ionization may proceed via electron-positron pair creation. We used 1.33 MeV photons impinging on Au thin foils to study double K-shell ionization and vacuum-assisted photoionization. The preliminary results yield a ratio of vacuum-assisted photoionization and pair creation of 2x10 -3 , a value that is substantially higher than the ratio of photo double ionization to single photoionization that is found to be 0.5-1x10 -4 . Because of the difficulties and large error bars associated with the small cross sections additional measurements are needed to minimize systematic errors

  14. Recent Advances for High-Efficiency Sources of Single Photons Based on Photonic Nanowires

    DEFF Research Database (Denmark)

    Gerard, J. M.; Claudon, J.; Munsch, M.

    2012-01-01

    Photonic nanowires have recently been used to tailor the spontaneous emission of embedded quantum dots, and to develop record efficiency single-photon sources. We will present recent developments in this field mainly 1) the observation of a strong inhibition of the spontaneous emission of quantum...

  15. Switching of light with light using cold atoms inside a hollow optical fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Peyronel, Thibault

    2010-01-01

    We demonstrate a fiber-optical switch that operates with a few hundred photons per switching pulse. The light-light interaction is mediated by laser-cooled atoms. The required strong interaction between atoms and light is achieved by simultaneously confining photons and atoms inside the microscopic...... hollow core of a single-mode photonic-crystal fiber....

  16. Advanced time-correlated single photon counting applications

    CERN Document Server

    Becker, Wolfgang

    2015-01-01

    This book is an attempt to bridge the gap between the instrumental principles of multi-dimensional time-correlated single photon counting (TCSPC) and typical applications of the technique. Written by an originator of the technique and by sucessful users, it covers the basic principles of the technique, its interaction with optical imaging methods and its application to a wide range of experimental tasks in life sciences and clinical research. The book is recommended for all users of time-resolved detection techniques in biology, bio-chemistry, spectroscopy of live systems, live cell microscopy, clinical imaging, spectroscopy of single molecules, and other applications that require the detection of low-level light signals at single-photon sensitivity and picosecond time resolution.

  17. Practical single-photon-assisted remote state preparation with non-maximally entanglement

    Science.gov (United States)

    Wang, Dong; Huang, Ai-Jun; Sun, Wen-Yang; Shi, Jia-Dong; Ye, Liu

    2016-08-01

    Remote state preparation (RSP) and joint remote state preparation (JRSP) protocols for single-photon states are investigated via linear optical elements with partially entangled states. In our scheme, by choosing two-mode instances from a polarizing beam splitter, only the sender in the communication protocol needs to prepare an ancillary single-photon and operate the entanglement preparation process in order to retrieve an arbitrary single-photon state from a photon pair in partially entangled state. In the case of JRSP, i.e., a canonical model of RSP with multi-party, we consider that the information of the desired state is split into many subsets and in prior maintained by spatially separate parties. Specifically, with the assistance of a single-photon state and a three-photon entangled state, it turns out that an arbitrary single-photon state can be jointly and remotely prepared with certain probability, which is characterized by the coefficients of both the employed entangled state and the target state. Remarkably, our protocol is readily to extend to the case for RSP and JRSP of mixed states with the all optical means. Therefore, our protocol is promising for communicating among optics-based multi-node quantum networks.

  18. Highly efficient sources of single indistinguishable photons

    DEFF Research Database (Denmark)

    Gregersen, Niels

    2013-01-01

    be electrically driven. Several design strategies addressing these requirements have been proposed. In the cavity-based source, light emission is controlled using resonant cavity quantum electrodynamics effects, whereas in the waveguide-based source, broadband electric field screening effects are employed......Solid-state sources capable of emitting single photons on demand are of great interest in quantum information applications. Ideally, such a source should emit exactly one photon into the collection optics per trigger, the emitted photons should be indistinguishable and the source should...

  19. Effect of atomic initial phase difference on spontaneous emission of an atom embedded in photonic crystal

    International Nuclear Information System (INIS)

    Bing, Zhang; Xiu-Dong, Sun; Xiang-Qian, Jiang

    2010-01-01

    We investigate the effect of initial phase difference between the two excited states of a V-type three-level atom on its steady state behaviour of spontaneous emission. A modified density of modes is introduced to calculate the spontaneous emission spectra in photonic crystal. Spectra in free space are also shown to compare with that in photonic crystal with different relative positions of the excited levels from upper band-edge frequency. It is found that the initial phase difference plays an important role in the quantum interference property between the two decay channels. For a zero initial phase, destructive property is presented in the spectra. With the increase of initial phase difference, quantum interference between the two decay channels from upper levels to ground level turns to be constructive. Furthermore, we give an interpretation for the property of these spectra. (atomic and molecular physics)

  20. Efficiency of entanglement of distant atoms by projective measurement

    Energy Technology Data Exchange (ETDEWEB)

    Olivares Renteria, Georgina; Zippilli, Stefano; Morigi, Giovanna [Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Rohde, Felix; Schuck, Carsten; Eschner, Juergen [ICFO - Institut de CIencies Fotoniques, 08860 Castelldefels, Barcelona (Spain)

    2008-07-01

    We compare the efficiency of two schemes for the preparation of entangled states of distant atoms. In these proposals the atoms do not interact and the entanglement is realized by means of the measurement of the scattered field which project the two atoms into the desired state. We quantify the efficiency of the schemes using the fidelity between the state of the system after the detection of a photon and an ideal entangled state of the two atoms. In the first scheme the atoms interact with two optical cavities and the enhanced probability of emission into the cavities allows for high detection efficiency. This scheme is limited by the finite probability of emission of two photons. Thus, even under the assumption of perfect detection efficiency, the fidelity of the scheme never reaches unity. In the second scheme emission of two photons is suppressed by low excitation strength, but the detection efficiency is low since the atoms scatter into free space and only a small fraction of the photons is measured. In this case the fidelity is conditioned on single-photon detection and results to be higher. The comparison is quantitatively evaluated for an ongoing experiment with two distant trapped single Ca+ ions.

  1. Optimizing the photon selection of the CMS Single-Photon search for Supersymmetry using multivariate analyses

    CERN Document Server

    Lange, Johannes

    2014-01-01

    The purpose of this thesis is to improve the photon selection of the CMS SinglePhoton search for Supersymmetry by using multivariate analyses.The Single-Photon search aims to find Supersymmetry (SUSY) in data taken by theCompact Muon Solenoid (CMS) detector at the Large Hadron Collider located atthe research center CERN. SUSY is an extension of the standard model of particlephysics. The search is designed for a general gauge mediation scenario, which describes the gauge mediated SUSY breaking. The analysis uses final states with jets,at least one photon and missing transverse energy. A data-driven prediction of themultijet background is performed for the analysis. For this purpose, photon candidates have to be classified into two selections.In this thesis the usage of multivariate analyses for the photon candidate classification is studied. The methods used are Fisher Discriminant, Boosted Decision Treesand Artificial Neural Networks. Their performance is evaluated with respect to different aspects impor...

  2. Position Dependent Spontaneous Emission Spectra of a Λ-Type Atomic System Embedded in a Defective Photonic Crystal

    International Nuclear Information System (INIS)

    Entezar, S. Roshan

    2012-01-01

    We investigate the position dependent spontaneous emission spectra of a Λ-type three-level atom with one transition coupled to the free vacuum reservoir and the other one coupled to a double-band photonic band gap reservoir with a defect mode in the band gap. It is shown that, for the atom at the defect location, we have a two-peak spectrum with a wide dark line due to the strong coupling between the atom and the defect mode. While, when the atom is far from the defect location (or in the absence of the defect mode), the spectrum has three peaks with two dark lines due to the coupling between the atom and the photonic band gap reservoir with the largest density of states near the band edges. On the other hand, we have a four-peak spectrum for the atom at the space in between. Moreover, the average spontaneous emission spectra of the atoms uniformly embedded in high dielectric or low dielectric regions are described. It is shown that the atoms embedded in high (low) dielectric regions far from the defect location, effectively couple to the modes of the lower (upper) photonic band. However, the atoms embedded in high dielectric or low dielectric regions at the defect location, are coupled mainly to the defect modes. While, the atoms uniformly embedded in high (low) dielectric regions with a normal distance from the defect location, are coupled to both of defect and lower (upper) photonic band modes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. An integrated single- and two-photon non-diffracting light-sheet microscope

    Science.gov (United States)

    Lau, Sze Cheung; Chiu, Hoi Chun; Zhao, Luwei; Zhao, Teng; Loy, M. M. T.; Du, Shengwang

    2018-04-01

    We describe a fluorescence optical microscope with both single-photon and two-photon non-diffracting light-sheet excitations for large volume imaging. With a special design to accommodate two different wavelength ranges (visible: 400-700 nm and near infrared: 800-1200 nm), we combine the line-Bessel sheet (LBS, for single-photon excitation) and the scanning Bessel beam (SBB, for two-photon excitation) light sheet together in a single microscope setup. For a transparent thin sample where the scattering can be ignored, the LBS single-photon excitation is the optimal imaging solution. When the light scattering becomes significant for a deep-cell or deep-tissue imaging, we use SBB light-sheet two-photon excitation with a longer wavelength. We achieved nearly identical lateral/axial resolution of about 350/270 nm for both imagings. This integrated light-sheet microscope may have a wide application for live-cell and live-tissue three-dimensional high-speed imaging.

  4. High-efficiency single-photon source: The photonic wire geometry

    DEFF Research Database (Denmark)

    Claudon, J.; Bazin, Maela; Malik, Nitin S.

    2009-01-01

    We present a single-photon-source design based on the emission of a quantum dot embedded in a semiconductor (GaAs) nanowire. The nanowire ends are engineered (efficient metallic mirror and tip taper) to reach a predicted record-high collection efficiency of 90% with a realistic design. Preliminar...

  5. Coupling of (ultra- relativistic atomic nuclei with photons

    Directory of Open Access Journals (Sweden)

    M. Apostol

    2013-11-01

    Full Text Available The coupling of photons with (ultra- relativistic atomic nuclei is presented in two particular circumstances: very high electromagnetic fields and very short photon pulses. We consider a typical situation where the (bare nuclei (fully stripped of electrons are accelerated to energies ≃ 1 TeV per nucleon (according to the state of the art at LHC, for instance and photon sources like petawatt lasers ≃ 1 eV-radiation (envisaged by ELI-NP project, for instance, or free-electron laser ≃ 10 keV-radiation, or synchrotron sources, etc. In these circumstances the nuclear scale energy can be attained, with very high field intensities. In particular, we analyze the nuclear transitions induced by the radiation, including both one- and two-photon proceses, as well as the polarization-driven transitions which may lead to giant dipole resonances. The nuclear (electrical polarization concept is introduced. It is shown that the perturbation theory for photo-nuclear reactions is applicable, although the field intensity is high, since the corresponding interaction energy is low and the interaction time (pulse duration is short. It is also shown that the description of the giant nuclear dipole resonance requires the dynamics of the nuclear electrical polarization degrees of freedom.

  6. Determination of the 1s-2s two-photon excitation cross-section in atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, G.A.; McRae, G.A

    2000-07-01

    Hydrogen atoms are ablated from zirconium alloys into the gas phase by a pulsed Nd:YAG laser and photo-ionized with three photons at 243 nm via the two-photon 1s {sup 2}S{sub 1/2}-2s {sup 2}S{sub 1/2} resonant transition. A determination of the effective 1s-2s two-photon excitation cross-section is necessary to quantify the hydrogen atom density in the ablation plume. A measurement of the ion signal vs photo-ionization beam energy is fitted to an expression derived from the rate equations. The temporal and spatial properties of the photo-ionization laser beam, transit of the H atoms through the beam, and detector geometry are taken into account. The effective two-photon cross-section for this experimental configuration, derived with the rate equation formalism, is 3.3 {+-} 0.8 X 10{sup -28} cm{sup 4} W{sup -1}. This compares well with the ab initio prediction of 5 {+-} 1 X 10{sup -28} cm{sup 4} W{sup -1} under these experimental conditions. (author)

  7. Determination of the 1s-2s two-photon excitation cross-section in atomic hydrogen

    International Nuclear Information System (INIS)

    Bickel, G.A.; McRae, G.A.

    2000-01-01

    Hydrogen atoms are ablated from zirconium alloys into the gas phase by a pulsed Nd:YAG laser and photo-ionized with three photons at 243 nm via the two-photon 1s 2 S 1/2 -2s 2 S 1/2 resonant transition. A determination of the effective 1s-2s two-photon excitation cross-section is necessary to quantify the hydrogen atom density in the ablation plume. A measurement of the ion signal vs photo-ionization beam energy is fitted to an expression derived from the rate equations. The temporal and spatial properties of the photo-ionization laser beam, transit of the H atoms through the beam, and detector geometry are taken into account. The effective two-photon cross-section for this experimental configuration, derived with the rate equation formalism, is 3.3 ± 0.8 X 10 -28 cm 4 W -1 . This compares well with the ab initio prediction of 5 ± 1 X 10 -28 cm 4 W -1 under these experimental conditions. (author)

  8. Multi-photon ionization of atoms in intense short-wavelength radiation fields

    Science.gov (United States)

    Meyer, Michael

    2015-05-01

    The unprecedented characteristics of XUV and X-ray Free Electron Lasers (FELs) have stimulated numerous investigations focusing on the detailed understanding of fundamental photon-matter interactions in atoms and molecules. In particular, the high intensities (up to 106 W/cm2) giving rise to non-linear phenomena in the short wavelength regime. The basic phenomenology involves the production of highly charged ions via electron emission to which both sequential and direct multi-photon absorption processes contribute. The detailed investigation of the role and relative weight of these processes under different conditions (wavelength, pulse duration, intensity) is the key element for a comprehensive understanding of the ionization dynamics. Here the results of recent investigations are presented, performed at the FELs in Hamburg (FLASH) and Trieste (FERMI) on atomic systems with electronic structures of increasing complexity (Ar, Ne and Xe). Mainly, electron spectroscopy is used to obtain quantitative information about the relevance of various multi-photon ionization processes. For the case of Ar, a variety of processes including above threshold ionization (ATI) from 3p and 3s valence shells, direct 2p two-photon ionization and resonant 2p-4p two-photon excitations were observed and their role was quantitatively determined comparing the experimental ionization yields to ab-initio calculations of the cross sections for the multi-photon processes. Using Ar as a benchmark to prove the reliability of the combined experimental and theoretical approach, the more complex and intriguing case of Xe was studied. Especially, the analysis of the two-photon ATI from the Xe 4d shell reveals new insight into the character of the 4d giant resonance, which was unresolved in the linear one-photon regime. Finally, the influence of intense XUV radiation to the relaxation dynamics of the Ne 2s-3p resonance was investigated by angle-resolved electron spectroscopy, especially be observing

  9. Scheme for entanglement concentration of unknown atomic entangled states by interference of polarized photons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Yeon, Kyu-Hwang, E-mail: hfwang@ybu.edu.c, E-mail: szhang@ybu.edu.c [Department of Physics and BK21 Program for Device Physics, College of Natural Science, Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of)

    2010-12-14

    Based on the interference effect of polarized photons, we propose a practical scheme for entanglement concentration of unknown atomic entangled states. In the scheme, two {lambda}{lambda}-type atoms belonging to different entangled pairs are individually trapped in two spatially separated cavities. By the subsequent detection of the polarized photons leaking out of the separate optical cavities, Alice and Bob as two distant parties can probabilistically extract one maximally entangled four-atom Greenberger-Horne-Zeilinger (GHZ) state from two identical partially entangled Einstein-Podolsky-Rosen (EPR) pairs. We also discuss the influence of cavity decay on the success probability of the scheme. The scheme is feasible and within the reach of current experimental technology.

  10. Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage.

    Science.gov (United States)

    Wei, Yu-Jia; He, Yu-Ming; Chen, Ming-Cheng; Hu, Yi-Nan; He, Yu; Wu, Dian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei

    2014-11-12

    Single photons are attractive candidates of quantum bits (qubits) for quantum computation and are the best messengers in quantum networks. Future scalable, fault-tolerant photonic quantum technologies demand both stringently high levels of photon indistinguishability and generation efficiency. Here, we demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single semiconductor quantum dot using adiabatic rapid passage, a method robust against fluctuation of driving pulse area and dipole moments of solid-state emitters. The emitted photons are background-free, have a vanishing two-photon emission probability of 0.3% and a raw (corrected) two-photon Hong-Ou-Mandel interference visibility of 97.9% (99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing. This single-photon source can be readily scaled up to multiphoton entanglement and used for quantum metrology, boson sampling, and linear optical quantum computing.

  11. A bright single-photon source based on a photonic trumpet

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Malik, Nitin S.; Bleuse, Joël

    Fiber-like photonic nanowires, which are optical waveguides made of a high refractive index material n, have recently emerged as non-resonant systems providing an efficient spontaneous emission (SE) control. When they embed a quantum emitter like a quantum dot (QD), they find application to the r......Fiber-like photonic nanowires, which are optical waveguides made of a high refractive index material n, have recently emerged as non-resonant systems providing an efficient spontaneous emission (SE) control. When they embed a quantum emitter like a quantum dot (QD), they find application...... to the realization of bright sources of quantum light and, reversibly, provide an efficient interface between propagating photons and the QD. For a wire diameter ∼ λ/n (λ is the operation wavelength), the fraction of QD SE coupled to the fundamental guided mode exceeds 90%. The collection of the photons can...... be brought close to unity with a proper engineering of the wire ends. In particular, a tapering of the top wire end is necessary to achieve a directive far-field emission pattern [1]. Recently, we have realized a single-photon source featuring a needle-like taper. The source efficiency, though record...

  12. Molecular single photon double K-shell ionization

    International Nuclear Information System (INIS)

    Penent, F.; Nakano, M.; Tashiro, M.; Grozdanov, T.P.; Žitnik, M.; Carniato, S.; Selles, P.; Andric, L.; Lablanquie, P.; Palaudoux, J.; Shigemasa, E.; Iwayama, H.; Hikosaka, Y.; Soejima, K.; Suzuki, I.H.; Kouchi, N.; Ito, K.

    2014-01-01

    We have studied single photon double K-shell ionization of small molecules (N 2 , CO, C 2 H 2n (n = 1–3), …) and the Auger decay of the resulting double core hole (DCH) molecular ions thanks to multi-electron coincidence spectroscopy using a magnetic bottle time-of-flight spectrometer. The relative cross-sections for single-site (K −2 ) and two-site (K −1 K −1 ) double K-shell ionization with respect to single K-shell (K −1 ) ionization have been measured that gives important information on the mechanisms of single photon double ionization. The spectroscopy of two-site (K −1 K −1 ) DCH states in the C 2 H 2n (n = 1–3) series shows important chemical shifts due to a strong dependence on the C-C bond length. In addition, the complete cascade Auger decay following single site (K −2 ) ionization has been obtained

  13. Single-Photon Ionization Soft-X-Ray Laser Mass Spectrometry of Potential Hydrogen Storage Materials

    Science.gov (United States)

    Dong, F.; Bernstein, E. R.; Rocca, J. J.

    A desk-top size capillary discharge 46.9 nm lasear is applied in the gas phase study of nanoclusters. The high photon energy allows for single-photon ionization mass spectrometry with reduced cluster fragmentation. In the present studies, neutral Al m C n and Al m C n H x cluster are investigation for the first time. Single photon ionization through 46.9 nm, 118 nm, 193 nm lasers is used to detect neutral cluster distributions through time of flight mass spectrometry. Al m C n clusters are generated through laser ablation of a mixture of Al and C powders pressed into a disk. An oscillation of the vertical ionization energies (VIEs) of Al m C n clusters is observed in the experiments. The VIEs of Al m C n clusters changes as a function of the numbers of Al and C atoms in the clusters. Al m C n H x clusters are generated through an Al ablation plasma-hydrocarbon reaction, an Al-C ablation plasma reacting with H2 gas, or through cold Al m C n clusters reacting with H2 gas in a fast flow reactor. DFT and ab inito calculations are carried out to explore the structures, IEs, and electronic structures of Al m C n H x clusters. C=C bonds are favored for the lowest energy structures for Al m C n clusters. Be m C n H x are generated through a beryllium ablation plasma-hydrocarbon reaction and detected by single photon ionization of 193 nm laser. Both Al m C n H x and Be m C n H x are considered as potential hydrogen storage materials.

  14. Progress Toward Single-Photon-Level Nonlinear Optics in Crystalline Microcavities

    Science.gov (United States)

    Kowligy, Abijith S.

    Over the last two decades, the emergence of quantum information science has uncovered many practical applications in areas such as communications, imaging, and sensing where harnessing quantum features of Nature provides tremendous benefits over existing methods exploiting classical physical phenomena. In this effort, one of the frontiers of research has been to identify and utilize quantum phenomena that are not susceptible to environmental and parasitic noise processes. Quantum photonics has been at the forefront of these studies because it allows room-temperature access to its inherently quantum-mechanical features, and allows leveraging the mature telecommunication industry. Accompanying the weak environmental influence, however, are also weak optical nonlinearities. Efficient nonlinear optical interactions are indispensible for many of the existing protocols for quantum optical computation and communication, e.g. high-fidelity entangling quantum logic gates rely on large nonlinear responses at the one- or few-photon-level. While this has been addressed to a great extent by interfacing photons with single quantum emitters and cold atomic gases, scalability has remained elusive. In this work, we identify the macroscopic second-order nonlinear polarization as a robust platform to address this challenge, and utilize the recent advances in the burgeoning field of optical microcavities to enhance this nonlinear response. In particular, we show theoretically that by using the quantum Zeno effect, low-noise, single-photon-level optical nonlinearities can be realized in lithium niobate whispering-gallery-mode microcavities, and present experimental progress toward this goal. Using the measured strength of the second-order nonlinear response in lithium niobate, we modeled the nonlinear system in the strong coupling regime using the Schrodinger picture framework and theoretically demonstrated that the single-photon-level operation can be observed for cavity lifetimes in

  15. Effects of finite temperature on two-photon transitions in a Rydberg atom in a high-Q cavity

    International Nuclear Information System (INIS)

    Puri, R.R.; Joshi, A.

    1989-01-01

    The effects of cavity temperature on an effective two-level atom undergoing two-photon transitions in a high-Q cavity are investigated. The quantum statistical properties of the field and the dynamical properties of the atom in this case are studied and compared with those for an atom making one-photon transitions between the two levels. The analysis is based on the solution of the equation for the density matrix in the secular approximation which is known to be a valid approximation in the case of a Rydberg atom in a high-Q cavity. (orig.)

  16. Accelerator-based atomic physics experiments with photon and ion beams

    International Nuclear Information System (INIS)

    Johnson, B.M.; Jones, K.W.; Meron, M.

    1984-01-01

    Accelerator-based atomic physics experiments at Brookhaven presently use heavy-ion beams from the Dual MP Tandem Van de Graaff Accelerator Facility for atomic physics experiments of several types. Work is presently in progress to develop experiments which will use the intense photon beams which will be available in the near future from the ultraviolet (uv) and x-ray rings of the National Synchrotron Light Source (NSLS). Plans are described for experiments at the NSLS and an exciting development in instrumentation for heavy-ion experiments is summarized

  17. Remote Preparation of an Atomic Quantum Memory

    International Nuclear Information System (INIS)

    Rosenfeld, Wenjamin; Berner, Stefan; Volz, Juergen; Weber, Markus; Weinfurter, Harald

    2007-01-01

    Storage and distribution of quantum information are key elements of quantum information processing and future quantum communication networks. Here, using atom-photon entanglement as the main physical resource, we experimentally demonstrate the preparation of a distant atomic quantum memory. Applying a quantum teleportation protocol on a locally prepared state of a photonic qubit, we realized this so-called remote state preparation on a single, optically trapped 87 Rb atom. We evaluated the performance of this scheme by the full tomography of the prepared atomic state, reaching an average fidelity of 82%

  18. Heralded entangling quantum gate via cavity-assisted photon scattering

    Science.gov (United States)

    Borges, Halyne S.; Rossatto, Daniel Z.; Luiz, Fabrício S.; Villas-Boas, Celso J.

    2018-01-01

    We theoretically investigate the generation of heralded entanglement between two identical atoms via cavity-assisted photon scattering in two different configurations, namely, either both atoms confined in the same cavity or trapped into locally separated ones. Our protocols are given by a very simple and elegant single-step process, the key mechanism of which is a controlled-phase-flip gate implemented by impinging a single photon on single-sided cavities. In particular, when the atoms are localized in remote cavities, we introduce a single-step parallel quantum circuit instead of the serial process extensively adopted in the literature. We also show that such parallel circuit can be straightforwardly applied to entangle two macroscopic clouds of atoms. Both protocols proposed here predict a high entanglement degree with a success probability close to unity for state-of-the-art parameters. Among other applications, our proposal and its extension to multiple atom-cavity systems step toward a suitable route for quantum networking, in particular for quantum state transfer, quantum teleportation, and nonlocal quantum memory.

