WorldWideScience

Sample records for single optical section

  1. Self-generation of optical frequency comb in single section quantum dot Fabry-Perot lasers: a theoretical study.

    Science.gov (United States)

    Bardella, Paolo; Columbo, Lorenzo Luigi; Gioannini, Mariangela

    2017-10-16

    Optical Frequency Comb (OFC) generated by semiconductor lasers are currently widely used in the extremely timely field of high capacity optical interconnects and high precision spectroscopy. In the last decade, several experimental evidences of spontaneous OFC generation have been reported in single section Quantum Dot (QD) lasers. Here we provide a physical understanding of these self-organization phenomena by simulating the multi-mode dynamics of a single section Fabry-Perot (FP) QD laser using a Time-Domain Traveling-Wave (TDTW) model that properly accounts for coherent radiation-matter interaction in the semiconductor active medium and includes the carrier grating generated by the optical standing wave pattern in the laser cavity. We show that the latter is the fundamental physical effect at the origin of the multi-mode spectrum appearing just above threshold. A self-mode-locking regime associated with the emission of OFC is achieved for higher bias currents and ascribed to nonlinear phase sensitive effects as Four Wave Mixing (FWM). Our results explain in detail the behaviour observed experimentally by different research groups and in different QD and Quantum Dash (QDash) devices.

  2. Optical levitation of microdroplet containing a single quantum dot

    OpenAIRE

    Minowa, Yosuke; Kawai, Ryoichi; Ashida, Masaaki

    2014-01-01

    We demonstrate the optical levitation or trapping in helium gas of a single quantum dot (QD) within a liquid droplet. Bright single photon emission from the levitated QD in the droplet was observed for more than 200 s. The observed photon count rates are consistent with the value theoretically estimated from the two-photon-action cross section. This paper presents the realization of an optically levitated solid-state quantum emitter. This paper was published in Optics Letters and is made avai...

  3. Optical levitation of a microdroplet containing a single quantum dot

    Science.gov (United States)

    Minowa, Yosuke; Kawai, Ryoichi; Ashida, Masaaki

    2015-03-01

    We demonstrate the optical levitation or trapping in helium gas of a single quantum dot (QD) within a liquid droplet. Bright single photon emission from the levitated QD in the droplet was observed for more than 200 s. The observed photon count rates are consistent with the value theoretically estimated from the two-photon-action cross section. This paper presents the realization of an optically levitated solid-state quantum emitter. This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: https://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-40-6-906. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.

  4. Single-mode optical fibres

    CERN Document Server

    Cancellieri, G

    1991-01-01

    This book describes signal propagation in single-mode optical fibres for telecommunication applications. Such description is based on the analysis of field propagation, considering waveguide properties and also some of the particular characteristics of the material fibre. The book covers such recent advances as, coherent transmissions; optical amplification; MIR fibres; polarization maintaining; polarization diversity and photon counting.

  5. Fast optically sectioned fluorescence HiLo endomicroscopy

    Science.gov (United States)

    Ford, Tim N.; Lim, Daryl; Mertz, Jerome

    2012-02-01

    We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies.

  6. Optically sectioned imaging by oblique plane microscopy

    Science.gov (United States)

    Kumar, Sunil; Lin, Ziduo; Lyon, Alex R.; MacLeod, Ken T.; Dunsby, Chris

    2011-03-01

    Oblique Plane Microscopy (OPM) is a light sheet microscopy technique that combines oblique illumination with correction optics that tilt the focal plane of the collection system. OPM can be used to image conventionally mounted specimens on coverslips or tissue culture dishes and has low out-of-plane photobleaching and phototoxicity. No moving parts are required to achieve an optically sectioned image and so high speed optically sectioned imaging is possible. The first OPM results obtained using a high NA water immersion lens on a commercially available inverted microscope frame are presented, together with a measurement of the achievable optical resolution.

  7. Silicon photonics WDM transmitter with single section semiconductor mode-locked laser

    Science.gov (United States)

    Müller, Juliana; Hauck, Johannes; Shen, Bin; Romero-García, Sebastian; Islamova, Elmira; Azadeh, Saeed Sharif; Joshi, Siddharth; Chimot, Nicolas; Moscoso-Mártir, Alvaro; Merget, Florian; Lelarge, François; Witzens, Jeremy

    2015-04-01

    We demonstrate a wavelength domain-multiplexed (WDM) optical link relying on a single section semiconductor mode-locked laser (SS-MLL) with quantum dash (Q-Dash) gain material to generate 25 optical carriers spaced by 60.8 GHz, as well as silicon photonics (SiP) resonant ring modulators (RRMs) to modulate individual optical channels. The link requires optical reamplification provided by an erbium-doped fiber amplifier (EDFA) in the system experiments reported here. Open eye diagrams with signal quality factors (Q-factors) above 7 are measured with a commercial receiver (Rx). For higher compactness and cost effectiveness, reamplification of the modulated channels with a semiconductor optical amplifier (SOA) operated in the linear regime is highly desirable. System and device characterization indicate compatibility with the latter. While we expect channel counts to be primarily limited by the saturation output power level of the SOA, we estimate a single SOA to support more than eight channels. Prior to describing the system experiments, component design and detailed characterization results are reported including design and characterization of RRMs, ring-based resonant optical add-drop multiplexers (RR-OADMs) and thermal tuners, S-parameters resulting from the interoperation of RRMs and RR-OADMs, and characterization of Q-Dash SS-MLLs reamplified with a commercial SOA. Particular emphasis is placed on peaking effects in the transfer functions of RRMs and RR-OADMs resulting from transient effects in the optical domain, as well as on the characterization of SS-MLLs in regard to relative intensity noise (RIN), stability of the modes of operation, and excess noise after reamplification.

  8. Single mode operation of a hybrid optically pumped D2O far infrared laser

    International Nuclear Information System (INIS)

    Yuan, D.C.; Siegrist, M.R.

    1990-04-01

    We have achieved single mode operation in a hybrid optically pumped D 2 O far infrared laser. The active volume of the resonator was divided into two sections separated by a thin plastic foil. The larger section served as the main gain medium and the shorter section as mode selective element. The vapor pressure in the smaller volume was either very low or alternatively about 3 times higher than the pressure in the main part. In both cases single mode operation was achieved without any reduction of the total output energy. (author) 13 refs., 7 figs

  9. Optical measuring system with an interrogator and a polymer-based single-mode fibre optic sensor system

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an optical measuring system comprising a polymer-based single-mode fibre-optic sensor system (102), an optical interrogator (101), and an optical arrangement (103) interconnecting the optical interrogator (101) and the polymer-based single-mode fibre-optic sensor...... system (102). The invention further relates to an optical interrogator adapted to be connected to a polymer-based single-mode fibre-optic sensor system via an optical arrangement. The interrogator comprises a broadband light source arrangement (104) and a spectrum analysing arrangement which receives...

  10. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy

    Science.gov (United States)

    Lim, Daryl; Ford, Tim N.; Chu, Kengyeh K.; Mertz, Jerome

    2011-01-01

    We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish.

  11. Customization of Protein Single Nanowires for Optical Biosensing.

    Science.gov (United States)

    Sun, Yun-Lu; Sun, Si-Ming; Wang, Pan; Dong, Wen-Fei; Zhang, Lei; Xu, Bin-Bin; Chen, Qi-Dai; Tong, Li-Min; Sun, Hong-Bo

    2015-06-24

    An all-protein single-nanowire optical biosensor is constructed by a facile and general femtosecond laser direct writing approach with nanoscale structural customization. As-formed protein single nanowires show excellent optical properties (fine waveguiding performance and bio-applicable transmission windows), and are utilized as evanescent optical nanobiosensors for label-free biotin detection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Simultaneous differential spinning disk fluorescence optical sectioning microscopy and nanomechanical mapping atomic force microscopy

    International Nuclear Information System (INIS)

    Miranda, Adelaide; De Beule, Pieter A. A.; Martins, Marco

    2015-01-01

    Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discuss sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate

  13. Simultaneous differential spinning disk fluorescence optical sectioning microscopy and nanomechanical mapping atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Adelaide; De Beule, Pieter A. A., E-mail: pieter.de-beule@inl.int [Applied Nano-Optics Laboratory, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, s/n, 4715-330 Braga (Portugal); Martins, Marco [Nano-ICs Group, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, s/n, 4715-330 Braga (Portugal)

    2015-09-15

    Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discuss sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate.

  14. Optimize Etching Based Single Mode Fiber Optic Temperature Sensor

    OpenAIRE

    Ajay Kumar; Dr. Pramod Kumar

    2014-01-01

    This paper presents a description of etching process for fabrication single mode optical fiber sensors. The process of fabrication demonstrates an optimized etching based method to fabricate single mode fiber (SMF) optic sensors in specified constant time and temperature. We propose a single mode optical fiber based temperature sensor, where the temperature sensing region is obtained by etching its cladding diameter over small length to a critical value. It is observed that th...

  15. Single spin stochastic optical reconstruction microscopy

    OpenAIRE

    Pfender, Matthias; Aslam, Nabeel; Waldherr, Gerald; Wrachtrup, Jörg

    2014-01-01

    We experimentally demonstrate precision addressing of single quantum emitters by combined optical microscopy and spin resonance techniques. To this end we utilize nitrogen-vacancy (NV) color centers in diamond confined within a few ten nanometers as individually resolvable quantum systems. By developing a stochastic optical reconstruction microscopy (STORM) technique for NV centers we are able to simultaneously perform sub diffraction-limit imaging and optically detected spin resonance (ODMR)...

  16. Optical sectioning for optical scanning holography using phase-space filtering with Wigner distribution functions.

    Science.gov (United States)

    Kim, Hwi; Min, Sung-Wook; Lee, Byoungho; Poon, Ting-Chung

    2008-07-01

    We propose a novel optical sectioning method for optical scanning holography, which is performed in phase space by using Wigner distribution functions together with the fractional Fourier transform. The principle of phase-space optical sectioning for one-dimensional signals, such as slit objects, and two-dimensional signals, such as rectangular objects, is first discussed. Computer simulation results are then presented to substantiate the proposed idea.

  17. Single-photon generator for optical telecommunication wavelength

    International Nuclear Information System (INIS)

    Usuki, T; Sakuma, Y; Hirose, S; Takemoto, K; Yokoyama, N; Miyazawa, T; Takatsu, M; Arakawa, Y

    2006-01-01

    We report on the generation of single-photon pulses from a single InAs/InP quantum dot in telecommunication bands (1.3-1.55 μm: higher transmittance through an optical fiber). First we prepared InAs quantum dots on InP (0 0 1) substrates in a low-pressure MOCVD by using a so-called InP 'double-cap' procedure. The quantum dots have well-controlled photo emission wavelength in the telecommunication bands. We also developed a single-photon emitter in which quantum dots were embedded. Numerical simulation designed the emitter to realize efficient injection of the emitted photons into a single-mode optical fiber. Using a Hanbury-Brown and Twiss technique has proved that the photons through the fiber were single photons

  18. Detection of 2-mm-long strained section in silica fiber using slope-assisted Brillouin optical correlation-domain reflectometry

    Science.gov (United States)

    Lee, Heeyoung; Mizuno, Yosuke; Nakamura, Kentaro

    2018-02-01

    Slope-assisted Brillouin optical correlation-domain reflectometry is a single-end-access distributed Brillouin sensing technique with high spatial resolution and high-speed operation. We have recently discovered its unique feature, that is, strained or heated sections even shorter than nominal resolution can be detected, but its detailed characterization has not been carried out. Here, after experimentally characterizing this “beyond-nominal-resolution” effect, we show its usefulness by demonstrating the detection of a 2-mm-long strained section along a silica fiber. We also demonstrate the detection of a 5-mm-long heated section along a polymer optical fiber. The lengths of these detected sections are smaller than those of the other demonstrations reported so far.

  19. Quantum dash based single section mode locked lasers for photonic integrated circuits.

    Science.gov (United States)

    Joshi, Siddharth; Calò, Cosimo; Chimot, Nicolas; Radziunas, Mindaugas; Arkhipov, Rostislav; Barbet, Sophie; Accard, Alain; Ramdane, Abderrahim; Lelarge, Francois

    2014-05-05

    We present the first demonstration of an InAs/InP Quantum Dash based single-section frequency comb generator designed for use in photonic integrated circuits (PICs). The laser cavity is closed using a specifically designed Bragg reflector without compromising the mode-locking performance of the self pulsating laser. This enables the integration of single-section mode-locked laser in photonic integrated circuits as on-chip frequency comb generators. We also investigate the relations between cavity modes in such a device and demonstrate how the dispersion of the complex mode frequencies induced by the Bragg grating implies a violation of the equi-distance between the adjacent mode frequencies and, therefore, forbids the locking of the modes in a classical Bragg Device. Finally we integrate such a Bragg Mirror based laser with Semiconductor Optical Amplifier (SOA) to demonstrate the monolithic integration of QDash based low phase noise sources in PICs.

  20. Optical Microcavity: Sensing down to Single Molecules and Atoms

    Directory of Open Access Journals (Sweden)

    Shu-Yu Su

    2011-02-01

    Full Text Available This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments, microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

  1. Fibre-optic communications

    CERN Document Server

    Lecoy, Pierre

    2010-01-01

    This book describes in a comprehensive manner the components and systems of fiber optic communications and networks. The first section explains the theory of multimode and single-mode fibers, then the technological features, including manufacturing, cabling, and connecting. The second section describes the various components (passive and active optical components, integrated optics, opto-electronic transmitters and receivers, and optical amplifiers) used in fiber optic systems. Finally, the optical transmission system design is explained, and applications to optical networks and fiber optic se

  2. Single crystal and optical ceramic multicomponent garnet scintillators: A comparative study

    International Nuclear Information System (INIS)

    Wu, Yuntao; Luo, Zhaohua; Jiang, Haochuan; Meng, Fang; Koschan, Merry; Melcher, Charles L.

    2015-01-01

    Multicomponent garnet materials can be made in optical ceramic as well as single crystal form due to their cubic crystal structure. In this work, high-quality Gd 3 Ga 3 Al 2 O 12 :0.2 at% Ce (GGAG:Ce) single crystal and (Gd,Lu) 3 Ga 3 Al 2 O 12 :1 at% Ce (GLuGAG:Ce) optical ceramics were fabricated by the Czochralski method and a combination of hot isostatic pressing (HIPing) and annealing treatment, respectively. Under optical and X-ray excitation, the GLuGAG:Ce optical ceramic exhibits a broad Ce 3+ transition emission centered at 550 nm, while the emission peak of the GGAG:Ce single crystal is centered at 540 nm. A self-absorption effect in GLuGAG:Ce optical ceramic results in this red-shift of the Ce 3+ emission peak compared to that in the GGAG:Ce single crystal. The light yield under 662 keV γ-ray excitation was 45,000±2500 photons/MeV and 48,200±2410 photons/MeV for the GGAG:Ce single crystal and GLuGAG:Ce optical ceramic, respectively. An energy resolution of 7.1% for 662 keV γ-rays was achieved in the GLuGAG:Ce optical ceramic with a Hamamatsu R6231 PMT, which is superior to the value of 7.6% for a GGAG:Ce single crystal. Scintillation decay time measurements under 137 Cs irradiation show two exponential decay components of 58 ns (47%) and 504 ns (53%) for the GGAG:Ce single crystal, and 84 ns (76%) and 148 ns (24%) for the GLuGAG:Ce optical ceramic. The afterglow level after X-ray cutoff in the GLuGAG:Ce optical ceramic is at least one order of magnitude lower than in the GGAG:Ce single crystal. - Highlights: • GGAG:Ce single crystal and GLuGAG:Ce optical ceramics were fabricated. • The light yield of both ceramic and crystal G(Lu)GAG:Ce reached the level of 45,000 photons/MeV. • GLuGAG:Ce optical ceramic showed a better energy resolution of 7.1% for 662 keV. • GLuGAG:Ce ceramics exhibited lower afterglow level than that of GGAG:Ce single crystals. • The possible optimization strategies for multicomponent aluminate garnets are discussed

  3. Generation of a single-cycle optical pulse

    International Nuclear Information System (INIS)

    Shverdin, M.Y.; Walker, D.R.; Yavuz, D.D.; Yin, G.Y.; Harris, S.E.

    2005-01-01

    We make use of coherent control of four-wave mixing to the ultraviolet as a diagnostic and describe the generation of a periodic optical waveform where the spectrum is sufficiently broad that the envelope is approximately a single-cycle in length, and where the temporal shape of this envelope may be synthesized by varying the coefficients of a Fourier series. Specifically, using seven sidebands, we report the generation of a train of single-cycle optical pulses with a pulse width of 1.6 fs, a pulse separation of 11 fs, and a peak power of 1 MW

  4. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  5. Extending Single-Molecule Microscopy Using Optical Fourier Processing

    Science.gov (United States)

    2015-01-01

    This article surveys the recent application of optical Fourier processing to the long-established but still expanding field of single-molecule imaging and microscopy. A variety of single-molecule studies can benefit from the additional image information that can be obtained by modulating the Fourier, or pupil, plane of a widefield microscope. After briefly reviewing several current applications, we present a comprehensive and computationally efficient theoretical model for simulating single-molecule fluorescence as it propagates through an imaging system. Furthermore, we describe how phase/amplitude-modulating optics inserted in the imaging pathway may be modeled, especially at the Fourier plane. Finally, we discuss selected recent applications of Fourier processing methods to measure the orientation, depth, and rotational mobility of single fluorescent molecules. PMID:24745862

  6. Detection of optic nerve atrophy following a single episode of unilateral optic neuritis by MRI using a fat-saturated short-echo fast FLAIR sequence

    International Nuclear Information System (INIS)

    Hickman, S.J.; Brex, P.A.; Silver, N.C.; Barker, G.J.; Miller, D.H.; Brierley, C.M.H.; Compston, D.A.S.; Scolding, N.J.; Moseley, I.F.; Plant, G.T.

