WorldWideScience

Sample records for single particle interference

  1. RNA interference and single particle tracking analysis of hepatitis C virus endocytosis.

    Directory of Open Access Journals (Sweden)

    Kelly E Coller

    2009-12-01

    Full Text Available Hepatitis C virus (HCV enters hepatocytes following a complex set of receptor interactions, culminating in internalization via clathrin-mediated endocytosis. However, aside from receptors, little is known about the cellular molecular requirements for infectious HCV entry. Therefore, we analyzed a siRNA library that targets 140 cellular membrane trafficking genes to identify host genes required for infectious HCV production and HCV pseudoparticle entry. This approach identified 16 host cofactors of HCV entry that function primarily in clathrin-mediated endocytosis, including components of the clathrin endocytosis machinery, actin polymerization, receptor internalization and sorting, and endosomal acidification. We next developed single particle tracking analysis of highly infectious fluorescent HCV particles to examine the co-trafficking of HCV virions with cellular cofactors of endocytosis. We observe multiple, sequential interactions of HCV virions with the actin cytoskeleton, including retraction along filopodia, actin nucleation during internalization, and migration of internalized particles along actin stress fibers. HCV co-localizes with clathrin and the ubiquitin ligase c-Cbl prior to internalization. Entering HCV particles are associated with the receptor molecules CD81 and the tight junction protein, claudin-1; however, HCV-claudin-1 interactions were not restricted to Huh-7.5 cell-cell junctions. Surprisingly, HCV internalization generally occurred outside of Huh-7.5 cell-cell junctions, which may reflect the poorly polarized nature of current HCV cell culture models. Following internalization, HCV particles transport with GFP-Rab5a positive endosomes, which is consistent with trafficking to the early endosome. This study presents technical advances for imaging HCV entry, in addition to identifying new host cofactors of HCV infection, some of which may be antiviral targets.

  2. Single-photon interference experiment for high schools

    Science.gov (United States)

    Bondani, Maria

    2014-07-01

    We follow the reductio ad absurdum reasoning described in the book "Sneaking a Look at God's Cards" by Giancarlo Ghirardi to demonstrate the wave-particle duality of light in a Mach-Zehnder interferometric setup analog to the conventional Young double-slit experiment. We aim at showing the double nature of light by measuring the existence of interference fringes down to the single-photon level. The setup includes a strongly attenuated laser, polarizing beam splitters, half-waveplates, polarizers and single-photon detectors.

  3. A single particle energies

    Energy Technology Data Exchange (ETDEWEB)

    Bodmer, A.R. [Illinois Univ., Chicago, IL (United States). Dept. of Physics]|[Argonne National Lab., IL (United States); Usmani, Q.N.; Sami, M. [Jamia Millia Islamia, New Delhi (India). Dept. of Physics

    1993-09-01

    We consider the binding energies of {Lambda} hypernuclei (HN), in particular the single-particle (s.p.) energy data, which have been obtained for a wide range of HN with mass numbers A {le} 89 and for orbital angular momenta {ell}{sub {Lambda}} {le} 4. We briefly review some of the relevant properties of A hypernuclei. These are nuclei {sub {Lambda}}{sup A}Z with baryon number A in which a single {Lambda} hyperon (baryon number = 1) is bound to an ordinary nucleus {sup A}Z consisting of A - 1 nucleons = Z protons + N neutrons. The {Lambda} hyperon is neutral, has spin 1/2, strangeness S = {minus}1, isospin I = O and a mass M{sub {Lambda}} = 1116 MeV/c{sup 2}. Although the {Lambda} interacts with a nucleon, its interaction is only about half as strong as that between two nucleons, and thus very roughly V{sub {Lambda}N} {approx} 0.5 V{sub NN}. As a result, the two-body {Lambda}N system is unbound, and the lightest bound HN is the three-body hypertriton {sub {Lambda}}{sup 3}H in which the {Lambda} is bound to a deuteron with the {Lambda}-d separation energy being only {approx} 0.1 MeV corresponding to an exponential tail of radius {approx} 15 fm! In strong interactions the strangeness S is of course conserved, and the {Lambda} is distinct from the nucleons. In a HN strangeness changes only in the weak decays of the {Lambda} which can decay either via ``free`` pionic decay {Lambda} {yields} N + {pi} or via induced decay {Lambda} + N {yields} N + N which is only possible in the presence of nucleons. Because of the small energy release the pionic decay is strongly suppressed in all but the lightest HN and the induced decay dominates. However, the weak decay lifetime {approx} 10{sup {minus}10}s is in fact close to the lifetime of a free {Lambda}. Since this is much longer than the strong interaction time {approx} 10{sup {minus}22}s we can ignore the weak interactions when considering the binding of HN, just as for ordinary nuclei.

  4. A single particle energies

    International Nuclear Information System (INIS)

    Bodmer, A.R.; Usmani, Q.N.; Sami, M.

    1993-01-01

    We consider the binding energies of Λ hypernuclei (HN), in particular the single-particle (s.p.) energy data, which have been obtained for a wide range of HN with mass numbers A ≤ 89 and for orbital angular momenta ell Λ ≤ 4. We briefly review some of the relevant properties of A hypernuclei. These are nuclei Λ A Z with baryon number A in which a single Λ hyperon (baryon number = 1) is bound to an ordinary nucleus A Z consisting of A - 1 nucleons = Z protons + N neutrons. The Λ hyperon is neutral, has spin 1/2, strangeness S = -1, isospin I = O and a mass M Λ = 1116 MeV/c 2 . Although the Λ interacts with a nucleon, its interaction is only about half as strong as that between two nucleons, and thus very roughly V ΛN ∼ 0.5 V NN . As a result, the two-body ΛN system is unbound, and the lightest bound HN is the three-body hypertriton Λ 3 H in which the Λ is bound to a deuteron with the Λ-d separation energy being only ∼ 0.1 MeV corresponding to an exponential tail of radius ∼ 15 fm exclamation point In strong interactions the strangeness S is of course conserved, and the Λ is distinct from the nucleons. In a HN strangeness changes only in the weak decays of the Λ which can decay either via ''free'' pionic decay Λ → N + π or via induced decay Λ + N → N + N which is only possible in the presence of nucleons. Because of the small energy release the pionic decay is strongly suppressed in all but the lightest HN and the induced decay dominates. However, the weak decay lifetime ∼ 10 -10 s is in fact close to the lifetime of a free Λ. Since this is much longer than the strong interaction time ∼ 10 -22 s we can ignore the weak interactions when considering the binding of HN, just as for ordinary nuclei

  5. Towards quantum computation with multi-particle interference

    Energy Technology Data Exchange (ETDEWEB)

    Tamma, Vincenzo; Schleich, Wolfgang P. [Institut fuer Quantenphysik, Universitaet Ulm (Germany); Shih, Yanhua [Univ. of Maryland, Baltimore County, Baltimore, MD (Germany). Dept. of Physics

    2012-07-01

    One of the main challenges in quantum computation is the realization of entangled states with a large number of particles. We have experimentally demonstrated a novel factoring algorithm which relies only on optical multi-path interference and on the periodicity properties of Gauss sums with continuous arguments. An interesting implementation of such a method can, in principle, take advantage of matter-wave interferometers characterized by long-time evolution of a BEC in microgravity. A more recent approach to factorization aims to achieve an exponential speed-up without entanglement by exploiting multi-particle m-order interference. In this case, the basic requirement for quantum computation is interference of an exponentially large number of multi-particle amplitudes.

  6. Two-particle interference in standard and Bohmian quantum mechanics

    International Nuclear Information System (INIS)

    Guay, E; Marchildon, L

    2003-01-01

    The compatibility of standard and Bohmian quantum mechanics has recently been challenged in the context of two-particle interference, both from a theoretical and an experimental point of view. We analyse different setups proposed and derive corresponding exact forms for Bohmian equations of motion. The equations are then solved numerically, and shown to reproduce standard quantum-mechanical results

  7. Quantum private comparison employing single-photon interference

    Science.gov (United States)

    Liu, Bin; Xiao, Di; Huang, Wei; Jia, Heng-Yue; Song, Ting-Ting

    2017-07-01

    As a typical quantum cryptographic task between distrustful participants, quantum private comparison (QPC) has attracted a lot of attention in recent years. Here we propose two QPC protocols employing single-photon interference, a typical and interesting technology for quantum communications. Compared with the previous QPC protocols employing normal single states or entangled states, the proposed protocols achieve lower communication complexity utilizing the characteristics of single-photon interference. And we also proved the security of the proposed protocols in theory.

  8. Adaptive single-antenna transmit selection with interference suppression

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh

    2011-10-01

    This paper studies the performance of adaptive transmit selection with co-channel interference suppression in multipath fading channels. The adaptive selection algorithms are configured for single-antenna bandwidth-efficient or power-efficient transmission with as low transmit channel estimations as possible. Due to the fact that the number of active co-channel interfering signals and their corresponding powers experience random behavior, the adaptation to channels conditions, assuming uniform buffer and traffic loading, is proposed to be jointly based on the transmit channels instantaneous signal-to-noise ratios (SNRs) and signal-to-interference-plus-noise ratios (SINRs). Two interference cancelation algorithms are considered. The first algorithm assumes that the receiver eliminates the impact of the strongest subset of interferers, whereas the second algorithm suggests random cancelation of interferers to further reduce processing complexity. The impact of outdated ordering of interferers powers on the efficiency of interference cancelation, and the effect of imperfect prediction of transmit channels for desired user adaptation are investigated. Analytical formulations for various performance measures and comparisons between the performance and processing complexity of different adaptation schemes are presented. © 2011 IEEE.

  9. Interference of two-particle states in elementary particle physics and in astronomy

    International Nuclear Information System (INIS)

    Kopylov, G.I.; Podgoretskij, M.I.

    1975-01-01

    Comparison is given of two versions of an experiment for observing of the interference of two-particle states of identical particles: time - space and momentum - energy versions. Both versions are considered in detail and make it possible to measure dimensions of particle souces. An interesting symmetry has been found. Expressions for the phase of interfering states in both versions of the experiment are obtained by mutual replacement of particle sources on their detector. An imaginary experiment is suggested which makes it possible to follow how these mutually exclusive versions of the experiment turn one into another

  10. On the possibility of realising a low intensity interference experiment with a determination of the particle trajectory

    International Nuclear Information System (INIS)

    Gozzini, A.

    1984-01-01

    The author discusses the feasibility of performing a proposed single photon interference experiment in a two-arm interferometer so as to determine along which arm the particle has passed and to ascertain whether the interference persists under such conditions. To this end it has been suggested that one could use a Laser Gain Tube, that is to say a system that emits a pair of identical photons from a single incident photon, by means of stimulated emission. One of the photons is used to indicate the path chosen by the photon, and the other for the interference. (Auth.)

  11. Single Particle Entropy in Heated Nuclei

    International Nuclear Information System (INIS)

    Guttormsen, M.; Chankova, R.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.; Sunde, A. C.; Syed, N. U. H.; Agvaanluvsan, U.; Schiller, A.; Voinov, A.

    2006-01-01

    The thermal motion of single particles represents the largest contribution to level density (or entropy) in atomic nuclei. The concept of single particle entropy is presented and shown to be an approximate extensive (additive) quantity for mid-shell nuclei. A few applications of single particle entropy are demonstrated

  12. Saha equation, single and two particle states

    Science.gov (United States)

    Kraeft, W. D.; Girardeau, M. D.; Strege, B.

    1990-01-01

    Single- and two-particle properties in a dense plasma are discussed in connection with their role in the mass action law for a partially ionized plasma. The two-particle-bound states are nearly density independent, while the continuum is essentially shifted. The single-particle states are damped, and their energy has a negative shift and a parabolic behavior for small momenta.

  13. Superconducting quantum interference monitor of charged particle beam current

    International Nuclear Information System (INIS)

    Gertsev, K.F.; Mikheev, M.S.

    1981-01-01

    Description and test results of the monitor of charged particle beam current on the base of the high-frequency superconducting quantum interference detector with lead slotted shield are presented. The toroidal superconducting coil, which covers the measured beam has 16 turns wound by the lead belt of 7 mm width with 0.5 mm gaps between the turns. A superconducting low-coupling monitor having two holes and point oxidated niobium contact has been used in the mode of quanta counting of magnetic flux. The lead point shield was 2 mm thick and it had 30 mm aperture. The coefficient of background shielding within 0-200 Hz frequency range constituted more than 10 8 . The threshold current resolution of the monitor had the value less than 01 μA √Hz. The suggested monitor requires helium cooling. The proposed design of the monitor is applicable for mounting on the vacuum chamber when it is surrounded by helium conductor. In other cases mounting of low-powerful autonomic system or cryostat of helium storage up to several weeks is possible [ru

  14. Brightness calibrates particle size in single particle fluorescence imaging.

    Science.gov (United States)

    Liu, Zhihe; Sun, Zezhou; Di, Weihua; Qin, Weiping; Yuan, Zhen; Wu, Changfeng

    2015-04-01

    This Letter provides a novel approach to quantify the particle sizes of highly bright semiconductor polymer dots (Pdots) for single-particle imaging and photobleaching studies. A quadratic dependence of single-particle brightness on particle size was determined by single-particle fluorescence imaging and intensity statistics. In terms of the same imaging conditions, the particle diameter can be quantified by comparing the individual brightness intensity with associated calibration curve. Based on this sizing method, photobleaching trajectories and overall photon counts emitted by single particles were analyzed. It is found that photobleaching rate constants of different sized Pdots are not strongly dependent on particle diameter except the sparsely occurring fluorescence blinking in certain dim particles and the rapid photobleaching component in some bright particles. The overall photon counts increase with increasing particle diameter. However, those larger than 30 nm deviate away from the increasing tendency. These results reveal the significance of selecting appropriate Pdots (≤30  nm) for single-particle imaging and tracking applications.

  15. Many-particle interference beyond many-boson and many-fermion statistics

    DEFF Research Database (Denmark)

    Tichy, Malte C.; Tiersch, Markus; Mintert, Florian

    2012-01-01

    that the collective interference of three or more particles leads to much more diverse behavior than expected from the boson–fermion dichotomy known from quantum statistical mechanics. The emerging complexity of many-particle interference is tamed by a simple law for the strict suppression of events in the Bell...... multiport beam splitter. The law shows that counting events are governed by widely species-independent interference, such that bosons and fermions can even exhibit identical interference signatures, while their statistical character remains subordinate. Recent progress in the preparation of tailored many...

  16. Quantum Interference: How to Measure the Wavelength of a Particle

    Science.gov (United States)

    Brom, Joseph M.

    2017-01-01

    The concept of wave-particle duality in quantum theory is difficult to grasp because it attributes particle-like properties to classical waves and wave-like properties to classical particles. There seems to be an inconsistency involved with the notion that particle-like or wave-like attributes depend on how you look at an entity. The concept comes…

  17. Retrocausation acting in the single-electron double-slit interference experiment

    Science.gov (United States)

    Hokkyo, Noboru

    The single electron double-slit interference experiment is given a time-symmetric interpretation and visualization in terms of the intermediate amplitude of transition between the particle source and the detection point. It is seen that the retarded (causal) amplitude of the electron wave expanding from the source shows an advanced (retrocausal) bifurcation and merging in passing through the double-slit and converges towards the detection point as if guided by the advanced (retrocausal) wave from the detected electron. An experiment is proposed to confirm the causation-retrocausation symmetry of the electron behavior by observing the insensitivity of the interference pattern to non-magnetic obstacles placed in the shadows of the retarded and advanced waves appearing on the rear and front sides of the double-slit.

  18. Single-particle dispersion in compressible turbulence

    Science.gov (United States)

    Zhang, Qingqing; Xiao, Zuoli

    2018-04-01

    Single-particle dispersion statistics in compressible box turbulence are studied using direct numerical simulation. Focus is placed on the detailed discussion of effects of the particle Stokes number and turbulent Mach number, as well as the forcing type. When solenoidal forcing is adopted, it is found that the single-particle dispersion undergoes a transition from the ballistic regime at short times to the diffusive regime at long times, in agreement with Taylor's particle dispersion argument. The strongest dispersion of heavy particles is announced when the Stokes number is of order 1, which is similar to the scenario in incompressible turbulence. The dispersion tends to be suppressed as the Mach number increases. When hybrid solenoidal and compressive forcing at a ratio of 1/2 is employed, the flow field shows apparent anisotropic property, characterized by the appearance of large shock wave structures. Accordingly, the single-particle dispersion shows extremely different behavior from the solenoidal forcing case.

  19. Distribution of lead in single atmospheric particles

    Science.gov (United States)

    Murphy, D. M.; Hudson, P. K.; Cziczo, D. J.; Gallavardin, S.; Froyd, K. D.; Johnston, M. V.; Middlebrook, A. M.; Reinard, M. S.; Thomson, D. S.; Thornberry, T.; Wexler, A. S.

    2007-06-01

    Three independent single particle mass spectrometers measured Pb in individual aerosol particles. These data provide unprecedented sensitivity and statistical significance for the measurement of Pb in single particles. This paper explores the reasons for the frequency of Pb in fine particles now that most gasoline is unleaded. Trace amounts of Pb were found in 5 to 25% of 250 to 3000 nm diameter particles sampled by both aircraft and surface instruments in the eastern and western United States. Over 5% of particles at a mountain site in Switzerland contained Pb. Particles smaller than 100 nm with high Pb content were also observed by an instrument that was only operated in urban areas. Lead was found on all types of particles, including Pb present on biomass burning particles from remote fires. Less common particles with high Pb contents contributed a majority of the total amount of Pb. Single particles with high Pb content often also contained alkali metals, Zn, Cu, Sn, As, and Sb. The association of Pb with Zn and other metals is also found in IMPROVE network filter data from surface sites. Sources of airborne Pb in the United States are reviewed for consistency with these data. The frequent appearance of trace Pb is consistent with widespread emissions of fine Pb particles from combustion sources followed by coagulation with larger particles during long-range transport. Industrial sources that directly emit Pb-rich particles also contribute to the observations. Clean regions of the western United States show some transport of Pb from Asia but most Pb over the United States comes from North American sources. Resuspension of Pb from soil contaminated by the years of leaded gasoline was not directly apparent.

  20. Optical forces acting on Rayleigh particle placed into interference field

    Czech Academy of Sciences Publication Activity Database

    Zemánek, Pavel; Karásek, Vítězslav; Sasso, A.

    2004-01-01

    Roč. 240, 4-6 (2004), s. 401-415 ISSN 0030-4018 R&D Projects: GA AV ČR KSK2067107 Keywords : optical force * Rayleigh particle * colloidal particle Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.581, year: 2004

  1. Multiplex single particle analysis in microfluidics.

    Science.gov (United States)

    Dannhauser, D; Romeo, G; Causa, F; De Santo, I; Netti, P A

    2014-10-21

    A straightforward way to measure separated micrometric sized particles in microfluidic flow is reported. The light scattering profile (LSP) of each single particle is fully characterized by using a CMOS-camera based small angle light scattering (SALS) apparatus, ranging from 2° up to 30°. To ensure controlled particle passage through the incident laser, a viscoelastic 3D alignment effect by viscoelastic induced particle migration has been implemented in a simple and cost-effective microfluidic device. Different polystyrene particle sizes are measured in microfluidic flows and the obtained scattering signatures are matched with the Lorenz-Mie based scattering theory. The results confirm the possibility of using this apparatus for real multiplex particle analyses in microfluidic particle flows.

  2. The probe rules in single particle tracking

    DEFF Research Database (Denmark)

    Clausen, Mathias P.; Lagerholm, B. Christoffer

    2011-01-01

    Single particle tracking (SPT) enables light microscopy at a sub-diffraction limited spatial resolution by a combination of imaging at low molecular labeling densities and computational image processing. SPT and related single molecule imaging techniques have found a rapidly expanded use within...

  3. Fundamental study of single biomass particle combustion

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, M.

    2013-06-01

    This thesis is a comprehensive study of single biomass particle combustion. The effect of particle shape and size and operating conditions on biomass conversion characteristics were investigated experimentally and theoretically. The experimental samples were divided in two groups: particles with regular shapes (spheres and cylinders) and particles with irregular shapes (almost flake-like). A CAMSIZER analyser (Retsch Technology GMBH) was used to determine the size and shape of the particles via Dynamical Digital Image Processing. The experiments were performed in a single particle reactor under well-defined conditions, and the complete combustion processes were recorded as video sequences by a CCD camera installed in the set-up. One of the project objectives is to simulate conditions reasonably close to the conditions in a power plant boiler, i.e., reasonably high temperatures (up to 1600 deg. C) and varying oxygen concentrations in the 5 to 20% range. A one-dimensional mathematical model was used to simulate all the intraparticle conversion processes (drying, recondensation, devolatilisation, char gasification/oxidation and heat/mass/momentum transfer) within single particles of different shapes and size under various conditions. The model also predicts the flame layer domain of a single particle. The model was validated by experimental results under different conditions; good agreement between the model predictions and the experimental data was observed. Both the experimental and modelling results showed that cylindrical particles lose mass faster than spherical particles of a similar volume (mass) and that the burnout time is reduced by increasing the particle aspect ratio (surface area to volume ratio). Very similar conversion times were observed for cylindrical particles with nearly identical surface area to volume ratios. Similar conversion times were also observed for two size classes of pulverised particles (with irregular shapes) made from the same type of

  4. Corpuscular Model of Two-Beam Interference and Double-Slit Experiments with Single Photons

    NARCIS (Netherlands)

    Jin, Fengping; Yuan, Shengjun; De Raedt, Hans; Michielsen, Kristel; Miyashita, Seiji

    We introduce an event-based corpuscular simulation model that reproduces the wave mechanical results of single-photon double-slit and two-beam interference experiments and (of a one-to-one copy of an experimental realization) of a single-photon interference experiment with a Fresnel biprism. The

  5. Investigating and improving student understanding of quantum mechanics in the context of single photon interference

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2017-06-01

    Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the abstract quantum theory and concrete laboratory settings and have the potential to help students develop a solid grasp of the foundational issues in quantum mechanics. Here we describe students' conceptual difficulties with these topics in the context of Mach-Zehnder interferometer experiments with single photons and how the difficulties found in written surveys and individual interviews were used as a guide in the development of a Quantum Interactive Learning Tutorial (QuILT). The QuILT uses an inquiry-based approach to learning and takes into account the conceptual difficulties found via research to help upper-level undergraduate and graduate students learn about foundational quantum mechanics concepts using the concrete quantum optics context. It strives to help students learn the basics of quantum mechanics in the context of single photon experiment, develop the ability to apply fundamental quantum principles to experimental situations in quantum optics, and explore the differences between classical and quantum ideas in a concrete context. We discuss the findings from in-class evaluations suggesting that the QuILT was effective in helping students learn these abstract concepts.

  6. Particle segmentation algorithm for flexible single particle reconstruction.

    Science.gov (United States)

    Zhou, Qiang; Zhou, Niyun; Wang, Hong-Wei

    2017-01-01

    As single particle cryo-electron microscopy has evolved to a new era of atomic resolution, sample heterogeneity still imposes a major limit to the resolution of many macromolecular complexes, especially those with continuous conformational flexibility. Here, we describe a particle segmentation algorithm towards solving structures of molecules composed of several parts that are relatively flexible with each other. In this algorithm, the different parts of a target molecule are segmented from raw images according to their alignment information obtained from a preliminary 3D reconstruction and are subjected to single particle processing in an iterative manner. This algorithm was tested on both simulated and experimental data and showed improvement of 3D reconstruction resolution of each segmented part of the molecule than that of the entire molecule.

  7. Single-particle Schroedinger fluid. I. Formulation

    International Nuclear Information System (INIS)

    Kan, K.K.; Griffin, J.J.

    1976-01-01

    The problem of a single quantal particle moving in a time-dependent external potential well is formulated specifically to emphasize and develop the fluid dynamical aspects of the matter flow. This idealized problem, the single-particle Schroedinger fluid, is shown to exhibit already a remarkably rich variety of fluid dynamical features, including compressible flow and line vortices. It provides also a sufficient framework to encompass simultaneously various simplified fluidic models for nuclei which have earlier been postulated on an ad hoc basis, and to illuminate their underlying restrictions. Explicit solutions of the single-particle Schroedinger fluid problem are studied in the adiabatic limit for their mathematical and physical implications (especially regarding the collective kinetic energy). The basic generalizations for extension of the treatment to the many-body Schroedinger fluid are set forth

  8. Enhanced Transmission of Light and Particle Waves through Subwavelength Nanoapertures by Far-Field Interference

    OpenAIRE

    Kukhlevsky, S. V.

    2007-01-01

    Subwavelength aperture arrays in thin metal films can enable enhanced transmission of light and matter (atom) waves. The phenomenon relies on resonant excitation and interference of the plasmon or matter waves on the metal surface. We show a new mechanism that could provide a great resonant and nonresonant transmission enhancement of the light or de Broglie particle waves passed through the apertures not by the surface waves, but by the constructive interference of diffracted waves (beams gen...

  9. Reducing Electromagnetic Interference in a Grid Tied Single Phase Power Inverter

    Science.gov (United States)

    2016-09-01

    ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER INVERTER by Jason Hassan Valiani September 2016 Thesis Advisor: Giovanna Oriti...3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE REDUCING ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER...The addition of a passive filter proved to minimize the conducted EMI for a single -phase grid-tied inverter. 14. SUBJECT TERMS single -phase

  10. Dual color single particle tracking via nanobodies

    International Nuclear Information System (INIS)

    Albrecht, David; Winterflood, Christian M; Ewers, Helge

    2015-01-01

    Single particle tracking is a powerful tool to investigate the function of biological molecules by following their motion in space. However, the simultaneous tracking of two different species of molecules is still difficult to realize without compromising the length or density of trajectories, the localization accuracy or the simplicity of the assay. Here, we demonstrate a simple dual color single particle tracking assay using small, bright, high-affinity labeling via nanobodies of accessible targets with widely available instrumentation. We furthermore apply a ratiometric step-size analysis method to visualize differences in apparent membrane viscosity. (paper)

  11. Single particle tomography in EMAN2.

    Science.gov (United States)

    Galaz-Montoya, Jesús G; Flanagan, John; Schmid, Michael F; Ludtke, Steven J

    2015-06-01

    Single particle tomography (SPT or subtomogram averaging) offers a powerful alternative to traditional 2-D single particle reconstruction for studying conformationally or compositionally heterogeneous macromolecules. It can also provide direct observation (without labeling or staining) of complexes inside cells at nanometer resolution. The development of computational methods and tools for SPT remains an area of active research. Here we present the EMAN2.1 SPT toolbox, which offers a full SPT processing pipeline, from particle picking to post-alignment analysis of subtomogram averages, automating most steps. Different algorithm combinations can be applied at each step, providing versatility and allowing for procedural cross-testing and specimen-specific strategies. Alignment methods include all-vs-all, binary tree, iterative single-model refinement, multiple-model refinement, and self-symmetry alignment. An efficient angular search, Graphic Processing Unit (GPU) acceleration and both threaded and distributed parallelism are provided to speed up processing. Finally, automated simulations, per particle reconstruction of subtiltseries, and per-particle Contrast Transfer Function (CTF) correction have been implemented. Processing examples using both real and simulated data are shown for several structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Projection operator treatment of single particle resonances

    International Nuclear Information System (INIS)

    Lev, A.; Beres, W.P.

    1976-01-01

    A projection operator method is used to obtain the energy and width of a single particle resonance. The resonance energy is found without scanning. An example of the first g/sub 9/2/ neutron resonance in 40 Ca is given and compared with the traditional phase shift method. The results of both approaches are quite similar. 4 figures

  13. Nanoscale three-dimensional single particle tracking.

    Science.gov (United States)

    Dupont, Aurélie; Lamb, Don C

    2011-11-01

    Single particle tracking (SPT) in biological systems is a quickly growing field. Many new technologies are being developed providing new tracking capabilities, which also lead to higher demands and expectations for SPT. Following a single biomolecule as it performs its function provides quantitative mechanistic information that cannot be obtained in classical ensemble methods. From the 3D trajectory, information is available over the diffusional behavior of the particle and precise position information can also be used to elucidate interactions of the tracked particle with its surroundings. Thus, three-dimensional (3D) SPT is a very valuable tool for investigating cellular processes. This review presents recent progress in 3D SPT, from image-based techniques toward more sophisticated feedback approaches. We focus mainly on the feedback technique known as orbital tracking. We present here a modified version of the original orbital tracking in which the intensities from two z-planes are simultaneously measured allowing a concomitant wide-field imaging. The system can track single particles with a precision down to 5 nm in the x-y plane and 7 nm in the axial direction. The capabilities of the system are demonstrated using single virus tracing to follow the infection pathway of Prototype Foamy Virus in living cells.

  14. Single particle raster image analysis of diffusion.

    Science.gov (United States)

    Longfils, M; Schuster, E; Lorén, N; Särkkä, A; Rudemo, M

    2017-04-01

    As a complement to the standard RICS method of analysing Raster Image Correlation Spectroscopy images with estimation of the image correlation function, we introduce the method SPRIA, Single Particle Raster Image Analysis. Here, we start by identifying individual particles and estimate the diffusion coefficient for each particle by a maximum likelihood method. Averaging over the particles gives a diffusion coefficient estimate for the whole image. In examples both with simulated and experimental data, we show that the new method gives accurate estimates. It also gives directly standard error estimates. The method should be possible to extend to study heterogeneous materials and systems of particles with varying diffusion coefficient, as demonstrated in a simple simulation example. A requirement for applying the SPRIA method is that the particle concentration is low enough so that we can identify the individual particles. We also describe a bootstrap method for estimating the standard error of standard RICS. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  15. Microorganism characterization by single particle mass spectrometry.

    Science.gov (United States)

    Russell, Scott C

    2009-01-01

    In recent years a major effort by several groups has been undertaken to identify bacteria by mass spectrometry at the single cell level. The intent of this review is to highlight the recent progress made in the application of single particle mass spectrometry to the analysis of microorganisms. A large portion of the review highlights improvements in the ionization and mass analysis of bio-aerosols, or particles that contain biologically relevant molecules such as peptides or proteins. While these are not direct applications to bacteria, the results have been central to a progression toward single cell mass spectrometry. Developments in single particle matrix-assisted laser desorption/ionization (MALDI) are summarized. Recent applications of aerosol laser desorption/ionization (LDI) to the analysis of single microorganisms are highlighted. Successful applications of off-line and on-the-fly aerosol MALDI to microorganism detection are discussed. Limitations to current approaches and necessary future achievements are also addressed. (c) 2009 Wiley Periodicals, Inc.

  16. Frequency of Arrival-based Interference Localization Using a Single Satellite

    OpenAIRE

    Kalantari, Ashkan; Maleki, Sina; Chatzinotas, Symeon; Ottersten, Björn

    2016-01-01

    Intentional and unintentional interferences are an increasing threat for the satellite communications industry. In this paper, we aim to localize an interference with unknown location using frequency of arrival (FoA) technique by only relying on the measurements obtained through a single satellite. In each time instance, the satellite samples the interference and forwards it to the gateway to estimate its frequency. Since the satellite moves, each estimated frequency includes a Doppler shift,...

  17. Suppression of tunneling by interference in half-integer--spin particles

    OpenAIRE

    Loss, Daniel; DiVincenzo, David P.; Grinstein, G.

    1992-01-01

    Within a wide class of ferromagnetic and antiferromagnetic systems, quantum tunneling of magnetization direction is spin-parity dependent: it vanishes for magnetic particles with half-integer spin, but is allowed for integer spin. A coherent-state path integral calculation shows that this topological effect results from interference between tunneling paths.

  18. Wigner function for a free particle in two dimensions: A tale of interference

    DEFF Research Database (Denmark)

    Schleich, W. P.; Dahl, Jens Peder; Varro, S.

    2010-01-01

    The familiar wave function for a free particle in two dimensions and in a state with definite values of energy and angular momentum shows some unusual effects. We identify the origin of these subtleties as interference in two-dimensional space where Huygens' principle breaks down. Our arguments...

  19. Quantum interference effects at room temperature in OPV-based single-molecule junctions

    NARCIS (Netherlands)

    Arroyo Rodriguez, C.; Frisenda, R.; Moth-Poulsen, K.; Seldenthuis, J.S.; Bjornholm, T.; Van der Zant, H.S.

    2013-01-01

    Interference effects on charge transport through an individual molecule can lead to a notable modulation and suppression on its conductance. In this letter, we report the observation of quantum interference effects occurring at room temperature in single-molecule junctions based on

  20. Single particle raster image analysis of diffusion for particle mixtures.

    Science.gov (United States)

    Longfils, M; Röding, M; Altskär, A; Schuster, E; Lorén, N; Särkkä, A; Rudemo, M

    2018-03-01

    Recently we complemented the raster image correlation spectroscopy (RICS) method of analysing raster images via estimation of the image correlation function with the method single particle raster image analysis (SPRIA). In SPRIA, individual particles are identified and the diffusion coefficient of each particle is estimated by a maximum likelihood method. In this paper, we extend the SPRIA method to analyse mixtures of particles with a finite set of diffusion coefficients in a homogeneous medium. In examples with simulated and experimental data with two and three different diffusion coefficients, we show that SPRIA gives accurate estimates of the diffusion coefficients and their proportions. A simple technique for finding the number of different diffusion coefficients is also suggested. Further, we study the use of RICS for mixtures with two different diffusion coefficents and investigate, by plotting level curves of the correlation function, how large the quotient between diffusion coefficients needs to be in order to allow discrimination between models with one and two diffusion coefficients. We also describe a minor correction (compared to published papers) of the RICS autocorrelation function. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  1. Influence of sample pool on interference pattern in defocused interferometric particle imaging.

    Science.gov (United States)

    Zhang, Hongxia; Zhou, Ye; Liu, Jing; Jia, Dagong; Liu, Tiegen

    2017-04-01

    Particles widely exist in various fields. In practical experiments, sometimes it is necessary to dissolve particles in water in a sample pool. This article proposes two typical layouts of the sample pool in defocused interferometric particle imaging (IPI). Layout I is the sample pool surface perpendicular to the incident light and layout II is the sample pool surface perpendicular to the scattered light. For layout I, the scattered light of the particles does not keep symmetric at the meridional and sagittal planes after being refracted by the sample pool surface, and elliptical interference patterns are formed at the defocused IPI image plane. But for layout II, the scattered light keeps symmetric after being refracted, and circular interference patterns are formed. Aimed at the two sample pool layouts, the ray-tracing software ZEMAX was used to simulate the spot shape of particles at different defocus distances. Furthermore, its effect on the ellipticity of the interference pattern with the tilt angle of the sample pool is analyzed. The relative error of the axis ratio for layout I does not exceed 9.2% at different defocus distances. The experimental results have good agreement with the theoretical analyses, and it indicates that layout II is more reasonable for the IPI system.

  2. A single antenna interference cancellation and adaptive technique based on ALOE

    Directory of Open Access Journals (Sweden)

    Xu Han

    2017-02-01

    Full Text Available A new type of single antenna interference cancellation (SAIC algorithm based on ALOE filtering module is introduced for co-channel interference cancellation in GSM/GPRS/EDGE downlink without changing the link structure of traditional receiver.Meanwhile,an adjacent frequency adaptive detection based on power spectrum estimation method is introduced to solve adjacent frequency interference and complex interference.Compared with traditional energy noise estimation method,the new method has simpler structure,less complexity,and can effectively improve the adaptability for various scenarios.The simulation results show that it can raise the resistance to co-channel frequency interference and adjacent frequency interference in multimode chips with low complexity,which improves the quality of 2G voice communication.

  3. Single particle closed orbits in Yukawa potential

    Science.gov (United States)

    Mukherjee, R.; Sounda, S.

    2018-02-01

    Orbit of a single particle moving under the Yukawa potential is studied and there exists precessing ellipse type orbits. The amount of precession can be tuned through the coupling parameter α. With a suitable choice of the coupling parameter; we get a closed bound orbit. In some cases few petals are observed which is possessed of a closed bound nature for suitably chosen coupling parameter. Threshold energy has also been calculated for bound orbits.

  4. Single particle tracking and single molecule energy transfer

    CERN Document Server

    Bräuchle, Christoph; Michaelis, Jens

    2009-01-01

    Closing a gap in the literature, this handbook gathers all the information on single particle tracking and single molecule energy transfer. It covers all aspects of this hot and modern topic, from detecting virus entry to membrane diffusion, and from protein folding using spFRET to coupled dye systems, as well recent achievements in the field. Throughout, the first-class editors and top international authors present content of the highest quality, making this a must-have for physical chemists, spectroscopists, molecular physicists and biochemists.

  5. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Madsen, Jacob; Reichelt, Christian Günther

    2015-01-01

    even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes......¨dinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can...... not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics....

  6. Damping of unbound single-particle modes

    International Nuclear Information System (INIS)

    Fortier, S.; Beaumel, D.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Bordewijk, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M.; Khendriche, A.

    1995-01-01

    The (α, 3 He-n) reaction has been investigated at 120 MeV incident energy on 64 Ni, 90 Zr, and 120 Sn target nuclei. Neutrons in coincidence with 3 He particles emitted at 0 degree were detected using the multidetector array EDEN, in order to get information about the decay of single-particle states embedded in the (α, 3 He) continuum. Neutron angular correlations, multiplicity values, and branching ratios to low-lying states of the final nuclei have been compared with the predictions of the statistical decay model. Evidence for a significant nonstatistical decay branch has been observed in the three nuclei below about 15 MeV excitation energy. Direct branching ratios in 91 Zr deduced from this analysis are compared with the predictions of two nuclear structure models. At higher excitation energy, the decay characteristics of the (α, 3 He) continuum are shown to be mainly statistical

  7. Single-Particle States in $^{133}$Sn

    CERN Multimedia

    Huck, A

    2002-01-01

    % IS338 \\\\ \\\\ It is suggested to investigate the $\\beta^- $-decay of $^{133}$In and $^{134}$In in order to determine the single-particle states in $^{133}$Sn, which are so far unknown and needed for the shell-model description of the region close to $^{132}$Sn. Large hyper-pure Ge-detectors will be used for the $\\gamma$-ray spectroscopy. In the experiments with $^{134}$In, delayed neutrons in coincidence with $\\gamma$-rays from excited states in $^{133}$Sn provide the opportunity for a very selective detection of the states in question.

  8. Single-task fMRI overlap predicts concurrent multitasking interference.

    Science.gov (United States)

    Nijboer, Menno; Borst, Jelmer; van Rijn, Hedderik; Taatgen, Niels

    2014-10-15

    There is no consensus regarding the origin of behavioral interference that occurs during concurrent multitasking. Some evidence points toward a multitasking locus in the brain, while other results imply that interference is the consequence of task interactions in several brain regions. To investigate this issue, we conducted a functional MRI (fMRI) study consisting of three component tasks, which were performed both separately and in combination. The results indicated that no specific multitasking area exists. Instead, different patterns of activation across conditions could be explained by assuming that the interference is a result of task interactions. Additionally, similarity in single-task activation patterns correlated with a decrease in accuracy during dual-task conditions. Taken together, these results support the view that multitasking interference is not due to a bottleneck in a single "multitasking" brain region, but is a result of interactions between concurrently running processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Resonance fluorescence and quantum interference of a single NV center

    Science.gov (United States)

    Ma, Yong-Hong; Zhang, Xue-Feng; Wu, E.

    2017-11-01

    The detection of a single nitrogen-vacancy center in diamond has attracted much interest, since it is expected to lead to innovative applications in various domains of quantum information, including quantum metrology, information processing and communications, as well as in various nanotechnologies, such as biological and subdiffraction limit imaging, and tests of entanglement in quantum mechanics. We propose a novel scheme of a single NV center coupled with a multi-mode superconducting microwave cavity driven by coherent fields in squeezed vacuum. We numerically investigate the spectra in-phase quadrature and out-of-phase quadrature for different driving regimes with or without detunings. It shows that the maximum squeezing can be obtained for optimal Rabi fields. Moreover, with the same parameters, the maximum squeezing is greatly increased when the detunings are nonzero compared to the resonance case.

  10. Performance of single mechanoluminescent particle as ubiquitous light source.

    Science.gov (United States)

    Terasaki, Nao; Xu, Chao-Nan

    2014-08-01

    In this study, we have investigated mechanoluminescent (ML) performance of single ML particle as ubiquitous light source. When using high-speed CCD camera with image intensifier and microscopic equipment, mechanoluminescence from single particle was observed. As to the quantitative ML evaluation of the single ML particle was carried out using photomultiplier, and successfully estimated the performance of the single ML particle as an intensity controllable light source in nW order. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics.

    Science.gov (United States)

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  12. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics

    Science.gov (United States)

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T.; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006), 10.1103/PhysRevLett.97.154101] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  13. Quantum interference effects at room temperature in OPV-based single-molecule junctions

    DEFF Research Database (Denmark)

    Arroyo, Carlos R.; Frisenda, Riccardo; Moth-Poulsen, Kasper

    2013-01-01

    Interference effects on charge transport through an individual molecule can lead to a notable modulation and suppression on its conductance. In this letter, we report the observation of quantum interference effects occurring at room temperature in single-molecule junctions based on oligo(3......)-phenylenevinylene (OPV3) derivatives, in which the central benzene ring is coupled to either para- or meta-positions. Using the break-junction technique, we find that the conductance for a single meta-OPV3 molecule wired between gold electrodes is one order of magnitude smaller than that of a para-OPV3 molecule...

  14. Damping of unbound single-particle modes

    Energy Technology Data Exchange (ETDEWEB)

    Fortier, S.; Beaumel, D.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Bordewijk, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M.; Khendriche, A. [Institut de Physique Nucleaire, IN2P3-CNRS, 91406 Orsay Cedex (France)]|[Kernfysisch Versneller Instituut, 9747 AA Groningen (Netherlands)]|[Nuclear Research Institute, Debrecen P.O. Box 51, H-4001 (Hungary)]|[NSCL, Michigan State University, East Lansing, Michigan 48824 (United States)]|[Dep. Fisica, Fac. Cs. Exactas, UNLP, CC Nio 67, 1900 La Plata (Argentina)]|[Institut de Sciences Exactes,Universite de Tizi-Ouzou, 15000 Tizi-Ouzou (Algeria)

    1995-11-01

    The ({alpha},{sup 3}He-{ital n}) reaction has been investigated at 120 MeV incident energy on {sup 64}Ni, {sup 90}Zr, and {sup 120}Sn target nuclei. Neutrons in coincidence with {sup 3}He particles emitted at 0{degree} were detected using the multidetector array EDEN, in order to get information about the decay of single-particle states embedded in the ({alpha},{sup 3}He) continuum. Neutron angular correlations, multiplicity values, and branching ratios to low-lying states of the final nuclei have been compared with the predictions of the statistical decay model. Evidence for a significant nonstatistical decay branch has been observed in the three nuclei below about 15 MeV excitation energy. Direct branching ratios in {sup 91}Zr deduced from this analysis are compared with the predictions of two nuclear structure models. At higher excitation energy, the decay characteristics of the ({alpha},{sup 3}He) continuum are shown to be mainly statistical.

  15. Single particle level scheme for alpha decay

    International Nuclear Information System (INIS)

    Mirea, M.

    1998-01-01

    The fine structure phenomenon in alpha decay was evidenced by Rosenblum. In this process the kinetic energy of the emitted particle has several determined values related to the structure of the parent and the daughter nucleus. The probability to find the daughter in a low lying state was considered strongly dependent on the spectroscopic factor defined as the square of overlap between the wave function of the parent in the ground state and the wave functions of the specific excited states of the daughter. This treatment provides a qualitative agreement with the experimental results if the variations of the penetrability between different excited states are neglected. Based on single particle structure during fission, a new formalism explained quantitatively the fine structure of the cluster decay. It was suggested that this formalism can be applied also to alpha decay. For this purpose, the first step is to construct the level scheme of this type of decay. Such a scheme, obtained with the super-asymmetric two-center potential, is plotted for the alpha decay of 223 Ra. It is interesting to note that, diabatically, the level with spin 3/2 emerging from 1i 11/2 (ground state of the parent) reaches an excited state of the daughter in agreement with the experiment. (author)

  16. Suboptimal Partial Transmit Sequence-Active Interference Cancellation with Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Tarasak Poramate

    2010-01-01

    Full Text Available Active interference cancellation (AIC is an effective technique to provide interference avoidance feature for an ultrawideband (UWB OFDM transmitter. Partial transmit sequence-AIC (PTS-AIC, which was recently proposed as an improvement of AIC, requires high computational complexity by doing the exhaustive search of all possible weighting factors whose number grows exponentially with the number of subblocks used. To reduce the complexity of PTS-AIC, this paper proposes a suboptimal way, called particle swarm optimization (PSO, to choose the weighting factors suboptimally without much performance degradation. Both continuous and discrete versions of PSO have been evaluated, and it has been shown that the discrete PSO is able to reduce the complexity significantly without sacrificing the performance of PTS-AIC in many cases.

  17. Geometric-Phase Interference in a Mn12 Single-Molecule Magnet with Truly Fourfold Symmetry

    Science.gov (United States)

    Friedman, Jonathan

    2014-03-01

    A single-molecule magnet (SMM) is a large-spin system with an anisotropy barrier separating preferred ``up'' and ``down'' orientations. The spin can tunnel between these directions when an external longitudinal magnetic field brings levels in opposite wells into resonance. When there exist more than one energetically equivalent paths for tunneling, those paths can interfere, a geometric-phase effect that modulates the rate at which spins flip direction. The interference can be controlled by a magnetic field applied perpendicular to the spin's easy magnetization axis. In a ground-breaking experiment, Wernsdorfer and Sessoli found oscillations in the probability of spin tunneling as a function of the field applied along the hard axis of the Fe8 SMM. This observation confirmed a theoretical prediction by Garg. Similar geometric-phase interference has been observed in other SMMs that have effective two-fold symmetry, where tunneling involves the interference between two equal-amplitude paths. Such interference effects have not previously been seen in systems with four-fold rotational symmetry. In recent work, my group has seen evidence of the observation of a geometric-phase interference effect in the Mn12-tBuAc SMM, a variant of the bellwether Mn12-Ac SMM that has true four-fold rotational symmetry (being free of the solvent disorder that breaks the four-fold symmetry in the latter). The spin relaxation rate as a function of the applied transverse magnetic field shows a modulated behavior, with retarded relaxation near where one expects destructive interference between tunneling paths associated with excited states. Tuning the direction of the transverse field away from the hard axis washes out the observed interference effect by favoring one tunneling path over others. Detailed master-equation calculations are used to fit the observed behavior and yield anisotropy parameters consistent with values determined by other groups. Unlike previous observations of geometric

  18. The Relation between Structure and Quantum Interference in Single Molecule Junctions

    DEFF Research Database (Denmark)

    Markussen, Troels; Stadler, Robert; Thygesen, Kristian Sommer

    2010-01-01

    Quantum interference (QI) of electron pathways has recently attracted increased interest as an enabling tool for single-molecule electronic devices. Although various molecular systems have been shown to exhibit QI effects and a number of methods have been proposed for its analysis, simple...

  19. Fundamental Study of Single Biomass Particle Combustion

    DEFF Research Database (Denmark)

    Momenikouchaksaraei, Maryam

    results showed that cylindrical particles lose mass faster than spherical particles of a similar volume (mass) and that the burnout time is reduced by increasing the particle aspect ratio (surface area to volume ratio). Very similar conversion times were observed for cylindrical particles with nearly...... identical surface area to volume ratios. Similar conversion times were also observed for two size classes of pulverised particles (with irregular shapes) made from the same type of wood because of their similar surface area to volume ratios. The ignition, devolatilisation and burnout times of particles were...

  20. Single-well interference slug tests to assess the vertical hydraulic conductivity of unconsolidated aquifers

    Science.gov (United States)

    Paradis, Daniel; Lefebvre, René

    2013-01-01

    SummaryMeaningful understanding of flow and solute transport in general requires the knowledge of hydraulic conductivity and its anisotropy. Various field methods allow the measurement of the horizontal component (Kh), but vertical hydraulic conductivity (Kv) is rarely measured, for lack of practical field tests. This paper proposes vertical interference slug tests, an adaptation of inter-well interference slug tests to a single well, for the efficient field measurement of Kv. The test is carried out in a single well between a stress and an observation interval that are vertically isolated with a three-packer assembly. An instantaneous pressure pulse is induced in the stress interval and resulting drawdowns are recorded in both the stress and the observation intervals. In a proof-of-concept field study, 12 vertical interference tests were carried out sequentially along a fully-screened well across a moderately heterogeneous and highly anisotropic aquifer made up of littoral silts and sands. A direct-push method was used to install the well, which was completed without sand-pack to allow the natural collapse of sediments in the thin annular space around the screen. Direct-push wells allow the measurement of in situ hydraulic properties of sediments and minimize well construction interferences with hydraulic tests. Drawdowns measured in stress and observation intervals of multiple tests were simultaneously inverted numerically to reconstruct heterogeneous profiles of Kh, hydraulic conductivity anisotropy (Kv/Kh), and specific storage (Ss). Results were validated by comparison of observed versus predicted drawdowns and with field and laboratory measurements of Kh and Kv made along the tested well. Results indicate that the profile of Kv values obtained with vertical interference slug tests follows a similar pattern with depth than the profile with lab measurements made with a permeameter on soil samples collected in the same intervals as the interference tests, which

  1. Single particle electrochemical sensors and methods of utilization

    Science.gov (United States)

    Schoeniger, Joseph [Oakland, CA; Flounders, Albert W [Berkeley, CA; Hughes, Robert C [Albuquerque, NM; Ricco, Antonio J [Los Gatos, CA; Wally, Karl [Lafayette, CA; Kravitz, Stanley H [Placitas, NM; Janek, Richard P [Oakland, CA

    2006-04-04

    The present invention discloses an electrochemical device for detecting single particles, and methods for using such a device to achieve high sensitivity for detecting particles such as bacteria, viruses, aggregates, immuno-complexes, molecules, or ionic species. The device provides for affinity-based electrochemical detection of particles with single-particle sensitivity. The disclosed device and methods are based on microelectrodes with surface-attached, affinity ligands (e.g., antibodies, combinatorial peptides, glycolipids) that bind selectively to some target particle species. The electrodes electrolyze chemical species present in the particle-containing solution, and particle interaction with a sensor element modulates its electrolytic activity. The devices may be used individually, employed as sensors, used in arrays for a single specific type of particle or for a range of particle types, or configured into arrays of sensors having both these attributes.

  2. Many-particle nucleon-nucleon forces from nuclear single-particle states

    OpenAIRE

    Birbrair, B. L.; Ryazanov, V. I.

    1999-01-01

    As follows from the energies of single-particle states in ^{40}Ca, ^{90}Zr and ^{208}Pb nuclei the contribution of many-particle NN forces to the nuclear single-particle potential is at least the sum of repulsive and attractive parts resulting from three-particle and four-particle forces respectively. In addition the specified nucleon density distributions in the above nuclei are determined from both the 1 GeV proton-nucleus elastic scattering and the single-particle energies.

  3. Stochastic transport of particles across single barriers

    International Nuclear Information System (INIS)

    Kreuter, Christian; Siems, Ullrich; Henseler, Peter; Nielaba, Peter; Leiderer, Paul; Erbe, Artur

    2012-01-01

    Transport phenomena of interacting particles are of high interest for many applications in biology and mesoscopic systems. Here we present measurements on colloidal particles, which are confined in narrow channels on a substrate and interact with a barrier, which impedes the motion along the channel. The substrate of the particle is tilted in order for the particles to be driven towards the barrier and, if the energy gained by the tilt is large enough, surpass the barrier by thermal activation. We therefore study the influence of this barrier as well as the influence of particle interaction on the particle transport through such systems. All experiments are supported with Brownian dynamics simulations in order to complement the experiments with tests of a large range of parameter space which cannot be accessed in experiments.

  4. Quantum interference of single photons from two remote nitrogen-vacancy centers in diamond

    Science.gov (United States)

    Goldman, Michael; Sipahigil, Alp; Togan, Emre; Chu, Yiwen; Markham, Mark; Twitchen, Daniel; Zibrov, Alexander; Kubanek, Alexander; Lukin, Mikhail

    2012-06-01

    The interference of two identical photons impinging on a beam splitter leads to perfect photon coalescence where both photons leave through the same output port. This effect, known as Hong-Ou-Mandel (HOM) interference, can be used to characterize the properties of quantum emitters with high accuracy. This is a particularly useful tool for quantum emitters embedded in a solid state matrix because their internal properties, unlike those of atoms in free space, differ substantially from emitter to emitter due to strong interactions with the environment. HOM interference can also be used to generate optically mediated entanglement between two remote quantum emitters, a crucial step toward the development of long-distance quantum communication and scalable quantum computation architectures. Here, we demonstrate this interference effect with single photons emitted from two single Nitrogen-Vacancy (NV) centers in diamond samples that are spatially separated by 2 meters [1]. The detuning of the photons can be tuned by applying a DC electric field to one NV center. We discuss current efforts toward optical entanglement of the two NV centers. [4pt] [1] A. Sipahigil, M. L. Goldman, E. Togan, Y. Chu, M. Markham, D. J. Twitchen, A. S. Zibrov, A. Kubanek, and M. D. Lukin, arXiv:1112.3975v1.

  5. Surface chemistry and morphology in single particle optical imaging

    Science.gov (United States)

    Ekiz-Kanik, Fulya; Sevenler, Derin Deniz; Ünlü, Neşe Lortlar; Chiari, Marcella; Ünlü, M. Selim

    2017-05-01

    Biological nanoparticles such as viruses and exosomes are important biomarkers for a range of medical conditions, from infectious diseases to cancer. Biological sensors that detect whole viruses and exosomes with high specificity, yet without additional labeling, are promising because they reduce the complexity of sample preparation and may improve measurement quality by retaining information about nanoscale physical structure of the bio-nanoparticle (BNP). Towards this end, a variety of BNP biosensor technologies have been developed, several of which are capable of enumerating the precise number of detected viruses or exosomes and analyzing physical properties of each individual particle. Optical imaging techniques are promising candidates among broad range of label-free nanoparticle detectors. These imaging BNP sensors detect the binding of single nanoparticles on a flat surface functionalized with a specific capture molecule or an array of multiplexed capture probes. The functionalization step confers all molecular specificity for the sensor's target but can introduce an unforeseen problem; a rough and inhomogeneous surface coating can be a source of noise, as these sensors detect small local changes in optical refractive index. In this paper, we review several optical technologies for label-free BNP detectors with a focus on imaging systems. We compare the surface-imaging methods including dark-field, surface plasmon resonance imaging and interference reflectance imaging. We discuss the importance of ensuring consistently uniform and smooth surface coatings of capture molecules for these types of biosensors and finally summarize several methods that have been developed towards addressing this challenge.

  6. Single-particle behaviour in circulating fluidized beds

    DEFF Research Database (Denmark)

    Erik Weinell, Claus; Dam-Johansen, Kim; Johnsson, Jan Erik

    1997-01-01

    . A radioactive tracking facility, which detects single radioactive particles, is developed and applied to determine the dynamic picture of the particle trajectories in the simulated boiler. The tracer particles are observed to move between the zone above and below the secondary air inlet with a mean frequency...

  7. Interference effects in laser-induced plasma emission from surface-bound metal micro-particles.

    Science.gov (United States)

    Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M; Matthews, Manyalibo J

    2017-05-01

    The light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metal micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.

  8. Microprocessor-based single particle calibration of scintillation counter

    Science.gov (United States)

    Mazumdar, G. K. D.; Pathak, K. M.

    1985-01-01

    A microprocessor-base set-up is fabricated and tested for the single particle calibration of the plastic scintillator. The single particle response of the scintillator is digitized by an A/D converter, and a 8085 A based microprocessor stores the pulse heights. The digitized information is printed. Facilities for CRT display and cassette storing and recalling are also made available.

  9. Automated data collection in single particle electron microscopy

    Science.gov (United States)

    Tan, Yong Zi; Cheng, Anchi; Potter, Clinton S.; Carragher, Bridget

    2016-01-01

    Automated data collection is an integral part of modern workflows in single particle electron microscopy (EM) research. This review surveys the software packages available for automated single particle EM data collection. The degree of automation at each stage of data collection is evaluated, and the capabilities of the software packages are described. Finally, future trends in automation are discussed. PMID:26671944

  10. New apparatus of single particle trap system for aerosol visualization

    Science.gov (United States)

    Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio

    2014-08-01

    Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.

  11. Inhibition of full length Hepatitis C Virus particles of 1a genotype through small interference RNA

    Directory of Open Access Journals (Sweden)

    Rehman Sidra

    2011-05-01

    Full Text Available Abstract Background Hepatitis C virus (HCV, a member of the Flaviviridae family of viruses, is a major cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. Currently, the only treatment available consists of a combination of Pegylated interferon alpha (INF-α and ribavirin, but only half of the patients treated show a sufficient antiviral response. Thus there is a great need for the development of new treatments for HCV infections. RNA interference (RNAi represents a new promising approach to develop effective antiviral drugs and has been extremely effective against HCV infection. Results This study was design to assess or explore the silencing effect of small interference RNAs (siRNAs against full length HCV particles of genotype 1a. In the present study six 21-bp siRNAs were designed against different regions of HCV structural genes (Core, E1 and E2. Selected siRNAs were labeled as Csi 301, Csi 29, E1si 52, E1si 192, E2si 86 and E2si 493. Our results demonstrated that siRNAs directed against HCV core gene showed 70% reduction in viral titer in HCV infected liver cells. Moreover, siRNAs against E1 and E2 envelop genes showed a dramatic reduction in HCV viral RNA, E2si 86 exhibited 93% inhibition, while E1si 192, E2si 493 and E1si 52 showed 87%, 80%, and 66% inhibition respectively. No significant inhibition was detected in cells transfected with the negative control siRNA. Conclusion Our results suggested that siRNAs targeted against HCV structural genes efficiently silence full length HCV particles and provide an effective therapeutic option against HCV infection.

  12. Modeling of calcination of single kaolinitic clay particle

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse

    The present work aims at modeling of the calcination (dehydroxylation) process of clay particles, specifically kaolinite, and its thermal transformation. For such purpose, 1D single particle calcination model was developed based on the concept of shrinking core model to assess the dehydroxylation...... distribution within the clay particle and simultaneous density changes due to the reaction kinetics. Accordingly, a particular residence time was noticed as a point where kaolinitic clay particles attain optimum conversion to metakaolinite which is pozzolanic....

  13. Single Particle Studies of Heterogeneous Atmospheric Chemistry on Aluminum Oxide Particles in a Quadrupole Trap

    National Research Council Canada - National Science Library

    Hunter, A

    2000-01-01

    ... on upper atmospheric chemical cycles and ozone. The experimental investigation employs a laboratory quadrupole trap electrodynamic levitation apparatus to study heterogeneous processes on single aluminum oxide particles representative...

  14. Chemical Principles and Interference in the Electrical Conductance of Single Molecules

    DEFF Research Database (Denmark)

    Borges, Anders Christian

    The electrical conductance of single molecules are routinely reported in the scientific literature and off-resonant coherent tunneling is believed to be the mechanism for transport in some of these experiments. In these experiments it is observed that, in spite of similar molecular structures......-Tunneling Microscope Break-Junction experiments (STM-BJ). It is demonstrated that these links can be used to design molecules exhibiting surprising interference effects and to interpret and predict the trends in the characteristic conductance of single molecules without resorting to numerical computational methods...

  15. Single-shot self-interference incoherent digital holography using off-axis configuration.

    Science.gov (United States)

    Hong, Jisoo; Kim, Myung K

    2013-12-01

    We propose a single-shot incoherent holographic imaging technique that adopts self-interference incoherent digital holography (SIDH) with slight tilt of the plane mirror in the optical configuration. The limited temporal coherence length of the illumination leads the guide-star hologram of the proposed system to have a Gaussian envelope of elliptical ring shape. The observation shows that the reconstruction by cross correlation with the guide-star hologram achieves better quality than the usual propagation methods. Experimentally, we verify that the hologram and 3D reconstruction can be implemented incoherently with the proposed single-shot off-axis SIDH.

  16. Reaction Gradients Viewed Inside Single Photoactive Particles

    Science.gov (United States)

    Alpert, P.; Corral Arroyo, P.; Dou, J.; Kreiger, U.; Luo, B.; Peter, T.; Ammann, M.

    2017-12-01

    In terms of chemical selectivity and spatial resolution, a technique known as scanning transmission X-ray microscopy coupled to near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) is unmatched and will remain so for years into the future. We present a recent development coupling STXM/NEXAFS to a custom-built photochemical environmental reactor in which aerosol particles reside allowing for in situ chemical imaging. A laboratory investigation of metal-organic complex photochemistry was conducted. Transition metals are of great importance to atmospheric chemistry and aerosol photochemical aging due to their ability to catalyze oxidation reactions. Aerosol particles composed of mixtures of citric acid and iron citrate were probed for their organic carbon composition and iron oxidation state under atmospherically relevant conditions. At 40% relative humidity, oxygen diffusion and reaction was severely limited. Fe was reoxidized in the first 200 nm of the particle surface leaving reduced iron in the core. Similar gradients were observed at 60% RH, however waiting approximately 2 hours in the dark resulted in a recovery of the initial Fe(III) concentration. We draw two main conclusions from our findings. Frist, the oxidation gradients must have been the result of anoxic conditions at the interior of aerosol particles. This was predicted using a newly developed model for molecular diffusion through multiple layers with a reaction framework describing the photochemical processing of the metal organic matrix. Second, the lifetime of organic radicals in an anoxic diffusion limited organic matrix must be considerably long ( hours) to completely reoxidize iron as they wait for molecular oxygen. Long radical lifetimes in viscous organic aerosol in turn, could create high radical concentrations or favor radical-radical reactions in particles typically not considered when oxygen is plentiful. Our results impact predictions of aerosol physiochemical properties, e

  17. Research on Multiaircraft Cooperative Suppression Interference Array Based on an Improved Multiobjective Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Huan Zhang

    2017-01-01

    Full Text Available For the problem of multiaircraft cooperative suppression interference array (MACSIA against the enemy air defense radar network in electronic warfare mission planning, firstly, the concept of route planning security zone is proposed and the solution to get the minimum width of security zone based on mathematical morphology is put forward. Secondly, the minimum width of security zone and the sum of the distance between each jamming aircraft and the center of radar network are regarded as objective function, and the multiobjective optimization model of MACSIA is built, and then an improved multiobjective particle swarm optimization algorithm is used to solve the model. The decomposition mechanism is adopted and the proportional distribution is used to maintain diversity of the new found nondominated solutions. Finally, the Pareto optimal solutions are analyzed by simulation, and the optimal MACSIA schemes of each jamming aircraft suppression against the enemy air defense radar network are obtained and verify that the built multiobjective optimization model is corrected. It also shows that the improved multiobjective particle swarm optimization algorithm for solving the problem of MACSIA is feasible and effective.

  18. DAMPING OF UNBOUND SINGLE-PARTICLE MODES

    NARCIS (Netherlands)

    FORTIER, S; BEAUMEL, D; GALES, S; GUILLOT, J; LANGEVINJOLIOT, H; LAURENT, H; MAISON, JM; BORDEWIJK, J; BRANDENBURG, S; KRASZNAHORKAY, A; CRAWLEY, GM; MASSOLO, CP; RENTERIA, M; KHENDRICHE, A

    1995-01-01

    The (alpha, He-3-n) reaction has been investigated at 120 MeV incident energy on Ni-64, Zr-90, and Sn-120 target nuclei. Neutrons in coincidence with He-3 particles emitted at 0 degrees were detected using the multidetector array EDEN, in order to get information about the decay of the

  19. Single-particle density matrix of liquid 4He

    International Nuclear Information System (INIS)

    Vakarchuk, I.A.