  19. Resonance interaction energy between two entangled atoms in a photonic bandgap environment.

    Science.gov (United States)

    Notararigo, Valentina; Passante, Roberto; Rizzuto, Lucia

    2018-03-26

    We consider the resonance interaction energy between two identical entangled atoms, where one is in the excited state and the other in the ground state. They interact with the quantum electromagnetic field in the vacuum state and are placed in a photonic-bandgap environment with a dispersion relation quadratic near the gap edge and linear for low frequencies, while the atomic transition frequency is assumed to be inside the photonic gap and near its lower edge. This problem is strictly related to the coherent resonant energy transfer between atoms in external environments. The analysis involves both an isotropic three-dimensional model and the one-dimensional case. The resonance interaction asymptotically decays faster with distance compared to the free-space case, specifically as 1/r 2 compared to the 1/r free-space dependence in the three-dimensional case, and as 1/r compared to the oscillatory dependence in free space for the one-dimensional case. Nonetheless, the interaction energy remains significant and much stronger than dispersion interactions between atoms. On the other hand, spontaneous emission is strongly suppressed by the environment and the correlated state is thus preserved by the spontaneous-decay decoherence effects. We conclude that our configuration is suitable for observing the elusive quantum resonance interaction between entangled atoms.

  20. Quantum-nondemolition measurement of photon arrival using an atom-cavity system

    International Nuclear Information System (INIS)

    Kojima, Kunihiro; Tomita, Akihisa

    2007-01-01

    A simple and efficient quantum-nondemolition measurement (QND) scheme is proposed in which the arrival of a signal photon is detected without affecting the qubit state. The proposed QND scheme functions even if the ancillary photon is replaced with weak light composed of vacuum and one-photon states. Although the detection scheme is designed for entanglement sharing applications, it is also suitable for general purification of a single-photon state

  1. Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector

    Science.gov (United States)

    Huntington, Andrew

    2013-01-01

    The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.

  2. High-fidelity frequency down-conversion of visible entangled photon pairs with superconducting single-photon detectors

    International Nuclear Information System (INIS)

    Ikuta, Rikizo; Kato, Hiroshi; Kusaka, Yoshiaki; Yamamoto, Takashi; Imoto, Nobuyuki; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Wang, Zhen; Fujiwara, Mikio; Sasaki, Masahide; Koashi, Masato

    2014-01-01

    We experimentally demonstrate a high-fidelity visible-to-telecommunicationwavelength conversion of a photon by using a solid-state-based difference frequency generation. In the experiment, one half of a pico-second visible entangled photon pair at 780 nm is converted to a 1522-nm photon. Using superconducting single-photon detectors with low dark count rates and small timing jitters, we observed a fidelity of 0.93±0.04 after the wavelength conversion

  3. Nonlinear photonic metasurfaces

    Science.gov (United States)

    Li, Guixin; Zhang, Shuang; Zentgraf, Thomas

    2017-03-01

    Compared with conventional optical elements, 2D photonic metasurfaces, consisting of arrays of antennas with subwavelength thickness (the 'meta-atoms'), enable the manipulation of light-matter interactions on more compact platforms. The use of metasurfaces with spatially varying arrangements of meta-atoms that have subwavelength lateral resolution allows control of the polarization, phase and amplitude of light. Many exotic phenomena have been successfully demonstrated in linear optics; however, to meet the growing demand for the integration of more functionalities into a single optoelectronic circuit, the tailorable nonlinear optical properties of metasurfaces will also need to be exploited. In this Review, we discuss the design of nonlinear photonic metasurfaces — in particular, the criteria for choosing the materials and symmetries of the meta-atoms — for the realization of nonlinear optical chirality, nonlinear geometric Berry phase and nonlinear wavefront engineering. Finally, we survey the application of nonlinear photonic metasurfaces in optical switching and modulation, and we conclude with an outlook on their use for terahertz nonlinear optics and quantum information processing.

  4. Two-photon direct frequency comb spectroscopy of alkali atoms

    Science.gov (United States)

    Palm, Christopher; Pradhananga, Trinity; Nguyen, Khoa; Montcrieffe, Caitlin; Kimball, Derek

    2012-11-01

    We have studied transition frequencies and excited state hyperfine structure in rubidium using 2-photon transitions excited directly with the frequency-doubled output of a erbium fiber optical frequency comb. The frequency comb output is directed in two counterpropagating directions through a vapor cell containing the rubidium vapor. A pair of optical filters is used to select teeth of the comb in order to identify the transition wavelengths. A photomultiplier tube (PMT) measures fluorescence from a decay channel wavelength selected with another optical filter. Using different combinations of filters enables a wide range of transitions to be investigated. By scanning the repetition rate, a Doppler-free spectrum can be obtained enabling kHz-resolution spectral measurements. An interesting dependence of the 2-photon spectrum on the energy of the intermediate state of the 2-photon transition is discussed. Our investigations are laying the groundwork for a long-term research program to use direct frequency comb spectroscopy to understand the complex spectra of rare-earth atoms.

  5. Protecting single-photon entanglement with practical entanglement source

    Science.gov (United States)

    Zhou, Lan; Ou-Yang, Yang; Wang, Lei; Sheng, Yu-Bo

    2017-06-01

    Single-photon entanglement (SPE) is important for quantum communication and quantum information processing. However, SPE is sensitive to photon loss. In this paper, we discuss a linear optical amplification protocol for protecting SPE. Different from the previous protocols, we exploit the practical spontaneous parametric down-conversion (SPDC) source to realize the amplification, for the ideal entanglement source is unavailable in current quantum technology. Moreover, we prove that the amplification using the entanglement generated from SPDC source as auxiliary is better than the amplification assisted with single photons. The reason is that the vacuum state from SPDC source will not affect the amplification, so that it can be eliminated automatically. This protocol may be useful in future long-distance quantum communications.

  6. Photonic wires and trumpets for ultrabright single photon sources

    DEFF Research Database (Denmark)

    Gérard, Jean-Michel; Claudon, Julien; Bleuse, Joël

    2013-01-01

    as to tailor their radiation diagram in the far-field. We highlight the novel “photonic trumpet” geometry, which provides a clean Gaussian beam, and is much less sensitive to fabrication imperfections than the more common needle-like taper geometry. S4Ps based on a single QD in a PW with integrated bottom...

  7. Post-processing with linear optics for improving the quality of single-photon sources

    International Nuclear Information System (INIS)

    Berry, Dominic W; Scheel, Stefan; Myers, Casey R; Sanders, Barry C; Knight, Peter L; Laflamme, Raymond

    2004-01-01

    Triggered single-photon sources produce the vacuum state with non-negligible probability, but produce a much smaller multiphoton component. It is therefore reasonable to approximate the output of these photon sources as a mixture of the vacuum and single-photon states. We show that it is impossible to increase the probability for a single photon using linear optics and photodetection on fewer than four modes. This impossibility is due to the incoherence of the inputs; if the inputs were pure-state superpositions, it would be possible to obtain a perfect single-photon output. In the more general case, a chain of beam splitters can be used to increase the probability for a single photon, but at the expense of adding an additional multiphoton component. This improvement is robust against detector inefficiencies, but is degraded by distinguishable photons, dark counts or multiphoton components in the input

  8. Photodesorption of Na atoms from rough Na surfaces

    DEFF Research Database (Denmark)

    Balzer, Frank; Gerlach, R.; Manson, J.R.

    1997-01-01

    We investigate the desorption of Na atoms from large Na clusters deposited on dielectric surfaces. High-resolution translational energy distributions of the desorbing atoms are determined by three independent methods, two-photon laser-induced fluorescence, as well as single-photon and resonance......-enhanced two-photon ionization techniques. Upon variation of surface temperature and for different substrates (mica vs lithium fluoride) clear non-Maxwellian time-of-flight distributions are observed with a cos θ angular dependence and most probable kinetic energies below that expected of atoms desorbing from...... atoms are scattered by surface vibrations. Recent experiments providing time constants for the decay of the optical excitations in the clusters support this model. The excellent agreement between experiment and theory indicates the importance of both absorption of the laser photons via direct excitation...

  9. Generating single-photon catalyzed coherent states with quantum-optical catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xue-xiang, E-mail: xuxuexiang@jxnu.edu.cn [Center for Quantum Science and Technology, Jiangxi Normal University, Nanchang 330022 (China); Yuan, Hong-chun [College of Electrical and Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou 213002 (China)

    2016-07-15

    We theoretically generate single-photon catalyzed coherent states (SPCCSs) by means of quantum-optical catalysis based on the beam splitter (BS) or the parametric amplifier (PA). These states are obtained in one of the BS (or PA) output channels if a coherent state and a single-photon Fock state are present in two input ports and a single photon is registered in the other output port. The success probabilities of the detection (also the normalization factors) are discussed, which is different for BS and PA catalysis. In addition, we prove that the generated states catalyzed by BS and PA devices are actually the same quantum states after analyzing photon number distribution of the SPCCSs. The quantum properties of the SPCCSs, such as sub-Poissonian distribution, anti-bunching effect, quadrature squeezing effect, and the negativity of the Wigner function are investigated in detail. The results show that the SPCCSs are non-Gaussian states with an abundance of nonclassicality. - Highlights: • We generate single-photon catalyzed coherent states with quantum-optical catalysis. • We prove the equivalent effects of the lossless beam splitter and the non-degenerate parametric amplifier. • Some nonclassical properties of the generated states are investigated in detail.

  10. Evaluation of the ID220 single photon avalanche diode for extended spectral range of photon time-of-flight spectroscopy

    DEFF Research Database (Denmark)

    Nielsen, Otto Højager Attermann; Dahl, Anders Bjorholm; Anderson-Engels, Stefan

    This paper describe the performance of the ID220 single photon avalanche diode for single photon counting, and investigates its performance for photon time-of-flight (PToF) spectroscopy. At first this report will serve as a summary to the group for PToF spectroscopy at the Department of Physics...

  11. Theoretical and experimental study of single particle tracking in extreme conditions: single photon imaging

    International Nuclear Information System (INIS)

    Cajgfinger, T.

    2012-10-01

    This manuscript presents my thesis on the high frame rate (500 frames / second) single-photon detector electron-bombarded CMOS (ebCMOS). The first section compares three ultra-sensitive detectors and their methods for improving photon sensitivity: the CMOS low noise (sCMOS), the electron-multiplying CCD (emCCD) with signal multiplication by pixel and the ebCMOS with amplification by applied electric field. The method developed to detect single photon impacts with intra-pixel resolution on the ebCMOS sensor is presented. The second section compares the localization accuracy of these detectors in extreme conditions of very low photon flux (<10 photons/frame). First the theoretical limit is calculated using the Cramer-Rao lower bound for significant parameter sets. An experimental comparison of the detectors is then described. The setup provides one or more point sources controlled in position, signal and background noise. The results allow a comparison of the experimental effectiveness, purity and localization accuracy. The last section describes two experiments with the ebCMOS camera. The first aims at tracking hundreds of quantum dots simultaneously at the Nanoptec center. The second focuses on the swimming of bacteria at the surface at the Joliot Curie Institute. The point sources tracking algorithm using single photons and the Kalman filter implementation developed for these experiments is also described. (author)

  12. A highly efficient single-photon source based on a quantum dot in a photonic nanowire

    DEFF Research Database (Denmark)

    Claudon, Julien; Bleuse, Joel; Malik, Nitin Singh

    2010-01-01

    –4 or a semiconductor quantum dot5–7. Achieving a high extraction efficiency has long been recognized as a major issue, and both classical solutions8 and cavity quantum electrodynamics effects have been applied1,9–12. We adopt a different approach, based on an InAs quantum dot embedded in a GaAs photonic nanowire......The development of efficient solid-state sources of single photons is a major challenge in the context of quantum communication,optical quantum information processing and metrology1. Such a source must enable the implementation of a stable, single-photon emitter, like a colour centre in diamond2...

  13. Quantum dot single-photon switches of resonant tunneling current for discriminating-photon-number detection.

    Science.gov (United States)

    Weng, Qianchun; An, Zhenghua; Zhang, Bo; Chen, Pingping; Chen, Xiaoshuang; Zhu, Ziqiang; Lu, Wei

    2015-03-23

    Low-noise single-photon detectors that can resolve photon numbers are used to monitor the operation of quantum gates in linear-optical quantum computation. Exactly 0, 1 or 2 photons registered in a detector should be distinguished especially in long-distance quantum communication and quantum computation. Here we demonstrate a photon-number-resolving detector based on quantum dot coupled resonant tunneling diodes (QD-cRTD). Individual quantum-dots (QDs) coupled closely with adjacent quantum well (QW) of resonant tunneling diode operate as photon-gated switches- which turn on (off) the RTD tunneling current when they trap photon-generated holes (recombine with injected electrons). Proposed electron-injecting operation fills electrons into coupled QDs which turn "photon-switches" to "OFF" state and make the detector ready for multiple-photons detection. With proper decision regions defined, 1-photon and 2-photon states are resolved in 4.2 K with excellent propabilities of accuracy of 90% and 98% respectively. Further, by identifying step-like photon responses, the photon-number-resolving capability is sustained to 77 K, making the detector a promising candidate for advanced quantum information applications where photon-number-states should be accurately distinguished.

  14. Single-organelle tracking by two-photon conversion

    Science.gov (United States)

    Watanabe, Wataru; Shimada, Tomoko; Matsunaga, Sachihiro; Kurihara, Daisuke; Fukui, Kiichi; Shin-Ichi Arimura, Shin-Ichi; Tsutsumi, Nobuhiro; Isobe, Keisuke; Itoh, Kazuyoshi

    2007-03-01

    Spatial and temporal information about intracellular objects and their dynamics within a living cell are essential for dynamic analysis of such objects in cell biology. A specific intracellular object can be discriminated by photoactivatable fluorescent proteins that exhibit pronounced light-induced spectral changes. Here, we report on selective labeling and tracking of a single organelle by using two-photon conversion of a photoconvertible fluorescent protein with near-infrared femtosecond laser pulses. We performed selective labeling of a single mitochondrion in a living tobacco BY-2 cell using two-photon photoconversion of Kaede. Using this technique, we demonstrated that, in plants, the directed movement of individual mitochondria along the cytoskeletons was mediated by actin filaments, whereas microtubules were not required for the movement of mitochondria. This single-organelle labeling technique enabled us to track the dynamics of a single organelle, revealing the mechanisms involved in organelle dynamics. The technique has potential application in direct tracking of selective cellular and intracellular structures.

  15. Single-photon sources for quantum technologies - Results of the joint research project SIQUTE

    DEFF Research Database (Denmark)

    Kück, S.; López, M.; Rodiek, B.

    2017-01-01

    In this presentation, the results of the joint research project “Single-Photon Sources for Quantum Technologies” (SIQUTE) [1] will be presented. The focus will be on the development of absolutely characterized single-photon sources, on the realization of an efficient waveguide-based single-photon......-photon source at the telecom wavelengths of 1.3 µm and 1.55 µm, on the implementation of the quantum-enhanced resolution in confocal fluorescence microscopy and on the development of a detector for very low photon fluxes...

  16. Single-atom contacts with a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Kroeger, J; Neel, N; Sperl, A; Wang, Y F; Berndt, R

    2009-01-01

    The tip of a cryogenic scanning tunnelling microscope is used to controllably contact single atoms adsorbed on metal surfaces. The transition between tunnelling and contact is gradual for silver, while contact to adsorbed gold atoms is abrupt. The single-atom junctions are stable and enable spectroscopic measurements of, e.g., the Abrikosov-Suhl resonance of single Kondo impurities.

  17. Probabilistically cloning two single-photon states using weak cross-Kerr nonlinearities

    International Nuclear Information System (INIS)

    Zhang, Wen; Rui, Pinshu; Zhang, Ziyun; Yang, Qun

    2014-01-01

    By using quantum nondemolition detectors (QNDs) based on weak cross-Kerr nonlinearities, we propose an experimental scheme for achieving 1→2 probabilistic quantum cloning (PQC) of a single-photon state, secretly choosing from a two-state set. In our scheme, after a QND is performed on the to-be-cloned photon and the assistant photon, a single-photon projection measurement is performed by a polarization beam splitter (PBS) and two single-photon trigger detectors (SPTDs). The measurement is to judge whether the PQC should be continued. If the cloning fails, a cutoff is carried out and some operations are omitted. This makes our scheme economical. If the PQC is continued according to the measurement result, two more QNDs and some unitary operations are performed on the to-be-cloned photon and the cloning photon to achieve the PQC in a nearly deterministic way. Our experimental scheme for PQC is feasible for future technology. Furthermore, the quantum logic network of our PQC scheme is presented. In comparison with similar networks, our PQC network is simpler and more economical. (paper)

  18. Fully quantum-mechanical dynamic analysis of single-photon transport in a single-mode waveguide coupled to a traveling-wave resonator

    International Nuclear Information System (INIS)

    Hach, Edwin E. III; Elshaari, Ali W.; Preble, Stefan F.

    2010-01-01

    We analyze the dynamics of single-photon transport in a single-mode waveguide coupled to a micro-optical resonator by using a fully quantum-mechanical model. We examine the propagation of a single-photon Gaussian packet through the system under various coupling conditions. We review the theory of single-photon transport phenomena as applied to the system and we develop a discussion on the numerical technique we used to solve for dynamical behavior of the quantized field. To demonstrate our method and to establish robust single-photon results, we study the process of adiabatically lowering or raising the energy of a single photon trapped in an optical resonator under active tuning of the resonator. We show that our fully quantum-mechanical approach reproduces the semiclassical result in the appropriate limit and that the adiabatic invariant has the same form in each case. Finally, we explore the trapping of a single photon in a system of dynamically tuned, coupled optical cavities.

  19. InGaAs/InAlAs single photon avalanche diode for 1550 nm photons.

    Science.gov (United States)

    Meng, Xiao; Xie, Shiyu; Zhou, Xinxin; Calandri, Niccolò; Sanzaro, Mirko; Tosi, Alberto; Tan, Chee Hing; Ng, Jo Shien

    2016-03-01

    A single photon avalanche diode (SPAD) with an InGaAs absorption region, and an InAlAs avalanche region was designed and demonstrated to detect 1550 nm wavelength photons. The characterization included leakage current, dark count rate and single photon detection efficiency as functions of temperature from 210 to 294 K. The SPAD exhibited good temperature stability, with breakdown voltage dependence of approximately 45 mV K(-1). Operating at 210 K and in a gated mode, the SPAD achieved a photon detection probability of 26% at 1550 nm with a dark count rate of 1 × 10(8) Hz. The time response of the SPAD showed decreasing timing jitter (full width at half maximum) with increasing overbias voltage, with 70 ps being the smallest timing jitter measured.

  20. One- and two-photon ionization of hydrogen atom embedded in Debye plasmas

    International Nuclear Information System (INIS)

    Chang, T. N.; Fang, T. K.; Ho, Y. K.

    2013-01-01

    We present a detailed analysis of the plasma-induced resonance-like atomic structures near the ionization threshold in one- and two-photon ionization of hydrogen atom. Such resonance-like structures result from the migration of the upper bound excited states of bound-bound atomic transitions into the continuum due to the less attractive screened Coulomb potential which simulates the external environmental effect for an atom embedded in Debye plasma. The change from the resonance-like narrow structures into broad continuous spectra as the plasma effect increases could be accounted for by the overlap between the respective wavefunctions of the atomic electron in the initial state and its corresponding outgoing ionized state in the continuum

  1. Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Saniya; Frost, Thomas; Hazari, Arnab; Bhattacharya, Pallab, E-mail: pkb@eecs.umich.edu [Center for Photonics and Multiscale Nanomaterials, Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109 (United States)

    2014-10-06

    We demonstrate a semiconductor quantum dot based electrically pumped single-photon source operating at room temperature. Single photons emitted in the red spectral range from single In{sub 0.4}Ga{sub 0.6}N/GaN quantum dots exhibit a second-order correlation value g{sup (2)}(0) of 0.29, and fast recombination lifetime ∼1.3 ±0.3 ns at room temperature. The single-photon source can be driven at an excitation repetition rate of 200 MHz.

  2. Photonic band gap materials: design, synthesis, and applications

    International Nuclear Information System (INIS)

    John, S.

    2000-01-01

    Full text: Unlike semiconductors which facilitate the coherent propagation of electrons, photonic band gap (PBG) materials execute their novel functions through the coherent localization of photons. I review and discuss our recent synthesis of a large scale three-dimensional silicon photonic crystal with a complete photonic band gap near 1.5 microns. When a PBG material is doped with impurity atoms which have an electronic transition that lies within the gap, spontaneous emission of light from the atom is inhibited. Inside the gap, the photon forms a bound state to the atom. Outside the gap, radiative dynamics in the colored vacuum is highly non Markovian. I discuss the influence of these memory effects on laser action. When spontaneous emission is absent, the next order radiative effect (resonance dipole dipole interaction between atoms) must be incorporated leading to anomalous nonlinear optical effects which occur at a much lower threshold than in ordinary vacuum. I describe the collective switching of two-level atoms near a photonic band edge, by external laser field, from a passive state to one exhibiting population inversion. This effect is forbidden in ordinary vacuum. However, in the context of a PBG material, this effect may be utilized for an all-optical transistor. Finally, I discuss the prospects for a phase sensitive, single atom quantum memory device, onto which information may be written by an external laser pulse

  3. Single Atoms Preparation Using Light-Assisted Collisions

    Directory of Open Access Journals (Sweden)

    Yin Hsien Fung

    2016-01-01

    Full Text Available The detailed control achieved over single optically trapped neutral atoms makes them candidates for applications in quantum metrology and quantum information processing. The last few decades have seen different methods developed to optimize the preparation efficiency of single atoms in optical traps. Here we review the near-deterministic preparation of single atoms based on light-assisted collisions and describe how this method can be implemented in different trap regimes. The simplicity and versatility of the method makes it feasible to be employed in future quantum technologies such as a quantum logic device.

  4. Efficient fiber-coupled single-photon sources based on quantum dots

    DEFF Research Database (Denmark)

    Daveau, Raphaël Sura

    refrigeration with coupled quantum wells. Many photonic quantum information processing applications would benet from a highbrightness, ber-coupled source of triggered single photons. This thesis presents a study of such sources based on quantum dots coupled to unidirectional photonic-crystal waveguide devices.......6 %. This latter method opens a promising future for increasing the eciency and reliability of planar chip-based single-photon sources. Refrigeration of a solid-state system with light has potential applications for cooling small-scale electronic and photonic circuits. We show theoretically that two coupled...... semiconductor quantum wells are ecient cooling media because they support long-lived indirect electron-hole pairs. These pairs can be thermally excited to distinct higher-energy states with faster radiative recombination, thereby creating an ecient escape channel to remove thermal energy from the system. From...

  5. Near-unity efficiency, single-photon sources based on tapered photonic nanowires

    DEFF Research Database (Denmark)

    Bleuse, Joël; Munsch, Mathieu; Claudon, Julien

    2012-01-01

    Single-photon emission from excitons in InAs Quantum Dots (QD) embedded in GaAs Tapered Photonic Wires (TPW) already demonstrated a 0.72 collection efficiency, with TPWs were the apex is the sharp end of the cone. Going to alternate designs, still based on the idea of the adiabatic deconfinement...... of the quasi-Gaussian emission mode, but with inverted TPW where the apex is the cone's base, leads to even larger efficiencies. In addition, these inverted TPWs make the electric pumping of the emitters compatible with these large efficiencies....

  6. Investigating and Improving Student Understanding of Quantum Mechanics in the Context of Single Photon Interference

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2017-01-01

    Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the…

  7. Diagnosis of dementia with single photon emission computed tomography

    International Nuclear Information System (INIS)

    Jagust, W.J.; Budinger, T.F.; Reed, B.R.

    1987-01-01

    Single photon emission computed tomography is a practical modality for the study of physiologic cerebral activity in vivo. We utilized single photon emission computed tomography and N-isopropyl-p-iodoamphetamine iodine 123 to evaluate regional cerebral blood flow in nine patients with Alzheimer's disease (AD), five healthy elderly control subjects, and two patients with multi-infarct dementia. We found that all subjects with AD demonstrated flow deficits in temporoparietal cortex bilaterally, and that the ratio of activity in bilateral temporoparietal cortex to activity in the whole slice allowed the differentiation of all patients with AD from both the controls and from the patients with multi-infarct dementia. Furthermore, this ratio showed a strong correlation with disease severity in the AD group. Single photon emission computed tomography appears to be useful in the differential diagnosis of dementia and reflects clinical features of the disease

  8. Processing multiphoton states through operation on a single photon: Methods and applications

    International Nuclear Information System (INIS)

    Lin Qing; He Bing; Bergou, Janos A.; Ren, Yuhang

    2009-01-01

    Multiphoton states are widely applied in quantum information technology. By the methods presented in this paper, the structure of a multiphoton state in the form of multiple single-photon qubit products can be mapped to a single-photon qudit, which could also be in a separable product with other photons. This makes possible the manipulation of such multiphoton states by processing single-photon states. The optical realization of unknown qubit discrimination [B. He, J. A. Bergou, and Y.-H. Ren, Phys. Rev. A 76, 032301 (2007)] is simplified with the transformation methods. Another application is the construction of quantum logic gates, where the inverse transformations back to the input state spaces are also necessary. We especially show that the modified setups to implement the transformations can realize the deterministic multicontrol gates (including Toffoli gate) operating directly on the products of single-photon qubits.

  9. Enhanced Emission from Single Isolated Gold Quantum Dots Investigated Using Two-Photon-Excited Fluorescence Near-Field Scanning Optical Microscopy.