    2001-01-01

    We describe an MRI technique for quantifying optic nerve atrophy resulting from a single episode of unilateral optic neuritis. We imaged 17 patients, with a median time since onset of optic neuritis of 21 months (range 3-81 months), using a coronal-oblique fat-saturated short-echo fast fluid-attenuated inversion-recovery (sTE fFLAIR) sequence. The mean cross-sectional area of the intraorbital portion of the optic nerves was calculated by a blinded observer from five consecutive 3 mm slices from the orbital apex forwards using a semiautomated contouring technique and compared with data from 16 controls. The mean optic nerve area was 11.2mm 2 in the affected eye of the patients, 12.9mm 2 in the contralateral eye (P = 0.006 compared to the affected eye) and 12.8mm 2 in controls (P = 0.03 compared to the affected eyes). There was a significant negative correlation between disease duration and the size of the affected optic nerve (r = -0.59, P = 0.012). The measurement coefficient of variation was 4.8 %. The sTE fFLAIR sequence enables measurement of optic nerve area with sufficient reproducibility to show optic nerve atrophy following a single episode of unilateral optic neuritis. The correlation of increasing optic nerve atrophy with disease duration would be consistent with ongoing axonal loss in a persistently demyelinated lesion, or Wallerian degeneration following axonal damage during the acute inflammatory phase. (orig.)

  7. Optical Model and Cross Section Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.W.; Pigni, M.T.; Dietrich, F.S.; Oblozinsky, P.

    2009-10-05

    Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.

  8. Holograms for laser diode: Single mode optical fiber coupling

    Science.gov (United States)

    Fuhr, P. L.

    1982-01-01

    The low coupling efficiency of semiconductor laser emissions into a single mode optical fibers place a severe restriction on their use. Associated with these conventional optical coupling techniques are stringent alignment sensitivities. Using holographic elements, the coupling efficiency may be increased and the alignment sensitivity greatly reduced. Both conventional and computer methods used in the generation of the holographic couplers are described and diagrammed. The reconstruction geometries used are shown to be somewhat restrictive but substantially less rigid than their conventional optical counterparts. Single and double hologram techniques are examined concerning their respective ease of fabrication and relative merits.

  9. Multispectral optical tweezers for molecular diagnostics of single biological cells

    Science.gov (United States)

    Butler, Corey; Fardad, Shima; Sincore, Alex; Vangheluwe, Marie; Baudelet, Matthieu; Richardson, Martin

    2012-03-01

    Optical trapping of single biological cells has become an established technique for controlling and studying fundamental behavior of single cells with their environment without having "many-body" interference. The development of such an instrument for optical diagnostics (including Raman and fluorescence for molecular diagnostics) via laser spectroscopy with either the "trapping" beam or secondary beams is still in progress. This paper shows the development of modular multi-spectral imaging optical tweezers combining Raman and Fluorescence diagnostics of biological cells.

  10. Differences Between a Single- and a Double-Folding Nucleus-9Be Optical Potential

    International Nuclear Information System (INIS)

    Bonaccorso, A.; Carstoiu, F.; Charity, R. J.; Kumar, R.; Salvioni, G.

    2016-01-01

    We have recently constructed two very successful n- 9 Be optical potentials (Bonaccorso and Charity in Phys Rev C89:024619, 2014). One by the Dispersive Optical Model (DOM) method and the other (AB) fully phenomenological. The two potentials have strong surface terms in common for both the real and the imaginary parts. This feature makes them particularly suitable to build a single-folded (light-) nucleus- 9 Be optical potential by using ab-initio projectile densities such as those obtained with the VMC method. On the other hand, a VMC density together with experimental nucleon–nucleon cross-sections can be used also to obtain a neutron and/or proton- 9 Be imaginary folding potential. We will use here an ab-initio VMC density to obtain both a n- 9 Be single-folded potential and a nucleus-nucleus double-folded potential. In this work we report on the cases of 8 B, 8 Li and 8 C projectiles. Our approach could be the basis for a systematic study of optical potentials for light exotic nuclei scattering on such light targets. Some of the projectiles studied are cores of other exotic nuclei for which neutron knockout has been used to extract spectroscopic information. For those cases, our study will serve to make a quantitative assessment of the core-target part of the reaction description, in particular its localization. (author)

  11. DMD-based LED-illumination super-resolution and optical sectioning microscopy.

    Science.gov (United States)

    Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei

    2013-01-01

    Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×10(7) pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens.

  12. Phenomenological dirac optical potential for neutron cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Shin-ichi; Kitsuki, Hirohiko; Shigyo, Nobuhiro; Ishibashi, Kenji [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1997-03-01

    Because of limitation on neutron-incident data, it is difficult to obtain global optical model potential for neutrons. In contrast, there are some global optical model potentials for proton in detail. It is interesting to convert the proton-incident global optical potentials into neutron-incident ones. In this study we introduce (N-Z)/A dependent symmetry potential terms into the global proton-incident optical potentials, and then obtain neutron-incident ones. The neutron potentials reproduce total cross sections in an acceptable degree. However, a comparison with potentials proposed by other authors brings about a confused situation in the sign of the symmetry terms. (author)

  13. Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment.

    Science.gov (United States)

    Liu, Zhihai; Wang, Lei; Liang, Peibo; Zhang, Yu; Yang, Jun; Yuan, Libo

    2013-07-15

    We demonstrate trapped yeast cell axial-position adjustment without moving the optical fiber in a single-fiber optical trapping system. The dynamic axial-position adjustment is realized by controlling the power ratio of the fundamental mode beam (LP01) and the low-order mode beam (LP11) generated in a normal single-core fiber. In order to separate the trapping positions produced by the two mode beams, we fabricate a special fiber tapered tip with a selective two-step method. A yeast cell of 6 μm diameter is moved along the optical axis direction for a distance of ~3 μm. To the best of our knowledge, this is the first demonstration of the trapping position adjustment without moving the fiber for single-fiber optical tweezers. The excitation and utilization of multimode beams in a single fiber constitutes a new development for single-fiber optical trapping and makes possible more practical applications in biomedical research fields.

  14. Single-mode glass waveguide technology for optical interchip communication on board level

    Science.gov (United States)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning

    2012-01-01

    The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a

  15. Single Photon Source with a Diamond Nanocrystal on an Optical Nanofiber

    International Nuclear Information System (INIS)

    Lars Liebermeister

    2014-01-01

    The development of high yield single photon sources is crucial for applications in quantum information science as well as for experiments on the foundations of quantum physics. The NV-center in diamond is a promising solid state candidate. By using nanodiamonds the single photon emission can easily be coupled to integrated nano-optical and plasmonic structures. Our approach is to utilize efficient coupling of fluorescence of a single NV-center to the evanescent field of an optical nanofiber. A hybrid microscope (confocal microscope combined with an AFM) allows to optically characterize and preselect diamond nanocrystals and then to apply an AFM nanomanipulation technique to move a selected nanodiamond deterministically onto the tapered optical fiber. We report on first results with single diamond nanocrystals containing several NV-centers positioned on a tapered optical fiber. We observe fluorescence emission in the guided mode of the fiber. The second order correlation recorded between the free-space and the guided fluorescence shows pronounced antibunching. This demonstrated efficient evanescent coupling with low background. (author)

  16. Wideband optical vector network analyzer based on optical single-sideband modulation and optical frequency comb.

    Science.gov (United States)

    Xue, Min; Pan, Shilong; He, Chao; Guo, Ronghui; Zhao, Yongjiu

    2013-11-15

    A novel approach to increase the measurement range of the optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation is proposed and experimentally demonstrated. In the proposed system, each comb line in an optical frequency comb (OFC) is selected by an optical filter and used as the optical carrier for the OSSB-based OVNA. The frequency responses of an optical device-under-test (ODUT) are thus measured channel by channel. Because the comb lines in the OFC have fixed frequency spacing, by fitting the responses measured in all channels together, the magnitude and phase responses of the ODUT can be accurately achieved in a large range. A proof-of-concept experiment is performed. A measurement range of 105 GHz and a resolution of 1 MHz is achieved when a five-comb-line OFC with a frequency spacing of 20 GHz is applied to measure the magnitude and phase responses of a fiber Bragg grating.

  17. Quantum routing of single optical photons with a superconducting flux qubit

    Science.gov (United States)

    Xia, Keyu; Jelezko, Fedor; Twamley, Jason

    2018-05-01

    Interconnecting optical photons with superconducting circuits is a challenging problem but essential for building long-range superconducting quantum networks. We propose a hybrid quantum interface between the microwave and optical domains where the propagation of a single-photon pulse along a nanowaveguide is controlled in a coherent way by tuning the electromagnetically induced transparency window with the quantum state of a flux qubit mediated by the spin in a nanodiamond. The qubit can route a single-photon pulse using the nanodiamond into a quantum superposition of paths without the aid of an optical cavity—simplifying the setup. By preparing the flux qubit in a superposition state our cavityless scheme creates a hybrid state-path entanglement between a flying single optical photon and a static superconducting qubit.

  18. Fast Calcium Imaging with Optical Sectioning via HiLo Microscopy.

    Science.gov (United States)

    Lauterbach, Marcel A; Ronzitti, Emiliano; Sternberg, Jenna R; Wyart, Claire; Emiliani, Valentina

    2015-01-01

    Imaging intracellular calcium concentration via reporters that change their fluorescence properties upon binding of calcium, referred to as calcium imaging, has revolutionized our way to probe neuronal activity non-invasively. To reach neurons densely located deep in the tissue, optical sectioning at high rate of acquisition is necessary but difficult to achieve in a cost effective manner. Here we implement an accessible solution relying on HiLo microscopy to provide robust optical sectioning with a high frame rate in vivo. We show that large calcium signals can be recorded from dense neuronal populations at high acquisition rates. We quantify the optical sectioning capabilities and demonstrate the benefits of HiLo microscopy compared to wide-field microscopy for calcium imaging and 3D reconstruction. We apply HiLo microscopy to functional calcium imaging at 100 frames per second deep in biological tissues. This approach enables us to discriminate neuronal activity of motor neurons from different depths in the spinal cord of zebrafish embryos. We observe distinct time courses of calcium signals in somata and axons. We show that our method enables to remove large fluctuations of the background fluorescence. All together our setup can be implemented to provide efficient optical sectioning in vivo at low cost on a wide range of existing microscopes.

  19. Single-pulse CARS based multimodal nonlinear optical microscope for bioimaging.

    Science.gov (United States)

    Kumar, Sunil; Kamali, Tschackad; Levitte, Jonathan M; Katz, Ori; Hermann, Boris; Werkmeister, Rene; Považay, Boris; Drexler, Wolfgang; Unterhuber, Angelika; Silberberg, Yaron

    2015-05-18

    Noninvasive label-free imaging of biological systems raises demand not only for high-speed three-dimensional prescreening of morphology over a wide-field of view but also it seeks to extract the microscopic functional and molecular details within. Capitalizing on the unique advantages brought out by different nonlinear optical effects, a multimodal nonlinear optical microscope can be a powerful tool for bioimaging. Bringing together the intensity-dependent contrast mechanisms via second harmonic generation, third harmonic generation and four-wave mixing for structural-sensitive imaging, and single-beam/single-pulse coherent anti-Stokes Raman scattering technique for chemical sensitive imaging in the finger-print region, we have developed a simple and nearly alignment-free multimodal nonlinear optical microscope that is based on a single wide-band Ti:Sapphire femtosecond pulse laser source. Successful imaging tests have been realized on two exemplary biological samples, a canine femur bone and collagen fibrils harvested from a rat tail. Since the ultra-broad band-width femtosecond laser is a suitable source for performing high-resolution optical coherence tomography, a wide-field optical coherence tomography arm can be easily incorporated into the presented multimodal microscope making it a versatile optical imaging tool for noninvasive label-free bioimaging.

  20. Dynamic optical arbitrary waveform shaping based on cascaded optical modulators of single FBG.

    Science.gov (United States)

    Chen, Jingyuan; Li, Peili

    2015-08-10

    A dynamic optical arbitrary waveform generation (O-AWG) with amplitude and phase independently controlled in optical modulators of single fiber Bragg Grating (FBG) has been proposed. This novel scheme consists of several optical modulators. In the optical modulator (O-MOD), a uniform FBG is used to filter spectral component of the input signal. The amplitude is controlled by fiber stretcher (FS) in Mach-Zehnder interference (MZI) structure through interference of two MZI arms. The phase is manipulated via the second FS in the optical modulator. This scheme is investigated by simulation. Consequently, optical pulse trains with different waveforms as well as pulse trains with nonuniform pulse intensity, pulse spacing and pulse width within each period are obtained through FSs adjustment to alter the phase shifts of signal in each O-MOD.

  1. Length-dependent optical properties of single-walled carbon nanotube samples

    International Nuclear Information System (INIS)

    Naumov, Anton V.; Tsyboulski, Dmitri A.; Bachilo, Sergei M.; Weisman, R. Bruce

    2013-01-01

    Highlights: ► Length-independent absorption per atom in single-walled carbon nanotubes. ► Reduced fluorescence quantum yield for short nanotubes. ► Exciton quenching at nanotube ends, sidewall defects probably limits quantum yield. - Abstract: Contradictory findings have been reported on the length dependence of optical absorption cross sections and fluorescence quantum yields in single-walled carbon nanotubes (SWCNTs). To clarify these points, studies have been made on bulk SWCNT dispersions subjected to length fractionation by electrophoretic separation or by ultrasonication-induced scission. Fractions ranged from ca. 120 to 760 nm in mean length. Samples prepared by shear-assisted dispersion were subsequently shortened by ultrasonic processing. After accounting for processing-induced changes in the surfactant absorption background, SWCNT absorption was found constant within ±11% as average nanotube length changed by a factor of 3.8. This indicates that the absorption cross-section per carbon atom is not length dependent. By contrast, in length fractions prepared by both methods, the bulk fluorescence efficiency or average quantum yield increased with SWCNT average length and approached an apparent asymptotic limit near 1 μm. This result is interpreted as reflecting the combined contributions of exciton quenching by sidewall defects and by the ends of shorter nanotubes

  2. Differences Between a Single- and a Double-Folding Nucleus-^{9}Be Optical Potential

    Science.gov (United States)

    Bonaccorso, A.; Carstoiu, F.; Charity, R. J.; Kumar, R.; Salvioni, G.

    2016-05-01

    We have recently constructed two very successful n-^9Be optical potentials (Bonaccorso and Charity in Phys Rev C89:024619, 2014). One by the Dispersive Optical Model (DOM) method and the other (AB) fully phenomenological. The two potentials have strong surface terms in common for both the real and the imaginary parts. This feature makes them particularly suitable to build a single-folded (light-) nucleus-^9Be optical potential by using ab-initio projectile densities such as those obtained with the VMC method (Wiringa http://www.phy.anl.gov/theory/research/density/). On the other hand, a VMC density together with experimental nucleon-nucleon cross-sections can be used also to obtain a neutron and/or proton-^9Be imaginary folding potential. We will use here an ab-initio VMC density (Wiringa http://www.phy.anl.gov/theory/research/density/) to obtain both a n-^9Be single-folded potential and a nucleus-nucleus double-folded potential. In this work we report on the cases of ^8B, ^8Li and ^8C projectiles. Our approach could be the basis for a systematic study of optical potentials for light exotic nuclei scattering on such light targets. Some of the projectiles studied are cores of other exotic nuclei for which neutron knockout has been used to extract spectroscopic information. For those cases, our study will serve to make a quantitative assessment of the core-target part of the reaction description, in particular its localization.

  3. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.

    Science.gov (United States)

    Jain, Astha; Homayoun, Aida; Bannister, Christopher W; Yum, Kyungsuk

    2015-03-01

    Single-walled carbon nanotubes that emit photostable near-infrared fluorescence have emerged as near-infrared optical biosensors for life sciences and biomedicine. Since the discovery of their near-infrared fluorescence, researchers have engineered single-walled carbon nanotubes to function as an optical biosensor that selectively modulates its fluorescence upon binding of target molecules. Here we review the recent advances in the single-walled carbon nanotube-based optical sensing technology for life sciences and biomedicine. We discuss the structure and optical properties of single-walled carbon nanotubes, the mechanisms for molecular recognition and signal transduction in single-walled carbon nanotube complexes, and the recent development of various single-walled carbon nanotube-based optical biosensors. We also discuss the opportunities and challenges to translate this emerging technology into biomedical research and clinical use, including the biological safety of single-walled carbon nanotubes. The advances in single-walled carbon nanotube-based near-infrared optical sensing technology open up a new avenue for in vitro and in vivo biosensing with high sensitivity and high spatial resolution, beneficial for many areas of life sciences and biomedicine. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Optical properties of Ni-doped MgGa2O4 single crystals grown by floating zone method

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Hughes, Mark; Ohishi, Yasutake

    2010-01-01

    The single crystal growth conditions and spectroscopic characterization of Ni-doped MgGa 2 O 4 with inverse-spinel structure crystal family are described. Single crystals of this material have been grown by floating zone method. Ni-doped MgGa 2 O 4 single crystals have broadband fluorescence in the 1100-1600 nm wavelength range, 1.6 ms room temperature lifetime, 56% quantum efficiency and 1.05x10 -21 cm 2 stimulated emission cross section at the emission peak. This new material is very promising for tunable laser applications covering the important optical communication and eye safe wavelength region.

  5. Accurate Rapid Lifetime Determination on Time-Gated FLIM Microscopy with Optical Sectioning.

    Science.gov (United States)

    Silva, Susana F; Domingues, José Paulo; Morgado, António Miguel

    2018-01-01

    Time-gated fluorescence lifetime imaging microscopy (FLIM) is a powerful technique to assess the biochemistry of cells and tissues. When applied to living thick samples, it is hampered by the lack of optical sectioning and the need of acquiring many images for an accurate measurement of fluorescence lifetimes. Here, we report on the use of processing techniques to overcome these limitations, minimizing the acquisition time, while providing optical sectioning. We evaluated the application of the HiLo and the rapid lifetime determination (RLD) techniques for accurate measurement of fluorescence lifetimes with optical sectioning. HiLo provides optical sectioning by combining the high-frequency content from a standard image, obtained with uniform illumination, with the low-frequency content of a second image, acquired using structured illumination. Our results show that HiLo produces optical sectioning on thick samples without degrading the accuracy of the measured lifetimes. We also show that instrument response function (IRF) deconvolution can be applied with the RLD technique on HiLo images, improving greatly the accuracy of the measured lifetimes. These results open the possibility of using the RLD technique with pulsed diode laser sources to determine accurately fluorescence lifetimes in the subnanosecond range on thick multilayer samples, providing that offline processing is allowed.

  6. Optical properties of a single free standing nanodiamond

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K W; Wang, C Y [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu, 300, Taiwan (China)

    2007-12-15

    We report the techniques for measuring optical properties of a single nanometer-sized diamond. The electron beam (e-beam) lithography defined coordination markers on a silicon wafer provide us a convenient tool for allocating a single nanodiamond immobilized on the surface. By combining a confocal microscope with the e-beam lithography patterned smart substrate, we are able to measure the Raman and photoluminescence spectra from a single nanodiamond with a size less than 100 nm.