    2008-01-01

    The density single-particle matrix in the coordinate notation was calculated based on the expression for the interacting Bose-particle N system density matrix. Under the low temperatures the mentioned matrix in the first approximation enables to reproduce the Bogoliubov theory results. In the classical terms the mentioned theory enables to reproduce the results of the theory of the classical fluids in the approximation of the chaotic phases. On the basis of the density single-particle matrix one managed to obtain the function of the pulse distribution of the particles, the Bose-liquid average kinetic energy, and to study the Bose-Einstein condensation phenomenon [ru

  20. Single-stage accelerator mass spectrometer radiocarbon-interference identification and positive-ionisation characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Wilcken, K.M., E-mail: klaus.wilcken@ansto.gov.au [Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride G75 0QF (United Kingdom); Freeman, S.P.H.T.; Xu, S.; Dougans, A. [Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride G75 0QF (United Kingdom)

    2013-01-15

    A single-stage accelerator mass spectrometer (SSAMS) is a good alternative to conventional spectrometers based on tandem electrostatic acceleration for radiocarbon measurement and permits experimentation with both negative and positive carbon ions. However, such {sup 14}C AMS of either polarity ions is limited by an interference. In the case of anion acceleration we have newly determined this to be summed {sup 13}C and {sup 16}O by improvising an additional Wien filter on our SSAMS deck. Also, {sup 14}C AMS might be improved by removing its dependency on negative-ionisation in a sputter ion source. This requires negative-ionisation of sample atoms elsewhere to suppress the {sup 14}N interference, which we accomplish by transmitting initially positive ions through a thin membrane. The ionisation dependence on ion-energy is found to be consistent with previous experimentation with vapours and thicker foils.

  1. Compressive sensing sectional imaging for single-shot in-line self-interference incoherent holography

    Science.gov (United States)

    Weng, Jiawen; Clark, David C.; Kim, Myung K.

    2016-05-01

    A numerical reconstruction method based on compressive sensing (CS) for self-interference incoherent digital holography (SIDH) is proposed to achieve sectional imaging by single-shot in-line self-interference incoherent hologram. The sensing operator is built up based on the physical mechanism of SIDH according to CS theory, and a recovery algorithm is employed for image restoration. Numerical simulation and experimental studies employing LEDs as discrete point-sources and resolution targets as extended sources are performed to demonstrate the feasibility and validity of the method. The intensity distribution and the axial resolution along the propagation direction of SIDH by angular spectrum method (ASM) and by CS are discussed. The analysis result shows that compared to ASM the reconstruction by CS can improve the axial resolution of SIDH, and achieve sectional imaging. The proposed method may be useful to 3D analysis of dynamic systems.

  2. Structure, single-particle and many-particle coefficients of Lennard ...

    Indian Academy of Sciences (India)

    We investigate the effects of temperature and density on the single-particle and many-particle coefficients as well as on the structures of homogenous systems in which the particles are assumed to interact via a continuous soft sphere potential in the microcanonical ensemble. The pair distribution function and therefore the ...

  3. Single particle measurements and two particle interferometry results from CERN experiment NA44

    International Nuclear Information System (INIS)

    Simon-Gillo, J.

    1994-01-01

    CERN experiment NA44 is optimized for the study of identified single and multiple particle distributions to p T = 0 near mid-rapidity. We measure π +- , K +- , p, bar p, d and bar d, in p + A and A + A collisions at 450 and 20OGeV/u, respectively. Two-particle intensity interferometry results from π + π + , K + K + , and K - K - measurements and single particle distributions are presented

  4. Single-camera, three-dimensional particle tracking velocimetry.

    Science.gov (United States)

    Peterson, Kevin; Regaard, Boris; Heinemann, Stefan; Sick, Volker

    2012-04-09

    This paper introduces single-camera, three-dimensional particle tracking velocimetry (SC3D-PTV), an image-based, single-camera technique for measuring 3-component, volumetric velocity fields in environments with limited optical access, in particular, optically accessible internal combustion engines. The optical components used for SC3D-PTV are similar to those used for two-camera stereoscopic-µPIV, but are adapted to project two simultaneous images onto a single image sensor. A novel PTV algorithm relying on the similarity of the particle images corresponding to a single, physical particle produces 3-component, volumetric velocity fields, rather than the 3-component, planar results obtained with stereoscopic PIV, and without the reconstruction of an instantaneous 3D particle field. The hardware and software used for SC3D-PTV are described, and experimental results are presented.

  5. Single particle orbitals of the heaviest known actinide nuclei

    International Nuclear Information System (INIS)

    Ahmad, I.

    1992-01-01

    Single particle states in the actinide nuclei have been well characterized by decay scheme, (n, γ) and one nucleon transfer reaction studies. The energies of the single particle states are used to calculate the shell corrections which may give rise to stable superheavy elements. Large shell corrections for the superheavy elements arise from the gaps in the proton single-particle spectrum at Z = 114 and in the neutron single-particle spectrum at N = 184. The gap at Z = 114 is determined by the splitting of the f 7/2 and f 5/2 orbitals and the gap at N = 184 is determined by the locations of the h 11/2 , k 17/2 and j 13/2 spherical orbitals. Many of these states have been identified in very heavy actinide nuclei. Experiments identifying these states and the relation of the observed energies to the stability of superheavy elements are discussed

  6. Single-particle dynamics - RF acceleration

    International Nuclear Information System (INIS)

    Montague, B.W.

    1977-01-01

    In this paper the rf acceleration of both synchronous and non-synchronous particles is discussed and a simple linearized equation of small amplitude synchrotron oscillations is derived. Phase stability, the hamiltonian for synchrotron oscillations, oscillation amplitudes and adiabatic damping are then briefly discussed. The final sections of the paper contain a description of the basic principles of rf beam stacking in the longitudinal phase space of intersecting Storage Rings and a description of phase displacement acceleration which inspite of certain disadvantages, remains an attractive technique for proton storage rings. (B.D.)

  7. Synthesis of micro-sized shell-isolated 3D plasmonic superstructures for in situ single-particle SERS monitoring

    Science.gov (United States)

    Zhang, Kun; Zhao, Jingjing; Ji, Ji; Liu, Baohong

    2016-04-01

    A single-particle SERS system enabling real-time and in situ observation of Au-catalyzed reactions has been developed. Both the catalytic activity and the SERS effect are coupled into a single bi-functional 3D superstructure comprising Au nanosatellites self-assembled onto a shell-insulated Ag microflower core, which eliminates the interference from photocatalysis.A single-particle SERS system enabling real-time and in situ observation of Au-catalyzed reactions has been developed. Both the catalytic activity and the SERS effect are coupled into a single bi-functional 3D superstructure comprising Au nanosatellites self-assembled onto a shell-insulated Ag microflower core, which eliminates the interference from photocatalysis. Electronic supplementary information (ESI) available: Details of the synthesis and characterization of the Ag@SiO2@Au superstructures (SEM and TEM images, UV/vis and SERS spectra). See DOI: 10.1039/c6nr00278a

  8. Single particle mass spectral signatures from vehicle exhaust particles and the source apportionment of on-line PM2.5by single particle aerosol mass spectrometry.

    Science.gov (United States)

    Yang, Jian; Ma, Shexia; Gao, Bo; Li, Xiaoying; Zhang, Yanjun; Cai, Jing; Li, Mei; Yao, Ling'ai; Huang, Bo; Zheng, Mei

    2017-09-01

    In order to accurately apportion the many distinct types of individual particles observed, it is necessary to characterize fingerprints of individual particles emitted directly from known sources. In this study, single particle mass spectral signatures from vehicle exhaust particles in a tunnel were performed. These data were used to evaluate particle signatures in a real-world PM 2.5 apportionment study. The dominant chemical type originating from average positive and negative mass spectra for vehicle exhaust particles are EC species. Four distinct particle types describe the majority of particles emitted by vehicle exhaust particles in this tunnel. Each particle class is labeled according to the most significant chemical features in both average positive and negative mass spectral signatures, including ECOC, NaK, Metal and PAHs species. A single particle aerosol mass spectrometry (SPAMS) was also employed during the winter of 2013 in Guangzhou to determine both the size and chemical composition of individual atmospheric particles, with vacuum aerodynamic diameter (d va ) in the size range of 0.2-2μm. A total of 487,570 particles were chemically analyzed with positive and negative ion mass spectra and a large set of single particle mass spectra was collected and analyzed in order to identify the speciation. According to the typical tracer ions from different source types and classification by the ART-2a algorithm which uses source fingerprints for apportioning ambient particles, the major sources of single particles were simulated. Coal combustion, vehicle exhaust, and secondary ion were the most abundant particle sources, contributing 28.5%, 17.8%, and 18.2%, respectively. The fraction with vehicle exhaust species particles decreased slightly with particle size in the condensation mode particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Single-sheet identification method of heavy charged particles using ...

    Indian Academy of Sciences (India)

    of the single-sheet particle identification technique in CR-39 and CN-85 polycarbonate by plotting track cone length ... in neutron dosimetry, gamma and cosmic rays detection, heavy ion and nuclear physics and corpuscular ..... [13] R P Henke and E V Benton, Charged particle tracks in polymers: No. 5-A com- puter code for ...

  10. Calibration of single particle sizing velocimeters using photomask reticles

    Science.gov (United States)

    Hirleman, E. D.; Holve, D. J.; Hovenac, E. A.

    1988-01-01

    The development of photomask reticle calibration standards for single particle instruments is discussed. The calibration method studied involves the use of photomask reticles where the particle artifacts are actually disks of chrome thin film in the clear field reticles produced by photolithography and etching processes. Consideration is given to various aspects of theory, design, and performance.

  11. Influence of Torrefaction on Single Particle Combustion of Wood

    DEFF Research Database (Denmark)

    Lu, Zhimin; Jian, Jie; Jensen, Peter Arendt

    2016-01-01

    This study focuses on the influence of torrefaction on the char reactivity, char yield, and combustion time of 3-5 mm spherical wood particles in a single particle combustion reactor (SPC) operating at a nominal temperature of 1231 °C. The devolatilization times were reduced and the char burnout...

  12. Quantum interference of electrically generated single photons from a quantum dot

    International Nuclear Information System (INIS)

    Patel, Raj B; Bennett, Anthony J; Shields, Andrew J; Cooper, Ken; Atkinson, Paola; Nicoll, Christine A; Ritchie, David A

    2010-01-01

    Quantum interference lies at the foundation of many protocols for scalable quantum computing and communication with linear optics. To observe these effects the light source must emit photons that are indistinguishable. From a technological standpoint, it would be beneficial to have electrical control over the emission. Here we report of an electrically driven single-photon source emitting indistinguishable photons. The device consists of a layer of InAs quantum dots embedded in the intrinsic region of a p-i-n diode. Indistinguishability of consecutive photons is tested in a two-photon interference experiment under two modes of operation, continuous and pulsed current injection. We also present a complete theory based on the interference of photons with a Lorentzian spectrum which we compare to both our continuous wave and pulsed experiments. In the former case, a visibility was measured limited only by the timing resolution of our detection system. In the case of pulsed injection, we employ a two-pulse voltage sequence which suppresses multi-photon emission and allows us to carry out temporal filtering of photons which have undergone dephasing. The characteristic Hong-Ou-Mandel 'dip' is measured, resulting in a visibility of 64 ± 4%.

  13. Single-Photon Interference due to Motion in an Atomic Collective Excitation

    Science.gov (United States)

    Whiting, D. J.; Šibalić, N.; Keaveney, J.; Adams, C. S.; Hughes, I. G.

    2017-06-01

    We experimentally demonstrate the heralded generation of bichromatic single photons from an atomic collective spin excitation (CSE). The photon arrival times display collective quantum beats, a novel interference effect resulting from the relative motion of atoms in the CSE. A combination of velocity-selective excitation with strong laser dressing and the addition of a magnetic field allows for exquisite control of this collective beat phenomenon. The present experiment uses a diamond scheme with near-IR photons that can be extended to include telecommunications wavelengths or modified to allow storage and retrieval in an inverted-Y scheme.

  14. Single-particle imaging for biosensor applications

    Science.gov (United States)

    Yorulmaz, Mustafa; Isil, Cagatay; Seymour, Elif; Yurdakul, Celalettin; Solmaz, Berkan; Koc, Aykut; Ünlü, M. Selim

    2017-10-01

    Current state-of-the-art technology for in-vitro diagnostics employ laboratory tests such as ELISA that consists of a multi-step test procedure and give results in analog format. Results of these tests are interpreted by the color change in a set of diluted samples in a multi-well plate. However, detection of the minute changes in the color poses challenges and can lead to false interpretations. Instead, a technique that allows individual counting of specific binding events would be useful to overcome such challenges. Digital imaging has been applied recently for diagnostics applications. SPR is one of the techniques allowing quantitative measurements. However, the limit of detection in this technique is on the order of nM. The current required detection limit, which is already achieved with the analog techniques, is around pM. Optical techniques that are simple to implement and can offer better sensitivities have great potential to be used in medical diagnostics. Interference Microscopy is one of the tools that have been investigated over years in optics field. More of the studies have been performed in confocal geometry and each individual nanoparticle was observed separately. Here, we achieve wide-field imaging of individual nanoparticles in a large field-of-view ( 166 μm × 250 μm) on a micro-array based sensor chip in fraction of a second. We tested the sensitivity of our technique on dielectric nanoparticles because they exhibit optical properties similar to viruses and cells. We can detect non-resonant dielectric polystyrene nanoparticles of 100 nm. Moreover, we perform post-processing applications to further enhance visibility.

  15. Interference between source-free radiation and radiation from sources: Particle-like behavior for classical radiation

    Science.gov (United States)

    Boyer, Timothy H.

    2017-09-01

    A simple junior-level electrodynamics problem is used to illustrate the interference between a source-free standing plane wave and a wave generated by a pulse in a current sheet. Depending upon the relative phases between the standing wave and the current pulse and also upon the relative magnitudes, we can find quite different patterns of emitted energy and momentum. If the source gives a large radiation pulse so that the source-free plane wave can be neglected, then the radiation spreads out symmetrically on either side of the current sheet. However, if the radiation sheet gives a pulse with fields comparable to those of the standing wave, then we can find a single radiation pulse moving to the right while the current sheet recoils to the left or the situation with the directions reversed. The example is a crude illustration of particle-like behavior arising from conventional classical electromagnetic behavior in the presence of source-free radiation. The discussion makes contact with the ideas of photons in modern physics.

  16. Infrared absorption spectroscopy of single particles using photophoresis

    International Nuclear Information System (INIS)

    Lin, H.

    1985-01-01

    In situ absorption spectroscopy was performed on a single suspended salt particle using photophoresis. The charged ammonium sulfate particle was levitated in an electric-quadrpole field and illuminated by a CO 2 laser. The size-dependent absorption spectrum of ammonium sulfate particles was observed for the first time to our knowledge at 930-1080 cm -1 . The effects of gas pressure and laser power were also determined. For particles approximately 10 μm in diameter, the photophoretic force was observed to be negative

  17. Magnetophoretic circuits for digital control of single particles and cells

    Science.gov (United States)

    Lim, Byeonghwa; Reddy, Venu; Hu, Xinghao; Kim, Kunwoo; Jadhav, Mital; Abedini-Nassab, Roozbeh; Noh, Young-Woock; Lim, Yong Taik; Yellen, Benjamin B.; Kim, Cheolgi

    2014-05-01

    The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.

  18. Quantum Interference of Molecules

    Indian Academy of Sciences (India)

    IAS Admin

    wave-like properties of particles for the first time discovery of radio waves by Heinrich Hertz in 1886. An experiment performed by Taylor in 1909 showed that .... Set- up for double- slit interference with single electrons. Akira Tonomura and colleagues at the. Hitachi Advanced. Research Laboratory in Japan reported.

  19. Single particle composition measurements of artificial Calcium Carbonate aerosols

    Science.gov (United States)

    Zorn, S. R.; Mentel, T. F.; Schwinger, T.; Croteau, P. L.; Jayne, J.; Worsnop, D. R.; Trimborn, A.

    2012-12-01

    Mineral dust, with an estimated total source from natural and anthropogenic emissions of up to 2800 Tg/yr, is one of the two largest contributors to total aerosol mass, with only Sea salt having a similar source strength (up to 2600 Tg/yr). The composition of dust particles varies strongly depending on the production process and, most importantly, the source location. Therefore, the composition of single dust particles can be used both to trace source regions of air masses as well as to identify chemical aging processes. Here we present results of laboratory studies on generating artificial calcium carbonate (CaCO3) particles, a model compound for carbonaceous mineral dust particles. Particles were generated by atomizing an aqueous hydrogen carbonate solution. Water was removed using a silica diffusion dryer., then the particles were processed in an oven at temperatures up to 900°C, converting the hydrogen carbonate to its anhydrous form. The resulting aerosol was analyzed using an on-line single particle laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF). The results confirm the conversion to calcium carbonate, and validate that the produced particles indeed can be used as a model compound for carbonaceous dust aerosols.

  20. Single Particle Tracking: Analysis Techniques for Live Cell Nanoscopy

    Science.gov (United States)

    Relich, Peter Kristopher, II

    Single molecule experiments are a set of experiments designed specifically to study the properties of individual molecules. It has only been in the last three decades where single molecule experiments have been applied to the life sciences; where they have been successfully implemented in systems biology for probing the behaviors of sub-cellular mechanisms. The advent and growth of super-resolution techniques in single molecule experiments has made the fundamental behaviors of light and the associated nano-probes a necessary concern amongst life scientists wishing to advance the state of human knowledge in biology. This dissertation disseminates some of the practices learned in experimental live cell microscopy. The topic of single particle tracking is addressed here in a format that is designed for the physicist who embarks upon single molecule studies. Specifically, the focus is on the necessary procedures to generate single particle tracking analysis techniques that can be implemented to answer biological questions. These analysis techniques range from designing and testing a particle tracking algorithm to inferring model parameters once an image has been processed. The intellectual contributions of the author include the techniques in diffusion estimation, localization filtering, and trajectory associations for tracking which will all be discussed in detail in later chapters. The author of this thesis has also contributed to the software development of automated gain calibration, live cell particle simulations, and various single particle tracking packages. Future work includes further evaluation of this laboratory's single particle tracking software, entropy based approaches towards hypothesis validations, and the uncertainty quantification of gain calibration.

  1. Three-dimensional single particle tracking in dense dust clouds by stereoscopy of fluorescent particles

    Science.gov (United States)

    Himpel, Michael; Killer, Carsten; Buttenschön, Birger; Melzer, André

    2012-12-01

    In dense dust clouds of a dusty plasma single particle trajectories are impossible to follow due to occlusion of particles and ambiguities in particle correspondences. By stereoscopic imaging of fluorescent tracer particles, we were able to reconstruct 3D single particle trajectories within dense dust clouds. Several measurements are shown that justify to regard the tracer particles as suitable representatives for the whole dust system. A first analysis of dust density waves in dense clouds already shows that these waves exhibit three-dimensional dynamics at larger wave amplitudes that cannot be resolved by 2D imaging techniques: a broad velocity distribution perpendicular to the oscillation plane due to dust-dust collisions is seen, while the velocity distribution in the oscillation direction is bimodal and shifted due to the bulk wave propagation.

  2. Three-dimensional single particle tracking in dense dust clouds by stereoscopy of fluorescent particles

    Energy Technology Data Exchange (ETDEWEB)

    Himpel, Michael; Killer, Carsten; Buttenschoen, Birger; Melzer, Andre [Ernst-Moritz-Arndt-University, 17489 Greifswald (Germany)

    2012-12-15

    In dense dust clouds of a dusty plasma single particle trajectories are impossible to follow due to occlusion of particles and ambiguities in particle correspondences. By stereoscopic imaging of fluorescent tracer particles, we were able to reconstruct 3D single particle trajectories within dense dust clouds. Several measurements are shown that justify to regard the tracer particles as suitable representatives for the whole dust system. A first analysis of dust density waves in dense clouds already shows that these waves exhibit three-dimensional dynamics at larger wave amplitudes that cannot be resolved by 2D imaging techniques: a broad velocity distribution perpendicular to the oscillation plane due to dust-dust collisions is seen, while the velocity distribution in the oscillation direction is bimodal and shifted due to the bulk wave propagation.

  3. Single-particle detection of transcription following rotavirus entry.

    Science.gov (United States)

    Salgado, Eric N; Upadhyayula, Srigokul; Harrison, Stephen C

    2017-07-12

    Infectious rotavirus particles are triple-layered, icosahedral assemblies. The outer layer proteins, VP4 (cleaved to VP8* and VP5*) and VP7, surround a transcriptionally competent, double-layer particle (DLP), which they deliver into the cytosol. During entry of rhesus rotavirus, VP8* interacts with cell-surface gangliosides, allowing engulfment into a membrane vesicle by a clathrin-independent process. Escape into the cytosol and outer-layer shedding depend on interaction of a hydrophobic surface on VP5* with the membrane bilayer and on a large-scale conformational change. We report here experiments that detect the fate of released DLPs and their efficiency in initiating RNA synthesis. By replacing the outer layer with fluorescently tagged, recombinant proteins and also tagging the DLP, we distinguish particles that have lost their outer layer and entered the cytosol (uncoated) from those still within membrane vesicles. We used fluorescent in situ hybridization with probes for nascent transcripts to determine how soon after uncoating transcription began and what fraction of the uncoated particles were active in initiating RNA synthesis. We detected RNA synthesis by uncoated particles as early as 15 minutes after adding virus. Uncoating efficiency was 20-50%; of the uncoated particles, about 10% synthesized detectable RNA. In the format of our experiments, about 1% of the added particles attached to the cell surface, giving an overall added-particle to RNA-synthesizing particle ratio of between 1000 and 5000 to 1, in good agreement with the particle-to-focus-forming unit determined by infectivity assays. Thus, RNA synthesis by even a single, uncoated particle can initiate infection in a cell. IMPORTANCE The pathways by which a virus enters a cell transform its packaged genome into an active one. Contemporary fluorescence microscopy can detect individual virus particles as they enter cells, allowing us to map their multi-step entry pathways. Rotaviruses, like most

  4. High sensitivity fluorescent single particle and single molecule detection apparatus and method

    Science.gov (United States)

    Mathies, Richard A.; Peck, Konan; Stryer, Lubert

    1990-01-01

    Apparatus is described for ultrasensitive detection of single fluorescent particles down to the single fluorescent molecule limit in a fluid or on a substrate comprising means for illuminating a predetermined volume of the fluid or area of the substrate whereby to emit light including background light from the fluid and burst of photons from particles residing in the area. The photon burst is detected in real time to generate output representative signal. The signal is received and the burst of energy from the fluorescent particles is distinguished from the background energy to provide an indication of the number, location or concentration of the particles or molecules.

  5. Evolution of single-particle structure of silicon isotopes

    Science.gov (United States)

    Bespalova, O. V.; Fedorov, N. A.; Klimochkina, A. A.; Markova, M. L.; Spasskaya, T. I.; Tretyakova, T. Yu.

    2018-01-01

    New data on proton and neutron single-particle energies E_{nlj} of Si isotopes with neutron number N from 12 to 28 as well as occupation probabilities N_{nlj} of single-particle states of stable isotopes 28, 30Si near the Fermi energy were obtained by the joint evaluation of the stripping and pick-up reaction data and excited state decay schemes of neighboring nuclei. The evaluated data indicate the following features of single-particle structure evolution: persistence of Z = 14 subshell closure with N increase, the new magicity of the number N = 16, and the conservation of the magic properties of the number N = 20 in Si isotopic chain. The features were described by the dispersive optical model. The calculation also predicts the weakening of N = 28 shell closure and demonstrates evolution of a bubble-like structure of the proton density distributions in neutron-rich Si isotopes.

  6. Optimal estimation of diffusion coefficients from single-particle trajectories

    DEFF Research Database (Denmark)

    Vestergaard, Christian L.; Blainey, Paul C.; Flyvbjerg, Henrik

    2014-01-01

    How does one optimally determine the diffusion coefficient of a diffusing particle from a single-time-lapse recorded trajectory of the particle? We answer this question with an explicit, unbiased, and practically optimal covariance-based estimator (CVE). This estimator is regression-free and is far...... substrate, the CVE is biased by substrate motion. However, given some long time series and a substrate under some tension, an extended MLE can separate particle diffusion on the substrate from substrate motion in the laboratory frame. This provides benchmarks that allow removal of bias caused by substrate...

  7. Large Silver Halide Single Crystals as Charged Particle Track Detectors

    Science.gov (United States)

    Kusmiss, J. H.

    1972-01-01

    The trajectory of the particle is made visible under a microscope by the accumulation of metallic silver at regions of the lattice damaged by the particle. This decoration of the particle track is accomplished by exposure of the crystal to light. The decoration of normally present lattice imperfections such as dislocations can be suppressed by the addition to the crystal of less than ten parts per million of a suitable polyvalent metal impurity. An account of some preliminary attempts to grow thin single crystals of AgCl is given also, and suggestions for a more refined technique are offered.

  8. Exploration of the Berry phase interference in a single-molecule magnets of trigonal symmetry

    Science.gov (United States)

    Quddusi, H. M.; Liu, J.; Feng, P. L.; Del Barco, E.; Hill, S.; Hendrickson, D. N.

    2012-02-01

    The quantum behavior of single-molecule magnets (SMM) is mainly governed by their molecular composition and crystallographic symmetries, thus playing an essential role in the tunneling dynamics. We present low temperature magnetometry measurements on a trigonal symmetric, low nuclearity Mn3 SMM. The experiments are designed to explore the behavior of the tunnel splittings within the transverse field magnitude/direction phase space, by applying a transverse field (0-1 T) along different directions within the hard anisotropy plane of the molecules. The expected quantum interference pattern can be understood as an outcome of a competition between different intramolecular magnetic interactions. A multi-spin description using non-collinear zero-field splitting tensors and intra molecular dipolar interactions between the manganese ions is employed to explain the symmetry patterns.

  9. Single-Molecule Electronics with Cross- Conjugated Molecules: Quantum Interference, IETS and Non-Equilibrium "Temperatures"

    DEFF Research Database (Denmark)

    Jørgensen, Jacob Lykkebo

    Abstract The idea of using single-molecules as components in electronic devices is fas- cinating. For this idea to come into fruition, a number of technical and theo- retical challenges must be overcome. In this PhD thesis, the electron-phonon interaction is studied for a special class of molecules......, which is characterised by destructive quantum interference. The molecules are cross-conjugated, which means that the two parts of the molecules are conjugated to a third part, but not to each other. This gives rise to an anti-resonance in the trans- mission. In the low bias and low temperature regime......-conjugated molecules. We nd that the vibrational modes that would be expected to dominate, following the propensity, rules are very weak. Instead, other modes are found to be the dominant ones. We study this phenomenon for a number of cross-conjugated molecules, and link these ndings to the anti...

  10. Single particle labeling of RNA virus in live cells.

    Science.gov (United States)

    Liu, Xiaohui; Ouyang, Ting; Ouyang, Hongsheng; Ren, Linzhu

    2017-06-02

    Real-time and visual tracking of viral infection is crucial for elucidating the infectious and pathogenesis mechanisms. To track the virus successfully, an efficient labeling method is necessary. In this review, we first discuss the practical labeling techniques for virus tracking in live cells. We then describe the current knowledge of interactions between RNA viruses (especially influenza viruses, immunodeficiency viruses, and Flaviviruses) and host cellular structures, obtained using single particle labeling techniques combined with real-time fluorescence microscopy. Single particle labeling provides an easy system for understanding the RNA virus life cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels.

    Science.gov (United States)

    Fritzsche, Joachim; Albinsson, David; Fritzsche, Michael; Antosiewicz, Tomasz J; Westerlund, Fredrik; Langhammer, Christoph

    2016-12-14

    Nanoplasmonics allows label-free optical sensing and spectroscopy at the single nanoparticle level by exploiting plasmonic excitations in metal nanoparticles. Nanofluidics offers exclusive possibilities for applying and controlling fluid flow and mass transport at the nanoscale and toward nanosized objects. Here, we combine these two concepts in a single device, by integrating single particle nanoplasmonic sensing with nanofluidics using advanced nanofabrication. The developed devices enable on-chip referenced parallel single particle nanoplasmonic sensing inside multiple individual nanofluidic channels with dimensions down to the 100 nm range. Beyond detailed discussion of the nanofabrication, general device characterization, and parallelized single particle plasmonic readout concepts, we demonstrate device function on two examples: (i) in situ measurements of local buffer concentrations inside a nanofluidic channel; (ii) real time binding kinetics of alkanethiol molecules to a single plasmonic nanonatenna sensor in a single nanochannel. Our concept thus provides a powerful solution for controlling mass transport to and from individual (plasmonic) nanoparticles, which in a long-term perspective offers unique opportunities for label-free detection of analyte molecules at low concentrations and for fundamental studies of fluids in extreme confinement.

  12. Single-Particle Cryo-EM and 3D Reconstruction of Hybrid Nanoparticles with Electron-Dense Components.

    Science.gov (United States)

    Yu, Guimei; Yan, Rui; Zhang, Chuan; Mao, Chengde; Jiang, Wen

    2015-10-01

    Single-particle cryo-electron microscopy (cryo-EM), accompanied with 3D reconstruction, is a broadly applicable tool for the structural characterization of macromolecules and nanoparticles. Recently, the cryo-EM field has pushed the limits of this technique to higher resolutions and samples of smaller molecular mass, however, some samples still present hurdles to this technique. Hybrid particles with electron-dense components, which have been studied using single-particle cryo-EM yet with limited success in 3D reconstruction due to the interference caused by electron-dense elements, constitute one group of such challenging samples. To process such hybrid particles, a masking method is developed in this work to adaptively remove pixels arising from electron-dense portions in individual projection images while maintaining maximal biomass signals for subsequent 2D alignment, 3D reconstruction, and iterative refinements. As demonstrated by the success in 3D reconstruction of an octahedron DNA/gold hybrid particle, which has been previously published without a 3D reconstruction, the devised strategy that combines adaptive masking and standard single-particle 3D reconstruction approach has overcome the hurdle of electron-dense elements interference, and is generally applicable to cryo-EM structural characterization of most, if not all, hybrid nanomaterials with electron-dense components. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Imaging of single retinal ganglion cell with differential interference contrast microscopy (Conference Presentation)

    Science.gov (United States)

    Oh, Juyeong; Kim, Yu Jeong; Kim, Chul-Ki; Lee, Taik Jin; Seo, Mina; Lee, Seok; Woo, Deok Ha; Jun, Seong Chan; Park, Ki-Ho; Kim, Seok Hwan; Kim, Jae Hun

    2017-02-01

    Glaucoma is a progressive optic neuropathy, characterized by the selective loss of retinal ganglion cells (RGCs). Therefore, monitoring the change of number or morphology of RGC is essential for the early detection as well as investigation of pathophysiology of glaucoma. Since RGC layer is transparent and hyporeflective, the direct optical visualization of RGCs has not been successful so far. Therefore, glaucoma evaluation mostly depends on indirect diagnostic methods such as the evaluation of optic disc morphology or retinal nerve fiber layer thickness measurement by optical coherence tomography. We have previously demonstrated single photoreceptor cell imaging with differential interference contrast (DIC) microscopy. Herein, we successfully visualized single RGC using DIC microscopy. Since RGC layer is much less reflective than photoreceptor layer, various techniques including the control of light wavelength and bandwidth using a tunable band pass filter were adopted to reduce the chromatic aberration in z-axis for higher and clearer resolution. To verify that the imaged cells were the RGCs, the flat-mounted retina of Sprague-Dawley rat, in which the RGCs were retrogradely labeled with fluorescence, was observed by both fluorescence and DIC microscopies for direct comparison. We have confirmed that the cell images obtained by fluorescence microscopy were perfectly matched with cell images by DIC microscopy. As conclusion, we have visualized single RGC with DIC microscopy, and confirmed with fluorescence microscopy.

  14. Optimal multi-photon phase sensing with a single interference fringe

    Science.gov (United States)

    Xiang, G. Y.; Hofmann, H. F.; Pryde, G. J.

    2013-01-01

    Quantum entanglement can help to increase the precision of optical phase measurements beyond the shot noise limit (SNL) to the ultimate Heisenberg limit. However, the N-photon parity measurements required to achieve this optimal sensitivity are extremely difficult to realize with current photon detection technologies, requiring high-fidelity resolution of N + 1 different photon distributions between the output ports. Recent experimental demonstrations of precision beyond the SNL have therefore used only one or two photon-number detection patterns instead of parity measurements. Here we investigate the achievable phase sensitivity of the simple and efficient single interference fringe detection technique. We show that the maximally-entangled “NOON” state does not achieve optimal phase sensitivity when N > 4, rather, we show that the Holland-Burnett state is optimal. We experimentally demonstrate this enhanced sensitivity using a single photon-counted fringe of the six-photon Holland-Burnett state. Specifically, our single-fringe six-photon measurement achieves a phase variance three times below the SNL. PMID:24067490

  15. Single particle analysis with a 3600 light scattering photometer

    International Nuclear Information System (INIS)

    Bartholdi, M.F.

    1979-06-01

    Light scattering by single spherical homogeneous particles in the diameter range 1 to 20 μm and relative refractive index 1.20 is measured. Particle size of narrowly dispersed populations is determined and a multi-modal dispersion of five components is completely analyzed. A 360 0 light scattering photometer for analysis of single particles has been designed and developed. A fluid stream containing single particles intersects a focused laser beam at the primary focal point of an ellipsoidal reflector ring. The light scattered at angles theta = 2.5 0 to 177.5 0 at phi = 0 0 and 180 0 is reflected onto a circular array of photodiodes. The ellipsoidal reflector is situated in a chamber filled with fluid matching that of the stream to minimize refracting and reflecting interfaces. The detector array consists of 60 photodiodes each subtending 3 0 in scattering angle on 6 0 centers around 360 0 . 32 measurements on individual particles can be acquired at rates of 500 particles per second. The intensity and angular distribution of light scattered by spherical particles are indicative of size and relative refractive index. Calculations, using Lorenz--Mie theory, of differential scattering patterns integrated over angle corresponding to the detector geometry determined the instrument response to particle size. From this the expected resolution and experimental procedures are determined.Ultimately, the photometer will be utilized for identification and discrimination of biological cells based on the sensitivity of light scattering to size, shape, refractive index differences, internal granularity, and other internal morphology. This study has demonstrated the utility of the photometer and indicates potential for application to light scattering studies of biological cells

  16. Emissions from Ethanol-Gasoline Blends: A Single Particle Perspective

    Directory of Open Access Journals (Sweden)

    Peter H. McMurry

    2011-06-01

    Full Text Available Due to its agricultural origin and function as a fuel oxygenate, ethanol is being promoted as an alternative biomass-based fuel for use in spark ignition engines, with mandates for its use at state and regional levels. While it has been established that the addition of ethanol to a fuel reduces the particulate mass concentration in the exhaust, little attention has been paid to changes in the physicochemical properties of the emitted particles. In this work, a dynamometer-mounted GM Quad-4 spark ignition engine run without aftertreatment at 1,500 RPM and 100% load was used with four different fuel blends, containing 0, 20, 40 and 85 percent ethanol in gasoline. This allowed the effects of the fuel composition to be isolated from other effects. Instrumentation employed included two Aerosol Time-of-Flight Mass Spectrometers covering different size ranges for analysis of single particle composition, an Aethalometer for black carbon, a Scanning Mobility Particle Sizer for particle size distributions, a Photoelectric Aerosol Sensor for particle-bound polycyclic aromatic hydrocarbon (PAH species and gravimetric filter measurements for particulate mass concentrations. It was found that, under the conditions investigated here, additional ethanol content in the fuel changes the particle size distribution, especially in the accumulation mode, and decreases the black carbon and total particulate mass concentrations. The molecular weight distribution of the PAHs was found to decrease with added ethanol. However, PAHs produced from higher ethanol-content fuels are associated with NO2− (m/z—46 in the single-particle mass spectra, indicating the presence of nitro-PAHs. Compounds associated with the gasoline (e.g., sulfur-containing species are diminished due to dilution as ethanol is added to the fuel relative to those associated with the lubricating oil (e.g., calcium, zinc, phosphate in the single particle spectra. These changes have potential

  17. Spatially Resolved Sensitivity of Single-Particle Plasmon Sensors.

    Science.gov (United States)

    Beuwer, Michael A; van Hoof, Bas; Zijlstra, Peter

    2018-03-01

    The high sensitivity of localized surface plasmon resonance sensors to the local refractive index allows for the detection of single-molecule binding events. Though binding events of single objects can be detected by their induced plasmon shift, the broad distribution of observed shifts remains poorly understood. Here, we perform a single-particle study wherein single nanospheres bind to a gold nanorod, and relate the observed plasmon shift to the binding location using correlative microscopy. To achieve this we combine atomic force microscopy to determine the binding location, and single-particle spectroscopy to determine the corresponding plasmon shift. As expected, we find a larger plasmon shift for nanospheres binding at the tip of a rod compared to its sides, in good agreement with numerical calculations. However, we also find a broad distribution of shifts even for spheres that were bound at a similar location to the nanorod. Our correlative approach allows us to disentangle effects of nanoparticle dimensions and binding location, and by comparison to numerical calculations we find that the biggest contributor to this observed spread is the dispersion in nanosphere diameter. These experiments provide insight into the spatial sensitivity and signal-heterogeneity of single-particle plasmon sensors and provides a framework for signal interpretation in sensing applications.

  18. Study on the fragmentation of granite due to the impact of single particle and double particles

    Directory of Open Access Journals (Sweden)

    Yuchun Kuang

    2016-09-01

    Full Text Available Particle Impact Drilling (PID is a novel method to improve the rate of penetration (ROP. In order to further improve the performance of PID, an investigation into the effect of single and double particles: (1 diameter; (2 initial velocity; (3 distance; and (4 angle of incidence was undertaken to investigate their effects on broken volume and penetration depth into hard brittle rock. For this purpose, the laboratory experiment of single particle impact rock was employed. Meanwhile, based on the LS-DYNA, a new finite element (FE simulation of the PID, including single and double particles impact rock, has been presented. The 3-dimensional (3D, aix-symmetric, dynamic-explicit, Lagrangian model has been considered in this simulation. And the Elastic and Holmquist Johnson Cook (HJC material behaviors have been used for particles and rocks, respectively. The FE simulation results of single particle impacting rock are good agreement with experimental data. Furthermore, in this article the optimal impact parameters, including diameter, initial velocity, distance and the angle of incidence, are obtained in PID.

  19. Decay properties of high-lying single-particles modes

    NARCIS (Netherlands)

    Beaumel, D; Fortier, S; Gales, S; Guillot, J; LangevinJoliot, H; Laurent, H; Maison, JM; Vernotte, J; Bordewijck, J; Brandenburg, S; Krasznahorkay, A; Crawley, GM; Massolo, CP; Renteria, M; Khendriche, A

    1996-01-01

    The neutron decay of high-lying single-particle states in Ni-64, Zr-90, Sn-120 and (208)pb excited by means of the (alpha,He-3) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular

  20. Single-particle spectral density of the Hubbard model

    NARCIS (Netherlands)

    Mehlig, B.; Eskes, H.; Hayn, R.; Meinders, M.B.J.

    1995-01-01

    We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,

  1. SINGLE-PARTICLE SPECTRAL DENSITY OF THE HUBBARD-MODEL

    NARCIS (Netherlands)

    MEHLIG, B; ESKES, H; HAYN, R; MEINDERS, MBJ

    1995-01-01

    We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,

  2. Ergodicity of a single particle confined in a nanopore

    DEFF Research Database (Denmark)

    Bernardi, S.; Hansen, Jesper Schmidt; Frascolli, F.

    2012-01-01

    -ergodic component of the phase space for energy levels typical of experiments, is surprisingly small, i.e. we conclude that the ergodic hypothesis is a reasonable approximation even for a single particle trapped in a nanopore. Due to the numerical scope of this work, our focus will be the onset of ergodic behavior...

  3. Single particle degrees of freedom in the interacting boson model

    NARCIS (Netherlands)

    Scholten, O.

    1985-01-01

    An overview is given of different aspects of the Interacting Boson Fermion Model, the extension of the interacting Boson Model to odd mass nuclei. The microscopic model for the coupling of single-particle degrees of freedom to the system of bosons is outlined and the interaction between the bosons

  4. Single-particle cryo-electron microscopy of macromolecular complexes.

    Science.gov (United States)

    Skiniotis, Georgios; Southworth, Daniel R

    2016-02-01

    Recent technological breakthroughs in image acquisition have enabled single-particle cryo-electron microscopy (cryo-EM) to achieve near-atomic resolution structural information for biological complexes. The improvements in image quality coupled with powerful computational methods for sorting distinct particle populations now also allow the determination of compositional and conformational ensembles, thereby providing key insights into macromolecular function. However, the inherent instability and dynamic nature of biological assemblies remain a tremendous challenge that often requires tailored approaches for successful implementation of the methodology. Here, we briefly describe the fundamentals of single-particle cryo-EM with an emphasis on covering the breadth of techniques and approaches, including low- and high-resolution methods, aiming to illustrate specific steps that are crucial for obtaining structural information by this method. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Reconstructing an icosahedral virus from single-particle diffraction experiments

    Science.gov (United States)

    Saldin, D. K.; Poon, H.-C.; Schwander, P.; Uddin, M.; Schmidt, M.

    2011-08-01

    The first experimental data from single-particle scattering experiments from free electron lasers (FELs) are now becoming available. The first such experiments are being performed on relatively large objects such as viruses, which produce relatively low-resolution, low-noise diffraction patterns in so-called ``diffract-and-destroy'' experiments. We describe a very simple test on the angular correlations of measured diffraction data to determine if the scattering is from an icosahedral particle. If this is confirmed, the efficient algorithm proposed can then combine diffraction data from multiple shots of particles in random unknown orientations to generate a full 3D image of the icosahedral particle. We demonstrate this with a simulation for the satellite tobacco necrosis virus (STNV), the atomic coordinates of whose asymmetric unit is given in Protein Data Bank entry 2BUK.

  6. Single-camera, three-dimensional particle tracking velocimetry

    OpenAIRE

    Peterson, K.; Regaard, B.; Heinemann, S.; Sick, V.

    2012-01-01

    This paper introduces single-camera, three-dimensional particle tracking velocimetry (SC3D-PTV), an image-based, single-camera technique for measuring 3-component, volumetric velocity fields in environments with limited optical access, in particular, optically accessible internal combustion engines. The optical components used for SC3D-PTV are similar to those used for two-camera stereoscopic-PIV, but are adapted to project two simultaneous images onto a single image sensor. A novel PTV algor...

  7. Two-Way Communication with a Single Quantum Particle

    Science.gov (United States)

    Del Santo, Flavio; Dakić, Borivoje

    2018-02-01

    In this Letter we show that communication when restricted to a single information carrier (i.e., single particle) and finite speed of propagation is fundamentally limited for classical systems. On the other hand, quantum systems can surpass this limitation. We show that communication bounded to the exchange of a single quantum particle (in superposition of different spatial locations) can result in "two-way signaling," which is impossible in classical physics. We quantify the discrepancy between classical and quantum scenarios by the probability of winning a game played by distant players. We generalize our result to an arbitrary number of parties and we show that the probability of success is asymptotically decreasing to zero as the number of parties grows, for all classical strategies. In contrast, quantum strategy allows players to win the game with certainty.

  8. Particle interactions of fluticasone propionate and salmeterol xinafoate detected with single particle aerosol mass spectrometry (SPAMS).

    Science.gov (United States)

    Jetzer, Martin W; Morrical, Bradley D; Fergenson, David P; Imanidis, Georgios

    2017-10-30

    Particle co-associations between the active pharmaceutical ingredients fluticasone propionate and salmeterol xinafoate were examined in dry powder inhaled (DPI) and metered dose inhaled (MDI) combination products. Single Particle Aerosol Mass Spectrometry was used to investigate the particle interactions in Advair Diskus ® (500/50 mcg) and Seretide ® (125/25 mcg). A simple rules tree was used to identify each compound, either alone or co-associated at the level of the individual particle, using unique marker peaks in the mass spectra for the identification of each drug. High levels of drug particle co-association (fluticasone-salmeterol) were observed in the aerosols emitted from Advair Diskus ® and Seretide ® . The majority of the detected salmeterol particles were found to be in co-association with fluticasone in both tested devices. Another significant finding was that rather coarse fluticasone particles (in DPI) and fine salmeterol particles (both MDI and DPI) were forming the particle co-associations. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A phenomenological model for particle retention in single, saturated fractures.

    Science.gov (United States)

    Rodrigues, Sandrina; Dickson, Sarah

    2014-01-01

    Fractured aquifers are some of the most poorly characterized subsurface environments despite posing one of the highest risks to the protection of potable groundwater. This research was designed to improve the understanding of the factors affecting particle transport through fractures by developing a phenomenological model based on laboratory-scale transport data. The model presented in this research employed data from over 70 particle tracer tests conducted in single, saturated, variable-aperture fractures that were obtained from the natural environment and fractured in the laboratory or cast from epoxy in the laboratory. The particles employed were Escherichia coli RS2-GFP and microspheres. The tracer experiments were conducted in natural (dolomitic limestone and granite) as well as epoxy replicas of the natural fractures. The multiple linear regression analysis revealed that the most important factors influencing particle retention in fractures are the ratio of the ionic strength of solution to collector charge, the ratio of particle to collector charge, and the ratio of advective to diffusive forces as described by the Peclet number. The model was able to reasonably (R(2)  = 0.64) predict the fraction of particles retained; however, it is evident that some factors not accounted for in the model also contributed to retention. This research presents a novel approach to understanding particle transport in fractures, and illustrates the relative importance of various factors affecting the transport mechanisms. The utility of this model lies in the increased understanding of particle transport in fractures, which is extremely useful for directing future research. © 2013, National Ground Water Association.

  10. Real-time analysis of insoluble particles in glacial ice using single-particle mass spectrometry

    Science.gov (United States)

    Osman, Matthew; Zawadowicz, Maria A.; Das, Sarah B.; Cziczo, Daniel J.

    2017-11-01

    Insoluble aerosol particles trapped in glacial ice provide insight into past climates, but analysis requires information on climatically relevant particle properties, such as size, abundance, and internal mixing. We present a new analytical method using a time-of-flight single-particle mass spectrometer (SPMS) to determine the composition and size of insoluble particles in glacial ice over an aerodynamic size range of ˜ 0.2-3.0 µm diameter. Using samples from two Greenland ice cores, we developed a procedure to nebulize insoluble particles suspended in melted ice, evaporate condensed liquid from those particles, and transport them to the SPMS for analysis. We further determined size-dependent extraction and instrument transmission efficiencies to investigate the feasibility of determining particle-class-specific mass concentrations. We find SPMS can be used to provide constraints on the aerodynamic size, composition, and relative abundance of most insoluble particulate classes in ice core samples. We describe the importance of post-aqueous processing to particles, a process which occurs due to nebulization of aerosols from an aqueous suspension of originally soluble and insoluble aerosol components. This study represents an initial attempt to use SPMS as an emerging technique for the study of insoluble particulates in ice cores.

  11. Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode.

    Science.gov (United States)

    Chen, Xi; Yang, Fan; Zhang, Cheng; Zhou, Jing; Guo, L Jay

    2016-04-26

    Plasmonic lithography, which utilizes subwavelength confinement of surface plasmon polartion (SPP) waves, has the capability of breaking the diffraction limit and delivering high resolution. However, all previously reported results suffer from critical issues, such as shallow pattern depth and pattern nonuniformity even over small exposure areas, which limit the application of the technology. In this work, periodic patterns with high aspect ratios and a half-pitch of about 1/6 of the wavelength were achieved with pattern uniformity in square centimeter areas. This was accomplished by designing a special mask and photoresist (PR) system to select a single high spatial frequency mode and incorporating the PR into a waveguide configuration to ensure uniform light exposure over the entire depth of the photoresist layer. In addition to the experimental progress toward large-scale applications of plasmonic interference lithography, the general criteria of designing such an exposure system is also discussed, which can be used for nanoscale fabrication in this fashion for various applications with different requirements for wavelength, pitch, aspect ratio, and structure.

  12. Single-particle response function in finite nuclei

    International Nuclear Information System (INIS)

    Shlomo, S.; Texas A and M Univ., College Station

    1982-01-01

    I derive expressions for the single-particle response (structure) function S(E, q) and its sum rule, (Pauli blocking factor) P(q) = ∫ dE S(E, q), in terms of the Wiqner transforms (WTs) of the single-particle wave functions and the scattering probe sigma(q, r) and discuss the semi-classical phase-space interpretation of the results. For sigma(q, r) = esup(iq x r), I derive simple expressions for S(E, q) and P(q) for finite nuclei within the harmonic-oscillator model and compare the results with the well-known results of the Fermi-gas model. (orig.)

  13. Single Particle Orientation and Rotational Tracking (SPORT) in biophysical studies

    Science.gov (United States)

    Gu, Yan; Ha, Ji Won; Augspurger, Ashley E.; Chen, Kuangcai; Zhu, Shaobin; Fang, Ning

    2013-10-01

    The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport.The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport. Electronic supplementary information (ESI) available: Three supplementary movies and an experimental section. See DOI: 10.1039/c3nr02254d

  14. Laboratory Measurements of Single-Particle Polarimetric Spectrum

    Science.gov (United States)

    Gritsevich, M.; Penttila, A.; Maconi, G.; Kassamakov, I.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.

    2017-12-01

    Measuring scattering properties of different targets is important for material characterization, remote sensing applications, and for verifying theoretical results. Furthermore, there are usually simplifications made when we model targets and compute the scattering properties, e.g., ideal shape or constant optical parameters throughout the target material. Experimental studies help in understanding the link between the observed properties and computed results. Experimentally derived Mueller matrices of studied particles can be used as input for larger-scale scattering simulations, e.g., radiative transfer computations. This method allows to bypass the problem of using an idealized model for single-particle optical properties. While existing approaches offer ensemble- and orientation-averaged particle properties, our aim is to measure individual particles with controlled or known orientation. With the newly developed scatterometer, we aim to offer novel possibility to measure single, small (down to μm-scale) targets and their polarimetric spectra. This work presents an experimental setup that measures light scattered by a fixed small particle with dimensions ranging between micrometer and millimeter sizes. The goal of our setup is nondestructive characterization of such particles by measuring light of multiple wavelengths scattered in 360° in a horizontal plane by an ultrasonically levitating sample, whilst simultaneously controlling its 3D position and orientation. We describe the principles and design of our instrument and its calibration. We also present example measurements of real samples. This study was conducted under the support from the European Research Council, in the frame of the Advanced Grant project No. 320773 `Scattering and Absorption of Electromagnetic Waves in Particulate Media' (SAEMPL).

  15. Single-task fMRI overlap predicts concurrent multitasking interference

    NARCIS (Netherlands)

    Nijboer, Menno; Borst, Jelmer; van Rijn, Hedderik; Taatgen, Niels

    2014-01-01

    There is no consensus regarding the origin of behavioral interference that occurs during concurrent multitasking. Some evidence points toward a multitasking locus in the brain, while other results imply that interference is the consequence of task interactions in several brain regions. To

  16. Spin resonance strength calculation through single particle tracking for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The strengths of spin resonances for the polarized-proton operation in the Relativistic Heavy Ion Collider are currently calculated with the code DEPOL, which numerically integrates through the ring based on an analytical approximate formula. In this article, we test a new way to calculate the spin resonance strengths by performing Fourier transformation to the actual transverse magnetic fields seen by a single particle traveling through the ring. Comparison of calculated spin resonance strengths is made between this method and DEPOL.

  17. Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy

    Czech Academy of Sciences Publication Activity Database

    Pacáková, Barbara; Mantlíková, Alice; Nižňanský, D.; Kubíčková, Simona; Vejpravová, Jana

    2016-01-01

    Roč. 28, č. 20 (2016), 1-11, č. článku 206004. ISSN 0953-8984 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:68378271 Keywords : magnetic nanoparticles * single-particle anisotropy * dipolar energy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.649, year: 2016

  18. Automated single particle detection and tracking for large microscopy datasets.

    Science.gov (United States)

    Wilson, Rhodri S; Yang, Lei; Dun, Alison; Smyth, Annya M; Duncan, Rory R; Rickman, Colin; Lu, Weiping

    2016-05-01

    Recent advances in optical microscopy have enabled the acquisition of very large datasets from living cells with unprecedented spatial and temporal resolutions. Our ability to process these datasets now plays an essential role in order to understand many biological processes. In this paper, we present an automated particle detection algorithm capable of operating in low signal-to-noise fluorescence microscopy environments and handling large datasets. When combined with our particle linking framework, it can provide hitherto intractable quantitative measurements describing the dynamics of large cohorts of cellular components from organelles to single molecules. We begin with validating the performance of our method on synthetic image data, and then extend the validation to include experiment images with ground truth. Finally, we apply the algorithm to two single-particle-tracking photo-activated localization microscopy biological datasets, acquired from living primary cells with very high temporal rates. Our analysis of the dynamics of very large cohorts of 10 000 s of membrane-associated protein molecules show that they behave as if caged in nanodomains. We show that the robustness and efficiency of our method provides a tool for the examination of single-molecule behaviour with unprecedented spatial detail and high acquisition rates.

  19. Simulating Biomass Fast Pyrolysis at the Single Particle Scale

    Energy Technology Data Exchange (ETDEWEB)

    Ciesielski, Peter [National Renewable Energy Laboratory (NREL); Wiggins, Gavin [ORNL; Daw, C Stuart [ORNL; Jakes, Joseph E. [U.S. Forest Service, Forest Products Laboratory, Madison, Wisconsin, USA

    2017-07-01

    Simulating fast pyrolysis at the scale of single particles allows for the investigation of the impacts of feedstock-specific parameters such as particle size, shape, and species of origin. For this reason particle-scale modeling has emerged as an important tool for understanding how variations in feedstock properties affect the outcomes of pyrolysis processes. The origins of feedstock properties are largely dictated by the composition and hierarchical structure of biomass, from the microstructural porosity to the external morphology of milled particles. These properties may be accounted for in simulations of fast pyrolysis by several different computational approaches depending on the level of structural and chemical complexity included in the model. The predictive utility of particle-scale simulations of fast pyrolysis can still be enhanced substantially by advancements in several areas. Most notably, considerable progress would be facilitated by the development of pyrolysis kinetic schemes that are decoupled from transport phenomena, predict product evolution from whole-biomass with increased chemical speciation, and are still tractable with present-day computational resources.

  20. A theorem on the single particle energy in a Fermi gas with interaction

    NARCIS (Netherlands)

    Hugenholtz, N.M.; Hove, Léon van

    1958-01-01

    This paper investigates single particle properties in a Fermi gas with interaction at the absolute zero of temperature. In such a system a single particle energy has only a meaning for particles of momentum k close to the Fermi momentum kF. These single particle states are metastable with a

  1. Drift correction of the dissolved signal in single particle ICPMS.

    Science.gov (United States)

    Cornelis, Geert; Rauch, Sebastien

    2016-07-01

    A method is presented where drift, the random fluctuation of the signal intensity, is compensated for based on the estimation of the drift function by a moving average. It was shown using single particle ICPMS (spICPMS) measurements of 10 and 60 nm Au NPs that drift reduces accuracy of spICPMS analysis at the calibration stage and during calculations of the particle size distribution (PSD), but that the present method can again correct the average signal intensity as well as the signal distribution of particle-containing samples skewed by drift. Moreover, deconvolution, a method that models signal distributions of dissolved signals, fails in some cases when using standards and samples affected by drift, but the present method was shown to improve accuracy again. Relatively high particle signals have to be removed prior to drift correction in this procedure, which was done using a 3 × sigma method, and the signals are treated separately and added again. The method can also correct for flicker noise that increases when signal intensity is increased because of drift. The accuracy was improved in many cases when flicker correction was used, but when accurate results were obtained despite drift, the correction procedures did not reduce accuracy. The procedure may be useful to extract results from experimental runs that would otherwise have to be run again. Graphical Abstract A method is presented where a spICP-MS signal affected by drift (left) is corrected (right) by adjusting the local (moving) averages (green) and standard deviations (purple) to the respective values at a reference time (red). In combination with removing particle events (blue) in the case of calibration standards, this method is shown to obtain particle size distributions where that would otherwise be impossible, even when the deconvolution method is used to discriminate dissolved and particle signals.

  2. Single-particle absorption spectroscopy by photothermal contrast.

    Science.gov (United States)

    Yorulmaz, Mustafa; Nizzero, Sara; Hoggard, Anneli; Wang, Lin-Yung; Cai, Yi-Yu; Su, Man-Nung; Chang, Wei-Shun; Link, Stephan

    2015-05-13

    Removing effects of sample heterogeneity through single-molecule and single-particle techniques has advanced many fields. While background free luminescence and scattering spectroscopy is widely used, recording the absorption spectrum only is rather difficult. Here we present an approach capable of recording pure absorption spectra of individual nanostructures. We demonstrate the implementation of single-particle absorption spectroscopy on strongly scattering plasmonic nanoparticles by combining photothermal microscopy with a supercontinuum laser and an innovative calibration procedure that accounts for chromatic aberrations and wavelength-dependent excitation powers. Comparison of the absorption spectra to the scattering spectra of the same individual gold nanoparticles reveals the blueshift of the absorption spectra, as predicted by Mie theory but previously not detectable in extinction measurements that measure the sum of absorption and scattering. By covering a wavelength range of 300 nm, we are furthermore able to record absorption spectra of single gold nanorods with different aspect ratios. We find that the spectral shift between absorption and scattering for the longitudinal plasmon resonance decreases as a function of nanorod aspect ratio, which is in agreement with simulations.

  3. Low SNR capacity for MIMO Rician and Rayleigh-product fading channels with single co-channel interferer and noise

    KAUST Repository

    Zhong, Caijun

    2010-09-01

    This paper studies the ergodic capacity of multiple-input multiple-output (MIMO) systems with a single co-channel interferer in the low signal-to-noise-ratio (SNR) regime. Two MIMO models namely Rician and Rayleigh-product channels are investigated. Exact analytical expressions for the minimum energy per information bit, {Eb/N0min, and wideband slope, S0, are derived for both channels. Our results show that the minimum energy per information bit is the same for both channels while their wideband slopes differ significantly. Further, the impact of the numbers of transmit and receive antennas, the Rician K factor, the channel mean matrix and the interference-to-noise-ratio (INR) on the capacity, is addressed. Results indicate that interference degrades the capacity by increasing the required minimum energy per information bit and reducing the wideband slope. Simulation results validate our analytical results. © 2010 IEEE.

  4. Application of extended Kalman particle filter for dynamic interference fringe processing

    Science.gov (United States)

    Ermolaev, Petr A.; Volynsky, Maxim A.

    2016-04-01

    The application of extended Kalman particle filter for dynamic estimation of interferometric signal parameters is considered. A detail description of the algorithm is given. Proposed algorithm allows obtaining satisfactory estimates of model interferometric signals even in the presence of erroneous information on model signal parameters. It provides twice as high calculation speed in comparison with conventional particle filter by reducing the number of vectors approximating probability density function of signal parameters distribution

  5. The effects of a single bout of exercise on motor memory interference in the trained and untrained hemisphere.

    Science.gov (United States)

    Lauber, Benedikt; Franke, Steffen; Taube, Wolfgang; Gollhofer, Albert

    2017-04-07

    Increasing evidence suggests that cardiovascular exercise has positive effects on motor memory consolidation. In this study, we investigated whether a single session of high-intensity interval training (HIIT) mitigates the effects of practicing an interfering motor task. Furthermore, learning and interference effects were assessed in the actively trained and untrained limb as it is known that unilateral motor learning can cause bilateral adaptations. Subjects performed a ballistic training and then the HIIT either before (HIIT_before) or after (HIIT_after) practicing an interfering accuracy task (AT). The control group (No_HIIT) did not participate in the HIIT but rested instead. Performance in the ballistic task (BT) was tested before and after the ballistic training, after the exercise and practice of the AT and 24h later. After ballistic training, all groups showed comparable increases in performance in the trained and untrained limb. Despite the practice of the AT, HIIT_before maintained their BT performance after the high-intensity interval training whereas HIIT_after (trend) & No_HIIT showed prominent interference effects. After 24h, HIIT_before still did not show any interference effects but further improved ballistic motor performance. HIIT_after counteracted the interference resulting in a comparable BT performance after 24h than directly after the ballistic training while No_HIIT had a significantly lower BT performance in the retention test. The results were similar in the trained and untrained limb. The current results imply that a single session of cardiovascular exercise can prevent motor interference in the trained and untrained hemisphere. Overall learning was best, and interference least, when HIIT was performed before the interfering motor task. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Volumetric particle image velocimetry with a single plenoptic camera

    Science.gov (United States)

    Fahringer, Timothy W.; Lynch, Kyle P.; Thurow, Brian S.

    2015-11-01

    A novel three-dimensional (3D), three-component (3C) particle image velocimetry (PIV) technique based on volume illumination and light field imaging with a single plenoptic camera is described. A plenoptic camera uses a densely packed microlens array mounted near a high resolution image sensor to sample the spatial and angular distribution of light collected by the camera. The multiplicative algebraic reconstruction technique (MART) computed tomography algorithm is used to reconstruct a volumetric intensity field from individual snapshots and a cross-correlation algorithm is used to estimate the velocity field from a pair of reconstructed particle volumes. This work provides an introduction to the basic concepts of light field imaging with a plenoptic camera and describes the unique implementation of MART in the context of plenoptic image data for 3D/3C PIV measurements. Simulations of a plenoptic camera using geometric optics are used to generate synthetic plenoptic particle images, which are subsequently used to estimate the quality of particle volume reconstructions at various particle number densities. 3D reconstructions using this method produce reconstructed particles that are elongated by a factor of approximately 4 along the optical axis of the camera. A simulated 3D Gaussian vortex is used to test the capability of single camera plenoptic PIV to produce a 3D/3C vector field, where it was found that lateral displacements could be measured to approximately 0.2 voxel accuracy in the lateral direction and 1 voxel in the depth direction over a 300× 200× 200 voxel volume. The feasibility of the technique is demonstrated experimentally using a home-built plenoptic camera based on a 16-megapixel interline CCD camera and a 289× 193 array of microlenses and a pulsed Nd:YAG laser. 3D/3C measurements were performed in the wake of a low Reynolds number circular cylinder and compared with measurements made using a conventional 2D/2C PIV system. Overall, single camera

  7. A Control Source Structure of Single Loudspeaker and Rear Sound Interference for Inexpensive Active Noise Control

    Directory of Open Access Journals (Sweden)

    Yasuhide Kobayashi

    2010-01-01

    phase-lag is imposed by the Swinbanks' source and the rear sound interference. Thirdly, effects on control performances of control source structures are examined by control experiments with robust controllers.

  8. Life and death of a single catalytic cracking particle

    Science.gov (United States)

    Meirer, Florian; Kalirai, Sam; Morris, Darius; Soparawalla, Santosh; Liu, Yijin; Mesu, Gerbrand; Andrews, Joy C.; Weckhuysen, Bert M.

    2015-01-01

    Fluid catalytic cracking (FCC) particles account for 40 to 45% of worldwide gasoline production. The hierarchical complex particle pore structure allows access of long-chain feedstock molecules into active catalyst domains where they are cracked into smaller, more valuable hydrocarbon products (for example, gasoline). In this process, metal deposition and intrusion is a major cause for irreversible catalyst deactivation and shifts in product distribution. We used x-ray nanotomography of industrial FCC particles at differing degrees of deactivation to quantify changes in single-particle macroporosity and pore connectivity, correlated to iron and nickel deposition. Our study reveals that these metals are incorporated almost exclusively in near-surface regions, severely limiting macropore accessibility as metal concentrations increase. Because macropore channels are “highways” of the pore network, blocking them prevents feedstock molecules from reaching the catalytically active domains. Consequently, metal deposition reduces conversion with time on stream because the internal pore volume, although itself unobstructed, becomes largely inaccessible. PMID:26601160

  9. Crosslinked Functional Polymer Nanowire Formation Along Single Particle Tracks

    International Nuclear Information System (INIS)

    Tagawa, S.