    Science.gov (United States)

    Abeyasinghe, Neranga; Kumar, Santosh; Sun, Kai; Mansfield, John F; Jin, Rongchao; Goodson, Theodore

    2016-12-21

    New approaches in molecular nanoscopy are greatly desired for interrogation of biological, organic, and inorganic objects with sizes below the diffraction limit. Our current work investigates emergent monolayer-protected gold quantum dots (nanoclusters, NCs) composed of 25 Au atoms by utilizing two-photon-excited fluorescence (TPEF) near-field scanning optical microscopy (NSOM) at single NC concentrations. Here, we demonstrate an approach to synthesize and isolate single NCs on solid glass substrates. Subsequent investigation of the NCs using TPEF NSOM reveals that, even when they are separated by distances of several tens of nanometers, we can excite and interrogate single NCs individually. Interestingly, we observe an enhanced two-photon absorption (TPA) cross section for single Au 25 NCs that can be attributed to few-atom local field effects and to local field-induced microscopic cascading, indicating their potential for use in ultrasensitive sensing, disease diagnostics, cancer cell therapy, and molecular computers. Finally, we report room-temperature aperture-based TPEF NSOM imaging of these NCs for the first time at 30 nm point resolution, which is a ∼5-fold improvement compared to the previous best result for the same technique. This report unveils the unique combination of an unusually large TPA cross section and the high photostability of Au NCs to (non-destructively) investigate stable isolated single NCs using TPEF NSOM. This is the first reported optical study of monolayer-protected single quantum clusters, opening some very promising opportunities in spectroscopy of nanosized objects, bioimaging, ultrasensitive sensing, molecular computers, and high-density data storage.

  10. Multielectron effects in atomic processes

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Chernysheva, L.V.

    1999-01-01

    One demonstrates a prominent role of electron collectivization in atoms and quasi-atomic formations. Paper discusses in detail the approximation of random phases with exchange enabling to take account of these effects. One points out the necessity to go outside the terms of the approximation when studying some processes via combination of the approximation with the theory of disturbances. The results of the recently conducted estimations of cross sections of photoionization of atomic iodine and of its positive and negative ions, Xe + single-electron photoionization, resonance-amplified emission of photons in electron collisions with atoms and quasi-atomic formations, non-dipole corrections to the angular distribution of photoelectrons, probabilities of two electron transitions where the whole amount of energy releases in the form of one photon, illustrate the role of the collective effects [ru

  11. Quantum routing of single optical photons with a superconducting flux qubit

    Science.gov (United States)

    Xia, Keyu; Jelezko, Fedor; Twamley, Jason

    2018-05-01

    Interconnecting optical photons with superconducting circuits is a challenging problem but essential for building long-range superconducting quantum networks. We propose a hybrid quantum interface between the microwave and optical domains where the propagation of a single-photon pulse along a nanowaveguide is controlled in a coherent way by tuning the electromagnetically induced transparency window with the quantum state of a flux qubit mediated by the spin in a nanodiamond. The qubit can route a single-photon pulse using the nanodiamond into a quantum superposition of paths without the aid of an optical cavity—simplifying the setup. By preparing the flux qubit in a superposition state our cavityless scheme creates a hybrid state-path entanglement between a flying single optical photon and a static superconducting qubit.

  12. Coherent single-photon absorption by single emitters coupled to one-dimensional nanophotonic waveguides

    DEFF Research Database (Denmark)

    Chen, Yuntian; Wubs, Martijn; Mørk, Jesper

    2011-01-01

    -photon wavepacket can exceed 70%. This high value is a direct consequence of the high SE β-factor for emission into the waveguide. Finally, we have also explored whether waveguide dispersion could aid single-photon absorption by pulse shaping. For a Gaussian input wavepacket, we found that the absorption efficiency...

  13. Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode.

    Science.gov (United States)

    Martinez, Nicholas J D; Gehl, Michael; Derose, Christopher T; Starbuck, Andrew L; Pomerene, Andrew T; Lentine, Anthony L; Trotter, Douglas C; Davids, Paul S

    2017-07-10

    We examine gated-Geiger mode operation of an integrated waveguide-coupled Ge-on-Si lateral avalanche photodiode (APD) and demonstrate single photon detection at low dark count for this mode of operation. Our integrated waveguide-coupled APD is fabricated using a selective epitaxial Ge-on-Si growth process resulting in a separate absorption and charge multiplication (SACM) design compatible with our silicon photonics platform. Single photon detection efficiency and dark count rate is measured as a function of temperature in order to understand and optimize performance characteristics in this device. We report single photon detection of 5.27% at 1310 nm and a dark count rate of 534 kHz at 80 K for a Ge-on-Si single photon avalanche diode. Dark count rate is the lowest for a Ge-on-Si single photon detector in this range of temperatures while maintaining competitive detection efficiency. A jitter of 105 ps was measured for this device.

  14. Single molecule experiments challenge the strict wave-particle dualism of light.

    Science.gov (United States)

    Greulich, Karl Otto

    2010-01-21

    Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the "single photon limit" of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. "Single photon detectors" do not meet their promise-only "photon number resolving single photon detectors" do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified.

  15. Single-photon generation with InAs quantum dots

    International Nuclear Information System (INIS)

    Santori, Charles; Fattal, David; Vuckovic, Jelena; Solomon, Glenn S; Yamamoto, Yoshihisa

    2004-01-01

    Single-photon generation using InAs quantum dots in pillar microcavities is described. The effects on performance of the excitation wavelength and polarization, and the collection bandwidth and polarization, are studied in detail. The efficiency and photon state purity of these devices have been measured, and issues affecting these parameters are discussed. Prospects for improved devices are also discussed

  16. APIPIS: the Atomic Physics Ion-Photon Interaction System

    International Nuclear Information System (INIS)

    Johnson, B.M.; Jones, K.W.; Meron, M.; Kostroun, V.O.

    1985-01-01

    A proposed new facility for the study of highly charged heavy ions is described. The basic elements of APIPIS, the Atomic Physics Ion-Photon Interaction System, are: (1) a source of multiply-charged ions; (2) a linear accelerator; (3) a synchrotron storage ring; and (4) a source of high brightness x rays. The placement of a heavy ion storage ring at the x-ray ring of the National Synchrotron Light Source will provide unique opportunities for the study of photo-excitation of heavy ions

  17. Positron states and nanoobjects in proton-irradiated quartz single crystals: Positronium atom in quartz

    International Nuclear Information System (INIS)

    Grafutin, V. I.; Zaluzhnyi, A. G.; Timoshenkov, S. P.; Britkov, O. M.; Ilyukhina, O. V.; Myasishcheva, G. G.; Prokop'ev, E. P.; Funtikov, Yu. V.

    2008-01-01

    The influence of proton bombardment and metal atom impurities on the structure of quartz single crystals has been studied. The related defects have been studied using positron annihilation spectroscopy (angular correlation of positron-annihilation photons), acoustic absorption, and optical absorption measurements. It is shown that the presence of a narrow component f in the angular distribution of annihilation photons (ADAP), which is related to the formation of parapositronium, determines a high sensitivity of this method with respect to features of the crystal structure of quartz. It is established that the defectness of the structure of irradiated quartz crystals can be characterized by the ratio f/f 0 of the relative intensities of narrow components in the ADAP curves measured before (f 0 ) and after (f) irradiation. Any process leading to a decrease in the probability of positronium formation (e.g., positron loss as a result of the trapping on defects and the interaction with impurity atoms and lattice distortions) decreases the intensity of the narrow component. Based on the ADAP data, estimates of the radii and concentrations of nanodefects in quartz have been obtained and their variation upon annealing at temperatures up to T = 873 K has been studied

  18. Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source.

    Science.gov (United States)

    Gazzano, O; Almeida, M P; Nowak, A K; Portalupi, S L; Lemaître, A; Sagnes, I; White, A G; Senellart, P

    2013-06-21

    We demonstrate the unambiguous entangling operation of a photonic quantum-logic gate driven by an ultrabright solid-state single-photon source. Indistinguishable single photons emitted by a single semiconductor quantum dot in a micropillar optical cavity are used as target and control qubits. For a source brightness of 0.56 photons per pulse, the measured truth table has an overlap with the ideal case of 68.4±0.5%, increasing to 73.0±1.6% for a source brightness of 0.17 photons per pulse. The gate is entangling: At a source brightness of 0.48, the Bell-state fidelity is above the entangling threshold of 50% and reaches 71.0±3.6% for a source brightness of 0.15.

  19. Single-photon production at the CERN ISR

    International Nuclear Information System (INIS)

    Linnemann, J.T.

    1981-01-01

    A measurement of single photon production from p-p collisions at ISR energies is presented. A signal comparable to single π 0 production is found at large p/sub T/. A study of associated particles favors production dominated by the first-order QCD process of gluon-valence quark production q g → q γ

  20. Elimination of two atomic electrons by a single high energy photon

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Ioffe, A.F.

    1993-01-01

    This report discusses the following topics: mechanism of two-electron photoionization; multiple photoionization near inner shell thresholds; double ionization accompanying compton-effect; and the investigation of secondary photon emission in coincidence with double charged ion production

  1. Stable single-photon source in the near infrared

    International Nuclear Information System (INIS)

    Gaebel, T; Popa, I; Gruber, A; Domhan, M; Jelezko, F; Wrachtrup, J

    2004-01-01

    Owing to their unsurpassed photostability, defects in solids may be ideal candidates for single-photon sources. Here we report on generation of single photons by optical excitation of a yet unexplored defect in diamond, the nickel-nitrogen complex (NE8) centre. The most striking feature of the defect is its emission bandwidth of 1.2 nm at room temperature. The emission wavelength of the defect is around 800 nm, which is suitable for telecom fibres. In addition, in this spectral region little background light from the diamond bulk material is detected. Consequently, a high contrast in antibunching measurements is achieved

  2. Strongly interacting photons and atoms

    International Nuclear Information System (INIS)

    Alge, W.

    1999-05-01

    This thesis contains the main results of the research topics I have pursued during the my PhD studies at the University of Innsbruck and partly in collaboration with the Institut d' Optique in Orsay, France. It is divided into three parts. The first and largest part discusses the possibility of using strong standing waves as a tool to cool and trap neutral atoms in optical cavities. This is very important in the field of nonlinear optics where several successful experiments with cold atoms in cavities have been performed recently. A discussion of the optical parametric oscillator in a regime where the nonlinearity dominates the evolution is the topic of the second part. We investigated mainly the statistical properties of the cavity output of the three interactive cavity modes. Very recently a system has been proposed which promises fantastic properties. It should exhibit a giant Kerr nonlinearity with negligible absorption thus leading to a photonic turnstile device based on cold atoms in cavity. We have shown that this model suffers from overly simplistic assumptions and developed several more comprehensive approaches to study the behavior of this system. Apart from the division into three parts of different contents the thesis is divided into publications, supplements and invisible stuff. The intention of the supplements is to reach researchers which work in related areas and provide them with more detailed information about the concepts and the numerical tools we used. It is written especially for diploma and PhD students to give them a chance to use the third part of our work which is actually the largest one. They consist of a large number of computer programs we wrote to investigate the behavior of the systems in parameter regions where no hope exists to solve the equations analytically. (author)

  3. Site-controlled InGaN/GaN single-photon-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Deng, Hui, E-mail: dengh@umich.edu [Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109 (United States); Teng, Chu-Hsiang; Ku, Pei-Cheng, E-mail: peicheng@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109 (United States)

    2016-04-11

    We report single-photon emission from electrically driven site-controlled InGaN/GaN quantum dots. The device is fabricated from a planar light-emitting diode structure containing a single InGaN quantum well, using a top-down approach. The location, dimension, and height of each single-photon-emitting diode are controlled lithographically, providing great flexibility for chip-scale integration.

  4. Handbook of theoretical atomic physics. Data for photon absorption, electron scattering, and vacancies decay

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, Miron [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation); Chernysheva, Larissa [Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation); Yarzhemsky, Victor [Kurnakov Institute of General and Inorganic Chemistry, Moscow (Russian Federation)

    2012-07-01

    The aim of this book is to present highly accurate and extensive theoretical Atomic data and to give a survey of selected calculational methods for atomic physics, used to obtain these data. The book presents the results of calculations of cross sections and probabilities of a broad variety of atomic processes with participation of photons and electrons, namely on photoabsorption, electron scattering and accompanying effects. Included are data for photoabsorption and electron scattering cross-sections and probabilities of vacancy decay formed for a large number of atoms and ions. Attention is also given to photoionization and vacancy decay in endohedrals and to positron-atom scattering. The book is richly illustrated. The methods used are one-electron Hartree-Fock and the technique of Feynman diagrams that permits to include many-electron correlations. This is done in the frames of the Random Phase approximation with exchange and the many-body perturbation theory. Newly obtained and previously collected atomic data are presented. The atomic data are useful for investigating the electronic structure and physical processes in solids and liquids, molecules and clusters, astronomical objects, solar and planet atmospheres and atomic nucleus. Deep understanding of chemical reactions and processes is reached by deep and accurate knowledge of atomic structure and processes with participation of atoms. This book is useful for theorists performing research in different domains of contemporary physics, chemistry and biology, technologists working on production of new materials and for experimentalists performing research in the field of photon and electron interaction with atoms, molecules, solid bodies and liquids.

  5. Single-photon compressive imaging with some performance benefits over raster scanning

    International Nuclear Information System (INIS)

    Yu, Wen-Kai; Liu, Xue-Feng; Yao, Xu-Ri; Wang, Chao; Zhai, Guang-Jie; Zhao, Qing

    2014-01-01

    A single-photon imaging system based on compressed sensing has been developed to image objects under ultra-low illumination. With this system, we have successfully realized imaging at the single-photon level with a single-pixel avalanche photodiode without point-by-point raster scanning. From analysis of the signal-to-noise ratio in the measurement we find that our system has much higher sensitivity than conventional ones based on point-by-point raster scanning, while the measurement time is also reduced. - Highlights: • We design a single photon imaging system with compressed sensing. • A single point avalanche photodiode is used without raster scanning. • The Poisson shot noise in the measurement is analyzed. • The sensitivity of our system is proved to be higher than that of raster scanning

  6. Memory effect in silicon time-gated single-photon avalanche diodes

    International Nuclear Information System (INIS)

    Dalla Mora, A.; Contini, D.; Di Sieno, L.; Tosi, A.; Boso, G.; Villa, F.; Pifferi, A.

    2015-01-01

    We present a comprehensive characterization of the memory effect arising in thin-junction silicon Single-Photon Avalanche Diodes (SPADs) when exposed to strong illumination. This partially unknown afterpulsing-like noise represents the main limiting factor when time-gated acquisitions are exploited to increase the measurement dynamic range of very fast (picosecond scale) and faint (single-photon) optical signals following a strong stray one. We report the dependences of this unwelcome signal-related noise on photon wavelength, detector temperature, and biasing conditions. Our results suggest that this so-called “memory effect” is generated in the deep regions of the detector, well below the depleted region, and its contribution on detector response is visible only when time-gated SPADs are exploited to reject a strong burst of photons

  7. Memory effect in silicon time-gated single-photon avalanche diodes

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Mora, A.; Contini, D., E-mail: davide.contini@polimi.it; Di Sieno, L. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Tosi, A.; Boso, G.; Villa, F. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Pifferi, A. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); CNR, Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)

    2015-03-21

    We present a comprehensive characterization of the memory effect arising in thin-junction silicon Single-Photon Avalanche Diodes (SPADs) when exposed to strong illumination. This partially unknown afterpulsing-like noise represents the main limiting factor when time-gated acquisitions are exploited to increase the measurement dynamic range of very fast (picosecond scale) and faint (single-photon) optical signals following a strong stray one. We report the dependences of this unwelcome signal-related noise on photon wavelength, detector temperature, and biasing conditions. Our results suggest that this so-called “memory effect” is generated in the deep regions of the detector, well below the depleted region, and its contribution on detector response is visible only when time-gated SPADs are exploited to reject a strong burst of photons.

  8. Polarization contrast in photon scanning tunnelling microscopy combined with atomic force microscopy

    NARCIS (Netherlands)

    Propstra, K.; Propstra, K.; van Hulst, N.F.

    1995-01-01

    Photon scanning tunnelling microscopy combined with atomic force microscopy allows simultaneous acquisition and direct comparison of optical and topographical images, both with a lateral resolution of about 30 nm, far beyond the optical diffraction limit. The probe consists of a modified

  9. Measurement-Based Entanglement of Noninteracting Bosonic Atoms.

    Science.gov (United States)

    Lester, Brian J; Lin, Yiheng; Brown, Mark O; Kaufman, Adam M; Ball, Randall J; Knill, Emanuel; Rey, Ana M; Regal, Cindy A

    2018-05-11

    We demonstrate the ability to extract a spin-entangled state of two neutral atoms via postselection based on a measurement of their spatial configuration. Typically, entangled states of neutral atoms are engineered via atom-atom interactions. In contrast, in our Letter, we use Hong-Ou-Mandel interference to postselect a spin-singlet state after overlapping two atoms in distinct spin states on an effective beam splitter. We verify the presence of entanglement and determine a bound on the postselected fidelity of a spin-singlet state of (0.62±0.03). The experiment has direct analogy to creating polarization entanglement with single photons and hence demonstrates the potential to use protocols developed for photons to create complex quantum states with noninteracting atoms.

  10. Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin

    Science.gov (United States)

    He, Yu; He, Yu-Ming; Wei, Yu-Jia; Jiang, Xiao; Chen, Kai; Lu, Chao-Yang; Pan, Jian-Wei; Schneider, Christian; Kamp, Martin; Höfling, Sven

    2017-08-01

    Quantum state transfer from flying photons to stationary matter qubits is an important element in the realization of quantum networks. Self-assembled semiconductor quantum dots provide a promising solid-state platform hosting both single photon and spin, with an inherent light-matter interface. Here, we develop a method to coherently and actively control the single-photon frequency bins in superposition using electro-optic modulators, and measure the spin-photon entanglement with a fidelity of 0.796 ±0.020 . Further, by Greenberger-Horne-Zeilinger-type state projection on the frequency, path, and polarization degrees of freedom of a single photon, we demonstrate quantum state transfer from a single photon to a single electron spin confined in an InGaAs quantum dot, separated by 5 m. The quantum state mapping from the photon's polarization to the electron's spin is demonstrated along three different axes on the Bloch sphere, with an average fidelity of 78.5%.

  11. Bi-dimensional arrays of SPAD for time-resolved single photon imaging

    International Nuclear Information System (INIS)

    Tudisco, S.; Lanzano, L.; Musumeci, F.; Neri, L.; Privitera, S.; Scordino, A.; Condorelli, G.; Fallica, G.; Mazzillo, M.; Sanfilippo, D.; Valvo, G.

    2009-01-01

    Many scientific areas like astronomy, biophysics, biomedicine, nuclear and plasma science, etc. are interested in the development of a new time-resolved single photon imaging device. Such a device represents today one of the most challenging goals in the field of photonics. In collaboration with Catania R and D staff of ST-Microelectronics (STM) we created, during the last few years, a new avalanche photosensor-Single Photon Avalanche Diode (SPAD) able to detect and count, with excellent performance, single photons. Further we will discuss the possible realization of a single photon imaging device through the many elements integration (bi-dimensional arrays) of SPADs. In order to achieve the goal, it is also important to develop an appropriate readout strategy able to address the time information of each individual sensor and in order to read a great number of elements easily. First prototypes were designed and manufactured by STM and the results are reported here. In the paper we will discuss in particular: (i) sensor performance (gain, photodetection efficiency, timing, after-pulsing, etc.); (ii) array performance (layout, cross-talk, etc.); (iii) readout strategy (quenching, electronics), and (iv) first imaging results (general performance).

  12. Nano-LED array fabrication suitable for future single photon lithography

    International Nuclear Information System (INIS)

    Mikulics, M; Hardtdegen, H

    2015-01-01

    We report on an alternative illumination concept for a future lithography based on single-photon emitters and important technological steps towards its implementation. Nano light-emitting diodes (LEDs) are chosen as the photon emitters. First, the development of their fabrication and their integration technology is presented, then their optical characteristics assessed. Last, size-controlled nano-LEDs, well positioned in an array, are electrically driven and utilized for illumination. Nanostructures are lithographically formed, demonstrating the feasibility of the approach. The potential of single-photon lithography to reach the ultimate scale limits in mass production is discussed. (paper)

  13. Electromagnetically induced photonic bandgap in hot Cs atoms

    International Nuclear Information System (INIS)

    Li, D. W.; Zhang, L.; Su, X. M.; Zhuo, Z. C.; Kim, J. B

    2010-01-01

    Three-level Λ-type thermal Cs atoms are used to demonstrate the phenomenon of a photonic bandgap induced by quantum coherence with a standing wave (SW). We observed the transmitted signals of probe field driven by several kinds of SW, which are formed by a strong forward-traveling field and a backward-traveling field when a mirror reflects the forward-traveling beam. Considering Doppler inhomogeneous broadenings with a SW drive, we employ Fourier transformation to solve density-matrix equations for simulation results. The simulation results are found to be consistent with the experimental results.

  14. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors

    Science.gov (United States)

    Dutton, Neale A. W.; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K.

    2016-01-01

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed. PMID:27447643

  15. Nonclassicality characterization in photon statistics based on binary-response single-photon detection

    International Nuclear Information System (INIS)

    Guo Yanqiang; Yang Rongcan; Li Gang; Zhang Pengfei; Zhang Yuchi; Wang Junmin; Zhang Tiancai

    2011-01-01

    By employing multiple conventional single-photon counting modules (SPCMs), which are binary-response detectors, instead of photon number resolving detectors, the nonclassicality criteria are investigated for various quantum states. The bounds of the criteria are derived from a system based on three or four SPCMs. The overall efficiency and background are both taken into account. The results of experiments with thermal and coherent light agree with the theoretical analysis. Compared with photon number resolving detectors, the use of a Hanbury Brown-Twiss-like scheme with multiple SPCMs is even better for revealing the nonclassicality of the fields, and the efficiency requirements are not so stringent. Some proposals are presented which can improve the detection performance with binary-response SPCMs for different quantum states.

  16. Single Molecule Experiments Challenge the Strict Wave-Particle Dualism of Light

    Directory of Open Access Journals (Sweden)

    Karl Otto Greulich

    2010-01-01

    Full Text Available Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the “single photon limit” of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. “Single photon detectors” do not meet their promise―only “photon number resolving single photon detectors” do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified.

  17. Evolution Properties of Atomic Fidelity in the Combined Multi-Atom-Cavity Field System

    International Nuclear Information System (INIS)

    Wang Ju-Xia; Zhang Xiao-Juan; Zhang Xiu-Xing

    2015-01-01

    The atom fidelity is investigated in a system consisting of Mtwo-level atoms and M single-mode fields by use of complete quantum theory and numerical evaluation method. The influences of various system parameters on the evolution of atomic fidelity are studied. The results show that the atomic fidelity evolves in a Rabi oscillation manner. The oscillation frequency is mainly modulated by the coupling strength between atoms and light field, the atomic transition probabilities and the average photon numbers. Other factors hardly impact on the atomic fidelity. The present results may provide a useful approach to the maintenance of the atomic fidelity in the atom cavity field systems. (paper)

  18. Control of one- and two-photon absorption in a four-level atomic system by changing the amplitude and phase of a driving microwave field

    International Nuclear Information System (INIS)

    Hou, B P; Wang, S J; Yu, W L; Sun, W L

    2005-01-01

    We consider the one- and two-photon absorption spectra of a four-level Y-type atom with the two highest lying levels driven by a microwave field. We found that in the one-photon absorption case, the microwave field can lead to the probe gain, and the absorption and gain spectral structures depend strongly on the microwave field amplitude. For the two-photon absorption case, the strong microwave field can enhance the absorption. When the microwave field amplitude is reduced to a certain value, the single absorption peak in the two-photon spectrum changes into a structure of two-peak structure with different magnitudes. Moreover, the one- and two-photon absorption spectra can be modulated by the phase of the microwave field which produces a closed-loop configuration. Finally, we use the analytic solutions in terms of dressed-state basis to explain the results from our numerical calculation

  19. Optimization of time-correlated single photon counting spectrometer

    International Nuclear Information System (INIS)

    Zhang Xiufeng; Du Haiying; Sun Jinsheng

    2011-01-01

    The paper proposes a performance improving scheme for the conventional time-correlated single photon counting spectrometer and develops a high speed data acquisition card based on PCI bus and FPGA technologies. The card is used to replace the multi-channel analyzer to improve the capability and decrease the volume of the spectrometer. The process of operation is introduced along with the integration of the spectrometer system. Many standard samples are measured. The experimental results show that the sensitivity of the spectrometer is single photon counting, and the time resolution of fluorescence lifetime measurement can be picosecond level. The instrument could measure the time-resolved spectroscopy. (authors)

  20. Slow Images and Entangled Photons

    International Nuclear Information System (INIS)

    Swordy, Simon

    2007-01-01

    I will discuss some recent experiments using slow light and entangled photons. We recently showed that it was possible to map a two dimensional image onto very low light level signals, slow them down in a hot atomic vapor while preserving the amplitude and phase of the images. If time remains, I will discuss some of our recent work with time-energy entangled photons for quantum cryptography. We were able to show that we could have a measurable state space of over 1000 states for a single pair of entangled photons in fiber.

  1. The investigation of the elastic photon scattering cross sections by copper atoms and ions

    International Nuclear Information System (INIS)

    Kuplyauskene, A.B.