  7. Optical properties of a single free standing nanodiamond

    International Nuclear Information System (INIS)

    Sun, K W; Wang, C Y

    2007-01-01

    We report the techniques for measuring optical properties of a single nanometer-sized diamond. The electron beam (e-beam) lithography defined coordination markers on a silicon wafer provide us a convenient tool for allocating a single nanodiamond immobilized on the surface. By combining a confocal microscope with the e-beam lithography patterned smart substrate, we are able to measure the Raman and photoluminescence spectra from a single nanodiamond with a size less than 100 nm

  8. Single- and two-phase flow characterization using optical fiber bragg gratings.

    Science.gov (United States)

    Baroncini, Virgínia H V; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E M

    2015-03-17

    Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications.

  9. Experimental determination of electron shock excitation cross sections for a singly charged gadolinium ion

    International Nuclear Information System (INIS)

    Smirnov, Yu.M.

    1995-01-01

    The trends observed in the processes of excitation with simultaneous ionization have received little study. This is particularly so for rare-earth elements having electron shells of complex structure and optical spectra very rich in lines. Among the basic factors responsible for such a situation, we should mention two: the difficulty presented by theoretical analysis of the processes discussed and the absence of factual information about the excitation cross sections with simultaneous ionization for the majority of rare-earth elements. The aim of the present work is to investigate the excitation of a singly charged gadolinium ion in the collisions of monokinetic electrons with gadolinium atoms. Up to the present time, only the excitation cross sections of a gadolinium atom have been measured, where investigation of the electron shock excitation of gadolinium atoms in their free state is associated with overcoming large experimental difficulties. About 160 crosss sections for the excitation of a singly charged gadolinium ion were measured and for a third of the cross sections; the energy dependences were recorded for the change in energy of the elecrons from the excitation threshold up to 200 eV. Included are tables of the wavelength, transistion, internal quantum number, the energy of the lowere and upper levels, and the values of cross sections for the charged gadolinium ion. Diagrams of the transistion energy states of Gd (II) and spectroscopy are presented and explained

  10. Optical properties of Sulfur doped InP single crystals

    Science.gov (United States)

    El-Nahass, M. M.; Youssef, S. B.; Ali, H. A. M.

    2014-05-01

    Optical properties of InP:S single crystals were investigated using spectrophotometric measurements in the spectral range of 200-2500 nm. The absorption coefficient and refractive index were calculated. It was found that InP:S crystals exhibit allowed and forbidden direct transitions with energy gaps of 1.578 and 1.528 eV, respectively. Analysis of the refractive index in the normal dispersion region was discussed in terms of the single oscillator model. Some optical dispersion parameters namely: the dispersion energy (Ed), single oscillator energy (Eo), high frequency dielectric constant (ɛ∞), and lattice dielectric constant (ɛL) were determined. The volume and the surface energy loss functions (VELF & SELF) were estimated. Also, the real and imaginary parts of the complex conductivity were calculated.

  11. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    International Nuclear Information System (INIS)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-01-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers. - Highlights: • Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. • Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. • However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. • Optical tweezers can trap, move and positioned micron size particles with subnanometer accuracy in three dimensions. • One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. • Acoustical tweezers overcome this limitation since the force scales as the field intensity divided by its propagation speed. • However, the feasibility of single beam acoustical tweezers was demonstrated only recently. • We propose a review of the strong similarities but also the specificities of acoustical

  12. Fabrication of Long Period Gratings by Periodically Removing the Coating of Cladding-Etched Single Mode Optical Fiber Towards Optical Fiber Sensor Development.

    Science.gov (United States)

    Ascorbe, Joaquin; Corres, Jesus M; Del Villar, Ignacio; Matias, Ignacio R

    2018-06-07

    Here, we present a novel method to fabricate long period gratings using standard single mode optical fibers (SMF). These optical devices were fabricated in a three-step process, which consisted of etching the SMF, then coating it with a thin-film and, the final step, which involved removing sections of the coating periodically by laser ablation. Tin dioxide was chosen as the material for this study and it was sputtered using a pulsed DC sputtering system. Theoretical simulations were performed in order to select the appropriate parameters for the experiments. The responses of two different devices to different external refractive indices was studied, and the maximum sensitivity obtained was 6430 nm/RIU for external refractive indices ranging from 1.37 to 1.39.

  13. Fabrication of Long Period Gratings by Periodically Removing the Coating of Cladding-Etched Single Mode Optical Fiber Towards Optical Fiber Sensor Development

    Directory of Open Access Journals (Sweden)

    Joaquin Ascorbe

    2018-06-01

    Full Text Available Here, we present a novel method to fabricate long period gratings using standard single mode optical fibers (SMF. These optical devices were fabricated in a three-step process, which consisted of etching the SMF, then coating it with a thin-film and, the final step, which involved removing sections of the coating periodically by laser ablation. Tin dioxide was chosen as the material for this study and it was sputtered using a pulsed DC sputtering system. Theoretical simulations were performed in order to select the appropriate parameters for the experiments. The responses of two different devices to different external refractive indices was studied, and the maximum sensitivity obtained was 6430 nm/RIU for external refractive indices ranging from 1.37 to 1.39.

  14. Crystal growth and optical properties of Sm:CaNb2O6 single crystal

    International Nuclear Information System (INIS)

    Di Juqing; Xu Xiaodong; Xia Changtai; Zeng Huidan; Cheng Yan; Li Dongzhen; Zhou Dahua; Wu Feng; Cheng Jimeng; Xu Jun

    2012-01-01

    Highlights: ► Sm:CaNb 2 O 6 single crystal was grown by the Czochralski method. ► Thermal expansion coefficients and J–O parameters were calculated. ► We found that this crystal had high quantum efficiency of 97%. - Abstract: Sm:CaNb 2 O 6 single crystal has been grown by the Czochralski method. Its high-temperature X-ray powder diffraction, optical absorption, emission spectroscopic as well as lifetime have been studied. Thermal expansion coefficients (α), J–O parameters (Ω i ), radiative lifetime (τ rad ), branching ratios (β) and stimulated emission cross-sections (σ e ) were calculated. The quantum efficiency (η) was calculated to be 97%. The intense peak emission cross section at 610, 658 nm were calculated to be 2.40 × 10 −21 , 2.42 × 10 −21 cm 2 . These results indicate that Sm:CaNb 2 O 6 crystal has potential use in visible laser and photonic devices area.

  15. Pulse patterning effect in optical pulse division multiplexing for flexible single wavelength multiple access optical network

    Science.gov (United States)

    Jung, Sun-Young; Kim, Chang-Hun; Han, Sang-Kook

    2018-05-01

    A demand for high spectral efficiency requires multiple access within a single wavelength, but the uplink signals are significantly degraded because of optical beat interference (OBI) in intensity modulation/direct detection system. An optical pulse division multiplexing (OPDM) technique was proposed that could effectively reduce the OBI via a simple method as long as near-orthogonality is satisfied, but the condition was strict, and thus, the number of multiplexing units was very limited. We propose pulse pattern enhanced OPDM (e-OPDM) to reduce the OBI and improve the flexibility in multiple access within a single wavelength. The performance of the e-OPDM and patterning effect are experimentally verified after 23-km single mode fiber transmission. By employing pulse patterning in OPDM, the tight requirement was relaxed by extending the optical delay dynamic range. This could support more number of access with reduced OBI, which could eventually enhance a multiple access function.

  16. Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics

    CERN Document Server

    Mihóková, E; Mareš, J A; Beitlerová, A; Vedda, A; Nejezchleb, K; Blažek, K; D’Ambrosio, C

    2007-01-01

    We use various techniques to study optical and scintillation properties of Ce-doped yttrium aluminum garnet, Y3Al5O12 (YAG:Ce), in the form of a high-quality industrial single crystal. This was compared to optical ceramics prepared from YAG:Ce nanopowders. We present experimental data in the areas of optical absorption, radioluminescence, scintillation decay, photoelectron yield, thermally stimulated luminescence and radiation-induced absorption. The results point to an interesting feature—the absence of antisite (YAl, i.e. Y at the Al site) defects in optical ceramics. The scintillation decay of the ceramics is faster than that of the single crystal, but its photoelectron yield (measured with 1 μs integration time) is about 30–40% lower. Apart from the photoelectron yield value the YAG:Ce optical ceramic is fully comparable to a high quality industrial YAG:Ce single crystal and can become a competitive scintillator material.

  17. An optical channel modeling of a single mode fiber

    Science.gov (United States)

    Nabavi, Neda; Liu, Peng; Hall, Trevor James

    2018-05-01

    The evaluation of the optical channel model that accurately describes the single mode fibre as a coherent transmission medium is reviewed through analytical, numerical and experimental analysis. We used the numerical modelling of the optical transmission medium and experimental measurements to determine the polarization drift as a function of time for a fixed length of fibre. The probability distribution of the birefringence vector was derived, which is associated to the 'Poole' equation. The theory and experimental evidence that has been disclosed in the literature in the context of polarization mode dispersion - Stokes & Jones formulations and solutions for key statistics by integration of stochastic differential equations has been investigated. Besides in-depth definition of the single-mode fibre-optic channel, the modelling which concerns an ensemble of fibres each with a different instance of environmental perturbation has been analysed.

  18. Single-spin stochastic optical reconstruction microscopy.

    Science.gov (United States)

    Pfender, Matthias; Aslam, Nabeel; Waldherr, Gerald; Neumann, Philipp; Wrachtrup, Jörg

    2014-10-14

    We experimentally demonstrate precision addressing of single-quantum emitters by combined optical microscopy and spin resonance techniques. To this end, we use nitrogen vacancy (NV) color centers in diamond confined within a few ten nanometers as individually resolvable quantum systems. By developing a stochastic optical reconstruction microscopy (STORM) technique for NV centers, we are able to simultaneously perform sub-diffraction-limit imaging and optically detected spin resonance (ODMR) measurements on NV spins. This allows the assignment of spin resonance spectra to individual NV center locations with nanometer-scale resolution and thus further improves spatial discrimination. For example, we resolved formerly indistinguishable emitters by their spectra. Furthermore, ODMR spectra contain metrology information allowing for sub-diffraction-limit sensing of, for instance, magnetic or electric fields with inherently parallel data acquisition. As an example, we have detected nuclear spins with nanometer-scale precision. Finally, we give prospects of how this technique can evolve into a fully parallel quantum sensor for nanometer resolution imaging of delocalized quantum correlations.

  19. Direct detection of the optical field beyond single polarization mode.

    Science.gov (United States)

    Che, Di; Sun, Chuanbowen; Shieh, William

    2018-02-05

    Direct detection is traditionally regarded as a detection method that recovers only the optical intensity. Compared with coherent detection, it owns a natural advantage-the simplicity-but lacks a crucial capability of field recovery that enables not only the multi-dimensional modulation, but also the digital compensation of the fiber impairments linear with the optical field. Full-field detection is crucial to increase the capacity-distance product of optical transmission systems. A variety of methods have been investigated to directly detect the optical field of the single polarization mode, which normally sends a carrier traveling with the signal for self-coherent detection. The crux, however, is that any optical transmission medium supports at least two propagating modes (e.g. single mode fiber supports two polarization modes), and until now there is no direct detection that can recover the complete set of optical fields beyond one polarization, due to the well-known carrier fading issue after mode demultiplexing induced by the random mode coupling. To avoid the fading, direct detection receivers should recover the signal in an intensity space isomorphic to the optical field without loss of any degrees of freedom, and a bridge should be built between the field and its isomorphic space for the multi-mode field recovery. Based on this thinking, we propose, for the first time, the direct detection of dual polarization modes by a novel receiver concept, the Stokes-space field receiver (SSFR) and its extension, the generalized SSFR for multiple spatial modes. The idea is verified by a dual-polarization field recovery of a polarization-multiplexed complex signal over an 80-km single mode fiber transmission. SSFR can be applied to a much wider range of fields beyond optical communications such as coherent sensing and imaging, where simple field recovery without an extra local laser is desired for enhanced system performance.

  20. Quantum optics. All-optical routing of single photons by a one-atom switch controlled by a single photon.

    Science.gov (United States)

    Shomroni, Itay; Rosenblum, Serge; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak

    2014-08-22

    The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing. Copyright © 2014, American Association for the Advancement of Science.

  1. Cost-Effective Brillouin Optical Time-Domain Analysis Sensor Using a Single Optical Source and Passive Optical Filtering

    Directory of Open Access Journals (Sweden)

    H. Iribas

    2016-01-01

    Full Text Available We present a simplified configuration for distributed Brillouin optical time-domain analysis sensors that aims to reduce the cost of the sensor by reducing the number of components required for the generation of the two optical waves involved in the sensing process. The technique is based on obtaining the pump and probe waves by passive optical filtering of the spectral components generated in a single optical source that is driven by a pulsed RF signal. The optical source is a compact laser with integrated electroabsorption modulator and the optical filters are based on fiber Bragg gratings. Proof-of-concept experiments demonstrate 1 m spatial resolution over a 20 km sensing fiber with a 0.9 MHz precision in the measurement of the Brillouin frequency shift, a performance similar to that of much more complex setups. Furthermore, we discuss the factors limiting the sensor performance, which are basically related to residual spectral components in the filtering process.

  2. Single-level resonance parameters fit nuclear cross-sections

    Science.gov (United States)

    Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.

    1970-01-01

    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.

  3. Photoacoustic measurements of photokinetics in single optically trapped aerosol droplets

    Science.gov (United States)

    Covert, Paul; Cremer, Johannes; Signorell, Ruth; Thaler, Klemens; Haisch, Christoph

    2017-04-01

    It is well established that interaction of light with atmospheric aerosols has a large impact on the Earth's climate. However, uncertainties in the magnitude of this impact remain large, due in part to broad distributions of aerosol size, composition, and chemical reactivity. In this context, photoacoustic spectroscopy is commonly used to measure light absorption by aerosols. Here, we present photoacoustic measurements of single, optically-trapped nanodroplets to reveal droplet size-depencies of photochemical and physical processes. Theoretical considerations have pointed to a size-dependence in the magnitude and phase of the photoacoustic response from aerosol droplets. This dependence is thought to originate from heat transfer processes that are slow compared to the acoustic excitation frequency. In the case of a model aerosol, our measurements of single particle absorption cross-section versus droplet size confirm these theoretical predictions. In a related study, using the same model aerosol, we also demonstrate a droplet size-dependence of photochemical reaction rates [1]. Within sub-micron sized particles, photolysis rates were observed to be an order of magnitude greater than those observed in larger droplets. [1] J. W. Cremer, K. M. Thaler, C. Haisch, and R. Signorell. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics. Nat. Commun., 7:10941, 2016.

  4. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    Science.gov (United States)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-07-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers.

  5. Enhanced Emission from Single Isolated Gold Quantum Dots Investigated Using Two-Photon-Excited Fluorescence Near-Field Scanning Optical Microscopy.

    Science.gov (United States)

    Abeyasinghe, Neranga; Kumar, Santosh; Sun, Kai; Mansfield, John F; Jin, Rongchao; Goodson, Theodore

    2016-12-21

    New approaches in molecular nanoscopy are greatly desired for interrogation of biological, organic, and inorganic objects with sizes below the diffraction limit. Our current work investigates emergent monolayer-protected gold quantum dots (nanoclusters, NCs) composed of 25 Au atoms by utilizing two-photon-excited fluorescence (TPEF) near-field scanning optical microscopy (NSOM) at single NC concentrations. Here, we demonstrate an approach to synthesize and isolate single NCs on solid glass substrates. Subsequent investigation of the NCs using TPEF NSOM reveals that, even when they are separated by distances of several tens of nanometers, we can excite and interrogate single NCs individually. Interestingly, we observe an enhanced two-photon absorption (TPA) cross section for single Au 25 NCs that can be attributed to few-atom local field effects and to local field-induced microscopic cascading, indicating their potential for use in ultrasensitive sensing, disease diagnostics, cancer cell therapy, and molecular computers. Finally, we report room-temperature aperture-based TPEF NSOM imaging of these NCs for the first time at 30 nm point resolution, which is a ∼5-fold improvement compared to the previous best result for the same technique. This report unveils the unique combination of an unusually large TPA cross section and the high photostability of Au NCs to (non-destructively) investigate stable isolated single NCs using TPEF NSOM. This is the first reported optical study of monolayer-protected single quantum clusters, opening some very promising opportunities in spectroscopy of nanosized objects, bioimaging, ultrasensitive sensing, molecular computers, and high-density data storage.

  6. Single-session Gamma Knife radiosurgery for optic pathway/hypothalamic gliomas.

    Science.gov (United States)

    El-Shehaby, Amr M N; Reda, Wael A; Abdel Karim, Khaled M; Emad Eldin, Reem M; Nabeel, Ahmed M

    2016-12-01

    OBJECTIVE Because of their critical and central location, it is deemed necessary to fractionate when considering irradiating optic pathway/hypothalamic gliomas. Stereotactic fractionated radiotherapy is considered safer when dealing with gliomas in this location. In this study, the safety and efficacy of single-session stereotactic radiosurgery for optic pathway/hypothalamic gliomas were reviewed. METHODS Between December 2004 and June 2014, 22 patients with optic pathway/hypothalamic gliomas were treated by single-session Gamma Knife radiosurgery. Twenty patients were available for follow-up for a minimum of 1 year after treatment. The patients were 5 to 43 years (median 16 years) of age. The tumor volume was 0.15 to 18.2 cm 3 (median 3.1 cm 3 ). The prescription dose ranged from 8 to 14 Gy (median 11.5 Gy). RESULTS The mean follow-up period was 43 months. Five tumors involved the optic nerve only, and 15 tumors involved the chiasm/hypothalamus. Two patients died during the follow-up period. The tumors shrank in 12 cases, remained stable in 6 cases, and progressed in 2 cases, thereby making the tumor control rate 90%. Vision remained stable in 12 cases, improved in 6 cases, and worsened in 2 cases in which there was tumor progression. Progression-free survival was 83% at 3 years. CONCLUSIONS The initial results indicate that single-session Gamma Knife radiosurgery is a safe and effective treatment option for optic pathway/hypothalamic gliomas.

  7. Single-section mines carve out a market

    International Nuclear Information System (INIS)

    Sanda, A.P.