    2006-01-01

    The use of high-energy charged particles has extended to many fields in recent years. In medicine, non-homogeneous energy deposition along an ion trajectory (ion track) plays a crucial role in cancer radiotherapy, allowing for high spatial selectivity in the distribution of the radiation dose. The direct observation and application of ion tracks in media have also attracted interest in materials science, where it is known as nuclear track fabrication. Since the discovery that high-energy particle leave latent tracks in inorganic and organic polymer materials, the technique has also been applied to the production of micro- and nano-sized pores in materials through chemical etching of the tracks. The clear correlation between the etched pore and the characteristics of the incident charged particle has been utilized for measurement of the velocity and mass of the incident particles, and such organic film detectors are widely used in dosimetry, and in particular for galactic cosmic rays in space. The scope of the present paper is the direct nano-structure formation based on crosslinking reactions induced in nano-scale ultra-small spaces of single particle tracks. We have developed the simple one-step formation processes of nanowires without using any chemical etching or refilling processes. The present technique is in striking contrast to the previous 'nuclear track' nanofabrication techniques. According to its high feasibility for the preparation of 1-D nanowires based on 'any' kinds of polymeric materials, the present paper demonstrates the formation of not only simple polymer nanowires but also ceramic and/or multi-segment multi-functional nanowires

  10. Inclusive photoproduction of single charged particles at high p T

    Science.gov (United States)

    Apsimon, R. J.; Atkinson, M.; Baake, M.; Bagdasarian, L. S.; Barberis, D.; Brodbeck, T. J.; Brook, N.; Charity, T.; Clegg, A. B.; Coyle, P.; Danaher, S.; Danagulian, S.; Davenport, M.; Dickinson, B.; Diekmann, B.; Donnachie, A.; Doyle, A. T.; Eades, J.; Ellison, R. J.; Flower, P. S.; Foster, J. M.; Galbraith, W.; Galumian, P. I.; Gapp, C.; Gebert, F.; Hallewell, G.; Heinloth, K.; Henderson, R. C. W.; Hickman, M. T.; Hoeger, C.; Holzkamp, S.; Hughes-Jones, R. E.; Ibbotson, M.; Jakob, H. P.; Joseph, D.; Keemer, N. R.; Kingler, J.; Koersgen, G.; Kolya, S. D.; Lafferty, G. D.; McCann, H.; McClatchey, R.; McManus, C.; Mercer, D.; Morris, J. A. G.; Morris, J. V.; Newton, D.; O'Connor, A.; Oedingen, R.; Oganesian, A. G.; Ottewell, P. J.; Paterson, C. N.; Paul, E.; Reid, D.; Rotscheidt, H.; Sharp, P. H.; Soeldner-Rembold, S.; Thacker, N. A.; Thompson, L.; Thompson, R. J.; Voigtlaender-Tetzner, A.; Waterhouse, J.; Weigend, A. S.; Wilson, G. W.

    1989-03-01

    Single charged-particle inclusive cross sections for photon, pion and kaon beams on hydrogen at the CERN-SPS are presented as functions of p T and x F . Data cover the range 0.01.6 GeV/c for the photon-induced data. Using the hadron-induced data to estimate the hadronic behaviour of the photon, the difference distributions and ratios of cross sections are a measure of the contribution of the point-like photon interactions. The data are compared with QCD calculations and show broadly similar features.

  11. Decay properties of high-lying single-particles modes

    Science.gov (United States)

    Beaumel, D.; Fortier, S.; Galès, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J. M.; Vernotte, J.; Bordewijck, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G. M.; Massolo, C. P.; Renteria, M.; Khendriche, A.

    1996-02-01

    The neutron decay of high-lying single-particle states in 64Ni, 90Zr, 120Sn and 208Pb excited by means of the (α, 3He) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular correlation analysis. The structure located between 11 and 15 MeV in 91Zr, and between 8 and 12 MeV excitation energy in 209Pb display large departures from a pure statistical decay. The corresponding non-statistical branching ratios are compared with the results of two theoretical calculations.

  12. Real stabilization method for nuclear single-particle resonances

    International Nuclear Information System (INIS)

    Zhang Li; Zhou Shangui; Meng Jie; Zhao Enguang

    2008-01-01

    We develop the real stabilization method within the framework of the relativistic mean-field (RMF) model. With the self-consistent nuclear potentials from the RMF model, the real stabilization method is used to study single-particle resonant states in spherical nuclei. As examples, the energies, widths, and wave functions of low-lying neutron resonant states in 120 Sn are obtained. These results are compared with those from the scattering phase-shift method and the analytic continuation in the coupling constant approach and satisfactory agreements are found

  13. Single-particle cryo-EM at crystallographic resolution

    Science.gov (United States)

    Cheng, Yifan

    2015-01-01

    Until only a few years ago, single-particle electron cryo-microscopy (cryo-EM) was usually not the first choice for many structural biologists due to its limited resolution in the range of nanometer to subnanometer. Now, this method rivals X-ray crystallography in terms of resolution and can be used to determine atomic structures of macromolecules that are either refractory to crystallization or difficult to crystallize in specific functional states. In this review, I discuss the recent breakthroughs in both hardware and software that transformed cryo-microscopy, enabling understanding of complex biomolecules and their functions at atomic level. PMID:25910205

  14. Coupled cluster approach to the single-particle Green's function

    International Nuclear Information System (INIS)

    Nooijen, M.; Snijders, J.G.

    1992-01-01

    Diagrammatic and coupled cluster techniques are used to develop an approach to the single-particle Green's function G which concentrates on G directly rather than first approximating the irreducible self-energy and then solving Dyson's equation. As a consequence the ionization and attachment parts of the Green's function satisfy completely decoupled sets of equations. The proposed coupled cluster Green's function method (CCGF) is intimately connected to both coupled cluster linear response theory (CCLRT) and the normal coupled cluster method (NCCM). These relations are discussed in detail

  15. Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy.

    Science.gov (United States)

    Pacakova, B; Mantlikova, A; Niznansky, D; Kubickova, S; Vejpravova, J

    2016-05-25

    Magnetic response of single-domain nanoparticles (NPs) in concentrated systems is strongly affected by mutual interparticle interactions. However, particle proximity significantly influences single-particle effective anisotropy. To solve which of these two phenomena plays a dominant role in the magnetic response of real NP systems, systematic study on samples with well-defined parameters is required. In our work, we prepared a series of nanocomposites constituted of highly-crystalline and well-isolated CoFe2O4 NPs embedded in an amorphous SiO2 matrix using a single-molecule precursor method. This preparation method enabled us to reach a wide interval of particle size and concentration. We observed that the characteristic parameters of the single-domain state (coercivity, blocking temperature) and dipole-dipole interaction energy ([Formula: see text]) scaled with each other and increased with increasing [Formula: see text], where d XRD was the NP diameter and r was the interparticle distance. Our results are in excellent agreement with Monte-Carlo simulations of the particle growth. Moreover, we demonstrated that the contribution of [Formula: see text] acting as an additional energetic barrier to the superspin reversal or as an average static field did not sufficiently explain how the concentrated NP systems responded to an external magnetic field. Alternations in the blocking temperature and coercivity of our NP systems accounted for reformed relaxations of the NP superspins and modified effective anisotropy energy of the interacting NPs. Therefore, the concept of modified NP effective anisotropy explains the magnetic response of our concentrated NP systems better than the concept of the energy barrier influenced by interparticle interactions.

  16. Interference fit effect on holed single plates loaded with tension-tension stresses

    Directory of Open Access Journals (Sweden)

    D. Croccolo

    2012-07-01

    Full Text Available This paper deals with the influence of interference fit coupling on the fatigue strength of holed plates. The effect was investigated both experimentally and numerically. Axial fatigue tests have been carried out on holed specimens made of high performance steel (1075MPa of Ultimate strength and 990MPa of Yield strength with or without a pin, made of the same material, press fitted into their central hole. Three different conditions have been investigated: free hole specimens, specimens with 0.6% of nominal specific interference and specimens with 2% of nominal specific interference. The experimental stress-life (S–N curves pointed out an increased fatigue life of the interference fit specimens compared with the free hole ones. The numerical investigation was performed in order to analyse the stress fields by applying an elastic plastic 2D simulation with a commercial Finite Element software. The stress history and distribution along the contact interference of the fitted samples indicates a significant reduction of the local stress range due to the externally applied loading (remote stress since a residual and compressive stress field is generated by the pin insertion.

  17. Single Event Rates for Devices Sensitive to Particle Energy

    Science.gov (United States)

    Edmonds, L. D.; Scheick, L. Z.; Banker, M. W.

    2012-01-01

    Single event rates (SER) can include contributions from low-energy particles such that the linear energy transfer (LET) is not constant. Previous work found that the environmental description that is most relevant to the low-energy contribution to the rate is a "stopping rate per unit volume" even when the physical mechanisms for a single-event effect do not require an ion to stop in some device region. Stopping rate tables are presented for four heavy-ion environments that are commonly used to assess device suitability for space applications. A conservative rate estimate utilizing limited test data is derived, and the example of SEGR rate in a power MOSFET is presented.

  18. The effects of a single bout of exercise on motor memory interference in the trained and untrained hemisphere

    OpenAIRE

    Lauber, Benedikt; Franke, Steffen; Taube, Wolfgang; Gollhofer, Albert

    2017-01-01

    Increasing evidence suggests that cardiovascular exercise has positive effects on motor memory consolidation. In this study, we investigated whether a single session of high-intensity interval training (HIIT) mitigates the effects of practicing an interfering motor task. Furthermore, learning and interference effects were assessed in the actively trained and untrained limb as it is known that unilateral motor learning can cause bilateral adaptations.Subjects performed a ballistic trainin...

  19. Design of a Single-Layer Microchannel for Continuous Sheathless Single-Stream Particle Inertial Focusing.

    Science.gov (United States)

    Zhang, Yan; Zhang, Jun; Tang, Fei; Li, Weihua; Wang, Xiaohao

    2018-02-06

    High-throughput, high-precision single-stream focusing of microparticles has a potentially wide range of applications in biochemical analysis and clinical diagnosis. In this work, we develop a sheathless three-dimensional (3D) particle-focusing method in a single-layer microchannel. This novel microchannel consists of periodic high-aspect-ratio curved channels and straight channels. The proposed method takes advantage of both the curved channels, which induce Dean flow to promote particle migration, and straight channels, which suppress the remaining stirring effects of Dean flow to stabilize the achieved particle focusing. The 3D particle focusing is demonstrated experimentally, and the mechanism is analyzed theoretically. The effects of flow rate, particle size, and cycle number on the focusing performance were also investigated. The experimental results demonstrate that polystyrene particles with diameters of 5-20 μm can be focused into a 3D single file within seven channel cycles, with the focusing accuracy up to 98.5% and focusing rate up to 98.97%. The focusing throughput could reach up to ∼10 5 counts/min. Furthermore, its applicability to biological cells is also demonstrated by 3D focusing of HeLa and melanoma cells and bovine blood cells in the proposed microchannel. The proposed sheathless passive focusing scheme, featuring a simple channel structure, small footprint (9 mm × 1.2 mm), compact layout, and uncomplicated fabrication procedure, holds great promise as an efficient 3D focusing unit for the development of next-generation on-chip flow cytometry.

  20. Conformational changes of a single magnetic particle string within gels.

    Science.gov (United States)

    An, Hai-Ning; Groenewold, Jan; Picken, S J; Mendes, Eduardo

    2014-02-21

    Magnetorheological (MR) gels consist of micron sized magnetic particles inside a gel matrix. Before physical cross-linking, the suspension is subjected to a small magnetic field which creates a particle string structure. After cross-linking, the string is kept within the gel at room temperature. Under an external homogeneous magnetic field and mechanical deformation, the soft swollen gel matrix allows the string to largely rearrange at microscopic scales. With the help of two homemade magneto cells mounted on an optical microscope, we were able to follow the conformational change and instabilities of a single magnetic particle string under the combined influence of shear (or stretch) and the magnetic field. In the absence of mechanical deformation, an external magnetic field, applied in the perpendicular direction to the string, breaks it into small pieces generating periodic structures like sawteeth. When an external magnetic field is applied parallel to the pre-aligned string, it exhibits a length contraction. However, under shear strain perpendicular to the original pre-structured string (and magnetic field), the string breaks and short string segments tilt, making an angle with the original direction that is smaller than that of the applied shear (non-affine). The difference in tilt angle scales with the inverse length of the small segments L-1 and the magnetic flux density B, reflecting the ability of the gel matrix to expel solvents under local stress.

  1. High resolution single particle refinement in EMAN2.1.

    Science.gov (United States)

    Bell, James M; Chen, Muyuan; Baldwin, Philip R; Ludtke, Steven J

    2016-05-01

    EMAN2.1 is a complete image processing suite for quantitative analysis of grayscale images, with a primary focus on transmission electron microscopy, with complete workflows for performing high resolution single particle reconstruction, 2-D and 3-D heterogeneity analysis, random conical tilt reconstruction and subtomogram averaging, among other tasks. In this manuscript we provide the first detailed description of the high resolution single particle analysis pipeline and the philosophy behind its approach to the reconstruction problem. High resolution refinement is a fully automated process, and involves an advanced set of heuristics to select optimal algorithms for each specific refinement task. A gold standard FSC is produced automatically as part of refinement, providing a robust resolution estimate for the final map, and this is used to optimally filter the final CTF phase and amplitude corrected structure. Additional methods are in-place to reduce model bias during refinement, and to permit cross-validation using other computational methods. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Single-particle excitations in disordered Weyl fluids

    Science.gov (United States)

    Pixley, J. H.; Chou, Yang-Zhi; Goswami, Pallab; Huse, David A.; Nandkishore, Rahul; Radzihovsky, Leo; Das Sarma, S.

    2017-06-01

    We theoretically study the single-particle Green function of a three-dimensional disordered Weyl semimetal using a combination of techniques. These include analytic T -matrix and renormalization group methods with complementary regimes of validity and an exact numerical approach based on the kernel polynomial technique. We show that at any nonzero disorder, Weyl excitations are not ballistic: They instead have a nonzero linewidth that for weak short-range disorder arises from nonperturbative resonant impurity scattering. Perturbative approaches find a quantum critical point between a semimetal and a metal at a finite disorder strength, but this transition is avoided due to nonperturbative effects. At moderate disorder strength and intermediate energies the avoided quantum critical point renormalizes the scaling of single-particle properties. In this regime we compute numerically the anomalous dimension of the fermion field and find η =0.13 ±0.04 , which agrees well with a renormalization group analysis (η =0.125 ). Our predictions can be directly tested by ARPES and STM measurements in samples dominated by neutral impurities.

  3. Single Particle Soot Photometer intercomparison at the AIDA chamber

    Directory of Open Access Journals (Sweden)

    M. Laborde

    2012-12-01

    Full Text Available Soot particles, consisting of black carbon (BC, organic carbon (OC, inorganic salts, and trace elements, are emitted into the atmosphere during incomplete combustion. Accurate measurements of atmospheric BC are important as BC particles cause adverse health effects and impact the climate.

    Unfortunately, the accurate measurement of the properties and mass concentrations of BC particles remains difficult. The Single Particle Soot Photometer (SP2 can contribute to improving this situation by measuring the mass of refractory BC in individual particles as well as its mixing state.

    Here, the results of the first detailed SP2 intercomparison, involving 6 SP2s from 6 different research groups, are presented, including the most evolved data products that can presently be calculated from SP2 measurements.

    It was shown that a detection efficiency of almost 100% down to 1 fg BC per particle can readily be achieved, and that this limit can be pushed down to ∼0.2 fg BC with optimal SP2 setup. Number and mass size distributions of BC cores agreed within ±5% and ±10%, respectively, in between the SP2s, with larger deviations in the range below 1 fg BC.

    The accuracy of the SP2's mass concentration measurement depends on the calibration material chosen. The SP2 has previously been shown to be equally sensitive to fullerene soot and ambient BC from sources where fossil fuel was dominant and less sensitive to fullerene soot than to Aquadag. Fullerene soot was therefore chosen as the standard calibration material by the SP2 user community; however, many data sets rely solely on Aquadag calibration measurements. The difference in SP2 sensitivity was found to be almost equal (fullerene soot to Aquadag response ratio of ∼0.75 at 8.9 fg BC for all SP2s. This allows the calculation of a fullerene soot equivalent calibration curve from a measured Aquadag calibration, when no fullerene soot calibration is available. It could be

  4. Dynamics of Single Chains of Suspended Ferrofluid Particles

    Science.gov (United States)

    Cutillas, S.; Liu, J.

    1999-01-01

    We present an experimental study of the dynamics of isolated chains made of super-paramagnetic particles under the influence of a magnetic field. The motivation of this work is to understand if the chain fluctuations exist and, if it does, how does the fluctuation affect chain aggregation. We find that single chains strongly fluctuate and that the characteristic frequency of their fluctuations is inversely proportional to the magnetic field strength. The higher the field the lower the characteristic frequency of the chain fluctuations. In the high magnetic field limit, chains behave like rigid rods without any internal motions. In this work, we used ferrofluid particles suspended in water. These particles do not have any intrinsic magnetization. Once a magnetic field is applied, a dipole moment is induced in each particle, proportional to the magnetic field. A dipolar magnetic interaction then occurs between particles. If dipole-dipole magnetic energy is higher than the thermal energy, the result is a structure change inside the dipolar fluid. The ratio of these two energies is expressed by a coupling constant lambda as: lambda = (pi(a(exp 3))(chi(exp 2))(mu(sub 0))(H(sub 0))(exp 2))/18kT Where a is the particle radius, mu(sub 0) is the vacuum magnetic permeability, H(sub 0) the applied magnetic field, k the Boltzmann constant and T the absolute temperature. If lambda > 1, magnetic particles form chains along the field direction. The lateral coalescence of several chains may form bigger aggregates especially if the particle volume fraction is high. While many studies and applications deal with the rheological properties and the structural changes of these dipolar fluids, this work focuses on the understanding of the chain dynamics. In order to probe the chain dynamics, we used dynamic light scattering (DLS) in self-beating mode as our experimental technique. The experimental geometry is such that the scattering plane is perpendicular to the magnetic field

  5. Single-Word Predictions of Upcoming Language During Comprehension: Evidence from the Cumulative Semantic Interference Task

    Science.gov (United States)

    Kleinman, Daniel; Runnqvist, Elin; Ferreira, Victor S.

    2015-01-01

    Comprehenders predict upcoming speech and text on the basis of linguistic input. How many predictions do comprehenders make for an upcoming word? If a listener strongly expects to hear the word “sock”, is the word “shirt” partially expected as well, is it actively inhibited, or is it ignored? The present research addressed these questions by measuring the “downstream” effects of prediction on the processing of subsequently presented stimuli using the cumulative semantic interference paradigm. In three experiments, subjects named pictures (sock) that were presented either in isolation or after strongly constraining sentence frames (“After doing his laundry, Mark always seemed to be missing one…”). Naming sock slowed the subsequent naming of the picture shirt – the standard cumulative semantic interference effect. However, although picture naming was much faster after sentence frames, the interference effect was not modulated by the context (bare vs. sentence) in which either picture was presented. According to the only model of cumulative semantic interference that can account for such a pattern of data, this indicates that comprehenders pre-activated and maintained the pre-activation of best sentence completions (sock) but did not maintain the pre-activation of less likely completions (shirt). Thus, comprehenders predicted only the most probable completion for each sentence. PMID:25917550

  6. Autofluorescence of atmospheric bioaerosols - fluorescent biomolecules, biological standard particles and potential interferences

    Science.gov (United States)

    Pöhlker, C.; Huffmann, J. A.; Pöschl, U.

    2012-04-01

    Primary biological aerosol particles (PBAP) such as pollen, fungal spores, bacteria, biogenic polymers and debris from larger organisms are known to influence atmospheric chemistry and physics, the biosphere and public health. PBAP account for up to ~30% of fine and up to ~70% of coarse particulate matter in urban, rural and pristine environment and are released with estimated emission rates of up to ~1000 Tg/a [1]. Continuous measurements of the abundance, variability and diversity of PBAP have been difficult until recently, however. The application of on-line instruments able to detect autofluorescence from biological particles in real-time has been a promising development for the measurement of PBAP concentrations and fluxes in different environments [2,3]. The detected fluorescent biological aerosol particles (FBAP) can be regarded as a subset of PBAP, although the exact relationship between PBAP and FBAP is still being investigated. Autofluorescence of FBAP is usually a superposition of fluorescence from a mixture of individual fluorescent molecules (fluorophores). Numerous biogenic fluorophores such as amino acids (e.g., tryptophan, tyrosine), coenzymes (e.g., NAD(P)H, riboflavin) and biopolymers (e.g., cellulose) emit fluorescent light due to heterocyclic aromatic rings or conjugated double bonds within their molecular structures. The tryptophan emission peak is a common feature of most bioparticles because the amino acid is a constituent of many proteins and peptides. The influence of the coenzymes NAD(P)H and riboflavin on the autofluorescence of bacteria can be regarded as an indicator for bacterial metabolism and has been utilized to discriminate between viable and non-viable organisms [4]. However, very little information is available about other essential biofluorophores in fungal spores and pollen. In order to better understand the autofluorescence behavior of FBAP, we have used fluorescence spectroscopy and fluorescence microscopy to analyze standard

  7. Decay properties of high-lying single-particles modes

    Energy Technology Data Exchange (ETDEWEB)

    Beaumel, D. [Institut de Physique Nucleaire, 91 - Orsay (France); Fortier, S. [Institut de Physique Nucleaire, 91 - Orsay (France); Gales, S. [Institut de Physique Nucleaire, 91 - Orsay (France); Guillot, J. [Institut de Physique Nucleaire, 91 - Orsay (France); Langevin-Joliot, H. [Institut de Physique Nucleaire, 91 - Orsay (France); Laurent, H. [Institut de Physique Nucleaire, 91 -Orsay (France); Maison, J.M. [Institut de Physique Nucleaire, 91 - Orsay (France); Vernotte, J. [Institut de Physique Nucleaire, 91 - Orsay (France); Bordewijck, J. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Brandenburg, S. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Krasznahorkay, A. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Crawley, G.M. [NSCL, Michigan State University, East Lansing, MI 48824 (United States); Massolo, C.P. [Universitad Nacional de La Plata, 1900 La Plata (Argentina); Renteria, M. [Universitad Nacional de La Plata, 1900 La Plata (Argentina); Khendriche, A. [University of Tizi-Ouzou, Tizi-Ouzou (Algeria)

    1996-03-18

    The neutron decay of high-lying single-particle states in {sup 64}Ni, {sup 90}Zr, {sup 120}Sn and {sup 208}Pb excited by means of the ({alpha},{sup 3}He) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular correlation analysis. The structure located between 11 and 15 MeV in {sup 91}Zr, and between 8 and 12 MeV excitation energy in {sup 209}Pb display large departures from a pure statistical decay. The corresponding non-statistical branching ratios are compared with the results of two theoretical calculations. (orig.).

  8. Classification using diffraction patterns for single-particle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hongli; Zhang, Kaiming [Department of Biophysics, the Health Science Centre, Peking University, Beijing 100191 (China); Meng, Xing, E-mail: xmeng101@gmail.com [Wadsworth Centre, New York State Department of Health, Albany, New York 12201 (United States)

    2016-05-15

    An alternative method has been assessed; diffraction patterns derived from the single particle data set were used to perform the first round of classification in creating the initial averages for proteins data with symmetrical morphology. The test protein set was a collection of Caenorhabditis elegans small heat shock protein 17 obtained by Cryo EM, which has a tetrahedral (12-fold) symmetry. It is demonstrated that the initial classification on diffraction patterns is workable as well as the real-space classification that is based on the phase contrast. The test results show that the information from diffraction patterns has the enough details to make the initial model faithful. The potential advantage using the alternative method is twofold, the ability to handle the sets with poor signal/noise or/and that break the symmetry properties. - Highlights: • New classification method. • Create the accurate initial model. • Better in handling noisy data.

  9. Classification using diffraction patterns for single-particle analysis

    International Nuclear Information System (INIS)

    Hu, Hongli; Zhang, Kaiming; Meng, Xing

    2016-01-01

    An alternative method has been assessed; diffraction patterns derived from the single particle data set were used to perform the first round of classification in creating the initial averages for proteins data with symmetrical morphology. The test protein set was a collection of Caenorhabditis elegans small heat shock protein 17 obtained by Cryo EM, which has a tetrahedral (12-fold) symmetry. It is demonstrated that the initial classification on diffraction patterns is workable as well as the real-space classification that is based on the phase contrast. The test results show that the information from diffraction patterns has the enough details to make the initial model faithful. The potential advantage using the alternative method is twofold, the ability to handle the sets with poor signal/noise or/and that break the symmetry properties. - Highlights: • New classification method. • Create the accurate initial model. • Better in handling noisy data.

  10. Single image defogging based on particle swarm optimization

    Science.gov (United States)

    Guo, Fan; Zhou, Cong; Liu, Li-jue; Tang, Jin

    2017-11-01

    Due to the lack of enough information to solve the equation of image degradation model, existing defogging methods generally introduce some parameters and set these values fixed. Inappropriate parameter setting leads to difficulty in obtaining the best defogging results for different input foggy images. Therefore, a single image defogging algorithm based on particle swarm optimization (PSO) is proposed in this letter to adaptively and automatically select optimal parameter values for image defogging algorithms. The proposed method is applied to two representative defogging algorithms by selecting the two main parameters and optimizing them using the PSO algorithm. Comparative study and qualitative evaluation demonstrate that the better quality results are obtained by using the proposed parameter selection method.

  11. Search for single photons from supersymmetric particle production

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, E.; Ford, W.T.; Qi, N.; Read A.L. Jr.; Smith, J.G.; Camporesi, T.; De Sangro, R.; Marini, A.; Peruzzi, I.; Piccolo, M.; Ronga, F.; Blume, H.T.; Hurst, R.B.; Venuti, J.P.; Wald, H.B.; Weinstein, R.; Band, H.R.; Gettner, M.W.; Goderre, G.P.; Meyer, O.A.; Moromisato, J.H.; Polvado, R.O.; Shambroom, W.D.; Sleeman, J.C.; von Goeler, E.; Ash, W.W.; Chadwick, G.B.; Clearwater, S.H.; Coombes, R.W.; Kaye, H.S.; Lau, K.H.; Leedy, R.E.; Lynch, H.L.; Messner, R.L.; Moss, L.J.; Muller, F.; Nelson, H.N.; Ritson, D.M.; Rosenberg, L.J.; Wiser, D.E.; Zdarko, R.W.; Groom, D.E.; Lee, H.Y.; Delfino, M.C.; Heltsley, B.K.; Johnson, J.R.; Lavine, T.L.; Maruyama, T.; Prepost, R.

    1985-03-18

    A search in e/sup +/e/sup -/ annihilation for final states which contain only a single energetic photon has been performed at ..sqrt..s = 29 GeV with the MAC detector at PEP. The upper limit on an anomalous signal has been interpreted in terms of mass limits for supersymmetric particles under the assumption of radiative pair paroduction of either supersymmetric photons or neutrinos. For the supersymmetric electron (e) this limit is m/sub e/>37 GeV/c/sup 2/ at the 90% confidence level if M/sub e//sub L/ = m/sub e//sub R/ and the supersymmetric photo (gamma-tilde) has m/sub gamma-tilde/ = 0.

  12. Microphysical Properties of Single Secondary Organic Aerosol (SOA) Particles

    Science.gov (United States)

    Rovelli, Grazia; Song, Young-Chul; Pereira, Kelly; Hamilton, Jacqueline; Topping, David; Reid, Jonathan

    2017-04-01

    Secondary Organic Aerosols (SOA) deriving from the oxidation of volatile organic compounds (VOCs) can account for a substantial fraction of the overall atmospheric aerosol mass.[1] Therefore, the investigation of SOA microphysical properties is crucial to better comprehend their role in the atmospheric processes they are involved in. This works describes a single particle approach to accurately characterise the hygroscopic response, the optical properties and the gas-particle partitioning kinetics of water and semivolatile components for laboratory generated SOA. SOA was generated from the oxidation of different VOCs precursors (e.g. α-pinene, toluene) in a photo-chemical flow reactor, which consists of a temperature and relative humidity controlled 300 L polyvinyl fluoride bag. Known VOC, NOx and ozone concentrations are introduced in the chamber and UV irradiation is performed by means of a Hg pen-ray. SOA samples were collected with an electrical low pressure impactor, wrapped in aluminium foil and kept refrigerated at -20°C. SOA samples were extracted in a 1:1 water/methanol mixture. Single charged SOA particles were generated from the obtained solution using a microdispenser and confined within an electrodynamic balance (EDB), where they sit in a T (250-320 K) and RH (0-95%) controlled nitrogen flow. Suspended droplets are irradiated with a 532 nm laser and the evolving angularly resolved scattered light is used to keep track of changes in droplet size. One of the key features of this experimental approach is that very little SOA solution is required because of the small volumes needed to load the dispensers (evaporation kinetics experiments (CK-EDB) of suspended probe and sample droplets.[2] The variation of the refractive index of SOA droplets following to water or SVOCs evaporative loss was measured as a function of water activity by fitting the collected light scattering patterns with a generated Mie-Theory library of phase functions.[3] Long trapping

  13. Single superconducting quantum interference device multiplexer for arrays of low-temperature sensors

    International Nuclear Information System (INIS)

    Yoon, Jongsoo; Clarke, John; Gildemeister, J. M.; Lee, Adrian T.; Myers, M. J.; Richards, P. L.; Skidmore, J. T.

    2001-01-01

    We present the design and experimental evaluation of a superconducting quantum interference device (SQUID) multiplexer for an array of low-temperature sensors. Each sensor is inductively coupled to a superconducting summing loop which, in turn, is inductively coupled to the readout SQUID. The flux-locked loop of the SQUID is used to null the current in the summing loop and thus cancel crosstalk. The sensors are biased with an alternating current, each with a separate frequency, and the individual sensor signals are separated by lock-in detection at the SQUID output. We have fabricated a prototype 8 channel multiplexer and discuss the application to a larger array

  14. Single-beam image encryption using spatially separated ciphertexts based on interference principle in the Fresnel domain

    Science.gov (United States)

    Wang, Qu; Guo, Qing; Lei, Liang; Zhou, Jinyun

    2014-12-01

    A new optical security system for image encryption based on optical interference principle and translation property of Fresnel transform (FrT) has been proposed in this article. The algorithm of this proposal is specially designed for single-beam optical decryption and can thoroughly resolve the silhouette problem existing in the previous interference-based scheme. Different from earlier schemes using interference of phase-only masks (POMs), the inverse FrT of primitive image is digitally decomposed into a random POM and a complex field distribution. Information associated with the primitive images can be completely smoothed away by the modulation of this random POM. Through the translation property of FrT, two linear phase-only terms are then used to modulate the obtained random POM and the complex distribution, respectively. Two complex ciphertexts are generated by performing digital inverse FrT again. One cannot recover any visible information of secret image using only one ciphertext. Moreover, to recover the primitive image correctly, the correct ciphertexts must be placed in the certain positions of input plane of decryption system, respectively. As additional keys, position center coordinates of ciphertexts can increase the security strength of this encryption system against brute force attacks greatly. Numerical simulations have been given to verify the performance and feasibility of this proposal. To further enhance the application value of this algorithm, an alternative approach based on Fourier transform has also been discussed briefly.

  15. Mass spectra features of biomass burning boiler and coal burning boiler emitted particles by single particle aerosol mass spectrometer.

    Science.gov (United States)

    Xu, Jiao; Li, Mei; Shi, Guoliang; Wang, Haiting; Ma, Xian; Wu, Jianhui; Shi, Xurong; Feng, Yinchang

    2017-11-15

    In this study, single particle mass spectra signatures of both coal burning boiler and biomass burning boiler emitted particles were studied. Particle samples were suspended in clean Resuspension Chamber, and analyzed by ELPI and SPAMS simultaneously. The size distribution of BBB (biomass burning boiler sample) and CBB (coal burning boiler sample) are different, as BBB peaks at smaller size, and CBB peaks at larger size. Mass spectra signatures of two samples were studied by analyzing the average mass spectrum of each particle cluster extracted by ART-2a in different size ranges. In conclusion, BBB sample mostly consists of OC and EC containing particles, and a small fraction of K-rich particles in the size range of 0.2-0.5μm. In 0.5-1.0μm, BBB sample consists of EC, OC, K-rich and Al_Silicate containing particles; CBB sample consists of EC, ECOC containing particles, while Al_Silicate (including Al_Ca_Ti_Silicate, Al_Ti_Silicate, Al_Silicate) containing particles got higher fractions as size increase. The similarity of single particle mass spectrum signatures between two samples were studied by analyzing the dot product, results indicated that part of the single particle mass spectra of two samples in the same size range are similar, which bring challenge to the future source apportionment activity by using single particle aerosol mass spectrometer. Results of this study will provide physicochemical information of important sources which contribute to particle pollution, and will support source apportionment activities. Copyright © 2017. Published by Elsevier B.V.

  16. Real-Time Measurement of Fluorescence Spectra From Single Airborne Biological Particles

    National Research Council Canada - National Science Library

    Hill, Steven

    1999-01-01

    ... (total and spectrally dispersed) of individual airborne particles, and describe our present system, which can measure fluorescence spectra or single micrometer-sized bioaerosol particles with good signal-to-noise ratios...

  17. Universal large deviations for the tagged particle in single-file motion.

    Science.gov (United States)

    Hegde, Chaitra; Sabhapandit, Sanjib; Dhar, Abhishek

    2014-09-19

    We consider a gas of point particles moving in a one-dimensional channel with a hard-core interparticle interaction that prevents particle crossings--this is called single-file motion. Starting from equilibrium initial conditions we observe the motion of a tagged particle. It is well known that if the individual particle dynamics is diffusive, then the tagged particle motion is subdiffusive, while for ballistic particle dynamics, the tagged particle motion is diffusive. Here we compute the exact large deviation function for the tagged particle displacement and show that this is universal, independent of the individual dynamics.

  18. Optical encryption of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography

    Science.gov (United States)

    Wang, Ying; Liu, Qi; Wang, Jun; Wang, Qiong-Hua

    2018-03-01

    We present an optical encryption method of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography. By modifying the Mach–Zehnder interferometer, the interference of the multiple objects beams and the one reference beam is used to simultaneously encrypt multiple objects into a ciphertext. During decryption, each three-dimensional object can be decrypted independently without having to decrypt other objects. Since the single-pixel digital holography based on compressive sensing theory is introduced, the encrypted data of this method is effectively reduced. In addition, recording fewer encrypted data can greatly reduce the bandwidth of network transmission. Moreover, the compressive sensing essentially serves as a secret key that makes an intruder attack invalid, which means that the system is more secure than the conventional encryption method. Simulation results demonstrate the feasibility of the proposed method and show that the system has good security performance. Project supported by the National Natural Science Foundation of China (Grant Nos. 61405130 and 61320106015).

  19. The single-particle microbeam facility at CEA-Saclay

    Energy Technology Data Exchange (ETDEWEB)

    Khodja, H. [DSM/IRAMIS/SIS2M, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); CNRS, UMR9956, Laboratoire Pierre Suee, F-91191 Gif-sur-Yvette Cedex (France)], E-mail: hicham.khodja@cea.fr; Hanot, M.; Carriere, M.; Hoarau, J. [DSM/IRAMIS/SIS2M, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); CNRS, UMR9956, Laboratoire Pierre Suee, F-91191 Gif-sur-Yvette Cedex (France); Angulo, J.F. [DSV, IRCM, SRO, Laboratoire de Genetique de la Radiosensibilite, F-92265 Fontenay aux Roses (France)

    2009-06-15

    Low dose and non-targeted effect studies continue to attract the attention of a growing number of radiobiologists. Experimental setups based on light ion microbeams constitute a tool of choice for this kind of investigations. However, a careful attention must be given to experimental conditions, as setup-induced stress levels should be well below those induced by the irradiation itself. Here, we present the current status of the single-particle microbeam facility that has been developed these last years at the nuclear microprobe of Saclay. The driving idea was to build a facility in which local irradiation studies are performed in an environment close to cellular biology standards. This facility includes unique features, such as (i) a compact setup that allows easy access and vertical irradiation mode, (ii) a collimated beam that can be mechanically positioned under the desired cells at a very fast speed, avoiding the requirement of a focusing element and (iii) a controlled environment (temperature, CO{sub 2}, humidity) that allows performing of very long term experiments on cultured cells. Fluorescent techniques are implemented and permit in situ monitoring of cellular responses to irradiations. Several radiobiological studies are already underway and this will be illustrated with recent results regarding DNA damage and reactive oxygen species signaling time courses following targeted irradiations.

  20. Mathematical modelling of the combustion of a single wood particle

    Energy Technology Data Exchange (ETDEWEB)

    Porteiro, J.; Miguez, J.L.; Granada, E.; Moran, J.C. [Departamento de Ingenieria Mecanica, Maquinas y Motores Termicos y Fluidos. Universidad de Vigo, Lagoas Marcosende 9 36200 Vigo (Spain)

    2006-01-15

    A mathematical model describing the thermal degradation of densified biomass particles is presented here. The model uses a novel discretisation scheme and combines intra-particle combustion processes with extra-particle transport processes, thereby including thermal and diffusional control mechanisms. The influence of structural changes on the physical-thermal properties of wood in its different stages is studied together with shrinkage of the particle during its degradation. The model is used to compare the predicted data with data on the mass loss dynamics and internal temperature of several particles from previous works and relevant literature, with good agreement. (author)

  1. Single slit interference made easy with a strand of hair and a laser

    Science.gov (United States)

    Messer, Rebecca

    2018-01-01

    Students can easily measure the width of a strand of their own hair with a monochromatic light source such as a laser. This inexpensive activity engages students in an application of single slit diffraction using Babinet's principle.

  2. Development of a Charged Particle Microbeam for Single-Particle Subcellular Irradiations at the MIT Laboratory for Accelerator Beam Application

    International Nuclear Information System (INIS)

    Yanch, Jacquelyn C.

    2004-01-01

    The development of a charged particle microbeam for single particle, subcellular irradiations at the Massachusetts Institute of Technology Laboratory for Accelerator Beam Applications (MIT LABA) was initiated under this NEER aeard. The Microbeam apparatus makes use of a pre-existing electrostatic accelerator with a horizontal beam tube

  3. Single-particle Analyses of Compositions, Morphology, and Viscosity of Aerosol Particles Collected During GoAmazon2014

    Science.gov (United States)

    Adachi, K.; Gong, Z.; Bateman, A. P.; Martin, S. T.; Cirino, G. G.; Artaxo, P.; Sedlacek, A. J., III; Buseck, P. R.

    2014-12-01

    Single-particle analysis using transmission electron microscopy (TEM) shows composition and morphology of individual aerosol particles collected during the GoAmazon2014 campaign. These TEM results indicate aerosol types and mixing states, both of which are important for evaluating particle optical properties and cloud condensation nuclei activity. The samples were collected at the T3 site, which is located in the Amazon forest with influences from the urban pollution plume from Manaus. Samples were also collected from the T0 site, which is in the middle of the jungle with minimal to no influences of anthropogenic sources. The aerosol particles mainly originated from 1) anthropogenic pollution (e.g., nanosphere soot, sulfate), 2) biogenic emissions (e.g., primary biogenic particles, organic aerosols), and 3) long-range transport (e.g., sea salts). We found that the biogenic organic aerosol particles contain homogeneously distributed potassium. Particle viscosity is important for evaluating gas-particle interactions and atmospheric chemistry for the particles. Viscosity can be estimated from the rebounding behavior at controlled relative humidities, i.e., highly viscous particles display less rebound on a plate than low-viscosity particles. We collected 1) aerosol particles from a plate (non-rebounded), 2) those that had rebounded from the plate and were then captured onto an adjacent sampling plate, and 3) particles from ambient air using a separate impactor sampler. Preliminary results show that more than 90% of non-rebounded particles consisted of nanosphere soot with or without coatings. The coatings mostly consisted of organic matter. Although rebounded particles also contain nanosphere soot (number fraction 64-69%), they were mostly internally mixed with sulfate, organic matter, or their mixtures. TEM tilted images suggested that the rebounded particles were less deformed on the substrate, whereas the non-rebounded particles were more deformed, which could

  4. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    Science.gov (United States)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  5. Experimental Study on Effects of Particle Shape and Operating Conditions on Combustion Characteristics of Single Biomass Particles

    DEFF Research Database (Denmark)

    Momeni, M.; Yin, Chungen; Kær, Søren Knudsen

    2013-01-01

    An experimental study is performed to investigate the ignition, devolatilization, and burnout of single biomass particles of various shapes and sizes under process conditions that are similar to those in an industrial combustor. A chargecoupled device (CCD) camera is used to record the whole...... combustion process. For the particles with similar volume (mass), cylindrical particles are found to lose mass faster than spherical particles and the burnout time is shortened by increasing the particle aspect ratio (surface area). The conversion times of cylindrical particles with almost the same surface...... area/volume ratio are very close to each other. The ignition, devolatilization, and burnout times of cylindrical particles are also affected by the oxidizer temperature and oxygen concentration, in which the oxygen concentration is found to have a more pronounced effect on the conversion times at lower...

  6. IETS and quantum interference

    DEFF Research Database (Denmark)

    Jørgensen, Jacob Lykkebo; Gagliardi, Alessio; Pecchia, Alessandro

    2014-01-01

    Destructive quantum interference in single molecule electronics is an intriguing phenomenon; however, distinguishing quantum interference effects from generically low transmission is not trivial. In this paper, we discuss how quantum interference effects in the transmission lead to either low...... suppressed when quantum interference effects dominate. That is, we expand the understanding of propensity rules in inelastic electron tunneling spectroscopy to molecules with destructive quantum interference....

  7. Nonmonotonic quantum-to-classical transition in multiparticle interference

    DEFF Research Database (Denmark)

    Ra, Young-Sik; Tichy, Malte; Lim, Hyang-Tag

    2013-01-01

    Quantum-mechanical wave–particle duality implies that probability distributions for granular detection events exhibit wave-like interference. On the single-particle level, this leads to self-interference—e.g., on transit across a double slit—for photons as well as for large, massive particles...... that interference fades away monotonically with increasing distinguishability—in accord with available experimental evidence on the single- and on the many-particle level. Here, we demonstrate experimentally and theoretically that such monotonicity of the quantum-to-classical transition is the exception rather than...

  8. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    Directory of Open Access Journals (Sweden)

    Brandon Redding

    2015-08-01

    Full Text Available The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field.

  9. Single particle dynamics and nonlinear resonances in circular accelerators

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1985-11-01

    The purpose of this paper is to introduce the reader to single particle dynamics in circular accelerators with an emphasis on nonlinear resonances. We begin with the Hamiltonian and the equations of motion in the neighborhood of the design orbit. In the linear theory this yields linear betatron oscillations about a closed orbit. It is useful then to introduce the action-angle variables of the linear problem. Next we discuss the nonlinear terms which are present in an actual accelerator, and in particular, we motivate the inclusion of sextupoles to cure chromatic effects. To study the effects of the nonlinear terms, we next discuss canonical perturbation theory which leads us to nonlinear resonances. After showing a few examples of perturbation theory, we abandon it when very close to a resonance. This leads to the study of an isolated resonance in one degree of freedom with a 'time'-dependent Hamiltonian. We see the familiar resonance structure in phase space which is simply closed islands when the nonlinear amplitude dependence of the frequency or 'tune' is included. To show the limits of the validity of the isolated resonance approximation, we discuss two criteria for the onset of chaotic motion. Finally, we study an isolated coupling resonance in two degrees of freedom with a 'time'-dependent Hamiltonian and calculate the two invariants in this case. This leads to a surface of section which is a 2-torus in 4-dimensional phase space. However, we show that it remains a 2-torus when projected into particular 3-dimensional subspaces, and thus can be viewed in perspective

  10. Considerations of particle vaporization and analyte diffusion in single-particle inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Koon-Sing; Lui, Kwok-On; Lee, Kin-Ho; Chan, Wing-Tat, E-mail: wtchan@hku.hk

    2013-11-01

    The intensity of individual gold nanoparticles with nominal diameters of 80, 100, 150, and 200 nm was measured using single-particle inductively coupled plasma-mass spectrometry (ICP-MS). Since the particles are not perfectly monodisperse, a distribution of ICP-MS intensity was obtained for each nominal diameter. The distribution of particle mass was determined from the transmission electron microscopy (TEM) image of the particles. The distribution of ICP-MS intensity and the distribution of particle mass for each nominal diameter were correlated to give a calibration curve. The calibration curves are linear, but the slope decreases as the nominal diameter increases. The reduced slope is probably due to a smaller degree of vaporization of the large particles. In addition to the degree of particle vaporization, the rate of analyte diffusion in the ICP is an important factor that determines the measured ICP-MS intensity. Simulated ICP-MS intensity versus particle size was calculated using a simple computer program that accounts for the vaporization rate of the gold nanoparticles and the diffusion rate and degree of ionization of the gold atoms. The curvature of the simulated calibration curves changes with sampling depth because the effects of particle vaporization and analyte diffusion on the ICP-MS intensity are dependent on the residence time of the particle in the ICP. Calibration curves of four hypothetical particles representing the four combinations of high and low boiling points (2000 and 4000 K) and high and low analyte diffusion rates (atomic masses of 10 and 200 Da) were calculated to further illustrate the relative effects of particle vaporization and analyte diffusion. The simulated calibration curves show that the sensitivity of single-particle ICP-MS is smaller than that of the ICP-MS measurement of continuous flow of standard solutions by a factor of 2 or more. Calibration using continuous flow of standard solution is semi-quantitative at best. An

  11. Single particle aerosol mass spectrometry of coal combustion particles associated with high lung cancer rates in Xuanwei and Fuyuan, China.

    Science.gov (United States)

    Lu, Senlin; Tan, Zhengying; Liu, Pinwei; Zhao, Hui; Liu, Dingyu; Yu, Shang; Cheng, Ping; Win, Myat Sandar; Hu, Jiwen; Tian, Linwei; Wu, Minghong; Yonemochi, Shinich; Wang, Qingyue

    2017-11-01

    Coal combustion particles (CCPs) are linked to the high incidence of lung cancer in Xuanwei and in Fuyuan, China, but studies on the chemical composition of the CCPs are still limited. Single particle aerosol mass spectrometry (SPAMS) was recently developed to measure the chemical composition and size of single particles in real-time. In this study, SPAMS was used to measure individual combustion particles emitted from Xuanwei and Fuyuan coal samples and the results were compared with those by ICP-MS and transmission electron microscopy (TEM). The total of 38,372 particles mass-analyzed by SPAMS can be divided into 9 groups based on their chemical composition and their number percentages: carbonaceous, Na-rich, K-rich, Al-rich, Fe-rich, Si-rich, Ca-rich, heavy metal-bearing, and PAH-bearing particles. The carbonaceous and PAH-bearing particles are enriched in the size range below 0.56 μm, Fe-bearing particles range from 0.56 to 1.0 μm in size, and heavy metals such as Ti, V, Cr, Cu, Zn, and Pb have diameters below 1 μm. The TEM results show that the particles from Xuanwei and Fuyuan coal combustion can be classified into soot aggregates, Fe-rich particles, heavy metal containing particles, and mineral particles. Non-volatile particles detected by SPAMS could also be observed with TEM. The number percentages by SPAMS also correlate with the mass concentrations measured by ICP-MS. Our results could provide valuable insight for understanding high lung cancer incidence in the area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Real time analysis of lead-containing atmospheric particles in Beijing during springtime by single particle aerosol mass spectrometry.

    Science.gov (United States)

    Ma, Li; Li, Mei; Huang, Zhengxu; Li, Lei; Gao, Wei; Nian, Huiqing; Zou, Lilin; Fu, Zhong; Gao, Jian; Chai, Fahe; Zhou, Zhen

    2016-07-01

    Using a single particle aerosol mass spectrometer (SPAMS), the chemical composition and size distributions of lead (Pb)-containing particles with diameter from 0.1 μm to 2.0 μm in Beijing were analyzed in the spring of 2011 during clear, hazy, and dusty days. Based on mass spectral features of particles, cluster analysis was applied to Pb-containing particles, and six major classes were acquired consisting of K-rich, carboneous, Fe-rich, dust, Pb-rich, and Cl-rich particles. Pb-containing particles accounted for 4.2-5.3%, 21.8-22.7%, and 3.2% of total particle number during clear, hazy and dusty days, respectively. K-rich particles are a major contribution to Pb-containing particles, varying from 30.8% to 82.1% of total number of Pb-containing particles, lowest during dusty days and highest during hazy days. The results reflect that the chemical composition and amount of Pb-containing particles has been affected by meteorological conditions as well as the emissions of natural and anthropogenic sources. K-rich particles and carbonaceous particles could be mainly assigned to the emissions of coal combustion. Other classes of Pb-containing particles may be associated with metallurgical processes, coal combustion, dust, and waste incineration etc. In addition, Pb-containing particles during dusty days were first time studied by SPAMS. This method could provide a powerful tool for monitoring and controlling of Pb pollution in real time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Life and death of a single catalytic cracking particle

    NARCIS (Netherlands)

    Meirer, Florian; Kalirai, Samanbir; Morris, Darius; Soparawalla, Santosh; Liu, Yijin; Mesu, Gerbrand; Andrews, Joy C; Weckhuysen, Bert M

    Fluid catalytic cracking (FCC) particles account for 40 to 45% of worldwide gasoline production. The hierarchical complex particle pore structure allows access of long-chain feedstock molecules into active catalyst domains where they are cracked into smaller, more valuable hydrocarbon products (for

  14. The development of optical microscopy techniques for the advancement of single-particle studies

    Energy Technology Data Exchange (ETDEWEB)

    Marchuk, Kyle [Iowa State Univ., Ames, IA (United States)

    2013-05-15

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to

  15. Factors Influencing the Ignition and Burnout of a Single Biomass Particle

    DEFF Research Database (Denmark)

    Momenikouchaksaraei, Maryam; Kær, Søren Knudsen; Yin, Chungen

    2011-01-01

    Ignition and burnout of a single biomass particle were studied numerically. A one-dimensional particle combustion model was developed which is capable to simulate all the intraparticle conversion processes (drying, recondensation, devolatilization, char gasification/oxidation and heat/mass/moment......Ignition and burnout of a single biomass particle were studied numerically. A one-dimensional particle combustion model was developed which is capable to simulate all the intraparticle conversion processes (drying, recondensation, devolatilization, char gasification/oxidation and heat...... concentration were not very significant. The influences of these factors on particle burnout were much more remarkable than ignition behaviour....

  16. Planck scale physics of the single-particle Schrödinger equation ...

    Indian Academy of Sciences (India)

    August 2002 physics pp. 375–383. Planck scale physics of the single-particle Schrödinger equation with gravitational self-interaction. VIKRAM SONI. National Physical Laboratory, K.S. Krishnan Marg, New Delhi 110 016, India. Abstract. We consider the modification of a single-particle Schrödinger equation by the inclusion.

  17. Burnout of pulverized biomass particles in large scale boiler – Single particle model approach

    DEFF Research Database (Denmark)

    Saastamoinen, Jaakko; Aho, Martti; Moilanen, Antero

    2010-01-01

    the particle combustion model is coupled with one-dimensional equation of motion of the particle, is applied for the calculation of the burnout in the boiler. The particle size of biomass can be much larger than that of coal to reach complete burnout due to lower density and greater reactivity. The burner...... location and the trajectories of the particles might be optimised to maximise the residence time and burnout....

  18. Effect of Structural Heterogeneity in Chemical Composition on Online Single-Particle Mass Spectrometry Analysis of Sea Spray Aerosol Particles.

    Science.gov (United States)

    Sultana, Camille M; Collins, Douglas B; Prather, Kimberly A

    2017-04-04

    Knowledge of the surface composition of sea spray aerosols (SSA) is critical for understanding and predicting climate-relevant impacts. Offline microscopy and spectroscopy studies have shown that dry supermicron SSA tend to be spatially heterogeneous particles with sodium- and chloride-rich cores surrounded by organic enriched surface layers containing minor inorganic seawater components such as magnesium and calcium. At the same time, single-particle mass spectrometry reveals several different mass spectral ion patterns, suggesting that there may be a number of chemically distinct particle types. This study investigates factors controlling single particle mass spectra of nascent supermicron SSA. Depth profiling experiments conducted on SSA generated by a fritted bubbler and total ion intensity analysis of SSA generated by a marine aerosol reference tank were compared with observations of ambient SSA observed at two coastal locations. Analysis of SSA produced by utilizing controlled laboratory methods reveals that single-particle mass spectra with weak sodium ion signals can be produced by the desorption of the surface of typical dry SSA particles composed of salt cores and organic-rich coatings. Thus, this lab-based study for the first time unifies findings from offline and online measurements as well as lab and field studies of the SSA particle-mixing state.

  19. Online single particle analysis of ice particle residuals from mountain-top mixed-phase clouds using laboratory derived particle type assignment

    Science.gov (United States)

    Schmidt, Susan; Schneider, Johannes; Klimach, Thomas; Mertes, Stephan; Schenk, Ludwig Paul; Kupiszewski, Piotr; Curtius, Joachim; Borrmann, Stephan

    2017-01-01

    In situ single particle analysis of ice particle residuals (IPRs) and out-of-cloud aerosol particles was conducted by means of laser ablation mass spectrometry during the intensive INUIT-JFJ/CLACE campaign at the high alpine research station Jungfraujoch (3580 m a.s.l.) in January-February 2013. During the 4-week campaign more than 70 000 out-of-cloud aerosol particles and 595 IPRs were analyzed covering a particle size diameter range from 100 nm to 3 µm. The IPRs were sampled during 273 h while the station was covered by mixed-phase clouds at ambient temperatures between -27 and -6 °C. The identification of particle types is based on laboratory studies of different types of biological, mineral and anthropogenic aerosol particles. The outcome of these laboratory studies was characteristic marker peaks for each investigated particle type. These marker peaks were applied to the field data. In the sampled IPRs we identified a larger number fraction of primary aerosol particles, like soil dust (13 ± 5 %) and minerals (11 ± 5 %), in comparison to out-of-cloud aerosol particles (2.4 ± 0.4 and 0.4 ± 0.1 %, respectively). Additionally, anthropogenic aerosol particles, such as particles from industrial emissions and lead-containing particles, were found to be more abundant in the IPRs than in the out-of-cloud aerosol. In the out-of-cloud aerosol we identified a large fraction of aged particles (31 ± 5 %), including organic material and secondary inorganics, whereas this particle type was much less abundant (2.7 ± 1.3 %) in the IPRs. In a selected subset of the data where a direct comparison between out-of-cloud aerosol particles and IPRs in air masses with similar origin was possible, a pronounced enhancement of biological particles was found in the IPRs.

  20. Assisted reproduction: what factors interfere in the professional's decisions? Are single women an issue?

    Science.gov (United States)

    Záchia, Suzana; Knauth, Daniela; Goldim, José R; Chachamovich, Juliana R; Chachamovich, Eduardo; Paz, Ana H; Felberbaum, Ricardo; Crosignani, PierGiorgio; Tarlatzis, Basil C; Passos, Eduardo P

    2011-05-31

    With the development of medical technology, many countries around the world have been implementing ethical guidelines and laws regarding Medically Assisted Reproduction (MAR). A physician's reproductive decisions are not solely based on technical criteria but are also influenced by society values. Therefore, the aim of this study was to analyze the factors prioritized by MAR professionals when deciding on whether to accept to perform assisted reproduction and to show any existing cultural differences. Cross-sectional study involving 224 healthcare professionals working with assisted reproduction in Brazil, Italy, Germany and Greece. Instrument used for data collection: a questionnaire, followed by the description of four special MAR cases (a single woman, a lesbian couple, an HIV discordant couple and gender selection) which included case-specific questions regarding the professionals' decision on whether to perform the requested procedure as well as the following factors: socio-demographic variables, moral and legal values as well as the technical aspects which influence decision-making. Only the case involving a single woman who wishes to have a child (without the intention of having a partner in the future) demonstrated significant differences. Therefore, the study was driven towards the results of this case specifically. The analyses we performed demonstrated that professionals holding a Master's Degree, those younger in age, female professionals, those having worked for less time in reproduction, those in private clinics and Brazilian health professionals all had a greater tendency to perform the procedure in that case. A multivariate analysis demonstrated that the reasons for the professional's decision to perform the procedure were the woman's right to gestate and the duty of MAR professionals to help her. The professionals who decided not to perform the procedure identified the woman's marital status and the child's right to a father as the reason to

  1. Assisted Reproduction: What factors interfere in the professional's decisions? Are single women an issue?

    Science.gov (United States)

    2011-01-01

    Background With the development of medical technology, many countries around the world have been implementing ethical guidelines and laws regarding Medically Assisted Reproduction (MAR). A physician's reproductive decisions are not solely based on technical criteria but are also influenced by society values. Therefore, the aim of this study was to analyze the factors prioritized by MAR professionals when deciding on whether to accept to perform assisted reproduction and to show any existing cultural differences. Methods Cross-sectional study involving 224 healthcare professionals working with assisted reproduction in Brazil, Italy, Germany and Greece. Instrument used for data collection: a questionnaire, followed by the description of four special MAR cases (a single woman, a lesbian couple, an HIV discordant couple and gender selection) which included case-specific questions regarding the professionals' decision on whether to perform the requested procedure as well as the following factors: socio-demographic variables, moral and legal values as well as the technical aspects which influence decision-making. Results Only the case involving a single woman who wishes to have a child (without the intention of having a partner in the future) demonstrated significant differences. Therefore, the study was driven towards the results of this case specifically. The analyses we performed demonstrated that professionals holding a Master's Degree, those younger in age, female professionals, those having worked for less time in reproduction, those in private clinics and Brazilian health professionals all had a greater tendency to perform the procedure in that case. A multivariate analysis demonstrated that the reasons for the professional's decision to perform the procedure were the woman's right to gestate and the duty of MAR professionals to help her. The professionals who decided not to perform the procedure identified the woman's marital status and the child's right to a

  2. Fractal and Morphological Characteristics of Single Marble Particle Crushing in Uniaxial Compression Tests

    Directory of Open Access Journals (Sweden)

    Yidong Wang

    2015-01-01

    Full Text Available Crushing of rock particles is a phenomenon commonly encountered in geotechnical engineering practice. It is however difficult to study the crushing of rock particles using classical theory because the physical structure of the particles is complex and irregular. This paper aims at evaluating fractal and morphological characteristics of single rock particle. A large number of particle crushing tests are conducted on single rock particle. The force-displacement curves and the particle size distributions (PSD of crushed particles are analysed based on particle crushing tests. Particle shape plays an important role in both the micro- and macroscale responses of a granular assembly. The PSD of an assortment of rocks are analysed by fractal methods, and the fractal dimension is obtained. A theoretical formula for particle crushing strength is derived, utilising the fractal model, and a simple method is proposed for predicting the probability of particle survival based on the Weibull statistics. Based on a few physical assumptions, simple equations are derived for determining particle crushing energy. The results of applying these equations are tested against the actual experimental data and prove to be very consistent. Fractal theory is therefore applicable for analysis of particle crushing.

  3. Single-Particle Soot Photometer (SP2) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, Arthur [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-02-01

    The SP2 is an instrument that measures, in situ, the time-dependent scattering and incandescence signals produced by individual BC-containing particles as they travel through a continuous-wave laser beam. Any particle traversing the laser beam will scatter light, and the BC component of a BC-containing particle will absorb some of the laser energy until its temperature is raised to the point at which it incandesces (hereafter we adopt the standard terminology of the SP2 community and denote any substance determined by the SP2 to be BC as refractory black carbon (rBC)). The amplitude of the rBC incandescence signal is related to the amount of refractory material contained in the illuminated particle. By binning the individual incandescence signals per unit sample volume, the mass concentration [ng/m3] of rBC can be derived. By binning the individual signals by volume equivalent diameter the size distribution (dN/dlogDVED) per unit time can be derived. The rBC mass loading per unit time and the rBC size distribution unit time are the core data products produced by the SP2. Additionally, the scattering channel can be used to provide information on the rBC particle population-based mixing states within ambient aerosols. However, this data product is produced on a requested-basis since additional detailed analysis and QC/QA must be conducted.

  4. Single scattering from nonspherical Chebyshev particles: A compendium of calculations

    Science.gov (United States)

    Wiscombe, W. J.; Mugnai, A.

    1986-01-01

    A large set of exact calculations of the scattering from a class of nonspherical particles known as Chebyshev particles' has been performed. Phase function and degree of polarization in random orientation, and parallel and perpendicular intensities in fixed orientations, are plotted for a variety of particles shapes and sizes. The intention is to furnish a data base against which both experimental data, and the predictions of approximate methods, can be tested. The calculations are performed with the widely-used Extended Boundary Condition Method. An extensive discussion of this method is given, including much material that is not easily available elsewhere (especially the analysis of its convergence properties). An extensive review is also given of all extant methods for nonspherical scattering calculations, as well as of the available pool of experimental data.

  5. Response of microchannel plates in ionization mode to single particles and electromagnetic showers

    Science.gov (United States)

    Barnyakov, A. Yu.; Barnyakov, M. Yu.; Brianza, L.; Cavallari, F.; Cipriani, M.; Ciriolo, V.; del Re, D.; Gelli, S.; Ghezzi, A.; Gotti, C.; Govoni, P.; Katcin, A. A.; Malberti, M.; Martelli, A.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Pigazzini, S.; Preiato, F.; Prisekin, V. G.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Tabarelli de Fatis, T.

    2018-01-01

    Hundreds of concurrent collisions per bunch crossing are expected at future hadron colliders. Precision timing calorimetry has been advocated as a way to mitigate the pileup effects and, thanks to their excellent time resolution, microchannel plates (MCPs) are good candidate detectors for this goal. We report on the response of MCPs, used as secondary emission detectors, to single relativistic particles and to electromagnetic showers. Several prototypes, with different geometries and characteristics, were exposed to particle beams at the INFN-LNF Beam Test Facility and at CERN. Their time resolution and efficiency are measured for single particles and as a function of the multiplicity of particles. Efficiencies between 50% and 90% to single relativistic particles are reached, and up to 100% in presence of a large number of particles. Time resolutions between 20 ps and 30 ps are obtained.

  6. Differential-interference-contrast digital in-line holography microscopy based on a single-optical-element.

    Science.gov (United States)

    Zhang, Yuchao; Xie, Changqing

    2015-11-01

    Both digital in-line holography (DIH) and zone plate-based microscopy have received considerable interest as powerful imaging tools. However, the former suffers from a twin-image noise problem. The latter suffers from low efficiency and difficulty in fabrication. Here, we present an effective and efficient phase-contrast imaging approach, named differential-interference-contrast digital in-line holography (DIC-DIH), by using a single optical element to split the incident light into a plane wave and a converging spherical wave and generate a two-dimensional (2D) DIC effect simultaneously. Specifically, to improve image contrast, we present a new single optical element, termed 2D DIC compound photon sieves, by combining two overlaid binary gratings and a compound photon sieve through two logical XOR operations. The proof-of-concept experiments demonstrate that the proposed technique can eliminate the twin-image noise problem and improve image contrast with high efficiency. Additionally, we present an example of the phase-contrast imaging nonuniform thick photoresist development process.

  7. Interference of single walled carbon nanotubes (SWCNT) in the measurement of lipid peroxidation in aquatic organisms through TBARS assay.

    Science.gov (United States)

    Monserrat, J M; Seixas, A L R; Ferreira-Cravo, M; Bürguer-Mendonça, M; Garcia, S C; Kaufmann, C G; Ventura-Lima, J

    2017-06-01

    Nanomaterials (NM) exhibit unique properties due their size and relative area, but the mechanisms and effects in the living organisms are yet to be unfold in their totality. Potential toxicity mechanisms concerning NM as carbon nanotubes include oxidative stress generation. Several fluorimetric and colorimetric methods have been systematically used to measure NM toxicity, and controversial results have been reported. One of the problems can be related to the interference effects induced by NM, leading to artifacts that can lead to misleading conclusions. In present study, it was performed in vitro assays with two aquatic species: the zebrafish Danio rerio and the polychaete Laeonereis acuta to evaluate the potential interference capacity of single-wall carbon nanotubes (SWCNT) in a fluorometric method (TBARS assay) to measure lipid peroxidation. Obtained results indicated that gills and brain of zebrafish presented a lowered fluorescence only at extremely high concentrations (50 and 500mg/L). Determinations in anterior, middle, and posterior body regions of L. acuta showed a quite different pattern: high fluorescence at low SWCNT concentrations (0.5mg/L) and lowering at the highest (500mg/L). To eliminate matrix effect of biological samples, tests employing the standard for TBARS assay, 1,3,3-tetramethoxipropane, were run and the results showed again higher fluorescence values at low concentrations (0.5-5mg SWCNT/L), a technique artifact that could lead to misleading conclusions since higher fluorescence values implicate higher TBARS concentration, implying oxidative stress. Using the colorimetric FOX assay with cumene hydroperoxide as standard presented remarkable better results since no artifacts were observed in the same SWCNT concentration range that employed with the TBARS technique. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Magnetic tweezers for manipulation of magnetic particles in single cells

    Science.gov (United States)

    Ebrahimian, H.; Giesguth, M.; Dietz, K.-J.; Reiss, G.; Herth, S.