    1976-01-01

    The differential cross sections of coherent scattering of photons on a copper atom and ions Cu + and Cu 2+ and also on ions Zn + and Ga 2+ in their ground states have been studied theoretically. The energy of an incident photon has varied in the range from 0.5 keV to 200 keV, and the scattering cross sections are given for angles of 30 deg, 60 deg, 90 deg, 120 deg, 150 deg. The calculations are performed in the formfactor approximation with the use of generalized hydrogen-like analytical radial orbitals. To clarify the contribution from individual shells the cross sections of photon scattering on individual electron of shells are calculated. It follows from the calculations that when the energies of the incident photon are less than 4 keV, the main contribution into the differential cross section is made by external electrons. Then, alongside with the increase of the energy, the contribution of the electrons decreases, and the inner shells begin to play a more important role. Therefore the photon cross sections for the energies greater than 50 keV practically coincide for atoms and ions of copper. The general regularities of the cross section variation accompanying the increase of the photon energy are similar for all the elements under study. The angular dependences of cross sections are such that they decrease first and after reaching the minimum at angles of 90 deg - 120 deg increase again

  2. Characterizing multi-photon quantum interference with practical light sources and threshold single-photon detectors

    Science.gov (United States)

    Navarrete, Álvaro; Wang, Wenyuan; Xu, Feihu; Curty, Marcos

    2018-04-01

    The experimental characterization of multi-photon quantum interference effects in optical networks is essential in many applications of photonic quantum technologies, which include quantum computing and quantum communication as two prominent examples. However, such characterization often requires technologies which are beyond our current experimental capabilities, and today's methods suffer from errors due to the use of imperfect sources and photodetectors. In this paper, we introduce a simple experimental technique to characterize multi-photon quantum interference by means of practical laser sources and threshold single-photon detectors. Our technique is based on well-known methods in quantum cryptography which use decoy settings to tightly estimate the statistics provided by perfect devices. As an illustration of its practicality, we use this technique to obtain a tight estimation of both the generalized Hong‑Ou‑Mandel dip in a beamsplitter with six input photons and the three-photon coincidence probability at the output of a tritter.

  3. Single atoms on demand for cavity QED experiments

    International Nuclear Information System (INIS)

    Dotsenko, I.

    2007-01-01

    Cavity quantum electrodynamics (cavity QED) describes electromagnetic fields in a confined space and the radiative properties of atoms in such fields. The simplest example of such system is a single atom interacting with one mode of a high-finesse resonator. Besides observation and exploration of fundamental quantum mechanical effects, this system bears a high potential for applications quantum information science such as, e.g., quantum logic gates, quantum communication and quantum teleportation. In this thesis I present an experiment on the deterministic coupling of a single neutral atom to the mode of a high-finesse optical resonator. In Chapter 1 I describe our basic techniques for trapping and observing single cesium atoms. As a source of single atoms we use a high-gradient magneto-optical trap, which captures the atoms from background gas in a vacuum chamber and cools them down to millikelvin temperatures. The atoms are then transferred without loss into a standing-wave dipole trap, which provides a conservative potential required for experiments on atomic coherence such as quantum information processing and metrology on trapped atoms. Moreover, shifting the standing-wave pattern allows us to deterministically transport the atoms (Chapter 2). In combination with nondestructive fluorescence imaging of individual trapped atoms, this enables us to control their position with submicrometer precision over several millimeters along the dipole trap. The cavity QED system can distinctly display quantum behaviour in the so-called strong coupling regime, i.e., when the coherent atom-cavity coupling rate dominates dissipation in the system. This sets the main requirements on the resonator's properties: small mode volume and high finesse. Chapter 3 is devoted to the manufacturing, assembling, and testing of an ultra-high finesse optical Fabry-Perot resonator, stabilized to the atomic transition. In Chapter 4 I present the transportation of single atoms into the cavity

  4. Single atoms on demand for cavity QED experiments

    Energy Technology Data Exchange (ETDEWEB)

    Dotsenko, I.

    2007-09-06

    Cavity quantum electrodynamics (cavity QED) describes electromagnetic fields in a confined space and the radiative properties of atoms in such fields. The simplest example of such system is a single atom interacting with one mode of a high-finesse resonator. Besides observation and exploration of fundamental quantum mechanical effects, this system bears a high potential for applications quantum information science such as, e.g., quantum logic gates, quantum communication and quantum teleportation. In this thesis I present an experiment on the deterministic coupling of a single neutral atom to the mode of a high-finesse optical resonator. In Chapter 1 I describe our basic techniques for trapping and observing single cesium atoms. As a source of single atoms we use a high-gradient magneto-optical trap, which captures the atoms from background gas in a vacuum chamber and cools them down to millikelvin temperatures. The atoms are then transferred without loss into a standing-wave dipole trap, which provides a conservative potential required for experiments on atomic coherence such as quantum information processing and metrology on trapped atoms. Moreover, shifting the standing-wave pattern allows us to deterministically transport the atoms (Chapter 2). In combination with nondestructive fluorescence imaging of individual trapped atoms, this enables us to control their position with submicrometer precision over several millimeters along the dipole trap. The cavity QED system can distinctly display quantum behaviour in the so-called strong coupling regime, i.e., when the coherent atom-cavity coupling rate dominates dissipation in the system. This sets the main requirements on the resonator's properties: small mode volume and high finesse. Chapter 3 is devoted to the manufacturing, assembling, and testing of an ultra-high finesse optical Fabry-Perot resonator, stabilized to the atomic transition. In Chapter 4 I present the transportation of single atoms into the

  5. Optical coupling between atomically thin black phosphorus and a two dimensional photonic crystal nanocavity

    Science.gov (United States)

    Ota, Yasutomo; Moriya, Rai; Yabuki, Naoto; Arai, Miho; Kakuda, Masahiro; Iwamoto, Satoshi; Machida, Tomoki; Arakawa, Yasuhiko

    2017-05-01

    Atomically thin black phosphorus (BP) is an emerging two dimensional (2D) material exhibiting bright photoluminescence in the near infrared region. Coupling its radiation to photonic nanostructures will be an important step toward the realization of 2D material based nanophotonic devices that operate efficiently in the near infrared region, which includes the technologically important optical telecommunication wavelength bands. In this letter, we demonstrate the optical coupling between atomically thin BP and a 2D photonic crystal nanocavity. We employed a home-build dry transfer apparatus for placing a thin BP flake on the surface of the nanocavity. Their optical coupling was analyzed through measuring cavity mode emission under optical carrier injection at room temperature.

  6. Quantitative single-photon emission tomography for cerebral flow and receptor distribution imaging

    International Nuclear Information System (INIS)

    Budinger, T.F.

    1985-01-01

    Recently there has been renewed interest in single-photon emission tomography for two major reasons. First, correction methods have been devised for attenuation compensation, nonuniform resolution, and scattered radiation. Second, new radiopharmaceuticals with 1-5% uptake in the brain provide adequate statistics for quantitative imaging of flow using properly designed single-photon tomographic instruments. The lack of commercially available instruments designed specifically to optimize sensitivity for a resolution finer than 15 mm full width at half maximum (FWHM) seems now to be the major deterrent to the widespread use of single-photon emission tomography. But it appears now that some development in this respect also might lead to a widespread renewed interest in single-photon tomography of the brain. Major activities of the past few years can be placed in three distinct categories of instrumentation and methodology

  7. The photonics collapse-revival's of intensity-dependent coupling of lambda atoms and fields

    International Nuclear Information System (INIS)

    Hajivandi, J.; Golshan, M. M.

    2007-01-01

    In this paper, we extend the intensity-dependent coupling of the interaction of two-level atoms and an electromagnetic field, originated by Sivakumar, to that of Λ-type atoms. In addition, we assume that the interaction occurs in a Kerr medium. In the present model we allow the Λ-type atom to interact with two quantized electromagnetic fields, one of which is initially coherent while the other one is not. We thus report the effect of such coupling and the medium on the collapse-revival's of the photonic mean numbers.

  8. Spectrum of acetylene fluorescence excited by single XUV photons

    International Nuclear Information System (INIS)

    Schmieder, R.W.

    1982-01-01

    The spectrum of visible emission from photofragments of acetylene excited by single 16.85 eV photons has been recorded for the first time. The spectrum is dominated by the Swan and Deslandres-d'Azambuja bands of C 2 and the 431.5 nm band of CH. The yields of these emissions are of the order 10 -3 photons per absorbed incident photon. The experimental conditions suggest that the emission results from primary C* 2 and CH* photofragments

  9. Bright single photon source based on self-aligned quantum dot–cavity systems

    DEFF Research Database (Denmark)

    Maier, Sebastian; Gold, Peter; Forchel, Alfred

    2014-01-01

    We report on a quasi-planar quantum-dot-based single-photon source that shows an unprecedented high extraction efficiency of 42% without complex photonic resonator geometries or post-growth nanofabrication. This very high efficiency originates from the coupling of the photons emitted by a quantum...... dot to a Gaussian shaped nanohill defect that naturally arises during epitaxial growth in a self-aligned manner. We investigate the morphology of these defects and characterize the photonic operation mechanism. Our results show that these naturally arising coupled quantum dot-defects provide a new...... avenue for efficient (up to 42% demonstrated) and pure (g2(0) value of 0.023) single-photon emission....

  10. Single-photon counting in the 1550-nm wavelength region for quantum cryptography

    International Nuclear Information System (INIS)

    Park, Chul-Woo; Park, Jun-Bum; Park, Young-Soo; Lee, Seung-Hun; Shin, Hyun-Jun; Bae, Byung-Seong; Moon, Sung; Han, Sang-Kook

    2006-01-01

    In this paper, we report the measured performance of an InGaAs avalanche photodiode (APD) Module fabricated for single-photon counting. We measured the dark current noise, the after-pulse noise, and the quantum efficiency of the single- photon detector for different temperatures. We then examined our single-photon source and detection system by measuring the coincident probability. From our measurement, we observed that the after-pulse effect of the APD at temperatures below 105 .deg. C caused cascade noise build-up on the succeeding electrical signals.

  11. Decoherence for a quantum memory in an ensemble of cold atoms

    International Nuclear Information System (INIS)

    Riedmatten, H. de; Chou, C.W.; Felinto, D.; Plyakov, S.; Kimble, H.J.

    2005-01-01

    Full text: Atomic ensembles are a promising candidate for various applications in quantum information science. In particular, Duan, Lukin Cirac and Zoller (DLCZ) have proposed a protocol allowing scalable long distance quantum communication using atomic ensembles and linear optics. The DLCZ protocol is a probabilistic scheme based upon the entanglement of atomic ensembles via the detection of single photons. The detection of a single photon in the forward scattered direction is uniquely correlated with a collective atomic excitation in the sample, due to a collective enhancement effect. This collective excitation can be in principle stored for a time up to the coherence time of the system, and then released by conversion into a photon. This quantum memory is mandatory for the DLCZ scheme to be scalable. Hence, the coherence time is a critical parameter for this system. Our initial steps towards the realization of the DLCZ protocol have been by way of observations of non-classical correlations between the emitted single photons and the collective atomic excitations. However, in all the experiments reported so far using cold atomic ensembles, the coherence times were extremely short (of the order of 100 ns), thus preventing to take advantage of the quantum memory. In this contribution we explore the cause of this rather fast decoherence process and present an experimental scheme to overcome this problem. First results show an improvement of more than one order of magnitude in the coherence time. Future work includes the entanglement of two spatially separated cold atomic ensembles. (author)

  12. Multi-group dynamic quantum secret sharing with single photons

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongwei [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Ma, Haiqiang, E-mail: hqma@bupt.edu.cn [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Wei, Kejin [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Yang, Xiuqing [School of Science, Beijing Jiaotong University, Beijing 100044 (China); Qu, Wenxiu; Dou, Tianqi; Chen, Yitian; Li, Ruixue; Zhu, Wu [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2016-07-15

    In this letter, we propose a novel scheme for the realization of single-photon dynamic quantum secret sharing between a boss and three dynamic agent groups. In our system, the boss can not only choose one of these three groups to share the secret with, but also can share two sets of independent keys with two groups without redistribution. Furthermore, the security of communication is enhanced by using a control mode. Compared with previous schemes, our scheme is more flexible and will contribute to a practical application. - Highlights: • A multi-group dynamic quantum secret sharing with single photons scheme is proposed. • Any one of the groups can be chosen to share secret through controlling the polarization of photons. • Two sets of keys can be shared simultaneously without redistribution.

  13. Control of spontaneous emission from a microwave-field-driven four-level atom in an anisotropic photonic crystal

    Science.gov (United States)

    Zhang, Duo; Li, Jiahua; Ding, Chunling; Yang, Xiaoxue

    2012-05-01

    The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission.

  14. Pulsed single-photon spectrometer by frequency-to-time mapping using chirped fiber Bragg gratings.

    Science.gov (United States)

    Davis, Alex O C; Saulnier, Paul M; Karpiński, Michał; Smith, Brian J

    2017-05-29

    A fiber-integrated spectrometer for single-photon pulses outside the telecommunications wavelength range based upon frequency-to-time mapping, implemented by chromatic group delay dispersion (GDD), and precise temporally-resolved single-photon counting, is presented. A chirped fiber Bragg grating provides low-loss GDD, mapping the frequency distribution of an input pulse onto the temporal envelope of the output pulse. Time-resolved detection with fast single-photon-counting modules enables monitoring of a wavelength range from 825 nm to 835 nm with nearly uniform efficiency at 55 pm resolution (24 GHz at 830 nm). To demonstrate the versatility of this technique, spectral interference of heralded single photons and the joint spectral intensity distribution of a photon-pair source are measured. This approach to single-photon-level spectral measurements provides a route to realize applications of time-frequency quantum optics at visible and near-infrared wavelengths, where multiple spectral channels must be simultaneously monitored.

  15. Effective atomic numbers, electron densities and kinetic energy released in matter of vitamins for photon interaction

    Science.gov (United States)

    Shantappa, A.; Hanagodimath, S. M.

    2014-01-01

    Effective atomic numbers, electron densities of some vitamins (Retinol, Riboflavin, Niacin, Biotin, Folic acid, Cobalamin, Phylloquinone and Flavonoids) composed of C, H, O, N, Co, P and S have been calculated for total and partial photon interactions by the direct method for energy range 1 keV-100 GeV by using WinXCOM and kinetic energy released in matter (Kerma) relative to air is calculated in energy range of 1 keV-20 MeV. Change in effective atomic number and electron density with energy is calculated for all photon interactions. Variation of photon mass attenuation coefficients with energy are shown graphically only for total photon interaction. It is observed that change in mass attenuation coefficient with composition of different chemicals is very large below 100 keV and moderate between 100 keV and 10 MeV and negligible above 10 MeV. Behaviour of vitamins is almost indistinguishable except biotin and cobalamin because of large range of atomic numbers from 1(H) to 16 (S) and 1(H) to 27(Co) respectively. K a value shows a peak due to the photoelectric effect around K-absorption edge of high- Z constituent of compound for biotin and cobalamin.

  16. Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires

    International Nuclear Information System (INIS)

    Ferrari, Simone; Kahl, Oliver; Kovalyuk, Vadim; Goltsman, Gregory N.; Korneev, Alexander; Pernice, Wolfram H. P.

    2015-01-01

    We investigate single- and multi-photon detection regimes of superconducting nanowire detectors embedded in silicon nitride nanophotonic circuits. At near-infrared wavelengths, simultaneous detection of up to three photons is observed for 120 nm wide nanowires biased far from the critical current, while narrow nanowires below 100 nm provide efficient single photon detection. A theoretical model is proposed to determine the different detection regimes and to calculate the corresponding internal quantum efficiency. The predicted saturation of the internal quantum efficiency in the single photon regime agrees well with plateau behavior observed at high bias currents

  17. Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Simone; Kahl, Oliver [Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe 76132 (Germany); Kovalyuk, Vadim [Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe 76132 (Germany); Department of Physics, Moscow State Pedagogical University, Moscow 119992 (Russian Federation); Goltsman, Gregory N. [Department of Physics, Moscow State Pedagogical University, Moscow 119992 (Russian Federation); National Research University Higher School of Economics, 20 Myasnitskaya Ulitsa, Moscow 101000 (Russian Federation); Korneev, Alexander [Department of Physics, Moscow State Pedagogical University, Moscow 119992 (Russian Federation); Moscow Institute of Physics and Technology (State University), Moscow 141700 (Russian Federation); Pernice, Wolfram H. P., E-mail: wolfram.pernice@kit.edu [Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe 76132 (Germany); Department of Physics, University of Münster, 48149 Münster (Germany)

    2015-04-13

    We investigate single- and multi-photon detection regimes of superconducting nanowire detectors embedded in silicon nitride nanophotonic circuits. At near-infrared wavelengths, simultaneous detection of up to three photons is observed for 120 nm wide nanowires biased far from the critical current, while narrow nanowires below 100 nm provide efficient single photon detection. A theoretical model is proposed to determine the different detection regimes and to calculate the corresponding internal quantum efficiency. The predicted saturation of the internal quantum efficiency in the single photon regime agrees well with plateau behavior observed at high bias currents.

  18. Spatial EPR entanglement in atomic vapor quantum memory

    Science.gov (United States)

    Parniak, Michal; Dabrowski, Michal; Wasilewski, Wojciech

    Spatially-structured quantum states of light are staring to play a key role in modern quantum science with the rapid development of single-photon sensitive cameras. In particular, spatial degree of freedom holds a promise to enhance continous-variable quantum memories. Here we present the first demonstration of spatial entanglement between an atomic spin-wave and a photon measured with an I-sCMOS camera. The system is realized in a warm atomic vapor quantum memory based on rubidium atoms immersed in inert buffer gas. In the experiment we create and characterize a 12-dimensional entangled state exhibiting quantum correlations between a photon and an atomic ensemble in position and momentum bases. This state allows us to demonstrate the Einstein-Podolsky-Rosen paradox in its original version, with an unprecedented delay time of 6 μs between generation of entanglement and detection of the atomic state.

  19. Spatially resolved photoionization of ultracold atoms on an atom chip

    International Nuclear Information System (INIS)

    Kraft, S.; Guenther, A.; Fortagh, J.; Zimmermann, C.

    2007-01-01

    We report on photoionization of ultracold magnetically trapped Rb atoms on an atom chip. The atoms are trapped at 5 μK in a strongly anisotropic trap. Through a hole in the chip with a diameter of 150 μm, two laser beams are focused onto a fraction of the atomic cloud. A first laser beam with a wavelength of 778 nm excites the atoms via a two-photon transition to the 5D level. With a fiber laser at 1080 nm the excited atoms are photoionized. Ionization leads to depletion of the atomic density distribution observed by absorption imaging. The resonant ionization spectrum is reported. The setup used in this experiment is suitable not only to investigate mixtures of Bose-Einstein condensates and ions but also for single-atom detection on an atom chip

  20. Two-Color Single-Photon Photoinitiation and Photoinhibition for Subdiffraction Photolithography

    Science.gov (United States)

    Scott, Timothy F.; Kowalski, Benjamin A.; Sullivan, Amy C.; Bowman, Christopher N.; McLeod, Robert R.

    2009-05-01

    Controlling and reducing the developed region initiated by photoexposure is one of the fundamental goals of optical lithography. Here, we demonstrate a two-color irradiation scheme whereby initiating species are generated by single-photon absorption at one wavelength while inhibiting species are generated by single-photon absorption at a second, independent wavelength. Co-irradiation at the second wavelength thus reduces the polymerization rate, delaying gelation of the material and facilitating enhanced spatial control over the polymerization. Appropriate overlapping of the two beams produces structures with both feature sizes and monomer conversions otherwise unobtainable with use of single- or two-photon absorption photopolymerization. Additionally, the generated inhibiting species rapidly recombine when irradiation with the second wavelength ceases, allowing for fast sequential exposures not limited by memory effects in the material and thus enabling fabrication of complex two- or three-dimensional structures.

  1. Interactive Screen Experiments with Single Photons

    Science.gov (United States)

    Bronner, Patrick; Strunz, Andreas; Silberhorn, Christine; Meyn, Jan-Peter

    2009-01-01

    Single photons are used for fundamental quantum physics experiments as well as for applications. Originally being a topic of advance courses, such experiments are increasingly a subject of undergraduate courses. We provide interactive screen experiments (ISE) for supporting the work in a real laboratory, and for students who do not have access to…

  2. Spatially and Temporally Resolved Atomic Oxygen Measurements in Short Pulse Discharges by Two Photon Laser Induced Fluorescence

    Science.gov (United States)

    Lempert, Walter; Uddi, Mruthunjaya; Mintusov, Eugene; Jiang, Naibo; Adamovich, Igor

    2007-10-01

    Two Photon Laser Induced Fluorescence (TALIF) is used to measure time-dependent absolute oxygen atom concentrations in O2/He, O2/N2, and CH4/air plasmas produced with a 20 nanosecond duration, 20 kV pulsed discharge at 10 Hz repetition rate. Xenon calibrated spectra show that a single discharge pulse creates initial oxygen dissociation fraction of ˜0.0005 for air like mixtures at 40-60 torr total pressure. Peak O atom concentration is a factor of approximately two lower in fuel lean (φ=0.5) methane/air mixtures. In helium buffer, the initially formed atomic oxygen decays monotonically, with decay time consistent with formation of ozone. In all nitrogen containing mixtures, atomic oxygen concentrations are found to initially increase, for time scales on the order of 10-100 microseconds, due presumably to additional O2 dissociation caused by collisions with electronically excited nitrogen. Further evidence of the role of metastable N2 is demonstrated from time-dependent N2 2^nd Positive and NO Gamma band emission spectroscopy. Comparisons with modeling predictions show qualitative, but not quantitative, agreement with the experimental data.

  3. A non-destructive technique for assigning effective atomic number to scientific samples by scattering of 59.54 keV gamma photons

    International Nuclear Information System (INIS)

    Singh, M.P.; Sharma, Amandeep; Singh, Bhajan; Sandhu, B.S.

    2010-01-01

    The objective of present experiment, employing a scattering of 59.54 keV gamma photons, is to assign effective atomic number (Z eff ) to scientific samples (rare earths) of known composition. An HPGe semiconductor detector, placed at 90 o to the incident beam, detects gamma photons scattered from the sample under investigation. The experiment is performed on various elements with atomic number satisfying, 6≤Z≤82, for 59.54 keV incident photons. The intensity ratio of Rayleigh to Compton scattered peaks, corrected for photo-peak efficiency of gamma detector and absorption of photons in the sample and air, is plotted as a function of atomic number and constituted a best fit-curve. From this fit-curve, the respective effective atomic numbers to samples of rare earths are determined. The agreement of measured values of Z eff with theoretical calculations is quite satisfactory.

  4. On-chip photonic transistor based on the spike synchronization in circuit QED

    Science.gov (United States)

    Gül, Yusuf

    2018-03-01

    We consider the single photon transistor in coupled cavity system of resonators interacting with multilevel superconducting artificial atom simultaneously. Effective single mode transformation is used for the diagonalization of the Hamiltonian and impedance matching in terms of the normal modes. Storage and transmission of the incident field are described by the interactions between the cavities controlling the atomic transitions of lowest lying states. Rabi splitting of vacuum-induced multiphoton transitions is considered in input/output relations by the quadrature operators in the absence of the input field. Second-order coherence functions are employed to investigate the photon blockade and delocalization-localization transitions of cavity fields. Spontaneous virtual photon conversion into real photons is investigated in localized and oscillating regimes. Reflection and transmission of cavity output fields are investigated in the presence of the multilevel transitions. Accumulation and firing of the reflected and transmitted fields are used to investigate the synchronization of the bunching spike train of transmitted field and population imbalance of cavity fields. In the presence of single photon gate field, gain enhancement is explained for transmitted regime.

  5. Modeling and Design of High-Efficiency Single-Photon Sources

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Per Kær; Mørk, Jesper

    2013-01-01

    be electrically driven. Several design strategies addressing these requirements have been proposed. In the cavity-based source, light emission is controlled using resonant cavity quantum electrodynamics effects, whereas in the waveguide-based source, broadband electric field screening effects are employed......Solid-state sources capable of emitting single photons on demand are of great interest in quantum information applications. Ideally, such a source should emit exactly one photon into the collection optics per trigger, the emitted photons should be indistinguishable, and the source should...

  6. Microwave-Controlled Generation of Shaped Single Photons in Circuit Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    M. Pechal

    2014-10-01

    Full Text Available Large-scale quantum information processors or quantum communication networks will require reliable exchange of information between spatially separated nodes. The links connecting these nodes can be established using traveling photons that need to be absorbed at the receiving node with high efficiency. This is achievable by shaping the temporal profile of the photons and absorbing them at the receiver by time reversing the emission process. Here, we demonstrate a scheme for creating shaped microwave photons using a superconducting transmon-type three-level system coupled to a transmission line resonator. In a second-order process induced by a modulated microwave drive, we controllably transfer a single excitation from the third level of the transmon to the resonator and shape the emitted photon. We reconstruct the density matrices of the created single-photon states and show that the photons are antibunched. We also create multipeaked photons with a controlled amplitude and phase. In contrast to similar existing schemes, the one we present here is based solely on microwave drives, enabling operation with fixed frequency transmons.