    1991-01-01

    In the Appalachian states of Pennsylvania, West Virginia, Kentucky and Virginia there are large operations whose complexes are an agglomeration of one and two-section mines; large operators whose own mines are augmented by small contractors; small contractors whose one-section mines collectively make them large operators within this genre; and independent, sole-owner operators of single-contract mines. Finally, there is the totally independent operator who negotiates his own leases, mines his own coal and searches for his own markets. The article profiles 6 single section mines. Mines were chosen on criteria including: the equipment in use; obtaining a representive sample of the states with many small coal mines particularly West Virginia, Virginia and Kentucky; the divergence of operators and situations. The mines chosen were: Elk Run; Kinney Branch Coal Co. No. 5 mine; A ampersand G No. 1 mine; Dotson and Rife Coal Co.; Bullion Hollow Coal Co.; and Bruce Coal. The article includes production rates and mine specifications. 1 tab

  8. Development of Single Optical Sensor Method for the Measurement Droplet Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Ahn, Tae Hwan; Yun, Byong Jo [Pusan National University, Busan (Korea, Republic of); Bae, Byoung Uhn; Kim, Kyoung Doo [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, we tried to develop single optical fiber probe(S-TOP) sensor method to measure droplet parameters such as diameter, droplet fraction, and droplet velocity and so on. To calibrate and confirm the optical fiber sensor for those parameters, we conducted visualization experiments by using a high speed camera with the optical sensor. To evaluate the performance of the S-TOP accurately, we repeated calibration experiments at a given droplet flow condition. Figure. 3 shows the result of the calibration. In this graph, the x axis is the droplet velocity measured by visualization and the y axis is grd, D which is obtained from S-TOP. In this study, we have developed the single tip optical probe sensor to measure the droplet parameters. From the calibration experiments with high speed camera, we get the calibration curve for the droplet velocity. Additionally, the chord length distribution of droplets is measured by the optical probe.

  9. Development of Single Optical Sensor Method for the Measurement Droplet Parameters

    International Nuclear Information System (INIS)

    Kim, Tae Ho; Ahn, Tae Hwan; Yun, Byong Jo; Bae, Byoung Uhn; Kim, Kyoung Doo

    2016-01-01

    In this study, we tried to develop single optical fiber probe(S-TOP) sensor method to measure droplet parameters such as diameter, droplet fraction, and droplet velocity and so on. To calibrate and confirm the optical fiber sensor for those parameters, we conducted visualization experiments by using a high speed camera with the optical sensor. To evaluate the performance of the S-TOP accurately, we repeated calibration experiments at a given droplet flow condition. Figure. 3 shows the result of the calibration. In this graph, the x axis is the droplet velocity measured by visualization and the y axis is grd, D which is obtained from S-TOP. In this study, we have developed the single tip optical probe sensor to measure the droplet parameters. From the calibration experiments with high speed camera, we get the calibration curve for the droplet velocity. Additionally, the chord length distribution of droplets is measured by the optical probe.

  10. Optical Field-Strength Polarization of Two-Mode Single-Photon States

    Science.gov (United States)

    Linares, J.; Nistal, M. C.; Barral, D.; Moreno, V.

    2010-01-01

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of…

  11. single-top quark production cross section using the ATLAS detector

    CERN Document Server

    Feng, Cunfeng; The ATLAS collaboration

    2014-01-01

    Measurements of single top-quark production cross section in proton proton collisions at 7 and 8 TeV are presented. In the leading order process, a W boson is exchanged in the t-channel. For this process, for the first time a fiducial cross section measured within the detector acceptance is presented and the modelling uncertainty when extrapolating to the total inclusive cross section is assessed with a large number of different Monte Carlo generators. The result is in good agreement with the most up-to-date theory predictions. Furthermore, the single top-quark and anti-top total production cross sections, their ratio, as well as a measurement of the inclusive production cross section is presented. Differential cross sections are measured as a function of the transverse momentum and the absolute value of the rapidity of top and anti-top quarks. In addition, a measurement of the production cross section of a single top quark in association with a W boson is presented. The s-channel production is explored and l...

  12. The Golden Section as Optical Limitation.

    Science.gov (United States)

    Elliott, Mark A; Kelly, Joy; Friedel, Jonas; Brodsky, Jennifer; Mulcahy, Paul

    2015-01-01

    RTs to golden-sectioned patterns. This suggests that optical limitation in the form of reduced inter-neural synchronization during spatial-frequency coding may be the foundation for the perceptual effects of golden sectioning.

  13. The Golden Section as Optical Limitation.

    Directory of Open Access Journals (Sweden)

    Mark A Elliott

    the elevated RTs to golden-sectioned patterns. This suggests that optical limitation in the form of reduced inter-neural synchronization during spatial-frequency coding may be the foundation for the perceptual effects of golden sectioning.

  14. The USC-OSA-EPS section activities in optics

    Science.gov (United States)

    Aymerich, María.; Cambronero-López, Ferran; Aragón, Ángel L.; Delgado, Tamara; Blanco, Manuel; Gómez Varela, Ana I.; Gargallo, Ana; Williamson, Sandra; Amorín, Adán.; Sánchez-García, Ángel; Bao-Varela, Carmen; Flores-Arias, M. Teresa

    2017-08-01

    The USC-OSA Student Chapter and USC-EPS Young Minds Section is a group financed by The Optical Society (OSA) and the European Physical Society (EPS). It is formed by PhD and degree students from the Universidade de Santiago de Compostela (USC) and one supervisor of the Faculty of Physics. Its main goal is to promote and diffuse Optics in the society. For this purpose, the group carries out several activities in the academic and non-academic community. The group is also committed to the professional development of our members and motivates the exposition of our work into the scientific community.

  15. Single Molecule Detection in Living Biological Cells using Carbon Nanotube Optical Probes

    Science.gov (United States)

    Strano, Michael

    2009-03-01

    Nanoscale sensing elements offer promise for single molecule analyte detection in physically or biologically constrained environments. Molecular adsorption can be amplified via modulation of sharp singularities in the electronic density of states that arise from 1D quantum confinement [1]. Single-walled carbon nanotubes (SWNT), as single molecule optical sensors [2-3], offer unique advantages such as photostable near-infrared (n-IR) emission for prolonged detection through biological media, single-molecule sensitivity and, nearly orthogonal optical modes for signal transduction that can be used to identify distinct classes of analytes. Selective binding to the SWNT surface is difficult to engineer [4]. In this lecture, we will briefly review the immerging field of fluorescent diagnostics using band gap emission from SWNT. In recent work, we demonstrate that even a single pair of SWNT provides at least four optical modes that can be modulated to uniquely fingerprint chemical agents by the degree to which they alter either the emission band intensity or wavelength. We validate this identification method in vitro by demonstrating detection and identification of six genotoxic analytes, including chemotherapeutic drugs and reactive oxygen species (ROS), which are spectroscopically differentiated into four distinct classes. We also demonstrate single-molecule sensitivity in detecting hydrogen peroxide, one of the most common genotoxins and an important cellular signal. Finally, we employ our sensing and fingerprinting method of these analytes in real time within live 3T3 cells, demonstrating the first multiplexed optical detection from a nanoscale biosensor and the first label-free tool to optically discriminate between genotoxins. We will also discuss our recent efforts to fabricate biomedical sensors for real time detection of glucose and other important physiologically relevant analytes in-vivo. The response of embedded SWNT in a swellable hydrogel construct to

  16. Demultiplexing of OTDM-DPSK signals based on a single semiconductor optical amplifier and optical filtering

    DEFF Research Database (Denmark)

    Xu, Jing; Ding, Yunhong; Peucheret, Christophe

    2011-01-01

    We propose and demonstrate the use of a single semiconductor optical amplifier (SOA) and optical filtering to time demultiplex tributaries from an optical time division multiplexing-differential phase shift keying (OTDM-DPSK) signal. The scheme takes advantage of the fact that phase variations...... added to the target channel by cross-phase modulation from the control signal are effectively subtracted in the differential demodulation scheme employed for DPSK signals. Demultiplexing from 80 to 40 Gbit=s is demonstrated with moderate power penalty using an SOA with recovery time twice as long...

  17. Accurate single-scattering simulation of ice cloud using the invariant-imbedding T-matrix method and the physical-geometric optics method

    Science.gov (United States)

    Sun, B.; Yang, P.; Kattawar, G. W.; Zhang, X.

    2017-12-01

    The ice cloud single-scattering properties can be accurately simulated using the invariant-imbedding T-matrix method (IITM) and the physical-geometric optics method (PGOM). The IITM has been parallelized using the Message Passing Interface (MPI) method to remove the memory limitation so that the IITM can be used to obtain the single-scattering properties of ice clouds for sizes in the geometric optics regime. Furthermore, the results associated with random orientations can be analytically achieved once the T-matrix is given. The PGOM is also parallelized in conjunction with random orientations. The single-scattering properties of a hexagonal prism with height 400 (in units of lambda/2*pi, where lambda is the incident wavelength) and an aspect ratio of 1 (defined as the height over two times of bottom side length) are given by using the parallelized IITM and compared to the counterparts using the parallelized PGOM. The two results are in close agreement. Furthermore, the integrated single-scattering properties, including the asymmetry factor, the extinction cross-section, and the scattering cross-section, are given in a completed size range. The present results show a smooth transition from the exact IITM solution to the approximate PGOM result. Because the calculation of the IITM method has reached the geometric regime, the IITM and the PGOM can be efficiently employed to accurately compute the single-scattering properties of ice cloud in a wide spectral range.

  18. Manipulation of single neutral atoms in optical lattices

    International Nuclear Information System (INIS)

    Zhang Chuanwei; Das Sarma, S.; Rolston, S. L.

    2006-01-01

    We analyze a scheme to manipulate quantum states of neutral atoms at individual sites of optical lattices using focused laser beams. Spatial distributions of focused laser intensities induce position-dependent energy shifts of hyperfine states, which, combined with microwave radiation, allow selective manipulation of quantum states of individual target atoms. We show that various errors in the manipulation process are suppressed below 10 -4 with properly chosen microwave pulse sequences and laser parameters. A similar idea is also applied to measure quantum states of single atoms in optical lattices

  19. Optical field-strength polarization of two-mode single-photon states

    Energy Technology Data Exchange (ETDEWEB)

    Linares, J; Nistal, M C; Barral, D; Moreno, V, E-mail: suso.linares.beiras@usc.e [Optics Area, Department of Applied Physics, Faculty of Physics and School of Optics and Optometry, University of Santiago de Compostela, Campus Universitario Sur s/n, 15782-Santiago de Compostela, Galicia (Spain)

    2010-09-15

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of the two-mode optical field-strength plane. We will show that the mentioned probability distributions along with the values of quantum Stokes parameters allow us to characterize the polarization of a two-mode single-photon state, in an analogous way to the classical case, and to distinguish conceptually between mixture and partially polarized quantum states; in this way, we propose a simple definition of the quantum polarization degree based on the recent concept of distance measure to an unpolarized distribution, which gives rise to a depolarization degree equivalent to an overlapping between the probability distribution of the quantum state and a non-polarized two-mode Gaussian distribution. The work is particularly intended to university physics teachers and graduate students as well as to physicists and specialists concerned with the issue of optical polarization.

  20. Optical field-strength polarization of two-mode single-photon states

    International Nuclear Information System (INIS)

    Linares, J; Nistal, M C; Barral, D; Moreno, V

    2010-01-01

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of the two-mode optical field-strength plane. We will show that the mentioned probability distributions along with the values of quantum Stokes parameters allow us to characterize the polarization of a two-mode single-photon state, in an analogous way to the classical case, and to distinguish conceptually between mixture and partially polarized quantum states; in this way, we propose a simple definition of the quantum polarization degree based on the recent concept of distance measure to an unpolarized distribution, which gives rise to a depolarization degree equivalent to an overlapping between the probability distribution of the quantum state and a non-polarized two-mode Gaussian distribution. The work is particularly intended to university physics teachers and graduate students as well as to physicists and specialists concerned with the issue of optical polarization.

  1. Single Molecules as Optical Probes for Structure and Dynamics

    Science.gov (United States)

    Orrit, Michel

    Single molecules and single nanoparticles are convenient links between the nanoscale world and the laboratory. We discuss the limits for their optical detection by three different methods: fluorescence, direct absorption, and photothermal detection. We briefly review some recent illustrations of qualitatively new information gathered from single-molecule signals: intermittency of the fluorescence intensity, acoustic vibrations of nanoparticles (1-100 GHz) or of extended defects in molecular crystals (0.1-1 MHz), and dynamical heterogeneity in glass-forming molecular liquids. We conclude with an outlook of future uses of single-molecule methods in physical chemistry, soft matter, and material science.

  2. Ultrafast Single-Shot Optical Oscilloscope based on Time-to-Space Conversion due to Temporal and Spatial Walk-Off Effects in Nonlinear Mixing Crystal

    Science.gov (United States)

    Takagi, Yoshihiro; Yamada, Yoshifumi; Ishikawa, Kiyoshi; Shimizu, Seiji; Sakabe, Shuji

    2005-09-01

    A simple method for single-shot sub-picosecond optical pulse diagnostics has been demonstrated by imaging the time evolution of the optical mixing onto the beam cross section of the sum-frequency wave when the interrogating pulse passes over the tested pulse in the mixing crystal as a result of the combined effect of group-velocity difference and walk-off beam propagation. A high linearity of the time-to-space projection is deduced from the process solely dependent upon the spatial uniformity of the refractive indices. A snap profile of the accidental coincidence between asynchronous pulses from separate mode-locked lasers has been detected, which demonstrates the single-shot ability.

  3. Growth and characterization of nonlinear optical single crystals: bis ...

    Indian Academy of Sciences (India)

    Administrator

    molecules have received great attention for NLO applica- tions. However ... Figure 3. Single crystals of bis(cyclohexylammonium) terephthalate (crystal a) and cyclohexylammo- .... from ground state to higher energy states.17 Optical window ...

  4. Single-shot parallel full range complex Fourier-domain optical coherence tomography

    International Nuclear Information System (INIS)

    Huang Bingjie; Bu Peng; Nan Nan; Wang Xiangzhao

    2011-01-01

    We present a method of parallel full range complex Fourier-domain optical coherence tomography (FDOCT) that is capable of acquiring an artifacts-free two-dimensional (2-D) cross-sectional image, i.e. a full range B-scan tomogram, by a single shot of 2-D CCD camera. This method is based on a spatial carrier technique, in which the spatial carrier-frequency is instantaneously introduced into the 2-D spectral interferogram registered in parallel FDOCT by using a grating-generated reference beam. The spatial-carrier-contained 2-D spectral interferogram is processed through Fourier transformation to obtain a complex 2-D spectral interferogram. From the 2-D complex spectral interferomgram, a full range B-scan tomogram is reconstructed. The principle of our method is confirmed by imaging an onion sample.

  5. Ultra-Low Power Optical Transistor Using a Single Quantum Dot Embedded in a Photonic Wire

    DEFF Research Database (Denmark)

    Nguyen, H.A.; Grange, T.; Malik, N.S.

    2017-01-01

    Using a single InAs quantum dot embedded in a GaAs photonic wire, we realize a giant non-linearity between two optical modes to experimentally demonstrate an all-optical transistor triggered by 10 photons.......Using a single InAs quantum dot embedded in a GaAs photonic wire, we realize a giant non-linearity between two optical modes to experimentally demonstrate an all-optical transistor triggered by 10 photons....

  6. Exact decoherence dynamics of a single-mode optical field

    International Nuclear Information System (INIS)

    An, J.-H.; Yeo Ye; Oh, C.H.

    2009-01-01

    We apply the influence-functional method of Feynman and Vernon to the study of a single-mode optical field that interacts with an environment at zero temperature. Using the coherent-state formalism of the path integral, we derive a generalized master equation for the single-mode optical field. Our analysis explicitly shows how non-Markovian effects manifest in the exact decoherence dynamics for different environmental correlation time scales. Remarkably, when these are equal to or greater than the time scale for significant change in the system, the interplay between the backaction-induced coherent oscillation and the dissipative effect of the environment causes the non-Markovian effect to have a significant impact not only on the short-time behavior but also on the long-time steady-state behavior of the system.

  7. A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy

    Science.gov (United States)

    Li, Hao; Yang, Haw

    2018-03-01

    This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.

  8. A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy.

    Science.gov (United States)

    Li, Hao; Yang, Haw

    2018-03-28

    This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.

  9. Two-section semiconductor optical amplifier used as an efficient channel dropping node

    DEFF Research Database (Denmark)

    Jørgensen, Carsten; Storkfelt, Niels; Durhuus, T.

    1992-01-01

    High responsivity in a two-section semiconductor optical amplifier/detector, serving as a channel dropping mode is described. A simple receiver constructed using a 50 Ω amplifier with a sensitivity of -30.2 dBm at 140 Mb/s is demonstrated......High responsivity in a two-section semiconductor optical amplifier/detector, serving as a channel dropping mode is described. A simple receiver constructed using a 50 Ω amplifier with a sensitivity of -30.2 dBm at 140 Mb/s is demonstrated...

  10. Interaction of solitary pulses in single mode optical fibres | Usman ...

    African Journals Online (AJOL)

    Two solitary waves launched, by way of incidence, into an optical fibre from a single pulse if the pulses are in-phase as understood from results of inverse scattering transform method applied to the cubic nonlinear Schrödinger equations, (CNLSE\\'s). The single CNLSE is then understood to describe evolution of coupled ...

  11. Molecular imaging and optical diagnosis from single molecule to human body

    International Nuclear Information System (INIS)

    Tamura, Mamoru

    2006-01-01

    The combination of molecular biology and optelectronics has given rise to open a new field, bio-photonics, in the 21st century. In this review, recent advances in several in vitro and in vivo single-molecule detection methods for animals are discussed. The possible applications of optical diagnosis are also included, which are optical mammography, diffuse optical tomography and fluorescence endoscopy. The potential of the light use of in diagnosis is emphasized. (author)

  12. Single Nanoparticle Detection Using Optical Microcavities.

    Science.gov (United States)

    Zhi, Yanyan; Yu, Xiao-Chong; Gong, Qihuang; Yang, Lan; Xiao, Yun-Feng

    2017-03-01

    Detection of nanoscale objects is highly desirable in various fields such as early-stage disease diagnosis, environmental monitoring and homeland security. Optical microcavity sensors are renowned for ultrahigh sensitivities due to strongly enhanced light-matter interaction. This review focuses on single nanoparticle detection using optical whispering gallery microcavities and photonic crystal microcavities, both of which have been developing rapidly over the past few years. The reactive and dissipative sensing methods, characterized by light-analyte interactions, are explained explicitly. The sensitivity and the detection limit are essentially determined by the cavity properties, and are limited by the various noise sources in the measurements. On the one hand, recent advances include significant sensitivity enhancement using techniques to construct novel microcavity structures with reduced mode volumes, to localize the mode field, or to introduce optical gain. On the other hand, researchers attempt to lower the detection limit by improving the spectral resolution, which can be implemented by suppressing the experimental noises. We also review the methods of achieving a better temporal resolution by employing mode locking techniques or cavity ring up spectroscopy. In conclusion, outlooks on the possible ways to implement microcavity-based sensing devices and potential applications are provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Accurate optical vector network analyzer based on optical single-sideband modulation and balanced photodetection.