    2014-02-01

    Magnetic tweezers gain increasing interest for applications in biology. Here, a setup of magnetic tweezers is introduced using micropatterned conducting lines on transparent glass slides. Magnetic particles of 1 μm diameter were injected in barley cell vacuoles using a microinject system under microscopic control. Time dependent tracking of the particles after application of a magnetic field was used to determine the viscosity of vacuolar sap in vivo relative to water and isolated vacuolar fluid. The viscosity of vacuolar sap in cells was about 2-fold higher than that of extracted vacuolar fluid and 5 times higher than that of water.

  9. Single particle behaviour in circulating fluidized bed combustors

    DEFF Research Database (Denmark)

    Erik Weinell, Claus

    1994-01-01

    of fuel particles in a boiler. A cold pilot scale model of a circulating fluidized bed combustor was used. Here sand was recirculated by means of air. Pressure measurements along the riser determined suspension density. A radioactive tracking facility to determined the dynamic picture of the particle...... trajectories in the simulated boiler. In the splash zone, closest to the secondary air inlet an exponential decay in the solids suspension density with the riser height was observed. A transport zone was characterized by an exponential decay in the solids suspension but with a smaller decay constant...

  10. Single Gradientless Light Beam Drags Particles as Tractor Beams

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Qiu, Cheng-Wei; Wang, Haifeng

    2011-01-01

    is the strong nonparaxiality of the light beam, which contributes to the pulling force owing to momentum conservation. The nonparaxiality of the Bessel beam can be manipulated to possess a dragging force along both the radial longitudinal directions, i.e., a "tractor beam" with stable trajectories is achieved......Usually a light beam pushes a particle when the photons act upon it. We investigate the optical forces by nonparaxial gradientless beams and find that the forces can drag suitable particles all the way towards the light source. The major criterion of realizing the backward dragging force...

  11. Detection and characterization of chemical aerosol using laser-trapping single-particle Raman spectroscopy.

    Science.gov (United States)

    Kalume, Aimable; Beresnev, Leonid A; Santarpia, Joshua; Pan, Yong-Le

    2017-08-10

    Detection and characterization of the presence of chemical agent aerosols in various complex atmospheric environments is an essential defense mission. Raman spectroscopy has the ability to identify chemical molecules, but there are limited numbers of photons detectable from single airborne aerosol particles as they are flowing through a detection system. In this paper, we report on a single-particle Raman spectrometer system that can measure strong spontaneous, stimulated, and resonance Raman spectral peaks from a single laser-trapped chemical aerosol particle, such as a droplet of the VX nerve agent chemical simulant diethyl phthalate. Using this system, time-resolved Raman spectra and elastic scattered intensities were recorded to monitor the chemical properties and size variation of the trapped particle. Such a system supplies a new approach for the detection and characterization of single airborne chemical aerosol particles.

  12. High rate discharge capability of single particle electrode of LiCoO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Dokko, Kaoru [Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Nakata, Natsuko; Kanamura, Kiyoshi [Department of Applied Chemistry, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397 (Japan)

    2009-04-01

    The electrochemical properties of a single particle of LiCoO{sub 2} (8 {mu}m in diameter) in an organic electrolyte were characterized using a microelectrode technique, and the high rate capability of commercially available micron-sized LiCoO{sub 2} was examined in this study. A Pt microfilament (10 {mu}m in diameter) was attached to the single LiCoO{sub 2} particle in the electrolyte during optical microscope observation, and galvanostatic charge-discharge tests were carried out. The discharge capacity of the single LiCoO{sub 2} particle (8 {mu}m diameter) was 0.157 nA h in the potential range of 3.0-4.2 V vs. Li/Li{sup +}, which was close to the theoretical capacity. The discharge rate capability of the single LiCoO{sub 2} particle was excellent, and the particle exhibited its full-discharge capacity up to a high rate of 30 C (5 nA). The discharge reaction of the single particle was not controlled by the solid-state diffusion of Li{sup +}, but by the charge transfer process at a rate lower than 30 C. The discharge capacity of the particle measured at a high rate of 300 C (50 nA) was 0.12 nA h, which was more than 75% of the full capacity of a single particle. (author)

  13. High rate discharge capability of single particle electrode of LiCoO 2

    Science.gov (United States)

    Dokko, Kaoru; Nakata, Natsuko; Kanamura, Kiyoshi

    The electrochemical properties of a single particle of LiCoO 2 (8 μm in diameter) in an organic electrolyte were characterized using a microelectrode technique, and the high rate capability of commercially available micron-sized LiCoO 2 was examined in this study. A Pt microfilament (10 μm in diameter) was attached to the single LiCoO 2 particle in the electrolyte during optical microscope observation, and galvanostatic charge-discharge tests were carried out. The discharge capacity of the single LiCoO 2 particle (8 μm diameter) was 0.157 nA h in the potential range of 3.0-4.2 V vs. Li/Li +, which was close to the theoretical capacity. The discharge rate capability of the single LiCoO 2 particle was excellent, and the particle exhibited its full-discharge capacity up to a high rate of 30 C (5 nA). The discharge reaction of the single particle was not controlled by the solid-state diffusion of Li +, but by the charge transfer process at a rate lower than 30 C. The discharge capacity of the particle measured at a high rate of 300 C (50 nA) was 0.12 nA h, which was more than 75% of the full capacity of a single particle.

  14. Single particle analysis of TiO2in candy products using triple quadrupole ICP-MS.

    Science.gov (United States)

    Candás-Zapico, S; Kutscher, D J; Montes-Bayón, M; Bettmer, J

    2018-04-01

    Titanium dioxide (TiO 2 ) belongs to the materials that have gained great importance in many applications. In its particulate form (micro- or nanoparticles), it has entered a huge number of consumer products and food-grade TiO 2 , better known as E171 within the European Union, represents an important food additive. Thus, there is an increasing need for analytical methods able to detect and quantify such particles. In this regard, inductively coupled-mass spectrometry (ICP-MS), in particular single particle ICP-MS (spICP-MS), has gained importance due to its simplicity and ease of use. Nevertheless, the number of applications for Ti nanoparticles is rather limited. In this study, we have applied the spICP-MS strategy by comparing different measuring modes available in triple quadrupole ICP-MS. First, single quadrupole mode using the collision/reaction cell system was selected for monitoring the isotope 47 Ti. Different cell gases like He, O 2 and NH 3 were tested under optimised conditions for its applicability in spICP-MS of standard suspensions of TiO 2 . The determined analytical figures of merit were compared to those obtained by triple quadrupole mode using the 47 Ti or 48 Ti reaction products using O 2 and NH 3 as reaction gases. This comparison demonstrated that the triple quadrupole mode (TQ mode) was superior in terms of sensitivity due to the more efficient removal of spectral interferences. Particle size detection limits down to 26nm were obtained using the best instrumental conditions for TiO 2 particles at a dwell time of 10ms. Finally, the different measuring modes were applied to the analysis of chewing gum samples after a simple extraction procedure using an ultrasonic bath. The obtained results showed a good agreement for the detected particle size range using the different TQ modes. The size range of TiO 2 particles was determined to be between approximately 30 and 200nm, whereas roughly 40% of the particles were smaller than 100nm. For the

  15. Modelling of flash pyrolysis of a single wood particle.

    NARCIS (Netherlands)

    Janse, A.M.C.; Janse, A.M.C.; Westerhout, R.W.J.; Westerhout, R.W.J.; Prins, W.

    2000-01-01

    Reactors for flash pyrolysis of biomass are designed to maximize the yield of bio-oil, at the expense of the by-products gas and char. To understand which chemical and physical factors influence the yield to bio-oil, the flash pyrolysis of a cylindrical wood particle with a maximum diameter of 1000

  16. Single-sheet identification method of heavy charged particles using ...

    Indian Academy of Sciences (India)

    The theoretical and experimental investigations of the penetration of charged particles in matter played a very important role in the development of modern physics. Solid state nuclear track detectors have become one of the most important tools for many branches of science and technology. An attempt has been made to ...

  17. Fluorescence preselection of bioaerosol for single-particle mass spectrometry

    NARCIS (Netherlands)

    Stowers, M.A.; Van Wuijckhuijse, A.L.; Marijnissen, J.C.M.; Kientz, C.E.; Ciach, T.

    2006-01-01

    We have designed, constructed, and tested a system that preselects the biological fraction of airborne particles from the overall aerosol. The preselection is based on fluorescence emission excited by a continuous 266 nm laser beam. This beam is one of two cw beams used to measure the aerodynamic

  18. Principles and biophysical applications of single particle super-localization and rotational tracking

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yan [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    While conventional Single Particle Tracking (SPT) techniques acquire 2D or 3D trajectories of particle probes, we have developed Single Particle Orientation and Rotational Tracking (SPORT) techniques to extract orientation and rotational information. Combined with DIC microscopy, the SPORT technique has been applied in biophysical studies, including membrane diffusion and intracellular transport. The rotational dynamics of nanoparticle vectors on live cell membranes was recorded and its influence on the fate of these nanoparticle vectors was elucidated. The rotational motions of gold nanorods with various surface modifiers were tracked continuously at a temporal resolution of 5 ms under a DIC microscope. We found that the rotational behaviors of gold nanorod vectors are strongly related to their surface charge, specific surface functional groups, and the availability of receptors on cell membranes. The study of rotational Brownian motion of nanoparticles on cell membranes will lead to a better understanding of the mechanisms of drug delivery and provide guidance in designing surface modification strategies for drug delivery vectors under various circumstances. To characterize the rotation mode of surface functionalized gold nanorods on cell membranes, the SPORT technique is combined with the correlation analysis of the bright and dark DIC intensities. The unique capabilities of visualizing and understanding rotational motions of functionalized nanoparticles on live cell membranes allow us to correlate rotational and translational dynamics in unprecedented detail and provide new insights for complex membrane processes, including electrostatic interactions, ligand-receptor binding, and lateral (confined and hopping) diffusion of membrane receptors. Surface-functionalized nanoparticles interact with the membrane in fundamentally different ways and exhibit distinct rotational modes. The early events of particle-membrane approach and attachment are directly visualized

  19. Characterizing uranium oxide reference particles for isotopic abundances and uranium mass by single particle isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Kraiem, M.; Richter, S.; Erdmann, N.; Kühn, H.; Hedberg, M.; Aregbe, Y.

    2012-01-01

    Highlights: ► A method to quantify the U mass in single micron particles by ID-TIMS was developed. ► Well-characterized monodisperse U-oxide particles produced by an aerosol generator were used. ► A linear correlation between the mass of U and the volume of particle(s) was found. ► The method developed is suitable for determining the amount of U in a particulate reference material. - Abstract: Uranium and plutonium particulate test materials are becoming increasingly important as the reliability of measurement results has to be demonstrated to regulatory bodies responsible for maintaining effective nuclear safeguards. In order to address this issue, the Institute for Reference Materials and Measurements (IRMM) in collaboration with the Institute for Transuranium Elements (ITU) has initiated a study to investigate the feasibility of preparing and characterizing a uranium particle reference material for nuclear safeguards, which is finally certified for isotopic abundances and for the uranium mass per particle. Such control particles are specifically required to evaluate responses of instruments based on mass spectrometric detection (e.g. SIMS, TIMS, LA-ICPMS) and to help ensuring the reliability and comparability of measurement results worldwide. In this paper, a methodology is described which allows quantifying the uranium mass in single micron particles by isotope dilution thermal ionization mass spectrometry (ID-TIMS). This methodology is characterized by substantial improvements recently achieved at IRMM in terms of sensitivity and measurement accuracy in the field of uranium particle analysis by TIMS. The use of monodisperse uranium oxide particles prepared using an aerosol generation technique developed at ITU, which is capable of producing particles of well-characterized size and isotopic composition was exploited. The evidence of a straightforward correlation between the particle volume and the mass of uranium was demonstrated in this study

  20. Analysis of single particle diffusion with transient binding using particle filtering.

    Science.gov (United States)

    Bernstein, Jason; Fricks, John

    2016-07-21

    Diffusion with transient binding occurs in a variety of biophysical processes, including movement of transmembrane proteins, T cell adhesion, and caging in colloidal fluids. We model diffusion with transient binding as a Brownian particle undergoing Markovian switching between free diffusion when unbound and diffusion in a quadratic potential centered around a binding site when bound. Assuming the binding site is the last position of the particle in the unbound state and Gaussian observational error obscures the true position of the particle, we use particle filtering to predict when the particle is bound and to locate the binding sites. Maximum likelihood estimators of diffusion coefficients, state transition probabilities, and the spring constant in the bound state are computed with a stochastic Expectation-Maximization (EM) algorithm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Homogeneous vs heterogeneous polymerization catalysis revealed by single-particle fluorescence microscopy.

    Science.gov (United States)

    Esfandiari, N Melody; Blum, Suzanne A

    2011-11-16

    A high-sensitivity and high-resolution single-particle fluorescence microscopy technique differentiated between homogeneous and heterogeneous metathesis polymerization catalysis by imaging the location of the early stages of polymerization. By imaging single polymers and single crystals of Grubbs II, polymerization catalysis was revealed to be solely homogeneous rather than heterogeneous or both.

  2. Low aspect ratio micropores for single-particle and single-cell analysis.

    Science.gov (United States)

    Goyal, Gaurav; Mulero, Rafael; Ali, Jamel; Darvish, Armin; Kim, Min Jun

    2015-05-01

    This paper describes microparticle and bacterial translocation studies using low aspect ratio solid-state micropores. Micropores, 5 μm in diameter, were fabricated in 200 nm thick free-standing silicon nitride membranes, resulting in pores with an extremely low aspect ratio, nominally 0.04. For microparticle translocation experiments, sulfonated polystyrene microparticles and magnetic microbeads in size range of 1-4 μm were used. Using the microparticle translocation characteristics, we find that particle translocations result in a change only in the pore's geometrical resistance while the access resistance remains constant. Furthermore, we demonstrate the ability of our micropore to probe high-resolution shape information of translocating analytes using concatenated magnetic microspheres. Distinct current drop peaks were observed for each microsphere of the multibead architecture. For bacterial translocation experiments, nonflagellated Escherichia coli (strain HCB 5) and wild type flagellated Salmonella typhimurium (strain SJW1103) were used. Distinct current signatures for the two bacteria were obtained and this difference in translocation behavior was attributed to different surface protein distributions on the bacteria. Our findings may help in developing low aspect ratio pores for high-resolution microparticle characterization and single-cell analysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Detection and Sizing of Ti-Containing Particles in Recreational Waters Using Single Particle ICP-MS.

    Science.gov (United States)

    Venkatesan, Arjun K; Reed, Robert B; Lee, Sungyun; Bi, Xiangyu; Hanigan, David; Yang, Yu; Ranville, James F; Herckes, Pierre; Westerhoff, Paul

    2018-01-01

    Single particle inductively coupled plasma mass spectrometry (spICP-MS) was used to detect Ti-containing particles in heavily-used bathing areas of a river (Salt River) and five swimming pools. Ti-containing particle concentrations in swimming pools ranged from 2.8 × 10 3 to 4.4 × 10 3 particles/mL and were an order of magnitude lower than those detected in the Salt River. Measurements from the Salt River showed an 80% increase in Ti-containing particle concentration over baseline concentration during peak recreational activity (at 16:00 h) in the river. Cloud point extraction followed by transmission electron microscopy with energy dispersive X-ray analysis confirmed presence of aggregated TiO 2 particles in river samples, showing morphological similarity to particles present in an over-the-counter sunscreen product. The maximum particle mass concentration detected in a sample from the Salt River (659 ng/L) is only slightly lower than the predicted no effect concentration for TiO 2 to aquatic organisms (< 1 μg/L).

  4. Dust optical properties in antarctic ice cores: application of the Single Particle Extinction and Scattering (SPES) method

    Science.gov (United States)

    Potenza, Marco; Villa, Stefano; Sanvito, Tiziano; Albani, Samuel; Delmonte, Barbara; Maggi, Valter

    2015-04-01

    From the point of view of light scattering each particle is characterized by several parameters, the size being by far the most important in determining the amount of radiated power. Nevertheless, composition, internal structure, shape do slightly affect the way light is scattered, and in turn also prevent the possibility to extract the correct size. Recovering the whole information is of paramount difficulty, if not impossibile for single particles. A trade off can be obtained by introducing the optical thickness, i.e. the product of the size and the refractive index, which determines the optical properties. Here we focus at studying the optical thickness of dust particles from the EPICA Dome C ice core. We provide for the first time a direct measurement of dust optical parameters that is the most direct information needed by climate models, and highlight important differences among samples. The SPES method is named after its capability to access both the extinction cross section and the forward scattered field amplitude for each particle. This method is well working with extremely dilute suspensions, such as Antarctic ice core samples. The SPES method is based upon combined and simultaneous measurements of the power reduction of a laser beam in presence of the particle (extinction by definition) and the interference between the intense transmitted beam and the much fainter forward scattered wave (scattering). In such a way it is possible to access both the amplitude and phase of the scattered wave, which means both the real and imaginary parts of the complex field amplitude. This makes the difference with traditional approaches. We show some preliminary results from glacial and interglacial samples from the EPICA ice core and suggest a method to extract information which is important for the light scattering properties of the ensemble of dust particles contained in each sample.

  5. Glass coated single grid for charged particle acceleration

    Science.gov (United States)

    Banks, B. A.; Nakanishi, S.

    1968-01-01

    Glass coating is used on a single grid accelerator system for ion thrusters. The uniformly thin, smooth, dense, impervious glass coating has a high dielectric strength and is firmly bonded to the accelerator grid.

  6. An instrument for charge measurement due to a single collision between two spherical particles.

    Science.gov (United States)

    Xie, L; Bao, N; Jiang, Y; Han, K; Zhou, J

    2016-01-01

    It universally exists in moving particular systems that particles can be electrified, in which the particles are chemically identical, just as toner particles, coal dust, and pharmaceutical powders. However, owing to the limit of experimental instruments, so far, there are yet no experiments to illustrate whether a particle can be electrified due to a single collision between two spherical particles, and there are also no experiments to measure the charge carried by a single particle due to a single collision between two particles. So we have developed an instrument for charge measurement due to a single collision between two spheres. The instrument consists of two-sphere collision device, collision charge measurement apparatus, and particles' trajectory tracking system. By using this instrument, we can investigate the collision contact electrification due to a single collision between two spheres and simultaneously record the moving trajectories of spheres after the collision to calculate the rebound angles to identify the contribution of the triboelectrification due to the rubbing between the contact surfaces and the collision contact electrification due to the normal pressure between the contact surfaces.

  7. Comprehensive study of ignition and combustion of single wooden particles

    DEFF Research Database (Denmark)

    Momenikouchaksaraei, Maryam; Yin, Chungen; Kær, Søren Knudsen

    2013-01-01

    How quickly large biomass particles can ignite and burn out when transported into a pulverized-fuel (pf) furnace and suddenly exposed to a hot gas flow containing oxygen is very important in biomass co-firing design and optimization. In this paper, the ignition and burnout of the largest possible...... for all the test conditions. As the particle is further heated up and the volume-weighted average temperature reaches the onset of rapid decomposition of hemicellulose and cellulose, a secondary homogeneous ignition occurs. The model-predicted ignition delays and burnout times show a good agreement...... with the experimental results. Homogeneous ignition delays are found to scale with specific surface areas while heterogeneous ignition delays show less dependency on the areas. The ignition and burnout are also affected by the process conditions, in which the oxygen concentration is found to have a more pronounced...

  8. A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy.

    Science.gov (United States)

    Zhu, Yanan; Ouyang, Qi; Mao, Youdong

    2017-07-21

    Single-particle cryo-electron microscopy (cryo-EM) has become a mainstream tool for the structural determination of biological macromolecular complexes. However, high-resolution cryo-EM reconstruction often requires hundreds of thousands of single-particle images. Particle extraction from experimental micrographs thus can be laborious and presents a major practical bottleneck in cryo-EM structural determination. Existing computational methods for particle picking often use low-resolution templates for particle matching, making them susceptible to reference-dependent bias. It is critical to develop a highly efficient template-free method for the automatic recognition of particle images from cryo-EM micrographs. We developed a deep learning-based algorithmic framework, DeepEM, for single-particle recognition from noisy cryo-EM micrographs, enabling automated particle picking, selection and verification in an integrated fashion. The kernel of DeepEM is built upon a convolutional neural network (CNN) composed of eight layers, which can be recursively trained to be highly "knowledgeable". Our approach exhibits an improved performance and accuracy when tested on the standard KLH dataset. Application of DeepEM to several challenging experimental cryo-EM datasets demonstrated its ability to avoid the selection of un-wanted particles and non-particles even when true particles contain fewer features. The DeepEM methodology, derived from a deep CNN, allows automated particle extraction from raw cryo-EM micrographs in the absence of a template. It demonstrates an improved performance, objectivity and accuracy. Application of this novel method is expected to free the labor involved in single-particle verification, significantly improving the efficiency of cryo-EM data processing.

  9. Online single particle measurement of fireworks pollution during Chinese New Year in Nanning.

    Science.gov (United States)

    Li, Jingyan; Xu, Tingting; Lu, Xiaohui; Chen, Hong; Nizkorodov, Sergey A; Chen, Jianmin; Yang, Xin; Mo, Zhaoyu; Chen, Zhiming; Liu, Huilin; Mao, Jingying; Liang, Guiyun

    2017-03-01

    Time-resolved single-particle measurements were conducted during Chinese New Year in Nanning, China. Firework displays resulted in a burst of SO 2 , coarse mode, and accumulation mode (100-500nm) particles. Through single particle mass spectrometry analysis, five different types of particles (fireworks-metal, ash, dust, organic carbon-sulfate (OC-sulfate), biomass burning) with different size distributions were identified as primary emissions from firework displays. The fireworks-related particles accounted for more than 70% of the total analyzed particles during severe firework detonations. The formation of secondary particulate sulfate and nitrate during firework events was investigated on single particle level. An increase of sulfite peak (80SO 3 - ) followed by an increase of sulfate peaks (97HSO 4 - +96SO 4 - ) in the mass spectra during firework displays indicated the aqueous uptake and oxidation of SO 2 on particles. High concentration of gaseous SO 2 , high relative humidity and high particle loading likely promoted SO 2 oxidation. Secondary nitrate formed through gas-phase oxidation of NO 2 to nitric acid, followed by the condensation into particles as ammonium nitrate. This study shows that under worm, humid conditions, both primary and secondary aerosols contribute to the particulate air pollution during firework displays. Copyright © 2016. Published by Elsevier B.V.

  10. Source characterization of urban particles from meat smoking activities in Chongqing, China using single particle aerosol mass spectrometry.

    Science.gov (United States)

    Chen, Yang; Wenger, John C; Yang, Fumo; Cao, Junji; Huang, Rujin; Shi, Guangming; Zhang, Shumin; Tian, Mi; Wang, Huanbo

    2017-09-01

    A Single Particle Aerosol Mass Spectrometer (SPAMS) was deployed in the urban area of Chongqing to characterize the particles present during a severe particulate pollution event that occurred in winter 2014-2015. The measurements were made at a time when residents engaged in traditional outdoor meat smoking activities to preserve meat before the Chinese Spring Festival. The measurement period was predominantly characterized by stagnant weather conditions, highly elevated levels of PM 2.5 , and low visibility. Eleven major single particle types were identified, with over 92.5% of the particles attributed to biomass burning emissions. Most of the particle types showed appreciable signs of aging in the stagnant air conditions. To simulate the meat smoking activities, a series of controlled smoldering experiments was conducted using freshly cut pine and cypress branches, both with and without wood logs. SPAMS data obtained from these experiments revealed a number of biomass burning particle types, including an elemental and organic carbon (ECOC) type that proved to be the most suitable marker for meat smoking activities. The traditional activity of making preserved meat in southwestern China is shown here to be a major source of particulate pollution. Improved measures to reduce emissions from the smoking of meat should be introduced to improve air quality in regions where smoking meat activity prevails. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Experimental study on effects of particle shape and operating conditions on combustion characteristics of single biomass particles

    DEFF Research Database (Denmark)

    Momenikouchaksaraei, Maryam; Yin, Chungen; Kær, Søren Knudsen

    2013-01-01

    An experimental study is performed to investigate the ignition, devolatilization, and burnout of single biomass particles of various shapes and sizes under process conditions that are similar to those in an industrial combustor. A charge-coupled device (CCD) camera is used to record the whole...

  12. Strong reduction of spectral heterogeneity in gold bipyramids for single-particle and single-molecule plasmon sensing.

    Science.gov (United States)

    Peters, S M E; Verheijen, M A; Prins, M W J; Zijlstra, P

    2016-01-15

    Single metal nanoparticles are attractive biomolecular sensors. Binding of analyte to a functional particle results in a plasmon shift that can be conveniently monitored in a far-field optical microscope. Heterogeneities in spectral properties of individual particles in an ensemble affect the reliability of a single-particle plasmon sensor, especially when plasmon shifts are monitored in real-time using a fixed irradiation wavelength. We compare the spectral heterogeneity of different plasmon sensor geometries (gold nanospheres, nanorods, and bipyramids) and correlate this to their size and aspect-ratio dispersion. We show that gold bipyramids exhibit a strongly reduced heterogeneity in aspect ratio and plasmon wavelength compared to commonly used gold nanorods. We show that this translates into a significantly improved homogeneity of the response to molecular binding without compromising single-molecule sensitivity.

  13. Single-particle characterization of ice-nucleating particles and ice particles residuals sampled by three different techniques

    Science.gov (United States)

    Kandler, Konrad; Worringen, Annette; Benker, Nathalie; Dirsch, Thomas; Mertes, Stephan; Schenk, Ludwig; Kästner, Udo; Frank, Fabian; Nillius, Björn; Bundke, Ulrich; Rose, Diana; Curtius, Joachim; Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Schneider, Johannes; Schmidt, Susan; Weinbruch, Stephan; Ebert, Martin

    2015-04-01

    During January/February 2013, at the High Alpine Research Station Jungfraujoch a measurement campaign was carried out, which was centered on atmospheric ice-nucleating particles (INP) and ice particle residuals (IPR). Three different techniques for separation of INP and IPR from the non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed phase clouds and allow for the analysis of the residuals. The combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated INP for analysis. Collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine size, chemical composition and mixing state. All INP/IPR-separating techniques had considerable abundances (median 20 - 70 %) of instrumental contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH+IN-PCVI: steel particles). Also, potential sampling artifacts (e.g., pure soluble material) occurred with a median abundance of metal oxides were the major INP/IPR particle types separated by all three techniques. Soot was a minor contributor. Lead was detected in less than 10 % of the particles, of which the majority were internal mixtures with other particle types. Sea-salt and sulfates were identified by all three methods as INP/IPR. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH yielded silicates and Ca-rich particles mainly with diameters above 1 µm, while the Ice-CVI also separated many submicron IPR. As strictly parallel sampling could not be performed, a part of the discrepancies between

  14. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques

    Science.gov (United States)

    Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Vochezer, P.; Schneider, J.; Schmidt, S.; Weinbruch, S.; Ebert, M.

    2015-04-01

    In the present work, three different techniques to separate ice-nucleating particles (INPs) as well as ice particle residuals (IPRs) from non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed-phase clouds and allow after evaporation in the instrument for the analysis of the residuals. The Fast Ice Nucleus Chamber (FINCH) coupled with the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated particles for analysis. The instruments were run during a joint field campaign which took place in January and February 2013 at the High Alpine Research Station Jungfraujoch (Switzerland). INPs and IPRs were analyzed offline by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Online analysis of the size and chemical composition of INP activated in FINCH was performed by laser ablation mass spectrometry. With all three INP/IPR separation techniques high abundances (median 20-70%) of instrumental contamination artifacts were observed (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). After removal of the instrumental contamination particles, silicates, Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types obtained by all three techniques. In addition, considerable amounts (median abundance mostly a few percent) of soluble material (e.g., sea salt, sulfates) were observed. As these soluble particles are often not expected to act as INP/IPR, we consider them as potential measurement artifacts. Minor types of INP/IPR include soot and Pb-bearing particles. The Pb-bearing particles are mainly present as an internal mixture with other particle types. Most samples showed a maximum of the INP/IPR size distribution at 200

  15. Comparison of mineral dust and droplet residuals measured with two single particle aerosol mass spectrometers

    Science.gov (United States)

    Wonaschütz, Anna; Ludwig, Wolfgang; Zawadowicz, Maria; Hiranuma, Naruki; Hitzenberger, Regina; Cziczo, Daniel; DeMott, Paul; Möhler, Ottmar

    2017-04-01

    Single Particle mass spectrometers are used to gain information on the chemical composition of individual aerosol particles, aerosol mixing state, and other valuable aerosol characteristics. During the Mass Spectrometry Intercomparison at the Fifth Ice Nucleation (FIN-01) Workshop, the new LAAPTOF single particle aerosol mass spectrometer (AeroMegt GmbH) was conducting simultaneous measurements together with the PALMS (Particle Analysis by Laser Mass Spectrometry) instrument. The aerosol particles were sampled from the AIDA chamber during ice cloud expansion experiments. Samples of mineral dust and ice droplet residuals were measured simultaneously. In this work, three expansion experiments are chosen for a comparison between the two mass spectrometers. A fuzzy clustering routine is used to group the spectra. Cluster centers describing the ensemble of particles are compared. First results show that while differences in the peak heights are likely due to the use of an amplifier in PALMS, cluster centers are comparable.

  16. Optical trap for both transparent and absorbing particles in air using a single shaped laser beam.

    Science.gov (United States)

    Redding, Brandon; Pan, Yong-Le

    2015-06-15

    Optical trapping of airborne particles is emerging as an essential tool in applications ranging from online characterization of living cells and aerosols to particle transport and delivery. However, existing optical trapping techniques using a single laser beam can trap only transparent particles (via the radiative pressure force) or absorbing particles (via the photophoretic force), but not particles of either type-limiting the utility of trapping-enabled aerosol characterization techniques. Here, we present the first optical trapping technique capable of trapping both transparent and absorbing particles with arbitrary morphology using a single shaped laser beam. Such a general-purpose optical trapping mechanism could enable new applications such as trapping-enabled aerosol characterization with high specificity.

  17. Single-particle characterization of municipal solid waste (MSW) ash particles using low- Z particle electron probe X-ray microanalysis

    Science.gov (United States)

    Hwang, HeeJin; Ro, Chul-Un

    Environmentally benign treatment of municipal solid waste (MSW) ashes has been a worldwide issue since more countries are implementing incineration to reduce waste volume. A single-particle analytical technique, named low- Z particle electron probe X-ray microanalysis (low- Z particle EPMA) was applied to characterize MSW fly- and bottom-ash particle samples collected from two municipal incinerators in Korea. According to their chemical composition, many distinctive particle types were identified. For fly ash sample collected in one incinerator (sample S1), where lime slurry injection is used for acid-gas treatment, CaCO 3-containing particles (28.4%) are the most abundantly encountered, followed by carbonaceous (23.6%), SiO 2-containing (13.8%), NaCl-containing (13.1%), and iron-containing (10.5%) particles. For fly ash sample collected at the other incinerator (sample S2), NaCl-containing particles (40.4%) are the most abundantly encountered, followed by iron-containing (29.1%), carbonaceous (11.8%), CaCO 3-containing (2.2%), and SiO 2-containing (7.0%) particles. For bottom ash sample collected at one incinerator (sample S3), iron-containing particles (46.6%) are the most abundantly encountered, followed by CaCO 3-containing (17.3%), carbonaceous (16.6%), and Si and/or Al oxide-containing (15.8%) particles. For bottom ash sample collected in the other incinerator (sample S4), iron-containing particles (63.4%) are also the most abundantly encountered, followed by carbonaceous (14.0%), CaCO 3-containing (10.0%), and Si and/or Al oxide-containing (6.1%) particles. Chemical compositions of the two bottom ash samples are not much different compared to those of the two fly ash samples. It was demonstrated that the single-particle characterization using this low- Z particle EPMA technique provided detailed information on various types of chemical species in the MSW ash samples. In addition, the technique has advantage over conventional analytical techniques in the

  18. Fiber refractive index sensor based on dual polarized Mach-Zehnder interference caused by a single-mode fiber loop.

    Science.gov (United States)

    Chen, Lei; Zhang, Wei-Gang; Wang, Li; Zhou, Quan; Sieg, Jonathan; Zhao, De-Long; Wang, Biao; Yan, Tie-Yi; Wang, Song

    2016-01-01

    A novel refractive index (RI) sensor head is proposed and experimentally demonstrated in this paper. The proposed sensor head is composed of a segment of bared single-mode fiber and a fiber holder that is fabricated by a 3D printer. The mechanism of the sensor head is based on dual polarized Mach-Zehnder interference. According to the aforementioned mechanism, we derived that the RI responses of the resonance dips possess an exponential functional manner when the E field is along the fast or slow axes. In addition, based on the finite element method, we found that the resonance dips wavelength responses are more sensitive when the input E field is along the fast axis. A confirmation experiment was performed, and the results confirmed our hypothesis. The maximum arithmetic mean value of RI response is about 657.895  nm/RIU for the proposed sensor head when the ambient RI changes from 1.3350 to 1.4110. Moreover, in the case of the proposed liquid RI sensor head, aligning the E field along the fast axis is the potentially needed condition for polarization.

  19. Single crystal particles of a mesoporous mixed transition metal oxide with a wormhole structure.

    Science.gov (United States)

    Lee, B; Lu, D; Kondo, J N; Domen, K

    2001-10-21

    A new type of mesoporous mixed transition metal oxide of Nb and Ta (NbTa-TIT-1) has been prepared through a two-step calcination, which consists of single crystal particles with wormhole mesoporous structure.

  20. Optimal Estimation of Diffusion Coefficients from Noisy Time-Lapse-Recorded Single-Particle Trajectories

    DEFF Research Database (Denmark)

    Vestergaard, Christian Lyngby

    2012-01-01

    Optimal Estimation of Diusion Coecients from Noisy Time-Lapse- Measurements of Single-Particle Trajectories Single-particle tracking techniques allow quantitative measurements of diusion at the single-molecule level. Recorded time-series are mostly short and contain considerable measurement noise....... The standard method for estimating diusion coecients from single-particle trajectories is based on leastsquares tting to the experimentally measured mean square displacements. This method is highly inecient, since it ignores the high correlations inherent in these. We derive the exact maximum likelihood...... parameter values. We extend the methods to particles diusing on a uctuating substrate, e.g., exible or semi exible polymers such as DNA, and show that uctuations induce an important bias in the estimates of diusion coecients if they are not accounted for. We apply the methods to obtain precise estimates...

  1. Single-particle colloid tracking in four dimensions.

    Science.gov (United States)

    Anthony, Stephen M; Hong, Liang; Kim, Minsu; Granick, Steve

    2006-11-21

    Coating a close-packed fluorescent colloid monolayer with a nanometer-thick metal film followed by sonication in liquid produces modulated optical nanoprobes. The metal coating modulates the fluorescence as these structures rotate in suspension, enabling the use of these particles as probes to monitor both rotational and center-of-mass (translational) dynamics in complex environments. Here, we demonstrate methods to simultaneously measure two translational and two rotational degrees of freedom, with excellent agreement to theory. The capability to determine two angles of rotation opens several new avenues of future research.

  2. Single Particle energy levels in ODD-A Nuclei

    International Nuclear Information System (INIS)

    Lasijo, R.S.

    1997-01-01

    Singe particle energies for atomic nuclei with odd-A number of nucleons, i.e. nuclei possessing odd number of protons or odd number of neutrons, were calculated based on Nilsson's theory, and then the diagrams were made. the energy diagram is in the from of plot of energies as function of deformations, entities identifying the deviations from the spherical shape. The energy calculations were done using FORTRAN 77 language of PC (Personal Computer) version with Microsoft Fortran Power Station compiler, which was then combined with WORD version 6.0 and EXCEL version 5.0 of WINDOWS WORKGROUP to make the plot

  3. Single particle aerodynamic relaxation time analyzer. [for aerosol pollutants

    Science.gov (United States)

    Mazumder, M. K.; Kirsch, K. J.

    1977-01-01

    An instrument employing a laser Doppler velocimeter and a microphone to measure the phase lag of the motion of aerosol particulates relative to the motion of the fluid medium within an acoustic field is described. The relaxation times and aerodynamic diameters of the particles or droplets are determined in real time from the measured values of phase lag; thus, the size analysis is independent of the electrostatic charges and refractive indices of the particulates. The instrument is suitable for analyzing the aerodynamic size spectrum of atmospheric particulate pollutants with aerodynamic diameters ranging from 0.1 to 10.0 microns.

  4. A clustering approach to multireference alignment of single-particle projections in electron microscopy

    OpenAIRE

    Sorzano, C.O.S.; Bilbao-Castro, J.R.; Shkolnisky, Y.; Alcorlo, M.; Melero, R.; Caffarena-Fernández, G.; Li, M.; Xu, G.; Marabini, R.; Carazo, J.M.

    2010-01-01

    Two-dimensional analysis of projections of single particles acquired by an electron microscope is a useful tool to help identifying the different kinds of projections present in a dataset and their different projection directions. Such analysis is also useful to distinguish between different kinds of particles or different particle conformations. In this paper we introduce a new algorithm for performing two-dimensional multireference alignment and classification that is based on a Hierarchica...

  5. Technical Note: The single particle soot photometer fails to reliably detect PALAS soot nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Gysel

    2012-12-01

    Full Text Available The single particle soot photometer (SP2 uses laser-induced incandescence (LII for the measurement of atmospheric black carbon (BC particles. The BC mass concentration is obtained by combining quantitative detection of BC mass in single particles with a counting efficiency of 100% above its lower detection limit. It is commonly accepted that a particle must contain at least several tenths of a femtogram BC in order to be detected by the SP2.

    Here we show the result that most BC particles from a PALAS spark discharge soot generator remain undetected by the SP2, even if their BC mass, as independently determined with an aerosol particle mass analyser (APM, is clearly above the typical lower detection limit of the SP2. Comparison of counting efficiency and effective density data of PALAS soot with flame generated soot (combustion aerosol standard burner, CAST, fullerene soot and carbon black particles (Cabot Regal 400R reveals that particle morphology can affect the SP2's lower detection limit. PALAS soot particles are fractal-like agglomerates of very small primary particles with a low fractal dimension, resulting in a very low effective density. Such loosely packed particles behave like "the sum of individual primary particles" in the SP2's laser. Accordingly, most PALAS soot particles remain undetected as the SP2's laser intensity is insufficient to heat the primary particles to their vaporisation temperature because of their small size (Dpp ≈ 5–10 nm. Previous knowledge from pulsed laser-induced incandescence indicated that particle morphology might have an effect on the SP2's lower detection limit, however, an increase of the lower detection limit by a factor of ∼5–10, as reported here for PALAS soot, was not expected.

    In conclusion, the SP2's lower detection limit at a certain laser power depends primarily on the total BC mass per particle for compact particles with sufficiently high effective

  6. Characteristic rotational behaviors of rod-shaped cargo revealed by automated five-dimensional single particle tracking.

    Science.gov (United States)

    Chen, Kuangcai; Gu, Yan; Sun, Wei; Bin Dong; Wang, Gufeng; Fan, Xinxin; Xia, Tian; Fang, Ning

    2017-10-12

    We report an automated single particle tracking technique for tracking the x, y, z coordinates, azimuthal and elevation angles of anisotropic plasmonic gold nanorod probes in live cells. These five spatial coordinates are collectively referred to as 5D. This method overcomes a long-standing challenge in distinguishing rotational motions from translational motions in the z-axis in differential interference contrast microscopy to result in full disclosure of nanoscale motions with high accuracy. Transferrin-coated endocytic gold nanorod cargoes initially undergo active rotational diffusion and display characteristic rotational motions on the membrane. Then as the cargoes being enclosed in clathrin-coated pits, they slow down the active rotation and experience a quiet period before they restore active rotational diffusion after fission and eventually being transported away from the original entry spots. Finally, the 3D trajectories and the accompanying rotational motions of the cargoes are resolved accurately to render the intracellular transport process in live cells.Distinguishing rotational motions from translational motions in the z-axis has been a long-standing challenge. Here the authors develop a five-dimensional single particle tracking method to detect rotational behaviors of nanocargos during clathrin-mediated endocytosis and intracellular transport.

  7. The influence of transport phenomena on the fluidized bed combustion of a single carbon particle

    NARCIS (Netherlands)

    Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1990-01-01

    The burning rate and temperature of the carbon particles are known to affect the efficiency of a fluidized bed combustor, and also the emission levels of undesired noxious components. The main results of an extensive study on the fluidized bed combustion behaviour of a single carbon particle [1] are

  8. Efficiencies of dynamic Monte Carlo algorithms for off-lattice particle systems with a single impurity

    KAUST Repository

    Novotny, M.A.

    2010-02-01

    The efficiency of dynamic Monte Carlo algorithms for off-lattice systems composed of particles is studied for the case of a single impurity particle. The theoretical efficiencies of the rejection-free method and of the Monte Carlo with Absorbing Markov Chains method are given. Simulation results are presented to confirm the theoretical efficiencies. © 2010.

  9. Multi-Color Single Particle Tracking with Quantum Dots

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Brewer, J. R.; Lagerholm, B. C.

    2012-01-01

    Quantum dots (QDs) have long promised to revolutionize fluorescence detection to include even applications requiring simultaneous multi-species detection at single molecule sensitivity. Despite the early promise, the unique optical properties of QDs have not yet been fully exploited in e. g...

  10. Role of single-particle and pair condensates in Bose systems with arbitrary intensity of interaction

    Directory of Open Access Journals (Sweden)

    A.S. Peletminskii

    2013-03-01

    Full Text Available We study a superfluid Bose system with single-particle and pair condensates on the basis of a half-phenomenological theory of a Bose liquid not involving the weakness of interparticle interaction. The coupled equations describing the equilibrium state of such system are derived from the variational principle for entropy. These equations are analyzed at zero temperature both analytically and numerically. It is shown that the fraction of particles in the single-particle and pair condensates essentially depends on the total density of the system. At densities attainable in condensates of alkali-metal atoms, almost all particles are in the single-particle condensate. The pair condensate fraction grows with increasing total density and becomes dominant. It is shown that at density of liquid helium, the single-particle condensate fraction is less than 10% that agrees with experimental data on inelastic neutron scattering, Monte Carlo calculations and other theoretical predictions. The ground state energy, pressure, and compressibility are found for the system under consideration. The spectrum of single-particle excitations is also analyzed.

  11. 4-D single particle tracking of synthetic and proteinaceous microspheres reveals preferential movement of nuclear particles along chromatin - poor tracks.

    Science.gov (United States)

    Bacher, Christian P; Reichenzeller, Michaela; Athale, Chaitanya; Herrmann, Harald; Eils, Roland

    2004-11-23

    The dynamics of nuclear organization, nuclear bodies and RNPs in particular has been the focus of many studies. To understand their function, knowledge of their spatial nuclear position and temporal translocation is essential. Typically, such studies generate a wealth of data that require novel methods in image analysis and computational tools to quantitatively track particle movement on the background of moving cells and shape changing nuclei. We developed a novel 4-D image processing platform (TIKAL) for the work with laser scanning and wide field microscopes. TIKAL provides a registration software for correcting global movements and local deformations of cells as well as 2-D and 3-D tracking software. With this new tool, we studied the dynamics of two different types of nuclear particles, namely nuclear bodies made from GFP-NLS-vimentin and microinjected 0.1 mum - wide polystyrene beads, by live cell time-lapse microscopy combined with single particle tracking and mobility analysis. We now provide a tool for the automatic 3-D analysis of particle movement in parallel with the acquisition of chromatin density data. Kinetic analysis revealed 4 modes of movement: confined obstructed, normal diffusion and directed motion. Particle tracking on the background of stained chromatin revealed that particle movement is directly related to local reorganization of chromatin. Further a direct comparison of particle movement in the nucleoplasm and the cytoplasm exhibited an entirely different kinetic behaviour of vimentin particles in both compartments. The kinetics of nuclear particles were slightly affected by depletion of ATP and significantly disturbed by disruption of actin and microtubule networks. Moreover, the hydration state of the nucleus had a strong impact on the mobility of nuclear bodies since both normal diffusion and directed motion were entirely abolished when cells were challenged with 0.6 M sorbitol. This effect correlated with the compaction of chromatin

  12. Single Molecule Raman Detection of Enkephalin on Silver Colloidal Particles

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Holger; Abdali, Salim

    2004-01-01

    Enkephalin, an endogeneous substance in the human brain showing morphine-like biological functions, has been detected at the single molecule level based on the surface-enhanced Raman signal of the ring breathing mode of phenylalanine, which is one building block of the molecule. For enhancing...... the Raman signal the enkephalin molecules have been attached to silver colloidal cluster structures. The experiments demonstrate that the SERS signal of the strongly enhanced ring breathing vibration of phenylalanine at 1000 cm-1 can be used as “intrinsic marker” for detecting a single enkephalin molecule...... and for monitoring its diffusion on the surface of the silver colloidal cluster without using a specific label molecule....

  13. Development and characterization of a single particle laser ablation mass spectrometer (SPLAM for organic aerosol studies

    Directory of Open Access Journals (Sweden)

    F. Gaie-Levrel

    2012-01-01

    Full Text Available A single particle instrument was developed for real-time analysis of organic aerosol. This instrument, named Single Particle Laser Ablation Mass Spectrometry (SPLAM, samples particles using an aerodynamic lens system for which the theoretical performances were calculated. At the outlet of this system, particle detection and sizing are realized by using two continuous diode lasers operating at λ = 403 nm. Polystyrene Latex (PSL, sodium chloride (NaCl and dioctylphtalate (DOP particles were used to characterize and calibrate optical detection of SPLAM. The optical detection limit (DL and detection efficiency (DE were determined using size-selected DOP particles. The DE ranges from 0.1 to 90% for 100 and 350 nm DOP particles respectively and the SPLAM instrument is able to detect and size-resolve particles as small as 110–120 nm. During optical detection, particle scattered light from the two diode lasers, is detected by two photomultipliers and the detected signals are used to trigger UV excimer laser (λ = 248 nm used for one-step laser desorption ionization (LDI of individual aerosol particles. The formed ions are analyzed by a 1 m linear time-of-flight mass spectrometer in order to access to the chemical composition of individual particles. The TOF-MS detection limit for gaseous aromatic compounds was determined to be 0.85 × 10−15 kg (∼4 × 103 molecules. DOP particles were also used to test the overall operation of the instrument. The analysis of a secondary organic aerosol, formed in a smog chamber by the ozonolysis of indene, is presented as a first application of the instrument. Single particle mass spectra were obtained with an effective hit rate of 8%. Some of these mass spectra were found to be very different from one particle to another possibly reflecting chemical differences within the investigated indene SOA particles. Our study shows that an exhaustive statistical analysis, over hundreds of particles

  14. Single Molecule Raman Detection of Enkephalin on Silver Colloidal Particles

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Holger; Abdali, Salim

    2004-01-01

    the Raman signal the enkephalin molecules have been attached to silver colloidal cluster structures. The experiments demonstrate that the SERS signal of the strongly enhanced ring breathing vibration of phenylalanine at 1000 cm-1 can be used as “intrinsic marker” for detecting a single enkephalin molecule...... and for monitoring its diffusion on the surface of the silver colloidal cluster without using a specific label molecule....

  15. Single particle studies of black liquor gasification under pressurized conditions

    Energy Technology Data Exchange (ETDEWEB)

    Whitty, K.; Backman, R.; Hupa, M.; Backman, P.; Ek, P.; Hulden, S.T.; Kullberg, M.; Sorvari, V.

    1997-10-01

    The purpose of this project is to provide experimental data relevant to pressurized black liquor gasification concepts. Specifically, the following two goals will be achieved: Data on swelling, char yields and component release during pressurized pyrolysis of small samples of black liquor will be obtained. The reactivity and physical behavior of single black liquor droplets during simultaneous pyrolysis and gasification will be investigated. The structure and composition of black liquor char during formation and conversion will be studied. (orig.)

  16. Single-particle and collective states in transfer reactions

    International Nuclear Information System (INIS)

    Lhenry, I.; Suomijaervi, T.; Giai, N. van

    1993-01-01

    The possibility to excite collective states in transfer reactions induced by heavy ions is studied. Collective states are described within the Random Phase Approximation (RPA) and the collectivity is defined according to the number of configurations contributing to a given state. The particle transfer is described within the Distorted Wave Born Approximation (DWBA). Calculations are performed for two different stripping reactions: 207 Pb( 20 Ne, 19 Ne) 208 Pb and 59 Co( 20 Ne, 19 F) 60 Ni at 48 MeV/nucleon for which experimental data are available. The calculation shows that a sizeable fraction of collective strength can be excited in these reactions. The comparison with experiment shows that this parameter-free calculation qualitatively explains the data. (author) 19 refs.; 10 figs

  17. Cantilever-based micro-particle filter with simultaneous single particle detection

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Sylvest; Boisen, Anja

    2011-01-01

    -particles from a liquid. A hole-array is integrated into a micro-cantilever, which is inserted into a microfluidic channel perpendicular to the flow. A metal pad at the apex of the cantilever enables an optical read-out of the deflection of the cantilever. When a micro-particle is too large to pass a hole...... in the cantilever, clogging of the holes increases the flow resistance of the cantilever. This causes a bending of the device, which can be detected by the optical read-out system. By arranging an array of such cantilevers with different hole sizes, separation by size can be achieved. In this paper a proof...

  18. Single molecule experiments challenge the strict wave-particle dualism of light.

    Science.gov (United States)

    Greulich, Karl Otto

    2010-01-21

    Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the "single photon limit" of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. "Single photon detectors" do not meet their promise-only "photon number resolving single photon detectors" do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified.

  19. Single Molecule Experiments Challenge the Strict Wave-Particle Dualism of Light

    Directory of Open Access Journals (Sweden)

    Karl Otto Greulich

    2010-01-01

    Full Text Available Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the “single photon limit” of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. “Single photon detectors” do not meet their promise―only “photon number resolving single photon detectors” do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified.

  20. Single particle radiation between high spin states in /sup 147/Gd

    Energy Technology Data Exchange (ETDEWEB)

    Borggreen, J.; Sletten, G.; Bjoernholm, S.; Pedersen, J.; Del Zoppo, A.; Radford, D.C.; Janssens, R.V.F.; Chowdhury, P.; Emling, H.; Frekers, D.

    1987-05-04

    Transitions above the T/sub 1/2/=550 ns, 8.59 MeV isomer in /sup 147/Gd have been studied using the (/sup 30/Si, 5n) reaction. Results from ..gamma gamma.. coincidence, angular distribution and recoil distance measurements are combined to establish a level scheme up to 16.9 MeV and I approx. = 79/2. Single particle configurations are assigned on the basis of the deformed independent particle model. The single particle nature of the highest spin states and the apparent lack of collectivity is discussed.

  1. Measurement of switching field reduction of single domain particles in a two-dimensional array

    Science.gov (United States)

    Vértesy, G.; Pardavi-Horvath, M.

    2001-12-01

    The mechanism of switching of uniaxial, single domain, single crystalline epitaxial garnet particles on a two-dimensional square array was investigated, and the reason for the wide distribution of switching fields was studied. In spite that the particles were found very uniform, the existence of soft magnetic defects, not connected to visible crystalline or manufacturing defects of the material, was found to be responsible for the broad distribution of the switching field, Hc=280±85 Oe, as measured on a large number of individual particles. Very good quantitative correlation was found between the strength of the these defects and the switching field.

  2. [Analysis of Single Particle Aging and Mixing State at an Agriculture Site (Quzhou) in the North China Plain in Summer Using a Single Particle Aerosol Mass Spectrometer].

    Science.gov (United States)

    Huang, Zi-long; Zeng, Li-mm; Dong, I-Iua-Bin; Li, Mei; Zhu, Tong

    2016-04-15

    To characterize the size distribution and chemical ompsitins f abiet prtices t a agicuturesit intheNorh o Chinese Plain, a single particle aerosol mass spectrometer (SPAMS) was deployed from June 30 to July 8, 2013. A total of 230,152 particles in the size range of 0.2-2.0 pm were chemically analyzed with both positive and negative ion spectra. The results revealed that aerosol could he classified into eight dominant groups, including elemental carbon (EC, 55.5%), organic carbon (OC, 10.7%), alkalis (Na-K, 17.4%), other metals (1.7%), Fe-rich (6.3%), Pb-rich (3.1%), dust (4.8%), and other (0.8%). The observed eight types of particles contained secondary components such as 46NO2-, 62NO3-, 96SO3-, 96SO4-, 97HSO4-, showing that they probably went through different aging processes. The analysis of particle size distribution showed that 700-800 nm was the peak value of all particles, and that dust and Fe particles were mainly in the coarse size range. EC particles subtype group research revealed EC particles tended to be aging with the above mentioned secondary ions and eventually led to a particle type conversion from EC to the less aging ECN and the more serious aging ECS, the diurnal variation of which was obviously negatively correlated, and there was a possibility of forming OC/EC mixture with the adsorption of secondary organic matter on EC surface.

  3. Effect of particle shape and structure on the results of single-particle light-scattering size analysis.

    Science.gov (United States)

    Umhauer, H; Bottlinger, M

    1991-11-20

    To evaluate quantitatively the influence exerted by the shape and structure of nonspherical, nonideal particles on the results of single-particle scattered-light size analysis, measurements were conducted with individual particles of different materials (glass, limestone, and quartz). For this purpose, the particles were suspended in an electrodynamic balance and repeatedly passed through the analyzer's measuring volume with a continually changing random orientation. The scattered-light signal spectra thus obtained specify the probability with which a certain pulse height is induced when the particle passes once through the measuring volume at a given coincidental orientation. The spectra reflect the material-characteristic influence. They allow the loss of resolution of common scattered-light size analyses to be assessed and algorithms (matrices) to be compiled with which the shape and structure influence may be mathematically eliminated. Because a shape and structure independent size parameter is also determined from the individual particles, exact calibration curves can be derived in which the shape and structure influence are incorporated.

  4. Probing the Evaporation Dynamics of Mixed SOA/Squalane Particles Using Size-Resolved Composition and Single-Particle Measurements.

    Science.gov (United States)

    Robinson, Ellis Shipley; Saleh, Rawad; Donahue, Neil M

    2015-08-18

    An analysis of the formation and evaporation of mixed-particles containing squalane (a surrogate for hydrophobic primary organic aerosol, POA) and secondary organic aerosol (SOA) is presented. In these experiments, one material (D62-squalane or SOA from α-pinene + O3) was prepared first to serve as surface area for condensation of the other, forming the mixed-particles. The mixed-particles were then subjected to a heating-ramp from 22 to 44 °C. We were able to determine that (1) almost all of the SOA mass is comprised of material less volatile than D62-squalane; (2) AMS collection efficiency in these mixed-particle systems can be parametrized as a function of the relative mass fraction of the components; and (3) the vast majority of D62-squalane is able to evaporate from the mixed particles, and does so on the same time scale regardless of the order of preparation. We also performed two-population mixing experiments to directly test whether D62-squalane and SOA from α-pinene + O3 form a single solution or two separate phases. We find that these two OA types are immiscible, which informs our inference of the morphology of the mixed-particles. If the morphology is core-shell and dictated by the order of preparation, these data indicate that squalane is able to diffuse relatively quickly through the SOA shell, implying that there are no major diffusion limitations.

  5. Single-Particle Time-of-Flight Mass Spectrometry Utilizing a Femtosecond Desorption and Ionization Laser.

    Science.gov (United States)

    Zawadowicz, Maria A; Abdelmonem, Ahmed; Mohr, Claudia; Saathoff, Harald; Froyd, Karl D; Murphy, Daniel M; Leisner, Thomas; Cziczo, Daniel J

    2015-12-15

    Single-particle time-of-flight mass spectrometry has now been used since the 1990s to determine particle-to-particle variability and internal mixing state. Instruments commonly use 193 nm excimer or 266 nm frequency-quadrupled Nd:YAG lasers to ablate and ionize particles in a single step. We describe the use of a femtosecond laser system (800 nm wavelength, 100 fs pulse duration) in combination with an existing single-particle time-of-flight mass spectrometer. The goal of this project was to determine the suitability of a femtosecond laser for single-particle studies via direct comparison to the excimer laser (193 nm wavelength, ∼10 ns pulse duration) usually used with the instrument. Laser power, frequency, and polarization were varied to determine the effect on mass spectra. Atmospherically relevant materials that are often used in laboratory studies, ammonium nitrate and sodium chloride, were used for the aerosol. Detection of trace amounts of a heavy metal, lead, in an ammonium nitrate matrix was also investigated. The femtosecond ionization had a large air background not present with the 193 nm excimer and produced more multiply charged ions. Overall, we find that femtosecond laser ablation and ionization of aerosol particles is not radically different than that provided by a 193 nm excimer.

  6. The effect of transitional particles driven by single wave

    International Nuclear Information System (INIS)

    Qiu Yunqing; Xia Mengfen

    1987-05-01

    The unperturbed separatrix crossing driven by a single wave in a tokamak plasma is discussed. The separatrix crossing is followed by a mixing process, and a small-scale structure occurs in the distribution function in h-ψ plane. The separatrix crossing is a convective process in h-ψ plane, and there is a definite crossing channel. The convective flux and the net flux in h-direction are calculated. The separatrix crossing is accompanied by a radial flux, which is composed of a directional flux and a diffusion flux. (author). 7 refs, 6 figs

  7. Deflection of high energy channeled charged particles by elastically bent silicon single crystals

    International Nuclear Information System (INIS)

    Gibson, W.M.; Kim, I.J.; Pisharodoy, M.; Salman, S.M.; Sun, C.R.; Wang, G.H.; Wijayawardana, R.; Forster, J.S.; Mitchell, I.V.; Baker, S.I.; Carrigan, R.A. Jr.; Toohig, T.E.; Avdeichikov, V.V.; Ellison, J.A.; Siffert, P.

    1984-01-01

    An experiment has been carried out to observe the deflection of charged particles by planar channeling in bent single crystals of silicon for protons with energy up to 180 GeV. Anomolous loss of particles from the center point of a three point bending apparatus was observed at high incident particle energy. This effect has been exploited to fashion a 'dechanneling spectrometer' to study dechanneling effects due to centripital displacement of channeled particle trajectories in a bent crystal. The bending losses generally conform to the predictions of calculations based on a classical model. (orig.)

  8. The on-line analysis of aerosol-delivered pharmaceuticals via single particle aerosol mass spectrometry.

    Science.gov (United States)

    Morrical, Bradley D; Balaxi, Maria; Fergenson, David

    2015-07-15

    The use of single particle aerosol mass spectrometry (SPAMS) was evaluated for the analysis of inhaled pharmaceuticals to determine the mass distribution of the individual active pharmaceutical ingredients (API) in both single ingredient and combination drug products. SPAMS is an analytical technique where the individual aerodynamic diameters and chemical compositions of many aerosol particles are determined in real-time. The analysis was performed using a Livermore Instruments SPAMS 3.0, which allowed the efficient analysis of aerosol particles with broad size distributions and can acquire data even under a very large particle load. Data similar to what would normally require roughly three days of experimentation and analysis was collected in a five minute period and analyzed automatically. The results were computed to be comparable to those returned by a typical Next Generation Impactor (NGI) particle size distribution experiment. Copyright © 2015. Published by Elsevier B.V.

  9. Tagged particle in single-file diffusion with arbitrary initial conditions

    Science.gov (United States)

    Cividini, J.; Kundu, A.

    2017-08-01

    We compute the full probability distribution of the positions of a tagged particle exactly for the given arbitrary initial positions of the particles, and for general single-particle propagators. We consider the thermodynamic limit of our exact expressions in quenched and annealed settings. For a particular class of single-particle propagators, the exact formula is expressed in a simple integral form in the quenched case whereas in the annealed case, it is expressed as a simple combination of Bessel functions. In particular, we focus on the step and the power-law initial configurations. In the former case, a drift is induced even when the one-particle propagators are symmetric. On the other hand, in the later case the scaling of the cumulants of the position of the tracer differs from the uniform case. We provide numerical verifications of our results.

  10. Silver nanoflowers for single-particle SERS with 10 pM sensitivity.

    Science.gov (United States)

    Roy, Shrawan; Muhammed Ajmal, C; Baik, Seunghyun; Kim, Jeongyong

    2017-11-17

    Surface-enhanced Raman scattering (SERS) has received considerable attention as a noninvasive optical sensing technique with ultrahigh sensitivity. While numerous types of metallic particles have been actively investigated as SERS substrates, the development of new SERS agents with high sensitivity and their reliable characterization are still required. Here we report the preparation and characterization of flower-shaped silver (Ag) nanoparticles that exhibit high-sensitivity single-particle SERS performance. Ag nanoflowers (NFs) with bud sizes in the range 220-620 nm were synthesized by the wet synthesis method. The densely packed nanoscale petals with thicknesses in the range 9-22 nm exhibit a large number of hot spots that significantly enhance their plasmonic activity. A single Ag NF particle (530-620 nm) can detect as little as 10 -11 M 4-mercaptobenzoic acid, and thus provides a sensitivity three orders of SERS magnitude greater than that of a spherical Ag nanoparticle. The analytical enhancement factors for single Ag NF particles were found to be as high as 8.0 × 10 9 , providing unprecedented high SERS detectivity at the single particle level. Here we present an unambiguous and systematic assessment of the SERS performances of the Ag NFs and demonstrate that they provide highly sensitive sensing platforms by single SERS particle.

  11. Single Particle Damage Events in Candidate Star Camera Sensors

    Science.gov (United States)

    Marshall, Paul; Marshall, Cheryl; Polidan, Elizabeth; Wacyznski, Augustyn; Johnson, Scott

    2005-01-01

    Si charge coupled devices (CCDs) are currently the preeminent detector in star cameras as well as in the near ultraviolet (uv) to visible wavelength region for astronomical observations in space and in earth-observing space missions. Unfortunately, the performance of CCDs is permanently degraded by total ionizing dose (TID) and displacement damage effects. TID produces threshold voltage shifts on the CCD gates and displacement damage reduces the charge transfer efficiency (CTE), increases the dark current, produces dark current nonuniformities and creates random telegraph noise in individual pixels. In addition to these long term effects, cosmic ray and trapped proton transients also interfere with device operation on orbit. In the present paper, we investigate the dark current behavior of CCDs - in particular the formation and annealing of hot pixels. Such pixels degrade the ability of a CCD to perform science and also can present problems to the performance of star camera functions (especially if their numbers are not correctly anticipated). To date, most dark current radiation studies have been performed by irradiating the CCDs at room temperature but this can result in a significantly optimistic picture of the hot pixel count. We know from the Hubble Space Telescope (HST) that high dark current pixels (so-called hot pixels or hot spikes) accumulate as a function of time on orbit. For example, the HST Advanced Camera for Surveys/Wide Field Camera instrument performs monthly anneals despite the loss of observational time, in order to partially anneal the hot pixels. Note that the fact that significant reduction in hot pixel populations occurs for room temperature anneals is not presently understood since none of the commonly expected defects in Si (e.g. divacancy, E center, and A-center) anneal at such a low temperature. A HST Wide Field Camera 3 (WFC3) CCD manufactured by E2V was irradiated while operating at -83C and the dark current studied as a function of

  12. Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements

    Directory of Open Access Journals (Sweden)

    R. M. Healy

    2013-09-01

    Full Text Available Single-particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single-particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been determined using an aerosol time-of-flight mass spectrometer (ATOFMS as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC, organic aerosol (OA, ammonium, nitrate, sulfate and potassium were compared with concurrent measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, a thermal–optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC. ATOFMS-derived estimated mass concentrations reproduced the variability of these species well (R2 = 0.67–0.78, and 10 discrete mixing states for carbonaceous particles were identified and quantified. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorisation, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA detected in Paris is associated with two EC-rich mixing states which differ in their relative sulfate content, while fresh biomass burning OA (BBOA is associated with two mixing states which differ significantly in their OA / EC ratios. Aged biomass burning OA (OOA2-BBOA was found to be significantly internally mixed with nitrate, while secondary, oxidised OA (OOA was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the range of primary and secondary organic aerosol mixing states in Paris. Examination of the

  13. Mass Spectrometry of Single Particles Levitated in an Electrodynamic Balance: Applications to Laboratory Atmospheric Chemistry Research

    Science.gov (United States)

    Birdsall, A.; Krieger, U. K.; Keutsch, F. N.