  7. Zn doped GaN for single-photon emission

    Energy Technology Data Exchange (ETDEWEB)

    Behrends, Arne; Ledig, Johannes; Al-Suleiman, Mohamed Aid Mansur; Bakin, Andrey; Waag, Andreas [Institute of Semiconductor Technology, University of Technology Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig (Germany); Peters, Silke; Racu, Ana Maria; Schmunk, Waldemar; Hofer, Helmut; Kueck, Stefan [Physikalisch Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany)

    2012-03-15

    In this work we report on the optical investigation of Zn doped GaN films fabricated by metal organic chemical vapor deposition. The samples show bright emission in the blue spectral range around 2.9 eV when Si codoping is provided. This emission is suggested to be used for single-photon emission, thus the density of the Zn-Si pairs was drastically reduced leading to a decrease of the blue luminescence. For electrically excited single-photon sources these Zn-Si pairs have to be incorporated into LEDs, therefore we fabricated GaN-based nano-LEDs which show electroluminescence at 430 nm (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Parametric conversion and maximally entangled photon pair via collective excitations in a cycle atomic ensemble

    International Nuclear Information System (INIS)

    Li, J.; Yu, R.; Yang, X.

    2008-01-01

    We study the propagation of two quantized optical fields via considering the collective effects of photonic emissions and excitations of a three-level cyclic-type system (such as atomic ensemble with symmetry broken, or the chiral molecular gases, or manual 'atomic' array with symmetry broken), where the quantum transitions is driven by two quantized fields and a classical one. The results show that the parametric conversion and maximally entangled photon pair generation can be achieved by means of the collective excitation of the two upper energy levels induced by the classic optical field. This investigation may be used for the generated coherent short-wavelength quantum radiation and quantum information processing

  9. Single-photon emission associated with double electron capture in F9+ + C collisions

    CERN Document Server

    Elkafrawy, Tamer; Tanis, John A; Warczak, Andrzej

    2016-01-01

    Radiative double electron capture (RDEC), the one-step process occurring in ion-atom collisions, has been investigated for bare fluorine ions colliding with carbon. RDEC is completed when two target electrons are captured to a bound state of a projectile simultaneously with the emission of a single photon. This work is a follow-up to our earlier measurement of RDEC for bare oxygen projectiles, thus providing a recipient system free of electron-related Coulomb fields in both cases and allowing for the comparison between the two collision systems as well as with available theoretical studies. The most significant mechanisms of x-ray emission that may contribute to the RDEC energy region as background processes are also addressed.

  10. Doppler-free two-photon spectroscopy of Yb atoms and efficient generation of a cascade of two photons at 611.3 nm and 555.8 nm

    International Nuclear Information System (INIS)

    Song, Minsoo; Yoon, Duseong; Yoon, Taihyun

    2011-01-01

    We performed high-resolution Doppler-free two-photon spectroscopy of Yb atoms in an effusive atomic beam and generated a cascade of two photons at 611.3 nm (idler) and 555.8 nm (signal) with a narrow bandwidth of 37 MHz. Efficient population transfer from the ground state (6s 2 1 S 0 ) to the upper state (6s7s 1 S 0 ), where direct transition at 291.1 nm is dipole forbidden, was achieved through a resonant two-photon excitation enhanced by the electromagnetically-induced transparency mediated by the intermediate state (6s6p 1 P 1 ). From the upper state, a cascade of two photons in sequence was emitted via the spin triplet state (6s 2 3 P 1 ). Numerical calculations of the density matrix equations taking into account the residual Doppler effect and strong driving fields explain quantitatively the experimental results for the dependences of the idler and the signal beam intensities on the various parameters of the driving fields. We report on the generation of a cascade of two photons with fluxes at the level of a few times 10 6 photons/s detected at a solid angle of 0.01 sr.

  11. Doppler-free two-photon spectroscopy of Yb atoms and efficient generation of a cascade of two photons at 611.3 nm and 555.8 nm

    Energy Technology Data Exchange (ETDEWEB)

    Song, Minsoo; Yoon, Duseong; Yoon, Taihyun [Korea University, Seoul (Korea, Republic of)

    2011-10-15

    We performed high-resolution Doppler-free two-photon spectroscopy of Yb atoms in an effusive atomic beam and generated a cascade of two photons at 611.3 nm (idler) and 555.8 nm (signal) with a narrow bandwidth of 37 MHz. Efficient population transfer from the ground state (6s{sup 2} {sup 1}S{sub 0}) to the upper state (6s7s {sup 1}S{sub 0}), where direct transition at 291.1 nm is dipole forbidden, was achieved through a resonant two-photon excitation enhanced by the electromagnetically-induced transparency mediated by the intermediate state (6s6p {sup 1}P{sub 1}). From the upper state, a cascade of two photons in sequence was emitted via the spin triplet state (6s{sup 2} {sup 3}P{sub 1}). Numerical calculations of the density matrix equations taking into account the residual Doppler effect and strong driving fields explain quantitatively the experimental results for the dependences of the idler and the signal beam intensities on the various parameters of the driving fields. We report on the generation of a cascade of two photons with fluxes at the level of a few times 10{sup 6} photons/s detected at a solid angle of 0.01 sr.

  12. Two-way QKD with single-photon-added coherent states

    Science.gov (United States)

    Miranda, Mario; Mundarain, Douglas

    2017-12-01

    In this work we present a two-way quantum key distribution (QKD) scheme that uses single-photon-added coherent states and displacement operations. The first party randomly sends coherent states (CS) or single-photon-added coherent states (SPACS) to the second party. The latter sends back the same state it received. Both parties decide which kind of states they are receiving by detecting or not a photon on the received signal after displacement operations. The first party must determine whether its sent and received states are equal; otherwise, the case must be discarded. We are going to show that an eavesdropper provided with a beam splitter gets the same information in any of the non-discarded cases. The key can be obtained by assigning 0 to CS and 1 to SPACS in the non-discarded cases. This protocol guarantees keys' security in the presence of a beam splitter attack even for states with a high number of photons in the sent signal. It also works in a lossy quantum channel, becoming a good bet for improving long-distance QKD.

  13. Two-photon laser-induced fluorescence studies of HS radicals, DS radicals, and I atoms

    Energy Technology Data Exchange (ETDEWEB)

    Tiee, J J; Ferris, M J; Loge, G W; Wampler, F B

    1983-04-15

    A two-photon laser-induced excitation and fluorescence technique has been used to study the A /sup 2/..sigma../sup +/ - X/sup 2/PI transition of HS and DS radicals and various high-lying /sup 4/P/sup 0/, /sup 2/D/sup 0/, and /sup 4/D/sup 0/ states of the I atom. The two-photon excitation cross sections and detection sensitivity are discussed. 13 references, 5 figures.

  14. First experimental observation of double-photon Compton scattering using single gamma detector

    International Nuclear Information System (INIS)

    Sandhu, B.S.; Saddi, M.B.; Singh, B.; Ghumman, B.S.

    2003-01-01

    Full text: The phenomenon of double-photon Compton scattering has been successfully observed using single gamma detector, a technique avoiding the use of complicated slow-fast coincidence set-up used till now for observing this higher order process. Here doubly differentiated collision cross-section integrated over direction of one of the two final photons, the direction of other one being kept fixed, has been measured experimentally for 0.662 MeV incident gamma photons. The energy spectra of the detected photons are observed as a long tail to the single-photon Compton line on the lower side of the full energy peak in the recorded scattered energy spectrum. The present results are in agreement with theory of this process

  15. Control of spontaneous emission from a microwave-field-driven four-level atom in an anisotropic photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Duo, E-mail: zhangduo10@gmail.com [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Li, Jiahua, E-mail: huajia_li@163.com [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Ding, Chunling; Yang, Xiaoxue [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-05-21

    The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission. -- Highlights: ► Spontaneous emission properties of an atom embedded in PCs are investigated. ► Spectral-line enhancement, suppression and overlapping are observed. ► The results provide more degrees of freedom to control atomic spontaneous emission.

  16. Control of spontaneous emission from a microwave-field-driven four-level atom in an anisotropic photonic crystal

    International Nuclear Information System (INIS)

    Zhang, Duo; Li, Jiahua; Ding, Chunling; Yang, Xiaoxue

    2012-01-01

    The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission. -- Highlights: ► Spontaneous emission properties of an atom embedded in PCs are investigated. ► Spectral-line enhancement, suppression and overlapping are observed. ► The results provide more degrees of freedom to control atomic spontaneous emission.

  17. Probing Single Pt Atoms in Complex Intermetallic Al13Fe4.

    Science.gov (United States)

    Yamada, Tsunetomo; Kojima, Takayuki; Abe, Eiji; Kameoka, Satoshi; Murakami, Yumi; Gille, Peter; Tsai, An Pang

    2018-03-21

    The atomic structure of a 0.2 atom % Pt-doped complex metallic alloy, monoclinic Al 13 Fe 4 , was investigated using a single crystal prepared by the Czochralski method. High-angle annular dark-field scanning transmission electron microscopy showed that the Pt atoms were dispersed as single atoms and substituted at Fe sites in Al 13 Fe 4 . Single-crystal X-ray structural analysis revealed that the Pt atoms preferentially substitute at Fe(1). Unlike those that have been reported, Pt single atoms in the surface layers showed lower activity and selectivity than those of Al 2 Pt and bulk Pt for propyne hydrogenation, indicating that the active state of a given single-atom Pt site is strongly dominated by the bonding to surrounding Al atoms.

  18. Bright quantum dot single photon source based on a low Q defect cavity

    DEFF Research Database (Denmark)

    Maier, Sebastian; Gold, Peter; Forchel, A.

    2014-01-01

    The quasi-planar single photon source presented in this paper shows an extraction efficiency of 42% without complex photonic resonator geometries or lithography steps as well as a high purity with a g2(0) value of 0.023.......The quasi-planar single photon source presented in this paper shows an extraction efficiency of 42% without complex photonic resonator geometries or lithography steps as well as a high purity with a g2(0) value of 0.023....

  19. Deterministic reshaping of single-photon spectra using cross-phase modulation.

    Science.gov (United States)

    Matsuda, Nobuyuki

    2016-03-01

    The frequency conversion of light has proved to be a crucial technology for communication, spectroscopy, imaging, and signal processing. In the quantum regime, it also offers great potential for realizing quantum networks incorporating disparate physical systems and quantum-enhanced information processing over a large computational space. The frequency conversion of quantum light, such as single photons, has been extensively investigated for the last two decades using all-optical frequency mixing, with the ultimate goal of realizing lossless and noiseless conversion. I demonstrate another route to this target using frequency conversion induced by cross-phase modulation in a dispersion-managed photonic crystal fiber. Owing to the deterministic and all-optical nature of the process, the lossless and low-noise spectral reshaping of a single-photon wave packet in the telecommunication band has been readily achieved with a modulation bandwidth as large as 0.4 THz. I further demonstrate that the scheme is applicable to manipulations of a nonclassical frequency correlation, wave packet interference, and entanglement between two photons. This approach presents a new coherent frequency interface for photons for quantum information processing.

  20. Integration of Single-Photon Sources and Detectors on GaAs

    Directory of Open Access Journals (Sweden)

    Giulia Enrica Digeronimo

    2016-10-01

    Full Text Available Quantum photonic integrated circuits (QPICs on a GaAs platform allow the generation, manipulation, routing, and detection of non-classical states of light, which could pave the way for quantum information processing based on photons. In this article, the prototype of a multi-functional QPIC is presented together with our recent achievements in terms of nanofabrication and integration of each component of the circuit. Photons are generated by excited InAs quantum dots (QDs and routed through ridge waveguides towards photonic crystal cavities acting as filters. The filters with a transmission of 20% and free spectral range ≥66 nm are able to select a single excitonic line out of the complex emission spectra of the QDs. The QD luminescence can be measured by on-chip superconducting single photon detectors made of niobium nitride (NbN nanowires patterned on top of a suspended nanobeam, reaching a device quantum efficiency up to 28%. Moreover, two electrically independent detectors are integrated on top of the same nanobeam, resulting in a very compact autocorrelator for on-chip g(2(τ measurements.

  1. Single-Atom Gating of Quantum State Superpositions

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Christopher

    2010-04-28

    The ultimate miniaturization of electronic devices will likely require local and coherent control of single electronic wavefunctions. Wavefunctions exist within both physical real space and an abstract state space with a simple geometric interpretation: this state space - or Hilbert space - is spanned by mutually orthogonal state vectors corresponding to the quantized degrees of freedom of the real-space system. Measurement of superpositions is akin to accessing the direction of a vector in Hilbert space, determining an angle of rotation equivalent to quantum phase. Here we show that an individual atom inside a designed quantum corral1 can control this angle, producing arbitrary coherent superpositions of spatial quantum states. Using scanning tunnelling microscopy and nanostructures assembled atom-by-atom we demonstrate how single spins and quantum mirages can be harnessed to image the superposition of two electronic states. We also present a straightforward method to determine the atom path enacting phase rotations between any desired state vectors. A single atom thus becomes a real-space handle for an abstract Hilbert space, providing a simple technique for coherent quantum state manipulation at the spatial limit of condensed matter.

  2. Single-spin addressing in an atomic Mott insulator

    DEFF Research Database (Denmark)

    Weitenberg, Christof; Endres, Manuel; Sherson, Jacob

    2011-01-01

    directly monitored the tunnelling quantum dynamics of single atoms in the lattice prepared along a single line, and observed that our addressing scheme leaves the atoms in the motional ground state. The results should enable studies of entropy transport and the quantum dynamics of spin impurities...... and quantum spin dynamics. Here we demonstrate how such control can be implemented at the most fundamental level of a single spin at a specific site of an optical lattice. Using a tightly focused laser beam together with a microwave field, we were able to flip the spin of individual atoms in a Mott insulator...... with sub-diffraction-limited resolution, well below the lattice spacing. The Mott insulator provided us with a large two-dimensional array of perfectly arranged atoms, in which we created arbitrary spin patterns by sequentially addressing selected lattice sites after freezing out the atom distribution. We...

  3. Single Photon Experiments and Quantum Complementarity

    Directory of Open Access Journals (Sweden)

    Georgiev D. D.

    2007-04-01

    Full Text Available Single photon experiments have been used as one of the most striking illustrations of the apparently nonclassical nature of the quantum world. In this review we examine the mathematical basis of the principle of complementarity and explain why the Englert-Greenberger duality relation is not violated in the configurations of Unruh and of Afshar.

  4. Demonstrating quantum random with single photons

    International Nuclear Information System (INIS)

    Bronner, Patrick; Strunz, Andreas; Meyn, Jan-Peter; Silberhorn, Christine

    2009-01-01

    We present an experiment for education which demonstrates random transmission or reflection of heralded single photons on beam splitters. With our set-up, we can realize different quantum random experiments by appropriate settings of polarization rotators. The concept of entanglement is motivated by correlated randomness. The experiments are suitable for undergraduate education and are available as interactive screen experiments.

  5. Streak camera imaging of single photons at telecom wavelength

    Science.gov (United States)

    Allgaier, Markus; Ansari, Vahid; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Donohue, John Matthew; Czerniuk, Thomas; Aßmann, Marc; Bayer, Manfred; Brecht, Benjamin; Silberhorn, Christine

    2018-01-01

    Streak cameras are powerful tools for temporal characterization of ultrafast light pulses, even at the single-photon level. However, the low signal-to-noise ratio in the infrared range prevents measurements on weak light sources in the telecom regime. We present an approach to circumvent this problem, utilizing an up-conversion process in periodically poled waveguides in Lithium Niobate. We convert single photons from a parametric down-conversion source in order to reach the point of maximum detection efficiency of commercially available streak cameras. We explore phase-matching configurations to apply the up-conversion scheme in real-world applications.

  6. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy

    Science.gov (United States)

    Michalet, Xavier; Ingargiola, Antonino; Colyer, Ryan A.; Scalia, Giuseppe; Weiss, Shimon; Maccagnani, Piera; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo

    2014-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements. PMID:25309114

  7. Lateral and vertical manipulations of single atoms on the Ag(1 1 1) surface with the copper single-atom and trimer-apex tips

    International Nuclear Information System (INIS)

    Xie Yiqun; Yang Tianxing; Ye Xiang; Huang Lei

    2011-01-01

    We study the lateral and vertical manipulations of single Ag and Cu atoms on the Ag(1 1 1) surface with the Cu single-atom and trimer-apex tips using molecular statics simulations. The reliability of the lateral manipulation with the Cu single-atom tip is investigated, and compared with that for the Ag tips. We find that overall the manipulation reliability (MR) increases with the decreasing tip height, and in a wide tip-height range the MR is better than those for both the Ag single-atom and trimer-apex tips. This is due to the stronger attractive force of the Cu tip and its better stability against the interactions with the Ag surface. With the Cu trimer-apex tip, the single Ag and Cu adatoms can be picked up from the flat Ag(1 1 1) surface, and moreover a reversible vertical manipulation of single Ag atoms on the stepped Ag(1 1 1) surface is possible, suggesting a method to modify two-dimensional Ag nanostructures on the Ag(1 1 1) surface with the Cu trimer-apex tip.

  8. Correlation functions and susceptibilities of photonics band gap reservoirs

    International Nuclear Information System (INIS)

    Konopka, M.

    1998-01-01

    We investigate quantum statistical properties of photonic band gap reservoirs in terms of correlation functions and susceptibilities in time and spectral domains. Typical features are oscillations of the time-dependent correlation functions and susceptibilities. This is because photonic bad gap reservoirs are intrinsically non-Markovian reservoirs. The results help us to understand better how intrinsic quantum-statistical properties of a reservoir influence dynamics of an atom interacting with this reservoir. Boundary conditions influence time and spectral properties of the electromagnetic field. This well-known fact has a great importance in optics and generally in electromagnetism. Specific examples are resonators used in laser technique and cavity electrodynamics. In quantum optics high-Q micro cavities are used for single-atom experiments when an atom can interact in a coherent way with an electromagnetic field which has its mode structure totally different from those in free space. In particular, interaction of an (effectively) two-level atom with a single-mode cavity field was observed in the region of microwaves (with the wavelength about 1 cm). In 1987 Yablonovitch and John independently proposed that certain periodic dielectric structures can present forbidden frequency gaps (or pseudo gaps in partially disordered structures) for transverse modes. Such periodic structures were named 'photonic band structures' or 'photonic crystals', in analogy with electronic crystals which also have a (forbidden) gap for electronic energy. For true photonic crystals the basic property of blocking electromagnetic wave propagation must be fulfilled for all waves within some frequency range, i.e. for all wavevector and polarization directions

  9. Analysis of InP-based single photon avalanche diodes based on a single recess-etching process

    Science.gov (United States)

    Lee, Kiwon

    2018-04-01

    Effects of the different etching techniques have been investigated by analyzing electrical and optical characteristics of two-types of single-diffused single photon avalanche diodes (SPADs). The fabricated two-types of SPADs have no diffusion depth variation by using a single diffusion process at the same time. The dry-etched SPADs show higher temperature dependence of a breakdown voltage, larger dark-count-rate (DCR), and lower photon-detection-efficiency (PDE) than those of the wet-etched SPADs due to plasma-induced damage of dry-etching process. The results show that the dry etching damages can more significantly affect the performance of the SPADs based on a single recess-etching process.

  10. Photon-HDF5: An Open File Format for Timestamp-Based Single-Molecule Fluorescence Experiments

    OpenAIRE

    Ingargiola, Antonino; Laurence, Ted; Boutelle, Robert; Weiss, Shimon; Michalet, Xavier

    2016-01-01

    We introduce Photon-HDF5, an open and efficient file format to simplify exchange and long-term accessibility of data from single-molecule fluorescence experiments based on photon-counting detectors such as single-photon avalanche diode, photomultiplier tube, or arrays of such detectors. The format is based on HDF5, a widely used platform- and language-independent hierarchical file format for which user-friendly viewers are available. Photon-HDF5 can store raw photon data (timestamp, channel n...

  11. Entanglement detection from interference fringes in atom-photon systems

    International Nuclear Information System (INIS)

    Suzuki, Jun; Nemoto, Kae; Miniatura, Christian

    2010-01-01

    A measurement scheme of atomic qubits pinned at given positions is studied by analyzing the interference pattern obtained when they emit photons spontaneously. In the case of two qubits, a well-known relation is revisited in which the interference visibility is equal to the concurrence of the state in the infinite spatial separation limit of the qubits. By taking into account the superradiant and subradiant effects, it is shown that a state tomography is possible when the qubit spatial separation is comparable to the wavelength of the atomic transition. In the case of three qubits, the relations between various entanglement measures and the interference visibility are studied, where the visibility is defined from the two-qubit case. A qualitative correspondence among these entanglement relations is discussed. In particular, it is shown that the interference visibility is directly related to the maximal bipartite negativity.

  12. Cold atoms in a cryogenic environment

    International Nuclear Information System (INIS)

    Haslinger, S.

    2011-01-01

    The idea of quantum information processing attracts increasingly interest, where a complex collection of quantum objects and quantum bits are employed to find the ideal building blocks for quantum information systems. Hybrid quantum systems are therefore promising objects as they countervail the particular drawbacks of single quantum objects. Based on superconducting resonator technology, microwave coplanar waveguides provide a well suited interconnection for photons and solid-state quantum bits (qubits), extensively investigated in recent years. Since a quantum memory is presently missing in those electrical accessible circuit cavity quantum devices, connecting the fast processing in a solid sate device to the exceptional long coherence times in atomic ensembles, the presented work is focused to establish the technological foundations for the hybridization of such quantum systems. The microwave photons stored in a superconducting high finesse microwave resonator are therefore an ideal connection between the atom and the solid state quantum world. In the last decade, the miniaturization and integration of quantum optics and atomic physics manipulation techniques on to a single chip was successfully established. Such atom chips are capable of detailed quantum manipulation of ultra-cold atoms and provide a versatile platform to combine the manipulation techniques from atomic physics with the capability of nano-fabrication. In recent years several experiments succeeded in realization of superconducting atom chips in cryogenic environments which opens the road for integrating super-conductive microwave resonators to magnetically couple an atomic ensemble to photons stored in the coplanar high finesse cavity. This thesis presents the concept, design and experimental setup of two approaches to establish an atomic ensemble of rubidium atoms inside a cryogenic environment, based on an Electron beam driven alkali metal atom source for loading a magneto optical trap in a

  13. Cross correlations of quantum key distribution based on single-photon sources

    International Nuclear Information System (INIS)

    Dong Shuangli; Wang Xiaobo; Zhang Guofeng; Sun Jianhu; Zhang Fang; Xiao Liantuan; Jia Suotang

    2009-01-01

    We theoretically analyze the second-order correlation function in a quantum key distribution system with real single-photon sources. Based on single-event photon statistics, the influence of the modification caused by an eavesdropper's intervention and the effects of background signals on the cross correlations between authorized partners are presented. On this basis, we have shown a secure range of correlation against the intercept-resend attacks.

  14. A photon position sensor consisting of single-electron circuits

    International Nuclear Information System (INIS)

    Kikombo, Andrew Kilinga; Amemiya, Yoshihito; Tabe, Michiharu

    2009-01-01

    This paper proposes a solid-state sensor that can detect the position of incident photons with a high spatial resolution. The sensor consists of a two-dimensional array of single-electron oscillators, each coupled to its neighbors through coupling capacitors. An incident photon triggers an excitatory circular wave of electron tunneling in the oscillator array. The wave propagates in all directions to reach the periphery of the array. By measuring the arrival time of the wave at the periphery, we can know the position of the incident photon. The tunneling wave's generation, propagation, arrival at the array periphery, and the determination of incident photon positions are demonstrated with the results of Monte Carlo based computer simulations.

  15. On-demand generation of background-free single photons from a solid-state source

    Science.gov (United States)

    Schweickert, Lucas; Jöns, Klaus D.; Zeuner, Katharina D.; Covre da Silva, Saimon Filipe; Huang, Huiying; Lettner, Thomas; Reindl, Marcus; Zichi, Julien; Trotta, Rinaldo; Rastelli, Armando; Zwiller, Val

    2018-02-01

    True on-demand high-repetition-rate single-photon sources are highly sought after for quantum information processing applications. However, any coherently driven two-level quantum system suffers from a finite re-excitation probability under pulsed excitation, causing undesirable multi-photon emission. Here, we present a solid-state source of on-demand single photons yielding a raw second-order coherence of g(2 )(0 )=(7.5 ±1.6 )×10-5 without any background subtraction or data processing. To this date, this is the lowest value of g(2 )(0 ) reported for any single-photon source even compared to the previously reported best background subtracted values. We achieve this result on GaAs/AlGaAs quantum dots embedded in a low-Q planar cavity by employing (i) a two-photon excitation process and (ii) a filtering and detection setup featuring two superconducting single-photon detectors with ultralow dark-count rates of (0.0056 ±0.0007 ) s-1 and (0.017 ±0.001 ) s-1, respectively. Re-excitation processes are dramatically suppressed by (i), while (ii) removes false coincidences resulting in a negligibly low noise floor.

  16. Photon counting imaging and centroiding with an electron-bombarded CCD using single molecule localisation software

    International Nuclear Information System (INIS)

    Hirvonen, Liisa M.; Barber, Matthew J.; Suhling, Klaus

    2016-01-01

    Photon event centroiding in photon counting imaging and single-molecule localisation in super-resolution fluorescence microscopy share many traits. Although photon event centroiding has traditionally been performed with simple single-iteration algorithms, we recently reported that iterative fitting algorithms originally developed for single-molecule localisation fluorescence microscopy work very well when applied to centroiding photon events imaged with an MCP-intensified CMOS camera. Here, we have applied these algorithms for centroiding of photon events from an electron-bombarded CCD (EBCCD). We find that centroiding algorithms based on iterative fitting of the photon events yield excellent results and allow fitting of overlapping photon events, a feature not reported before and an important aspect to facilitate an increased count rate and shorter acquisition times.