    Science.gov (United States)

    Xue, Min; Pan, Shilong; Zhao, Yongjiu

    2015-02-15

    A novel optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation and balanced photodetection is proposed and experimentally demonstrated, which can eliminate the measurement error induced by the high-order sidebands in the OSSB signal. According to the analytical model of the conventional OSSB-based OVNA, if the optical carrier in the OSSB signal is fully suppressed, the measurement result is exactly the high-order-sideband-induced measurement error. By splitting the OSSB signal after the optical device-under-test (ODUT) into two paths, removing the optical carrier in one path, and then detecting the two signals in the two paths using a balanced photodetector (BPD), high-order-sideband-induced measurement error can be ideally eliminated. As a result, accurate responses of the ODUT can be achieved without complex post-signal processing. A proof-of-concept experiment is carried out. The magnitude and phase responses of a fiber Bragg grating (FBG) measured by the proposed OVNA with different modulation indices are superimposed, showing that the high-order-sideband-induced measurement error is effectively removed.

  14. The Electronic and Optical Properties of Au Doped Single-Layer Phosphorene

    Science.gov (United States)

    Zhu, Ziqing; Chen, Changpeng; Liu, Jiayi; Han, Lu

    2018-01-01

    The electronic properties and optical properties of single and double Au-doped phosphorene have been comparatively investigated using the first-principles plane-wave pseudopotential method based on density functional theory. The decrease from direct band gap 0.78 eV to indirect band gap 0.22 and 0.11 eV are observed in the single and double Au-doped phosphorene, respectively. The red shifts of absorbing edge occur in both doped systems, which consequently enhance the absorbing of infrared light in phosphorene. Band gap engineering can, therefore, be used to directly tune the optical absorption of phosphorene system by substitutional Au doping.

  15. Three-ring filters increase the effective NA up to 1.46 in optical sectioning fluorescence microscopy

    International Nuclear Information System (INIS)

    Martinez-Corral, M; Ibanez-Lopez, C; Caballero, M T; Munoz-Escriva, L; Saavedra, G

    2003-01-01

    Single-photon fluorescence confocal microscopy techniques can be combined with the use of specific binary filters in order to increase their optical sectioning capability. We present a novel class of axially super-resolving binary pupil filters specially designed to reach this aim. These filters let us to obtain a relevant compression of the z-response together with the reduction of the photo-bleaching effect typically inherent to apodization techniques. The fact of joining both the three-ring filters we propose in the illumination path, and the confocal detection gives rise to an important effective increase of lenses of effective numerical aperture

  16. Optical properties of armchair (7, 7) single walled carbon nanotubes

    International Nuclear Information System (INIS)

    Gharbavi, K.; Badehian, H.

    2015-01-01

    Full potential linearized augmented plane waves method with the generalized gradient approximation for the exchange-correlation potential was applied to calculate the optical properties of (7, 7) single walled carbon nanotubes. The both x and z directions of the incident photons were applied to estimate optical gaps, dielectric function, electron energy loss spectroscopies, optical conductivity, optical extinction, optical refractive index and optical absorption coefficient. The results predict that dielectric function, ε (ω), is anisotropic since it has higher peaks along z-direction than x-direction. The static optical refractive constant were calculated about 1.4 (z-direction) and 1.1 (x- direction). Moreover, the electron energy loss spectroscopy showed a sharp π electron plasmon peaks at about 6 eV and 5 eV for z and x-directions respectively. The calculated reflection spectra show that directions perpendicular to the tube axis have further optical reflection. Moreover, z-direction indicates higher peaks at absorption spectra in low range energies. Totally, increasing the diameter of armchair carbon nanotubes cause the optical band gap, static optical refractive constant and optical reflectivity to decrease. On the other hand, increasing the diameter cause the optical absorption and the optical conductivity to increase. Moreover, the sharp peaks being illustrated at optical spectrum are related to the 1D structure of CNTs which confirm the accuracy of the calculations

  17. Three-dimensional (3-D) video systems: bi-channel or single-channel optics?

    Science.gov (United States)

    van Bergen, P; Kunert, W; Buess, G F

    1999-11-01

    This paper presents the results of a comparison between two different three-dimensional (3-D) video systems, one with single-channel optics, the other with bi-channel optics. The latter integrates two lens systems, each transferring one half of the stereoscopic image; the former uses only one lens system, similar to a two-dimensional (2-D) endoscope, which transfers the complete stereoscopic picture. In our training centre for minimally invasive surgery, surgeons were involved in basic and advanced laparoscopic courses using both a 2-D system and the two 3-D video systems. They completed analog scale questionnaires in order to record a subjective impression of the relative convenience of operating in 2-D and 3-D vision, and to identify perceived deficiencies in the 3-D system. As an objective test, different experimental tasks were developed, in order to measure performance times and to count pre-defined errors made while using the two 3-D video systems and the 2-D system. Using the bi-channel optical system, the surgeon has a heightened spatial perception, and can work faster and more safely than with a single-channel system. However, single-channel optics allow the use of an angulated endoscope, and the free rotation of the optics relative to the camera, which is necessary for some operative applications.

  18. Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering.

    Science.gov (United States)

    Sagues, Mikel; García Olcina, Raimundo; Loayssa, Alayn; Sales, Salvador; Capmany, José

    2008-01-07

    We propose a novel scheme to implement tunable multi-tap complex coefficient filters based on optical single sideband modulation and narrow band optical filtering. A four tap filter is experimentally demonstrated to highlight the enhanced tuning performance provided by complex coefficients. Optical processing is performed by the use of a cascade of four phase-shifted fiber Bragg gratings specifically fabricated for this purpose.

  19. Single top quark production cross section using the ATLAS detector at the LHC

    CERN Document Server

    Cioara, Irina Antonela; The ATLAS collaboration

    2017-01-01

    Measurements of single top-quark production in proton-proton collisions are presented based on the 8 TeV and 13 TeV ATLAS datasets. In the leading order process, a W boson is exchanged in the t-channel. The cross-section for the production of single top-quarks and single anti-top-quarks total production cross sections, their ratio, as well as a measurement of the inclusive production cross section is presented. At 8 TeV, differential cross-section measurements of the t-channel process are also reported, these analyses include limits on anomalous contributions to the Wtb vertex and measurement of the top quark polarization. A measurement of the production cross section of a single top quark in association with a W boson, the second largest single-top production mode, is also presented. Finally, evidence for s-channel single-top production in the 8 TeV ATLAS dataset is presented. All measurements are compared to state-of-the-art theoretical calculations.

  20. Label-free tracking of single extracellular vesicles in a nano-fluidic optical fiber (Conference Presentation)

    Science.gov (United States)

    van der Pol, Edwin; Weidlich, Stefan; Lahini, Yoav; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk; Schmidt, Markus A.; Faez, Sanli; van Leeuwen, Ton G.

    2016-03-01

    Background: Extracellular vesicles, such as exosomes, are abundantly present in human body fluids. Since the size, concentration and composition of these vesicles change during disease, vesicles have promising clinical applications, including cancer diagnosis. However, since ~70% of the vesicles have a diameter <70 nm, detection of single vesicles remains challenging. Thus far, vesicles <70 nm have only be studied by techniques that require the vesicles to be adhered to a surface. Consequently, the majority of vesicles have never been studied in their physiological environment. We present a novel label-free optical technique to track single vesicles <70 nm in suspension. Method: Urinary vesicles were contained within a single-mode light-guiding silica fiber containing a 600 nm nano-fluidic channel. Light from a diode laser (660 nm wavelength) was coupled to the fiber, resulting in a strongly confined optical mode in the nano-fluidic channel, which continuously illuminated the freely diffusing vesicles inside the channel. The elastic light scattering from the vesicles, in the direction orthogonal to the fiber axis, was collected using a microscope objective (NA=0.95) and imaged with a home-built microscope. Results: We have tracked single urinary vesicles as small as 35 nm by elastic light scattering. Please note that vesicles are low-refractive index (n<1.4) particles, which we confirmed by combining data on thermal diffusion and light scattering cross section. Conclusions: For the first time, we have studied vesicles <70 nm freely diffusing in suspension. The ease-of-use and performance of this technique support its potential for vesicle-based clinical applications.

  1. Single Top quark production cross section using ATLAS detector at the LHC

    CERN Document Server

    Estrada Pastor, Oscar; The ATLAS collaboration

    2018-01-01

    Measurements of single top-quark production in proton-proton collisions are presented based on the 8 TeV and 13 TeV ATLAS datasets. In the leading order process, a W boson is exchanged in the t-channel. The cross-section for the production of single top-quarks and single anti-top-quarks, their ratio, as well as differential cross-section measurements are also reported. These analyses include limits on anomalous contributions to the Wtb vertex and measurement of the top quark polarization. Measurements of the inclusive and differential cross-sections for the production of a single top quark in association with a W boson, the second largest single-top production mode, are also presented. Finally, evidence for s-channel single-top production in the 8 TeV ATLAS dataset is presented. All measurements are compared to state-of-the-art theoretical calculations.

  2. Polarized excitons and optical activity in single-wall carbon nanotubes

    Science.gov (United States)

    Chang, Yao-Wen; Jin, Bih-Yaw

    2018-05-01

    The polarized excitons and optical activity of single-wall carbon nanotubes (SWNTs) are studied theoretically by π -electron Hamiltonian and helical-rotational symmetry. By taking advantage of the symmetrization, the single-particle energy and properties of a SWNT are characterized with the corresponding helical band structure. The dipole-moment matrix elements, magnetic-moment matrix elements, and the selection rules can also be derived. Based on different selection rules, the optical transitions can be assigned as the parallel-polarized, left-handed circularly-polarized, and right-handed circularly-polarized transitions, where the combination of the last two gives the cross-polarized transition. The absorption and circular dichroism (CD) spectra are simulated by exciton calculation. The calculated results are well comparable with the reported measurements. Built on the foundation, magnetic-field effects on the polarized excitons and optical activity of SWNTs are studied. Dark-bright exciton splitting and interband Faraday effect in the CD spectrum of SWNTs under an axial magnetic field are predicted. The Faraday rotation dispersion can be analyzed according to the selection rules of circular polarizations and the helical band structure.

  3. Generating single-photon catalyzed coherent states with quantum-optical catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xue-xiang, E-mail: xuxuexiang@jxnu.edu.cn [Center for Quantum Science and Technology, Jiangxi Normal University, Nanchang 330022 (China); Yuan, Hong-chun [College of Electrical and Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou 213002 (China)

    2016-07-15

    We theoretically generate single-photon catalyzed coherent states (SPCCSs) by means of quantum-optical catalysis based on the beam splitter (BS) or the parametric amplifier (PA). These states are obtained in one of the BS (or PA) output channels if a coherent state and a single-photon Fock state are present in two input ports and a single photon is registered in the other output port. The success probabilities of the detection (also the normalization factors) are discussed, which is different for BS and PA catalysis. In addition, we prove that the generated states catalyzed by BS and PA devices are actually the same quantum states after analyzing photon number distribution of the SPCCSs. The quantum properties of the SPCCSs, such as sub-Poissonian distribution, anti-bunching effect, quadrature squeezing effect, and the negativity of the Wigner function are investigated in detail. The results show that the SPCCSs are non-Gaussian states with an abundance of nonclassicality. - Highlights: • We generate single-photon catalyzed coherent states with quantum-optical catalysis. • We prove the equivalent effects of the lossless beam splitter and the non-degenerate parametric amplifier. • Some nonclassical properties of the generated states are investigated in detail.

  4. Optical properties of single-layer, double-layer, and bulk MoS2

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Sanchez, Alejandro; Wirtz, Ludger [University of Luxembourg (Luxembourg); Hummer, Kerstin [University of Vienna, Vienna (Austria)

    2013-07-01

    The rise of graphene has brought attention also to other layered materials that can complement graphene or that can be an alternative in applications as transistors. Single-layer MoS{sub 2} has shown interesting electronic and optical properties such as as high electron mobility at room temperature and an optical bandgap of 1.8 eV. This makes the material suitable for transistors or optoelectronic devices. We present a theoretical study of the optical absorption and photoluminescence spectra of single-layer, double-layer and bulk MoS{sub 2}. The excitonic states have been calculated in the framework of the Bethe-Salpeter equation, taking into account the electron-hole interaction via the screened Coulomb potential. In addition to the step-function like behaviour that is typical for the joint-density of states of 2D materials with parabolic band dispersion, we find a bound excitonic peak that is dominating the luminescence spectra. The peak is split due to spin-orbit coupling for the single-layer and split due to layer-layer interaction for few-layer and bulk MoS{sub 2}. We discuss the changes of the optical bandgap and of the exciton binding energy with the number of layers, comparing our results with the reported experimental data.

  5. Combined optic system based on polycapillary X-ray optics and single-bounce monocapillary optics for focusing X-rays from a conventional laboratory X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xuepeng; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Yi, Longtao; Sun, Weiyuan; Li, Fangzuo; Jiang, Bowen [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2015-12-01

    Two combined optic systems based on polycapillary X-ray optics and single-bounce monocapillary optics (SBMO) were designed for focusing the X-rays from a conventional laboratory X-ray source. One was based on a polycapillary focusing X-ray lens (PFXRL) and a single-bounce ellipsoidal capillary (SBEC), in which the output focal spot with the size of tens of micrometers of the PFXRL was used as the “virtual” X-ray source for the SBEC. The other system was based on a polycapillary parallel X-ray lens (PPXRL) and a single-bounce parabolic capillary (SBPC), in which the PPXRL transformed the divergent X-ray beam from an X-ray source into a quasi-parallel X-ray beam with the divergence of sever milliradians as the incident illumination of the SBPC. The experiment results showed that the combined optic systems based on PFXRL and SBEC with a Mo rotating anode X-ray generator with the focal spot with a diameter of 300 μm could obtain a focal spot with the total gain of 14,300 and focal spot size of 37.4 μm, and the combined optic systems based on PPXRL and SBPC with the same X-ray source mentioned above could acquire a focal spot with the total gain of 580 and focal spot size of 58.3 μm, respectively. The two combined optic systems have potential applications in micro X-ray diffraction, micro X-ray fluorescence, micro X-ray absorption near edge structure, full field X-ray microscopes and so on.

  6. Comparison of neutron scattering cross sections with the JLM microscopic optical model

    International Nuclear Information System (INIS)

    Kailas, S.; Gupta, S.K.

    Recently Jeukenne et al have determined microscopically the nucleon-nucleus optical potential from Reid's nucleon-nucleon interaction. Microscopic neutron-nucleus optical potentials are constructed using accurate matter densities. Reasonable success has been obtained in describing the total and elastic cross section and angular distributions at Esub(n)=8.05 MeV without modifying the microscopically calculated potentials. (auth.)

  7. Communication: atomic force detection of single-molecule nonlinear optical vibrational spectroscopy.

    Science.gov (United States)

    Saurabh, Prasoon; Mukamel, Shaul

    2014-04-28

    Atomic Force Microscopy (AFM) allows for a highly sensitive detection of spectroscopic signals. This has been first demonstrated for NMR of a single molecule and recently extended to stimulated Raman in the optical regime. We theoretically investigate the use of optical forces to detect time and frequency domain nonlinear optical signals. We show that, with proper phase matching, the AFM-detected signals closely resemble coherent heterodyne-detected signals. Applications are made to AFM-detected and heterodyne-detected vibrational resonances in Coherent Anti-Stokes Raman Spectroscopy (χ((3))) and sum or difference frequency generation (χ((2))).

  8. Single exposure optically compressed imaging and visualization using random aperture coding

    Energy Technology Data Exchange (ETDEWEB)

    Stern, A [Electro Optical Unit, Ben Gurion University of the Negev, Beer-Sheva 84105 (Israel); Rivenson, Yair [Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer-Sheva 84105 (Israel); Javidi, Bahrain [Department of Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut 06269-1157 (United States)], E-mail: stern@bgu.ac.il

    2008-11-01

    The common approach in digital imaging follows the sample-then-compress framework. According to this approach, in the first step as many pixels as possible are captured and in the second step the captured image is compressed by digital means. The recently introduced theory of compressed sensing provides the mathematical foundation necessary to combine these two steps in a single one, that is, to compress the information optically before it is recorded. In this paper we overview and extend an optical implementation of compressed sensing theory that we have recently proposed. With this new imaging approach the compression is accomplished inherently in the optical acquisition step. The primary feature of this imaging approach is a randomly encoded aperture realized by means of a random phase screen. The randomly encoded aperture implements random projection of the object field in the image plane. Using a single exposure, a randomly encoded image is captured which can be decoded by proper decoding algorithm.

  9. Multiparameter estimation with single photons—linearly-optically generated quantum entanglement beats the shotnoise limit

    Science.gov (United States)

    You, Chenglong; Adhikari, Sushovit; Chi, Yuxi; LaBorde, Margarite L.; Matyas, Corey T.; Zhang, Chenyu; Su, Zuen; Byrnes, Tim; Lu, Chaoyang; Dowling, Jonathan P.; Olson, Jonathan P.

    2017-12-01

    It was suggested in (Motes et al 2015 Phys. Rev. Lett. 114 170802) that optical networks with relatively inexpensive overheads—single photon Fock states, passive optical elements, and single photon detection—can show significant improvements over classical strategies for single-parameter estimation, when the number of modes in the network is small (ncompute the quantum Cramér-Rao bound to show these networks can have a constant-factor quantum advantage in multi-parameter estimation for even large number of modes. Additionally, we provide a simplified measurement scheme using only single-photon (on-off) detectors that is capable of approximately obtaining this sensitivity for a small number of modes.