    2017-12-01

    Dynamic changes to atmospheric aerosol particle composition (e.g., originating from evaporation/condensation, oxidative aging, or aqueous-phase chemical reactions) impact particle properties with importance for understanding particle effects on climate and human health. These changes can take place over the entire lifetime of an atmospheric particle, which can extend over multiple days. Previous laboratory studies of such processes have included analyzing single particles suspended in a levitation device, such as an electrodynamic balance (EDB), an optical levitator, or an acoustic trap, using optical detection techniques. However, studying chemically complex systems can require an analytical method, such as mass spectrometry, that provides more molecular specificity. Existing work coupling particle levitation with mass spectrometry is more limited and largely has consisted of acoustic levitation of millimeter-sized droplets.In this work an EDB has been coupled with a custom-built ionization source and commercial time-of-flight mass spectrometer (MS) as a platform for laboratory atmospheric chemistry research. Single charged particles (radius 10 μm) have been injected into an EDB, levitated for an arbitrarily long period of time, and then transferred to a vaporization-corona discharge ionization region for MS analysis. By analyzing a series of particles of identical composition, residing in the controlled environment of the EDB for varying times, we can trace the chemical evolution of a particle over hours or days, appropriate timescales for understanding transformations of atmospheric particles.To prove the concept of our EDB-MS system, we have studied the evaporation of particles consisting of polyethylene glycol (PEG) molecules of mixed chain lengths, used as a benchmark system. Our system can quantify the composition of single particles (see Figure for sample spectrum of a single PEG-200 particle: PEG parent ions labeled with m/z, known PEG fragment ions

  14. Digital atom interferometer with single particle control on a discretized space-time geometry.

    Science.gov (United States)

    Steffen, Andreas; Alberti, Andrea; Alt, Wolfgang; Belmechri, Noomen; Hild, Sebastian; Karski, Michał; Widera, Artur; Meschede, Dieter

    2012-06-19

    Engineering quantum particle systems, such as quantum simulators and quantum cellular automata, relies on full coherent control of quantum paths at the single particle level. Here we present an atom interferometer operating with single trapped atoms, where single particle wave packets are controlled through spin-dependent potentials. The interferometer is constructed from a sequence of discrete operations based on a set of elementary building blocks, which permit composing arbitrary interferometer geometries in a digital manner. We use this modularity to devise a space-time analogue of the well-known spin echo technique, yielding insight into decoherence mechanisms. We also demonstrate mesoscopic delocalization of single atoms with a separation-to-localization ratio exceeding 500; this result suggests their utilization beyond quantum logic applications as nano-resolution quantum probes in precision measurements, being able to measure potential gradients with precision 5 x 10(-4) in units of gravitational acceleration g.

  15. Single particle transfer for quantitative analysis with total-reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Esaka, Fumitaka; Esaka, Konomi T.; Magara, Masaaki; Sakurai, Satoshi; Usuda, Shigekazu; Watanabe, Kazuo

    2006-01-01

    The technique of single particle transfer was applied to quantitative analysis with total-reflection X-ray fluorescence (TXRF) spectrometry. The technique was evaluated by performing quantitative analysis of individual Cu particles with diameters between 3.9 and 13.2 μm. The direct quantitative analysis of the Cu particle transferred onto a Si carrier gave a discrepancy between measured and calculated Cu amounts due to the absorption effects of incident and fluorescent X-rays within the particle. By the correction for the absorption effects, the Cu amounts in individual particles could be determined with the deviation within 10.5%. When the Cu particles were dissolved with HNO 3 solution prior to the TXRF analysis, the deviation was improved to be within 3.8%. In this case, no correction for the absorption effects was needed for quantification

  16. Single particle detection: Phase control in submicron Hall sensors

    International Nuclear Information System (INIS)

    Di Michele, Lorenzo; Shelly, Connor; Gallop, John; Kazakova, Olga

    2010-01-01

    We present a phase-sensitive ac-dc Hall magnetometry method which allows a clear and reliable separation of real and parasitic magnetic signals of a very small magnitude. High-sensitivity semiconductor-based Hall crosses are generally accepted as a preferential solution for non-invasive detection of superparamagnetic nanobeads used in molecular biology, nanomedicine, and nanochemistry. However, detection of such small beads is often hindered by inductive pick-up and other spurious signals. The present work demonstrates an unambiguous experimental route for detection of small magnetic moments and provides a simple theoretical background for it. The reliability of the method has been tested for a variety of InSb Hall sensors in the range 600 nm-5 μm. Complete characterization of empty devices, involving Hall coefficients and noise measurements, has been performed and detection of a single FePt bead with diameter of 140 nm and magnetic moment of μ≅10 8 μ B has been achieved with a 600 nm-wide sensor.

  17. Morphology of single inhalable particle inside public transit biodiesel fueled bus.

    Science.gov (United States)

    Shandilya, Kaushik K; Kumar, Ashok

    2010-01-01

    In an urban-transit bus, fueled by biodiesel in Toledo, Ohio, single inhalable particle samples in October 2008 were collected and detected by scanning electron microscopy and energy dispersive X-ray spectrometry (SEM/EDS). Particle size analysis found bimodal distribution at 0.2 and 0.5 microm. The particle morphology was characterized by 14 different shape clusters: square, pentagon, hexagon, heptagon, octagon, nonagon, decagon, agglomerate, sphere, triangle, oblong, strip, line or stick, and unknown, by quantitative order. The square particles were common in the samples. Round and triangle particles are more, and pentagon, hexagon, heptagon, octagon, nonagon, decagon, strip, line or sticks are less. Agglomerate particles were found in abundance. The surface of most particles was coarse with a fractal edge that can provide a suitable chemical reaction bed in the polluted atmospheric environment. The three sorts of surface patterns of squares were smooth, semi-smooth, and coarse. The three sorts of square surface patterns represented the morphological characteristics of single inhalable particles in the air inside the bus in Toledo. The size and shape distribution results were compared to those obtained for a bus using ultra low sulfur diesel.

  18. Measurable position-sensitive wide-angle interference effects of single photons radiated by a nitrogen-vacancy center in diamond

    International Nuclear Information System (INIS)

    Sandor Varro

    2014-01-01

    Single-photon wide-angle interference phenomena have been studied theoretically for glass-diamond-oil (air) layered structures. As a single optical radiator, one NV-center has been assumed close to the upper surface of a diamond plate, and it was represented by a Hertzian dipole of arbitrary orientation. It has been shown that the far-field interference pattern (of 3/5 or 100% visibility) is sensitive to the vertical position of the NV-center, to that extent that ∼2 nm difference in distance from the upper surface of the diamond results in ∼0.01 degree shift of the pattern, which should be a measurable effect. (author)

  19. Single particle Green's functions calculation of the electrical conductivity of strong correlated systems

    International Nuclear Information System (INIS)

    Rodrigues Junior, W.A.

    A calculation of the electrical conductivity for Hubbard materials is presented which is valid when U/t >> 1 (U being the Coulomb repulsion and t the nearest neighbor hopping energy) for arbitrary electron concentration and temperature. The derivation emploies the single particle Green's functions with real and imaginary times instead of the usual two-particle real time Green's function. The result is compared with the experimental data available for some organic charge transfer salts [pt

  20. A new seniority scheme for non-degenerate single particle orbits

    International Nuclear Information System (INIS)

    Otsuka, T.; Arima, A.

    1978-01-01

    A new method is proposed in the treatment of the seniority scheme. The method enables one to evaluate analytically the contribution from J = 0 Cooper pairs in non-degenerate single-particle orbits to many-body matrix elements. It includes the SU(2) quasi-spin and the BCS approximation as two extreme limits. The effect of particle number conservation is properly taken into account. (Auth.)

  1. Centroids of effective interactions from measured single-particle energies: An application

    International Nuclear Information System (INIS)

    Cole, B.J.

    1990-01-01

    Centroids of the effective nucleon-nucleon interaction for the mass region A=28--64 are extracted directly from experimental single-particle spectra, by comparing single-particle energies relative to different cores. Uncertainties in the centroids are estimated at approximately 100 keV, except in cases of exceptional fragmentation of the single-particle strength. The use of a large number of inert cores allows the dependence of the interaction on mass or model space to be investigated. The method permits accurate empirical modifications to be made to realistic interactions calculated from bare nucleon-nucleon potentials, which are known to possess defective centroids in many cases. In addition, the centroids can be used as input to the more sophisticated fitting procedures that are employed to produce matrix elements of the effective interaction

  2. Single Particle ICP-MS: Advances toward routine analysis of nanomaterials.

    Science.gov (United States)

    Montaño, Manuel D; Olesik, John W; Barber, Angela G; Challis, Katie; Ranville, James F

    2016-07-01

    From its early beginnings in characterizing aerosol particles to its recent applications for investigating natural waters and waste streams, single particle inductively coupled plasma-mass spectrometry (spICP-MS) has proven to be a powerful technique for the detection and characterization of aqueous dispersions of metal-containing nanomaterials. Combining the high-throughput of an ensemble technique with the specificity of a single particle counting technique and the elemental specificity of ICP-MS, spICP-MS is capable of rapidly providing researchers with information pertaining to size, size distribution, particle number concentration, and major elemental composition with minimal sample perturbation. Recently, advances in data acquisition, signal processing, and the implementation of alternative mass analyzers (e.g., time-of-flight) has resulted in a wider breadth of particle analyses and made significant progress toward overcoming many of the challenges in the quantitative analysis of nanoparticles. This review provides an overview of spICP-MS development from a niche technique to application for routine analysis, a discussion of the key issues for quantitative analysis, and examples of its further advancement for analysis of increasingly complex environmental and biological samples. Graphical Abstract Single particle ICP-MS workflow for the analysis of suspended nanoparticles.

  3. General Quantum Interference Principle and Duality Computer

    International Nuclear Information System (INIS)

    Long Guilu

    2006-01-01

    In this article, we propose a general principle of quantum interference for quantum system, and based on this we propose a new type of computing machine, the duality computer, that may outperform in principle both classical computer and the quantum computer. According to the general principle of quantum interference, the very essence of quantum interference is the interference of the sub-waves of the quantum system itself. A quantum system considered here can be any quantum system: a single microscopic particle, a composite quantum system such as an atom or a molecule, or a loose collection of a few quantum objects such as two independent photons. In the duality computer, the wave of the duality computer is split into several sub-waves and they pass through different routes, where different computing gate operations are performed. These sub-waves are then re-combined to interfere to give the computational results. The quantum computer, however, has only used the particle nature of quantum object. In a duality computer, it may be possible to find a marked item from an unsorted database using only a single query, and all NP-complete problems may have polynomial algorithms. Two proof-of-the-principle designs of the duality computer are presented: the giant molecule scheme and the nonlinear quantum optics scheme. We also propose thought experiment to check the related fundamental issues, the measurement efficiency of a partial wave function.

  4. Impact of KCl impregnation on single particle combustion of wood and torrefied wood

    DEFF Research Database (Denmark)

    Lu, Zhimin; Jian, Jie; Jensen, Peter Arendt

    2017-01-01

    In this work, single particle combustion of raw and torrefied 4 mm wood particles with different potassium content obtained by KCl impregnation and washing was studied experimentally under a condition of 1225 °C, 3.1% O2 and 26.1% H2O. The ignition time and devolatilization time depended almost......, and unchanged by torrefaction. Compared to the raw wood particle, the char conversion time was increased by torrefaction, decreased by washing, and almost unchanged by KCl impregnation due to its promoting effect on both char yield and reactivity....

  5. A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy.

    Science.gov (United States)

    Li, Hao; Yang, Haw

    2018-03-28

    This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.

  6. A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy

    Science.gov (United States)

    Li, Hao; Yang, Haw

    2018-03-01

    This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.

  7. Characterization of biomass combustion at high temperatures based on an upgraded single particle model

    International Nuclear Information System (INIS)

    Li, Jun; Paul, Manosh C.; Younger, Paul L.; Watson, Ian; Hossain, Mamdud; Welch, Stephen

    2015-01-01

    Highlights: • High temperature rapid biomass combustion is studied based on single particle model. • Particle size changes in devolatilization and char oxidation models are addressed. • Time scales of various thermal sub-processes are compared and discussed. • Potential solutions are suggested to achieve better biomass co-firing performances. - Abstract: Biomass co-firing is becoming a promising solution to reduce CO 2 emissions, due to its renewability and carbon neutrality. Biomass normally has high moisture and volatile contents, complicating its combustion behavior, which is significantly different from that of coal. A computational fluid dynamics (CFD) combustion model of a single biomass particle is employed to study high-temperature rapid biomass combustion. The two-competing-rate model and kinetics/diffusion model are used to model biomass devolatilization reaction and char burnout process, respectively, in which the apparent kinetics used for those two models were from high temperatures and high heating rates tests. The particle size changes during the devolatilization and char burnout are also considered. The mass loss properties and temperature profile during the biomass devolatilization and combustion processes are predicted; and the timescales of particle heating up, drying, devolatilization, and char burnout are compared and discussed. Finally, the results shed light on the effects of particle size on the combustion behavior of biomass particle

  8. Quantum chaos in nuclear single-particle motion and damping of giant resonances

    International Nuclear Information System (INIS)

    Pal, Santanu; Mukhopadhyay, Tapan

    1995-01-01

    The spectral statistics of single particle motion in deformed cavities with axial symmetry are presented. The single particle motion in the cavities considered are non-integrable and the systematics of the fluctuation measures of the spectra reveal a transition from regular to chaotic regime in the corresponding classical systems. Quantitative estimate of the degree of chaos enables us to introduce a correction factor to the one-body wall formula for the damping widths of isoscalar giant resonances. The damping widths calculated with this correction factor give much better agreement with experimental values than earlier calculations of one-body damping widths. (author). 21 refs., 5 figs

  9. The application of single particle hydrodynamics in continuum models of multiphase flow

    Science.gov (United States)

    Decker, Rand

    1988-01-01

    A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.

  10. Preparation of Disease-Related Protein Assemblies for Single Particle Electron Microscopy.

    Science.gov (United States)

    Cameron Varano, A; Harafuji, Naoe; Dearnaley, William; Guay-Woodford, Lisa; Kelly, Deborah F

    2017-01-01

    Electron microscopy (EM) is a rapidly growing area of structural biology that permits us to decode biological assemblies at the nanoscale. To examine biological materials for single particle EM analysis, purified assemblies must be obtained using biochemical separation techniques. Here, we describe effective methodologies for isolating histidine (his)-tagged protein assemblies from the nucleus of disease-relevant cell lines. We further demonstrate how isolated assemblies are visualized using single particle EM techniques and provide representative results for each step in the process.

  11. Source of single photons and interferometry with one photon. From the Young's slit experiment to the delayed choice; Source de photons uniques et interferences a un seul photon. De l'experience des fentes d'Young au choix retarde

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, V

    2007-11-15

    This manuscript is divided in two independent parts. In the first part, we study the wave-particle duality for a single photon emitted by the triggered photoluminescence of a single NV color center in a diamond nano-crystal. We first present the realization of a single-photon interference experiment using a Fresnel's bi-prism, in a scheme equivalent to the standard Young's double-slit textbook experiment. We then discuss the complementarity between interference and which-path information in this two-path interferometer. We finally describe the experimental realization of Wheeler's delayed-choice Gedanken experiment, which is a fascinating and subtle illustration of wave-particle duality. The second part of the manuscript is devoted to the efficiency improvement of single-photon sources. We first describe the implementation of a new single-photon source based on the photoluminescence of a single nickel-related defect center in diamond. The photophysical properties of such defect make this single-photon source well adapted to open-air quantum cryptography. We finally demonstrate an original method that leads to an improvement of single-molecule photo stability at room temperature. (author)

  12. Fast-electron impact ionization of molecular hydrogen: energy and angular distribution of double and single differential cross sections and Young-type interference

    Science.gov (United States)

    Chatterjee, S.; Kasthurirangan, S.; Kelkar, A. H.; Stia, C. R.; Fojón, O. A.; Rivarola, R. D.; Tribedi, L. C.

    2009-03-01

    We report the energy and angular distribution of absolute double differential cross sections (DDCSs) of ejected electrons in collisions of 8 keV projectile electrons with molecular hydrogen. The ejected electrons with energy between 1 eV and 400 eV and ejection angles between 30° and 150° are detected. The measured data are compared with the theoretical calculations based on two-effective centre (TEC) model. The first-order interference is derived from the energy distribution of DDCS and the resulting ratio spectra (H2 to 2H) exhibit oscillating behaviour. The signature of first-order interference is also demonstrated in the DDCS spectra as a function of the ejection angle. We have shown that the constructive interference prevails in soft- and binary-collision regions. The single differential cross sections (SDCS) are deduced by integrating the DDCS over the solid angle as well as ejection energy. We demonstrate that the SDCS and corresponding ratio spectra also preserve the signature of interference.

  13. Fast-electron impact ionization of molecular hydrogen: energy and angular distribution of double and single differential cross sections and Young-type interference

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, S; Kasthurirangan, S; Kelkar, A H; Tribedi, L C [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Stia, C R; Fojon, O A; Rivarola, R D [Instituto de Fisica Rosario (CONICET-UNR) and Facultad de Ciencias Exactas, IngenierIa y Agrimensura, Universidad Nacional de Rosario, Av Pellegrini 250, 2000 Rosario (Argentina)], E-mail: lokesh@tifr.res.in

    2009-03-28

    We report the energy and angular distribution of absolute double differential cross sections (DDCSs) of ejected electrons in collisions of 8 keV projectile electrons with molecular hydrogen. The ejected electrons with energy between 1 eV and 400 eV and ejection angles between 30 deg. and 150 deg. are detected. The measured data are compared with the theoretical calculations based on two-effective centre (TEC) model. The first-order interference is derived from the energy distribution of DDCS and the resulting ratio spectra (H{sub 2} to 2H) exhibit oscillating behaviour. The signature of first-order interference is also demonstrated in the DDCS spectra as a function of the ejection angle. We have shown that the constructive interference prevails in soft- and binary-collision regions. The single differential cross sections (SDCS) are deduced by integrating the DDCS over the solid angle as well as ejection energy. We demonstrate that the SDCS and corresponding ratio spectra also preserve the signature of interference.

  14. Single-particle characterization of the high-Arctic summertime aerosol

    Directory of Open Access Journals (Sweden)

    B. Sierau

    2014-07-01

    Full Text Available Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS. The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol–cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of

  15. Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry

    Directory of Open Access Journals (Sweden)

    R. C. Moffet

    2008-08-01

    Full Text Available Continuous ambient measurements with aerosol time-of-flight mass spectrometry (ATOFMS were made in an industrial/residential section in the northern part of Mexico City as part of the Mexico City Metropolitan Area-2006 campaign (MCMA-2006. Results are presented for the period of 15–27 March 2006. The submicron size mode contained both fresh and aged biomass burning, aged organic carbon (OC mixed with nitrate and sulfate, elemental carbon (EC, nitrogen-organic carbon, industrial metal, and inorganic NaK inorganic particles. Overall, biomass burning and aged OC particle types comprised 40% and 31%, respectively, of the submicron mode. In contrast, the supermicron mode was dominated by inorganic NaK particle types (42% which represented a mixture of dry lake bed dust and industrial NaK emissions mixed with soot. Additionally, aluminosilicate dust, transition metals, OC, and biomass burning contributed to the supermicron particles. Early morning periods (2–6 a.m. showed high fractions of inorganic particles from industrial sources in the northeast, composed of internal mixtures of Pb, Zn, EC and Cl, representing up to 73% of the particles in the 0.2–3μm size range. A unique nitrogen-containing organic carbon (NOC particle type, peaking in the early morning hours, was hypothesized to be amines from local industrial emissions based on the time series profile and back trajectory analysis. A strong dependence on wind speed and direction was observed in the single particle types that were present during different times of the day. The early morning (3:30–10 a.m. showed the greatest contributions from industrial emissions. During mid to late mornings (7–11 a.m., weak northerly winds were observed along with the most highly aged particles. Stronger winds from the south picked up in the late morning (after 11 a.m., resulting in a decrease in the concentrations of the major aged particle types and an increase in the number fraction of fresh

  16. Building the Nanoplasmonics Toolbox Through Shape Modeling and Single Particle Optical Studies

    Science.gov (United States)

    Ringe, Emilie

    Interest in nanotechnology is driven by unprecedented properties tailorability, achievable by controlling particle structure and composition. Unlike bulk components, minute changes in size and shape affect the optical and electronic properties of nanoparticles. Characterization of such structure-function relationships and better understanding of structure control mechanisms is crucial to the development of applications such as plasmonic sensors and devices. The objective of the current research is thus twofold: to theoretically predict and understand how shape is controlled by synthesis conditions, and to experimentally unravel, through single particle studies, how shape, composition, size, and surrounding environment affect plasmonic properties in noble metal particles. Quantitative, predictive rules and fundamental knowledge obtained from this research contributes to the "nanoplasmonics toolbox", a library designed to provide scientists and engineers the tools to create and optimize novel nanotechnology applications. In this dissertation, single particle approaches are developed and used to unravel the effects of size, shape, substrate, aggregation state and surrounding environment on the optical response of metallic nanoparticles. Ag and Au nanocubes on different substrates are first presented, followed by the discussion of the concept of plasmon length, a universal parameter to describe plasmon energy for a variety of particle shapes and plasmon modes. Plasmonic sensing (both refractive index sensing and surface-enhanced Raman spectroscopy) and polarization effects are then studied at the single particle level. In the last two Chapters, analytical shape models based on the Wulff construction provide unique modeling tools for alloy and kinetically grown nanoparticles. The former reveals a size-dependence of the shape of small alloy particles (such as those used in catalysis) because of surface segregation, while the latter uniquely models the shape of many

  17. Single particle analysis with a 360/sup 0/ light scattering photometer

    Energy Technology Data Exchange (ETDEWEB)

    Bartholdi, M.F.

    1979-06-01

    Light scattering by single spherical homogeneous particles in the diameter range 1 to 20 ..mu..m and relative refractive index 1.20 is measured. Particle size of narrowly dispersed populations is determined and a multi-modal dispersion of five components is completely analyzed. A 360/sup 0/ light scattering photometer for analysis of single particles has been designed and developed. A fluid stream containing single particles intersects a focused laser beam at the primary focal point of an ellipsoidal reflector ring. The light scattered at angles theta = 2.5/sup 0/ to 177.5/sup 0/ at phi = 0/sup 0/ and 180/sup 0/ is reflected onto a circular array of photodiodes. The ellipsoidal reflector is situated in a chamber filled with fluid matching that of the stream to minimize refracting and reflecting interfaces. The detector array consists of 60 photodiodes each subtending 3/sup 0/ in scattering angle on 6/sup 0/ centers around 360/sup 0/. 32 measurements on individual particles can be acquired at rates of 500 particles per second. The intensity and angular distribution of light scattered by spherical particles are indicative of size and relative refractive index. Calculations, using Lorenz--Mie theory, of differential scattering patterns integrated over angle corresponding to the detector geometry determined the instrument response to particle size. From this the expected resolution and experimental procedures are determined.Ultimately, the photometer will be utilized for identification and discrimination of biological cells based on the sensitivity of light scattering to size, shape, refractive index differences, internal granularity, and other internal morphology. This study has demonstrated the utility of the photometer and indicates potential for application to light scattering studies of biological cells.

  18. Single Particle Laser Mass Spectrometry Applied to Differential Ice Nucleation Experiments at the AIDA Chamber

    International Nuclear Information System (INIS)

    Gallavardin, S. J.; Froyd, Karl D.; Lohmann, U.; Moehler, Ottmar; Murphy, Daniel M.; Cziczo, Dan

    2008-01-01

    Experiments conducted at the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) chamber located in Karlsruhe, Germany permit investigation of particle properties that affect the nucleation of ice at temperature and water vapor conditions relevant to cloud microphysics and climate issues. Ice clouds were generated by heterogeneous nucleation of Arizona test dust (ATD), illite, and hematite and homogeneous nucleation of sulfuric acid. Ice crystals formed in the chamber were inertially separated from unactivated, or 'interstitial' aerosol particles with a pumped counterflow virtual impactor (PCVI), then evaporated. The ice residue (i.e., the aerosol which initiated ice nucleation plus any material which was scavenged from the gas- and/or particle-phase), was chemically characterized at the single particle level using a laser ionization mass spectrometer. In this manner the species that first nucleated ice could be identified out of a mixed aerosol population in the chamber. Bare mineral dust particles were more effective ice nuclei (IN) than similar particles with a coating. Metallic particles from contamination in the chamber initiated ice nucleation before other species but there were few enough that they did not compromise the experiments. Nitrate, sulfate, and organics were often detected on particles and ice residue, evidently from scavenging of trace gas-phase species in the chamber. Hematite was a more effective ice nucleus than illite. Ice residue was frequently larger than unactivated test aerosol due to the formation of aggregates due to scavenging, condensation of contaminant gases, and the predominance of larger aerosol in nucleation

  19. Preliminary Understanding of Surface Plasmon-Enhanced Circular Dichroism Spectroscopy by Single Particle Imaging

    Science.gov (United States)

    Zhan, Kangshu

    Monitoring chiral optical signals of biomolecules as their conformation changes is an important means to study their structures, properties, and functions. Most measurements, however, are ensemble measurements because chiral optical signals from a single biomolecule is often too weak to be detected. In this dissertation, I present my early attempts to study conformational changes of adsorbed proteins by taking advantage of the enhanced electromagnetic (EM) field around a well-designed plasmonic nanofeature. In particular, I discuss the detection of protein adsorption and denaturation on metallic nanoparticles using single particle scattering and CD spectroscopic imaging. Particles of two distinctively different sizes were compared and two different sample protein molecules were studied. A combination of experimental and computational tools was used to simulate and interpret the collected scattering and CD results. The first chapter provides a brief overview of the state-of-art research in CD spectroscopic studies at the single particle level. Three different means to make particles capable of chiral detection are discussed. Various applications beyond single particle imaging are presented to showcase the potential of the described research project, beyond our immediate goals. The second chapter describes my initial characterization of large, metallic, anisotropic nanorods and the establishment of experimental procedures used later for spectrum reconstruction, data visualization and analysis. The physical shape and structure of the particles were imaged by scanning electron microscopy (SEM), the chemical composition by energy dispersive X-ray Spectroscopy (EDS), and the optical properties by darkfield microscopy. An experimental protocol was developed to connect information collected from separate techniques for the same particle, with the aims of discovering any possible structural-property correlation. The reproducibility of the single particle imaging method was

  20. A Simple Network to Remove Interference in Surface EMG Signal from Single Gene Affected Phenylketonuria Patients for Proper Diagnosis

    Science.gov (United States)

    Mohanty, Madhusmita; Basu, Mousumi; Pattanayak, Deba Narayan; Mohapatra, Sumant Kumar

    2018-04-01

    Recently Autosomal Recessive Single Gene (ARSG) diseases are highly effective to the children within the age of 5-10 years. One of the most ARSG disease is a Phenylketonuria (PKU). This single gene disease is associated with mutations in the gene that encodes the enzyme phenylalanine hydroxylase (PAH, Gene 612349). Through this mutation process, PAH of the gene affected patient can not properly manufacture PAH as a result the patients suffer from decreased muscle tone which shows abnormality in EMG signal. Here the extraction of the quality of the PKU affected EMG (PKU-EMG) signal is a keen interest, so it is highly necessary to remove the added ECG signal as well as the biological and instrumental noises. In the Present paper we proposed a method for detection and classification of the PKU affected EMG signal. Here Discrete Wavelet Transformation is implemented for extraction of the features of the PKU affected EMG signal. Adaptive Neuro-Fuzzy Inference System (ANFIS) network is used for the classification of the signal. Modified Particle Swarm Optimization (MPSO) and Modified Genetic Algorithm (MGA) are used to train the ANFIS network. Simulation result shows that the proposed method gives better performance as compared to existing approaches. Also it gives better accuracy of 98.02% for the detection of PKU-EMG signal. The advantages of the proposed model is to use MGA and MPSO to train the parameters of ANFIS network for classification of ECG and EMG signal of PKU affected patients. The proposed method obtained the high SNR (18.13 ± 0.36 dB), SNR (0.52 ± 1.62 dB), RE (0.02 ± 0.32), MSE (0.64 ± 2.01), CC (0.99 ± 0.02), RMSE (0.75 ± 0.35) and MFRE (0.01 ± 0.02), RMSE (0.75 ± 0.35) and MFRE (0.01 ± 0.02). From authors knowledge, this is the first time a composite method is used for diagnosis of PKU affected patients. The accuracy (98.02%), sensitivity (100%) and specificity (98.59%) helps for proper clinical treatment. It can help for readers

  1. A Simple Network to Remove Interference in Surface EMG Signal from Single Gene Affected Phenylketonuria Patients for Proper Diagnosis

    Science.gov (United States)

    Mohanty, Madhusmita; Basu, Mousumi; Pattanayak, Deba Narayan; Mohapatra, Sumant Kumar

    2018-01-01

    Recently Autosomal Recessive Single Gene (ARSG) diseases are highly effective to the children within the age of 5-10 years. One of the most ARSG disease is a Phenylketonuria (PKU). This single gene disease is associated with mutations in the gene that encodes the enzyme phenylalanine hydroxylase (PAH, Gene 612349). Through this mutation process, PAH of the gene affected patient can not properly manufacture PAH as a result the patients suffer from decreased muscle tone which shows abnormality in EMG signal. Here the extraction of the quality of the PKU affected EMG (PKU-EMG) signal is a keen interest, so it is highly necessary to remove the added ECG signal as well as the biological and instrumental noises. In the Present paper we proposed a method for detection and classification of the PKU affected EMG signal. Here Discrete Wavelet Transformation is implemented for extraction of the features of the PKU affected EMG signal. Adaptive Neuro-Fuzzy Inference System (ANFIS) network is used for the classification of the signal. Modified Particle Swarm Optimization (MPSO) and Modified Genetic Algorithm (MGA) are used to train the ANFIS network. Simulation result shows that the proposed method gives better performance as compared to existing approaches. Also it gives better accuracy of 98.02% for the detection of PKU-EMG signal. The advantages of the proposed model is to use MGA and MPSO to train the parameters of ANFIS network for classification of ECG and EMG signal of PKU affected patients. The proposed method obtained the high SNR (18.13 ± 0.36 dB), SNR (0.52 ± 1.62 dB), RE (0.02 ± 0.32), MSE (0.64 ± 2.01), CC (0.99 ± 0.02), RMSE (0.75 ± 0.35) and MFRE (0.01 ± 0.02), RMSE (0.75 ± 0.35) and MFRE (0.01 ± 0.02). From authors knowledge, this is the first time a composite method is used for diagnosis of PKU affected patients. The accuracy (98.02%), sensitivity (100%) and specificity (98.59%) helps for proper clinical treatment. It can help for readers

  2. Single charging events on colloidal particles in a nonpolar liquid with surfactant

    Science.gov (United States)

    Schreuer, Caspar; Vandewiele, Stijn; Brans, Toon; Strubbe, Filip; Neyts, Kristiaan; Beunis, Filip

    2018-01-01

    Electrical charging of colloidal particles in nonpolar liquids due to surfactant additives is investigated intensively, motivated by its importance in a variety of applications. Most methods rely on average electrophoretic mobility measurements of many particles, which provide only indirect information on the charging mechanism. In the present work, we present a method that allows us to obtain direct information on the charging mechanism, by measuring the charge fluctuations on individual particles with a precision higher than the elementary charge using optical trapping electrophoresis. We demonstrate the capabilities of the method by studying the influence of added surfactant OLOA 11000 on the charging of single colloidal PMMA particles in dodecane. The particle charge and the frequency of charging events are investigated both below and above the critical micelle concentration (CMC) and with or without applying a DC offset voltage. It is found that at least two separate charging mechanisms are present below the critical micelle concentration. One mechanism is a process where the particle is stripped from negatively charged ionic molecules. An increase in the charging frequency with increased surfactant concentration suggests a second mechanism that involves single surfactant molecules. Above the CMC, neutral inverse micelles can also be involved in the charging process.

  3. Bidirectional reflectance spectroscopy 7. The single particle phase function hockey stick relation

    Science.gov (United States)

    Hapke, Bruce

    2012-11-01

    The measured volume-average single particle angular scattering functions of a large number of types of particle of interest for planetary regoliths in the visible-near-IR wavelength region can be represented to a reasonable approximation by two-parameter, double Henyey-Greenstein functions. When the two parameters of this function are plotted against one another they are found to be inversely correlated and lie within a restricted zone shaped like a hockey stick within the parameter space. The centroid of the zone is a curve that can be represented by a simple empirical equation. The wide variety of types of particles used to construct the plot implies that this equation may represent most of the particles found in regoliths. This means that when modeling the bidirectional reflectance of a regolith it may be possible to reduce the number of parameters necessary to specify the reflectance, and also to characterize the entire single particle phase function from observations at phase angles less than 90°. Even if the hockey stick relation has a finite width, rather than being a line, it restricts the parameter space that must be searched when fitting data. The curve should also be useful for forward modeling particle phase functions.

  4. DECAY MODES OF HIGH-LYING SINGLE-PARTICLE STATES IN PB-209

    NARCIS (Netherlands)

    BEAUMEL, D; FORTIER, S; GALES, S; GUILLOT, J; LANGEVINJOLIOT, H; LAURENT, H; MAISON, JM; VERNOTTE, J; BORDEWIJK, JA; BRANDENBURG, S; KRASZNAHORKAY, A; CRAWLEY, GM; MASSOLO, CP; RENTERIA, M

    The neutron decay of high-lying single-particle states in Pb-209 excited by means of the (alpha, He-3) reaction has been investigated at 122 MeV incident energy using a multidetector array. The high-spin values of these states, inferred from previous inclusive experiments, are confirmed by the

  5. A new single-particle basis for nuclear many-body calculations

    Science.gov (United States)

    Puddu, G.

    2017-10-01

    Predominantly, harmonic oscillator single-particle wave functions are the preferred choice for a basis in ab initio nuclear many-body calculations. These wave-functions, although very convenient in order to evaluate the matrix elements of the interaction in the laboratory frame, have too fast a fall-off at large distances. In the past, as an alternative to the harmonic oscillator, other single-particle wave functions have been proposed. In this work, we propose a new single-particle basis, directly linked to nucleon-nucleon interaction. This new basis is orthonormal and complete, has the proper asymptotic behavior at large distances and does not contain the continuum which would pose severe convergence problems in nuclear many body calculations. We consider the newly proposed NNLO-opt nucleon-nucleon interaction, without any renormalization. We show that, unlike other bases, this single-particle representation has a computational cost similar to the harmonic oscillator basis with the same space truncation and it gives lower energies for 6He and 6Li.

  6. Summary report of the group on single-particle nonlinear dynamics

    International Nuclear Information System (INIS)

    Axinescu, S.; Bartolini, R.; Bazzani, A.

    1996-10-01

    This report summarizes the research on single-particle nonlinear beam dynamics. It discusses the following topics: analytical and semi-analytical tools; early prediction of the dynamic aperture; how the results are commonly presented; Is the mechanism of the dynamic aperture understand; ripple effects; and beam-beam effects

  7. A new Insight Into Microscale Soil Organic Matter Dynamics - From Single Particles to Aggregates

    Science.gov (United States)

    Mueller, C. W.; Heister, K.; Hillion, F.; Herrmann, A. M.; Koegel-Knabner, I.

    2008-12-01

    Both mineral interactions and the spatial inaccessibility due to aggregation are key-factors affecting the stabilization of soil organic matter (SOM). Knowledge about the factors controlling the preservation of SOM and underlying stabilization mechanisms has improved significantly over the last years. Nevertheless, in situ processes remain almost unclear and are still challenging to evaluate. In the presented work, we studied the alteration of spatial distribution of fresh introduced OM over time on single particles and in intact soil aggregates. Single particles of a fine silt and clay mixture (resin embedded. Samples were then analyzed by scanning electron microscopy (SEM) and nano-scale secondary ion mass spectrometry (nanoSIMS50). We will demonstrate the spatial distribution of OM on single particles and in intact soil aggregates at the microscale by SEM and nanoSIMS. In addition, with the isotopic sensitivity of nanoSIMS, we are able to follow the fate of 13C and 15N, which is expected to be influenced by diffusion, sorption and microbial activity. From these results, we propose how OM in soil can be stabilized on single soil particles and at complex soil aggregates.

  8. Single-particle electron microscopy in the study of membrane protein structure.

    Science.gov (United States)

    De Zorzi, Rita; Mi, Wei; Liao, Maofu; Walz, Thomas

    2016-02-01

    Single-particle electron microscopy (EM) provides the great advantage that protein structure can be studied without the need to grow crystals. However, due to technical limitations, this approach played only a minor role in the study of membrane protein structure. This situation has recently changed dramatically with the introduction of direct electron detection device cameras, which allow images of unprecedented quality to be recorded, also making software algorithms, such as three-dimensional classification and structure refinement, much more powerful. The enhanced potential of single-particle EM was impressively demonstrated by delivering the first long-sought atomic model of a member of the biomedically important transient receptor potential channel family. Structures of several more membrane proteins followed in short order. This review recounts the history of single-particle EM in the study of membrane proteins, describes the technical advances that now allow this approach to generate atomic models of membrane proteins and provides a brief overview of some of the membrane protein structures that have been studied by single-particle EM to date. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Single-particle thermal diffusion of charged colloids: Double-layer theory in a temperature gradient

    NARCIS (Netherlands)

    Dhont, J.K.G.; Briels, Willem J.

    2008-01-01

    The double-layer contribution to the single-particle thermal diffusion coefficient of charged, spherical colloids with arbitrary double-layer thickness is calculated and compared to experiments. The calculation is based on an extension of the Debye-Hückel theory for the double-layer structure that

  10. Lagrangian single-particle turbulent statistics through the Hilbert-Huang transform

    NARCIS (Netherlands)

    Huang, Y.; Biferale, L.; Calzavarini, E.; Sun, Chao; Toschi, F.

    2013-01-01

    The Hilbert-Huang transform is applied to analyze single-particle Lagrangian velocity data from numerical simulations of hydrodynamic turbulence. The velocity trajectory is described in terms of a set of intrinsic mode functions C i (t) and of their instantaneous frequency ω i (t) . On the basis of

  11. Insensitivity of single particle time domain measurements to laser velocimeter 'Doppler ambiguity.'

    Science.gov (United States)

    Johnson, D. A.

    1973-01-01

    It is shown that single particle time domain measurements in high speed gas flows obtained by a laser velocimeter technique developed for use in wind tunnels are not affected by the so-called 'Doppler ambiguity.' A comparison of hot-wire anemometer and laser velocimeter measurements taken under similar flow conditions is used for the demonstration.

  12. Single particle electron microscopy in combination with mass spectrometry to investigate novel complexes of membrane proteins

    NARCIS (Netherlands)

    Arteni, Ana A.; Nowaczyk, Marc; Lax, Julia; Rögner, Matthias; Boekema, Egbert J.; Kouril, R.; Rogner, M.

    2005-01-01

    Large data sets of molecular projections of the membrane proteins Photosystem I and Photosystem II from cyanobacteria were analyzed by single particle electron microscopy (EM). Analysis resulted in the averaging of 2D projections from the purified complexes but also in the simultaneous detection and

  13. Single-shot LIBS spectral quality for waste particles in open air

    NARCIS (Netherlands)

    Xia, H.; Bakker, M.C.M.

    2015-01-01

    This work investigates the ability of LIBS to produce quality spectra from small particles of concrete demolition waste using single-shot spectra collected in open air. The 2–8?mm materials are rounded river gravel, green glass shards, and plastic flakes. Considered are focal length, air, moisture,

  14. Deformed single-particle levels in the boson-fermion model

    International Nuclear Information System (INIS)

    Leviatan, A.; Shao, B.

    1989-01-01

    Deformed single-particle levels are derived from a boson-fermion Hamiltonian in which the odd fermion occupies several j orbits. The geometric-oriented approach applied to 169 Tm clarified the role of algebraic interactions and provides an intuitive interpretation and guidance to numerical calculations in deformed nuclei

  15. Deformed single-particle levels in the boson-fermion model

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A.; Shao, B. (Center for Theoretical Physics, Sloane Laboratory, Yale University, New Haven, Connecticut 06511 (US) Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (US))

    1989-11-13

    Deformed single-particle levels are derived from a boson-fermion Hamiltonian in which the odd fermion occupies several {ital j} orbits. The geometric-oriented approach applied to {sup 169}Tm clarified the role of algebraic interactions and provides an intuitive interpretation and guidance to numerical calculations in deformed nuclei.

  16. The online chemical analysis of single particles using aerosol beams and time of flight mass spectroscopy

    NARCIS (Netherlands)

    Kievit, O.; Weiss, M.; Verheijen, P.J.T.; Marijnissen, J.C.M.; Scarlett, B.

    This paper describes an on-line instrument, capable of measuring the size and chemical composition of single aerosol particles. Possible applications include monitoring aerosol reactors and studying atmospheric chemistry. The main conclusion is that a working prototype has been built and tested. It

  17. Quantification of dermal exposure to nanoparticles from solid nanocomposites by using single particle ICP-MS

    DEFF Research Database (Denmark)

    Mackevica, Aiga; Olsson, Mikael Emil; Hansen, Steffen Foss

    2016-01-01

    was tested by surface wiping followed by analysis using single particle ICP-MS. The nanoparticles were extracted from the wipes by ultrasonication in deionized water, and this technique was tested to be around 60-100% effective for extracting the particles adsorbed to the wipes. The method was optimized......Engineered nanoparticles are used in various applications due to their unique properties, which has led to their widespread use in consumer products. Silver, titanium and copper-based nanoparticles are few of the most commonly used nanomaterials in consumer products, mainly due to their biocidal...... by spiking the wipes with known amounts of nanoparticles and treating them the same way as the experimental samples. Our preliminary results show that single particle ICP-MS has the potential for quantitatively measuring potential dermal exposure to nanoparticles, and when used in combination with other...

  18. Fluorescent detection of single tracks of alpha particles using lithium fluoride crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bilski, P., E-mail: pawel.bilski@ifj.edu.pl; Marczewska, B.

    2017-02-01

    Lithium fluoride single crystals were successfully used for fluorescent imaging of single tracks of alpha particles. This was realized with a standard wide-field fluorescent microscope equipped with a 100× objective. Alpha particles create F{sub 2} and F{sub 3}{sup +} color centers in LiF crystals. The subsequent illumination with the blue light (wavelength around 445 nm), excites these centers and produces fluorescence with a broad band peaked at 670 nm. The observed tracks of alpha particles have diameter of about 500 nm. Focusing of the microscope at different depths in a LiF crystal, enables imaging changes of shape and position of tracks, allowing for visualization of their paths. These encouraging results are the first step towards practical application of LiF as fluorescent nuclear track detectors.

  19. Detection of single macromolecules using a cryogenic particle detector coupled to a biopolymer mass spectrometer

    Science.gov (United States)

    Twerenbold, Damian; Vuilleumier, Jean-Luc; Gerber, Daniel; Tadsen, Almut; van den Brandt, Ben; Gillevet, Patrick M.

    1996-06-01

    Macromolecules with masses up to 50 kDa have been detected with a cryogenic particle detector in a MALDI time-of-flight biopolymer mass spectrometer. The cryogenic particle detector was a Sn/Sn-ox/Sn tunnel junction operated at a temperature of 0.4 K. A calibration with 6 keV single photons inferred that the delayed detector pulses corresponded to the absorption of the kinetic energy of a single macromolecule. Time-of-flight spectra of lysozyme proteins are presented. The mass resolution is 100 Da at 14 300 Da. The energy sensitive detection mechanism suggests that cryogenic particle detectors have a high and mass independent detection efficiency for macromolecules.

  20. Single-pixel interior filling function approach for detecting and correcting errors in particle tracking.

    Science.gov (United States)

    Burov, Stanislav; Figliozzi, Patrick; Lin, Binhua; Rice, Stuart A; Scherer, Norbert F; Dinner, Aaron R

    2017-01-10

    We present a general method for detecting and correcting biases in the outputs of particle-tracking experiments. Our approach is based on the histogram of estimated positions within pixels, which we term the single-pixel interior filling function (SPIFF). We use the deviation of the SPIFF from a uniform distribution to test the veracity of tracking analyses from different algorithms. Unbiased SPIFFs correspond to uniform pixel filling, whereas biased ones exhibit pixel locking, in which the estimated particle positions concentrate toward the centers of pixels. Although pixel locking is a well-known phenomenon, we go beyond existing methods to show how the SPIFF can be used to correct errors. The key is that the SPIFF aggregates statistical information from many single-particle images and localizations that are gathered over time or across an ensemble, and this information augments the single-particle data. We explicitly consider two cases that give rise to significant errors in estimated particle locations: undersampling the point spread function due to small emitter size and intensity overlap of proximal objects. In these situations, we show how errors in positions can be corrected essentially completely with little added computational cost. Additional situations and applications to experimental data are explored in SI Appendix In the presence of experimental-like shot noise, the precision of the SPIFF-based correction achieves (and can even exceed) the unbiased Cramér-Rao lower bound. We expect the SPIFF approach to be useful in a wide range of localization applications, including single-molecule imaging and particle tracking, in fields ranging from biology to materials science to astronomy.

  1. A clustering approach to multireference alignment of single-particle projections in electron microscopy.

    Science.gov (United States)

    Sorzano, C O S; Bilbao-Castro, J R; Shkolnisky, Y; Alcorlo, M; Melero, R; Caffarena-Fernández, G; Li, M; Xu, G; Marabini, R; Carazo, J M

    2010-08-01

    Two-dimensional analysis of projections of single-particles acquired by an electron microscope is a useful tool to help identifying the different kinds of projections present in a dataset and their different projection directions. Such analysis is also useful to distinguish between different kinds of particles or different particle conformations. In this paper we introduce a new algorithm for performing two-dimensional multireference alignment and classification that is based on a Hierarchical clustering approach using correntropy (instead of the more traditional correlation) and a modified criterion for the definition of the clusters specially suited for cases in which the Signal-to-Noise Ratio of the differences between classes is low. We show that our algorithm offers an improved sensitivity over current methods in use for distinguishing between different projection orientations and different particle conformations. This algorithm is publicly available through the software package Xmipp. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Single-particle structure determination by correlations of snapshot X-ray diffraction patterns

    Science.gov (United States)

    Starodub, D.; Aquila, A.; Bajt, S.; Barthelmess, M.; Barty, A.; Bostedt, C.; Bozek, J. D.; Coppola, N.; Doak, R. B.; Epp, S. W.; Erk, B.; Foucar, L.; Gumprecht, L.; Hampton, C. Y.; Hartmann, A.; Hartmann, R.; Holl, P.; Kassemeyer, S.; Kimmel, N.; Laksmono, H.; Liang, M.; Loh, N. D.; Lomb, L.; Martin, A. V.; Nass, K.; Reich, C.; Rolles, D.; Rudek, B.; Rudenko, A.; Schulz, J.; Shoeman, R. L.; Sierra, R. G.; Soltau, H.; Steinbrener, J.; Stellato, F.; Stern, S.; Weidenspointner, G.; Frank, M.; Ullrich, J.; Strüder, L.; Schlichting, I.; Chapman, H. N.; Spence, J. C. H.; Bogan, M. J.

    2012-12-01

    Diffractive imaging with free-electron lasers allows structure determination from ensembles of weakly scattering identical nanoparticles. The ultra-short, ultra-bright X-ray pulses provide snapshots of the randomly oriented particles frozen in time, and terminate before the onset of structural damage. As signal strength diminishes for small particles, the synthesis of a three-dimensional diffraction volume requires simultaneous involvement of all data. Here we report the first application of a three-dimensional spatial frequency correlation analysis to carry out this synthesis from noisy single-particle femtosecond X-ray diffraction patterns of nearly identical samples in random and unknown orientations, collected at the Linac Coherent Light Source. Our demonstration uses unsupported test particles created via aerosol self-assembly, and composed of two polystyrene spheres of equal diameter. The correlation analysis avoids the need for orientation determination entirely. This method may be applied to the structural determination of biological macromolecules in solution.

  3. Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application.

    Science.gov (United States)

    Grepstad, Jon Olav; Kaspar, Peter; Solgaard, Olav; Johansen, Ib-Rune; Sudbø, Aasmund S

    2012-03-26

    A sensor designed to detect bio-molecules is presented. The sensor exploits a planar 2D photonic crystal (PC) membrane with sub-micron thickness and through holes, to induce high optical fields that allow detection of nano-particles smaller than the diffraction limit of an optical microscope. We report on our design and fabrication of a PC membrane with a nano-particle trapped inside. We have also designed and built an imaging system where an optical microscope and a CCD camera are used to take images of the PC membrane. Results show how the trapped nano-particle appears as a bright spot in the image. In a first experimental realization of the imaging system, single particles with a radius of 75 nm can be detected.

  4. Source apportionment of single aerosol particles in the atmosphere of Shanghai city

    International Nuclear Information System (INIS)

    Qiu Zhijun; Lu Rongrong; Guo Panlin; Wang Jiqing; Qiu Huiyuan; Li Xiaolin; Zhu Jieqing

    2001-01-01

    A nuclear microprobe with high spatial resolution and high analytical sensitivity was applied to analyze atmospheric aerosol at five monitoring sites in Shanghai city. Meantime, a new pattern recognition technique, which used the micro-PIXE spectrum of a single aerosol particle as its fingerprint, was developed to identify the origin of the particle. The results showed that the major contributors to the atmosphere pollution were soil dust (31.6%), building dust (30.8%), and the next were vehicle exhaust (13.7%), metallurgic industry excrements (5.6%), oil combustion (5%) and coal combustion (2.3%). Besides these, about 10% of the particles could not be identified. Based on the cluster analysis of these particles, they could be divided into soil dust, building dust and metallurgic industry excrements. Moreover, some new pollution sources from tyres and chemical plants were also revealed

  5. Theoretical and experimental study of single particle tracking in extreme conditions: single photon imaging

    International Nuclear Information System (INIS)

    Cajgfinger, T.

    2012-10-01

    This manuscript presents my thesis on the high frame rate (500 frames / second) single-photon detector electron-bombarded CMOS (ebCMOS). The first section compares three ultra-sensitive detectors and their methods for improving photon sensitivity: the CMOS low noise (sCMOS), the electron-multiplying CCD (emCCD) with signal multiplication by pixel and the ebCMOS with amplification by applied electric field. The method developed to detect single photon impacts with intra-pixel resolution on the ebCMOS sensor is presented. The second section compares the localization accuracy of these detectors in extreme conditions of very low photon flux (<10 photons/frame). First the theoretical limit is calculated using the Cramer-Rao lower bound for significant parameter sets. An experimental comparison of the detectors is then described. The setup provides one or more point sources controlled in position, signal and background noise. The results allow a comparison of the experimental effectiveness, purity and localization accuracy. The last section describes two experiments with the ebCMOS camera. The first aims at tracking hundreds of quantum dots simultaneously at the Nanoptec center. The second focuses on the swimming of bacteria at the surface at the Joliot Curie Institute. The point sources tracking algorithm using single photons and the Kalman filter implementation developed for these experiments is also described. (author)

  6. Creation of giant two-dimensional crystal of zinc oxide nanodisk by method of single-particle layer of organo-modified inorganic fine particles.

    Science.gov (United States)

    Meng, Qi; Honda, Nanami; Uchida, Saki; Hashimoto, Kazuaki; Shibata, Hirobumi; Fujimori, Atsuhiro

    2015-09-01

    In this study, the formation and structure of a single-particle layer of organo-zinc oxide are investigated using surface-pressure-area (π-A) isotherms, out-of-plane X-ray diffraction (XRD) analysis, and atomic force microscopy (AFM). Further, techniques for achieving the solubilization of inorganic fine particles in general solvents have been proposed, and a single-particle layer has been formed using such an inorganic solution as a "spreading solution" for an interfacial film. Surface modification of ZnO is performed using a long-chain carboxylic acid. Accordingly, a regular arrangement of ZnO can be easily achieved in order to overcome the relatively weak van der Walls interactions between inorganic materials. A condensed Langmuir monolayer of these particles is also formed. A multiparticle layered structure is constructed by the Langmuir-Blodgett (LB) technique. Out-of-plane XRD measurement results for a single-particle layer of organo-ZnO clearly show a sharp peak at 42 Å. This peak is attributed to the distance between ZnO layers. The AFM image of this single-particle layer of organo-ZnO shows a particle assembly with a uniform height of 60 nm. These aggregated particles form large two-dimensional crystals. In other words, a regular periodic structure along the c-axis and a condensed single-particle layer had been fabricated using Langmuir and LB techniques. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet

    Science.gov (United States)

    Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2015-01-01

    Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles. PMID:26221197

  8. Exploring Electronic Structure and Order in Polymers via Single-Particle Microresonator Spectroscopy.

    Science.gov (United States)

    Horak, Erik H; Rea, Morgan T; Heylman, Kevin D; Gelbwaser-Klimovsky, David; Saikin, Semion K; Thompson, Blaise J; Kohler, Daniel D; Knapper, Kassandra A; Wei, Wei; Pan, Feng; Gopalan, Padma; Wright, John C; Aspuru-Guzik, Alán; Goldsmith, Randall H

    2018-02-08

    PSS, a transparent electrically conductive polymer, finds widespread use in electronic devices. While empirical efforts have increased conductivity, a detailed understanding of the coupled electronic and morphological landscapes in PEDOT:PSS has lagged due to substantial structural heterogeneity on multiple length-scales. We use an optical microresonator-based absorption spectrometer to perform single-particle measurements, providing a bottom-up examination of electronic structure and morphology ranging from single PEDOT:PSS polymers to nascent films. Using single-particle spectroscopy with complementary theoretical calculations and ultrafast spectroscopy, we demonstrate that PEDOT:PSS displays bulk-like optical response even in single polymers. We find highly ordered PEDOT assemblies with long-range ordering mediated by the insulating PSS matrix and reveal a preferential surface orientation of PEDOT nanocrystallites absent in bulk films with implications for interfacial electronic communication. Our single-particle perspective provides a unique window into the microscopic structure and electronic properties of PEDOT:PSS.

  9. Interference with the production of infectious viral particles and bimodal inhibition of replication are broadly conserved antiviral properties of IFITMs.

    Science.gov (United States)

    Tartour, Kevin; Nguyen, Xuan-Nhi; Appourchaux, Romain; Assil, Sonia; Barateau, Véronique; Bloyet, Louis-Marie; Burlaud Gaillard, Julien; Confort, Marie-Pierre; Escudero-Perez, Beatriz; Gruffat, Henri; Hong, Saw See; Moroso, Marie; Reynard, Olivier; Reynard, Stéphanie; Decembre, Elodie; Ftaich, Najate; Rossi, Axel; Wu, Nannan; Arnaud, Frédérick; Baize, Sylvain; Dreux, Marlène; Gerlier, Denis; Paranhos-Baccala, Glaucia; Volchkov, Viktor; Roingeard, Philippe; Cimarelli, Andrea

    2017-09-01

    IFITMs are broad antiviral factors that block incoming virions in endosomal vesicles, protecting target cells from infection. In the case of HIV-1, we and others reported the existence of an additional antiviral mechanism through which IFITMs lead to the production of virions of reduced infectivity. However, whether this second mechanism of inhibition is unique to HIV or extends to other viruses is currently unknown. To address this question, we have analyzed the susceptibility of a broad spectrum of viruses to the negative imprinting of the virion particles infectivity by IFITMs. The results we have gathered indicate that this second antiviral property of IFITMs extends well beyond HIV and we were able to identify viruses susceptible to the three IFITMs altogether (HIV-1, SIV, MLV, MPMV, VSV, MeV, EBOV, WNV), as well as viruses that displayed a member-specific susceptibility (EBV, DUGV), or were resistant to all IFITMs (HCV, RVFV, MOPV, AAV). The swapping of genetic elements between resistant and susceptible viruses allowed us to point to specificities in the viral mode of assembly, rather than glycoproteins as dominant factors of susceptibility. However, we also show that, contrarily to X4-, R5-tropic HIV-1 envelopes confer resistance against IFITM3, suggesting that viral receptors add an additional layer of complexity in the IFITMs-HIV interplay. Lastly, we show that the overall antiviral effects ascribed to IFITMs during spreading infections, are the result of a bimodal inhibition in which IFITMs act both by protecting target cells from incoming viruses and in driving the production of virions of reduced infectivity. Overall, our study reports for the first time that the negative imprinting of the virion particles infectivity is a conserved antiviral property of IFITMs and establishes IFITMs as a paradigm of restriction factor capable of interfering with two distinct phases of a virus life cycle.

  10. Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking.

    Science.gov (United States)

    von Diezmann, Alex; Shechtman, Yoav; Moerner, W E

    2017-06-14

    Single-molecule super-resolution fluorescence microscopy and single-particle tracking are two imaging modalities that illuminate the properties of cells and materials on spatial scales down to tens of nanometers or with dynamical information about nanoscale particle motion in the millisecond range, respectively. These methods generally use wide-field microscopes and two-dimensional camera detectors to localize molecules to much higher precision than the diffraction limit. Given the limited total photons available from each single-molecule label, both modalities require careful mathematical analysis and image processing. Much more information can be obtained about the system under study by extending to three-dimensional (3D) single-molecule localization: without this capability, visualization of structures or motions extending in the axial direction can easily be missed or confused, compromising scientific understanding. A variety of methods for obtaining both 3D super-resolution images and 3D tracking information have been devised, each with their own strengths and weaknesses. These include imaging of multiple focal planes, point-spread-function engineering, and interferometric detection. These methods may be compared based on their ability to provide accurate and precise position information on single-molecule emitters with limited photons. To successfully apply and further develop these methods, it is essential to consider many practical concerns, including the effects of optical aberrations, field dependence in the imaging system, fluorophore labeling density, and registration between different color channels. Selected examples of 3D super-resolution imaging and tracking are described for illustration from a variety of biological contexts and with a variety of methods, demonstrating the power of 3D localization for understanding complex systems.

  11. Single particle and molecular assembly analysis of polyribosomes by single- and double-tilt cryo electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Myasnikov, Alexander G. [IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Department of Integrative Structural Biology, Centre National de la Recherche Scientifique (CNRS) UMR 7104/ Institut National de la Santé de la Recherche Médicale INSERM U964/ Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch (France); Afonina, Zhanna A. [Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region (Russian Federation); Klaholz, Bruno P., E-mail: klaholz@igbmc.fr [IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Department of Integrative Structural Biology, Centre National de la Recherche Scientifique (CNRS) UMR 7104/ Institut National de la Santé de la Recherche Médicale INSERM U964/ Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch (France)

    2013-03-15

    Cryo electron tomography (cryo-ET) can provide cellular and molecular structural information on various biological samples. However, the detailed interpretation of tomograms reconstructed from single-tilt data tends to suffer from low signal-to-noise ratio and artefacts caused by some systematically missing angular views. While these can be overcome by sub-tomogram averaging, they remain limiting for the analysis of unique structures. Double-tilt ET can improve the tomogram quality by acquiring a second tilt series after an in-plane rotation, but its usage is not widespread yet because it is considered technically demanding and it is rarely used under cryo conditions. Here we show that double-tilt cryo-ET improves the quality of 3D reconstructions so significantly that even single particle analysis can be envisaged despite of the intrinsically low image contrast obtained from frozen-hydrated specimens. This is illustrated by the analysis of eukaryotic polyribosomes in which individual ribosomes were reconstructed using single-tilt, partial and full double-tilt geometries. The improved tomograms favour the faster convergence of iterative sub-tomogram averaging and allow a better 3D classification using multivariate statistical analysis. Our study of single particles and molecular assemblies within polysomes illustrates that the dual-axis approach is particularly useful for cryo applications of ET, both for unique objects and for structures that can be classified and averaged. - Highlights: ► Double-tilt cryo-ET improves 3D reconstructions thus making single particle analysis possible. ► Dual-axis cryo-ET data favour a faster convergence of iterative sub-tomogram averaging. ► Individual ribosomes were reconstructed from single-tilt, partial/ full double-tilt geometries. ► Double-tilt cryo-ET facilitates analysis of larger molecular assemblies such as in cell sections. ► Dual-axis cryo-ET is applicable to unique objects and to structures that can be

  12. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS)

    Science.gov (United States)

    Dall'Osto, Manuel; Beddows, David C. S.; Gietl, Johanna K.; Olatunbosun, Oluremi A.; Yang, Xiaoguang; Harrison, Roy M.

    2014-09-01

    There is a paucity of quantitative knowledge on the contributions of non-exhaust (abrasion and re-suspension) sources to traffic emissions. Abrasive emissions can be broadly categorised as tyre wear, brake wear and road dust/road surface wear. Current research often considers road dust and tyre dust as externally mixed particles, the former mainly composed of mineral matter and the latter solely composed of mainly organic matter and some trace elements. The aim of this work was to characterise tyre wear from both laboratory and field studies by using Aerosol Time-Of-Flight Mass Spectrometry (ATOFMS). Real-time single particle chemical composition was obtained from a set of rubber tyres rotating on a metal surface. Bimodal particle number size distributions peaking at 35 nm and 85 nm were obtained from SMPS/APS measurements over the range 6-20,000 nm. ATOFMS mass spectra of tyre wear in the particle size range 200-3000 nm diameter show peaks due to exo-sulphur compounds, nitrate, Zn and ions of high molecular weight (m/z > 100) attributed to organic polymers. Two large ATOFMS datasets collected from a number of outdoor studies were examined. The former was constituted of 48 road dust samples collected on the roads of London. The latter consisted of ATOFMS ambient air field studies from Europe, overall composed of more than 2,000,000 single particle mass spectra. The majority (95%) of tyre wear particles present in the road dust samples and atmospheric samples are internally mixed with metals (Li, Na, Ca, Fe, Ti), as well as phosphate. It is concluded that the interaction of tyres with the road surface creates particles internally mixed from two sources: tyre rubber and road surface materials. Measurements of the tyre rubber component alone may underestimate the contribution of tyre wear to concentrations of airborne particulate matter. The results presented are especially relevant for urban aerosol source apportionment and PM2.5 exposure assessment.

  13. Statistical and direct decay of high-lying single-particle excitations

    International Nuclear Information System (INIS)

    Gales, S.

    1993-01-01

    Transfer reactions induced by hadronic probes at intermediate energies have revealed a rich spectrum of high-lying excitations embedded in the nuclear continuum. The investigation of their decay properties is believed to be a severe test of their microscopic structure as predicted by microscopic nuclear models. In addition the degree of damping of these simple modes in the nuclear continuum can be obtained by means of the measured particle (n,p) decay branching ratios. The neutron and proton decay studies of high-lying single-particle states in heavy nuclei are presented. (author). 13 refs., 9 figs

  14. Raman mapping of mannitol/lysozyme particles produced via spray drying and single droplet drying

    DEFF Research Database (Denmark)

    Pekka Pajander, Jari; Matero, Sanni Elina; Sloth, Jakob

    2015-01-01

    -ray powder diffractometry (XRPD) and Raman microscopy. Partial Least Squares Discriminant Analysis was used for analyzing the Raman microscopy data. RESULTS: XRPD results indicated that a mixture of β-mannitol and α-mannitol was produced in the spray-drying process which was supported by the Raman analysis......, whereas Raman analysis indicated that a mixture of α-mannitol and δ-mannitol was detected in the single particles from DKA. In addition Raman mapping indicated that the presence of lysozyme seemed to favor the appearance of α-mannitol in the particles from DKA evidenced by close proximity of lysozyme...

  15. Measurement of single moving particle temperatures with an FT-IR spectrometer

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Sørensen, L.H.

    1996-01-01

    A conventional scanning FT-IR spectrometer is used to measure the blackbody radiation through a rapidly moving pinhole in an experiment simulating a dying hot particle. The effects and errors from source movements are analyzed and verified through experiments. The importance of the scanning...... by a factor of 2-10 compared with results from a typical two-color pyrometer. A novel method is presented for measuring emission spectra from single moving particles passing the field of view of the spectrometer in a random manner....