  17. Ballistic Anisotropic Magnetoresistance of Single-Atom Contacts.

    Science.gov (United States)

    Schöneberg, J; Otte, F; Néel, N; Weismann, A; Mokrousov, Y; Kröger, J; Berndt, R; Heinze, S

    2016-02-10

    Anisotropic magnetoresistance, that is, the sensitivity of the electrical resistance of magnetic materials on the magnetization direction, is expected to be strongly enhanced in ballistic transport through nanoscale junctions. However, unambiguous experimental evidence of this effect is difficult to achieve. We utilize single-atom junctions to measure this ballistic anisotropic magnetoresistance (AMR). Single Co and Ir atoms are deposited on domains and domain walls of ferromagnetic Fe layers on W(110) to control their magnetization directions. They are contacted with nonmagnetic tips in a low-temperature scanning tunneling microscope to measure the junction conductances. Large changes of the magnetoresistance occur from the tunneling to the ballistic regime due to the competition of localized and delocalized d-orbitals, which are differently affected by spin-orbit coupling. This work shows that engineering the AMR at the single atom level is feasible.

  18. Elliptical quantum dots as on-demand single photons sources with deterministic polarization states

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Chu-Hsiang; Demory, Brandon; Ku, Pei-Cheng, E-mail: peicheng@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48105 (United States); Zhang, Lei; Hill, Tyler A.; Deng, Hui [Department of Mechanical Engineering, University of Michigan, 2350 Hayward St., Ann Arbor, Michigan 48105 (United States)

    2015-11-09

    In quantum information, control of the single photon's polarization is essential. Here, we demonstrate single photon generation in a pre-programmed and deterministic polarization state, on a chip-scale platform, utilizing site-controlled elliptical quantum dots (QDs) synthesized by a top-down approach. The polarization from the QD emission is found to be linear with a high degree of linear polarization and parallel to the long axis of the ellipse. Single photon emission with orthogonal polarizations is achieved, and the dependence of the degree of linear polarization on the QD geometry is analyzed.

  19. Investigation on single carbon atom transporting through the single-walled carbon nanotube by MD simulation

    International Nuclear Information System (INIS)

    Ding Yinfeng; Zhang Zhibin; Ke Xuezhi; Zhu Zhiyuan; Zhu Dezhang; Wang Zhenxia; Xu Hongjie

    2005-01-01

    The single carbon atom transporting through the single-walled carbon nanotube has been studied by molecular-dynamics (MD) simulation. We got different trajectories of the carbon atom by changing the input parameters. The simulation results indicate that the single carbon atom with low energy can transport through the carbon nanotube under some input conditions and result in different trajectories being straight line or 'rosette' or circular. (authors)

  20. Measuring temporal summation in visual detection with a single-photon source.

    Science.gov (United States)

    Holmes, Rebecca; Victora, Michelle; Wang, Ranxiao Frances; Kwiat, Paul G

    2017-11-01

    Temporal summation is an important feature of the visual system which combines visual signals that arrive at different times. Previous research estimated complete summation to last for 100ms for stimuli judged "just detectable." We measured the full range of temporal summation for much weaker stimuli using a new paradigm and a novel light source, developed in the field of quantum optics for generating small numbers of photons with precise timing characteristics and reduced variance in photon number. Dark-adapted participants judged whether a light was presented to the left or right of their fixation in each trial. In Experiment 1, stimuli contained a stream of photons delivered at a constant rate while the duration was systematically varied. Accuracy should increase with duration as long as the later photons can be integrated with the proceeding ones into a single signal. The temporal integration window was estimated as the point that performance no longer improved, and was found to be 650ms on average. In Experiment 2, the duration of the visual stimuli was kept short (100ms or photons was varied to explore the efficiency of summation over the integration window compared to Experiment 1. There was some indication that temporal summation remains efficient over the integration window, although there is variation between individuals. The relatively long integration window measured in this study may be relevant to studies of the absolute visual threshold, i.e., tests of single-photon vision, where "single" photons should be separated by greater than the integration window to avoid summation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Very bright, near-infrared single photon emitters in diamond

    Directory of Open Access Journals (Sweden)

    D. W. M. Lau

    2013-09-01

    Full Text Available We demonstrate activation of bright diamond single photon emitters in the near infrared range by thermal annealing alone, i.e., without ion implantation. The activation is crucially dependent on the annealing ambient. The activation of the single photon emitters is only observed when the sample is annealed in forming gas (4% H2 in Ar above temperatures of 1000 °C. By contrast, no emitters are activated by annealing in vacuum, oxygen, argon or deuterium. The emitters activated by annealing in forming gas exhibit very bright emission in the 730-760 nm wavelength range and have linewidths of ∼1.5-2.5 nm at room temperature.

  2. Nonlocality of a single photon: Paths to an Einstein-Podolsky-Rosen-steering experiment

    International Nuclear Information System (INIS)

    Jones, S. J.; Wiseman, H. M.

    2011-01-01

    A single-photon incident on a beam splitter produces an entangled field state, and in principle could be used to violate a Bell inequality, but such an experiment (without postselection) is beyond the reach of current experiments. Here we consider the somewhat simpler task of demonstrating Einstein-Podolsky-Rosen (EPR) steering with a single photon (also without postselection). We demonstrate that Alice's choice of measurement on her portion of the entangled state can affect Bob's portion of the entangled state in his laboratory, in a sense rigorously defined by us and Doherty [Phys. Rev. Lett. 98, 140402 (2007)]. Previous work by Lvovsky and coworkers [Phys. Rev. Lett. 92, 047903 (2004)] has addressed this phenomenon (which they called remote preparation) experimentally using homodyne measurements on a single photon. Here we show that, unfortunately, their experimental parameters do not meet the bounds necessary for a rigorous demonstration of EPR steering with a single photon. However, we also show that modest improvements in the experimental parameters, and the addition of photon counting to the arsenal of Alice's measurements, would be sufficient to allow such a demonstration.

  3. Single photon detection with self-quenching multiplication

    Science.gov (United States)

    Zheng, Xinyu (Inventor); Cunningham, Thomas J. (Inventor); Pain, Bedabrata (Inventor)

    2011-01-01

    A photoelectronic device and an avalanche self-quenching process for a photoelectronic device are described. The photoelectronic device comprises a nanoscale semiconductor multiplication region and a nanoscale doped semiconductor quenching structure including a depletion region and an undepletion region. The photoelectronic device can act as a single photon detector or a single carrier multiplier. The avalanche self-quenching process allows electrical field reduction in the multiplication region by movement of the multiplication carriers, thus quenching the avalanche.

  4. Phonon-Assisted Two-Photon Interference from Remote Quantum Emitters.

    Science.gov (United States)

    Reindl, Marcus; Jöns, Klaus D; Huber, Daniel; Schimpf, Christian; Huo, Yongheng; Zwiller, Val; Rastelli, Armando; Trotta, Rinaldo

    2017-07-12

    Photonic quantum technologies are on the verge of finding applications in everyday life with quantum cryptography and quantum simulators on the horizon. Extensive research has been carried out to identify suitable quantum emitters and single epitaxial quantum dots have emerged as near-optimal sources of bright, on-demand, highly indistinguishable single photons and entangled photon-pairs. In order to build up quantum networks, it is essential to interface remote quantum emitters. However, this is still an outstanding challenge, as the quantum states of dissimilar "artificial atoms" have to be prepared on-demand with high fidelity and the generated photons have to be made indistinguishable in all possible degrees of freedom. Here, we overcome this major obstacle and show an unprecedented two-photon interference (visibility of 51 ± 5%) from remote strain-tunable GaAs quantum dots emitting on-demand photon-pairs. We achieve this result by exploiting for the first time the full potential of a novel phonon-assisted two-photon excitation scheme, which allows for the generation of highly indistinguishable (visibility of 71 ± 9%) entangled photon-pairs (fidelity of 90 ± 2%), enables push-button biexciton state preparation (fidelity of 80 ± 2%) and outperforms conventional resonant two-photon excitation schemes in terms of robustness against environmental decoherence. Our results mark an important milestone for the practical realization of quantum repeaters and complex multiphoton entanglement experiments involving dissimilar artificial atoms.

  5. Complete Bell-state analysis for a single-photon hybrid entangled state

    International Nuclear Information System (INIS)

    Sheng Yu-Bo; Zhou Lan; Cheng Wei-Wen; Gong Long-Yan; Wang Lei; Zhao Sheng-Mei

    2013-01-01

    We propose a scheme capable of performing complete Bell-state analysis for a single-photon hybrid entangled state. Our single-photon state is encoded in both polarization and frequency degrees of freedom. The setup of the scheme is composed of polarizing beam splitters, half wave plates, frequency shifters, and independent wavelength division multiplexers, which are feasible using current technology. We also show that with this setup we can perform complete two-photon Bell-state analysis schemes for polarization degrees of freedom. Moreover, it can also be used to perform the teleportation scheme between different degrees of freedom. This setup may allow extensive applications in current quantum communications

  6. Localization of Narrowband Single Photon Emitters in Nanodiamonds.

    Science.gov (United States)

    Bray, Kerem; Sandstrom, Russell; Elbadawi, Christopher; Fischer, Martin; Schreck, Matthias; Shimoni, Olga; Lobo, Charlene; Toth, Milos; Aharonovich, Igor

    2016-03-23

    Diamond nanocrystals that host room temperature narrowband single photon emitters are highly sought after for applications in nanophotonics and bioimaging. However, current understanding of the origin of these emitters is extremely limited. In this work, we demonstrate that the narrowband emitters are point defects localized at extended morphological defects in individual nanodiamonds. In particular, we show that nanocrystals with defects such as twin boundaries and secondary nucleation sites exhibit narrowband emission that is absent from pristine individual nanocrystals grown under the same conditions. Critically, we prove that the narrowband emission lines vanish when extended defects are removed deterministically using highly localized electron beam induced etching. Our results enhance the current understanding of single photon emitters in diamond and are directly relevant to fabrication of novel quantum optics devices and sensors.

  7. Distributed quantum computing with single photon sources

    International Nuclear Information System (INIS)

    Beige, A.; Kwek, L.C.

    2005-01-01

    Full text: Distributed quantum computing requires the ability to perform nonlocal gate operations between the distant nodes (stationary qubits) of a large network. To achieve this, it has been proposed to interconvert stationary qubits with flying qubits. In contrast to this, we show that distributed quantum computing only requires the ability to encode stationary qubits into flying qubits but not the conversion of flying qubits into stationary qubits. We describe a scheme for the realization of an eventually deterministic controlled phase gate by performing measurements on pairs of flying qubits. Our scheme could be implemented with a linear optics quantum computing setup including sources for the generation of single photons on demand, linear optics elements and photon detectors. In the presence of photon loss and finite detector efficiencies, the scheme could be used to build large cluster states for one way quantum computing with a high fidelity. (author)

  8. Single photon energy dispersive x-ray diffraction

    International Nuclear Information System (INIS)

    Higginbotham, Andrew; Patel, Shamim; Ciricosta, Orlando; Suggit, Matthew J.; Wark, Justin S.; Hawreliak, James A.; Collins, Gilbert W.; Coppari, Federica; Eggert, Jon H.; Tang, Henry

    2014-01-01

    With the pressure range accessible to laser driven compression experiments on solid material rising rapidly, new challenges in the diagnosis of samples in harsh laser environments are emerging. When driving to TPa pressures (conditions highly relevant to planetary interiors), traditional x-ray diffraction techniques are plagued by increased sources of background and noise, as well as a potential reduction in signal. In this paper we present a new diffraction diagnostic designed to record x-ray diffraction in low signal-to-noise environments. By utilising single photon counting techniques we demonstrate the ability to record diffraction patterns on nanosecond timescales, and subsequently separate, photon-by-photon, signal from background. In doing this, we mitigate many of the issues surrounding the use of high intensity lasers to drive samples to extremes of pressure, allowing for structural information to be obtained in a regime which is currently largely unexplored

  9. Single photon energy dispersive x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Higginbotham, Andrew; Patel, Shamim; Ciricosta, Orlando; Suggit, Matthew J.; Wark, Justin S. [Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Hawreliak, James A.; Collins, Gilbert W.; Coppari, Federica; Eggert, Jon H. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Tang, Henry [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, California 94720 (United States)

    2014-03-15

    With the pressure range accessible to laser driven compression experiments on solid material rising rapidly, new challenges in the diagnosis of samples in harsh laser environments are emerging. When driving to TPa pressures (conditions highly relevant to planetary interiors), traditional x-ray diffraction techniques are plagued by increased sources of background and noise, as well as a potential reduction in signal. In this paper we present a new diffraction diagnostic designed to record x-ray diffraction in low signal-to-noise environments. By utilising single photon counting techniques we demonstrate the ability to record diffraction patterns on nanosecond timescales, and subsequently separate, photon-by-photon, signal from background. In doing this, we mitigate many of the issues surrounding the use of high intensity lasers to drive samples to extremes of pressure, allowing for structural information to be obtained in a regime which is currently largely unexplored.

  10. Studies of atomic diffusion in binary alloys by X-ray photon correlation spectroscopy with particular attention to B2 phases

    International Nuclear Information System (INIS)

    Stana, M.B.

    2015-01-01

    The way single atoms change places in a condensed system determines many of its properties. Insight into the mechanisms controlling such processes, therefore, yields a better understanding of matter which in turn allows for improving fabrication and tailoring of material properties. Intermetallic alloys have many attractive features for industrial applications, such as high specific strength, good corrosion and oxidation resistance and low raw material cost. Their application is, however, still strongly limited by properties such as high brittleness at low temperatures. Methods capable of studying diffusion on an atomistic level have been restricted to high temperatures close to the melting point of intermetallics until now. The new method of atomic- scale X-ray Photon Correlation Spectroscopy provides a means of studying these materials at technically relevant working temperatures. This thesis demonstrates the application of this new technique to binary intermetallic alloys. In the first part the theoretical concepts underlying atomic-scale X-ray Photon Correlation Spectroscopy such as correlation, rate equations, scattering and reciprocal space will be tho- roughly discussed. As computer simulation techniques play an important role in data evaluation, a chapter is dedicated to this topic. The experimental preconditions are then treated. The last chapters are devoted to the presentation of experimental results. It is shown that a new diffusion mechanism is required to explain atomic hops at relatively low temperature in a B2 Fe-Al alloy with a few percent of excess Fe, while in a B2 Ag-Mg alloy with excess Ag commonly known mechanisms can explain the observed diffusion behavior. (author) [de

  11. Deterministic teleportation using single-photon entanglement as a resource

    DEFF Research Database (Denmark)

    Björk, Gunnar; Laghaout, Amine; Andersen, Ulrik L.

    2012-01-01

    We outline a proof that teleportation with a single particle is, in principle, just as reliable as with two particles. We thereby hope to dispel the skepticism surrounding single-photon entanglement as a valid resource in quantum information. A deterministic Bell-state analyzer is proposed which...

  12. MHz rate and efficient synchronous heralding of single photons at telecom wavelengths.

    Science.gov (United States)

    Pomarico, Enrico; Sanguinetti, Bruno; Guerreiro, Thiago; Thew, Rob; Zbinden, Hugo

    2012-10-08

    We report on the realization of a synchronous source of heralded single photons at telecom wavelengths with MHz heralding rates and high heralding efficiency. This source is based on the generation of photon pairs at 810 and 1550 nm via Spontaneous Parametric Down Conversion (SPDC) in a 1 cm periodically poled lithium niobate (PPLN) crystal pumped by a 532 nm pulsed laser. As high rates are fundamental for multi-photon experiments, we show that single telecom photons can be announced at 4.4 MHz rate with 45% heralding efficiency. When we focus only on the optimization of the coupling of the heralded photon, the heralding efficiency can be increased up to 80%. Furthermore, we experimentally observe that group velocity mismatch inside long crystals pumped in a pulsed mode affects the spectrum of the emitted photons and their fibre coupling efficiency. The length of the crystal in this source has been chosen as a trade off between high brightness and high coupling efficiency.

  13. Room-Temperature Single-Photon Emission from Micrometer-Long Air-Suspended Carbon Nanotubes

    Science.gov (United States)

    Ishii, A.; Uda, T.; Kato, Y. K.

    2017-11-01

    Statistics of photons emitted by mobile excitons in individual carbon nanotubes are investigated. Photoluminescence spectroscopy is used to identify the chiralities and suspended lengths of air-suspended nanotubes, and photon-correlation measurements are performed at room temperature on telecommunication-wavelength nanotube emission with a Hanbury-Brown-Twiss setup. We obtain zero-delay second-order correlation g(2 )(0 ) less than 0.5, indicating single-photon generation. Excitation power dependence of the photon antibunching characteristics is examined for nanotubes with various chiralities and suspended lengths, where we find that the minimum value of g(2 )(0 ) is obtained at the lowest power. The influence of exciton diffusion and end quenching is studied by Monte Carlo simulations, and we derive an analytical expression for the minimum value of g(2 )(0 ). Our results indicate that mobile excitons in micrometer-long nanotubes can in principle produce high-purity single photons, leading to new design strategies for quantum photon sources.

  14. Coupling of a single active nanoparticle to a polymer-based photonic structure

    Directory of Open Access Journals (Sweden)

    Dam Thuy Trang Nguyen

    2016-03-01

    Full Text Available The engineered coupling between a guest moiety (molecule, nanoparticle and the host photonic nanostructure may provide a great enhancement of the guest optical response, leading to many attractive applications. In this article, we describe briefly the basic concept and some recent progress considering the coupling of a single nanoparticle into a photonic structure. Different kinds of nanoparticles of great interest including quantum dots and nitrogen-vacancy centers in nanodiamond for single photon source, nonlinear nanoparticles for efficient nonlinear effect and sensors, magnetic nanoparticles for Kerr magneto-optical effect, and plasmonic nanoparticles for ultrafast optical switching and sensors, are briefly reviewed. We focus further on the coupling of plasmonic gold nanoparticles and polymeric photonic structures by optimizing theoretically the photonic structures and developing efficient way to realize desired hybrid structures. The simple and low-cost fabrication technique, the optical enhancement of the fluorescent nanoparticles induced by the photonic structure, as well as the limitations, challenges and appealing prospects are discussed in details.

  15. Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line

    International Nuclear Information System (INIS)

    Tian Long; Li Shujing; Yuan Haoxiang; Wang Hai

    2016-01-01

    Using the process of cavity-enhanced spontaneous parametric down-conversion (SPDC), we generate a narrow-band polarization-entangled photon pair resonant on the rubidium (Rb) D1 line (795 nm). The degenerate single-mode photon pair is selected by multiple temperature controlled etalons. The linewidth of generated polarization-entangled photon pairs is 15 MHz which matches the typical atomic memory bandwidth. The measured Bell parameter for the polarization-entangled photons S = 2.73 ± 0.04 which violates the Bell-CHSH inequality by ∼18 standard deviations. The presented entangled photon pair source could be utilized in quantum communication and quantum computing based on quantum memories in atomic ensemble. (author)

  16. Time evolution, Lamb shift, and emission spectra of spontaneous emission of two identical atoms

    International Nuclear Information System (INIS)

    Wang Dawei; Li Zhenghong; Zheng Hang; Zhu Shiyao

    2010-01-01

    A unitary transformation method is used to investigate the dynamic evolution of two multilevel atoms, in the basis of symmetric and antisymmetric states, with one atom being initially prepared in the first excited state and the other in the ground state. The unitary transformation guarantees that our calculations are based on the ground state of the atom-field system and the self-energy is subtracted at the beginning. The total Lamb shifts of the symmetric and antisymmetric states are divided into transformed shift and dynamic shift. The transformed shift is due to emitting and reabsorbing of virtual photons, by a single atom (nondynamic single atomic shift) and between the two atoms (quasi-static shift). The dynamic shift is due to the emitting and reabsorbing of real photons, by a single atom (dynamic single atomic shift) and between the two atoms (dynamic interatomic shift). The emitting and reabsorbing of virtual and real photons between the two atoms result in the interatomic shift, which does not exist for the one-atom case. The spectra at the long-time limit are calculated. If the distance between the two atoms is shorter than or comparable to the wavelength, the strong coupling between the two atoms splits the spectrum into two peaks, one from the symmetric state and the other from the antisymmetric state. The origin of the red or blue shifts for the symmetric and antisymmetric states mainly lies in the negative or positive interaction energy between the two atoms. In the investigation of the short time evolution, we find the modification of the effective density of states by the interaction between two atoms can modulate the quantum Zeno and quantum anti-Zeno effects in the decays of the symmetric and antisymmetric states.

  17. Angular distributions of low kinetic energy photoelectrons in one- and two-photon ionisation of rare gas atoms

    International Nuclear Information System (INIS)

    O'Keeffe, P; Bolognesi, P; Avaldi, L; Richter, R; Moise, A; Cleva, P De; Mihelic, A

    2012-01-01

    The angular distributions of electrons emitted in the photoionisation of rare gas atoms using one and two photons are presented. The one-photon results show that these differential measurements can provide complementary information on the photoionisation event with respect to the measurement of the total absorption cross section while the two photon ionization allows additional parameters to be extracted from the experiments thus permitting a more complete description of the photoionisation dynamics.

  18. Ultrathin NbN film superconducting single-photon detector array

    International Nuclear Information System (INIS)

    Smirnov, K; Korneev, A; Minaeva, O; Divochiy, A; Tarkhov, M; Ryabchun, S; Seleznev, V; Kaurova, N; Voronov, B; Gol'tsman, G; Polonsky, S

    2007-01-01

    We report on the fabrication process of the 2 x 2 superconducting single-photon detector (SSPD) array. The SSPD array is made from ultrathin NbN film and is operated at liquid helium temperatures. Each detector is a nanowire-based structure patterned by electron beam lithography process. The advances in fabrication technology allowed us to produce highly uniform strips and preserve superconducting properties of the unpatterned film. SSPD exhibit up to 30% quantum efficiency in near infrared and up to 1% at 5-μm wavelength. Due to 120 MHz counting rate and 18 ps jitter, the time-domain multiplexing read-out is proposed for large scale SSPD arrays. Single-pixel SSPD has already found a practical application in non-invasive testing of semiconductor very-large scale integrated circuits. The SSPD significantly outperformed traditional single-photon counting avalanche diodes

  19. Hong-Ou-Mandel Interference between Two Deterministic Collective Excitations in an Atomic Ensemble

    Science.gov (United States)

    Li, Jun; Zhou, Ming-Ti; Jing, Bo; Wang, Xu-Jie; Yang, Sheng-Jun; Jiang, Xiao; Mølmer, Klaus; Bao, Xiao-Hui; Pan, Jian-Wei

    2016-10-01

    We demonstrate deterministic generation of two distinct collective excitations in one atomic ensemble, and we realize the Hong-Ou-Mandel interference between them. Using Rydberg blockade we create single collective excitations in two different Zeeman levels, and we use stimulated Raman transitions to perform a beam-splitter operation between the excited atomic modes. By converting the atomic excitations into photons, the two-excitation interference is measured by photon coincidence detection with a visibility of 0.89(6). The Hong-Ou-Mandel interference witnesses an entangled NOON state of the collective atomic excitations, and we demonstrate its two times enhanced sensitivity to a magnetic field compared with a single excitation. Our work implements a minimal instance of boson sampling and paves the way for further multimode and multiexcitation studies with collective excitations of atomic ensembles.