  10. Effects of {gamma} and neutron irradiation on the optical absorption of pure silica core single-mode optical fibres from Nufern

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Martinez-Rivero, C. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Matorras, F. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Rodrigo, T. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Sobron, M. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Vila, I. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Virto, A.L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Alberdi, J. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Arce, P. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Barcala, J.M. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Calvo, E. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Ferrando, A. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain)]. E-mail: Antonio.Ferrando@ciemat.es; Josa, M.I. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Luque, J.M. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Molinero, A. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Navarrete, J. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Oller, J.C. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Valdivieso, P. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Yuste, C. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Fenyvesi, A. [Institute of Nuclear Research, ATOMKI, Debrecen (Hungary); Molnar, J. [Institute of Nuclear Research, ATOMKI, Debrecen (Hungary)

    2006-09-15

    A measurement of the optical absorption, induced by photon irradiation up to a dose of 0.9 MGy, in Nufern silica core single-mode optical fibres is presented. In addition, the fibres were irradiated with neutrons, up to a total fluence of 2x10{sup 14} cm{sup -2} and the induced optical absorption was evaluated for four different wavelengths: 630, 670, 681 and 785 nm.

  11. Effects of γ and neutron irradiation on the optical absorption of pure silica core single-mode optical fibres from Nufern

    International Nuclear Information System (INIS)

    Calderon, A.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto, A.L.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Valdivieso, P.; Yuste, C.; Fenyvesi, A.; Molnar, J.

    2006-01-01

    A measurement of the optical absorption, induced by photon irradiation up to a dose of 0.9 MGy, in Nufern silica core single-mode optical fibres is presented. In addition, the fibres were irradiated with neutrons, up to a total fluence of 2x10 14 cm -2 and the induced optical absorption was evaluated for four different wavelengths: 630, 670, 681 and 785 nm

  12. An optical, electrical and ultrasonic layered single sensor for ingredient measurement in liquid

    International Nuclear Information System (INIS)

    Kimoto, A; Kitajima, T

    2010-01-01

    In this paper, an optical, electrical and ultrasonic layered single sensor is proposed as a new, non-invasive sensing method for the measurement of ingredients in liquid, particularly in the food industry. In the proposed sensor, the photo sensors and the PVDF films with the transparent conductive electrode are layered and the optical properties of the liquid are measured by a light emitting diode (LED) and a phototransistor (PT). In addition, the electrical properties are measured by indium tin oxide (ITO) film electrodes as the transparent conductive electrodes of PVDF films arranged on the surfaces of the LED and PT. Moreover, the ultrasonic properties are measured by PVDF films. Thus, the optical, electrical and ultrasonic properties in the same space of the liquid can be simultaneously measured at a single sensor. To test the sensor experimentally, three parameters of the liquid—such as concentrations of yellow color, sodium chloride (NaCl) and ethanol in distilled water—were estimated using the measurement values of the optical, electrical and ultrasonic properties obtained with the proposed sensor. The results suggested that it is possible to estimate the three ingredient concentrations in the same space of the liquid from the optical, electrical and ultrasonic properties measured by the proposed single sensor, although there are still some problems such as measurement accuracy that must be solved

  13. Fabrication of single optical centres in diamond-a review

    International Nuclear Information System (INIS)

    Orwa, J.O.; Greentree, A.D.; Aharonovich, I.; Alves, A.D.C.; Van Donkelaar, J.; Stacey, A.; Prawer, S.

    2010-01-01

    Colour centres in diamond are rapidly becoming one of the leading platforms for solid-state quantum information processing applications. This is due in large part to the remarkable properties of the nitrogen-vacancy colour centre. From initial demonstrations of room-temperature single photon generation and spin single spin readout and quantum control, diamond nanocrystals are also finding application in magnetometry and biosensing. This review discusses the state of the art in the creation of isolated and small ensembles of optically active diamond defect centres, including nitrogen and nickel-related centres.

  14. Progress Toward Single-Photon-Level Nonlinear Optics in Crystalline Microcavities

    Science.gov (United States)

    Kowligy, Abijith S.

    Over the last two decades, the emergence of quantum information science has uncovered many practical applications in areas such as communications, imaging, and sensing where harnessing quantum features of Nature provides tremendous benefits over existing methods exploiting classical physical phenomena. In this effort, one of the frontiers of research has been to identify and utilize quantum phenomena that are not susceptible to environmental and parasitic noise processes. Quantum photonics has been at the forefront of these studies because it allows room-temperature access to its inherently quantum-mechanical features, and allows leveraging the mature telecommunication industry. Accompanying the weak environmental influence, however, are also weak optical nonlinearities. Efficient nonlinear optical interactions are indispensible for many of the existing protocols for quantum optical computation and communication, e.g. high-fidelity entangling quantum logic gates rely on large nonlinear responses at the one- or few-photon-level. While this has been addressed to a great extent by interfacing photons with single quantum emitters and cold atomic gases, scalability has remained elusive. In this work, we identify the macroscopic second-order nonlinear polarization as a robust platform to address this challenge, and utilize the recent advances in the burgeoning field of optical microcavities to enhance this nonlinear response. In particular, we show theoretically that by using the quantum Zeno effect, low-noise, single-photon-level optical nonlinearities can be realized in lithium niobate whispering-gallery-mode microcavities, and present experimental progress toward this goal. Using the measured strength of the second-order nonlinear response in lithium niobate, we modeled the nonlinear system in the strong coupling regime using the Schrodinger picture framework and theoretically demonstrated that the single-photon-level operation can be observed for cavity lifetimes in

  15. Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities.

    Science.gov (United States)

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-01-13

    We present some compact quantum circuits for a deterministic quantum computing on electron-spin qubits assisted by quantum dots inside single-side optical microcavities, including the CNOT, Toffoli, and Fredkin gates. They are constructed by exploiting the giant optical Faraday rotation induced by a single-electron spin in a quantum dot inside a single-side optical microcavity as a result of cavity quantum electrodynamics. Our universal quantum gates have some advantages. First, all the gates are accomplished with a success probability of 100% in principle. Second, our schemes require no additional electron-spin qubits and they are achieved by some input-output processes of a single photon. Third, our circuits for these gates are simple and economic. Moreover, our devices for these gates work in both the weak coupling and the strong coupling regimes, and they are feasible in experiment.

  16. Conversion from non-orthogonally to orthogonally polarized optical single-sideband modulation using optically injected semiconductor lasers.

    Science.gov (United States)

    Hung, Yu-Han; Tseng, Chin-Hao; Hwang, Sheng-Kwang

    2018-06-01

    This Letter investigates an optically injected semiconductor laser for conversion from non-orthogonally to orthogonally polarized optical single-sideband modulation. The underlying mechanism relies solely on nonlinear laser characteristics and, thus, only a typical semiconductor laser is required as the key conversion unit. This conversion can be achieved for a broadly tunable frequency range up to at least 65 GHz. After conversion, the microwave phase quality, including linewidth and phase noise, is mostly preserved, and simultaneous microwave amplification up to 23 dB is feasible.

  17. Dye molecules as single-photon sources and large optical nonlinearities on a chip

    International Nuclear Information System (INIS)

    Hwang, J; Hinds, E A

    2011-01-01

    We point out that individual organic dye molecules, deposited close to optical waveguides on a photonic chip, can act as single-photon sources. A thin silicon nitride strip waveguide is expected to collect 28% of the photons from a single dibenzoterrylene molecule. These molecules can also provide large, localized optical nonlinearities, which are enough to discriminate between one photon or two through a differential phase shift of 2 0 per photon. This new atom-photon interface may be used as a resource for processing quantum information.

  18. Investigation of optical and magneto-optical constants and their surface-oxide-layer effects of single-crystalline GdCo2

    International Nuclear Information System (INIS)

    Lee, S.J.; Kim, K.J.; Canfield, P.C.; Lynch, D.W.

    2000-01-01

    We investigated the optical and magneto-optical properties of single-crystalline GdCo 2 by spectroscopic ellipsometry (SE) and magneto-optical Kerr spectrometry (MOKS). The diagonal component of the optical conductivity tensor of the compound was obtained by SE in the 1.5-5.5 eV region and the off-diagonal component by using the measured magneto-optical parameters (Kerr rotation and ellipticity) by MOKS and the SE data. The measured spectra were corrected for the surface oxide layer by employing a three-phase model treating the oxide layer as nonmagnetic with constant refractive index. The magnitude of the diagonal component becomes enhanced and the optical transition structures of the off-diagonal component become more pronounced by the oxide correction. The overall optical and magneto-optical data are discussed in terms of the calculated spin-polarized band structure and optical absorption of the compound and the effect of the surface oxide layer

  19. Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments.

    Science.gov (United States)

    Landry, Markita P; McCall, Patrick M; Qi, Zhi; Chemla, Yann R

    2009-10-21

    Optical traps or "tweezers" use high-power, near-infrared laser beams to manipulate and apply forces to biological systems, ranging from individual molecules to cells. Although previous studies have established that optical tweezers induce photodamage in live cells, the effects of trap irradiation have yet to be examined in vitro, at the single-molecule level. In this study, we investigate trap-induced damage in a simple system consisting of DNA molecules tethered between optically trapped polystyrene microspheres. We show that exposure to the trapping light affects the lifetime of the tethers, the efficiency with which they can be formed, and their structure. Moreover, we establish that these irreversible effects are caused by oxidative damage from singlet oxygen. This reactive state of molecular oxygen is generated locally by the optical traps in the presence of a sensitizer, which we identify as the trapped polystyrene microspheres. Trap-induced oxidative damage can be reduced greatly by working under anaerobic conditions, using additives that quench singlet oxygen, or trapping microspheres lacking the sensitizers necessary for singlet state photoexcitation. Our findings are relevant to a broad range of trap-based single-molecule experiments-the most common biological application of optical tweezers-and may guide the development of more robust experimental protocols.

  20. Single Top quark production cross section using the ATLAS detector at the LHC

    CERN Document Server

    Monini, C; The ATLAS collaboration

    2014-01-01

    Measurements of single top-quark production cross section in proton proton collisions at 7 and 8 TeV are presented. In the leading order process, a W boson is exchanged in the t-channel. The single top-quark and anti-top total production cross sections, their ratio, as well as a measurement of the inclusive production cross section is presented. In addition, a measurement of the production cross section of a single top quark in association with a W boson is presented. All measurements are compared to NLO and NLO+NNLO calculations and the CKM matrix element |Vtb| is determined. In addition, the s-channel production is explored and limits on exotic production in single top quark processes are discussed. This includes the search for flavor changing neutral currents and the search for additional W’ bosons in the s-channel.

  1. Differential Single-Capture Cross Sections for Fast Alpha–Helium Collisions

    International Nuclear Information System (INIS)

    Ghanbari-Adivi, Ebrahim; Ghavaminia, Hoda

    2014-01-01

    A four-body theoretical study of the single charge transfer process in collision of energetic alpha ions with helium atoms in their ground states is presented. The model utilizes the Coulomb–Born distorted wave approximation with correct boundary conditions to calculate the single-electron capture differential and integral cross sections. The influence of the dynamic and static electron correlations on the capture probability is investigated. The results of the calculations are compared with the recent experimental measurements for differential cross sections and with the other theoretical manipulations. The results for scattering at extreme forward angles are in good agreement with the experimental measurements, but in other scattering angles the agreement is poor. However, the present four-body results for integral cross sections are in excellent agreement with the experimental data. (author)

  2. Optical model calculation of neutron-nucleus scattering cross sections

    International Nuclear Information System (INIS)

    Smith, M.E.; Camarda, H.S.

    1980-01-01

    A program to calculate the total, elastic, reaction, and differential cross section of a neutron interacting with a nucleus is described. The interaction between the neutron and the nucleus is represented by a spherically symmetric complex potential that includes spin-orbit coupling. This optical model problem is solved numerically, and is treated with the partial-wave formalism of scattering theory. The necessary scattering theory required to solve this problem is briefly stated. Then, the numerical methods used to integrate the Schroedinger equation, calculate derivatives, etc., are described, and the results of various programming tests performed are presented. Finally, the program is discussed from a user's point of view, and it is pointed out how and where the program (OPTICAL) can be changed to satisfy particular needs

  3. Acoustical and optical radiation pressures and the development of single beam acoustical tweezers

    OpenAIRE

    Thomas , Jean-Louis; Marchiano , Régis; Baresch , Diego

    2017-01-01

    International audience; Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and positioned micron size particles, biological samples or even atoms with subnanometer accuracy in three dimens...

  4. Prospects of Optical Single Atom Detection in Noble Gas Solids for Measurements of Rare Nuclear Reactions

    Science.gov (United States)

    Singh, Jaideep; Bailey, Kevin G.; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Thomas P.; Xu, Chen-Yu; Tang, Xiaodong

    2013-04-01

    Optical detection of single atoms captured in solid noble gas matrices provides an alternative technique to study rare nuclear reactions relevant to nuclear astrophysics. I will describe the prospects of applying this approach for cross section measurements of the ^22Ne,,),25Mg reaction, which is the crucial neutron source for the weak s process inside of massive stars. Noble gas solids are a promising medium for the capture, detection, and manipulation of atoms and nuclear spins. They provide stable and chemically inert confinement for a wide variety of guest species. Because noble gas solids are transparent at optical wavelengths, the guest atoms can be probed using lasers. We have observed that ytterbium in solid neon exhibits intersystem crossing (ISC) which results in a strong green fluorescence (546 nm) under excitation with blue light (389 nm). Several groups have observed ISC in many other guest-host pairs, notably magnesium in krypton. Because of the large wavelength separation of the excitation light and fluorescence light, optical detection of individual embedded guest atoms is feasible. This work is supported by DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  5. Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink.

    Science.gov (United States)

    Wright, Malcolm W; Morris, Jeffery F; Kovalik, Joseph M; Andrews, Kenneth S; Abrahamson, Matthew J; Biswas, Abhijit

    2015-12-28

    An adaptive optics (AO) testbed was integrated to the Optical PAyload for Lasercomm Science (OPALS) ground station telescope at the Optical Communications Telescope Laboratory (OCTL) as part of the free space laser communications experiment with the flight system on board the International Space Station (ISS). Atmospheric turbulence induced aberrations on the optical downlink were adaptively corrected during an overflight of the ISS so that the transmitted laser signal could be efficiently coupled into a single mode fiber continuously. A stable output Strehl ratio of around 0.6 was demonstrated along with the recovery of a 50 Mbps encoded high definition (HD) video transmission from the ISS at the output of the single mode fiber. This proof of concept demonstration validates multi-Gbps optical downlinks from fast slewing low-Earth orbiting (LEO) spacecraft to ground assets in a manner that potentially allows seamless space to ground connectivity for future high data-rates network.

  6. Ultra Fast Optical Sectioning: Signal preserving filtering and surface reconstruction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Poel, Mike van der; Larsen, Rasmus

    2011-01-01

    a signal preserving ltering of the data set is done. The remaining data are used for a smooth surface re- construction creating very plausible surfaces. The data used in our work comes from a newly developed hand held 3D scanner. The scanner is an Ultra Fast Optical Sectioning scanner, which is able...

  7. Fundamental optical absorption edge in MnGa2Te4 single crystals

    International Nuclear Information System (INIS)

    Medvedkin, G.A.; Rud, Yu.V.; Tairov, M.A.

    1988-01-01

    A study is made of the optical properties of oriented MnGa 2 Te 4 crystals in the region of the fundamental absorption edge. The energy gap width for the temperatures 77, 300, and 370 K is determined to be E G = 1.635, 1.52, and 1.50 eV. The spectral response α(ℎω/2π) is found to follow Urbach's rule thoughout the temperature range studied, the slope of the absorption edge remaining constant (α = 10 2 cm -1 ). Crystal annealing with subsequent rapid cooling results in a shift of the absorption edge longward by 25 meV with the exponential form of α(ℎω/2π) prevailing over the range T = 77 to 370 K. An analysis shows the optical absorption in the region of the fundamental edge to be a sum of the effects coming from the density-of-states tails, local scattering centers associated with a high vacancy concentration, and electron-phonon interaction. Optical linear dichroism of the absorption edge of MnGa 2 Te 4 single crystals with pseudotetragonal structure is revealed and studied. The single crystals are established to be optically uniaxial, their optical transmission dichroism being negative. It is shown that the minimal direct optical transitions in MnGa 2 Te 4 are allowed in the E parallel c polarization in the temperature range 77 to 370 K, the crystal-field splitting of the valence band increasing with temperature. (author)

  8. Comparison of single-/few-/multi-mode 850 nm VCSELs for optical OFDM transmission.

    Science.gov (United States)

    Kao, Hsuan-Yun; Tsai, Cheng-Ting; Leong, Shan-Fong; Peng, Chun-Yen; Chi, Yu-Chieh; Huang, Jian Jang; Kuo, Hao-Chung; Shih, Tien-Tsorng; Jou, Jau-Ji; Cheng, Wood-Hi; Wu, Chao-Hsin; Lin, Gong-Ru

    2017-07-10

    For high-speed optical OFDM transmission applications, a comprehensive comparison of the homemade multi-/few-/single-transverse mode (MM/FM/SM) vertical cavity surface emitting laser (VCSEL) chips is performed. With microwave probe, the direct encoding of pre-leveled 16-QAM OFDM data and transmission over 100-m-long OM4 multi-mode-fiber (MMF) are demonstrated for intra-datacenter applications. The MM VCSEL chip with the largest emission aperture of 11 μm reveals the highest differential quantum efficiency which provides the highest optical power of 8.67 mW but exhibits the lowest encodable bandwidth of 21 GHz. In contrast, the SM VCSEL chip fabricated with the smallest emission aperture of only 3 μm provides the highest 3-dB encoding bandwidth up to 23 GHz at a cost of slight heat accumulation. After optimization, with the trade-off set between the receiving signal-to-noise ratio (SNR) and bandwidth, the FM VCSEL chip guarantees the highest optical OFDM transmission bit rate of 96 Gbit/s under back-to-back case with its strongest throughput. Among three VCSEL chips, the SM VCSEL chip with nearly modal-dispersion free feature is treated as the best candidate for carrying the pre-leveled 16-QAM OFDM data over 100-m OM4-MMF with same material structure but exhibits different oxide-layer confined gain cross-sections with one another at 80-Gbit/s with the smallest receiving power penalty of 1.77 dB.

  9. Single Mode Optical Fiber based Refractive Index Sensor using Etched Cladding

    OpenAIRE

    Kumar, Ajay; Gupta, Geeta; Mallik, Arun; Bhatnagar, Anuj

    2011-01-01

    The use of optical fiber for sensor applications is a topic of current interest. We report the fabrication of etched single mode optical fiber based refractive index sensor. Experiments are performed to determine the etch rate of fiber in buffered hydrofluoric acid, which can be high or low depending upon the temperature at which etching is carried out. Controlled wet etching of fiber cladding is performed using these measurements and etched fiber region is tested for refractive index sensing...