  16. Electrodynamic balance-mass spectrometry of single particles as a new platform for atmospheric chemistry research

    Science.gov (United States)

    Birdsall, Adam W.; Krieger, Ulrich K.; Keutsch, Frank N.

    2018-01-01

    New analytical techniques are needed to improve our understanding of the intertwined physical and chemical processes that affect the composition of aerosol particles in the Earth's atmosphere, such as gas-particle partitioning and homogenous or heterogeneous chemistry, and their ultimate relation to air quality and climate. We describe a new laboratory setup that couples an electrodynamic balance (EDB) to a mass spectrometer (MS). The EDB stores a single laboratory-generated particle in an electric field under atmospheric conditions for an arbitrarily long length of time. The particle is then transferred via gas flow to an ionization region that vaporizes and ionizes the analyte molecules before MS measurement. We demonstrate the feasibility of the technique by tracking evaporation of polyethylene glycol molecules and finding agreement with a kinetic model. Fitting data to the kinetic model also allows determination of vapor pressures to within a factor of 2. This EDB-MS system can be used to study fundamental chemical and physical processes involving particles that are difficult to isolate and study with other techniques. The results of such measurements can be used to improve our understanding of atmospheric particles.

  17. Single particle electron microscopy reconstruction of the exosome complex using the random conical tilt method.

    Science.gov (United States)

    Liu, Xueqi; Wang, Hong-Wei

    2011-03-28

    Single particle electron microscopy (EM) reconstruction has recently become a popular tool to get the three-dimensional (3D) structure of large macromolecular complexes. Compared to X-ray crystallography, it has some unique advantages. First, single particle EM reconstruction does not need to crystallize the protein sample, which is the bottleneck in X-ray crystallography, especially for large macromolecular complexes. Secondly, it does not need large amounts of protein samples. Compared with milligrams of proteins necessary for crystallization, single particle EM reconstruction only needs several micro-liters of protein solution at nano-molar concentrations, using the negative staining EM method. However, despite a few macromolecular assemblies with high symmetry, single particle EM is limited at relatively low resolution (lower than 1 nm resolution) for many specimens especially those without symmetry. This technique is also limited by the size of the molecules under study, i.e. 100 kDa for negatively stained specimens and 300 kDa for frozen-hydrated specimens in general. For a new sample of unknown structure, we generally use a heavy metal solution to embed the molecules by negative staining. The specimen is then examined in a transmission electron microscope to take two-dimensional (2D) micrographs of the molecules. Ideally, the protein molecules have a homogeneous 3D structure but exhibit different orientations in the micrographs. These micrographs are digitized and processed in computers as "single particles". Using two-dimensional alignment and classification techniques, homogenous molecules in the same views are clustered into classes. Their averages enhance the signal of the molecule's 2D shapes. After we assign the particles with the proper relative orientation (Euler angles), we will be able to reconstruct the 2D particle images into a 3D virtual volume. In single particle 3D reconstruction, an essential step is to correctly assign the proper orientation

  18. Developing new optical imaging techniques for single particle and molecule tracking in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Differential interference contrast (DIC) microscopy is a far-field as well as wide-field optical imaging technique. Since it is non-invasive and requires no sample staining, DIC microscopy is suitable for tracking the motion of target molecules in live cells without interfering their functions. In addition, high numerical aperture objectives and condensers can be used in DIC microscopy. The depth of focus of DIC is shallow, which gives DIC much better optical sectioning ability than those of phase contrast and dark field microscopies. In this work, DIC was utilized to study dynamic biological processes including endocytosis and intracellular transport in live cells. The suitability of DIC microscopy for single particle tracking in live cells was first demonstrated by using DIC to monitor the entire endocytosis process of one mesoporous silica nanoparticle (MSN) into a live mammalian cell. By taking advantage of the optical sectioning ability of DIC, we recorded the depth profile of the MSN during the endocytosis process. The shape change around the nanoparticle due to the formation of a vesicle was also captured. DIC microscopy was further modified that the sample can be illuminated and imaged at two wavelengths simultaneously. By using the new technique, noble metal nanoparticles with different shapes and sizes were selectively imaged. Among all the examined metal nanoparticles, gold nanoparticles in rod shapes were found to be especially useful. Due to their anisotropic optical properties, gold nanorods showed as diffraction-limited spots with disproportionate bright and dark parts that are strongly dependent on their orientation in the 3D space. Gold nanorods were developed as orientation nanoprobes and were successfully used to report the self-rotation of gliding microtubules on kinesin coated substrates. Gold nanorods were further used to study the rotational motions of cargoes during the endocytosis and intracellular transport processes in live mammalian

  19. Collectivity from interference

    Science.gov (United States)

    Blok, Boris; Jäkel, Christian D.; Strikman, Mark; Wiedemann, Urs Achim

    2017-12-01

    In hadronic collisions, interference between different production channels affects momentum distributions of multi-particle final states. As this QCD interference does not depend on the strong coupling constant α s , it is part of the no-interaction baseline that needs to be controlled prior to searching for other manifestations of collective dynamics, e.g., in the analysis of azimuthal anisostropy coefficients v n at the LHC. Here, we introduce a model that is based on the QCD theory of multi-parton interactions and that allows one to study interference effects in the production of m particles in hadronic collisions with N parton-parton interactions ("sources"). In an expansion in powers of 1/( N c 2 - 1) and to leading order in the number of sources N , we calculate interference effects in the m-particle spectra and we determine from them the second and fourth order cumulant momentum anisotropies v n {2} and v n {4}. Without invoking any azimuthal asymmetry and any density dependent non-linear dynamics in the incoming state, and without invoking any interaction in the final state, we find that QCD interference alone can give rise to values for v n {2} and v n {4}, n even, that persist unattenuated for increasing number of sources, that may increase with increasing multiplicity and that agree with measurements in proton-proton (pp) collisions in terms of the order of magnitude of the signal and the approximate shape of the transverse momentum dependence. We further find that the non-abelian features of QCD interference can give rise to odd harmonic anisotropies. These findings indicate that the no-interaction baseline including QCD interference effects can make a sizeable if not dominant contribution to the measured v n coefficients in pp collisions. Prospects for analyzing QCD interference contributions further and their possible relevance for proton-nucleus and nucleus-nucleus collisions are discussed shortly.

  20. The method of covariant calculation of the amplitudes of processes with polarized spin 1/2 particles and its application to calculation of interference terms in cross sections of these processes

    International Nuclear Information System (INIS)

    Bondarev, A.L.

    1993-01-01

    The method of covariant calculation of the amplitudes of processes with polarized spin 1/2 particles is suggested. It can be used for calculation of interference terms in cross sections of these processes. As an illustration the expressions for the lowest order amplitudes of electron-electron scattering and for electron current with radiation of two bremsstrahlung photons in ultrarelativistic limit are presented

  1. Sampling and single particle analysis for the chemical characterisation of fine atmospheric particulates: A review.

    Science.gov (United States)

    Elmes, Michele; Gasparon, Massimo

    2017-11-01

    To better understand the potential environmental and human health impacts of fine airborne particulate matter (APM), detailed physical and chemical characterisation is required. The only means to accurately distinguish between the multiple compositions in APM is by single particle analysis. A variety of methods and instruments are available, which range from filter-based sample collection for off-line laboratory analysis to on-line instruments that detect the airborne particles and generate size distribution and chemical data in real time. There are many reasons for sampling particulates in the ambient atmosphere and as a consequence, different measurement strategies and sampling devices are used depending on the scientific objectives and subsequent analytical techniques. This review is designed as a guide to some of the techniques available for the sampling and subsequent chemical analysis of individual inorganic particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Chaos and nonlinear dynamics of single-particle orbits in a magnetotaillike magnetic field

    Science.gov (United States)

    Chen, J.; Palmadesso, P. J.

    1986-01-01

    The properties of charged-particle motion in Hamiltonian dynamics are studied in a magnetotaillike magnetic field configuration. It is shown by numerical integration of the equation of motion that the system is generally nonintegrable and that the particle motion can be classified into three distinct types of orbits: bounded integrable orbits, unbounded stochastic orbits, and unbounded transient orbits. It is also shown that different regions of the phase space exhibit qualitatively different responses to external influences. The concept of 'differential memory' in single-particle distributions is proposed. Physical implications for the dynamical properties of the magnetotail plasmas and the possible generation of non-Maxwellian features in the distribution functions are discussed.

  3. Blowing Snow and Aerosol Composition: Bulk and Single Particle Measurements in Antarctica

    Science.gov (United States)

    DeCarlo, P. F.; Giordano, M.

    2017-12-01

    Recent evidence suggests that aerosol concentration and composition in the cryosphere is influenced by blowing snow, though the mechanisms remain unclear. Changes in aerosol composition due to blowing snow may significantly alter local and regional aerosol production, processing, transport, and lifetimes in the cryosphere. This presentation will focus on both bulk composition changes and single particle results from deploying an aerosol mass spectrometer (AMS) to the Antarctic sea ice during the 2ODIAC campaign, with a focus on blowing snow events. With this first on-line analysis, blowing snow clearly enhances the submicron sea salt (Na and Cl) concentrations in Antarctic aerosols. These bulk composition changes are shown to be independent from air mass origins. Single particle results from the AMS show a variety of chemical species in addition to sulfates in the submicron aerosol mass. K-means cluster analysis also shows distinct changes in the overall aerosol mass spectra during to blowing snow events.

  4. Single-particle model of a strongly driven, dense, nanoscale quantum ensemble

    Science.gov (United States)

    DiLoreto, C. S.; Rangan, C.

    2018-01-01

    We study the effects of interatomic interactions on the quantum dynamics of a dense, nanoscale, atomic ensemble driven by a strong electromagnetic field. We use a self-consistent, mean-field technique based on the pseudospectral time-domain method and a full, three-directional basis to solve the coupled Maxwell-Liouville equations. We find that interatomic interactions generate a decoherence in the state of an ensemble on a much faster time scale than the excited-state lifetime of individual atoms. We present a single-particle model of the driven, dense ensemble by incorporating interactions into a dephasing rate. This single-particle model reproduces the essential physics of the full simulation and is an efficient way of rapidly estimating the collective dynamics of a dense ensemble.

  5. Detection of charged particles with a methylammonium lead tribromide perovskite single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qiang [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Wei, Haotong; Wei, Wei [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States); Chuirazzi, William; DeSantis, Dylan [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Huang, Jinsong, E-mail: jhuang2@unl.edu [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States); Cao, Lei, E-mail: cao.152@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

    2017-03-11

    Methylammonium lead tribromide (MAPbBr{sub 3}) perovskite crystals have attracted significant attention due to their attractive performance in various optoelectronic applications such as solar cells, light-emitting devices, photodetectors, and recently in X-ray detectors. In this study, we demonstrate a possible use of perovskite-based devices for detection of charged particles (which can be applied in basic scientific research, health physics, and environmental analysis) and investigate the mechanism of fundamental charge transport inside perovskite crystals. It was found that inexpensive MAPbBr{sub 3} single crystals could be used for measuring the energy spectrum of charged particles through direct collection of the produced charge. After fitting the plot of the centroid peak position versus voltage with the Hecht equation for single-polarity charge transport, the obtained hole mobility-lifetime product was in the range of (0.4–1.6)×10{sup −3} cm{sup 2}/V.

  6. Inequivalence of single-particle and population lifetimes in a cuprate superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuolong [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Sobota, J. A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leuenberger, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); He, Y. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Hashimoto, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lu, D. H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Eisaki, H. [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan); Kirchmann, P. S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Shen, Z. -X. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States)

    2015-06-15

    We study optimally doped Bi-2212 (Tc=96 K) using femtosecond time- and angle-resolved photoelectron spectroscopy. Energy-resolved population lifetimes are extracted and compared with single-particle lifetimes measured by equilibrium photoemission. The population lifetimes deviate from the single-particle lifetimes in the low excitation limit by 1–2 orders of magnitude. Fundamental considerations of electron scattering unveil that these two lifetimes are in general distinct, yet for systems with only electron-phonon scattering they should converge in the low-temperature, low-fluence limit. As a result, the qualitative disparity in our data, even in this limit, suggests that scattering channels beyond electron-phonon interactions play a significant role in the electron dynamics of cuprate superconductors.

  7. The advent of structural biologyin situby single particle cryo-electron tomography.

    Science.gov (United States)

    Galaz-Montoya, Jesús G; Ludtke, Steven J

    2017-01-01

    Single particle tomography (SPT), also known as subtomogram averaging, is a powerful technique uniquely poised to address questions in structural biology that are not amenable to more traditional approaches like X-ray crystallography, nuclear magnetic resonance, and conventional cryoEM single particle analysis. Owing to its potential for in situ structural biology at subnanometer resolution, SPT has been gaining enormous momentum in the last five years and is becoming a prominent, widely used technique. This method can be applied to unambiguously determine the structures of macromolecular complexes that exhibit compositional and conformational heterogeneity, both in vitro and in situ . Here we review the development of SPT, highlighting its applications and identifying areas of ongoing development.

  8. Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments.

    Directory of Open Access Journals (Sweden)

    Eldad Kepten

    Full Text Available Single particle tracking is an essential tool in the study of complex systems and biophysics and it is commonly analyzed by the time-averaged mean square displacement (MSD of the diffusive trajectories. However, past work has shown that MSDs are susceptible to significant errors and biases, preventing the comparison and assessment of experimental studies. Here, we attempt to extract practical guidelines for the estimation of anomalous time averaged MSDs through the simulation of multiple scenarios with fractional Brownian motion as a representative of a large class of fractional ergodic processes. We extract the precision and accuracy of the fitted MSD for various anomalous exponents and measurement errors with respect to measurement length and maximum time lags. Based on the calculated precision maps, we present guidelines to improve accuracy in single particle studies. Importantly, we find that in some experimental conditions, the time averaged MSD should not be used as an estimator.

  9. Insight into interrelation between single-particle and collective diffusion in binary melts

    Science.gov (United States)

    Levchenko, Elena V.; Evteev, Alexander V.

    2018-01-01

    The interrelation between the kinetics of single-particle (tracer) and collective diffusion in a binary melt is investigated theoretically within the framework of the Mori-Zwanzig formalism of statistical mechanics. An analytical expression for the Onsager coefficient for mass transport and two self-diffusion coefficients of species in a binary melt is derived using analysis based on the generalized Langevin equation. The derived expression naturally accounts for manifestation of microscopic (dynamic) cross-correlation effects in the kinetics of collective diffusion. Hence, it presents an explicit extension of the well-known Darken equation which is currently often used for expressing collective interdiffusion in terms of the two self-diffusion coefficients. An application of our analysis for interpretation of recent experimental data on the interrelation between the kinetics of single-particle and collective diffusion in Al-rich Ni-Al melts is demonstrated.

  10. Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors - An alternative approach.

    Science.gov (United States)

    Burnecki, Krzysztof; Kepten, Eldad; Garini, Yuval; Sikora, Grzegorz; Weron, Aleksander

    2015-06-11

    Accurately characterizing the anomalous diffusion of a tracer particle has become a central issue in biophysics. However, measurement errors raise difficulty in the characterization of single trajectories, which is usually performed through the time-averaged mean square displacement (TAMSD). In this paper, we study a fractionally integrated moving average (FIMA) process as an appropriate model for anomalous diffusion data with measurement errors. We compare FIMA and traditional TAMSD estimators for the anomalous diffusion exponent. The ability of the FIMA framework to characterize dynamics in a wide range of anomalous exponents and noise levels through the simulation of a toy model (fractional Brownian motion disturbed by Gaussian white noise) is discussed. Comparison to the TAMSD technique, shows that FIMA estimation is superior in many scenarios. This is expected to enable new measurement regimes for single particle tracking (SPT) experiments even in the presence of high measurement errors.

  11. Innovative molecular-based fluorescent nanoparticles for multicolor single particle tracking in cells

    International Nuclear Information System (INIS)

    Daniel, Jonathan; Blanchard-Desce, Mireille; Godin, Antoine G; Palayret, Matthieu; Lounis, Brahim; Cognet, Laurent

    2016-01-01

    Based on an original molecular-based design, we present bright and photostable fluorescent organic nanoparticles (FONs) showing excellent colloidal stability in various aqueous environments. Complementary near-infrared emitting and green emitting FONs were prepared using a simple, fast and robust protocol. Both types of FONs could be simultaneously imaged at the single-particle level in solution as well as in biological environments using a monochromatic excitation and a dual-color fluorescence microscope. No evidence of acute cytotoxicity was found upon incubation of live cells with mixed solutions of FONs, and both types of nanoparticles were found internalized in the cells where their motion could be simultaneously tracked at video-rate up to minutes. These fluorescent organic nanoparticles open a novel non-toxic alternative to existing nanoparticles for imaging biological structures, compatible with live-cell experiments and specially fitted for multicolor single particle tracking. (paper)

  12. Radiative capture of nucleons at astrophysical energies with single-particle states

    International Nuclear Information System (INIS)

    Huang, J.T.; Bertulani, C.A.; Guimaraes, V.

    2010-01-01

    Radiative capture of nucleons at energies of astrophysical interest is one of the most important processes for nucleosynthesis. The nucleon capture can occur either by a compound nucleus reaction or by a direct process. The compound reaction cross sections are usually very small, especially for light nuclei. The direct capture proceeds either via the formation of a single-particle resonance or a non-resonant capture process. In this work we calculate radiative capture cross sections and astrophysical S-factors for nuclei in the mass region A<20 using single-particle states. We carefully discuss the parameter fitting procedure adopted in the simplified two-body treatment of the capture process. Then we produce a detailed list of cases for which the model works well. Useful quantities, such as spectroscopic factors and asymptotic normalization coefficients, are obtained and compared to published data.

  13. Characterisation of Black Carbon (BC) mixing state and flux in Beijing using single particle measurements.

    Science.gov (United States)

    Joshi, Rutambhara; Liu, Dantong; Allan, James; Coe, Hugh; Flynn, Michael; Broda, Kurtis; Olfert, Jason; Irwin, Martin; Sun, Yele; Fu, Pingqing; Wang, Junfeng; Ge, Xinlei; Langford, Ben; Nemitz, Eiko; Mullinger, Neil

    2017-04-01

    BC is generated by the incomplete combustion of carbonaceous fuels and it is an important component of fine PM2.5. In the atmosphere BC particles have a complex structure and its mixing state has crucial impact on optical properties. Quantifying the sources and emissions of black carbon in urban environments is important and presently uncertain, particularly in megacities undergoing rapid growth and change in emissions. During the winter of 2016 (10th Nov-10th Dec) the BC was characterised as part of a large joint UK-China field experiment in Beijing. This paper focuses on understanding the mixing state of BC as well as identification and quantification of BC sources. We used a combination of a Centrifugal Particle Mass Analyser (CPMA) and a Single Particle Soot Photometer (SP2) to uniquely quantify the morphology independent mass of single refractory BC particles and their coating content. The CPMA allows us to select pre-charged aerosol particles according to their mass to charge ratio and the SP2 provides information on the mass of refractory BC through a laser-induced incandescence method. Furthermore, another SP2 was used to measure the BC flux at 100m height using the Eddy Covariance method. We have successfully gathered 4 weeks of continuous measurements which include several severe pollution events in Beijing. Here we present preliminary results, characterising the distribution of coating mass on BC particles in Beijing and linking this to the main sources of BC in the city. We will provide initial estimates of the BC flux over a several kilometre footprint. Such analysis will provide important information for the further investigation of source distribution, emission, lifetime and optical properties of BC under complex environments in Beijing.

  14. Single-Particle Tracking of Human Immunodeficiency Virus Type 1 Productive Entry into Human Primary Macrophages.

    Science.gov (United States)

    Li, Qin; Li, Wei; Yin, Wen; Guo, Jia; Zhang, Zhi-Ping; Zeng, Dejun; Zhang, Xiaowei; Wu, Yuntao; Zhang, Xian-En; Cui, Zongqiang

    2017-04-25

    Macrophages are one of the major targets of human immunodeficiency virus (HIV-1), but the viral entry pathway remains poorly understood in these cells. Noninvasive virus labeling and single-virus tracking are effective tools for studying virus entry. Here, we constructed a quantum dot (QD)-encapsulated infectious HIV-1 particle to track viral entry at a single-particle level in live human primary macrophages. QDs were encapsulated in HIV-1 virions by incorporating viral accessory protein Vpr-conjugated QDs during virus assembly. With the HIV-1 particles encapsulating QDs, we monitored the early phase of viral infection in real time and observed that, during infection, HIV-1 was endocytosed in a clathrin-mediated manner; the particles were translocated into Rab5A-positive endosomes, and the core was released into the cytoplasm by viral envelope-mediated endosomal fusion. Drug inhibition assays verified that endosome fusion contributes to HIV-1 productive infection in primary macrophages. Additionally, we observed that a dynamic actin cytoskeleton is critical for HIV-1 entry and intracellular migration in primary macrophages. HIV-1 dynamics and infection could be blocked by multiple different actin inhibitors. Our study revealed a productive entry pathway in macrophages that requires both endosomal function and actin dynamics, which may assist in the development of inhibitors to block the HIV entry in macrophages.

  15. Modified iterated extended Kalman particle filter for single satellite passive tracking

    OpenAIRE

    WU, Panlong; KONG, Jianshou; BO, Yuming

    2013-01-01

    Single satellite-to-satellite passive tracking techniques have great significance in space surveillance systems. A new passive modified iterated extended Kalman particle filter (MIEKPF) using bearings-only measurements in the Earth-Centered Inertial Coordinate System is proposed. The modified iterated extended Kalman filter (MIEKF), with a new maximum likelihood iteration termination criterion, is used to generate the proposal distribution of the MIEKPF. Moreover, a new measurement u...

  16. Single particle 3D reconstruction for 2D crystal images of membrane proteins.

    Science.gov (United States)

    Scherer, Sebastian; Arheit, Marcel; Kowal, Julia; Zeng, Xiangyan; Stahlberg, Henning

    2014-03-01

    In cases where ultra-flat cryo-preparations of well-ordered two-dimensional (2D) crystals are available, electron crystallography is a powerful method for the determination of the high-resolution structures of membrane and soluble proteins. However, crystal unbending and Fourier-filtering methods in electron crystallography three-dimensional (3D) image processing are generally limited in their performance for 2D crystals that are badly ordered or non-flat. Here we present a single particle image processing approach, which is implemented as an extension of the 2D crystallographic pipeline realized in the 2dx software package, for the determination of high-resolution 3D structures of membrane proteins. The algorithm presented, addresses the low single-to-noise ratio (SNR) of 2D crystal images by exploiting neighborhood correlation between adjacent proteins in the 2D crystal. Compared with conventional single particle processing for randomly oriented particles, the computational costs are greatly reduced due to the crystal-induced limited search space, which allows a much finer search space compared to classical single particle processing. To reduce the considerable computational costs, our software features a hybrid parallelization scheme for multi-CPU clusters and computer with high-end graphic processing units (GPUs). We successfully apply the new refinement method to the structure of the potassium channel MloK1. The calculated 3D reconstruction shows more structural details and contains less noise than the map obtained by conventional Fourier-filtering based processing of the same 2D crystal images. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Quantum private comparison with d-level single-particle states

    International Nuclear Information System (INIS)

    Yu, Chao-Hua; Guo, Gong-De; Lin, Song

    2013-01-01

    In this paper, a quantum private comparison protocol with d-level single-particle states is proposed. In the protocol, a semi-honest third party is introduced to help two participants compare the size relationship of their secrets without revealing them to any other people. It is shown that the protocol is secure in theory. Moreover, the security of the protocol in real circumstance is also discussed. (paper)

  18. Single-particle cryo-electron microscopy of Rift Valley fever virus

    OpenAIRE

    Sherman, Michael B.; Freiberg, Alexander N.; Holbrook, Michael R.; Watowich, Stanley J.

    2009-01-01

    Rift Valley fever virus (RVFV; Bunyaviridae; Phlebovirus) is an emerging human veterinary pathogen causing acute hepatitis in ruminants and has the potential to Single-particle cryo-EM reconstruction of RVFV MP-12 hemorrhagic fever in humans. We report a three-dimensional reconstruction of RVFV vaccine strain MP-12 (RVFV MP-12) by cryo-electron microcopy using icosahedral symmetry of individual virions. Although the genomic core of RVFV MP-12 is apparently poorly ordered, the glycoproteins on...

  19. Enchanced interference cancellation and telemetry reception in multipath environments with a single paraboic dish antenna using a focal plane array

    Science.gov (United States)

    Mukai, Ryan (Inventor); Vilnrotter, Victor A. (Inventor)

    2011-01-01

    An Advanced Focal Plane Array ("AFPA") for parabolic dish antennas that exploits spatial diversity to achieve better channel equalization performance in the presence of multipath (better than temporal equalization alone), and which is capable of receiving from two or more sources within a field-of-view in the presence of multipath. The AFPA uses a focal plane array of receiving elements plus a spatio-temporal filter that keeps information on the adaptive FIR filter weights, relative amplitudes and phases of the incoming signals, and which employs an Interference Cancelling Constant Modulus Algorithm (IC-CMA) that resolves multiple telemetry streams simultaneously from the respective aero-nautical platforms. This data is sent to an angle estimator to calculate the target's angular position, and then on to Kalman filters FOR smoothing and time series prediction. The resulting velocity and acceleration estimates from the time series data are sent to an antenna control unit (ACU) to be used for pointing control.

  20. Toward single-material multilayer interference mid-infrared filters with sub-wavelength structures for cryogenic infrared astronomical missions

    Science.gov (United States)

    Makitsubo, Hironobu; Wada, Takehiko; Mita, Makoto

    2011-03-01

    We are trying to develop high performance mid-infrared (MIR) and far-infrared (FIR) optical filters with mechanical strength and robustness for thermal cycling toward cryogenic infrared astronomical space missions. Multilayer interference filters enable us to design a wide variety of spectral response by controlling refractive index and thickness of each layer, however, in longer MIR and FIR (30-300μm) wavelength regions, there are a few optical materials known to have both good transparency and physical robustness, which makes difficult to realize high performance filters because of limited refractive index values. It is also difficult to deposit thick layers required for MIR/FIR multilayer filters by conventional method. Furthermore, multilayer interference filters are realized by thin film coatings having different coefficients of thermal expansion (CTE), which makes filters fragile for thermal cycling. To clear these problems, we introduce sub-wavelength structures (SWS) for controlling the refractive index. Then, only one material is necessary for fabricating filters, which enables us to fabricate filters with mechanical strength and robustness for thermal cycling. In 30-300μm wavelength regions silicon is very suitable for filter material because not only silicon has little absorption and physical robustness but also SWS are easily fabricated by micro-electro mechanical systems (MEMS) technology. As a first step, we have fabricated anti-reflection SWS layer on silicon wafers to demonstrate the refractive index control by simple SWS (periodic cylindrical holes on a silicon wafer). Comparing measured transmittance with both effective medium approximation (EMA) theory and rigorous coupled wave analysis (RCWA) simulation, we confirm that the refractive control of SWS layer is verified.

  1. Mask-based approach to phasing of single-particle diffraction data.

    Science.gov (United States)

    Lunin, Vladimir Y; Lunina, Natalia L; Petrova, Tatiana E; Baumstark, Manfred W; Urzhumtsev, Alexandre G

    2016-01-01

    A Monte Carlo-type approach for low- and medium-resolution phasing of single-particle diffraction data is suggested. Firstly, the single-particle phase problem is substituted with the phase problem for an imaginary crystal. A unit cell of this crystal contains a single isolated particle surrounded by a large volume of bulk solvent. The developed phasing procedure then generates a large number of connected and finite molecular masks, calculates their Fourier coefficients, selects the sets with magnitudes that are highly correlated with the experimental values and finally aligns the selected phase sets and calculates the averaged phase values. A test with the known structure of monomeric photosystem II resulted in phases that have 97% correlation with the exact phases in the full 25 Å resolution shell (1054 structure factors) and correlations of 99, 94, 81 and 79% for the resolution shells ∞-60, 60-40, 40-30 and 30-25 Å, respectively. The same procedure may be used for crystallographic ab initio phasing.

  2. Single-particle cryo-EM-Improved ab initio 3D reconstruction with SIMPLE/PRIME.

    Science.gov (United States)

    Reboul, Cyril F; Eager, Michael; Elmlund, Dominika; Elmlund, Hans

    2018-01-01

    Cryogenic electron microscopy (cryo-EM) and single-particle analysis now enables the determination of high-resolution structures of macromolecular assemblies that have resisted X-ray crystallography and other approaches. We developed the SIMPLE open-source image-processing suite for analysing cryo-EM images of single-particles. A core component of SIMPLE is the probabilistic PRIME algorithm for identifying clusters of images in 2D and determine relative orientations of single-particle projections in 3D. Here, we extend our previous work on PRIME and introduce new stochastic optimization algorithms that improve the robustness of the approach. Our refined method for identification of homogeneous subsets of images in accurate register substantially improves the resolution of the cluster centers and of the ab initio 3D reconstructions derived from them. We now obtain maps with a resolution better than 10 Å by exclusively processing cluster centers. Excellent parallel code performance on over-the-counter laptops and CPU workstations is demonstrated. © 2017 The Protein Society.

  3. Automatic CTF correction for single particles based upon multivariate statistical analysis of individual power spectra.

    Science.gov (United States)

    Sander, B; Golas, M M; Stark, H

    2003-06-01

    Three-dimensional electron cryomicroscopy of randomly oriented single particles is a method that is suitable for the determination of three-dimensional structures of macromolecular complexes at molecular resolution. However, the electron-microscopical projection images are modulated by a contrast transfer function (CTF) that prevents the calculation of three-dimensional reconstructions of biological complexes at high resolution from uncorrected images. We describe here an automated method for the accurate determination and correction of the CTF parameters defocus, twofold astigmatism and amplitude-contrast proportion from single-particle images. At the same time, the method allows the frequency-dependent signal decrease (B factor) and the non-convoluted background signal to be estimated. The method involves the classification of the power spectra of single-particle images into groups with similar CTF parameters; this is done by multivariate statistical analysis (MSA) and hierarchically ascending classification (HAC). Averaging over several power spectra generates class averages with enhanced signal-to-noise ratios. The correct CTF parameters can be deduced from these class averages by applying an iterative correlation procedure with theoretical CTF functions; they are then used to correct the raw images. Furthermore, the method enables the tilt axis of the sample holder to be determined and allows the elimination of individual poor-quality images that show high drift or charging effects.

  4. Determining Complex Structures using Docking Method with Single Particle Scattering Data

    Directory of Open Access Journals (Sweden)

    Haiguang Liu

    2017-04-01

    Full Text Available Protein complexes are critical for many molecular functions. Due to intrinsic flexibility and dynamics of complexes, their structures are more difficult to determine using conventional experimental methods, in contrast to individual subunits. One of the major challenges is the crystallization of protein complexes. Using X-ray free electron lasers (XFELs, it is possible to collect scattering signals from non-crystalline protein complexes, but data interpretation is more difficult because of unknown orientations. Here, we propose a hybrid approach to determine protein complex structures by combining XFEL single particle scattering data with computational docking methods. Using simulations data, we demonstrate that a small set of single particle scattering data collected at random orientations can be used to distinguish the native complex structure from the decoys generated using docking algorithms. The results also indicate that a small set of single particle scattering data is superior to spherically averaged intensity profile in distinguishing complex structures. Given the fact that XFEL experimental data are difficult to acquire and at low abundance, this hybrid approach should find wide applications in data interpretations.

  5. Determining Complex Structures using Docking Method with Single Particle Scattering Data.

    Science.gov (United States)

    Wang, Hongxiao; Liu, Haiguang

    2017-01-01

    Protein complexes are critical for many molecular functions. Due to intrinsic flexibility and dynamics of complexes, their structures are more difficult to determine using conventional experimental methods, in contrast to individual subunits. One of the major challenges is the crystallization of protein complexes. Using X-ray free electron lasers (XFELs), it is possible to collect scattering signals from non-crystalline protein complexes, but data interpretation is more difficult because of unknown orientations. Here, we propose a hybrid approach to determine protein complex structures by combining XFEL single particle scattering data with computational docking methods. Using simulations data, we demonstrate that a small set of single particle scattering data collected at random orientations can be used to distinguish the native complex structure from the decoys generated using docking algorithms. The results also indicate that a small set of single particle scattering data is superior to spherically averaged intensity profile in distinguishing complex structures. Given the fact that XFEL experimental data are difficult to acquire and at low abundance, this hybrid approach should find wide applications in data interpretations.

  6. "Depth-profiling" and quantitative characterization of the size, composition, shape, density, and morphology of fine particles with SPLAT, a single-particle mass spectrometer.

    Science.gov (United States)

    Zelenyuk, Alla; Yang, Juan; Song, Chen; Zaveri, Rahul A; Imre, Dan

    2008-01-31

    A significant fraction of atmospheric particles are composed of inorganic substances that are mixed or coated with organic compounds. The properties and behavior of these particles depend on the internal composition and arrangement of the specific constituents in each particle. It is important to know which constituent is on the surface and whether it covers the particle surface partially or entirely. We demonstrate here an instrument consisting of an ultrasensitive single-particle mass spectrometer coupled with a differential mobility analyzer to quantitatively measure in real time individual particle composition, size, density, and shape and to determine which substance is on the surface and whether it entirely covers the particle. For this study, we use NaCl particles completely coated with liquid dioctyl phthalate to generate spherical particles, and NaCl particles partially coated with pyrene, a solid poly aromatic hydrocarbon, to produce aspherical particles with pyrene nodules and an exposed NaCl core. We show that the behavior of the mass spectral intensities as a function of laser fluence yields information that can be used to determine the morphological distribution of individual particle constituents.

  7. Raman mapping of mannitol/lysozyme particles produced via spray drying and single droplet drying.

    Science.gov (United States)

    Pajander, Jari Pekka; Matero, Sanni; Sloth, Jakob; Wan, Feng; Rantanen, Jukka; Yang, Mingshi

    2015-06-01

    This study aimed to investigate the effect of a model protein on the solid state of a commonly used bulk agent in spray-dried formulations. A series of lysozyme/mannitol formulations were spray-dried using a lab-scale spray dryer. Further, the surface temperature of drying droplet/particles was monitored using the DRYING KINETICS ANALYZER™ (DKA) with controllable drying conditions mimicking the spray-drying process to estimate the drying kinetics of the lysozyme/mannitol formulations. The mannitol polymorphism and the spatial distribution of lysozyme in the particles were examined using X-ray powder diffractometry (XRPD) and Raman microscopy. Partial Least Squares Discriminant Analysis was used for analyzing the Raman microscopy data. XRPD results indicated that a mixture of β-mannitol and α-mannitol was produced in the spray-drying process which was supported by the Raman analysis, whereas Raman analysis indicated that a mixture of α-mannitol and δ-mannitol was detected in the single particles from DKA. In addition Raman mapping indicated that the presence of lysozyme seemed to favor the appearance of α-mannitol in the particles from DKA evidenced by close proximity of lysozyme and mannitol in the particles. It suggested that the presence of lysozyme tend to induce metastable solid state forms upon the drying process.

  8. Single-particle measurements of bouncing particles and in situ collection efficiency from an airborne aerosol mass spectrometer (AMS) with light-scattering detection

    Science.gov (United States)

    Liao, Jin; Brock, Charles A.; Murphy, Daniel M.; Sueper, Donna T.; Welti, André; Middlebrook, Ann M.

    2017-10-01

    A light-scattering module was coupled to an airborne, compact time-of-flight aerosol mass spectrometer (LS-AMS) to investigate collection efficiency (CE) while obtaining nonrefractory aerosol chemical composition measurements during the Southeast Nexus (SENEX) campaign. In this instrument, particles scatter light from an internal laser beam and trigger saving individual particle mass spectra. Nearly all of the single-particle data with mass spectra that were triggered by scattered light signals were from particles larger than ˜ 280 nm in vacuum aerodynamic diameter. Over 33 000 particles are characterized as either prompt (27 %), delayed (15 %), or null (58 %), according to the time and intensity of their total mass spectral signals. The particle mass from single-particle spectra is proportional to that derived from the light-scattering diameter (dva-LS) but not to that from the particle time-of-flight (PToF) diameter (dva-MS) from the time of the maximum mass spectral signal. The total mass spectral signal from delayed particles was about 80 % of that from prompt ones for the same dva-LS. Both field and laboratory data indicate that the relative intensities of various ions in the prompt spectra show more fragmentation compared to the delayed spectra. The particles with a delayed mass spectral signal likely bounced off the vaporizer and vaporized later on another surface within the confines of the ionization source. Because delayed particles are detected by the mass spectrometer later than expected from their dva-LS size, they can affect the interpretation of particle size (PToF) mass distributions, especially at larger sizes. The CE, measured by the average number or mass fractions of particles optically detected that had measurable mass spectra, varied significantly (0.2-0.9) in different air masses. The measured CE agreed well with a previous parameterization when CE > 0.5 for acidic particles but was sometimes lower than the minimum parameterized CE of 0.5.

  9. Single potassium niobate nano/microsized particles as local mechano-optical Brownian probes

    Science.gov (United States)

    Mor, Flavio M.; Sienkiewicz, Andrzej; Magrez, Arnaud; Forró, László; Jeney, Sylvia

    2016-03-01

    Perovskite alkaline niobates, due to their strong nonlinear optical properties, including birefringence and the capability to produce second-harmonic generation (SHG) signals, attract a lot of attention as potential candidates for applications as local nano/microsized mechano-optical probes. Here, we report on an implementation of photonic force microscopy (PFM) to explore the Brownian motion and optical trappability of monocrystalline potassium niobate (KNbO3) nano/microsized particles having sizes within the range of 50 to 750 nm. In particular, we exploit the anisotropic translational diffusive regime of the Brownian motion to quantify thermal fluctuations and optical forces of singly-trapped KNbO3 particles within the optical trapping volume of a PFM microscope. We also show that, under near-infrared (NIR) excitation of the highly focused laser beam of the PFM microscope, a single optically-trapped KNbO3 particle reveals a strong SHG signal manifested by a narrow peak (λem = 532 nm) at half the excitation wavelength (λex = 1064 nm). Moreover, we demonstrate that the thus induced SHG emission can be used as a local light source that is capable of optically exciting molecules of an organic dye, Rose Bengal (RB), which adhere to the particle surface, through the mechanism of luminescence energy transfer (LET).Perovskite alkaline niobates, due to their strong nonlinear optical properties, including birefringence and the capability to produce second-harmonic generation (SHG) signals, attract a lot of attention as potential candidates for applications as local nano/microsized mechano-optical probes. Here, we report on an implementation of photonic force microscopy (PFM) to explore the Brownian motion and optical trappability of monocrystalline potassium niobate (KNbO3) nano/microsized particles having sizes within the range of 50 to 750 nm. In particular, we exploit the anisotropic translational diffusive regime of the Brownian motion to quantify thermal

  10. Interference Spins

    DEFF Research Database (Denmark)

    Popovski, Petar; Simeone, Osvaldo; Nielsen, Jimmy Jessen

    2015-01-01

    on traffic load and interference condition leads to performance gains. In this letter, a general network of multiple interfering two-way links is studied under the assumption of a balanced load in the two directions for each link. Using the notion of interference spin, we introduce an algebraic framework...

  11. Single particle characterization of black carbon aerosols at a tropospheric alpine site in Switzerland

    Science.gov (United States)

    Liu, D.; Flynn, M.; Gysel, M.; Targino, A.; Crawford, I.; Bower, K.; Choularton, T.; Jurányi, Z.; Steinbacher, M.; Hüglin, C.; Curtius, J.; Kampus, M.; Petzold, A.; Weingartner, E.; Baltensperger, U.; Coe, H.

    2010-08-01

    The refractory black carbon (rBC) mass, size distribution (190-720 nm) and mixing state in sub-micron aerosols were characterized from late February to March 2007 using a single particle incandescence method at the high alpine research station Jungfraujoch (JFJ), Switzerland (46.33° N, 7.59° E, 3580 m a.s.l.). JFJ is a ground based location, which is at times exposed to continental free tropospheric air. A median mass absorption coefficient (MAC) of 10.2±3.2 m2 g-1 at λ=630 nm was derived by comparing single particle incandescence measurements of black carbon mass with continuous measurements of absorption coefficient. This value is comparable with other estimates at this location. The aerosols measured at the site were mostly well mixed and aged during transportation via the free troposphere. Pollutant sources were traced by air mass back trajectories, trace gases concentrations and the mass loading of rBC. In southeasterly wind directions, mixed or convective weather types provided the potential to vent polluted boundary layer air from the southern Alpine area and industrial northern Italy, delivering enhanced rBC mass loading and CN concentrations to the JFJ. The aerosol loadings at this site were also significantly influenced by precipitation, which led to the removal of rBC from the atmosphere. Precipitation events were shown to remove about 65% of the rBC mass from the free tropospheric background reducing the mean loading from 13±5 ng m-3 to 6±2 ng m-3(corrected to standard temperature and pressure). Overall, 40±15% of the observed rBC particles within the detectable size range were mixed with large amounts of non-refractory materials present as a thick coating. The growth of particle size into the accumulation mode was positively linked with the degree of rBC mixing, suggesting the important role of condensable materials in increasing particle size and leading to enhanced internal mixing of these materials with rBC. It is the first time that BC mass

  12. Transport in Weakly Coupled Vertical Double Quantum Dots: Single-Particle Energy Level Spectroscopy and Hyperfine Interaction Effects

    Science.gov (United States)

    Payette, Christopher

    2011-12-01

    Performing transport measurements on weakly coupled vertical double quantum dots, we study by magneto-resonant-tunneling spectroscopy, single-particle energy spectra of the constituent dots over a wide energy window. The measured energy spectra are well modeled overall by ideal spectra calculated for elliptical and parabolic in-dot-plane confinement potentials. However, in regions where single-particle energy levels are naively expected to cross, we observe pronounced level anti-crossing behaviour and strong resonant current variations (both enhancement and suppression). Within a coherent tunneling picture, these effects can be attributed to coherent level mixing induced by weak perturbations in the nearly ideal dot confinement potentials. We analyze the energy spectra in detail, and focus on examples of two-, three- and four-level crossings where we observe the suppression of an otherwise strong current resonance, a signature of dark state formation due to destructive interference. The mixing we measure and model at two three-level crossings represents an all-electrical analogue of coherent population trapping. We also explore the limitations of the applicability of the coherent level mixing model and demonstrate in-situ alteration of the coupling between levels. We further examine the electron spin-nuclear spin (hyperfine) interaction. In the familiar two-electron spin blockade regime, on application of an out-of-dot-plane magnetic field, we observe current switching and hysteresis, and a funnel-like structure in the leakage current, all hallmarks of the hyperfine interaction. The measurements bring to light a strong gate voltage dependence, significant device-to-device variations, and an intricate bias voltage history dependence not accounted for in any existing model. Unexpectedly, we also observe signatures of the hyperfine interaction at high bias, well outside the spin blockade regime. We characterize these features and suggest how the hyperfine interaction

  13. Single Molecule Study on Polymer-Nanoparticle Interactions: The Particle Shape Matters.

    Science.gov (United States)

    Li, Zhandong; Zhang, Bin; Song, Yu; Xue, Yurui; Wu, Lixin; Zhang, Wenke

    2017-08-08

    The study on the nanoparticle-polymer interactions is very important for the design/preparation of high performance polymer nanocomposite. Here we present a method to quantify the polymer-particle interaction at single molecule level by using AFM-based single molecule force spectroscopy (SMFS). As a proof-of-concept study, we choose poly-l-lysine (PLL) as the polymer and several different types of polyoxometalates (POM) as the model particles to construct several different polymer nanocomposites and to reveal the binding mode and quantify the binding strength in these systems. Our results reveal that the shape of the nanoparticle and the binding geometry in the composite have significantly influenced the binding strength of the PLL/POM complexes. Our dynamic force spectroscopy studies indicate that the disk-like geometry facilitate the unbinding of PLL/AlMo 6 complexes in shearing mode, while the unzipping mode becomes dominate in spherical PLL-P 8 W 48 system. We have also systematically investigated the effects of charge numbers, particle size, and ionic strength on the binding strength and binding mode of PLL/POM, respectively. Our results show that electrostatic interactions dominate the stability of PLL/POM complexes. These findings provide a way for tuning the mechanical properties of polyelectrolyte-nanoparticle composites.

  14. Shape evolution and single particle luminescence of organometal halide perovskite nanocrystals.

    Science.gov (United States)

    Zhu, Feng; Men, Long; Guo, Yijun; Zhu, Qiaochu; Bhattacharjee, Ujjal; Goodwin, Peter M; Petrich, Jacob W; Smith, Emily A; Vela, Javier

    2015-03-24

    Organometallic halide perovskites CH3NH3PbX3 (X = I, Br, Cl) have quickly become one of the most promising semiconductors for solar cells, with photovoltaics made of these materials reaching power conversion efficiencies of near 20%. Improving our ability to harness the full potential of organometal halide perovskites will require more controllable syntheses that permit a detailed understanding of their fundamental chemistry and photophysics. In this manuscript, we systematically synthesize CH3NH3PbX3 (X = I, Br) nanocrystals with different morphologies (dots, rods, plates or sheets) by using different solvents and capping ligands. CH3NH3PbX3 nanowires and nanorods capped with octylammonium halides show relatively higher photoluminescence (PL) quantum yields and long PL lifetimes. CH3NH3PbI3 nanowires monitored at the single particle level show shape-correlated PL emission across whole particles, with little photobleaching observed and very few off periods. This work highlights the potential of low-dimensional organometal halide perovskite semiconductors in constructing new porous and nanostructured solar cell architectures, as well as in applying these materials to other fields such as light-emitting devices and single particle imaging and tracking.

  15. Wafer level fabrication of single cell dispenser chips with integrated electrodes for particle detection

    International Nuclear Information System (INIS)

    Schoendube, Jonas; Yusof, Azmi; Kalkandjiev, Kiril; Zengerle, Roland; Koltay, Peter

    2015-01-01

    This work presents the microfabrication and experimental evaluation of a dispenser chip, designed for isolation and printing of single cells by combining impedance sensing and drop-on-demand dispensing. The dispenser chip features 50  ×  55 µm (width × height) microchannels, a droplet generator and microelectrodes for impedance measurements. The chip is fabricated by sandwiching a dry film photopolymer (TMMF) between a silicon and a Pyrex wafer. TMMF has been used to define microfluidic channels, to serve as low temperature (75 °C) bonding adhesive and as etch mask during 300 µm deep HF etching of the Pyrex wafer. Due to the novel fabrication technology involving the dry film resist, it became possible to fabricate facing electrodes at the top and bottom of the channel and to apply electrical impedance sensing for particle detection with improved performance. The presented microchip is capable of dispensing liquid and detecting microparticles via impedance measurement. Single polystyrene particles of 10 µm size could be detected with a mean signal amplitude of 0.39  ±  0.13 V (n=439) at particle velocities of up to 9.6 mm s −1 inside the chip. (paper)

  16. A 4096-pixel MAPS detector used to investigate the single-electron distribution in a Young–Feynman two-slit interference experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gabrielli, A. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Department of Physics, University of Bologna (Italy); Giorgi, F.M., E-mail: giorgi@bo.infn.it [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Semprini, N.; Villa, M.; Zoccoli, A. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Department of Physics, University of Bologna (Italy); Matteucci, G.; Pozzi, G. [Department of Physics, University of Bologna (Italy); Frabboni, S. [Department of Physics, University of Modena and Reggio Emilia (Italy); CNR-Institute of Nanoscience-S3, Modena (Italy); Gazzadi, G.C. [CNR-Institute of Nanoscience-S3, Modena (Italy)

    2013-01-21

    A monolithic CMOS detector, made of 4096 active pixels developed for HEP collider experiments, has been used in the Young–Feynman two-slit experiment with single electrons. The experiment has been carried out by inserting two nanometric slits in a transmission electron microscope that provided the electron beam source and the electro-optical lenses for projecting and focusing the interference pattern on the sensor. The fast readout of the sensor, in principle capable to manage up to 10{sup 6} frames per second, allowed to record single-electron frames spaced by several empty frames. In this way, for the first time in a single-electron two-slit experiment, the time distribution of electron arrivals has been measured with a resolution of 165μs. In addition, high statistics samples of single-electron events were collected within a time interval short enough to be compatible with the stability of the system and coherence conditions of the illumination.

  17. Accuracy of the detection of binding events using 3D single particle tracking.

    Science.gov (United States)

    Carozza, Sara; Culkin, Jamie; van Noort, John

    2017-01-01

    Nanoparticles can be used as markers to track the position of biomolecules, such as single proteins, inside living cells. The activity of a protein can sometimes be inferred from changes in the mobility of the attached particle. Mean Square Displacement analysis is the most common method to obtain mobility information from trajectories of tracked particles, such as the diffusion coefficient D . However, the precision of D sets a limit to discriminate changes in mobility caused by biological events from changes that reflect the stochasticity inherent to diffusion. This issue is of particular importance in an experiment aiming to quantify dynamic processes. Here, we present simulations and 3D tracking experiments with Gold Nanorods freely diffusing in glycerol solution to establish the best analysis parameters to extract the diffusion coefficient. We applied this knowledge to the detection of a temporary change in diffusion, as it can occur due to the transient binding of a particle to an immobile structure within the cell, and tested its dependence on the magnitude of the change in diffusion and duration of this event. The simulations show that the spatial accuracy of particle tracking generally does not limit the detection of short binding events. Careful analysis of the magnitude of the change in diffusion and the number of frames per binding event is required for accurate quantification of such events.

  18. Refined source apportionment of coal combustion sources by using single particle mass spectrometry.

    Science.gov (United States)

    Xu, Jiao; Wang, Haiting; Li, Xiujian; Li, Yue; Wen, Jie; Zhang, Jinsheng; Shi, Xurong; Li, Mei; Wang, Wei; Shi, Guoliang; Feng, Yinchang

    2018-06-15

    In this study, samples of three typical coal combustion source types, including Domestic bulk coal combustion (DBCC), Heat supply station (HSS), and Power plant (PP) were sampled and large sets of their mass spectra were obtained and analyzed by SPAMS during winter in a megacity in China. A primary goal of this study involves determining representative size-resolved single particle mass spectral signatures of three source types that can be used in source apportionment activities. Chemical types describe the majority of the particles of each source type were extracted by ART-2a algorithm with distinct size characteristics, and the corresponding tracer signals were identified. Mass spectral signatures from three source types were different from each other, and the tracer signals were effective in distinguishing different source types. A high size-resolution source apportionment method were proposed in this study through matching sources' mass spectral signatures to particle spectra in a twelve days ambient sampling to source apportion the particles. Contributions of three source types got different size characteristics, as HSS source got higher contribution in smaller sizes, But PP source got higher contributions as size increased. Source contributions were also quantified during two typical haze episodes, and results indicated that HSS source (for central-heating) and DBCC source (for domestic heating and cooking) may contribute evidently to pollution formation. Copyright © 2018. Published by Elsevier B.V.

  19. Photoresponsive Release from Azobenzene-Modified Single Cubic Crystal NaCl/Silica Particles

    Directory of Open Access Journals (Sweden)

    Xingmao Jiang

    2011-01-01

    Full Text Available Azobenzene ligands were uniformly anchored to the pore surfaces of nanoporous silica particles with single crystal NaCl using 4-(3-triethoxysilylpropylureidoazobenzene (TSUA. The functionalization delayed the release of NaCl significantly. The modified particles demonstrated a photocontrolled release by trans/cis isomerization of azobenzene moieties. The addition of amphiphilic solvents, propylene glycol (PG, propylene glycol propyl ether (PGPE, and dipropylene glycol propyl ether (DPGPE delayed the release in water, although the wetting behavior was improved and the delay is the most for the block molecules with the longest carbon chain. The speedup by UV irradiation suggests a strong dependence of diffusion on the switchable pore size. TGA, XRD, FTIR, and NMR techniques were used to characterize the structures.

  20. Detecting the shape of anisotropic gold nanoparticles in dispersion with single particle extinction and scattering.

    Science.gov (United States)

    Potenza, M A C; Krpetić, Ž; Sanvito, T; Cai, Q; Monopoli, M; de Araújo, J M; Cella, C; Boselli, L; Castagnola, V; Milani, P; Dawson, K A

    2017-02-23

    The shape and size of nanoparticles are important parameters affecting their biodistribution, bioactivity, and toxicity. The high-throughput characterisation of the nanoparticle shape in dispersion is a fundamental prerequisite for realistic in vitro and in vivo evaluation, however, with routinely available bench-top optical characterisation techniques, it remains a challenging task. Herein, we demonstrate the efficacy of a single particle extinction and scattering (SPES) technique for the in situ detection of the shape of nanoparticles in dispersion, applied to a small library of anisotropic gold particles, with a potential development for in-line detection. The use of SPES paves the way to the routine quantitative analysis of nanoparticles dispersed in biologically relevant fluids, which is of importance for the nanosafety assessment and any in vitro and in vivo administration of nanomaterials.

  1. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film

    International Nuclear Information System (INIS)

    Zhu, Benpeng; Xu, Jiong; Yang, Xiaofei; Li, Ying; Lee, Changyang; Zhou, Qifa; Shung, K. Kirk; Wang, Tian; Xiong, Ke; Shiiba, Michihisa; Takeuchi, Shinichi

    2016-01-01

    Single-beam acoustic tweezers (SBAT), used in laboratory-on-a-chip (LOC) device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d 33 = 270 pC/N and k t = 0.51) was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50 MHz, a low f-number (∼0.9), demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications.

  2. An efficient, movable single-particle detector for use in cryogenic ultra-high vacuum environments.

    Science.gov (United States)

    Spruck, Kaija; Becker, Arno; Fellenberger, Florian; Grieser, Manfred; von Hahn, Robert; Klinkhamer, Vincent; Novotný, Oldřich; Schippers, Stefan; Vogel, Stephen; Wolf, Andreas; Krantz, Claude

    2015-02-01

    A compact, highly efficient single-particle counting detector for ions of keV/u kinetic energy, movable by a long-stroke mechanical translation stage, has been developed at the Max-Planck-Institut für Kernphysik (Max Planck Institute for Nuclear Physics, MPIK). Both, detector and translation mechanics, can operate at ambient temperatures down to ∼10 K and consist fully of ultra-high vacuum compatible, high-temperature bakeable, and non-magnetic materials. The set-up is designed to meet the technical demands of MPIK's Cryogenic Storage Ring. We present a series of functional tests that demonstrate full suitability for this application and characterise the set-up with regard to its particle detection efficiency.

  3. Single-Particle Momentum Distributions of Efimov States in Mixed-Species Systems

    DEFF Research Database (Denmark)

    T. Yamashita, M.; F. Bellotti, F.; Frederico, T.

    2013-01-01

    to derive formulas for the scaling factor of the Efimov spectrum for any mass ratio assuming either that two or three of the two-body subsystems have a bound state at zero energy. We consider the single-particle momentum distribution analytically and numerically and analyse the tail of the momentum......We solve the three-body bound state problem in three dimensions for mass imbalanced systems of two identical bosons and a third particle in the universal limit where the interactions are assumed to be of zero-range. The system displays the Efimov effect and we use the momentum-space wave equation...... distribution to obtain the three-body contact parameter. Our finding demonstrate that the functional form of the three-body contact term depends on the mass ratio and we obtain an analytic expression for this behavior. To exemplify our results, we consider mixtures of Lithium with either two Caesium or Rubium...

  4. Visualizing the Nano Cocatalyst Aligned Electric Fields on Single Photocatalyst Particles.

    Science.gov (United States)

    Zhu, Jian; Pang, Shan; Dittrich, Thomas; Gao, Yuying; Nie, Wei; Cui, Junyan; Chen, Ruotian; An, Hongyu; Fan, Fengtao; Li, Can

    2017-11-08

    The cocatalysts or dual cocatalysts of photocatalysts are indispensable for high efficiency in artificial photosynthesis for solar fuel production. However, the reaction activity increased by cocatalysts cannot be directly ascribed to the accelerated catalytic kinetics, since photogenerated charges are involved in the elementary steps of photocatalytic reactions. To date, diverging views about cocatalysts show that their exact role for photocatalysis is not well understood yet. Herein, we image directly the local separation of photogenerated charge carriers across single crystals of the BiVO 4 photocatalyst which loaded locally with nanoparticles of a MnO x single cocatalyst or with nanoparticles of a spatially separated MnO x and Pt dual cocatalyst. The deposition of the single cocatalyst resulted not only in a strong increase of the interfacial charge transfer but also, surprisingly, in a change of the direction of built-in electric fields beneath the uncovered surface of the photocatalyst. The additive electric fields caused a strong increase of local surface photovoltage signals (up to 80 times) and correlated with the increase of the photocatalytic performance. The local electric fields were further increased (up to 2.5 kV·cm -1 ) by a synergetic effect of the spatially separated dual cocatalysts. The results reveal that cocatalyst has a conclusive effect on charge separation in photocatalyst particle by aligning the vectors of built-in electric fields in the photocatalyst particle. This effect is beyond its catalytic function in thermal catalysis.

  5. Scattering measurement of single particle for highly sensitive homogeneous detection of DNA in serum.

    Science.gov (United States)

    Zhu, Liang; Li, Guohua; He, Yonghong; Tan, Hui; Sun, Shuqing

    2018-02-01

    A highly sensitive homogeneous method for DNA detection has been developed. The system relies on two kinds of gold nanorod (AuNR) probes with complementary DNA sequences to the target DNA. In the presence of the target DNA, two kinds of AuNR probes are assembling into dimers or small aggregates. The target-induced AuNR aggregate has higher scattering intensity than that of a single AuNR because of the plasmonic coupling effect. Dark field microscopy was utilized to image the single particle and measure its scattering intensity. We wrote our own Matlab code and used it to extract the scattering signal of all particles. Difference in distribution of scattering intensity between the single AuNR and its aggregate provides a quantitative basis for the detection of target DNA. A linear dynamic range spanning from 0.1pM to 1nM and a detection limit of ~ 30fM were achieved for the detection of DNA in serum sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effect of single-particle splitting in the exact wave function of the isovectorial pairing Hamiltonian

    International Nuclear Information System (INIS)

    Lerma H, S.

    2010-01-01

    The structure of the exact wave function of the isovectorial pairing Hamiltonian with nondegenerate single-particle levels is discussed. The way that the single-particle splittings break the quartet condensate solution found for N=Z nuclei in a single degenerate level is established. After a brief review of the exact solution, the structure of the wave function is analyzed and some particular cases are considered where a clear interpretation of the wave function emerges. An expression for the exact wave function in terms of the isospin triplet of pair creators is given. The ground-state wave function is analyzed as a function of pairing strength, for a system of four protons and four neutrons. For small and large values of the pairing strength a dominance of two-pair (quartets) scalar couplings is found, whereas for intermediate values enhancements of the nonscalar couplings are obtained. A correlation of these enhancements with the creation of Cooper-like pairs is observed.

  7. Jones matrix description of Fabry-Perot interference in a single axis photo-elastic modulator and the consequences for the magneto-optical measurement method

    Science.gov (United States)

    Talukder, Md. Abdul Ahad; Geerts, Wilhelmus J.

    2017-08-01

    When using a Photo-elastic modulator (PEM) in combination with a coherent light source, in addition to the modulation of the phase, Fabry-Perot interference in the PEM's optical head induces large offsets in the 1ω and 2ω detector signals. A Jones matrix which describes both effects simultaneously, was derived for a single axis PEM and used to find an expression for the detector signal for two different MO Kerr setups. The effect of the PEM tilt angle, polarizer angle, analyzer angle, and retardation, on the detector signal offsets show that offsets can be zeroed by adjusting PEM tilt angle, polarizer angle, and retardation. This strategy will allow one to avoid large offset drifts due to the small retardation, intensity, and beam direction fluctuations caused by lab temperature fluctuations. In addition, it will enable one to measure in the most sensitive range of the lock-in amplifiers further improving the signal to noise ratio of the setup.

  8. Large-Scale Single Particle and Cell Trapping based on Rotating Electric Field Induced-Charge Electroosmosis.

    Science.gov (United States)

    Wu, Yupan; Ren, Yukun; Tao, Ye; Hou, Likai; Jiang, Hongyuan

    2016-12-06

    We propose a simple, inexpensive microfluidic chip for large-scale trapping of single particles and cells based on induced-charge electroosmosis in a rotating electric field (ROT-ICEO). A central floating electrode array, was placed in the center of the gap between four driving electrodes with a quadrature configuration and used to immobilize single particles or cells. Cells were trapped on the electrode array by the interaction between ROT-ICEO flow and buoyancy flow. We experimentally optimized the efficiency of trapping single particles by investigating important parameters like particle or cell density and electric potential. Experimental and numerical results showed good agreement. The operation of the chip was verified by trapping single polystyrene (PS) microspheres with diameters of 5 and 20 μm and single yeast cells. The highest single particle occupancy of 73% was obtained using a floating electrode array with a diameter of 20 μm with an amplitude voltage of 5 V and frequency of 10 kHz for PS microbeads with a 5-μm diameter and density of 800 particles/μL. The ROT-ICEO flow could hold cells against fluid flows with a rate of less than 0.45 μL/min. This novel, simple, robust method to trap single cells has enormous potential in genetic and metabolic engineering.

  9. Inclusive photoproduction of single charged particles at high pT

    International Nuclear Information System (INIS)

    Apsimon, R.J.; Flower, P.S.; Hallewell, G.; Morris, J.A.G.; Morris, J.V.; Paterson, C.N.; Sharp, P.H.; Atkinson, M.; Brook, N.; Coyle, P.; Dickinson, B.; Donnachie, A.; Doyle, A.T.; Ellison, R.J.; Foster, J.M.; Hughes-Jones, R.E.; Ibbotson, M.; Kolya, S.D.; Lafferty, G.D.; McCann, H.; McManus, C.; Mercer, D.; Ottewell, P.J.; Reid, D.; Thompson, R.J.; Waterhouse, J.; Barberis, D.; Davenport, M.; Eades, J.; McClatchey, R.; Brodbeck, T.J.; Charity, T.; Clegg, A.B.; Henderson, R.C.W.; Hickman, M.T.; Keemer, N.R.; Newton, D.; O'Connor, A.; Wilson, G.W.; Danaher, S.; Galbraith, W.; Thacker, N.A.; Thompson, L.

    1989-01-01

    Single charged-particle inclusive cross sections for photon, pion and kaon beams on hydrogen at the CERN-SPS are presented as functions of p T and x F . Data cover the range 0.0 T F T < 1.6 GeV/c for the photon-induced data. Using the hadron-induced data to estimate the hadronic behaviour of the photon, the difference distributions and ratios of cross sections are a measure of the contribution of the point-like photon interactions. The data are compared with QCD calculations and show broadly similar features. (orig.)

  10. The free-electron laser - Maxwell's equations driven by single-particle currents

    Science.gov (United States)

    Colson, W. B.; Ride, S. K.

    1980-01-01

    It is shown that if single particle currents are coupled to Maxwell's equations, the resulting set of self-consistent nonlinear equations describes the evolution of the electron beam and the amplitude and phase of the free-electron-laser field. The formulation is based on the slowly varying amplitude and phase approximation, and the distinction between microscopic and macroscopic scales, which distinguishes the microscopic bunching from the macroscopic pulse propagation. The capabilities of this new theoretical approach become apparent when its predictions for the ultrashort pulse free-electron laser are compared to experimental data; the optical pulse evolution, determined simply and accurately, agrees well with observations.

  11. Formation of magnetite nanoparticles at low temperature: from superparamagnetic to stable single domain particles.

    Directory of Open Access Journals (Sweden)

    Jens Baumgartner

    Full Text Available The room temperature co-precipitation of ferrous and ferric iron under alkaline conditions typically yields superparamagnetic magnetite nanoparticles below a size of 20 nm. We show that at pH  =  9 this method can be tuned to grow larger particles with single stable domain magnetic (> 20-30 nm or even multi-domain behavior (> 80 nm. The crystal growth kinetics resembles surprisingly observations of magnetite crystal formation in magnetotactic bacteria. The physicochemical parameters required for mineralization in these organisms are unknown, therefore this study provides insight into which conditions could possibly prevail in the biomineralizing vesicle compartments (magnetosomes of these bacteria.