  20. Photoionisation detection of single 87Rb-atoms using channel electron multipliers

    International Nuclear Information System (INIS)

    Henkel, Florian Alexander

    2011-01-01

    Fast and efficient detection of single atoms is a universal requirement concerning modern experiments in atom physics, quantum optics, and precision spectroscopy. In particular for future quantum information and quantum communication technologies, the efficient readout of qubit states encoded in single atoms or ions is an elementary prerequisite. The rapid development in the field of quantum optics and atom optics in the recent years has enabled to prepare individual atoms as quantum memories or arrays of single atoms as qubit registers. With such systems, the implementation of quantum computation or quantum communication protocols seems feasible. This thesis describes a novel detection scheme which enables fast and efficient state analysis of single neutral atoms. The detection scheme is based on photoionisation and consists of two parts: the hyperfine-state selective photoionisation of single atoms and the registration of the generated photoion-electron pairs via two channel electron multipliers (CEMs). In this work, both parts were investigated in two separate experiments. For the first step, a photoionisation probability of p ion =0.991 within an ionisation time of t ion =386 ns is achieved for a single 87 Rb-atom in an optical dipole trap. For the second part, a compact detection system for the ionisation fragments was developed consisting of two opposing CEM detectors. Measurements show that single neutral atoms can be detected via their ionisation fragments with a detection efficiency of η atom =0.991 within a detection time of t det =415.5 ns. In a future combined setup, this will allow the state-selective readout of optically trapped, single neutral 87 Rb-atoms via photoionisation detection with an estimated detection efficiency η=0.982 and a detection time of t tot = 802 ns. Although initially developed for single 87 Rb-atoms, the concept of photoionisation detection is in principle generally applicable to any atomic or molecular species. As efficient

  1. Single-Atom Catalysts of Precious Metals for Electrochemical Reactions.

    Science.gov (United States)

    Kim, Jiwhan; Kim, Hee-Eun; Lee, Hyunjoo

    2018-01-10

    Single-atom catalysts (SACs), in which metal atoms are dispersed on the support without forming nanoparticles, have been used for various heterogeneous reactions and most recently for electrochemical reactions. In this Minireview, recent examples of single-atom electrocatalysts used for the oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), hydrogen evolution reaction (HER), formic acid oxidation reaction (FAOR), and methanol oxidation reaction (MOR) are introduced. Many density functional theory (DFT) simulations have predicted that SACs may be effective for CO 2 reduction to methane or methanol production while suppressing H 2 evolution, and those cases are introduced here as well. Single atoms, mainly Pt single atoms, have been deposited on TiN or TiC nanoparticles, defective graphene nanosheets, N-doped covalent triazine frameworks, graphitic carbon nitride, S-doped zeolite-templated carbon, and Sb-doped SnO 2 surfaces. Scanning transmission electron microscopy, extended X-ray absorption fine structure measurement, and in situ infrared spectroscopy have been used to detect the single-atom structure and confirm the absence of nanoparticles. SACs have shown high mass activity, minimizing the use of precious metal, and unique selectivity distinct from nanoparticle catalysts owing to the absence of ensemble sites. Additional features that SACs should possess for effective electrochemical applications were also suggested. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Corpuscular Model of Two-Beam Interference and Double-Slit Experiments with Single Photons

    NARCIS (Netherlands)

    Jin, Fengping; Yuan, Shengjun; De Raedt, Hans; Michielsen, Kristel; Miyashita, Seiji

    We introduce an event-based corpuscular simulation model that reproduces the wave mechanical results of single-photon double-slit and two-beam interference experiments and (of a one-to-one copy of an experimental realization) of a single-photon interference experiment with a Fresnel biprism. The

  3. Ultra-low background retrieval of photons stored in warm Rb vapor

    Science.gov (United States)

    Figueroa, Eden; Neuzner, Andreas; Latka, Tobias; Schupp, Josef; Noelleke, Christian; Reiserer, Andreas; Ritter, Stephan; Rempe, Gerhard

    2013-05-01

    The development of a simple and inexpensive platform for interconnecting light and matter at the quantum level has recently emerged as one of the key challenges of the rapidly evolving field of quantum engineering. Although elementary quantum memory capabilities have been already shown using ensembles of cold atoms or single-atoms in optical cavities, a scalable-friendly architecture might still require room temperature operation. Here we use an ensemble of Rb atoms in the gaseous state and store light pulses at the single-photon level to demonstrate that even in a common vapor cell it is possible to achieve quantum-level operation with ultra-low background noise. We have obtained a measured signal- to-background noise ratio of 3.5, which is the first time this figure of merit has been lifted beyond unity for experiments with room temperature operation. In addition, we also show the capabilities of the system to arbitrarily tailor the temporal properties of the retrieved single-photon-level pulses.

  4. Quantum delayed-choice experiment with a single neutral atom.

    Science.gov (United States)

    Li, Gang; Zhang, Pengfei; Zhang, Tiancai

    2017-10-01

    We present a proposal to implement a quantum delayed-choice (QDC) experiment with a single neutral atom, such as a rubidium or cesium atom. In our proposal, a Ramsey interferometer is adopted to observe the wave-like or particle-like behaviors of a single atom depending on the existence or absence of the second π/2-rotation. A quantum-controlled π/2-rotation on target atom is realized through a Rydberg-Rydberg interaction by another ancilla atom. It shows that a heavy neutral atom can also have a morphing behavior between the particle and the wave. The realization of the QDC experiment with such heavy neutral atoms not only is significant to understand the Bohr's complementarity principle in matter-wave and matter-particle domains but also has great potential on the quantum information process with neutral atoms.

  5. The intensity detection of single-photon detectors based on photon counting probability density statistics

    International Nuclear Information System (INIS)

    Zhang Zijing; Song Jie; Zhao Yuan; Wu Long

    2017-01-01

    Single-photon detectors possess the ultra-high sensitivity, but they cannot directly respond to signal intensity. Conventional methods adopt sampling gates with fixed width and count the triggered number of sampling gates, which is capable of obtaining photon counting probability to estimate the echo signal intensity. In this paper, we not only count the number of triggered sampling gates, but also record the triggered time position of photon counting pulses. The photon counting probability density distribution is obtained through the statistics of a series of the triggered time positions. Then Minimum Variance Unbiased Estimation (MVUE) method is used to estimate the echo signal intensity. Compared with conventional methods, this method can improve the estimation accuracy of echo signal intensity due to the acquisition of more detected information. Finally, a proof-of-principle laboratory system is established. The estimation accuracy of echo signal intensity is discussed and a high accuracy intensity image is acquired under low-light level environments. (paper)

  6. Direct experimental observation of nonclassicality in ensembles of single-photon emitters

    Science.gov (United States)

    Moreva, E.; Traina, P.; Forneris, J.; Degiovanni, I. P.; Ditalia Tchernij, S.; Picollo, F.; Brida, G.; Olivero, P.; Genovese, M.

    2017-11-01

    In this work we experimentally demonstrate a recently proposed criterion addressed to detect nonclassical behavior in the fluorescence emission of ensembles of single-photon emitters. In particular, we apply the method to study clusters of nitrogen-vacancy centers in diamond characterized with single-photon-sensitive confocal microscopy. Theoretical considerations on the behavior of the parameter at any arbitrary order in the presence of Poissonian noise are presented and, finally, the opportunity of detecting manifold coincidences is discussed.

  7. Creation and recovery of a W(111) single atom gas field ion source

    International Nuclear Information System (INIS)

    Pitters, Jason L.; Urban, Radovan; Wolkow, Robert A.

    2012-01-01

    Tungsten single atom tips have been prepared from a single crystal W(111) oriented wire using the chemical assisted field evaporation and etching method. Etching to a single atom tip occurs through a symmetric structure and leads to a predictable last atom unlike etching with polycrystalline tips. The single atom tip formation procedure is shown in an atom by atom removal process. Rebuilds of single atom tips occur on the same crystalline axis as the original tip such that ion emission emanates along a fixed direction for all tip rebuilds. This preparation method could be utilized and developed to prepare single atom tips for ion source development.

  8. A universal setup for active control of a single-photon detector

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qin; Skaar, Johannes [Department of Electronics and Telecommunications, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway); Lamas-Linares, Antía; Kurtsiefer, Christian [Centre for Quantum Technologies and Department of Physics, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Makarov, Vadim, E-mail: makarov@vad1.com [Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Gerhardt, Ilja, E-mail: ilja@quantumlah.org [Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart (Germany)

    2014-01-15

    The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different level of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors.

  9. A universal setup for active control of a single-photon detector

    International Nuclear Information System (INIS)

    Liu, Qin; Skaar, Johannes; Lamas-Linares, Antía; Kurtsiefer, Christian; Makarov, Vadim; Gerhardt, Ilja

    2014-01-01

    The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different level of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors

  10. Three-dimensional photonic crystals created by single-step multi-directional plasma etching.

    Science.gov (United States)

    Suzuki, Katsuyoshi; Kitano, Keisuke; Ishizaki, Kenji; Noda, Susumu

    2014-07-14

    We fabricate 3D photonic nanostructures by simultaneous multi-directional plasma etching. This simple and flexible method is enabled by controlling the ion-sheath in reactive-ion-etching equipment. We realize 3D photonic crystals on single-crystalline silicon wafers and show high reflectance (>95%) and low transmittance (photonic bandgap. Moreover, our method simply demonstrates Si-based 3D photonic crystals that show the photonic bandgap effect in a shorter wavelength range around 0.6 μm, where further fine structures are required.

  11. Development of new photon-counting detectors for single-molecule fluorescence microscopy

    Science.gov (United States)

    Michalet, X.; Colyer, R. A.; Scalia, G.; Ingargiola, A.; Lin, R.; Millaud, J. E.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Cheng, A.; Levi, M.; Aharoni, D.; Arisaka, K.; Villa, F.; Guerrieri, F.; Panzeri, F.; Rech, I.; Gulinatti, A.; Zappa, F.; Ghioni, M.; Cova, S.

    2013-01-01

    Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level. PMID:23267185

  12. Single-photon sensitive fast ebCMOS camera system for multiple-target tracking of single fluorophores: application to nano-biophotonics

    Science.gov (United States)

    Cajgfinger, Thomas; Chabanat, Eric; Dominjon, Agnes; Doan, Quang T.; Guerin, Cyrille; Houles, Julien; Barbier, Remi

    2011-03-01

    Nano-biophotonics applications will benefit from new fluorescent microscopy methods based essentially on super-resolution techniques (beyond the diffraction limit) on large biological structures (membranes) with fast frame rate (1000 Hz). This trend tends to push the photon detectors to the single-photon counting regime and the camera acquisition system to real time dynamic multiple-target tracing. The LUSIPHER prototype presented in this paper aims to give a different approach than those of Electron Multiplied CCD (EMCCD) technology and try to answer to the stringent demands of the new nano-biophotonics imaging techniques. The electron bombarded CMOS (ebCMOS) device has the potential to respond to this challenge, thanks to the linear gain of the accelerating high voltage of the photo-cathode, to the possible ultra fast frame rate of CMOS sensors and to the single-photon sensitivity. We produced a camera system based on a 640 kPixels ebCMOS with its acquisition system. The proof of concept for single-photon based tracking for multiple single-emitters is the main result of this paper.

  13. Cold atoms in optical cavities and lattices

    International Nuclear Information System (INIS)

    Horak, P.

    1996-11-01

    The thesis is organized in three chapters covering different aspects of the interaction of atoms and light in the framework of theoretical quantum optics. In chapter 1 a special case of a microscopic laser where one or two atoms interact with several quantized cavity modes is discussed. In particular I investigate the properties of the light field created in one of the cavity modes. It is shown that a single-atom model already predicts average photon numbers in agreement with a semiclassical many-atom theory. The two-atom model exhibits additional collective features, such as superradiance and subradiance. In chapter 2 effects of the photon recoil on cold atoms in the limit of long-lived atomic transitions are investigated. First, I demonstrate that, in principle, relying on this scheme, a continuous-wave laser in the ultraviolet frequency domain could be established. Second, the splitting of an atomic beam into two coherent subbeams is discussed within the same scheme. Such beamsplitters play an important role in high-precision measurements using atomic interferometers. Finally, chapter 3 deals with cooling and trapping of atoms by the interaction with laser light. I discuss the properties and the light scattering of atoms trapped in a new light field configuration, a so-called dark optical superlattice. In principle, such systems allow the trapping of more than one atom in the ground state of a single optical potential well. This could give rise to the observation of e.g. atom-atom interactions and quantum statistical effects. (author)

  14. Mechanism of single atom switch on silicon

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Stokbro, Kurt; Thirstrup, C.

    1998-01-01

    We demonstrate single atom switch on silicon which operates by displacement of a hydrogen atom on the silicon (100) surface at room temperature. We find two principal effects by which the switch is controlled: a pronounced maximum of the switching probability as function of sample bias...

  15. Towards single photon generation using NV centers in diamond coupled to thin layer optical waveguides

    International Nuclear Information System (INIS)

    Toshiyuki Tashima

    2014-01-01

    Single photon emitters like the nitrogen-vacancy (NV) center in diamond are important for quantum communication such as quantum cryptography and quantum metrology. In this context, e.g. tapered optical nano-fibers are a promising approach as they allow efficient coupling of single photons into a single spatial mode. Yet, integration of such fibers in a compact integrated quantum circuit is demanding. Here we propose a NV defect center in diamond as a single photon emitter coupled to a thin layer photonic waveguide. The benefit is to allow smaller size devices while having a similar strong evanescent field like tapered nano-optical fibers. We present numerical simulations and fabrication steps of such structures. (author)

  16. Ultra-Low Power Optical Transistor Using a Single Quantum Dot Embedded in a Photonic Wire

    DEFF Research Database (Denmark)

    Nguyen, H.A.; Grange, T.; Malik, N.S.

    2017-01-01

    Using a single InAs quantum dot embedded in a GaAs photonic wire, we realize a giant non-linearity between two optical modes to experimentally demonstrate an all-optical transistor triggered by 10 photons.......Using a single InAs quantum dot embedded in a GaAs photonic wire, we realize a giant non-linearity between two optical modes to experimentally demonstrate an all-optical transistor triggered by 10 photons....

  17. Broadband high-resolution two-photon spectroscopy with laser frequency combs

    OpenAIRE

    Hipke, Arthur; Meek, Samuel A.; Ideguchi, Takuro; Hänsch, Theodor W.; Picqué, Nathalie

    2013-01-01

    Two-photon excitation spectroscopy with broad spectral span is demonstrated at Doppler-limited resolution. We describe first Fourier transform two-photon spectroscopy of an atomic sample with two mode-locked laser oscillators in a dual-comb technique. Each transition is uniquely identified by the modulation imparted by the interfering comb excitations. The temporal modulation of the spontaneous two-photon fluorescence is monitored with a single photodetector, and the spectrum is revealed by a...

  18. MPGD-based counters of single photons developed for COMPASS RICH-1

    Czech Academy of Sciences Publication Activity Database

    Alexeev, M.; Birsa, R.; Bodlak, M.; Bradamante, F.; Bressan, A.; Büchele, M.; Chiosso, M.; Ciliberti, P.; Dalla Torre, S.; Dasgupta, S.; Denisov, O.; Duic, V.; Finger, M.; Finger jr., M.; Fischer, H.; Giorgi, M.; Gobbo, B.; Gregori, M.; Herrmann, F.; Königsmann, K.; Levorato, S.; Maggiora, A.; Martin, A.; Menon, G.; Nováková, Kateřina; Nový, J.; Panzieri, D.; Pereira, F.A.; Santos, C.A.; Sbrizzai, G.; Schiavon, P.; Schorb, S.; Slunečka, M.; Sozzi, F.; Steiger, Lukáš; Sulc, M.; Tessarotto, F.; Veloso, J.F.C.A.

    2014-01-01

    Roč. 9, č. 9 (2014), C09017-C09017 ISSN 1748-0221. [International Conference on Instrumentation for Colliding Beam Physics. Budker Inst Nucl Phys, Novosibirsk, 24.02.2014-01.03.2014] Institutional support: RVO:61389021 Keywords : Hybrid detectors * Micropattern gaseous detectors (MSGC, GEM, THGEM, RETHGEM, MHSP, MICROPIC, MICROMEGAS, InGrid, etc) * Electron multipliers (gas) * visible and IR photons (gas) (gas-photocathodes, solid-photocathodes) * Photon detectors for UV Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.399, year: 2014 http://iopscience.iop.org/1748-0221/9/09/C09017/pdf/1748-0221_9_09_C09017.pdf

  19. Experimental test of the strongly nonclassical character of a noisy squeezed single-photon state

    DEFF Research Database (Denmark)

    Jezek, M.; Tipsmark, A.; Dong, R.

    2012-01-01

    We experimentally verify the quantum non-Gaussian character of a conditionally generated noisy squeezed single-photon state with a positive Wigner function. Employing an optimized witness based on probabilities of squeezed vacuum and squeezed single-photon states, we prove that the state cannot...... be expressed as a mixture of Gaussian states. In our experiment, the non-Gaussian state is generated by conditional subtraction of a single photon from a squeezed vacuum state. The state is probed with a homodyne detector and the witness is determined by averaging a suitable pattern function over the measured...

  20. Feedback Cooling of a Single Neutral Atom

    NARCIS (Netherlands)

    Koch, Markus; Sames, Christian; Kubanek, Alexander; Apel, Matthias; Balbach, Maximilian; Ourjoumtsev, Alexei; Pinkse, Pepijn Willemszoon Harry; Rempe, Gerhard

    2010-01-01

    We demonstrate feedback cooling of the motion of a single rubidium atom trapped in a high-finesse optical resonator to a temperature of about 160  μK. Time-dependent transmission and intensity-correlation measurements prove the reduction of the atomic position uncertainty. The feedback increases the

  1. Single-photon double ionization: renormalized-natural-orbital theory versus multi-configurational Hartree–Fock

    International Nuclear Information System (INIS)

    Brics, M; Rapp, J; Bauer, D

    2017-01-01

    The N -particle wavefunction has too many dimensions for a direct time propagation of a many-body system according to the time-dependent Schrödinger equation (TDSE). On the other hand, time-dependent density functional theory (TDDFT) tells us that the single-particle density is, in principle, sufficient. However, a practicable equation of motion for the accurate time evolution of the single-particle density is unknown. It is thus an obvious idea to propagate a quantity which is not as reduced as the single-particle density but less dimensional than the N -body wavefunction. Recently, we have introduced time-dependent renormalized-natural-orbital theory (TDRNOT). TDRNOT is based on the propagation of the eigenfunctions of the one-body reduced density matrix, the so-called natural orbitals. In this paper we demonstrate how TDRNOT is related to the multi-configurational time-dependent Hartree–Fock (MCTDHF) approach. We also compare the performance of MCTDHF and TDRNOT versus the TDSE for single-photon double ionization (SPDI) of a 1D helium model atom. SPDI is one of the effects where TDDFT does not work in practice, especially if one is interested in correlated photoelectron spectra, for which no explicit density functional is known. (paper)

  2. Direct isolated single and di-photon production at ATLAS and CMS

    International Nuclear Information System (INIS)

    Kolberg, T.R.

    2014-01-01

    Direct isolated single and di-photon production cross section measurements are a classic test of perturbative QCD and are used to constrain the gluon densities in the proton. The LHC general-purpose experiments ATLAS and CMS have made a number of differential cross section measurements for both the single and di-photon production processes using the 2011 dataset at 7 TeV center-of-mass energy. Overall, good agreement is found with the theoretical predictions, and the measurements are sufficiently precise to constrain the gluon PDF uncertainty for other production processes at the LHC. Some systematic differences between the di-photon data and the NLO (Next-to-Leading Order) theoretical predictions show a need to include higher-order effects in the predictions. (author)

  3. The physics of nanowire superconducting single-photon detectors

    NARCIS (Netherlands)

    Renema, Jelmer Jan

    2015-01-01

    We investigate the detection mechanism in superconducting single photon detectors via quantum detector tomography. We find that the detection event is caused by diffusion of quasiparticles from the absorption spot, combined with entrance of a vortex. Moreover, we investigate the behaviour of

  4. Development of a high-speed single-photon pixellated detector for visible wavelengths

    CERN Document Server

    Mac Raighne, Aaron; Mathot, Serge; McPhate, Jason; Vallerga, John; Jarron, Pierre; Brownlee, Colin; O’Shea, Val

    2009-01-01

    We present the development of a high-speed, single-photon counting, Hybrid Photo Detector (HPD). The HPD consists of a vacuum tube, containing the detector assembly, sealed with a transparent optical input window. Photons incident on the photocathode eject a photoelectron into a large electric field, which accelerates the incident electron onto a silicon detector. The silicon detector is bump bonded to a Medipix readout chip. This set-up allows for the detection and readout of low incident photon intensities at rates that are otherwise unattainable with current camera technology. Reported is the fabrication of the camera that brings together a range of sophisticated design and fabrication techniques and the expected theoretical imaging performance. Applications to cellular and molecular microscopy are also described in which single-photon-counting abilities at high frame rates are crucial

  5. Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array

    Science.gov (United States)

    Doerner, S.; Kuzmin, A.; Wuensch, S.; Charaev, I.; Boes, F.; Zwick, T.; Siegel, M.

    2017-07-01

    We demonstrate a 16-pixel array of microwave-current driven superconducting nanowire single-photon detectors with an integrated and scalable frequency-division multiplexing architecture, which reduces the required number of bias and readout lines to a single microwave feed line. The electrical behavior of the photon-sensitive nanowires, embedded in a resonant circuit, as well as the optical performance and timing jitter of the single detectors is discussed. Besides the single pixel measurements, we also demonstrate the operation of a 16-pixel array with a temporal, spatial, and photon-number resolution.

  6. Linear entropy and collapse–revival phenomenon for a general formalism N-type four-level atom interacting with a single-mode field

    Science.gov (United States)

    Eied, A. A.

    2018-05-01

    In this paper, the linear entropy and collapse-revival phenomenon through the relation ( -{\\bar{n}}) in a system of N-configuration four-level atom interacting with a single-mode field with additional forms of nonlinearities of both the field and the intensity-dependent atom-field coupling functional are investigated. A factorization of the initial density operator is assumed, considering the field to be initially in a squeezed coherent states and the atom initially in its most upper excited state. The dynamical behavior of the linear entropy and the time evolution of ( -{\\bar{n}}) are analyzed. In particular, the effects of the mean photon number, detuning, Kerr-like medium and the intensity-dependent coupling functional on the entropy and the evolution of ( -{\\bar{n}}) are examined.

  7. Modeling and Development of Superconducting Nanowire Single Photon Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal outlines a research project as the central component of a Ph.D. program focused on the device physics of superconducting nanowire single photon...

  8. Atomic structures and mechanical properties of single-crystal GaN nanotubes

    International Nuclear Information System (INIS)

    Xu, B.; Lu, A.J.; Pan, B.C.; Yu, Q.X.

    2005-01-01

    An approach is proposed to theoretically construct a realistic single-crystal GaN nanotube at atomic scale. The generated atomic structures of the single-crystal GaN nanotubes match the structural aspects from experiment very well. Our energetic calculations show that a single-crystal GaN nanotube with [100]-oriented lateral facets is more stable than that with [110]-oriented lateral facets, when they have around the same wall thickness. For a specified orientation of the lateral facets on the single-crystal GaN nanotubes, the energetic stabilities of the tubes obey a P rule, in which P is the ratio of the number of four-coordinated atoms to the number of three-coordinated atoms. Furthermore, the Young's modulus of the considered GaN nanotubes decrease with increasing the ratio of the number of bulk atoms to the number of surface atoms in each type of tube. Our calculations and analysis demonstrate that the surface effect of a single-crystal nanotube enhances its Young's modulus significantly

  9. Evaluation of a fast single-photon avalanche photodiode for measurement of early transmitted photons through diffusive media.

    Science.gov (United States)

    Mu, Ying; Valim, Niksa; Niedre, Mark

    2013-06-15

    We tested the performance of a fast single-photon avalanche photodiode (SPAD) in measurement of early transmitted photons through diffusive media. In combination with a femtosecond titanium:sapphire laser, the overall instrument temporal response time was 59 ps. Using two experimental models, we showed that the SPAD allowed measurement of photon-density sensitivity functions that were approximately 65% narrower than the ungated continuous wave case at very early times. This exceeds the performance that we have previously achieved with photomultiplier-tube-based systems and approaches the theoretical maximum predicted by time-resolved Monte Carlo simulations.

  10. Probing Field Distributions on Waveguide Structures with an Atomic Force/Photon Scanning Tunneling Microscope

    NARCIS (Netherlands)

    Borgonjen, E.G.; Borgonjen, E.G.; Moers, M.H.P.; Moers, M.H.P.; Ruiter, A.G.T.; van Hulst, N.F.

    1995-01-01

    A 'stand-alone' Photon Scanning Tunneling Microscope combined with an Atomic force Microscope, using a micro-fabricated silicon-nitride probe, is applied to the imaging of field distribution in integrated optical ridge waveguides. The electric field on the waveguide is locally probed by coupling to

  11. Observing pure effects of counter-rotating terms without ultrastrong coupling: A single photon can simultaneously excite two qubits

    Science.gov (United States)

    Wang, Xin; Miranowicz, Adam; Li, Hong-Rong; Nori, Franco

    2017-12-01

    The coherent process that a single photon simultaneously excites two qubits has recently been theoretically predicted by Garziano et al. [L. Garziano, V. Macrì, R. Stassi, O. Di Stefano, F. Nori, and S. Savasta, One Photon Can Simultaneously Excite two or More Atoms, Phys. Rev. Lett. 117, 043601 (2016), 10.1103/PhysRevLett.117.043601]. We propose a different approach to observe a similar dynamical process based on a superconducting quantum circuit, where two coupled flux qubits longitudinally interact with the same resonator. We show that this simultaneous excitation of two qubits (assuming that the sum of their transition frequencies is close to the cavity frequency) is related to the counter-rotating terms in the dipole-dipole coupling between two qubits, and the standard rotating-wave approximation is not valid here. By numerically simulating the adiabatic Landau-Zener transition and Rabi-oscillation effects, we clearly verify that the energy of a single photon can excite two qubits via higher-order transitions induced by the longitudinal couplings and the counter-rotating terms. Compared with previous studies, the coherent dynamics in our system only involves one intermediate state and, thus, exhibits a much faster rate. We also find transition paths which can interfere. Finally, by discussing how to control the two longitudinal-coupling strengths, we find a method to observe both constructive and destructive interference phenomena in our system.

  12. Angular momentum in non-relativistic QED and photon contribution to spin of hydrogen atom

    International Nuclear Information System (INIS)

    Chen Panying; Ji Xiangdong; Xu Yang; Zhang Yue

    2010-01-01

    We study angular momentum in non-relativistic quantum electrodynamics (NRQED). We construct the effective total angular momentum operator by applying Noether's theorem to the NRQED lagrangian. We calculate the NRQED matching for the individual components of the QED angular momentum up to one loop. We illustrate an application of our results by the first calculation of the angular momentum of the ground state hydrogen atom carried in radiative photons, α em 3 /18π, which might be measurable in future atomic experiments.

  13. A light-matter quantum interface : ion-photon entanglement and state mapping

    International Nuclear Information System (INIS)

    Stute, A.