  10. Growth Aspects, Structural and Optical Properties of 2-aminopyridinium 2,4 Dinitrophenolate Single Crystal

    Directory of Open Access Journals (Sweden)

    S. Reena Devi

    2017-06-01

    Full Text Available Organic single crystal of 2-aminopyridinium 2,4-dinitrophenolate single crystal was grown by slow evaporation technique. The cell parameters and space group (P were determined from single X-ray diffraction analysis. HRXRD studies ascertained the crystalline quality. UV-Visible and PL spectral studies revealed the emission in red region, transparency (75% cutoff wavelength around 440 nm respectively. The laser damage threshold of grown crystal was estimated by using Nd:YAG laser beam and these results were mutually related with specific heat capacity of the grown crystal. The third-order nonlinear optical parameters were estimated by Z-scan technique which is useful for optical applications.

  11. Studies of Second Order Optical Nonlinearities of 4-Aminobenzophenone (ABP) Single Crystal Films

    Science.gov (United States)

    Bhowmik, Achintya; Thakur, Mrinal

    1998-03-01

    Specific organic materials exhibit very high second order optical susceptibilities. Growth of single crystal films of these materials and characterization of nonlinear optical properties are necessary for implementation of device applications. We have grown large-area films ( 1 cm^2 area, 4 μm thick) of ABP by a modification of the shear method. Single crystal nature of the films was confirmed by polarized optical microscopy. X-ray diffraction analysis showed a [100] surface orientation. The absorption spectra revealed transparency from 390 nm to 1940 nm. Significant elements of the second order optical susceptibility tensor were measured by detailed SHG experiments using a Nd:YAG laser (1064 nm, 100 ps, 82 MHz). Second-harmonic power was measured using lock-in detection with carefully selected polarization conditions while the film was rotated about the propagation direction. Using LiNbØas the reference, d-coefficients of ABP were found to be d_23=7.2 pm/V and d_22=0.7 pm/V. Type-I and type-II phase-matching directions were identified on the film by analyzing the optical indicatrix surfaces at fundamental and second-harmonic frequencies.

  12. Optimizing detection filters for single-grain optical dating of quartz

    International Nuclear Information System (INIS)

    Ballarini, M.; Wallinga, J.; Duller, G.A.T.; Brouwer, J.C.; Bos, A.J.J.; Van Eijk, C.W.E.

    2005-01-01

    We investigate the use of different optical detection filters for single-grain optically stimulated luminescence (OSL) measurements of quartz samples with a Riso TL/OSL single-grain reader. We selected three filter combinations that considerably improve the light detection efficiency when compared with the 7.5 mm U340 filters that are routinely used. These are the UG1+BG4 filter combination, the 2 mm UG1 and the 2.5 mm U340 filters, which allow a greater transmission in the quartz emission band. This leads to two benefits: (1) more grains can be accepted for equivalent dose analysis, and (2) OSL responses on individual grains are determined with a greater precision. While these three alternative filter combinations perform equally well if compared to each other, we suggest the 2.5 mm thick Hoya U340 to be the filter of choice as it allows the use of blue-diode and IR-diode stimulation sources for bleaching purposes and feldspar detection

  13. Ionization of xenon by electrons: Partial cross sections for single, double, and triple ionization

    International Nuclear Information System (INIS)

    Mathur, D.; Badrinathan, C.

    1987-01-01

    High-sensitivity measurements of relative partial cross sections for single, double, and triple ionization of Xe by electron impact have been carried out in the energy region from threshold to 100 eV using a crossed-beam apparatus incorporating a quadrupole mass spectrometer. The weighted sum of the relative partial cross sections at 50 eV are normalized to the total ionization cross section of Rapp and Englander-Golden to yield absolute cross-section functions. Shapes of the partial cross sections for single and double ionization are difficult to account for within a single-particle picture. Comparison of the Xe + data with 4d partial photoionization cross-section measurements indicates the important role played by many-body effects in describing electron-impact ionization of high-Z atoms

  14. Generating high-quality single droplets for optical particle characterization with an easy setup

    Science.gov (United States)

    Xu, Jie; Ge, Baozhen; Meng, Rui

    2018-06-01

    The high-performance and micro-sized single droplet is significant for optical particle characterization. We develop a single-droplet generator (SDG) based on a piezoelectric inkjet technique with advantages of low cost and easy setup. By optimizing the pulse parameters, we achieve various size single droplets. Further investigations reveal that SDG generates single droplets of high quality, demonstrating good sphericity, monodispersity and a stable length of several millimeters.

  15. Performance Analysis Of Single-Pumped And Dual-Pumped Parametric Optical Amplifier

    Directory of Open Access Journals (Sweden)

    Sandar Myint

    2015-06-01

    Full Text Available Abstract In this study we present a performance analysis of single-pumped and dual- pumped parametric optical amplifier and present the analysis of gain flatness in dual- pumped Fiber Optical Parametric Amplifier FOPA based on four-wave mixing FWM. Result shows that changing the signal power and pump power give the various gains in FOPA. It is also found out that the parametric gain increase with increase in pump power and decrease in signal power. .Moreover in this paper the phase matching condition in FWM plays a vital role in predicting the gain profile of the FOPAbecause the parametric gain is maximum when the total phase mismatch is zero.In this paper single-pumped parametric amplification over a 50nm gain bandwidth is demonstrated using 500 nm highly nonlinear fiber HNLF and signal achieves about 31dB gain. For dual-pumped parametric amplification signal achieves 26.5dB gains over a 50nm gain bandwidth. Therefore dual-pumped parametric amplifier can provide relatively flat gain over a much wider bandwidth than the single-pumped FOPA.

  16. Linear optical quantum computing in a single spatial mode.

    Science.gov (United States)

    Humphreys, Peter C; Metcalf, Benjamin J; Spring, Justin B; Moore, Merritt; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Walmsley, Ian A

    2013-10-11

    We present a scheme for linear optical quantum computing using time-bin-encoded qubits in a single spatial mode. We show methods for single-qubit operations and heralded controlled-phase (cphase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn [Nature (London) 409, 46 (2001)] scheme. Our protocol is suited to currently available photonic devices and ideally allows arbitrary numbers of qubits to be encoded in the same spatial mode, demonstrating the potential for time-frequency modes to dramatically increase the quantum information capacity of fixed spatial resources. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84±0.07.

  17. Measured Mass-Normalized Optical Cross Sections For Aerosolized Organophosphorus Chemical Warfare Simulants

    National Research Council Canada - National Science Library

    Gurton, Kristan P; Felton, Melvin; Dahmani, Rachid; Ligon, David

    2007-01-01

    We present newly measured results of an ongoing experimental program established to measure optical cross sections in the mid and long wave infrared for a variety of chemical and biologically based aerosols...

  18. Optical tuning in the arcs and final focus sections of the Stanford Linear Collider

    International Nuclear Information System (INIS)

    Bambade, P.S.

    1989-03-01

    In this thesis, we present the experimental tuning procedures developed for the Arcs and for the Final Focus Section of the Stanford Linear Collider (SLC). Such tuning is necessary to maximize the luminosity, by minimizing the beam size at the interaction point, and to reduce backgrounds in the experiment. In the final Focus Section, the correction strategy must result from the principles of the optical design, which is based on cancellations between second order aberrations, and on the ability to measure micron-size beams typical of the SLC. In the Arcs, the corrections were designed after the initial commissioning, to make the system more error-tolerant, through a modification in the optical design, and to enable adjustments of the beam phase-space a the injection to the Final Focus System, through a harmonic perturbation technique inspired from circular accelerators. Although the overall optimization of the SLC is not entirely finished, an almost optimal set-up has been achieved for the optics of the Arcs and of the Final Focus Section. Beams with transverse sizes close to the nominal ones, of a few microns, have been obtained at the interaction point. We present and discuss our results and the optical limits to the present performance. 24 refs., 25 figs., 2 tabs

  19. Optical tuning in the arcs and final focus sections of the Stanford Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Bambade, P.S.

    1989-03-01

    In this thesis, we present the experimental tuning procedures developed for the Arcs and for the Final Focus Section of the Stanford Linear Collider (SLC). Such tuning is necessary to maximize the luminosity, by minimizing the beam size at the interaction point, and to reduce backgrounds in the experiment. In the final Focus Section, the correction strategy must result from the principles of the optical design, which is based on cancellations between second order aberrations, and on the ability to measure micron-size beams typical of the SLC. In the Arcs, the corrections were designed after the initial commissioning, to make the system more error-tolerant, through a modification in the optical design, and to enable adjustments of the beam phase-space a the injection to the Final Focus System, through a harmonic perturbation technique inspired from circular accelerators. Although the overall optimization of the SLC is not entirely finished, an almost optimal set-up has been achieved for the optics of the Arcs and of the Final Focus Section. Beams with transverse sizes close to the nominal ones, of a few microns, have been obtained at the interaction point. We present and discuss our results and the optical limits to the present performance. 24 refs., 25 figs., 2 tabs.

  20. Optical tuning of arcs and final focus section of the Standard Linear Collider (SLC)

    International Nuclear Information System (INIS)

    Bambade, P.

    1989-03-01

    In this thesis, we present the experimental tuning procedures developed for the Arcs and for the Final Focus Section of the Stanford Linear Collider (SLC). Such tuning is necessary to maximize the luminosity, by minimizing the beam size at the interaction point, and to reduce backgrounds in the experiment. In the final Focus Section, the correction strategy must result from the principles of the optical design, which is based on cancellations between second order aberrations, and on the ability to measure micron-size beams typical of the SLC. In the Arcs, the corrections were designed after the initial commissioning, to make the system more error-tolerant, through a modification in the optical design, and to enable adjustements of the beam phase-space at the injection to the Final Focus System, through a harmonic perturbation technique inspired from circular accelerators. Although the overall optimization of the SLC is not entirely finished, an almost optimal set-up has been achieved for the optics of the Arcs and of the Final Focus Section. Beams with transverse sizes close to the nominal ones, of a few microns, have been obtained at the interaction point. We present and discuss our results and the optical limits to the present performance [fr

  1. No-go theorem for passive single-rail linear optical quantum computing.

    Science.gov (United States)

    Wu, Lian-Ao; Walther, Philip; Lidar, Daniel A

    2013-01-01

    Photonic quantum systems are among the most promising architectures for quantum computers. It is well known that for dual-rail photons effective non-linearities and near-deterministic non-trivial two-qubit gates can be achieved via the measurement process and by introducing ancillary photons. While in principle this opens a legitimate path to scalable linear optical quantum computing, the technical requirements are still very challenging and thus other optical encodings are being actively investigated. One of the alternatives is to use single-rail encoded photons, where entangled states can be deterministically generated. Here we prove that even for such systems universal optical quantum computing using only passive optical elements such as beam splitters and phase shifters is not possible. This no-go theorem proves that photon bunching cannot be passively suppressed even when extra ancilla modes and arbitrary number of photons are used. Our result provides useful guidance for the design of optical quantum computers.

  2. Electro-optic routing of photons from a single quantum dot in photonic integrated circuits

    Science.gov (United States)

    Midolo, Leonardo; Hansen, Sofie L.; Zhang, Weili; Papon, Camille; Schott, Rüdiger; Ludwig, Arne; Wieck, Andreas D.; Lodahl, Peter; Stobbe, Søren

    2017-12-01

    Recent breakthroughs in solid-state photonic quantum technologies enable generating and detecting single photons with near-unity efficiency as required for a range of photonic quantum technologies. The lack of methods to simultaneously generate and control photons within the same chip, however, has formed a main obstacle to achieving efficient multi-qubit gates and to harness the advantages of chip-scale quantum photonics. Here we propose and demonstrate an integrated voltage-controlled phase shifter based on the electro-optic effect in suspended photonic waveguides with embedded quantum emitters. The phase control allows building a compact Mach-Zehnder interferometer with two orthogonal arms, taking advantage of the anisotropic electro-optic response in gallium arsenide. Photons emitted by single self-assembled quantum dots can be actively routed into the two outputs of the interferometer. These results, together with the observed sub-microsecond response time, constitute a significant step towards chip-scale single-photon-source de-multiplexing, fiber-loop boson sampling, and linear optical quantum computing.

  3. Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod

    International Nuclear Information System (INIS)

    Chou Chau, Yuan-Fong; Lim, Chee Ming; Kumara, N. T. R. N.; Yoong, Voo Nyuk; Lee, Chuanyo; Huang, Hung Ji; Lin, Chun-Ting; Chiang, Hai-Pang

    2016-01-01

    Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviors are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.

  4. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres

    Science.gov (United States)

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-01-01

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices. PMID:27339700

  5. Radio frequency phototube and optical clock: High resolution, high rate and highly stable single photon timing technique

    Energy Technology Data Exchange (ETDEWEB)

    Margaryan, Amur

    2011-10-01

    A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.

  6. Optics of multiple grooves in metal

    DEFF Research Database (Denmark)

    Skjølstrup, Enok Johannes Haahr; Søndergaard, Thomas; Pedersen, Kjeld

    2017-01-01

    This paper theoretically studies how the optics of multiple grooves in a metal change as the number of grooves gradually increased from a single groove to infinitely many arranged in a periodic array. In the case of a single groove, the out-of-plane scattering (OUP) cross section at resonance can...

  7. Integrated all optical transmodulator circuits with non-linear gain elements and tunable optical fibers

    NARCIS (Netherlands)

    Kuindersma, P.I.; Leijtens, X.J.M.; Zantvoort, van J.H.C.; Waardt, de H.

    2012-01-01

    We characterize integrated InP circuits for high speed ‘all-optical’ signal processing. Single chip circuits act as optical transistors. Transmodulation is performed by non-linear gain sections. Integrated tunable filters give signal equalization in time domain.

  8. Fiber Laser Pumped Continuous-wave Singly-resonant Optical Parametric Oscillator

    NARCIS (Netherlands)

    Klein, M.E.; Gross, P.; Walde, T.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.; Fejer, Martin M.

    2002-01-01

    We report on the first fiber-pumped CW LiNbO/sub 3/ optical parametric oscillator (OPO). The OPO is singly resonant (SRO) and generates idler wavelengths in the range of 3.0 /spl mu/m to 3.7 /spl mu/m with a maximum output power of 1.9 watt.

  9. Towards single photon generation using NV centers in diamond coupled to thin layer optical waveguides

    International Nuclear Information System (INIS)

    Toshiyuki Tashima

    2014-01-01

    Single photon emitters like the nitrogen-vacancy (NV) center in diamond are important for quantum communication such as quantum cryptography and quantum metrology. In this context, e.g. tapered optical nano-fibers are a promising approach as they allow efficient coupling of single photons into a single spatial mode. Yet, integration of such fibers in a compact integrated quantum circuit is demanding. Here we propose a NV defect center in diamond as a single photon emitter coupled to a thin layer photonic waveguide. The benefit is to allow smaller size devices while having a similar strong evanescent field like tapered nano-optical fibers. We present numerical simulations and fabrication steps of such structures. (author)

  10. Single top-quark production cross section measurements using the ATLAS detector at the LHC

    CERN Document Server

    Rieck, Patrick; The ATLAS collaboration

    2016-01-01

    Measurements of single top­quark production in proton proton collisions are presented. The measurements include the first such measurements from the 13 TeV ATLAS dataset. In the leading order process, a W boson is exchanged in the t­channel. The single top­quark and anti­top total production cross sections, their ratio, as well as a measurement of the inclusive production cross section is presented. At 8 TeV, differential cross­section measurements of the t­channel process are also presented, these measurements include limits on anomalous contributions to the Wtb vertex. A measurement of the production cross section of a single top quark in association with a W boson, the second largest single­top production mode, is also presented. Finally, evidence for single­top production in the 8 TeV ATLAS dataset is presented. All measurements are compared to state­of­ the­art theoretical calculations.

  11. Single Top quark production cross-section measurements using the ATLAS detector at the LHC

    CERN Document Server

    Jimenez Pena, Javier; The ATLAS collaboration

    2018-01-01

    Measurements of single top-quark production in proton-proton collisions are presented based on the 13 TeV and 8 TeV ATLAS datasets. In the leading order process, a W-boson is exchanged in the t-channel. The cross-section for the production of single top-quarks and single antitop-quarks, their ratio, as well as differential cross-section measurements are also reported. Measurements of the inclusive and differential cross-sections for the production of a single top quark in association with a W-boson, the second largest single top production mode are also presented. Evidence for the s-channel single top-quark production in the 8 TeV dataset is presented. Finally, the first measurement of the tZq electroweak production is presented. All measurements are compared to state-of-the art theoretical calculations. (On behalf of the ATLAS collaboration)

  12. Optics of multiple grooves in metal

    DEFF Research Database (Denmark)

    Skjølstrup, Enok Johannes Haahr; Søndergaard, Thomas; Pedersen, Kjeld

    2017-01-01

    This paper studies theoretically how the optics of multiple grooves in a metal change as the number of grooves is increased gradually from a single groove to innitely many arranged in a periodic array. In the case of a single groove the out-of-plane scattering (OUP) cross section at resonance can...

  13. Optical power limiting and transmitting properties of cadmium iodide single crystals: Temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)] [Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)] [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2009-09-14

    Optical limiting properties of the single crystals of cadmium iodide are investigated using ns laser pulses. It is found that the transmissions in the crystals increase with increasing temperature. However, they limit the transmissions at high input powers. The limiting power is found to be higher at higher temperature. From the measured transmission data, the photon absorption coefficients are estimated. The temperature dependence of the coefficients shows a decrease in magnitude with increasing temperature. This might be due to the temperature-dependent bandgap shift of the material. The results demonstrate that the cadmium iodide single crystals are promising materials for applications in optical power limiting devices.

  14. Optical power limiting and transmitting properties of cadmium iodide single crystals: Temperature dependence

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Optical limiting properties of the single crystals of cadmium iodide are investigated using ns laser pulses. It is found that the transmissions in the crystals increase with increasing temperature. However, they limit the transmissions at high input powers. The limiting power is found to be higher at higher temperature. From the measured transmission data, the photon absorption coefficients are estimated. The temperature dependence of the coefficients shows a decrease in magnitude with increasing temperature. This might be due to the temperature-dependent bandgap shift of the material. The results demonstrate that the cadmium iodide single crystals are promising materials for applications in optical power limiting devices.