  12. Uncovering non-ergodicity on the cell membrane using single particle tracking approaches

    OpenAIRE

    Symeonidou Besi, Parthena

    2013-01-01

    Treball final de màster oficial fet en col·laboració amb Universitat Autònoma de Barcelona (UAB), Universitat de Barcelona (UB) i Institut de Ciències Fotòniques (ICFO) [ANGLES] In this work, we study the diffusion on the plasma membrane of the receptor DC-SIGN. The data we used were obtained by Single Particle Tracking technique and hence consist of individual trajectories. Motivated by investigating the dynamics of this receptor, our analysis comprises not only of standard statistical ap...

  13. Effects of single particle on shape phase transitions and phase coexistence in odd-even nuclei

    Science.gov (United States)

    Yu, Xiang-Ru; Hu, Jing; Li, Xiao-Xue; An, Si-Yu; Zhang, Yu

    2018-02-01

    A classical analysis of shape phase transitions and phase coexistence in odd-even nuclei has been performed in the framework of the interacting boson-fermion model. The results indicate that the effects of a single particle may influence different types of transitions in different ways. Especially, it is revealed that phase coexistence can clearly emerge in the critical region and thus be taken as a indicator of the shape phase transitions in odd-even nuclei. Supported by National Natural Science Foundation of China (11375005)

  14. Single-particle spectral function of a generalized Hubbard model: Metal-insulator transition

    Science.gov (United States)

    Gagliano, E. R.; Aligia, A. A.; Arrachea, Liliana; Avignon, Michel

    1995-05-01

    A generalized Hubbard model with correlated hoppings is studied at half filling using exact diagonalization methods. For certain values of the hopping parameters our results for several static properties, the Drude weight and the single-particle spectra function, suggest the occurrence of a metal-insulator transition (MIT) at a finite value of the local Coulomb interaction Uc. We identify the regions of the hopping parameters where the MIT is of the Mott type. In these regions, for large U

  15. High transport efficiency of nanoparticles through a total-consumption sample introduction system and its beneficial application for particle size evaluation in single-particle ICP-MS.

    Science.gov (United States)

    Miyashita, Shin-Ichi; Mitsuhashi, Hiroaki; Fujii, Shin-Ichiro; Takatsu, Akiko; Inagaki, Kazumi; Fujimoto, Toshiyuki

    2017-02-01

    In order to facilitate reliable and efficient determination of both the particle number concentration (PNC) and the size of nanoparticles (NPs) by single-particle ICP-MS (spICP-MS) without the need to correct for the particle transport efficiency (TE, a possible source of bias in the results), a total-consumption sample introduction system consisting of a large-bore, high-performance concentric nebulizer and a small-volume on-axis cylinder chamber was utilized. Such a system potentially permits a particle TE of 100 %, meaning that there is no need to include a particle TE correction when calculating the PNC and the NP size. When the particle TE through the sample introduction system was evaluated by comparing the frequency of sharp transient signals from the NPs in a measured NP standard of precisely known PNC to the particle frequency for a measured NP suspension, the TE for platinum NPs with a nominal diameter of 70 nm was found to be very high (i.e., 93 %), and showed satisfactory repeatability (relative standard deviation of 1.0 % for four consecutive measurements). These results indicated that employing this total consumption system allows the particle TE correction to be ignored when calculating the PNC. When the particle size was determined using a solution-standard-based calibration approach without an NP standard, the particle diameters of platinum and silver NPs with nominal diameters of 30-100 nm were found to agree well with the particle diameters determined by transmission electron microscopy, regardless of whether a correction was performed for the particle TE. Thus, applying the proposed system enables NP size to be accurately evaluated using a solution-standard-based calibration approach without the need to correct for the particle TE.

  16. Structural defect induced peak splitting in gold-copper bimetallic nanorods during growth by single particle spectroscopy.

    Science.gov (United States)

    Thota, Sravan; Chen, Shutang; Zhou, Yadong; Zhang, Yong; Zou, Shengli; Zhao, Jing

    2015-09-21

    A single particle level study of bimetallic nanoparticle growth provides valuable information that is usually hidden in ensemble measurements, helping to improve the understanding of a reaction mechanism and overcome the synthetic challenges. In this study, we use single particle spectroscopy to monitor the changes in the scattering spectra of Au-Cu alloy nanorods during growth. We found that the unique features of the single particle scattering spectra were due to atomic level geometric defects in the nanorods. Electrodynamics simulations have demonstrated that small structural defects of a few atomic layers split the scattering peaks, giving rise to higher order modes, which do not exist in defect-free rods of similar geometry. The study shows that single particle scattering technique is as sensitive as high-resolution electron microscopy in revealing atomic level structural defects.

  17. Single particle momentum and angular distributions in hadron-hadron collisions at ultrahigh energies

    Science.gov (United States)

    Chou, T. T.; Chen, N. Y.

    1985-01-01

    The forward-backward charged multiplicity distribution (P n sub F, n sub B) of events in the 540 GeV antiproton-proton collider has been extensively studied by the UA5 Collaboration. It was pointed out that the distribution with respect to n = n sub F + n sub B satisfies approximate KNO scaling and that with respect to Z = n sub F - n sub B is binomial. The geometrical model of hadron-hadron collision interprets the large multiplicity fluctuation as due to the widely different nature of collisions at different impact parameters b. For a single impact parameter b, the collision in the geometrical model should exhibit stochastic behavior. This separation of the stochastic and nonstochastic (KNO) aspects of multiparticle production processes gives conceptually a lucid and attractive picture of such collisions, leading to the concept of partition temperature T sub p and the single particle momentum spectrum to be discussed in detail.

  18. Chemical characterization of single micro- and nano-particles by optical catapulting–optical trapping–laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Fortes, Francisco J.; Fernández-Bravo, Angel; Javier Laserna, J.

    2014-01-01

    Spectral identification of individual micro- and nano-sized particles by the sequential intervention of optical catapulting, optical trapping and laser-induced breakdown spectroscopy is presented. The three techniques are used for different purposes. Optical catapulting (OC) serves to put the particulate material under inspection in aerosol form. Optical trapping (OT) permits the isolation and manipulation of individual particles from the aerosol, which are subsequently analyzed by laser-induced breakdown spectroscopy (LIBS). Once catapulted, the dynamics of particle trapping depends both on the laser beam characteristics (power and intensity gradient) and on the particle properties (size, mass and shape). Particles are stably trapped in air at atmospheric pressure and can be conveniently manipulated for a precise positioning for LIBS analysis. The spectra acquired from the individually trapped particles permit a straightforward identification of the material inspected. Variability of LIBS signal for the inspection of Ni microspheres was 30% relative standard deviation. OC–OT–LIBS permits the separation of particles in a heterogeneous mixture and the subsequent analysis of the isolated particle of interest. In order to evaluate the sensitivity of the approach, the number of absolute photons emitted by a single trapped particle was calculated. The limit of detection (LOD) for Al 2 O 3 particles was calculated to be 200 attograms aluminium. - Highlights: • Detection of single nanoparticles by OC–OT–LIBS has been described for the first time. • An absolute mass quantity of 17 fg (single particle 100-nm sized Al 2 O 3 ) was detected. • Results confirm the extreme sensitivity of LIBS for single nanoparticle analysis. • The LOD for Al 2 O 3 particles was calculated to be 200 attograms aluminium. • A photon budget was performed in order to evaluate the sensitivity of the approach

  19. The APSEL4D Monolithic Active Pixel Sensor and its Usage in a Single Electron Interference Experiment

    CERN Document Server

    Alberghi, Gian Luigi

    We have realized a Data Acquisition chain for the use and characterization of APSEL4D, a 32 x 128 Monolithic Active Pixel Sensor, developed as a prototype for frontier experiments in high energy particle physics. In particular a transition board was realized for the conversion between the chip and the FPGA voltage levels and for the signal quality enhancing. A Xilinx Spartan-3 FPGA was used for real time data processing, for the chip control and the communication with a Personal Computer through a 2.0 USB port. For this purpose a firmware code, developed in VHDL language, was written. Finally a Graphical User Interface for the online system monitoring, hit display and chip control, based on windows and widgets, was realized developing a C++ code and using Qt and Qwt dedicated libraries. APSEL4D and the full acquisition chain were characterized for the first time with the electron beam of the transmission electron microscope and with 55Fe and 90Sr radioactive sources. In addition, a beam test was performed at ...

  20. Possible wave formation and martensitic transformation of iron particles in copper single crystals during argon ion bombardment

    DEFF Research Database (Denmark)

    Thölén, Anders Ragnar; Li, Chang-Hai; Easterling, K.E.

    1983-01-01

    Thin single crystal copper specimens (thickness ~250 nm) containing coherent iron particles (diameter 40–50 nm) have been bombarded with argon ions (5, 80, and 330 keV). During this process some of the iron particles transform to martensite. The transformation was observed near the exposed surface...

  1. Single particle deformation and analysis of the same silica coated gold nanorods before and after fs-laser pulse excitation

    NARCIS (Netherlands)

    Albrecht, W.; Deng, Tian-Song; Goris, Bart; van Huis, M.A.; Bals, Sarah; van Blaaderen, Alfons

    2016-01-01

    We performed single particle deformation experiments on silicacoated gold nanorods under femtosecond (fs) illumination. Changes in the particle shape were analyzed by electron microscopy and associated changes in the plasmon resonance by electron energy loss spectroscopy. Silica-coated rods were

  2. Single-crystalline spherical β-Ga2O3 particles: Synthesis, N-doping and photoluminescence properties

    International Nuclear Information System (INIS)

    Zhang, Tingting; Lin, Jing; Zhang, Xinghua; Huang, Yang; Xu, Xuewen; Xue, Yanming; Zou, Jin; Tang, Chengchun

    2013-01-01

    We report on the synthesis of single-crystalline spherical β-Ga 2 O 3 particles by a simple method in ambient atmosphere. No pre-treatment, catalyst, substrate, or gas flow was required during the synthesis process. The well-dispersed Ga 2 O 3 particles display uniform spherical morphology with an average diameter of ∼200 nm. Photoluminescence studies indicate that the Ga 2 O 3 particles exhibit a broad blue-green light emission and an interesting red light emission at room temperature. The red light emission can be further tuned by post-annealing of the particles in ammonia atmosphere. The present single-crystalline β-Ga 2 O 3 particles with spherical morphology, uniform sub-micrometer sizes and tunable light emission are envisaged to be of high promise for applications in white-LED phosphors and optoelectronic devices. -- Highlights: ► We prepared single-crystalline spherical β-Ga 2 O 3 particles in ambient atmosphere. ► The particles display uniform spherical morphology with an average diameter of ∼200 nm. ► The Ga 2 O 3 particles exhibit a broad blue-green light and an interesting red light emission. ► The red light emission can be further tuned by post-annealing of the particles

  3. Analysis and differentiation of mineral dust by single particle laser mass spectrometry

    International Nuclear Information System (INIS)

    Gallavardin, S. J.; Lohmann, U.; Cziczo, Daniel J.

    2008-01-01

    This study evaluates the potential of single particle laser desorption/ionization mass spectrometry for the analysis of atmospherically relevant mineral dusts. Samples of hematite, goethite, calcium carbonate, calcium sulfate, silica, quartz, montmorrillonite, kaolinite, illite, hectorite, wollastonite and nephelinsyenit were investigated in positive and negative ion mode with a monopolar time-of-flight mass spectrometer where the desorption/ionization step was performed with a 193 nm excimer laser (∼10 9 W/cm 2 ). Particle size ranged from 500 nm to 3 (micro)m. Positive mass spectra mainly provide elemental composition whereas negative ion spectra provide information on element speciation and of a structural nature. The iron oxide, calcium-rich and aluminosilicate nature of particles is established in positive ion mode. The differentiation of calcium materials strongly relies on the calcium counter-ions in negative mass spectra. Aluminosilicates can be differentiated in both positive and negative ion mode using the relative abundance of various aluminum and silicon ions

  4. cisTEM, user-friendly software for single-particle image processing.

    Science.gov (United States)

    Grant, Timothy; Rohou, Alexis; Grigorieff, Nikolaus

    2018-03-07

    We have developed new open-source software called cis TEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cis TEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k - 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cis TEM is available for download from cistem.org. © 2018, Grant et al.

  5. Accelerators for critical experiments involving single-particle upset in solid-state microcircuits

    Science.gov (United States)

    Zoutendyk, J. A.

    1985-01-01

    Charged-particle interactions in microelectronic circuit chips (integrated circuits) present a particularly insidious problem for solid-state electronic systems due to the generation of soft errors or single-particle event upset (SEU) by either cosmic rays or other radiation sources. Particle accelerators are used to provide both light and heavy ions in order to assess the propensity of integrated circuit chips for SEU. Critical aspects of this assessment involve the ability to analytically model SEU for the prediction of error rates in known radiation environments. In order to accurately model SEU, the measurement and prediction of energy deposition in the form of an electron-hole plasma generated along an ion track is of paramount importance. This requires the use of accelerators which allow for ease in both energy control (change of energy) and change of ion species. This and other aspects of ion-beam control and diagnostics (e.g., uniformity and flux) are of critical concern for the experimental verification of theoretical SEU models.

  6. Single particle nonlocality, geometric phases and time-dependent boundary conditions

    Science.gov (United States)

    Matzkin, A.

    2018-03-01

    We investigate the issue of single particle nonlocality in a quantum system subjected to time-dependent boundary conditions. We discuss earlier claims according to which the quantum state of a particle remaining localized at the center of an infinite well with moving walls would be specifically modified by the change in boundary conditions due to the wall’s motion. We first prove that the evolution of an initially localized Gaussian state is not affected nonlocally by a linearly moving wall: as long as the quantum state has negligible amplitude near the wall, the boundary motion has no effect. This result is further extended to related confined time-dependent oscillators in which the boundary’s motion is known to give rise to geometric phases: for a Gaussian state remaining localized far from the boundaries, the effect of the geometric phases is washed out and the particle dynamics shows no traces of a nonlocal influence that would be induced by the moving boundaries.

  7. Modified Particle Filtering Algorithm for Single Acoustic Vector Sensor DOA Tracking

    Directory of Open Access Journals (Sweden)

    Xinbo Li

    2015-10-01

    Full Text Available The conventional direction of arrival (DOA estimation algorithm with static sources assumption usually estimates the source angles of two adjacent moments independently and the correlation of the moments is not considered. In this article, we focus on the DOA estimation of moving sources and a modified particle filtering (MPF algorithm is proposed with state space model of single acoustic vector sensor. Although the particle filtering (PF algorithm has been introduced for acoustic vector sensor applications, it is not suitable for the case that one dimension angle of source is estimated with large deviation, the two dimension angles (pitch angle and azimuth angle cannot be simultaneously employed to update the state through resampling processing of PF algorithm. To solve the problems mentioned above, the MPF algorithm is proposed in which the state estimation of previous moment is introduced to the particle sampling of present moment to improve the importance function. Moreover, the independent relationship of pitch angle and azimuth angle is considered and the two dimension angles are sampled and evaluated, respectively. Then, the MUSIC spectrum function is used as the “likehood” function of the MPF algorithm, and the modified PF-MUSIC (MPF-MUSIC algorithm is proposed to improve the root mean square error (RMSE and the probability of convergence. The theoretical analysis and the simulation results validate the effectiveness and feasibility of the two proposed algorithms.

  8. Online single particle measurements of black carbon coatings, structure and optical properties

    Science.gov (United States)

    Allan, James; Liu, Dantong; Taylor, Jonathan; Flynn, Michael; Williams, Paul; Morgan, William; Whitehead, James; Alfarra, Rami; McFiggans, Gordon; Coe, Hugh

    2016-04-01

    The impacts of black carbon on meteorology and climate remain a major source of uncertainty, owing in part to the complex relationship between the bulk composition of the particulates and their optical properties. A particular complication stems from how light interacts with particles in response to the microphysical configuration and any 'coatings', i.e. non-black carbon material that is either co-emitted or subsequently obtained through atmospheric processing. This may cause the particle to more efficiently absorb or scatter light and may even change the sign of its radiative forcing potential. While much insight has been gained through measurements of bulk aerosol properties, either while suspended or after collection on a filter or impactor substrate, this does not provide a complete picture and thus may not adequately constrain the system. Here we present an overview of recent work to better constrain the properties of black carbon using online, in situ measurements of single particles, primarily using a Single Particle Soot Photometer (SP2). We have developed novel methods of inverting the data produced and combining the different metrics derived so as to give the most effective insights into black carbon sources, processes and properties. We have also used this measurement in conjunction with other instruments (sometimes in series) and used the data to challenge many commonly used models of optical properties such as core-shell Mie, Rayleigh-Debeye-Gans and effective medium. This work has been carried out in a variety of atmospheric environments and with laboratory-produced soots, e.g. from a diesel engine rig. Highlights include the finding that with real-world atmospheric aerosols, bulk optical measurements may be insufficient to derive brown carbon parameters without detailed morphological data. We also show that the enhancement of absorption for both ambient and laboratory generated particles only occurs after the coating mass fraction reaches a certain

  9. The Fate of a Normal Human Cell Traversed by a Single Charged Particle

    Science.gov (United States)

    Fournier, C.; Zahnreich, S.; Kraft, D.; Friedrich, T.; Voss, K.-O.; Durante, M.; Ritter, S.

    2012-01-01

    The long-term “fate” of normal human cells after single hits of charged particles is one of the oldest unsolved issues in radiation protection and cellular radiobiology. Using a high-precision heavy-ion microbeam we could target normal human fibroblasts with exactly one or five carbon ions and measured the early cytogenetic damage and the late behaviour using single-cell cloning. Around 70% of the first cycle cells presented visible aberrations in mFISH after a single ion traversal, and about 5% of the cells were still able to form colonies. In one third of selected high-proliferative colonies we observed clonal (radiation-induced) aberrations. Terminal differentiation and markers of senescence (PCNA, p16) in the descendants of cells traversed by one carbon ion occurred earlier than in controls, but no evidence of radiation-induced chromosomal instability was found. We conclude that cells surviving single-ion traversal, often carrying clonal chromosome aberrations, undergo accelerated senescence but maintain chromosomal stability. PMID:22966418

  10. A review of progress in single particle tracking: from methods to biophysical insights

    Science.gov (United States)

    Manzo, Carlo; Garcia-Parajo, Maria F.

    2015-12-01

    Optical microscopy has for centuries been a key tool to study living cells with minimum invasiveness. The advent of single molecule techniques over the past two decades has revolutionized the field of cell biology by providing a more quantitative picture of the complex and highly dynamic organization of living systems. Amongst these techniques, single particle tracking (SPT) has emerged as a powerful approach to study a variety of dynamic processes in life sciences. SPT provides access to single molecule behavior in the natural context of living cells, thereby allowing a complete statistical characterization of the system under study. In this review we describe the foundations of SPT together with novel optical implementations that nowadays allow the investigation of single molecule dynamic events with increasingly high spatiotemporal resolution using molecular densities closer to physiological expression levels. We outline some of the algorithms for the faithful reconstruction of SPT trajectories as well as data analysis, and highlight biological examples where the technique has provided novel insights into the role of diffusion regulating cellular function. The last part of the review concentrates on different theoretical models that describe anomalous transport behavior and ergodicity breaking observed from SPT studies in living cells.

  11. The Fate of a Normal Human Cell Traversed by a Single Charged Particle

    Science.gov (United States)

    Fournier, C.; Zahnreich, S.; Kraft, D.; Friedrich, T.; Voss, K.-O.; Durante, M.; Ritter, S.

    2012-09-01

    The long-term ``fate'' of normal human cells after single hits of charged particles is one of the oldest unsolved issues in radiation protection and cellular radiobiology. Using a high-precision heavy-ion microbeam we could target normal human fibroblasts with exactly one or five carbon ions and measured the early cytogenetic damage and the late behaviour using single-cell cloning. Around 70% of the first cycle cells presented visible aberrations in mFISH after a single ion traversal, and about 5% of the cells were still able to form colonies. In one third of selected high-proliferative colonies we observed clonal (radiation-induced) aberrations. Terminal differentiation and markers of senescence (PCNA, p16) in the descendants of cells traversed by one carbon ion occurred earlier than in controls, but no evidence of radiation-induced chromosomal instability was found. We conclude that cells surviving single-ion traversal, often carrying clonal chromosome aberrations, undergo accelerated senescence but maintain chromosomal stability.

  12. 3D dual-virtual-pinhole assisted single particle tracking microscopy

    International Nuclear Information System (INIS)

    Ma, Ye; Wang, Yifan; Zhou, Xin; Kuang, Cuifang; Liu, Xu

    2014-01-01

    We propose a novel approach for high-speed, three-dimensional single particle tracking (SPT), which we refer to as dual-virtual-pinhole assisted single particle tracking microscopy (DVPaSPTM). DVPaSPTM system can obtain axial information of the sample without optical or mechanical depth scanning, so as to offer numbers of advantages including faster imaging, improved efficiency and a great reduction of photobleaching and phototoxicity. In addition, by the use of the dual-virtual-pinhole, the effect that the quantum yield exerts to the fluorescent signal can be eliminated, which makes the measurement independent of the surroundings and increases the accuracy of the result. DVPaSPTM system measures the intensity within different virtual pinholes of which the radii are given by the host computer. Axial information of fluorophores can be measured by the axial response curve through the ratio of intensity signals. We demonstrated the feasibility of the proposed method by a series of experiments. Results showed that the standard deviation of the axial measurement was 19.2 nm over a 2.5 μm range with 30 ms temporal resolution. (papers)

  13. Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning.

    Science.gov (United States)

    Wu, Jiayi; Ma, Yong-Bei; Congdon, Charles; Brett, Bevin; Chen, Shuobing; Xu, Yaofang; Ouyang, Qi; Mao, Youdong

    2017-01-01

    Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization.

  14. Pairing in the BCS and LN approximations using continuum single particle level density

    Energy Technology Data Exchange (ETDEWEB)

    Id Betan, R.M., E-mail: idbetan@ifir-conicet.gov.ar [Instituto de Física Rosario (CONICET-UNR), Bv. 27 de Febrero 210 bis, S2000EZP Rosario (Argentina); Facultad de Ciencias Exactas, Ingeniería y Agrimensura (UNR), Av. Pellegrini 250, S2000BTP Rosario (Argentina); Instituto de Estudios Nucleares y Radiaciones Ionizantes (UNR), Riobamba y Berutti, S2000EKA Rosario (Argentina); Repetto, C.E. [Instituto de Física Rosario (CONICET-UNR), Bv. 27 de Febrero 210 bis, S2000EZP Rosario (Argentina); Facultad de Ciencias Exactas, Ingeniería y Agrimensura (UNR), Av. Pellegrini 250, S2000BTP Rosario (Argentina)

    2017-04-15

    Understanding the properties of drip line nuclei requires to take into account the correlations with the continuum spectrum of energy of the system. This paper has the purpose to show that the continuum single particle level density is a convenient way to consider the pairing correlation in the continuum. Isospin mean-field and isospin pairing strength are used to find the Bardeen–Cooper–Schrieffer (BCS) and Lipkin–Nogami (LN) approximate solutions of the pairing Hamiltonian. Several physical properties of the whole chain of the Tin isotope, as gap parameter, Fermi level, binding energy, and one- and two-neutron separation energies, were calculated and compared with other methods and with experimental data when they exist. It is shown that the use of the continuum single particle level density is an economical way to include explicitly the correlations with the continuum spectrum of energy in large scale mass calculation. It is also shown that the computed properties are in good agreement with experimental data and with more sophisticated treatment of the pairing interaction.

  15. Single Particle Cryo-electron Microscopy and 3-D Reconstruction of Viruses

    Science.gov (United States)

    Guo, Fei; Jiang, Wen

    2014-01-01

    With fast progresses in instrumentation, image processing algorithms, and computational resources, single particle electron cryo-microscopy (cryo-EM) 3-D reconstruction of icosahedral viruses has now reached near-atomic resolutions (3–4 Å). With comparable resolutions and more predictable outcomes, cryo-EM is now considered a preferred method over X-ray crystallography for determination of atomic structure of icosahedral viruses. At near-atomic resolutions, all-atom models or backbone models can be reliably built that allow residue level understanding of viral assembly and conformational changes among different stages of viral life cycle. With the developments of asymmetric reconstruction, it is now possible to visualize the complete structure of a complex virus with not only its icosahedral shell but also its multiple non-icosahedral structural features. In this chapter, we will describe single particle cryo-EM experimental and computational procedures for both near-atomic resolution reconstruction of icosahedral viruses and asymmetric reconstruction of viruses with both icosahedral and non-icosahedral structure components. Procedures for rigorous validation of the reconstructions and resolution evaluations using truly independent de novo initial models and refinements are also introduced. PMID:24357374

  16. Detection of isolated protein-bound metal ions by single-particle cryo-STEM.

    Science.gov (United States)

    Elad, Nadav; Bellapadrona, Giuliano; Houben, Lothar; Sagi, Irit; Elbaum, Michael

    2017-10-17

    Metal ions play essential roles in many aspects of biological chemistry. Detecting their presence and location in proteins and cells is important for understanding biological function. Conventional structural methods such as X-ray crystallography and cryo-transmission electron microscopy can identify metal atoms on protein only if the protein structure is solved to atomic resolution. We demonstrate here the detection of isolated atoms of Zn and Fe on ferritin, using cryogenic annular dark-field scanning transmission electron microscopy (cryo-STEM) coupled with single-particle 3D reconstructions. Zn atoms are found in a pattern that matches precisely their location at the ferroxidase sites determined earlier by X-ray crystallography. By contrast, the Fe distribution is smeared along an arc corresponding to the proposed path from the ferroxidase sites to the mineral nucleation sites along the twofold axes. In this case the single-particle reconstruction is interpreted as a probability distribution function based on the average of individual locations. These results establish conditions for detection of isolated metal atoms in the broader context of electron cryo-microscopy and tomography.

  17. Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning

    Science.gov (United States)

    Wu, Jiayi; Ma, Yong-Bei; Congdon, Charles; Brett, Bevin; Chen, Shuobing; Xu, Yaofang; Ouyang, Qi

    2017-01-01

    Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization. PMID:28786986

  18. Experimental study of single-phase pressure drops in coarse particle beds

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, R., E-mail: remi.clavier@irsn.fr [IRSN Cadarache, Saint Paul-lez-Durance (France); Chikhi, N., E-mail: nourdine.chikhi@irsn.fr [IRSN Cadarache, Saint Paul-lez-Durance (France); Fichot, F., E-mail: florian.fichot@irsn.fr [IRSN Cadarache, Saint Paul-lez-Durance (France); Quintard, M., E-mail: Michel.Quintard@imft.fr [Université de Toulouse, Allée Camille Soula, F-31400 Toulouse (France); INPT, UPS, Allée Camille Soula, F-31400 Toulouse (France); IMFT (Institut de Mécanique des Fluides de Toulouse), Allée Camille Soula, F-31400 Toulouse (France); CNRS, F-31400 Toulouse (France)

    2017-02-15

    Motivated by uncertainty reduction in nuclear debris beds coolability, experiments have been conducted on the CALIDE facility in order to investigate single-phase pressure losses in representative debris beds, i.e., high sphericity (>80%) particle beds with small size dispersion (from 1 mm to 10 mm), for which no validated model exists. In this paper, experimental results are presented and analyzed in order to identify a simple correlation for single-phase flow pressure losses generated in this kind of porous media in reflooding flowing conditions, which cover Darcy to weakly turbulent regimes. In the literature, it has been observed that their behavior can be accurately described by a Darcy–Forchheimer law, involving the sum of a linear term and a quadratic non-linear deviation, with respect to the filtration velocity. Expressions for the coefficients of the linear and quadratic terms are determined by assessing the possibility to evaluate equivalent diameters, i.e., characteristic lengths allowing correct predictions of the linear and quadratic terms by the Ergun equation. It has been observed that the Sauter diameter of particles allows a very precise prediction of the linear term, while the quadratic term can be predicted using the product of the Sauter diameter and a sphericity coefficient as an equivalent diameter.

  19. Fourier transforms of single-particle wave functions in cylindrical coordinates

    International Nuclear Information System (INIS)

    Rizea, M.; Carjan, N.

    2016-01-01

    A formalism and the corresponding numerical procedures that calculate the Fourier transform of a single-particle wave function defined on a grid of cylindrical (ρ, z) coordinates is presented. Single-particle states in spherical and deformed nuclei have been chosen in view of future applications in the field of nuclear reactions. Bidimensional plots of the probability that the nucleon's momentum has a given value K = √(k ρ 2 +k z 2 ) are produced and from them the K -distributions are deduced. Three potentials have been investigated: (a) a sharp surface spherical well (i.e., of constant depth), (b) a spherical Woods-Saxon potential (i.e., diffuse surface) and (c) a deformed potential of Woods-Saxon type. In the first case the momenta are as well defined as allowed by the uncertainty principle. Depending on the state, their distributions have up to three separated peaks as a consequence of the up to three circular ridges of the bidimensional probabilities plots. In the second case the diffuseness allows very low momenta to be always populated thus creating tails towards the origin (K = 0). The peaks are still present but not well separated. In the third case the deformation transforms the above mentioned circular ridges into ellipses thus spreading the K-values along them. As a consequence the K-distributions have only one broad peak. (orig.)

  20. Recognition and separation of single particles with size variation by statistical analysis of their images.

    Science.gov (United States)

    White, Helen E; Saibil, Helen R; Ignatiou, Athanasios; Orlova, Elena V

    2004-02-13

    Macromolecules may occupy conformations with structural differences that cannot be resolved biochemically. The separation of mixed molecular populations is a pressing problem in single-particle analysis. Until recently, the task of distinguishing small structural variations was intractable, but developments in cryo-electron microscopy hardware and software now make it possible to address this problem. We have developed a general strategy for recognizing and separating structures of variable size from cryo-electron micrographs of single particles. The method uses a combination of statistical analysis and projection matching to multiple models. Identification of size variations by multivariate statistical analysis was used to do an initial separation of the data and generate starting models by angular reconstitution. Refinement was performed using alternate projection matching to models and angular reconstitution of the separated subsets. The approach has been successful at intermediate resolution, taking it within range of resolving secondary structure elements of proteins. Analysis of simulated and real data sets is used to illustrate the problems encountered and possible solutions. The strategy developed was used to resolve the structures of two forms of a small heat shock protein (Hsp26) that vary slightly in diameter and subunit packing.

  1. Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud.

    Science.gov (United States)

    Cianfrocco, Michael A; Leschziner, Andres E

    2015-05-08

    The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available 'off-the-shelf' computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16-480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM.

  2. Single-Particle Cryo-EM of the Ryanodine Receptor Channel in an Aqueous Environment.

    Science.gov (United States)

    Baker, Mariah R; Fan, Guizhen; Serysheva, Irina I

    2015-01-07

    Ryanodine receptors (RyRs) are tetrameric ligand-gated Ca(2+) release channels that are responsible for the increase of cytosolic Ca(2+) concentration leading to muscle contraction. Our current understanding of RyR channel gating and regulation is greatly limited due to the lack of a high-resolution structure of the channel protein. The enormous size and unwieldy shape of Ca(2+) release channels make X-ray or NMR methods difficult to apply for high-resolution structural analysis of the full-length functional channel. Single-particle electron cryo-microscopy (cryo-EM) is one of the only effective techniques for the study of such a large integral membrane protein and its molecular interactions. Despite recent developments in cryo-EM technologies and break-through single-particle cryo-EM studies of ion channels, cryospecimen preparation, particularly the presence of detergent in the buffer, remains the main impediment to obtaining atomic-resolution structures of ion channels and a multitude of other integral membrane protein complexes. In this review we will discuss properties of several detergents that have been successfully utilized in cryo-EM studies of ion channels and the emergence of the detergent alternative amphipol to stabilize ion channels for structure-function characterization. Future structural studies of challenging specimen like ion channels are likely to be facilitated by cryo-EM amenable detergents or alternative surfactants.

  3. Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning.

    Directory of Open Access Journals (Sweden)

    Jiayi Wu

    Full Text Available Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM. We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization.

  4. Evolution of Single Particle and Collective properties in the Neutron-Rich Mg Isotopes

    CERN Multimedia

    Reiter, P; Wiens, A; Fitting, J; Lauer, M; Van duppen, P L E; Finke, F

    2002-01-01

    We propose to study the single particle and collective properties of the neutron-rich Mg isotopes in transfer reactions and Coulomb excitation using REX-ISOLDE and MINIBALL. From the Coulomb excitation measurement precise and largely model independent B( E2 ; 0$^{+}_{g.s.}\\rightarrow$ 2$^{+}_{1}$ ) will be determined for the even-even isotopes. For the odd isotopes the distribution of the E2 strength over a few low-lying states will be measured. The sign of the M1/E2 mixing ratio, extracted from angular distributions, is characteristic of the sign of the deformation, as is the resulting level scheme. The neutron-pickup channel in the transfer reactions will allow for a determination of the single particle properties (spin, parity, spectroscopic factors) of these nuclei. This information will give new insights in changes of nuclear structure in the vicinity of the island of deformation around $^{32}$Mg. A total of 24 shifts of REX beam time is requested.

  5. Quantitative diagnosis of HER2 protein expressing breast cancer by single-particle quantum dot imaging.

    Science.gov (United States)

    Miyashita, Minoru; Gonda, Kohsuke; Tada, Hiroshi; Watanabe, Mika; Kitamura, Narufumi; Kamei, Takashi; Sasano, Hironobu; Ishida, Takanori; Ohuchi, Noriaki

    2016-10-01

    Overexpression of HER2 is one of the major causes of breast cancer, and therefore precise diagnosis of its protein expression level is important. However, current methods estimating the HER2-expression level are insufficient due to problem with the lack of quantification. This might result in a gap between diagnostics and therapeutics targeting HER2. Therefore, a new effective diagnostic method is needed. We developed a new immunohistochemical (IHC) technique with quantum dots (QD)-conjugated trastuzumab using single-particle imaging to quantitatively measure the HER2 expression level. Tissues from 37 breast cancer patients with available detailed clinical information were tested by IHC with QDs (IHC-QD) and the correlation with IHC with 3,3'-diaminobenzidine (DAB), fluorescence in situ hybridization (FISH), and IHC-QD was examined. The number of QD-conjugated trastuzumab particles binding specifically to a cancer cell was precisely calculated as the IHC-QD score. The IHC-QD score in 37 cases was correlated proportionally with the score of HER2 gene copy number as assessed by FISH (R = 0.83). When HER2 positivity was judged to be positive, the IHC-QD score with our cut-off level was exactly concordant with the FISH score with a cut-off value of 2.0. Furthermore, IHC-QDs score and time to progression (TTP) of trastuzumab therapy were well correlated in HER2-positive cases (R = 0.69). Conversely, the correlation between FISH score and TTP was not observed. We developed a precisely quantitative IHC method using trastuzumab-conjugated QDs and single-particle imaging analysis and propose the possibility of using IHC-QDs score as a predictive factor for trastuzumab therapy. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  6. Numerical analysis of single and multiple particles of Belchatow lignite dried in superheated steam

    Science.gov (United States)

    Zakrzewski, Marcin; Sciazko, Anna; Komatsu, Yosuke; Akiyama, Taro; Hashimoto, Akira; Kaneko, Shozo; Kimijima, Shinji; Szmyd, Janusz S.; Kobayashi, Yoshinori

    2018-03-01

    Low production costs have contributed to the important role of lignite in the energy mixes of numerous countries worldwide. High moisture content, though, diminishes the applicability of lignite in power generation. Superheated steam drying is a prospective method of raising the calorific value of this fuel. This study describes the numerical model of superheated steam drying of lignite from the Belchatow mine in Poland in two aspects: single and multi-particle. The experimental investigation preceded the numerical analysis and provided the necessary data for the preparation and verification of the model. Spheres of 2.5 to 30 mm in diameter were exposed to the drying medium at the temperature range of 110 to 170 °C. The drying kinetics were described in the form of moisture content, drying rate and temperature profile curves against time. Basic coal properties, such as density or specific heat, as well as the mechanisms of heat and mass transfer in the particular stages of the process laid the foundations for the model construction. The model illustrated the drying behavior of a single particle in the entire range of steam temperature as well as the sample diameter. Furthermore, the numerical analyses of coal batches containing particles of various sizes were conducted to reflect the operating conditions of the dryer. They were followed by deliberation on the calorific value improvement achieved by drying, in terms of coal ingredients, power plant efficiency and dryer input composition. The initial period of drying was found crucial for upgrading the quality of coal. The accuracy of the model is capable of further improvement regarding the process parameters.

  7. Optical, magnetic, and single-particle excitations in the multiband Hubbard model for cuprate superconductors

    Science.gov (United States)

    Wagner, J.; Hanke, W.; Scalapino, D. J.

    1991-05-01

    On the basis of exact diagonalizations, a comparative study of two-particle optical and magnetic, as well as single-particle, excitations is presented for a two-dimensional (2D) multiorbital Hubbard model. For reasonable parameter sets appropriate for the cuprate superconductors, the single-particle excitations display strongly correlated states related to the Zhang-Rice Cu-O singlet construction. These states define the gap (to the upper Hubbard band) at half-filling and become partially occupied by doping holes in our 2×2 unit-cell system. The optical results, which are the first quantitative calculations performed for realistic parameters of the three-band Hubbard model, clearly show three allowed optical transitions: (i) itinerant motion of the Cu-O singlets, having (for doping concentrations x≠0) a spectral Drude distribution around ω=0 with spectral weight proportional to x; (ii) unbinding of the O hole from the Cu spin in the singlet. This gives, in particular, a strong absorption peak due to singlet-->nonbonding oxygen transitions, again with relative weight ~x. It is roughly centered at ω~JKondoUpd. They show a pronounced excitonic effect due to the p-d interaction Upd and have a reduced spectral weight shifted to higher energies for increased dopings. Findings (i)-(iii) are in general accordance with recent experimental data. Our study of the low-energy absorption is complemented with a numerical scaling analysis of the Drude weight in 1D, where, in particular, we find an interesting violation of Lenz's law for 4n-site Hubbard rings. Finally, the magnetic structure factor is calculated for the 2D case. For finite doping it contains a peak at 2JKondo, which should be detectable in experiment.

  8. Phase-coexistence simulations of fluid mixtures by the Markov Chain Monte Carlo method using single-particle models

    KAUST Repository

    Li, Jun

    2013-09-01

    We present a single-particle Lennard-Jones (L-J) model for CO2 and N2. Simplified L-J models for other small polyatomic molecules can be obtained following the methodology described herein. The phase-coexistence diagrams of single-component systems computed using the proposed single-particle models for CO2 and N2 agree well with experimental data over a wide range of temperatures. These diagrams are computed using the Markov Chain Monte Carlo method based on the Gibbs-NVT ensemble. This good agreement validates the proposed simplified models. That is, with properly selected parameters, the single-particle models have similar accuracy in predicting gas-phase properties as more complex, state-of-the-art molecular models. To further test these single-particle models, three binary mixtures of CH4, CO2 and N2 are studied using a Gibbs-NPT ensemble. These results are compared against experimental data over a wide range of pressures. The single-particle model has similar accuracy in the gas phase as traditional models although its deviation in the liquid phase is greater. Since the single-particle model reduces the particle number and avoids the time-consuming Ewald summation used to evaluate Coulomb interactions, the proposed model improves the computational efficiency significantly, particularly in the case of high liquid density where the acceptance rate of the particle-swap trial move increases. We compare, at constant temperature and pressure, the Gibbs-NPT and Gibbs-NVT ensembles to analyze their performance differences and results consistency. As theoretically predicted, the agreement between the simulations implies that Gibbs-NVT can be used to validate Gibbs-NPT predictions when experimental data is not available. © 2013 Elsevier Inc.

  9. Human Visual System as a Double-Slit Single Photon Interference Sensor: A Comparison between Modellistic and Biophysical Tests.

    Directory of Open Access Journals (Sweden)

    Rita Pizzi

    Full Text Available This paper describes a computational approach to the theoretical problems involved in the Young's single-photon double-slit experiment, focusing on a simulation of this experiment in the absence of measuring devices. Specifically, the human visual system is used in place of a photomultiplier or similar apparatus. Beginning with the assumption that the human eye perceives light in the presence of very few photons, we measure human eye performance as a sensor in a double-slit one-photon-at-a-time experimental setup. To interpret the results, we implement a simulation algorithm and compare its results with those of human subjects under identical experimental conditions. In order to evaluate the perceptive parameters exactly, which vary depending on the light conditions and on the subject's sensitivity, we first review the existing literature on the biophysics of the human eye in the presence of a dim light source, and then use the known values of the experimental variables to set the parameters of the computational simulation. The results of the simulation and their comparison with the experiment involving human subjects are reported and discussed. It is found that, while the computer simulation indicates that the human eye has the capacity to detect the corpuscular nature of photons under these conditions, this was not observed in practice. The possible reasons for the difference between theoretical prediction and experimental results are discussed.

  10. Detection and characterisation of aluminium-containing nanoparticles in Chinese noodles by single particle ICP-MS

    DEFF Research Database (Denmark)

    Löschner, Katrin; Correia, Manuel; López Chaves, Carlos

    2018-01-01

    This study investigated Chinese noodles for the presence of aluminium-containing nanoparticles by using inductively coupled plasma mass spectrometry in single particle mode (spICP-MS) after enzymatic digestion by α-amylase. The aluminium concentrations in the noodle samples, determined by convent......This study investigated Chinese noodles for the presence of aluminium-containing nanoparticles by using inductively coupled plasma mass spectrometry in single particle mode (spICP-MS) after enzymatic digestion by α-amylase. The aluminium concentrations in the noodle samples, determined......-containing particles in food by spICP-MS....

  11. Sensitivity of the Single Particle Soot Photometer to different black carbon types

    Science.gov (United States)

    Laborde, M.; Mertes, P.; Zieger, P.; Dommen, J.; Baltensperger, U.; Gysel, M.

    2012-05-01

    Black carbon (BC) is now mainly of anthropogenic origin. It is the dominant light absorbing component of atmospheric aerosols, playing an important role in the earth's radiative balance and therefore relevant to climate change studies. In addition, BC is known to be harmful to human beings making it relevant to policy makers. Nevertheless, the measurement of BC remains biased by the instrument-based definition of BC. The Single Particle Soot Photometer (SP2), allows the measurement of the refractory BC (rBC) mass of individual particles using laser-induced incandescence. However, the SP2 needs an empirical calibration to retrieve the rBC mass from the incandescence signal and the sensitivity of the SP2 differs between different BC types. Ideally, for atmospheric studies, the SP2 should be calibrated using ambient particles containing a known mass of ambient rBC. However, such "ambient BC" calibration particles cannot easily be obtained and thus commercially available BC particles are commonly used for SP2 calibration instead. In this study we tested the sensitivity of the SP2 to different BC types in order to characterize the potential error introduced by using non-ambient BC for calibration. The sensitivity of the SP2 was determined, using an aerosol particle mass analyzer, for rBC from thermodenuded diesel exhaust, wood burning exhaust and ambient particles as well as for commercially available products: Aquadag® and fullerene soot. Thermodenuded, fresh diesel exhaust has been found to be ideal for SP2 calibration for two reasons. First, the small amount of non-BC matter upon emission reduces the risk of bias due to incomplete removal of non-BC matter and second, it is considered to represent atmospheric rBC in urban locations where diesel exhaust is the main source of BC. The SP2 was found to be up to 16% less sensitive to rBC from thermodenuded ambient particles (≤15 fg) than rBC from diesel exhaust, however, at least part of this difference can be explained

  12. 2-μm single longitudinal mode GaSb-based laterally coupled distributed feedback laser with regrowth-free shallow-etched gratings by interference lithography

    Science.gov (United States)

    Cheng-Ao, Yang; Yu, Zhang; Yong-Ping, Liao; Jun-Liang, Xing; Si-Hang, Wei; Li-Chun, Zhang; Ying-Qiang, Xu; Hai-Qiao, Ni; Zhi-Chuan, Niu

    2016-02-01

    We report a type-I GaSb-based laterally coupled distributed-feedback (LC-DFB) laser with shallow-etched gratings operating a continuous wave at room temperature without re-growth process. Second-order Bragg gratings are fabricated alongside the ridge waveguide by interference lithography. Index-coupled LC-DFB laser with a cavity of 1500 μm achieves single longitudinal mode continuous-wave operation at 20 °C with side mode suppression ratio (SMSR) as high as 24 dB. The maximum single mode continuous-wave output power is about 10 mW at room temperature (uncoated facet). A low threshold current density of 230 A/cm2 is achieved with differential quantum efficiency estimated to be 93 mW/A. The laser shows a good wavelength stability against drive current and working temperature. Project supported by the National Key Basic Research Program of China (Grant Nos. 2014CB643903 and 2013CB932904), the National Special Funds for the Development of Major Research Equipment and Instruments, China (Grant No. 2012YQ140005), the National Natural Science Foundation of China (Grant Nos. 61435012, 61274013, 61306088, and 61290303), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB01010200).

  13. 3D structure determination of protein using TEM single particle analysis.

    Science.gov (United States)

    Sato, Chikara; Mio, Kazuhiro; Kawata, Masaaki; Ogura, Toshihiko

    2014-11-01

    Proteins play important roles in cell functions such as enzymes, cell trafficking, neurotransmission, muscle contraction and hormone secretion. However, some proteins are very difficult to be crystallized and their structures are undetermined. Several techniques have been developed to elucidate the structure of macromolecules; X-ray or electron crystallography, nuclear magnetic resonance spectroscopy, and high-resolution electron microscopy. Among them, electron microscopy based single particle reconstruction (SPA) technique is a computer-aided structure determination method. This method reconstructs the 3D structure from projection images of dispersed protein. A large number of two-dimensional particle images are picked up from EM films, aligned and classified to generate 2D averages, and used to reconstruct the 3D structure by assigning the Euler angle of each 2D average. Due to the necessity of elaborate collaboration between the classical biology and the innovative information technology including parallel computing, scientists needed to break unseen barriers to get a start of this analysis. However, recent progresses in electron microscopes, mathematical algorithms, and computational abilities greatly reduced the height of barriers and expanded targets that are considered to be primarily addressable using single particle analysis. Membrane proteins are one of these targets to which the single particle analysis is successfully applied for the understanding of their 3D structures. For this purpose, we have developed various SPA methods [1-5] and applied them to different proteins [6-8].Here, we introduce reconstructed proteins, and discuss the availability of this technique. The intramembrane-cleaving proteases (I-CLiPs) that sever the transmembrane domains of their substrates have been identified in a range of organisms and play a variety of roles in biological conditions. I-CLiPs have been classified into three groups: serine-, aspartyl- and metalloprotease

  14. A laser desorption-electron impact ionization ion trap mass spectrometer for real-time analysis of single atmospheric particles

    Science.gov (United States)

    Simpson, E. A.; Campuzano-Jost, P.; Hanna, S. J.; Robb, D. B.; Hepburn, J. H.; Blades, M. W.; Bertram, A. K.

    2009-04-01

    A novel aerosol ion trap mass spectrometer combining pulsed IR laser desorption with electron impact (EI) ionization for single particle studies is described. The strengths of this instrument include a two-step desorption and ionization process to minimize matrix effects; electron impact ionization, a universal and well-characterized ionization technique; vaporization and ionization inside the ion trap to improve sensitivity; and an ion trap mass spectrometer for MSn experiments. The instrument has been used for mass spectral identification of laboratory generated pure aerosols in the 600 nm-1.1 [mu]m geometric diameter range of a variety of aromatic and aliphatic compounds, as well as for tandem mass spectrometry studies (up to MS3) of single caffeine particles. We investigate the effect of various operational parameters on the mass spectrum and fragmentation patterns. The single particle detection limit of the instrument was found to be a 325 nm geometric diameter particle (8.7 × 107 molecules or 22 fg) for 2,4-dihydroxybenzoic acid. Lower single particle detection limits are predicted to be attainable by modifying the EI pulse. The use of laser desorption-electron impact (LD-EI) in an ion trap is a promising technique for determining the size and chemical composition of single aerosol particles in real time.

  15. Single-Molecule Fluorescence Microscopy Reveals Local Diffusion Coefficients in the Pore Network of an Individual Catalyst Particle

    NARCIS (Netherlands)

    Hendriks, Frank|info:eu-repo/dai/nl/412642697; Meirer, Florian; Kubarev, Alexey V.; Ristanovic, Zoran|info:eu-repo/dai/nl/328233005; Roeffaers, Maarten B J; Vogt, Eelco T. C.|info:eu-repo/dai/nl/073717398; Bruijnincx, Pieter C. A.|info:eu-repo/dai/nl/33799529X; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2017-01-01

    We used single-molecule fluorescence microscopy to study self-diffusion of a feedstock-like probe molecule with nanometer accuracy in the macropores of a micrometer-sized, real-life fluid catalytic cracking (FCC) particle. Movies of single fluorescent molecules allowed their movement through the

  16. Single Particle Transport Through Carbon Nanotube Wires: Effect of Defects and Polyhedral Cap

    Science.gov (United States)

    Anantram, M. P.; Govidan, T. R.

    1999-01-01

    The ability to manipulate carbon nanotubes with increasing precision has enabled a large number of successful electron transport experiments. These studies have primarily focussed on characterizing transport through both metallic and semiconducting wires. Tans et al. demonstrated ballistic transport in single-wall nanotubes for the first time, although the experimental configuration incurred large contact resistance. Subsequently, methods of producing low contact resistances have been developed and two terminal conductances smaller than 50 k-ohms have been repeatably demonstrated in single-wall and multi-wall nanotubes. In multi-wall nanotubes, Frank et al. demonstrated a resistance of approximately h/2e(exp 2) in a configuration where the outermost layer made contact to a liquid metal. This was followed by the work of de Pablo et al. where a resistance of h(bar)/27e(exp 2) (approximately 478 ohms) was measured in a configuration where electrical contact was made to many layers of a multi-wall nanotube. Frank et al. and Pablo et al. note that each conducting layer contributes a conductance of only 2e(exp 2)/h, instead of the 4e(exp 2)/h that a single particle mode counting picture yields. These small resistances have been obtained in microns long nanotubes, making them the best conducting molecular wires to date. The large conductance of nanotube wires stems from the fact that the crossing bands of nanotubes are robust to defect scattering.

  17. Particles Produced in Association with High Transverse Momentum Single Photons and $\\pi^0$s in Hadronic Collision

    Energy Technology Data Exchange (ETDEWEB)

    Sinanidis, Alexandros Pericles [Northeastern U.

    1989-01-01

    The charged and neutral particles produced in association with high transverse momentum ($Pr_{\\tau}$ > 5.0 GeV /c) photons ($\\gamma$) and neutral pions ($\\pi^0$) in p(Cu+Be) and $\\pi^-$(cu+Be) collisions at vs = 31.5 GeV are studied in this thesis. It was observed that 1) The relative rapidity of the two highest Pr recoiling particles in the events have a jet - like structure. 2) The relative rapidity of the single $\\gamma$ (or $\\pi^0$ ) and the highest $P_{\\tau}$ charged particle accompanying the single $\\gamma$ (or $\\pi^0$ ) show that the high $P_{\\tau} \\pi^0$ events have a jet - like structure in the trigger hemisphere whereas the high $P_{\\tau}$ single $\\gamma$ events do not. 3) The angular distributions of the particles produced in the reactions show that high $P_{\\tau} \\pi^0$s are accompanied by other particles, whereas high $P_{\\tau}$ single photons are relatively isolated. 4) The fragmentation distributions of the recoiling particles from the high $P_{\\tau}$ single photons and $\\pi^0$s are consistent with the measurements of other experiments. 5) The recoiling particles are consistent with the fragmentation of either a quark or a gluon according to the QCD (Quantum Chromodynamics). In summary, particles produced in association with high transverse momentum single photons and $\\pi^0$s in hadronic collisions have been measured and their properties are in good agreement with the predictions of the parton model and those of QCD

  18. Quantum eraser for three-slit interference

    Indian Academy of Sciences (India)

    Naveed Ahmad Shah

    2017-11-09

    Nov 9, 2017 ... Abstract. It is well known that in a two-slit interference experiment, if the information, on which of the two paths the particle followed, is stored in a quantum path detector, the interference is destroyed. However, in a set-up where this path information is 'erased', the interference can reappear. Such a set-up is ...

  19. Determination of and evidence for non-core-shell structure of particles containing black carbon using the Single-Particle Soot Photometer (SP2)

    Science.gov (United States)

    Sedlacek, Arthur J., III; Lewis, Ernie R.; Kleinman, Lawrence; Xu, Jianzhong; Zhang, Qi

    2012-03-01

    The large uncertainty associated with black carbon (BC) direct forcing is due, in part, to the dependence of light absorption of BC-containing particles on the position of the BC within the particle. It is predicted that this absorption will be greatest for an idealized core-shell configuration in which the BC is a sphere at the center of the particle whereas much less absorption should be observed for particles in which the BC is located near or on the surface. Such microphysical information on BC-containing particles has previously been provided only by labor-intensive microscopy techniques, thus often requiring that climate modelers make assumptions about the location of the BC within the particle that are based more on mathematical simplicity than physical reality. The present paper describes a novel analysis method that utilizes the temporal behavior of the scattering and incandescence signals from individual particles containing refractory BC (rBC) measured by the Single-Particle Soot Photometer (SP2) to distinguish particles with rBC near the surface from those that have structures more closely resembling the core-shell configuration. This approach permits collection of a high-time-resolution data set of the fraction of rBC-containing particles with rBC near the surface. By application of this method to a plume containing tracers for biomass burning, it was determined that this fraction was greater than 60%. Such a data set will not only provide previously unavailable information to the climate modeling community, allowing greater accuracy in calculating rBC radiative forcing, but also will yield insight into aerosol processes.

  20. Intracellular formation of α-synuclein oligomers and the effect of heat shock protein 70 characterized by confocal single particle spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Johannes [Department of Neurology, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich (Germany); German Center for Neurodegenerative Diseases – DZNE, Site Munich, Feodor-Lynen-Str. 17, 81377 Munich (Germany); Hillmer, Andreas S. [Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich (Germany); Högen, Tobias [Department of Neurology, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich (Germany); McLean, Pamela J. [Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 (United States); Giese, Armin, E-mail: armin.giese@med.uni-muenchen.de [Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich (Germany)

    2016-08-12

    Synucleinopathies such as dementia with Lewy bodies or Parkinson’s disease are characterized by intracellular deposition of pathologically aggregated α-synuclein. The details of the molecular pathogenesis of PD and especially the conditions that lead to intracellular aggregation of α-synuclein and the role of these aggregates in cell death remain unknown. In cell free in vitro systems considerable knowledge about the aggregation processes has been gathered. In comparison, the knowledge about these aggregation processes in cells is far behind. In cells α-synuclein aggregates can be toxic. However, the crucial particle species responsible for decisive steps in pathogenesis such as seeding a continuing aggregation process and triggering cell death remain to be identified. In order to understand the complex nature of intracellular α-synuclein aggregate formation, we analyzed fluorescent particles formed by venus and α-synuclein-venus fusion proteins and α-synuclein-hemi-venus fusion proteins derived from gently lyzed cells. With these techniques we were able to identify and characterize α-synuclein oligomers formed in cells. Especially the use of α-synuclein-hemi-venus fusion proteins enabled us to identify very small α-synuclein oligomers with high sensitivity. Furthermore, we were able to study the molecular effect of heat shock protein 70, which is known to inhibit α-synuclein aggregation in cells. Heat shock protein 70 does not only influence the size of α-synuclein oligomers, but also their quantity. In summary, this approach based on fluorescence single particle spectroscopy, that is suited for high throughput measurements, can be used to detect and characterize intracellularly formed α-synuclein aggregates and characterize the effect of molecules that interfere with α-synuclein aggregate formation. - Highlights: • Single particle spectroscopy detects intracellular formed α-synuclein aggregates. • Fusion proteins allow detection of protein

  1. Decay modes of high-lying single-particle states in [sup 209]Pb

    Energy Technology Data Exchange (ETDEWEB)

    Beaumel, D.; Fortier, S.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Vernotte, J.; Bordewijk, J.A.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M. (Institut de Physique Nucleaire, Institut National de Physique Nucleaire et de Physique des Particules Centre National de la Recherche Scientifique, 91406 Orsay Cedex (France) Kernfysisch Versneller Instituut, 9747AA Groningen (Netherlands) National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States) Departamento de Fisica, Fac. Cs. Exactas, Universidad Nacional de La Plata, CC No. 67, 1900 La Plata (Argentina))

    1994-05-01

    The neutron decay of high-lying single-particle states in [sup 209]Pb excited by means of the ([alpha],[sup 3]He) reaction has been investigated at 122 MeV incident energy using a multidetector array. The high spin values of these states, inferred from previous inclusive experiments, are confirmed by the present data involving angular correlation measurements and the determination of branching ratios to low lying levels in [sup 208]Pb. The structure located between 8.5 and 12 MeV excitation energy in [sup 209]Pb displays large departures from a pure statistical decay with significant direct feeding of the low-lying collective states (3[sup [minus

  2. Decay modes of high-lying single-particle states in 209Pb

    International Nuclear Information System (INIS)

    Beaumel, D.; Fortier, S.; Gales, S.; Guillot, J.; Crawley, G.M.; Massolo, C.P.; Renteria, M.

    1993-01-01

    The neutron decay of high-lying single-particle states in 209 Pb excited by means of the (α, 3 He) reaction has been investigated at 122 MeV incident energy using the multidetector array EDEN. The high spin values of these states, inferred from previous inclusive experiments, are confirmed by the present data involving angular correlation measurements and the determination of branching ratios to low lying levels in 208 Pb. The structure located between 8.5 and 12 MeV excitation energy in 209 Pb displays large departures from a pure statistical decay with significant direct feeding of the low-lying collective states (3 - ,5 - ) of 208 Pb. At higher excitation energy up to 20 MeV, the measured neutron decay is in agreement with the predictions of the statistical model. (authors). 24 refs., 16 figs., 2 tabs

  3. Protective effects of orally applied fullerenol nano particles in rats after a single dose of doxorubicin

    Directory of Open Access Journals (Sweden)

    Ičević Ivana Đ.

    2011-01-01

    Full Text Available Polyhydroxylated, water soluble, fullerenol C60(OH24 nano particles (FNP in vitro and in vivo models, showed an expressive biological activity. The goal of this work was to investigate the potential protective effects of orally applied FNP on rats after a single dose of doxorubicin (DOX (8 mg/kg (i.p. 6 h after the last application of FNP. After the last drug administration, the rats were sacrificed, and the blood and tissues were taken for the analysis. Biochemical and pathological results obtained in this study indicate that fullerenol (FNP, in H2O:DMSO (80:20, w/w solution given orally in final doses of 10, 14.4, and 21.2 mg/kg three days successively, has the protective (hepatoprotective and nephroprotective effect against doxorubicin-induced cytotoxicity via its antioxidant properties.

  4. Single-particle And Collective Effects Of Cubic Nonlinearity In The Beam Dynamics Of Proton Synchrotrons

    CERN Document Server

    Tran Hy, J

    1998-01-01

    This thesis describes some new studies of the effects of cubic nonlinearities arising from image-charge forces and octupole magnets on the transverse beam dynamics of proton synchrotrons and storage rings, and also a study of the damping of coherent oscillations using a feed-back damper. In the latter case, various corrective algorithms were modeled using linear one-turn maps. Kicks of fixed amplitude but appropriate sign were shown to provide linear damping and no coherent tune shift, though the rate predicted analytically was somewhat higher than that observed in simulations. This algorithm gave much faster damping (for equal power) than conventional proportional kicks, which damp exponentially. Two single-particle effects of the image-change force were investigated: distortion of the momentum dispersion function and amplitude dependence of the betatron tunes (resulting in tune spread). The former is calculated using transfer maps and the method of undetermined coefficients, the latter by solving the cubic ...

  5. Investigation of charge multiplication in single crystalline CVD diamond particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Muškinja, M.; Cindro, V.; Gorišek, A. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Kagan, H. [Department of Physics, Ohio State University (United States); Kramberger, G., E-mail: Gregor.Kramberger@ijs.si [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Mandić, I. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Mikuž, M. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Faculty of Physics and Mathematics, University of Ljubljana (Slovenia); Phan, S.; Smith, D.S. [Department of Physics, Ohio State University (United States); Zavrtanik, M. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2017-01-01

    A special metallization pattern was created on a single crystalline diamond detector aimed at creating high enough electric field for impact ionization in the detector material. Electric field line focusing through electrode design and very high bias voltages were used to obtain high electric fields. Previous measurements and theoretical calculations indicated that drifting charge multiplication by impact ionization could take place. A large increase of induced charge was observed for the smallest dot electrode which points to charge multiplication while for the large dot and pad detector structure no such effect was observed. The evolution of induced currents was also monitored with the transient current technique. Induced current pulses with duration of order 1 μs were measured. The multiplication gain was found to depend on the particle rate.

  6. EMHP: an accurate automated hole masking algorithm for single-particle cryo-EM image processing.

    Science.gov (United States)

    Berndsen, Zachary; Bowman, Charles; Jang, Haerin; Ward, Andrew B

    2017-12-01

    The Electron Microscopy Hole Punch (EMHP) is a streamlined suite of tools for quick assessment, sorting and hole masking of electron micrographs. With recent advances in single-particle electron cryo-microscopy (cryo-EM) data processing allowing for the rapid determination of protein structures using a smaller computational footprint, we saw the need for a fast and simple tool for data pre-processing that could run independent of existing high-performance computing (HPC) infrastructures. EMHP provides a data preprocessing platform in a small package that requires minimal python dependencies to function. https://www.bitbucket.org/chazbot/emhp Apache 2.0 License. bowman@scripps.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  7. Proton resonance elastic scattering of $^{30}$Mg for single particle structure of $^{31}$Mg

    CERN Multimedia

    The single particle structure of $^{31}$Mg, which is located in the so-called “island of inversion”, will be studied through measuring Isobaric Analog Resonances (IARs) of bound states of $^{31}$Mg. They are located in the high excitation energy of $^{31}$Al. We are going to determine the spectroscopic factors and angular momenta of the parent states by measuring the excitation function of the proton resonance elastic scattering around 0 degrees in the laboratory frame with around 3 MeV/nucleon $^{30}$Mg beam. The present study will reveal the shell evolution around $^{32}$Mg. In addition, the spectroscopic factor of the (7/2)$^{−}$ state which was not yet determined experimentally, may allow one to study the shape coexistence in this nucleus.

  8. Focused ion beam milling of nanocavities in single colloidal particles and self-assembled opals

    International Nuclear Information System (INIS)

    Woldering, Leon A; Otter, A M; Husken, Bart H; Vos, Willem L

    2006-01-01

    We present a new method of realizing single nanocavities in individual colloidal particles on the surface of silicon dioxide artificial opals using a focused ion beam milling technique. We show that both the radius and the position of the nanocavity can be controlled with nanometre precision, to radii as small as 40 nm. The relation between the defect size and the milling time has been established. We confirmed that milling not only occurs on the surface of the spheres, but into and through them as well. We also show that an array of nanocavities can be fashioned. Structurally modified colloids have interesting potential applications in nanolithography, as well as in chemical sensing and solar cells, and as photonic crystal cavities

  9. Singlet-triplet splittings from the virial theorem and single-particle excitation energies

    Science.gov (United States)

    Becke, Axel D.

    2018-01-01

    The zeroth-order (uncorrelated) singlet-triplet energy difference in single-particle excited configurations is 2Kif, where Kif is the Coulomb self-energy of the product of the transition orbitals. Here we present a non-empirical, virial-theorem argument that the correlated singlet-triplet energy difference should be half of this, namely, Kif. This incredibly simple result gives vertical HOMO-LUMO excitation energies in small-molecule benchmarks as good as the popular TD-B3LYP time-dependent approach to excited states. For linear acenes and nonlinear polycyclic aromatic hydrocarbons, the performance is significantly better than TD-B3LYP. In addition to the virial theorem, the derivation borrows intuitive pair-density concepts from density-functional theory.