    2012-01-01

    Quantum mechanics promises to have a great impact on computation. Motivated by the long-term vision of a universal quantum computer that speeds up certain calculations, the field of quantum information processing has been growing steadily over the last decades. Although a variety of quantum systems consisting of a few qubits have been used to implement initial algorithms successfully, decoherence makes it difficult to scale up these systems. A powerful technique, however, could surpass any size limitation: the connection of individual quantum processors in a network. In a quantum network, ''flying'' qubits coherently transfer information between the stationary nodes of the network that store and process quantum information. Ideal candidates for the physical implementation of nodes are single atoms that exhibit long storage times; optical photons, which travel at the speed of light, are ideal information carriers. For coherent information transfer between atom and photon, a quantum interface has to couple the atom to a particular optical mode. This thesis reports on the implementation of a quantum interface by coupling a single trapped 40 Ca+ ion to the mode of a high-finesse optical resonator. Single intra-cavity photons are generated in a vacuum-stimulated Raman process between two atomic states driven by a laser and the cavity vacuum field. In this Raman process, all Zeeman substates of the atom are spectroscopically resolved by tuning the frequency of the laser; via addressing specific atomic states, the polarization of the generated cavity photon is controlled, defining the photonic qubit. The electronic state of the ion is initialized, coherently manipulated, and read out via driving the quadrupole transition. With these techniques in hand, we have demonstrated two protocols for quantum communication. The first protocol, ion-photon entanglement, is regarded as a key resource of distributed quantum information processing. In our realization, we control both

  14. Amplitude distributions of dark counts and photon counts in NbN superconducting single-photon detectors integrated with the HEMT readout

    Energy Technology Data Exchange (ETDEWEB)

    Kitaygorsky, J. [Kavli Institute of Nanoscience Delft, Delft University of Technology, 2600 GA Delft (Netherlands); Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627-0231 (United States); Słysz, W., E-mail: wslysz@ite.waw.pl [Institute of Electron Technology, PL-02 668 Warsaw (Poland); Shouten, R.; Dorenbos, S.; Reiger, E.; Zwiller, V. [Kavli Institute of Nanoscience Delft, Delft University of Technology, 2600 GA Delft (Netherlands); Sobolewski, Roman [Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627-0231 (United States)

    2017-01-15

    Highlights: • A new operation regime of NbN superconducting single-photon detectors (SSPDs). • A better understanding of the origin of dark counts generated by the detector. • A promise of PNR functionality in SSPD measurements. - Abstract: We present a new operation regime of NbN superconducting single-photon detectors (SSPDs) by integrating them with a low-noise cryogenic high-electron-mobility transistor and a high-load resistor. The integrated sensors are designed to get a better understanding of the origin of dark counts triggered by the detector, as our scheme allows us to distinguish the origin of dark pulses from the actual photon pulses in SSPDs. The presented approach is based on a statistical analysis of amplitude distributions of recorded trains of the SSPD photoresponse transients. It also enables to obtain information on energy of the incident photons, as well as demonstrates some photon-number-resolving capability of meander-type SSPDs.

  15. Attacking quantum key distribution with single-photon two-qubit quantum logic

    International Nuclear Information System (INIS)

    Shapiro, Jeffrey H.; Wong, Franco N. C.

    2006-01-01

    The Fuchs-Peres-Brandt (FPB) probe realizes the most powerful individual attack on Bennett-Brassard 1984 quantum key distribution (BB84 QKD) by means of a single controlled-NOT (CNOT) gate. This paper describes a complete physical simulation of the FPB-probe attack on polarization-based BB84 QKD using a deterministic CNOT constructed from single-photon two-qubit quantum logic. Adding polarization-preserving quantum nondemolition measurements of photon number to this configuration converts the physical simulation into a true deterministic realization of the FPB attack

  16. Electrically-pumped, broad-area, single-mode photonic crystal lasers.

    Science.gov (United States)

    Zhu, Lin; Chak, Philip; Poon, Joyce K S; DeRose, Guy A; Yariv, Amnon; Scherer, Axel

    2007-05-14

    Planar broad-area single-mode lasers, with modal widths of the order of tens of microns, are technologically important for high-power applications and improved coupling efficiency into optical fibers. They may also find new areas of applications in on-chip integration with devices that are of similar size scales, such as for spectroscopy in microfluidic chambers or optical signal processing with micro-electromechanical systems. An outstanding challenge is that broad-area lasers often require external means of control, such as injection-locking or a frequency/spatial filter to obtain single-mode operation. In this paper, we propose and demonstrate effective index-guided, large-area, edge-emitting photonic crystal lasers driven by pulsed electrical current injection at the optical telecommunication wavelength of 1550 nm. By suitable design of the photonic crystal lattice, our lasers operate in a single mode with a 1/e(2) modal width of 25 microm and a length of 600 microm.

  17. Single-Photon Avalanche Diodes (SPAD) in CMOS 0.35 µm technology

    Energy Technology Data Exchange (ETDEWEB)

    Pellion, D.; Jradi, K.; Brochard, N. [Le2i – CNRS/Univ. de Bourgogne, Dijon (France); Prêle, D. [APC – CNRS/Univ. Paris Diderot, Paris (France); Ginhac, D. [Le2i – CNRS/Univ. de Bourgogne, Dijon (France)

    2015-07-01

    Some decades ago single photon detection used to be the terrain of photomultiplier tube (PMT), thanks to its characteristics of sensitivity and speed. However, PMT has several disadvantages such as low quantum efficiency, overall dimensions, and cost, making them unsuitable for compact design of integrated systems. So, the past decade has seen a dramatic increase in interest in new integrated single-photon detectors called Single-Photon Avalanche Diodes (SPAD) or Geiger-mode APD. SPAD are working in avalanche mode above the breakdown level. When an incident photon is captured, a very fast avalanche is triggered, generating an easily detectable current pulse. This paper discusses SPAD detectors fabricated in a standard CMOS technology featuring both single-photon sensitivity, and excellent timing resolution, while guaranteeing a high integration. In this work, we investigate the design of SPAD detectors using the AMS 0.35 µm CMOS Opto technology. Indeed, such standard CMOS technology allows producing large surface (few mm{sup 2}) of single photon sensitive detectors. Moreover, SPAD in CMOS technologies could be associated to electronic readout such as active quenching, digital to analog converter, memories and any specific processing required to build efficient calorimeters (Silicon PhotoMultiplier – SiPM) or high resolution imagers (SPAD imager). The present work investigates SPAD geometry. MOS transistor has been used instead of resistor to adjust the quenching resistance and find optimum value. From this first set of results, a detailed study of the dark count rate (DCR) has been conducted. Our results show a dark count rate increase with the size of the photodiodes and the temperature (at T=22.5 °C, the DCR of a 10 µm-photodiode is 2020 count s{sup −1} while it is 270 count s{sup −1} at T=−40 °C for a overvoltage of 800 mV). A small pixel size is desirable, because the DCR per unit area decreases with the pixel size. We also found that the adjustment

  18. Three-dimensional rearrangement of single atoms using actively controlled optical microtraps.

    Science.gov (United States)

    Lee, Woojun; Kim, Hyosub; Ahn, Jaewook

    2016-05-02

    We propose and demonstrate three-dimensional rearrangements of single atoms. In experiments performed with single 87Rb atoms in optical microtraps actively controlled by a spatial light modulator, we demonstrate various dynamic rearrangements of up to N = 9 atoms including rotation, 2D vacancy filling, guiding, compactification, and 3D shuffling. With the capability of a phase-only Fourier mask to generate arbitrary shapes of the holographic microtraps, it was possible to place single atoms at arbitrary geometries of a few μm size and even continuously reconfigure them by conveying each atom. For this purpose, we loaded a series of computer-generated phase masks in the full frame rate of 60 Hz of the spatial light modulator, so the animation of phase mask transformed the holographic microtraps in real time, driving each atom along the assigned trajectory. Possible applications of this method of transformation of single atoms include preparation of scalable quantum platforms for quantum computation, quantum simulation, and quantum many-body physics.

  19. Scheme of 2-dimensional atom localization for a three-level atom via quantum coherence

    OpenAIRE

    Zafar, Sajjad; Ahmed, Rizwan; Khan, M. Khalid

    2013-01-01

    We present a scheme for two-dimensional (2D) atom localization in a three-level atomic system. The scheme is based on quantum coherence via classical standing wave fields between the two excited levels. Our results show that conditional position probability is significantly phase dependent of the applied field and frequency detuning of spontaneously emitted photons. We obtain a single localization peak having probability close to unity by manipulating the control parameters. The effect of ato...

  20. Electrical and optical 3D modelling of light-trapping single-photon avalanche diode

    Science.gov (United States)

    Zheng, Tianzhe; Zang, Kai; Morea, Matthew; Xue, Muyu; Lu, Ching-Ying; Jiang, Xiao; Zhang, Qiang; Kamins, Theodore I.; Harris, James S.

    2018-02-01

    Single-photon avalanche diodes (SPADs) have been widely used to push the frontier of scientific research (e.g., quantum science and single-molecule fluorescence) and practical applications (e.g., Lidar). However, there is a typical compromise between photon detection efficiency and jitter distribution. The light-trapping SPAD has been proposed to break this trade-off by coupling the vertically incoming photons into a laterally propagating mode while maintaining a small jitter and a thin Si device layer. In this work, we provide a 3D-based optical and electrical model based on practical fabrication conditions and discuss about design parameters, which include surface texturing, photon injection position, device area, and other features.

  1. Photon Subtraction by Many-Body Decoherence

    DEFF Research Database (Denmark)

    Murray, C. R.; Mirgorodskiy, I.; Tresp, C.

    2018-01-01

    We experimentally and theoretically investigate the scattering of a photonic quantum field from another stored in a strongly interacting atomic Rydberg ensemble. Considering the many-body limit of this problem, we derive an exact solution to the scattering-induced spatial decoherence of multiple...... stored photons, allowing for a rigorous understanding of the underlying dissipative quantum dynamics. Combined with our experiments, this analysis reveals a correlated coherence-protection process in which the scattering from one excitation can shield all others from spatial decoherence. We discuss how...... this effect can be used to manipulate light at the quantum level, providing a robust mechanism for single-photon subtraction, and experimentally demonstrate this capability....

  2. Design of Slow and Fast Light Photonic Crystal Waveguides for Single-photon Emission Using a Bloch Mode Expansion Technique

    DEFF Research Database (Denmark)

    de Lasson, Jakob Rosenkrantz; Rigal, B.; Kapon, E.

    We design slow and fast light photonic crystal waveguides for single-photon emission using a Bloch mode expansion and scattering matrix technique. We propose slow light designs that increase the group index-waveguide mode volume ratio for larger Purcell enhancement, and address efficient slow-to-...

  3. Coopetition and manipulation of quantum correlations in Rydberg atoms

    International Nuclear Information System (INIS)

    Fan, Chu-Hui; Yan, Dong; Liu, Yi-Mou; Wu, Jin-Hui

    2017-01-01

    We study the steady-state quantum correlations arising from the atom–field and interatomic interplays in two-level Rydberg atoms coherently driven by an external laser field. Three kinds of quantum correlations, i.e., atom–atom correlation, atom–field entanglement and photon–photon correlation, are simultaneously examined by considering dipole–dipole interactions (DDI) for pairwise Rydberg atoms. They are shown to be closely linked with single and double Rydberg excitations, which can be modulated to work in the blockade or antiblockade regime depending on the driving field frequency, the DDI strength and the Rydberg decay rate. As a result, we obtain strongly correlated atoms and highly antibunching photons (indispensable resources in applications of quantum information processing) intermediated with robust atom–field entanglement. (paper)

  4. Metal-coated semiconductor nanostructures and simulation of photon extraction and coupling to optical fibers for a solid-state single-photon source

    International Nuclear Information System (INIS)

    Suemune, Ikuo; Nakajima, Hideaki; Liu, Xiangming; Odashima, Satoru; Asano, Tomoya; Iijima, Hitoshi; Huh, Jae-Hoon; Idutsu, Yasuhiro; Sasakura, Hirotaka; Kumano, Hidekazu

    2013-01-01

    We have realized metal-coated semiconductor nanostructures for a stable and efficient single-photon source (SPS) and demonstrated improved single-photon extraction efficiency by the selection of metals and nanostructures. We demonstrate with finite-difference time-domain (FDTD) simulations that inclination of a pillar sidewall, which changes the structure to a nanocone, is effective in improving the photon extraction efficiency. We demonstrate how such nanocone structures with inclined sidewalls are fabricated with reactive ion etching. With the optimized design, a photon extraction efficiency to outer airside as high as ∼97% generated from a quantum dot in a nanocone structure is simulated, which is the important step in realizing SPS on-demand operations. We have also examined the direct contact of such a metal-embedded nanocone structure with a single-mode fiber facet as a simple and practical method for preparing fiber-coupled SPS and demonstrated practical coupling efficiencies of ∼16% with FDTD simulation. (paper)

  5. Room-Temperature Single-Photon Source for Secure Quantum Communication

    Data.gov (United States)

    National Aeronautics and Space Administration — We are asking for four years of support for PhD student Justin Winkler's work on a research project entitled "Room temperature single photon source for secure...

  6. High quality GaAs single photon emitters on Si substrate

    International Nuclear Information System (INIS)

    Bietti, S.; Sanguinetti, S.; Cavigli, L.; Accanto, N.; Vinattieri, A.; Minari, S.; Abbarchi, M.; Isella, G.; Frigeri, C.; Gurioli, M.

    2013-01-01

    We describe a method for the direct epitaxial growth of a single photon emitter, based on GaAs quantum dots fabricated by droplet epitaxy, working at liquid nitrogen temperatures on Si substrates. The achievement of quantum photon statistics up to T=80 K is directly proved by antibunching in the second order correlation function as measured with a H anbury Brown and Twiss interferometer

  7. Single-cell atomic quantum memory for light

    International Nuclear Information System (INIS)

    Opatrny, Tomas

    2006-01-01

    Recent experiments demonstrating atomic quantum memory for light [B. Julsgaard et al., Nature 432, 482 (2004)] involve two macroscopic samples of atoms, each with opposite spin polarization. It is shown here that a single atomic cell is enough for the memory function if the atoms are optically pumped with suitable linearly polarized light, and quadratic Zeeman shift and/or ac Stark shift are used to manipulate rotations of the quadratures. This should enhance the performance of our quantum memory devices since less resources are needed and losses of light in crossing different media boundaries are avoided

  8. Single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Budinger, T.F.

    1986-01-01

    Single photon tomography dates from the early 1960's when the idea of emission transverse section tomography was presented by Kuhl and Edwards. They used a rectilinear scanner and analogue back-projection methods to detect emissions from a series of sequential positions transverse to the cephaldcaudad axis of the body. This chapter presents an explanation of emission tomography by describing longitudinal and transverse section tomography. In principle all modes of tomography can be considered under the general topic of coded apertures wherein the code ranges from translation of a pinhole collimator to rotation of a parallel hole or focused collimator array

  9. Superconducting nanowire single-photon detectors (SNSPDs) on SOI for near-infrared range

    Energy Technology Data Exchange (ETDEWEB)

    Trojan, Philipp; Il' in, Konstantin; Henrich, Dagmar; Hofherr, Matthias; Doerner, Steffen; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme (IMS), Karlsruher Institut fuer Technologie (KIT) (Germany); Semenov, Alexey [Institut fuer Planetenforschung, DLR, Berlin-Adlershof (Germany); Huebers, Heinz-Wilhelm [Institut fuer Planetenforschung, DLR, Berlin-Adlershof (Germany); Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin (Germany)

    2013-07-01

    Superconducting nanowire single-photon detectors are promising devices for photon detectors with high count rates, low dark count rates and low dead times. At wavelengths beyond the visible range, the detection efficiency of today's SNSPDs drops significantly. Moreover, the low absorption in ultra-thin detector films is a limiting factor over the entire spectral range. Solving this problem requires approaches for an enhancement of the absorption range in feeding the light to the detector element. A possibility to obtain a better absorption is the use of multilayer substrate materials for photonic waveguide structures. We present results on development of superconducting nanowire single-photon detectors made from niobium nitride on silicon-on-insulator (SOI) multilayer substrates. Optical and superconducting properties of SNSPDs on SOI will be discussed and compared with the characteristics of detectors on common substrates.

  10. Resonant two-photon absorption and electromagnetically induced transparency in open ladder-type atomic system.

    Science.gov (United States)

    Moon, Han Seb; Noh, Heung-Ryoul

    2013-03-25

    We have experimentally and theoretically studied resonant two-photon absorption (TPA) and electromagnetically induced transparency (EIT) in the open ladder-type atomic system of the 5S(1/2) (F = 1)-5P(3/2) (F' = 0, 1, 2)-5D(5/2) (F″ = 1, 2, 3) transitions in (87)Rb atoms. As the coupling laser intensity was increased, the resonant TPA was transformed to EIT for the 5S(1/2) (F = 1)-5P(3/2) (F' = 2)-5D(5/2) (F″ = 3) transition. The transformation of resonant TPA into EIT was numerically calculated for various coupling laser intensities, considering all the degenerate magnetic sublevels of the 5S(1/2)-5P(3/2)-5D(5/2) transition. From the numerical results, the crossover from TPA to EIT could be understood by the decomposition of the spectrum into an EIT component owing to the pure two-photon coherence and a TPA component caused by the mixed term.

  11. Site-selective substitutional doping with atomic precision on stepped Al (111) surface by single-atom manipulation.

    Science.gov (United States)

    Chen, Chang; Zhang, Jinhu; Dong, Guofeng; Shao, Hezhu; Ning, Bo-Yuan; Zhao, Li; Ning, Xi-Jing; Zhuang, Jun

    2014-01-01

    In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method.

  12. Single atom self-diffusion on nickel surfaces

    International Nuclear Information System (INIS)

    Tung, R.T.; Graham, W.R.

    1980-01-01

    Results of a field ion microscope study of single atom self-diffusion on Ni(311), (331), (110), (111) and (100) planes are presented, including detailed information on the self-diffusion parameters on (311), (331), and (110) surfaces, and activation energies for diffusion on the (111), and (100) surfaces. Evidence is presented for the existence of two types of adsorption site and surface site geometry for single nickel atoms on the (111) surface. The presence of adsorbed hydrogen on the (110), (311), and (331) surfaces is shown to lower the onset temperature for self-diffusion on these planes. (orig.)

  13. Room-temperature single-photon sources with definite circular and linear polarizations based on single-emitter fluorescence in liquid crystal hosts

    International Nuclear Information System (INIS)

    Winkler, Justin M; Lukishova, Svetlana G; Bissell, Luke J

    2013-01-01

    Definite circular and linear polarizations of room-temperature single-photon sources, which can serve as polarization bases for quantum key distribution, are produced by doping planar-aligned liquid crystal hosts with single fluorescence emitters. Chiral 1-D photonic bandgap microcavities for a single handedness of circularly polarized light were prepared from both monomeric and oligomeric cholesteric liquid crystals. Fluorescent emitters, such as nanocrystal quantum dots, nitrogen vacancy color centers in nanodiamonds, and rare-earth ions in nanocrystals, were doped into these microcavity structures and used to produce circularly polarized fluorescence of definite handedness. Additionally, we observed circularly polarized resonances in the spectrum of nanocrystal quantum dot fluorescence at the edge of the cholesteric microcavity's photonic stopband. For this polarization we obtained a ∼4.9 enhancement of intensity compared to the polarization of the opposite handedness that propagates without photonic bandgap microcavity effects. Such a resonance is indicative of coupling of quantum dot fluorescence to the cholesteric microcavity mode. We have also used planar-aligned nematic liquid crystal hosts to align DiI dye molecules doped into the host, thereby providing a single-photon source of linear polarization of definite direction. Antibunching is demonstrated for fluorescence of nanocrystal quantum dots, nitrogen vacancy color centers, and dye molecules in these liquid crystal structures.

  14. Photoionisation detection of single {sup 87}Rb-atoms using channel electron multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Henkel, Florian Alexander

    2011-09-02

    Fast and efficient detection of single atoms is a universal requirement concerning modern experiments in atom physics, quantum optics, and precision spectroscopy. In particular for future quantum information and quantum communication technologies, the efficient readout of qubit states encoded in single atoms or ions is an elementary prerequisite. The rapid development in the field of quantum optics and atom optics in the recent years has enabled to prepare individual atoms as quantum memories or arrays of single atoms as qubit registers. With such systems, the implementation of quantum computation or quantum communication protocols seems feasible. This thesis describes a novel detection scheme which enables fast and efficient state analysis of single neutral atoms. The detection scheme is based on photoionisation and consists of two parts: the hyperfine-state selective photoionisation of single atoms and the registration of the generated photoion-electron pairs via two channel electron multipliers (CEMs). In this work, both parts were investigated in two separate experiments. For the first step, a photoionisation probability of p{sub ion}=0.991 within an ionisation time of t{sub ion}=386 ns is achieved for a single {sup 87}Rb-atom in an optical dipole trap. For the second part, a compact detection system for the ionisation fragments was developed consisting of two opposing CEM detectors. Measurements show that single neutral atoms can be detected via their ionisation fragments with a detection efficiency of {eta}{sub atom}=0.991 within a detection time of t{sub det}=415.5 ns. In a future combined setup, this will allow the state-selective readout of optically trapped, single neutral {sup 87}Rb-atoms via photoionisation detection with an estimated detection efficiency {eta}=0.982 and a detection time of t{sub tot} = 802 ns. Although initially developed for single {sup 87}Rb-atoms, the concept of photoionisation detection is in principle generally applicable to any

  15. Line splitting and modified atomic decay of atoms coupled with N quantized cavity modes

    Science.gov (United States)

    Zhu, Yifu

    1992-05-01

    We study the interaction of a two-level atom with N non-degenerate quantized cavity modes including dissipations from atomic decay and cavity damps. In the strong coupling regime, the absorption or emission spectrum of weakly excited atom-cavity system possesses N + 1 spectral peaks whose linewidths are the weighted averages of atomic and cavity linewidths. The coupled system shows subnatural (supernatural) atomic decay behavior if the photon loss rates from the N cavity modes are smaller (larger) than the atomic decay rate. If N cavity modes are degenerate, they can be treated effectively as a single mode. In addition, we present numerical calculations for N = 2 to characterize the system evolution from the weak coupling to strong coupling limits.

  16. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-07-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

  17. Vibration spectra of single atomic nanocontacts

    International Nuclear Information System (INIS)

    Bourahla, B; Khater, A; Rafil, O; Tigrine, R

    2006-01-01

    This paper introduces a simple model for an atomic nanocontact, where its mechanical properties are analysed by calculating numerically the local spectral properties at the contact atom and the nearby atoms. The standard methodology for calculating phonon spectral densities is extended to enable the calculation of localized contact modes and local density of states (DOS). The model system considered for the nanocontact consists of two sets of triple parallel semi-infinite atomic chains joined by a single atom in between. The matching method is used, in the harmonic approximation, to calculate the local Green's functions for the irreducible set of sites that constitute the inhomogeneous nanocontact domain. The Green's functions yield the vibration spectra and the DOS for the atomic sites. These are numerically calculated for different cases of elastic hardening and softening of the nanocontact domain. The purpose is to investigate how the local dynamics respond to local changes in the elastic environment. The analysis of the spectra and of the DOS identifies characteristic features and demonstrates the central role of a core subset of these sites for the dynamics of the nanocontact. The system models a situation which may be appropriate for contact atomic force microscopy

  18. Single and double ionization of helium by high-energy photon impact

    International Nuclear Information System (INIS)

    Andersson, L.R.; Burgdoerfer, J.

    1993-01-01

    Production of singly and doubly charged helium ions by impact of keV photons is studied. The ratio R ph = σ ph ++ /σ ph + for photoabsorption is calculated in the photon-energy range 2--18 keV using correlated initial- and final- state wave functions. Extrapolation towards symptotic photon energies yields R ph (ω → ∞) = 1.66% in agreement with previous predictions. Ionization due to Compton scattering, which becomes comparable to photoabsorption above ω ∼ 3 keV, is discussed

  19. Source of single photons and interferometry with one photon. From the Young's slit experiment to the delayed choice; Source de photons uniques et interferences a un seul photon. De l'experience des fentes d'Young au choix retarde

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, V

    2007-11-15

    This manuscript is divided in two independent parts. In the first part, we study the wave-particle duality for a single photon emitted by the triggered photoluminescence of a single NV color center in a diamond nano-crystal. We first present the realization of a single-photon interference experiment using a Fresnel's bi-prism, in a scheme equivalent to the standard Young's double-slit textbook experiment. We then discuss the complementarity between interference and which-path information in this two-path interferometer. We finally describe the experimental realization of Wheeler's delayed-choice Gedanken experiment, which is a fascinating and subtle illustration of wave-particle duality. The second part of the manuscript is devoted to the efficiency improvement of single-photon sources. We first describe the implementation of a new single-photon source based on the photoluminescence of a single nickel-related defect center in diamond. The photophysical properties of such defect make this single-photon source well adapted to open-air quantum cryptography. We finally demonstrate an original method that leads to an improvement of single-molecule photo stability at room temperature. (author)

  20. Theory of few photon dynamics in light emitting quantum dot devices

    Science.gov (United States)

    Carmele, Alexander; Richter, Marten; Sitek, Anna; Knorr, Andreas

    2009-10-01

    We present a modified cluster expansion to describe single-photon emitters in a semiconductor environment. We calculate microscopically to what extent semiconductor features in quantum dot-wetting layer systems alter the exciton and photon dynamics in comparison to the atom-like emission dynamics. We access these systems by the photon-probability-cluster-expansion: a reliable approach for few photon dynamics in many body electron systems. As a first application, we show that the amplitude of vacuum Rabi flops determines the number of electrons in the quantum dot.