  10. Logarithmic Decay in Single-Particle Relaxation of Hydrated Lysozyme Powder

    Science.gov (United States)

    Lagi, Marco; Baglioni, Piero; Chen, Sow-Hsin

    2009-09-01

    We present the self-dynamics of protein amino acids of hydrated lysozyme powder around the physiological temperature by means of molecular dynamics simulations. The self-intermediate scattering functions of the amino acid residue center of mass display a logarithmic decay over 3 decades of time, from 2 ps to 2 ns, followed by an exponential α relaxation. This kind of slow dynamics resembles the relaxation scenario within the β-relaxation time range predicted by mode coupling theory in the vicinity of higher-order singularities. These results suggest a strong analogy between the single-particle dynamics of the protein and the dynamics of colloidal, polymeric, and molecular glass-forming liquids.

  11. Particle dynamics and particle heat and mass transfer in thermal plasmas. Part I. The motion of a single particle without thermal effects

    International Nuclear Information System (INIS)

    Pfender, E.; Lee, Y.C.

    1985-01-01

    A particle injected into a thermal plasma will experience a number of effects which are not present in an ordinary gas. In this paper effects exerted on the motionof a particle will be reviewed and analyzed in the context of thermal plasma processing of materials. The primary purpose of this paper is an assessment of the relative importance of various effects on particle motion. Computer experiments are described, simulating motion of a spherical particle in a laminar, confined plasma jet or in a turbulent, free plasma jet. Particle sizes range from 5 to 50 μ and as sample materials alumina and tungsten are considered. The results indicate that (i) the correction term required for the viscous drag coefficient due to strongly varying properties is the most important factor; (ii) non-continum effects are important for particle sizes <10 μ at atmospheric pressure and these effects will be enhanced for smaller particles and/or reduced pressures; (iii) the Basset history term is negligible, unless relatively large and light particles are considered over long processing distances; (iv) thermophoresis is not crucial for the injection of particles into thermal plasma; (v) turbulent dispersion becomes important for particle <10 μ in diameter

  12. Characterizing physical properties and heterogeneous chemistry of single particles in air using optical trapping-Raman spectroscopy

    Science.gov (United States)

    Gong, Z.; Wang, C.; Pan, Y. L.; Videen, G.

    2017-12-01

    Heterogeneous reactions of solid particles in a gaseous environment are of increasing interest; however, most of the heterogeneous chemistry studies of airborne solids were conducted on particle ensembles. A close examination on the heterogeneous chemistry between single particles and gaseous-environment species is the key to elucidate the fundamental mechanisms of hydroscopic growth, cloud nuclei condensation, secondary aerosol formation, etc., and reduce the uncertainty of models in radiative forcing, climate change, and atmospheric chemistry. We demonstrate an optical trapping-Raman spectroscopy (OT-RS) system to study the heterogeneous chemistry of the solid particles in air at single-particle level. Compared to other single-particle techniques, optical trapping offers a non-invasive, flexible, and stable method to isolate single solid particle from substrates. Benefited from two counter-propagating hollow beams, the optical trapping configuration is adaptive to trap a variety of particles with different materials from inorganic substitution (carbon nanotubes, silica, etc.) to organic, dye-doped polymers and bioaerosols (spores, pollen, etc.), with different optical properties from transparent to strongly absorbing, with different sizes from sub-micrometers to tens of microns, or with distinct morphologies from loosely packed nanotubes to microspheres and irregular pollen grains. The particles in the optical trap may stay unchanged, surface degraded, or optically fragmented according to different laser intensity, and their physical and chemical properties are characterized by the Raman spectra and imaging system simultaneously. The Raman spectra is able to distinguish the chemical compositions of different particles, while the synchronized imaging system can resolve their physical properties (sizes, shapes, morphologies, etc.). The temporal behavior of the trapped particles also can be monitored by the OT-RS system at an indefinite time with a resolution from

  13. First passage times for a tracer particle in single file diffusion and fractional Brownian motion.

    Science.gov (United States)

    Sanders, Lloyd P; Ambjörnsson, Tobias

    2012-05-07

    We investigate the full functional form of the first passage time density (FPTD) of a tracer particle in a single-file diffusion (SFD) system whose population is: (i) homogeneous, i.e., all particles having the same diffusion constant and (ii) heterogeneous, with diffusion constants drawn from a heavy-tailed power-law distribution. In parallel, the full FPTD for fractional Brownian motion [fBm-defined by the Hurst parameter, H ∈ (0, 1)] is studied, of interest here as fBm and SFD systems belong to the same universality class. Extensive stochastic (non-Markovian) SFD and fBm simulations are performed and compared to two analytical Markovian techniques: the method of images approximation (MIA) and the Willemski-Fixman approximation (WFA). We find that the MIA cannot approximate well any temporal scale of the SFD FPTD. Our exact inversion of the Willemski-Fixman integral equation captures the long-time power-law exponent, when H ≥ 1/3, as predicted by Molchan [Commun. Math. Phys. 205, 97 (1999)] for fBm. When H well the FPTD for all times for homogeneous SFD and sub-diffusive fBm systems.

  14. Investigating single-particle structure in 26Na using the new SHARC array

    International Nuclear Information System (INIS)

    Wilson, G.L.; Catford, W.N.; Diget, C.Aa.

    2015-01-01

    The changing of the nuclear shells for light, neutron-rich nuclei, and the single-particle nature of 26 Na, has been explored by studying 25 Na(d, p) 26 Na in inverse kinematics, using a beam of 25 Na ions at 5 MeV per nucleon, provided by the ISAC-II facility at TRIUMF, Vancouver. Charged particles were detected with a highly-segmented silicon array that surrounded the 0.5 mg/cm 2 (CD 2 ) n target. Gamma rays from the recoiling 26 Na nucleus were detected using eight Compton-suppressed HPGe clover detectors. Recoil tagging was provided by an in-beam scintillation foil, downstream of the germanium array. A novel technique of utilising pγ- and pγγ-gating to extract proton angular distributions from states populated close in energy was employed with success. New states in 26 Na that are populated directly have been identified, using γ-decay patterns. Shell model calculations for comparison to experimental results are ongoing, using different model bases. (author)

  15. Investigating Single-Particle Structure in 26Na Using the New SHARC Array

    Science.gov (United States)

    Wilson, G. L.; Catford, W. N.; Diget, C. Aa.; Orr, N. A.; Matta, A.; Hackman, G.; Williams, S. J.; Simpson, E. C.; Celik, I. C.; Achouri, N. L.; Adsley, P.; Al-Falou, H.; Ashley, R.; Austin, R. A. E.; Ball, G. C.; Blackmon, J. C.; Boston, A. J.; Boston, H. C.; Brown, S. M.; Cross, D. S.; Djongolov, M.; Drake, T. E.; Hager, U.; Fox, S. P.; Fulton, B. R.; Galinski, N.; Garnsworthy, A. B.; Jamieson, D.; Kanungo, R.; Leach, K.; Orce, J. N.; Pearson, C. J.; Porter-Peden, M.; Sarazin, F.; Sjue, S.; Smalley, D.; Sumithrarachchi, C.; Triambak, S.; Unsworth, C.; Wadsworth, R.

    The changing of the nuclear shells for light, neutron-rich nuclei, and the single-particle nature of 26Na, has been explored by studying 25Na(d, p)26Na in inverse kinematics, using a beam of 25Na ions at 5 MeV per nucleon, provided by the ISAC-II facility at TRIUMF, Vancouver. Charged particles were detected with a highly-segmented silicon array that surrounded the 0.5 mg/cm2 (CD2)n target. Gamma rays from the recoiling 26Na nucleus were detected using eight Compton-suppressed HPGe clover detectors. Recoil tagging was provided by an in-beam scintillation foil, downstream of the germanium array. A novel technique of utilising pγ- and pγγ-gating to extract proton angular distributions from states populated close in energy was employed with success. New states in 26Na that are populated directly have been identified, using γ-decay patterns. Shell model calculations for comparison to experimental results are ongoing, using different model bases.

  16. Toward an Improved Single-Particle Model for Large Irregular Grains

    Science.gov (United States)

    Grundy, W. M.; Schmitt, B.; Doute, S.

    2002-01-01

    To interpret remote spectral observations, scattering and absorption in a particulate surface are simulated via radiative transfer models. The standard model for this purpose among the planetary science community is the Hapke model. This model (like many others) uses two parameters to characterize the optical behavior of individual grains in a particulate surface, the single-scattering albedo omega and phase function p(g). These terms describe, respectively, the quantity and the angular distribution of light scattered by an individual grain. Unfortunately, these parameters are strictly optical. They can be rather difficult to interpret in terms of more interesting particle properties such as grain sizes, shapes, and compositions, that a remote sensing experiment might seek to discover. An equivalent slab approximation is typically used to relate omega to the grain size and optical constants of the material. This approach can mimic the wavelength-dependent absorption behavior of irregular grains, as long as the imaginary index kappa is much less than 1, the shape is equant, and the grain size D is much larger than the wavelength lambda. Unfortunately, the equivalent slab approach provides no information about p(g), which also has a strong dependence on optical constants and particle form.

  17. Novel parallel plate condenser for single particle electrostatic force measurements in atomic force microscope

    KAUST Repository

    Kwek, Jin Wang

    2011-07-01

    A combination of small parallel plate condenser with Indium Tin Oxide (ITO) glass slides as electrodes and an atomic force microscope (AFM) is used to characterize the electrostatic behavior of single glass bead microparticles (105-150 μm) glued to the AFM cantilever. This novel setup allows measurements of the electrostatic forces acting on a particle in an applied electrical field to be performed in ambient air conditions. By varying the position of the microparticle between the electrodes and the strength of the applied electric field, the relative contributions of the particle net charge, induced and image charges were investigated. When the microparticle is positioned in the middle of the electrodes, the force acting on the microparticle was linear with the applied electric field and proportional to the microparticle net charge. At distances close to the bottom electrode, the force follows a parabolic relationship with the applied electric field reflecting the contributions of induced and image charges. The method can be used for the rapid evaluation of the charging and polarizability properties of the microparticle as well as an alternative to the conventional Faraday\\'s pail technique. © 2011 Elsevier B.V.

  18. DEMONIC programming: a computational language for single-particle equilibrium thermodynamics, and its formal semantics.

    Directory of Open Access Journals (Sweden)

    Samson Abramsky

    2015-11-01

    Full Text Available Maxwell's Demon, 'a being whose faculties are so sharpened that he can follow every molecule in its course', has been the centre of much debate about its abilities to violate the second law of thermodynamics. Landauer's hypothesis, that the Demon must erase its memory and incur a thermodynamic cost, has become the standard response to Maxwell's dilemma, and its implications for the thermodynamics of computation reach into many areas of quantum and classical computing. It remains, however, still a hypothesis. Debate has often centred around simple toy models of a single particle in a box. Despite their simplicity, the ability of these systems to accurately represent thermodynamics (specifically to satisfy the second law and whether or not they display Landauer Erasure, has been a matter of ongoing argument. The recent Norton-Ladyman controversy is one such example. In this paper we introduce a programming language to describe these simple thermodynamic processes, and give a formal operational semantics and program logic as a basis for formal reasoning about thermodynamic systems. We formalise the basic single-particle operations as statements in the language, and then show that the second law must be satisfied by any composition of these basic operations. This is done by finding a computational invariant of the system. We show, furthermore, that this invariant requires an erasure cost to exist within the system, equal to kTln2 for a bit of information: Landauer Erasure becomes a theorem of the formal system. The Norton-Ladyman controversy can therefore be resolved in a rigorous fashion, and moreover the formalism we introduce gives a set of reasoning tools for further analysis of Landauer erasure, which are provably consistent with the second law of thermodynamics.

  19. TrackMate: An open and extensible platform for single-particle tracking.

    Science.gov (United States)

    Tinevez, Jean-Yves; Perry, Nick; Schindelin, Johannes; Hoopes, Genevieve M; Reynolds, Gregory D; Laplantine, Emmanuel; Bednarek, Sebastian Y; Shorte, Spencer L; Eliceiri, Kevin W

    2017-02-15

    We present TrackMate, an open source Fiji plugin for the automated, semi-automated, and manual tracking of single-particles. It offers a versatile and modular solution that works out of the box for end users, through a simple and intuitive user interface. It is also easily scriptable and adaptable, operating equally well on 1D over time, 2D over time, 3D over time, or other single and multi-channel image variants. TrackMate provides several visualization and analysis tools that aid in assessing the relevance of results. The utility of TrackMate is further enhanced through its ability to be readily customized to meet specific tracking problems. TrackMate is an extensible platform where developers can easily write their own detection, particle linking, visualization or analysis algorithms within the TrackMate environment. This evolving framework provides researchers with the opportunity to quickly develop and optimize new algorithms based on existing TrackMate modules without the need of having to write de novo user interfaces, including visualization, analysis and exporting tools. The current capabilities of TrackMate are presented in the context of three different biological problems. First, we perform Caenorhabditis-elegans lineage analysis to assess how light-induced damage during imaging impairs its early development. Our TrackMate-based lineage analysis indicates the lack of a cell-specific light-sensitive mechanism. Second, we investigate the recruitment of NEMO (NF-κB essential modulator) clusters in fibroblasts after stimulation by the cytokine IL-1 and show that photodamage can generate artifacts in the shape of TrackMate characterized movements that confuse motility analysis. Finally, we validate the use of TrackMate for quantitative lifetime analysis of clathrin-mediated endocytosis in plant cells. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. A tilt-pair based method for assigning the projection directions of randomly oriented single-particle molecules.

    Science.gov (United States)

    Ueno, Yutaka; Mine, Shouhei; Kawasaki, Kazunori

    2015-04-01

    In this article, we describe an improved method to assign the projection angle for averaged images using tilt-pair images for three-dimensional reconstructions from randomly oriented single-particle molecular images. Our study addressed the so-called 'initial volume problem' in the single-particle reconstruction, which involves estimation of projection angles of the particle images. The projected images of the particles in different tilt observations were mixed and averaged for the characteristic views. After the ranking of these group average images in terms of reliable tilt angle information, mutual tilt angles between images are assigned from the constituent tilt-pair information. Then, multiples of the conical tilt series are made and merged to construct a network graph of the particle images in terms of projection angles, which are optimized for the three-dimensional reconstruction. We developed the method with images of a synthetic object and applied it to a single-particle image data set of the purified deacetylase from archaea. With the introduction of low-angle tilt observations to minimize unfavorable imaging conditions due to tilting, the results demonstrated reasonable reconstruction models without imposing symmetry to the structure. This method also guides its users to discriminate particle images of different conformational state of the molecule. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Measurements of the evaporation and hygroscopic response of single fine-mode aerosol particles using a Bessel beam optical trap.

    Science.gov (United States)

    Cotterell, Michael I; Mason, Bernard J; Carruthers, Antonia E; Walker, Jim S; Orr-Ewing, Andrew J; Reid, Jonathan P

    2014-02-07

    A single horizontally-propagating zeroth order Bessel laser beam with a counter-propagating gas flow was used to confine single fine-mode aerosol particles over extended periods of time, during which process measurements were performed. Particle sizes were measured by the analysis of the angular variation of light scattered at 532 nm by a particle in the Bessel beam, using either a probe beam at 405 nm or 633 nm. The vapour pressures of glycerol and 1,2,6-hexanetriol particles were determined to be 7.5 ± 2.6 mPa and 0.20 ± 0.02 mPa respectively. The lower volatility of hexanetriol allowed better definition of the trapping environment relative humidity profile over the measurement time period, thus higher precision measurements were obtained compared to those for glycerol. The size evolution of a hexanetriol particle, as well as its refractive index at wavelengths 532 nm and 405 nm, were determined by modelling its position along the Bessel beam propagation length while collecting phase functions with the 405 nm probe beam. Measurements of the hygroscopic growth of sodium chloride and ammonium sulfate have been performed on particles as small as 350 nm in radius, with growth curves well described by widely used equilibrium state models. These are the smallest particles for which single-particle hygroscopicity has been measured and represent the first measurements of hygroscopicity on fine mode and near-accumulation mode aerosols, the size regimes bearing the most atmospheric relevance in terms of loading, light extinction and scattering. Finally, the technique is contrasted with other single particle and ensemble methods, and limitations are assessed.

  2. Chemical characterization of single micro- and nano-particles by optical catapulting-optical trapping-laser-induced breakdown spectroscopy

    Science.gov (United States)

    Fortes, Francisco J.; Fernández-Bravo, Angel; Javier Laserna, J.

    2014-10-01

    Spectral identification of individual micro- and nano-sized particles by the sequential intervention of optical catapulting, optical trapping and laser-induced breakdown spectroscopy is presented. The three techniques are used for different purposes. Optical catapulting (OC) serves to put the particulate material under inspection in aerosol form. Optical trapping (OT) permits the isolation and manipulation of individual particles from the aerosol, which are subsequently analyzed by laser-induced breakdown spectroscopy (LIBS). Once catapulted, the dynamics of particle trapping depends both on the laser beam characteristics (power and intensity gradient) and on the particle properties (size, mass and shape). Particles are stably trapped in air at atmospheric pressure and can be conveniently manipulated for a precise positioning for LIBS analysis. The spectra acquired from the individually trapped particles permit a straightforward identification of the material inspected. Variability of LIBS signal for the inspection of Ni microspheres was 30% relative standard deviation. OC-OT-LIBS permits the separation of particles in a heterogeneous mixture and the subsequent analysis of the isolated particle of interest. In order to evaluate the sensitivity of the approach, the number of absolute photons emitted by a single trapped particle was calculated. The limit of detection (LOD) for Al2O3 particles was calculated to be 200 attograms aluminium.

  3. 4-D single particle tracking of synthetic and proteinaceous microspheres reveals preferential movement of nuclear particles along chromatin – poor tracks

    Directory of Open Access Journals (Sweden)

    Athale Chaitanya

    2004-11-01

    Full Text Available Abstract Background The dynamics of nuclear organization, nuclear bodies and RNPs in particular has been the focus of many studies. To understand their function, knowledge of their spatial nuclear position and temporal translocation is essential. Typically, such studies generate a wealth of data that require novel methods in image analysis and computational tools to quantitatively track particle movement on the background of moving cells and shape changing nuclei. Results We developed a novel 4-D image processing platform (TIKAL for the work with laser scanning and wide field microscopes. TIKAL provides a registration software for correcting global movements and local deformations of cells as well as 2-D and 3-D tracking software. With this new tool, we studied the dynamics of two different types of nuclear particles, namely nuclear bodies made from GFP-NLS-vimentin and microinjected 0.1 μm – wide polystyrene beads, by live cell time-lapse microscopy combined with single particle tracking and mobility analysis. We now provide a tool for the automatic 3-D analysis of particle movement in parallel with the acquisition of chromatin density data. Conclusions Kinetic analysis revealed 4 modes of movement: confined obstructed, normal diffusion and directed motion. Particle tracking on the background of stained chromatin revealed that particle movement is directly related to local reorganization of chromatin. Further a direct comparison of particle movement in the nucleoplasm and the cytoplasm exhibited an entirely different kinetic behaviour of vimentin particles in both compartments. The kinetics of nuclear particles were slightly affected by depletion of ATP and significantly disturbed by disruption of actin and microtubule networks. Moreover, the hydration state of the nucleus had a strong impact on the mobility of nuclear bodies since both normal diffusion and directed motion were entirely abolished when cells were challenged with 0.6 M

  4. 4-D single particle tracking of synthetic and proteinaceous microspheres reveals preferential movement of nuclear particles along chromatin – poor tracks

    Science.gov (United States)

    Bacher, Christian P; Reichenzeller, Michaela; Athale, Chaitanya; Herrmann, Harald; Eils, Roland

    2004-01-01

    Background The dynamics of nuclear organization, nuclear bodies and RNPs in particular has been the focus of many studies. To understand their function, knowledge of their spatial nuclear position and temporal translocation is essential. Typically, such studies generate a wealth of data that require novel methods in image analysis and computational tools to quantitatively track particle movement on the background of moving cells and shape changing nuclei. Results We developed a novel 4-D image processing platform (TIKAL) for the work with laser scanning and wide field microscopes. TIKAL provides a registration software for correcting global movements and local deformations of cells as well as 2-D and 3-D tracking software. With this new tool, we studied the dynamics of two different types of nuclear particles, namely nuclear bodies made from GFP-NLS-vimentin and microinjected 0.1 μm – wide polystyrene beads, by live cell time-lapse microscopy combined with single particle tracking and mobility analysis. We now provide a tool for the automatic 3-D analysis of particle movement in parallel with the acquisition of chromatin density data. Conclusions Kinetic analysis revealed 4 modes of movement: confined obstructed, normal diffusion and directed motion. Particle tracking on the background of stained chromatin revealed that particle movement is directly related to local reorganization of chromatin. Further a direct comparison of particle movement in the nucleoplasm and the cytoplasm exhibited an entirely different kinetic behaviour of vimentin particles in both compartments. The kinetics of nuclear particles were slightly affected by depletion of ATP and significantly disturbed by disruption of actin and microtubule networks. Moreover, the hydration state of the nucleus had a strong impact on the mobility of nuclear bodies since both normal diffusion and directed motion were entirely abolished when cells were challenged with 0.6 M sorbitol. This effect correlated

  5. Robust model-based analysis of single-particle tracking experiments with Spot-On.

    Science.gov (United States)

    Hansen, Anders S; Woringer, Maxime; Grimm, Jonathan B; Lavis, Luke D; Tjian, Robert; Darzacq, Xavier

    2018-01-04

    Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce 'Spot-On', an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants. © 2018, Hansen et al.

  6. Role of non-convexity in characterizing single-scattering properties for ensembles of non-spherical precipitation particles

    Science.gov (United States)

    Kuo, K.; Clune, T.; Pearson, C.; Olson, W. S.; Skofronick-Jackson, G.; Gravner, J.; Griffeath, D.

    2010-12-01

    This study improves upon an earlier, preliminary study using only three size bins based on maximum diameter in which it is found that the single-scattering properties of ensembles of non-spherical precipitation particles can be better characterized by considering the non-convexity of these particles. The difficulty of retrievals involving non-spherical particles stems not only from the fact that these particles are not spherical but also the fact that the shape composition of an ensemble of particles is usually unknown and the possibility of its mixture is infinite. Being able to adequately characterize the single-scattering properties of ensembles involving these non-spherical particles with as few parameters as possible is at the heart of solving this thorny remote sensing problem. Inspired by how well three parameters, i.e. water content, effective radius, and effective variance (or their equivalent), characterize the single-scattering properties of an ensemble of spherical particles of varying sizes, we set out to find additional parameters that generalize these three for ensembles of non-spherical particles. We find that a non-convexity measure appears to be one of these additional parameters. Non-convexity is expressed as a ratio of two effective radii derived from the moments of a given particle size distribution (PSD), each of which is in essence a ratio of ensemble particle volume to area. The effective radius in the numerator (denoted as rA) of the non-convexity ratio is based on the projection area of the particle ensemble whereas the one in the denominator (denoted as rS) is based on the surface area. In the preliminary study with PSDs having only three size bins, it is found that variations in the single-scattering properties, such as the scattering and extinction coefficients, the asymmetry factor, and even the scattering phase function, of a particle ensemble with a specified water content are very limited (practically non-existent), if 1) the habit

  7. Jones matrix description of Fabry-Perot interference in a single axis photo-elastic modulator and the consequences for the magneto-optical measurement method

    Directory of Open Access Journals (Sweden)

    Md. Abdul Ahad Talukder

    2017-08-01

    Full Text Available When using a Photo-elastic modulator (PEM in combination with a coherent light source, in addition to the modulation of the phase, Fabry-Perot interference in the PEM’s optical head induces large offsets in the 1ω and 2ω detector signals. A Jones matrix which describes both effects simultaneously, was derived for a single axis PEM and used to find an expression for the detector signal for two different MO Kerr setups. The effect of the PEM tilt angle, polarizer angle, analyzer angle, and retardation, on the detector signal offsets show that offsets can be zeroed by adjusting PEM tilt angle, polarizer angle, and retardation. This strategy will allow one to avoid large offset drifts due to the small retardation, intensity, and beam direction fluctuations caused by lab temperature fluctuations. In addition, it will enable one to measure in the most sensitive range of the lock-in amplifiers further improving the signal to noise ratio of the setup.

  8. Probing correlated quantum many-body systems at the single-particle level

    International Nuclear Information System (INIS)

    Endres, Manuel

    2013-01-01

    The detection of correlation and response functions plays a crucial role in the experimental characterization of quantum many-body systems. In this thesis, we present novel techniques for the measurement of such functions at the single-particle level. Specifically, we show the single-atom- and single-site-resolved detection of an ultracold quantum gas in an optical lattice. The quantum gas is described by the Bose-Hubbard model, which features a zero temperature phase transition from a superfluid to a Mott-insulating state, a paradigm example of a quantum phase transition. We used the aforementioned detection techniques to study correlation and response properties across the superfluid-Mott-insulator transition. The single-atom sensitivity of our method is achieved by fluorescence detection of individual atoms with a high signal-to-noise ratio. A high-resolution objective collects the fluorescence light and yields in situ 'snapshots' of the quantum gas that allow for a single-site-resolved reconstruction of the atomic distribution. This allowed us to measure two-site and non-local correlation-functions across the superfluid-Mott-insulator transition. Non-local correlation functions are based on the information of an extended region of the system and play an important role for the characterization of low-dimensional quantum phases. While non-local correlation functions were so far only theoretical tools, our results show that they are actually experimentally accessible. Furthermore, we used a new thermometry scheme, based on the counting of individual thermal excitations, to measure the response of the system to lattice modulation. Using this method, we studied the excitation spectrum of the system across the two-dimensional superfluid-Mott-insulator transition. In particular, we detected a 'Higgs' amplitude mode in the strongly-interacting superfluid close to the transition point where the system is described by an effectively Lorentz-invariant low-energy theory

  9. Probing correlated quantum many-body systems at the single-particle level

    Energy Technology Data Exchange (ETDEWEB)

    Endres, Manuel

    2013-02-27

    The detection of correlation and response functions plays a crucial role in the experimental characterization of quantum many-body systems. In this thesis, we present novel techniques for the measurement of such functions at the single-particle level. Specifically, we show the single-atom- and single-site-resolved detection of an ultracold quantum gas in an optical lattice. The quantum gas is described by the Bose-Hubbard model, which features a zero temperature phase transition from a superfluid to a Mott-insulating state, a paradigm example of a quantum phase transition. We used the aforementioned detection techniques to study correlation and response properties across the superfluid-Mott-insulator transition. The single-atom sensitivity of our method is achieved by fluorescence detection of individual atoms with a high signal-to-noise ratio. A high-resolution objective collects the fluorescence light and yields in situ 'snapshots' of the quantum gas that allow for a single-site-resolved reconstruction of the atomic distribution. This allowed us to measure two-site and non-local correlation-functions across the superfluid-Mott-insulator transition. Non-local correlation functions are based on the information of an extended region of the system and play an important role for the characterization of low-dimensional quantum phases. While non-local correlation functions were so far only theoretical tools, our results show that they are actually experimentally accessible. Furthermore, we used a new thermometry scheme, based on the counting of individual thermal excitations, to measure the response of the system to lattice modulation. Using this method, we studied the excitation spectrum of the system across the two-dimensional superfluid-Mott-insulator transition. In particular, we detected a 'Higgs' amplitude mode in the strongly-interacting superfluid close to the transition point where the system is described by an effectively Lorentz

  10. Single-particle properties of N = 12 to N = 20 silicon isotopes within the dispersive optical model

    Science.gov (United States)

    Bespalova, O. V.; Ermakova, T. A.; Klimochkina, A. A.; Spasskaya, T. I.

    2017-09-01

    Experimental neutron and proton single-particle energies in N = 12 to N = 20 silicon isotopes and data on neutron and proton scattering by nuclei of the isotope 28Si are analyzed on the basis of the dispersive optical model. Good agreement with available experimental data was attained. The occupation probabilities calculated for the single-particle states in question suggest a parallel-type filling of the 1 d and 2 s 1/2 neutron states in the isotopes 26,28,30,32,34Si. The single-particle spectra being considered are indicative of the closure of the Z = 14 proton subshell in the isotopes 30,32,34Si and the N = 20 neutron shell.

  11. Digital Microfluidics Assisted Sealing of Individual Magnetic Particles in Femtoliter-Sized Reaction Wells for Single-Molecule Detection.

    Science.gov (United States)

    Decrop, Deborah; Ruiz, Elena Pérez; Kumar, Phalguni Tewari; Tripodi, Lisa; Kokalj, Tadej; Lammertyn, Jeroen

    2017-01-01

    Digital microfluidics has emerged in the last years as a promising liquid handling technology for a variety of applications. Here, we describe in detail how to build up an electrowetting-on-dielectric-based digital microfluidic chip with unique advantages for performing single-molecule detection. We illustrate how superparamagnetic particles can be printed with very high loading efficiency (over 98 %) and single-particle resolution in the microwell array patterned in the Teflon-AF ® surface of the grounding plate of the chip. Finally, the potential of the device for its application to single-molecule detection is demonstrated by the ultrasensitive detection of the biotinylated enzyme β-Galactosidase captured on streptavidin-coated particles in the described platform.

  12. Three-dimensional simulation of the motion of a single particle under a simulated turbulent velocity field

    Science.gov (United States)

    Moreno-Casas, P. A.; Bombardelli, F. A.

    2015-12-01

    A 3D Lagrangian particle tracking model is coupled to a 3D channel velocity field to simulate the saltation motion of a single sediment particle moving in saltation mode. The turbulent field is a high-resolution three dimensional velocity field that reproduces a by-pass transition to turbulence on a flat plate due to free-stream turbulence passing above de plate. In order to reduce computational costs, a decoupled approached is used, i.e., the turbulent flow is simulated independently from the tracking model, and then used to feed the 3D Lagrangian particle model. The simulations are carried using the point-particle approach. The particle tracking model contains three sub-models, namely, particle free-flight, a post-collision velocity and bed representation sub-models. The free-flight sub-model considers the action of the following forces: submerged weight, non-linear drag, lift, virtual mass, Magnus and Basset forces. The model also includes the effect of particle angular velocity. The post-collision velocities are obtained by applying conservation of angular and linear momentum. The complete model was validated with experimental results from literature within the sand range. Results for particle velocity time series and distribution of particle turbulent intensities are presented.

  13. A local-optimization refinement algorithm in single particle analysis for macromolecular complex with multiple rigid modules

    Directory of Open Access Journals (Sweden)

    Hong Shan

    2015-12-01

    Full Text Available ABSTRACT Single particle analysis, which can be regarded as an average of signals from thousands or even millions of particle projections, is an efficient method to study the three-dimensional structures of biological macromolecules. An intrinsic assumption in single particle analysis is that all the analyzed particles must have identical composition and conformation. Thus specimen heterogeneity in either composition or conformation has raised great challenges for high-resolution analysis. For particles with multiple conformations, inaccurate alignments and orientation parameters will yield an averaged map with diminished resolution and smeared density. Besides extensive classification approaches, here based on the assumption that the macromolecular complex is made up of multiple rigid modules whose relative orientations and positions are in slight fluctuation around equilibriums, we propose a new method called as local optimization refinement to address this conformational heterogeneity for an improved resolution. The key idea is to optimize the orientation and shift parameters of each rigid module and then reconstruct their three-dimensional structures individually. Using simulated data of 80S/70S ribosomes with relative fluctuations between the large (60S/50S and the small (40S/30S subunits, we tested this algorithm and found that the resolutions of both subunits are significantly improved. Our method provides a proof-of-principle solution for high-resolution single particle analysis of macromolecular complexes with dynamic conformations.

  14. A local-optimization refinement algorithm in single particle analysis for macromolecular complex with multiple rigid modules.

    Science.gov (United States)

    Shan, Hong; Wang, Zihao; Zhang, Fa; Xiong, Yong; Yin, Chang-Cheng; Sun, Fei

    2016-01-01

    Single particle analysis, which can be regarded as an average of signals from thousands or even millions of particle projections, is an efficient method to study the three-dimensional structures of biological macromolecules. An intrinsic assumption in single particle analysis is that all the analyzed particles must have identical composition and conformation. Thus specimen heterogeneity in either composition or conformation has raised great challenges for high-resolution analysis. For particles with multiple conformations, inaccurate alignments and orientation parameters will yield an averaged map with diminished resolution and smeared density. Besides extensive classification approaches, here based on the assumption that the macromolecular complex is made up of multiple rigid modules whose relative orientations and positions are in slight fluctuation around equilibriums, we propose a new method called as local optimization refinement to address this conformational heterogeneity for an improved resolution. The key idea is to optimize the orientation and shift parameters of each rigid module and then reconstruct their three-dimensional structures individually. Using simulated data of 80S/70S ribosomes with relative fluctuations between the large (60S/50S) and the small (40S/30S) subunits, we tested this algorithm and found that the resolutions of both subunits are significantly improved. Our method provides a proof-of-principle solution for high-resolution single particle analysis of macromolecular complexes with dynamic conformations.

  15. Optimal estimation of single-particle diffusion coefficients and kinetics of hOgg1 repair protein on DNA

    DEFF Research Database (Denmark)

    Flyvbjerg, Henrik

    How does one optimally determine the diffusion coefficient of a diffusing particle from a single-time-lapse recorded trajectory of the particle? We answer this question with an explicit, unbiased, and practically optimal covariance-based estimator (CVE). This estimator is regression-free and is far...... substrate, the CVE is biased by substrate motion. However, given some long time series and a substrate under some tension, an extended MLE can separate particle diffusion on the substrate from substrate motion in the laboratory frame. This provides benchmarks that allow removal of bias caused by substrate...

  16. Investigation of electrically-active deep levels in single-crystalline diamond by particle-induced charge transient spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kada, W., E-mail: kada.wataru@gunma-u.ac.jp [Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Kambayashi, Y.; Ando, Y. [Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Onoda, S. [Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Umezawa, H.; Mokuno, Y. [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Shikata, S. [Kwansei Gakuin Univ., 2-1, Gakuen, Mita, Hyogo 669-1337 (Japan); Makino, T.; Koka, M. [Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Hanaizumi, O. [Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Kamiya, T.; Ohshima, T. [Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan)

    2016-04-01

    To investigate electrically-active deep levels in high-resistivity single-crystalline diamond, particle-induced charge transient spectroscopy (QTS) techniques were performed using 5.5 MeV alpha particles and 9 MeV carbon focused microprobes. For unintentionally-doped (UID) chemical vapor deposition (CVD) diamond, deep levels with activation energies of 0.35 eV and 0.43 eV were detected which correspond to the activation energy of boron acceptors in diamond. The results suggested that alpha particle and heavy ion induced QTS techniques are the promising candidate for in-situ investigation of deep levels in high-resistivity semiconductors.

  17. Facilitating model reconstruction for single-particle scattering using small-angle X-ray scattering methods.

    Science.gov (United States)

    Ma, Shufen; Liu, Haiguang

    2016-04-01

    X-ray free-electron lasers generate intense femtosecond X-ray pulses, so that high-resolution structure determination becomes feasible from noncrystalline samples, such as single particles or single molecules. At the moment, the orientation of sample particles cannot be precisely controlled, and consequently the unknown orientation needs to be recovered using computational algorithms. This delays the model reconstruction until all the scattering patterns have been re-oriented, which often entails a long elapse of time and until the completion of the experiment. The scattering patterns from single particles or multiple particles can be summed to form a virtual powder diffraction pattern, and the low-resolution region, corresponding to the small-angle X-ray scattering (SAXS) regime, can be analysed using existing SAXS methods. This work presents a pipeline that converts single-particle data sets into SAXS data, from which real-time model reconstruction is achieved using the model retrieval approach implemented in the software package SASTBX [Liu, Hexemer & Zwart (2012). J. Appl. Cryst. 45 , 587-593]. To illustrate the applications, two case studies are presented with real experimental data sets collected at the Linac Coherent Light Source.

  18. Detection of lead nanoparticles in game meat by single particle ICP-MS following use of lead-containing bullets.

    Science.gov (United States)

    Kollander, Barbro; Widemo, Fredrik; Ågren, Erik; Larsen, Erik H; Loeschner, Katrin

    2017-03-01

    This study investigated whether game meat may contain nanoparticles of lead from ammunition. Lead nanoparticles in the range 40 to 750 nm were detected by ICP-MS in single particle mode in game shot with lead-containing bullets. The median diameter of the detected nanoparticles was around 60 nm. The particle mass concentration ranged from 290 to 340 ng/g meat and the particle number concentrations from 27 to 50 million particles/g meat. The size limit of detection strongly depended on the level of dissolved lead and was in the range of 40 to 80 nm. In game meat sampled more than 10 cm away from the wound channel, no lead particles with a diameter larger than 40 nm were detected. In addition to dissolved lead in meat that originated from particulates, the presence of lead nano particles in game meat represents a hitherto unattended source of lead with a largely unknown toxicological impact to humans. Graphical Abstract Detection of lead nanoparticles in game meat by single particle ICP-MS following use of leadcontaining bullets.

  19. High-energy scattering of particles with anomalous magnetic moments in the quantum field theory. πN scattering and Coulomb interference

    International Nuclear Information System (INIS)

    Nguen Suan Khan; Pervushin, V.N.

    1975-01-01

    An eikonal representation has been obtained for the amplitude of the πN-scattering in the asymptotic form into account the anomalous nucleon magnetic moment leads to the introduction of the additive term in to the eikonal phase which is responsible for the spin flip in the scattering process. The Coulomb interference is considered

  20. Overcoming challenges in single particle inductively coupled plasma mass spectrometry measurement of silver nanoparticles.

    Science.gov (United States)

    Liu, Jingyu; Murphy, Karen E; Winchester, Michael R; Hackley, Vincent A

    2017-10-01

    Single particle ICP-MS has evolved rapidly as a quantitative method for determining nanoparticle size and number concentration at environmentally relevant exposure levels. Central to the application of spICP-MS is a commonly used, but not rigorously validated, calibration approach based on the measured transport efficiency and the response of ionic standards. In this work, we present a comprehensive and systematic study of the accuracy, precision and robustness of spICP-MS using the rigorously characterized reference material (RM) 8017 (Polyvinylpyrrolidone Coated Nominal 75 nm Silver Nanoparticles), recently issued by the National Institute of Standards and Technology (NIST). We report for the first time, statistically significant differences in frequency-based and size-based measures of transport efficiency with NIST RM 8013 Gold Nanoparticles and demonstrate that the size-based measure of transport efficiency is more robust and yields accurate results for the silver nanoparticle RM relative to TEM-based reference values. This finding is significant, because the frequency-based method is more widely applied. Furthermore, we demonstrate that the use of acidified ionic standards improves measurement of ICP-MS Ag response, but does not degrade the accuracy of the results for AgNP suspensions in water or various other diluents. Approaches for controlling AgNP dissolution were investigated and are shown to effectively improve particle stability in dilute suspensions required for spICP-MS analysis, while minimally affecting the measured intensity and allowing for more robust analysis. This study is an important and necessary advancement toward full validation and adoption of spICP-MS by the broader research community. Graphical abstract Measurement challenges in spICP-MS analysis.

  1. A comparative analysis of chaotic particle swarm optimizations for detecting single nucleotide polymorphism barcodes.

    Science.gov (United States)

    Chuang, Li-Yeh; Moi, Sin-Hua; Lin, Yu-Da; Yang, Cheng-Hong

    2016-10-01

    Evolutionary algorithms could overcome the computational limitations for the statistical evaluation of large datasets for high-order single nucleotide polymorphism (SNP) barcodes. Previous studies have proposed several chaotic particle swarm optimization (CPSO) methods to detect SNP barcodes for disease analysis (e.g., for breast cancer and chronic diseases). This work evaluated additional chaotic maps combined with the particle swarm optimization (PSO) method to detect SNP barcodes using a high-dimensional dataset. Nine chaotic maps were used to improve PSO method results and compared the searching ability amongst all CPSO methods. The XOR and ZZ disease models were used to compare all chaotic maps combined with PSO method. Efficacy evaluations of CPSO methods were based on statistical values from the chi-square test (χ 2 ). The results showed that chaotic maps could improve the searching ability of PSO method when population are trapped in the local optimum. The minor allele frequency (MAF) indicated that, amongst all CPSO methods, the numbers of SNPs, sample size, and the highest χ 2 value in all datasets were found in the Sinai chaotic map combined with PSO method. We used the simple linear regression results of the gbest values in all generations to compare the all methods. Sinai chaotic map combined with PSO method provided the highest β values (β≥0.32 in XOR disease model and β≥0.04 in ZZ disease model) and the significant p-value (p-value<0.001 in both the XOR and ZZ disease models). The Sinai chaotic map was found to effectively enhance the fitness values (χ 2 ) of PSO method, indicating that the Sinai chaotic map combined with PSO method is more effective at detecting potential SNP barcodes in both the XOR and ZZ disease models. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Biomass Burning Research Using DOE ARM Single-Particle Soot Photometer (SP2) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Onasch, Timothy B [Aerodyne Research, Inc., Billerica, MA (United States); Sedlacek, Arthur J [Brookhaven National Lab. (BNL), Upton, NY (United States); Lewis, Ernie [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-03-01

    The focus of this laboratory study was to investigate the chemical and optical properties, and the detection efficiencies, of tar balls generated in the laboratory using the same instruments deployed on the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Gulfstream-1 (G-1) aircraft during the 2013 Biomass Burning Observation Project (BBOP) field study, during which tar balls were observed in wildland biomass burning particulate emissions. Key goals of this laboratory study were: (a) measuring the chemical composition of tar balls to provide insights into the atmospheric processes that form (evaporation/oxidation) and modify them in biomass burning plumes, (b) identifying whether tar balls contain refractory black carbon, (c) determining the collection efficiencies of tar balls impacting on the 600oC heated tungsten vaporizer in the Aerodyne Soot Particle Aerosol Mass Spectrometer (SP-AMS) (i.e., given the observed low volatilities, AMS measurements might underestimate organic biomass burning plume loadings), and (d) measuring the wavelength-dependent, mass-specific absorption cross-sections of brown carbon components of tar balls. This project was funded primarily by the DOE Atmospheric System Research (ASR) program, and the ARM Facility made their single-particle soot photometer (SP2) available for September 1-September 31, 2016 in the Aerodyne laboratories. The ARM mentor (Dr. Sedlacek) requested no funds for mentorship or data reduction. All ARM SP2 data collected as part of this project are archived in the ARM Data Archive in accordance with established protocols. The main objectives of the ARM Biomass Burning Observation Period (BBOP, July-October, 2013) field campaign were to (1) assess the impact of wildland fires in the Pacific Northwest on climate, through near-field and regional intensive measurement campaigns, and (2) investigate agricultural burns to determine how those biomass burn plumes differ from

  3. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate

    International Nuclear Information System (INIS)

    Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J.; Ravelli, Raimond B. G.

    2011-01-01

    The effects of dose and dose-rate were investigated for single-particle cryo-electron microscopy using stroboscopic data collection. A dose-rate effect was observed favoring lower flux densities. Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50–250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e − Å −2 s

  4. Online differentiation of mineral phase in aerosol particles by ion formation mechanism using a LAAP-TOF single-particle mass spectrometer

    Directory of Open Access Journals (Sweden)

    N. A. Marsden

    2018-01-01

    Full Text Available Mineralogy of silicate mineral dust has a strong influence on climate and ecosystems due to variation in physiochemical properties that result from differences in composition and crystal structure (mineral phase. Traditional offline methods of analysing mineral phase are labour intensive and the temporal resolution of the data is much longer than many atmospheric processes. Single-particle mass spectrometry (SPMS is an established technique for the online size-resolved measurement of particle composition by laser desorption ionisation (LDI followed by time-of-flight mass spectrometry (TOF-MS. Although non-quantitative, the technique is able to identify the presence of silicate minerals in airborne dust particles from markers of alkali metals and silicate molecular ions in the mass spectra. However, the differentiation of mineral phase in silicate particles by traditional mass spectral peak area measurements is not possible. This is because instrument function and matrix effects in the ionisation process result in variations in instrument response that are greater than the differences in composition between common mineral phases.In this study, we introduce a novel technique that enables the differentiation of mineral phase in silicate mineral particles by ion formation mechanism measured from subtle changes in ion arrival times at the TOF-MS detector. Using a combination of peak area and peak centroid measurements, we show that the arrangement of the interstitial alkali metals in the crystal structure, an important property in silicate mineralogy, influences the ion arrival times of elemental and molecular ion species in the negative ion mass spectra. A classification scheme is presented that allowed for the differentiation of illite–smectite, kaolinite and feldspar minerals on a single-particle basis. Online analysis of mineral dust aerosol generated from clay mineral standards produced mineral fractions that are in agreement with bulk

  5. Online differentiation of mineral phase in aerosol particles by ion formation mechanism using a LAAP-TOF single-particle mass spectrometer

    Science.gov (United States)

    Marsden, Nicholas A.; Flynn, Michael J.; Allan, James D.; Coe, Hugh

    2018-01-01

    Mineralogy of silicate mineral dust has a strong influence on climate and ecosystems due to variation in physiochemical properties that result from differences in composition and crystal structure (mineral phase). Traditional offline methods of analysing mineral phase are labour intensive and the temporal resolution of the data is much longer than many atmospheric processes. Single-particle mass spectrometry (SPMS) is an established technique for the online size-resolved measurement of particle composition by laser desorption ionisation (LDI) followed by time-of-flight mass spectrometry (TOF-MS). Although non-quantitative, the technique is able to identify the presence of silicate minerals in airborne dust particles from markers of alkali metals and silicate molecular ions in the mass spectra. However, the differentiation of mineral phase in silicate particles by traditional mass spectral peak area measurements is not possible. This is because instrument function and matrix effects in the ionisation process result in variations in instrument response that are greater than the differences in composition between common mineral phases.In this study, we introduce a novel technique that enables the differentiation of mineral phase in silicate mineral particles by ion formation mechanism measured from subtle changes in ion arrival times at the TOF-MS detector. Using a combination of peak area and peak centroid measurements, we show that the arrangement of the interstitial alkali metals in the crystal structure, an important property in silicate mineralogy, influences the ion arrival times of elemental and molecular ion species in the negative ion mass spectra. A classification scheme is presented that allowed for the differentiation of illite-smectite, kaolinite and feldspar minerals on a single-particle basis. Online analysis of mineral dust aerosol generated from clay mineral standards produced mineral fractions that are in agreement with bulk measurements reported by

  6. The associated charged particle multiplicity of high-p/sub T/ pi /sup 0/ and single-photon events

    CERN Document Server

    Diakonou, M; Albrow, M G; Almehed, S; Benary, O; Bøggild, H; Botner, O; Cnops, A M; Cockerill, D J A; Dagan, S; Dahl-Jensen, Erik; Dahl-Jensen, I; Damgaard, G; Fabjan, Christian Wolfgang; Filippas-Tassos, A; Fokitis, E; Fowler, E C; Hallgren, A; Hansen, K H; Henning, S; Hood, D M; Hooper, J; Jarlskog, G; Karpathopoulos, S; Killian, T; Kourkoumelis, C; Kreisler, M; Lissauer, D; Lörstad, B; Ludlam, T; Mannelli, I; McCubbin, N A; Melin, A; Mjörnmark, U; Møller, R; Molzon, W; Mouzourakis, P; Nielsen, B S; Nielsen, S O; Nilsson, A; Oren, Y; Palmer, R B; Rahm, David Charles; Rehak, P; Resvanis, L K; Rosselt, L; Schistad, B; Stumer, I; Svensson, L; von Dardel, Guy F; Willis, W J

    1980-01-01

    The associated charged particle multiplicities of high-p/sub T/ pi /sup 0/ and single-photon events were measured at the CERN intersecting storage rings using lead/liquid-argon calorimeters and a scintillation counter array placed around the intersection region. The average multiplicity on the trigger side for the single-photon events was found to be significantly lower than that for the pi /sup 0/ events. The away-side multiplicity for both pi /sup 0/ and single- photon events increases with the trigger particle p/sub T/, but, at a fixed p/sub T/, the direct photon sample was found to have a slightly lower average multiplicity. The differences in the event structure can be explained if a large fraction of the single photons are produced via qg to gamma q constituent scattering. (16 refs).

  7. International interlaboratory study for sizing and quantification of Ag nanoparticles in food simulants by single-particle ICPMS.

    Science.gov (United States)

    Linsinger, Thomas P J; Peters, Ruud; Weigel, Stefan

    2014-06-01

    This publication describes the first international intercomparison of particle-size determination by single-particle inductively coupled plasma mass spectrometry (sp-ICPMS). Concentrated monodisperse silver nanoparticle suspensions with particle diameters of 20, 40 and 100 nm and a blank solution were sent to 23 laboratories in Europe, the USA and Canada. Laboratories prepared eight nanoparticle preparations in two food simulants (distilled water; 10% ethanol) and reported median particle size, Ag particle mass concentration and Ag particle number concentrations. Average repeatability and reproducibility standard deviation (sr and sR) for the median particle diameter were 1 and 14 nm, respectively. Relative precision was worse for Ag particle number concentrations (RSD r = 11%; RSD R = 78%). While further improvements of the method, especially with respect to software tools for evaluation, hardware options for shorter dwell times, calibration standards for determining nebuliser efficiency and further experience by laboratories are certainly desirable, the results of this study demonstrate the suitability of sp-ICPMS for the detection and quantification of certain kinds of nanoparticles.

  8. FIREX-Related Biomass Burning Research Using ARM Single-Particle Soot Photometer Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Onasch, Timothy B [Aerodyne Research, Inc.; Sedlacek, Arthur J [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-03-15

    The scientific focus of this study was to investigate and quantify the mass loadings, chemical compositions, and optical properties of biomass burning particulate emissions generated in the laboratory from Western U.S. fuels using a similar instrument suite to the one deployed on the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Gulfstream-1 (G-1) aircraft during the 2013 Biomass Burning Observation Project (BBOP) field study (Kleinman and Sedlacek, 2013). We deployed the single-particle soot photometer (SP2) to make measurements of biomass burning refractory black carbon (rBC) mass loadings and size distributions to correlate with non-refractory particulate matter (NR-PM; i.e., HR-AMS) and rBC (SP-AMS) measurements as a function of photo-oxidation processes in an environmental chamber. With these measurements, we will address the following scientific questions: 1. What are the emission indices (g/kg fuel) of rBC from various wildland fuels from the Pacific Northwest (i.e., relevant to BBOP analysis) as a function of combustion conditions and simulated atmospheric processing in an environmental chamber? 2. What are the optical properties (e.g., mass-specific absorption cross-section [MAC], single-scattering albedo [SSA], and absorption Angstrom exponent [AAE)] of rBC emitted from various wildland fuels and how are they impacted by atmospheric processing? 3. How does the mixing state of rBC in biomass-burning plumes relate to the optical properties? 4. How does the emitted rBC affect radiative forcing?

  9. A Survey on Interference Networks: Interference Alignment and Neutralization

    Directory of Open Access Journals (Sweden)

    Sang-Woon Jeon

    2012-09-01

    Full Text Available In recent years, there has been rapid progress on understanding Gaussian networks with multiple unicast connections, and new coding techniques have emerged. The essence of multi-source networks is how to efficiently manage interference that arises from the transmission of other sessions. Classically, interference is removed by orthogonalization (in time or frequency. This means that the rate per session drops inversely proportional to the number of sessions, suggesting that interference is a strong limiting factor in such networks. However, recently discovered interference management techniques have led to a paradigm shift that interference might not be quite as detrimental after all. The aim of this paper is to provide a review of these new coding techniques as they apply to the case of time-varying Gaussian networks with multiple unicast connections. Specifically, we review interference alignment and ergodic interference alignment for multi-source single-hop networks and interference neutralization and ergodic interference neutralization for multi-source multi-hop networks. We mainly focus on the “degrees of freedom” perspective and also discuss an approximate capacity characterization.

  10. Insight into the in-cloud formation of oxalate based on in situ measurement by single particle mass spectrometry

    Science.gov (United States)

    Zhang, Guohua; Lin, Qinhao; Peng, Long; Yang, Yuxiang; Fu, Yuzhen; Bi, Xinhui; Li, Mei; Chen, Duohong; Chen, Jianxin; Cai, Zhang; Wang, Xinming; Peng, Ping'an; Sheng, Guoying; Zhou, Zhen

    2017-11-01

    While ground-based works suggest the significance of in-cloud production (or aqueous formation) to oxalate, direct evidence is rare. With the in situ measurements performed at a remote mountain site (1690 m above sea level) in southern China, we first reported the size-resolved mixing state of oxalate in the cloud droplet residual (cloud RES), the cloud interstitial (cloud INT), and ambient (cloud-free) particles by single particle mass spectrometry. The results support the growing evidence that in-cloud aqueous reactions promote the formation of oxalate, with ˜ 15 % of the cloud RES and cloud INT particles containing oxalate in contrast to only ˜ 5 % of the cloud-free particles. Furthermore, individual particle analysis provides unique insight into the formation of oxalate during in-cloud processing. Oxalate was predominantly (> 70 % in number) internally mixed with the aged biomass-burning particles, highlighting the impact of biomass burning on the formation of oxalate. In contrast, oxalate was underrepresented in aged elemental carbon particles, although they represented the largest fraction of the detected particles. It can be interpreted by the individual particle mixing state that the aged biomass-burning particles contained an abundance of organic components serving as precursors for oxalate. Through the analysis of the relationship between oxalate and organic acids (-45[HCO2]-, -59[CH3CO2]-, -71[C2H3CO2]-, -73[C2HO3]-), the results show that in-cloud aqueous reactions dramatically improved the conversion of organic acids to oxalate. The abundance of glyoxylate associated with the aged biomass-burning particles is a controlling factor for the in-cloud production of oxalate. Since only limited information on oxalate is available in the free troposphere, the results also provide an important reference for future understanding of the abundance, evolution, and climate impacts of oxalate.

  11. Development of detection techniques for a single-particle of fissile material(II)

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, S. C.; Kim, W. H.; Park, Y. J.; Song, B. C.; Jeon, Y. S.; Jee, K. Y.; Pyo, H. Y.; Kwack, E. H

    2001-06-01

    The Analytical methods and detection limit of signatures, and the particle discrimination techniques of unknown particles by microscope were investigated in this technical report. In connection with pre-treatment of swipe samples, sampling and treatment of particles, etching method, fission track observation and the preparation of sample for the neutron activation analysis were also described in this thchnical report.

  12. Development of detection techniques for a single-particle of fissile material(II)

    International Nuclear Information System (INIS)

    Sohn, S. C.; Kim, W. H.; Park, Y. J.; Song, B. C.; Jeon, Y. S.; Jee, K. Y.; Pyo, H. Y.; Kwack, E. H.

    2001-06-01

    The Analytical methods and detection limit of signatures, and the particle discrimination techniques of unknown particles by microscope were investigated in this technical report. In connection with pre-treatment of swipe samples, sampling and treatment of particles, etching method, fission track observation and the preparation of sample for the neutron activation analysis were also described in this thchnical report

  13. Nucleosome Core Particle Disassembly and Assembly Kinetics Studied Using Single-Molecule Fluorescence.

    Science.gov (United States)

    Hazan, Noa Plavner; Tomov, Toma E; Tsukanov, Roman; Liber, Miran; Berger, Yaron; Masoud, Rula; Toth, Katalin; Langowski, Joerg; Nir, Eyal

    2015-10-20

    The stability of the nucleosome core particle (NCP) is believed to play a major role in regulation of gene expression. To understand the mechanisms that influence NCP stability, we studied stability and dissociation and association kinetics under different histone protein (NCP) and NaCl concentrations using single-pair Förster resonance energy transfer and alternating laser excitation techniques. The method enables distinction between folded, unfolded, and intermediate NCP states and enables measurements at picomolar to nanomolar NCP concentrations where dissociation and association reactions can be directly observed. We reproduced the previously observed nonmonotonic dependence of NCP stability on NaCl concentration, and we suggest that this rather unexpected behavior is a result of interplay between repulsive and attractive forces within positively charged histones and between the histones and the negatively charged DNA. Higher NaCl concentrations decrease the attractive force between the histone proteins and the DNA but also stabilize H2A/H2B histone dimers, and possibly (H3/H4)2 tetramers. An intermediate state in which one DNA arm is unwrapped, previously observed at high NaCl concentrations, is also explained by this salt-induced stabilization. The strong dependence of NCP stability on ion and histone concentrations, and possibly on other charged macromolecules, may play a role in chromosomal morphology. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. The application of particle filters in single trial event-related potential estimation

    International Nuclear Information System (INIS)

    Mohseni, Hamid R; Nazarpour, Kianoush; Sanei, Saeid; Wilding, Edward L

    2009-01-01

    In this paper, an approach for the estimation of single trial event-related potentials (ST-ERPs) using particle filters (PFs) is presented. The method is based on recursive Bayesian mean square estimation of ERP wavelet coefficients using their previous estimates as prior information. To enable a performance evaluation of the approach in the Gaussian and non-Gaussian distributed noise conditions, we added Gaussian white noise (GWN) and real electroencephalogram (EEG) signals recorded during rest to the simulated ERPs. The results were compared to that of the Kalman filtering (KF) approach demonstrating the robustness of the PF over the KF to the added GWN noise. The proposed method also outperforms the KF when the assumption about the Gaussianity of the noise is violated. We also applied this technique to real EEG potentials recorded in an odd-ball paradigm and investigated the correlation between the amplitude and the latency of the estimated ERP components. Unlike the KF method, for the PF there was a statistically significant negative correlation between amplitude and latency of the estimated ERPs, matching previous neurophysiological findings

  15. Single particle transfer reactions: what can they tell us about vibrational states

    International Nuclear Information System (INIS)

    Hering, W.R.

    1975-01-01

    The topic discussed concerns single particle transfer reactions (SPTR) which are, in general, used to study SP states. However, good SP states are rare objects in nature and people who try to look for them have often to settle with something less than ideal. Indeed the picture of a pure SP state is physically not even reasonable. It means that a nucleon is moving around a core nucleus which stays in its ground state: a process which one could call equivalent to elastic scattering of a nucleon which is not free but rather in a bound state. However it is shown that inelastic scattering is a very strong competitor to elastic scattering if the nucleus possesses states of high collectivity. Thus one would expect inelastic scattering to happen also while the nucleon is bound. This is a very intuitive picture of what is called the fragmentation of SP states. A final state psi sub(B) is populated by the transfer reaction A + a → B + b where psi sub(B) = α 1 phi 1 phi sub(A)(0) + α 2 phi 2 phi sub(A)(lambda). Hence the population of psi sub(B) automatically involves the collective state phi sub(A)(lambda). A discussion of how one can get information about phi sub(A)(lambda) out of the experimental data is given. (Auth.)

  16. Deblurring of class-averaged images in single-particle electron microscopy

    International Nuclear Information System (INIS)

    Park, Wooram; Chirikjian, Gregory S; Madden, Dean R; Rockmore, Daniel N

    2010-01-01

    This paper proposes a method for the deblurring of class-averaged images in single-particle electron microscopy (EM). Since EM images of biological samples are very noisy, the images which are nominally identical projection images are often grouped, aligned and averaged in order to cancel or reduce the background noise. However, the noise in the individual EM images generates errors in the alignment process, which creates an inherent limit on the accuracy of the resulting class averages. This inaccurate class average due to the alignment errors can be viewed as the result of a convolution of an underlying clear image with a blurring function. In this work, we develop a deconvolution method that gives an estimate for the underlying clear image from a blurred class-averaged image using precomputed statistics of misalignment. Since this convolution is over the group of rigid-body motions of the plane, SE(2), we use the Fourier transform for SE(2) in order to convert the convolution into a matrix multiplication in the corresponding Fourier space. For practical implementation we use a Hermite-function-based image modeling technique, because Hermite expansions enable lossless Cartesian-polar coordinate conversion using the Laguerre–Fourier expansions, and Hermite expansion and Laguerre–Fourier expansion retain their structures under the Fourier transform. Based on these mathematical properties, we can obtain the deconvolution of the blurred class average using simple matrix multiplication. Tests of the proposed deconvolution method using synthetic and experimental EM images confirm the performance of our method

  17. Component tree analysis of cystovirus φ6 nucleocapsid Cryo-EM single particle reconstructions.

    Directory of Open Access Journals (Sweden)

    Lucas M Oliveira

    Full Text Available The 3-dimensional structure of the nucleocapsid (NC of bacteriophage φ6 is described utilizing component tree analysis, a topological and geometric image descriptor. The component trees are derived from density maps of cryo-electron microscopy single particle reconstructions. Analysis determines position and occupancy of structure elements responsible for RNA packaging and transcription. Occupancy of the hexameric nucleotide triphosphorylase (P4 and RNA polymerase (P2 are found to be essentially complete in the NC. The P8 protein lattice likely fixes P4 and P2 in place during maturation. We propose that the viral procapsid (PC is a dynamic structural intermediate where the P4 and P2 can attach and detach until held in place in mature NCs. During packaging, the PC expands to accommodate the RNA, and P2 translates from its original site near the inner 3-fold axis (20 sites to the inner 5-fold axis (12 sites with excess P2 positioned inside the central region of the NC.

  18. Detection of Engineered Copper Nanoparticles in Soil Using Single Particle ICP-MS

    Directory of Open Access Journals (Sweden)

    Jana Navratilova

    2015-12-01

    Full Text Available Regulatory efforts rely on nanometrology for the development and implementation of laws regarding the incorporation of engineered nanomaterials (ENMs into industrial and consumer products. Copper is currently one of the most common metals used in the constantly developing and expanding sector of nanotechnology. The use of copper nanoparticles in products, such as agricultural biocides, cosmetics and paints, is increasing. Copper based ENMs will eventually be released to the environment through the use and disposal of nano-enabled products, however, the detection of copper ENMs in environmental samples is a challenging task. Single particle inductively coupled plasma mass spectroscopy (spICP-MS has been suggested as a powerful tool for routine nanometrology efforts. In this work, we apply a spICP-MS method for the detection of engineered copper nanomaterials in colloidal extracts from natural soil samples. Overall, copper nanoparticles were successfully detected in the soil colloidal extracts and the importance of dwell time, background removal, and sample dilution for method optimization and recovery maximization is highlighted.

  19. Flow mapping of multiphase flows using a novel single stem endoscopic particle image velocimetry instrument

    International Nuclear Information System (INIS)

    Lad, N; Adebayo, D; Aroussi, A

    2011-01-01

    Particle image velocimetry (PIV) is a successful flow mapping technique which can optically quantify large portions of a flow regime. This enables the method to be completely non-intrusive. The ability to be non-intrusive to any flow has allowed PIV to be used in a large range of industrial sectors for many applications. However, a fundamental disadvantage of the conventional PIV technique is that it cannot easily be used with flows which have no or limited optical access. Flows which have limited optical access for PIV measurement have been addressed using endoscopic PIV techniques. This system uses two separate probes which relay a light sheet and imaging optics to a planar position within the desired flow regime. This system is effective in medical and engineering applications. The present study has been involved in the development of a new endoscopic PIV system which integrates the illumination and imaging optics into one rigid probe. This paper focuses on the validation of the images taken from the novel single stem endoscopic PIV system. The probe is used within atomized spray flow and is compared with conventional PIV measurement and also pitot-static data. The endoscopic PIV system provides images which create localized velocity maps that are comparable with the global measurement of the conventional PIV system. The velocity information for both systems clearly show similar results for the spray characterization and are also validated using the pitot-static data

  20. Pick-off annihilation of positronium in matter using full correlation single particle potentials: solid He.

    Science.gov (United States)

    Zubiaga, A; Tuomisto, F; Puska, M J

    2015-01-29

    We investigate the modeling of positronium (Ps) states and their pick-off annihilation trapped at open volumes pockets in condensed molecular matter. Our starting point is the interacting many-body system of Ps and a He atom because it is the smallest entity that can mimic the energy gap between the highest occupied and lowest unoccupied molecular orbitals of molecules, and yet the many-body structure of the HePs system can be calculated accurately enough. The exact-diagonalization solution of the HePs system enables us to construct a pairwise full-correlation single-particle potential for the Ps-He interaction, and the total potential in solids is obtained as a superposition of the pairwise potentials. We study in detail Ps states and their pick-off annihilation rates in voids inside solid He and analyze experimental results for Ps-induced voids in liquid He obtaining the radii of the voids. More importantly, we generalize our conclusions by testing the validity of the Tao-Eldrup model, widely used to analyze ortho-Ps annihilation measurements for voids in molecular matter, against our theoretical results for the solid He. Moreover, we discuss the influence of the partial charges of polar molecules and the strength of the van der Waals interaction on the pick-off annihilation rate.