  15. A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells

    DEFF Research Database (Denmark)

    Yang, Tie; Bragheri, Francesca; Nava, Giovanni

    2016-01-01

    We realized an integrated microfluidic chip that allows measuring both optical deformability and acoustic compressibility on single cells, by optical stretching and acoustophoresis experiments respectively. Additionally, we propose a measurement protocol that allows evaluating the experimental ap...

  16. Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography

    NARCIS (Netherlands)

    Khan, M.U.; Justice, J.; Petäjä, J.; Korhonen, T.; Boersma, A.; Wiegersma, S.; Karppinen, M.; Corbett, B.

    2015-01-01

    Single and multi-layer passive optical interconnects using single mode polymer waveguides are demonstrated using UV nano-imprint lithography. The fabrication tolerances associated with imprint lithography are investigated and we show a way to experimentally quantify a small variation in index

  17. Optical absorption of zigzag single walled boron nitride nanotubes

    Science.gov (United States)

    Moradian, Rostam; Chegel, Raad; Behzad, Somayeh

    2010-11-01

    In a realistic three-dimensional model, optical matrix element and linear optical absorption of zigzag single walled boron nitride nanotubes (BNNTs) in the tight binding approximation are studied. In terms of absolute value of dipole matrix elements of the first three direct transitions at kz=0, we divided the zigzag BNNTs into three groups and investigated their optical absorption spectrum in energy ranges E7.5 eV. We found that in lower energies, E7.5 eV, their behaviors depend on their even or odd nanotube index. We also found that in the energy range 7

  18. Characterizing physical properties and heterogeneous chemistry of single particles in air using optical trapping-Raman spectroscopy

    Science.gov (United States)

    Gong, Z.; Wang, C.; Pan, Y. L.; Videen, G.

    2017-12-01

    Heterogeneous reactions of solid particles in a gaseous environment are of increasing interest; however, most of the heterogeneous chemistry studies of airborne solids were conducted on particle ensembles. A close examination on the heterogeneous chemistry between single particles and gaseous-environment species is the key to elucidate the fundamental mechanisms of hydroscopic growth, cloud nuclei condensation, secondary aerosol formation, etc., and reduce the uncertainty of models in radiative forcing, climate change, and atmospheric chemistry. We demonstrate an optical trapping-Raman spectroscopy (OT-RS) system to study the heterogeneous chemistry of the solid particles in air at single-particle level. Compared to other single-particle techniques, optical trapping offers a non-invasive, flexible, and stable method to isolate single solid particle from substrates. Benefited from two counter-propagating hollow beams, the optical trapping configuration is adaptive to trap a variety of particles with different materials from inorganic substitution (carbon nanotubes, silica, etc.) to organic, dye-doped polymers and bioaerosols (spores, pollen, etc.), with different optical properties from transparent to strongly absorbing, with different sizes from sub-micrometers to tens of microns, or with distinct morphologies from loosely packed nanotubes to microspheres and irregular pollen grains. The particles in the optical trap may stay unchanged, surface degraded, or optically fragmented according to different laser intensity, and their physical and chemical properties are characterized by the Raman spectra and imaging system simultaneously. The Raman spectra is able to distinguish the chemical compositions of different particles, while the synchronized imaging system can resolve their physical properties (sizes, shapes, morphologies, etc.). The temporal behavior of the trapped particles also can be monitored by the OT-RS system at an indefinite time with a resolution from

  19. Coupling a single nitrogen-vacancy center with a superconducting qubit via the electro-optic effect

    Science.gov (United States)

    Li, Chang-Hao; Li, Peng-Bo

    2018-05-01

    We propose an efficient scheme for transferring quantum states and generating entangled states between two qubits of different nature. The hybrid system consists of a single nitrogen-vacancy (NV) center and a superconducting (SC) qubit, which couple to an optical cavity and a microwave resonator, respectively. Meanwhile, the optical cavity and the microwave resonator are coupled via the electro-optic effect. By adjusting the relative parameters, we can achieve high-fidelity quantum state transfer as well as highly entangled states between the NV center and the SC qubit. This protocol is within the reach of currently available techniques, and may provide interesting applications in quantum communication and computation with single NV centers and SC qubits.

  20. A long-baseline interferometer employing single-mode fiber optics

    Science.gov (United States)

    Shaklan, Stuart

    The idea of the Fiber-Linked Optical Array Telescope proposed by Connes (1987) is to mount several small optical telescopes around the perimeter of a radio dish or other large steerable structure, couple the light into single-mode (SM) fibers, and use the fibers to coherently combine the beams at the output. This paper examines the important properties of SM fibers and then discusses the whole system in general terms, starting with the telescopes and following the light through to the detectors, along with the results of laboratory experiments evaluating the performance of SM fibers. The imaging capabilities of the array were simulated, and it was found that, using 10 telescopes on a 440-m dish, the array obtains images with resolution of the order of 2 milliarc seconds in the visible range.

  1. Monostatic Radar Cross Section Estimation of Missile Shaped Object Using Physical Optics Method

    Science.gov (United States)

    Sasi Bhushana Rao, G.; Nambari, Swathi; Kota, Srikanth; Ranga Rao, K. S.

    2017-08-01

    Stealth Technology manages many signatures for a target in which most radar systems use radar cross section (RCS) for discriminating targets and classifying them with regard to Stealth. During a war target’s RCS has to be very small to make target invisible to enemy radar. In this study, Radar Cross Section of perfectly conducting objects like cylinder, truncated cone (frustum) and circular flat plate is estimated with respect to parameters like size, frequency and aspect angle. Due to the difficulties in exactly predicting the RCS, approximate methods become the alternative. Majority of approximate methods are valid in optical region and where optical region has its own strengths and weaknesses. Therefore, the analysis given in this study is purely based on far field monostatic RCS measurements in the optical region. Computation is done using Physical Optics (PO) method for determining RCS of simple models. In this study not only the RCS of simple models but also missile shaped and rocket shaped models obtained from the cascaded objects with backscatter has been computed using Matlab simulation. Rectangular plots are obtained for RCS in dbsm versus aspect angle for simple and missile shaped objects using Matlab simulation. Treatment of RCS, in this study is based on Narrow Band.

  2. Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for thousand and original band optical communication

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Matsumoto, Atsushi; Kawanishi, Tetsuya

    2016-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed with T-band (1.0 µm waveband) and O-band (1.3 µm waveband) QD optical gain materials for Gbps-order, high-speed optical data generation. The insertion loss due to coupling between the device and the optical fiber was effectively compensated for by the SOA section. It was also confirmed that the monolithic QD-OGM/SOA device enabled >4.8 Gbps optical data generation with a clear eye opening in the T-band. Furthermore, we successfully demonstrated error-free 4.8 Gbps optical data transmissions in each of the six wavelength channels over a 10-km-long photonic crystal fiber using the monolithic QD-OGM/SOA device in multiple O-band wavelength channels, which were generated by the single QD gain chip. These results suggest that the monolithic QD-OGM/SOA device will be advantageous in ultra-broadband optical frequency systems that utilize the T+O-band for short- and medium-range optical communications.

  3. Low-temperature optical characterization of a near-infrared single-photon emitter in nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Siyushev, P; Jacques, V; Kaiser, F; Jelezko, F; Wrachtrup, J [3.Physikalisches Institut, Universitaet Stuttgart, D-70550 Stuttgart (Germany); Aharonovich, I; Castelletto, S; Prawer, S [School of Physics, University of Melbourne, VA 3010 (Australia); Mueller, T; Lombez, L; Atatuere, M [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom)], E-mail: v.jacques@physik.uni-stuttgart.de

    2009-11-15

    In this paper, we study the optical properties of single defects emitting in the near infrared (NIR) in nanodiamonds at liquid helium temperature. The nanodiamonds are synthesized using a microwave chemical vapor deposition method followed by nickel implantation and annealing. We show that single defects exhibit several striking features at cryogenic temperature: the photoluminescence is strongly concentrated into a sharp zero-phonon line (ZPL) in the NIR, the radiative lifetime is in the nanosecond range and the emission is linearly polarized. The spectral stability of the defects is then investigated. An optical resonance linewidth of 4 GHz is measured using resonant excitation on the ZPL. Although Fourier-transform-limited emission is not achieved, our results show that it might be possible to use consecutive photons emitted in the NIR by single defects in diamond nanocrystals to perform two photon interference experiments, which are at the heart of linear quantum computing protocols.

  4. Optical determination and magnetic manipulation of a single nitrogen-vacancy color center in diamond nanocrystal

    International Nuclear Information System (INIS)

    Diep Lai, Ngoc; Zheng, Dingwei; Treussart, François; Roch, Jean-François

    2010-01-01

    The controlled and coherent manipulation of individual quantum systems is fundamental for the development of quantum information processing. The nitrogen-vacancy (NV) color center in diamond is a promising system since its photoluminescence is perfectly stable at room temperature and its electron spin can be optically read out at the individual level. We review here the experiments currently realized in our laboratory concerning the use of a single NV color center as the single photon source and the coherent magnetic manipulation of the electron spin associated with a single NV color center. Furthermore, we demonstrate a nanoscopy experiment based on the saturation absorption effect, which allows to optically pin-point a single NV color center at sub-λ resolution. This offers the possibility to independently address two or multiple magnetically coupled single NV color centers, which is a necessary step towards the realization of a diamond-based quantum computer

  5. A quantum optical transistor with a single quantum dot in a photonic crystal nanocavity

    International Nuclear Information System (INIS)

    Li Jinjin; Zhu Kadi

    2011-01-01

    Laser and strong coupling can coexist in a single quantum dot (QD) coupled to a photonic crystal nanocavity. This provides an important clue towards the realization of a quantum optical transistor. Using experimentally realistic parameters, in this work, theoretical analysis shows that such a quantum optical transistor can be switched on or off by turning on or off the pump laser, which corresponds to attenuation or amplification of the probe laser, respectively. Furthermore, based on this quantum optical transistor, an all-optical measurement of the vacuum Rabi splitting is also presented. The idea of associating a quantum optical transistor with this coupled QD-nanocavity system may achieve images of light controlling light in all-optical logic circuits and quantum computers.

  6. A quantum optical transistor with a single quantum dot in a photonic crystal nanocavity.

    Science.gov (United States)

    Li, Jin-Jin; Zhu, Ka-Di

    2011-02-04

    Laser and strong coupling can coexist in a single quantum dot (QD) coupled to a photonic crystal nanocavity. This provides an important clue towards the realization of a quantum optical transistor. Using experimentally realistic parameters, in this work, theoretical analysis shows that such a quantum optical transistor can be switched on or off by turning on or off the pump laser, which corresponds to attenuation or amplification of the probe laser, respectively. Furthermore, based on this quantum optical transistor, an all-optical measurement of the vacuum Rabi splitting is also presented. The idea of associating a quantum optical transistor with this coupled QD-nanocavity system may achieve images of light controlling light in all-optical logic circuits and quantum computers.

  7. Single Top quark production cross section using the ATLAS detector at the LHC

    CERN Document Server

    Hirschbuehl, D; The ATLAS collaboration

    2014-01-01

    Measurements of single top-quark production cross section in proton proton collisions at 7 and 8 TeV are presented. In the leading order process, a W boson is exchanged in the t-channel. For this process for the first time a fiducial cross section measured within the detector acceptance is presented and the modelling uncertainty when extrapolating to the total inclusive cross section is assessed with a large number of different Monte Carlo generators. The result is in good agreement with the most up-to-date theory predictions. Furthermore, the single top-quark and anti-top total production cross sections, their ratio, as well as a measurement of the inclusive production cross section is presented. Differential cross sections are measured as a function of the transverse momentum and the absolute value of the rapidity of top and anti-top quarks.

  8. Changing optical band structure with single photons

    Science.gov (United States)

    Albrecht, Andreas; Caneva, Tommaso; Chang, Darrick E.

    2017-11-01

    Achieving strong interactions between individual photons enables a wide variety of exciting possibilities in quantum information science and many-body physics. Cold atoms interfaced with nanophotonic structures have emerged as a platform to realize novel forms of nonlinear interactions. In particular, when atoms are coupled to a photonic crystal waveguide, long-range atomic interactions can arise that are mediated by localized atom-photon bound states. We theoretically show that in such a system, the absorption of a single photon can change the band structure for a subsequent photon. This occurs because the first photon affects the atoms in the chain in an alternating fashion, thus leading to an effective period doubling of the system and a new optical band structure for the composite atom-nanophotonic system. We demonstrate how this mechanism can be engineered to realize a single-photon switch, where the first incoming photon switches the system from being highly transmissive to highly reflective, and analyze how signatures can be observed via non-classical correlations of the outgoing photon field.

  9. Optical bistability in a single-sided cavity coupled to a quantum channel

    Science.gov (United States)

    Payravi, M.; Solookinejad, Gh; Jabbari, M.; Nafar, M.; Ahmadi Sangachin, E.

    2018-06-01

    In this paper, we discuss the long wavelength optical reflection and bistable behavior of an InGaN/GaN quantum dot nanostructure coupled to a single-sided cavity. It is found that due to the presence of a strong coupling field, the reflection coefficient can be controlled at long wavelength, which is essential for adjusting the threshold of reflected optical bistability. Moreover, the phase shift features of the reflection pulse inside an electromagnetically induced transparency window are also discussed.

  10. Measurement of single electron and nuclear spin states based on optically detected magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady P [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bishop, Alan R [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chernobrod, Boris M [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hawley, Marilyn E [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Brown, Geoffrey W [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tsifrinovich, Vladimir I [Polytechnic University, Brooklyn, NY 11201 (United States)

    2006-05-15

    A novel approach for measurement of single electron and nuclear spin states is suggested. Our approach is based on optically detected magnetic resonance in a nano-probe located at the apex of an AFM tip. The method provides single electron spin sensitivity with nano-scale spatial resolution.

  11. Measurement of single electron and nuclear spin states based on optically detected magnetic resonance

    International Nuclear Information System (INIS)

    Berman, Gennady P; Bishop, Alan R; Chernobrod, Boris M; Hawley, Marilyn E; Brown, Geoffrey W; Tsifrinovich, Vladimir I

    2006-01-01

    A novel approach for measurement of single electron and nuclear spin states is suggested. Our approach is based on optically detected magnetic resonance in a nano-probe located at the apex of an AFM tip. The method provides single electron spin sensitivity with nano-scale spatial resolution

  12. Development of IR single mode optical fibers for DARWIN-nulling interferometry

    NARCIS (Netherlands)

    Chakkalakkal Abdulla, S.M.; Cheng, L.K.; Bosch, B. van den; Dijkhuizen, N.; Nieuwland, R.A.; Gielesen, W.L.M.; Lucas, J.; Boussard-Plédel, C.; Conseil, C.; Bureau, B.; Carmo, J.P. do

    2014-01-01

    The DARWIN mission aims to detect weak infra-red emission lines from distant orbiting earth-like planets using nulling interferometry. This requires filtering of wavefront errors using single mode waveguides operating at a wavelength range of 6.5-20 μm. This article describes the optical design of

  13. Generation of Optical Vortex Arrays Using Single-Element Reversed-Wavefront Folding Interferometer

    Directory of Open Access Journals (Sweden)

    Brijesh Kumar Singh

    2012-01-01

    Full Text Available Optical vortex arrays have been generated using simple, novel, and stable reversed-wavefront folding interferometer. Two new interferometric configurations were used for generating a variety of optical vortex lattices. In the first interferometric configuration one cube beam splitter (CBS was used in one arm of Mach-Zehnder interferometer for splitting and combining the collimated beam, and one mirror of another arm is replaced by second CBS. At the output of interferometer, three-beam interference gives rise to optical vortex arrays. In second interferometric configuration, a divergent wavefront was made incident on a single CBS which splits and combines wavefronts leading to the generation of vortex arrays due to four-beam interference. It was found that the orientation and structure of the optical vortices can be stably controlled by means of changing the rotation angle of CBS.

  14. Optical sensor based on a single CdS nanobelt.

    Science.gov (United States)

    Li, Lei; Yang, Shuming; Han, Feng; Wang, Liangjun; Zhang, Xiaotong; Jiang, Zhuangde; Pan, Anlian

    2014-04-23

    In this paper, an optical sensor based on a cadmium sulfide (CdS) nanobelt has been developed. The CdS nanobelt was synthesized by the vapor phase transportation (VPT) method. X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) results revealed that the nanobelt had a hexagonal wurtzite structure of CdS and presented good crystal quality. A single nanobelt Schottky contact optical sensor was fabricated by the electron beam lithography (EBL) technique, and the device current-voltage results showed back-to-back Schottky diode characteristics. The photosensitivity, dark current and the decay time of the sensor were 4 × 10⁴, 31 ms and 0.2 pA, respectively. The high photosensitivity and the short decay time were because of the exponential dependence of photocurrent on the number of the surface charges and the configuration of the back to back Schottky junctions.

  15. A simple optical fiber device for quantitative fluorescence microscopy of single living cells

    OpenAIRE

    van Graft, M.; van Graft, Marja; Oosterhuis, B.; Oosterhuis, Bernard; van der Werf, Kees; de Grooth, B.G.; Greve, Jan

    1993-01-01

    simple and relatively inexpensive system is described for obtaining quantitative fluorescence measurements on single living cells loaded with a fluorescent probe to study cell physiological processes. The light emitted from the fluorescent cells is captured by and transported through an optical fiber. After passage through appropriate filters the light is measured using a photomultiplier tube. The optical fiber is mounted in one of the microscope outlets. Signals derived from the photomultipl...

  16. Continuous imaging of a single neutral atom in a variant magneto-optical trap

    International Nuclear Information System (INIS)

    Xia Tian; Zhou Shuyu; Chen Peng; Li Lin; Hong Tao; Wang Yuzhu

    2010-01-01

    We demonstrate continuous imaging of a single 87 Rb atom confined in a steep magneto-optical trap with an electron-multiplying charge-coupled device (EMCCD) camera and realize a one-dimensional micro-optical trap array with a Dammann grating. We adopt several methods to reduce the noise in the fluorescence signal we obtain with the EMCCD. Step jumping characteristics of the fluorescence demonstrate capturing and losing of individual atoms. (authors)

  17. Indirect optical crosstalk reduction by highly-doped backside layer in single-photon avalanche diode arrays

    NARCIS (Netherlands)

    Osrečki, Željko; Knežević, Tihomir; Nanver, Lis K.; Suligoj, Tomislav

    2018-01-01

    A method of reducing indirect optical crosstalk in single-photon avalanche diode arrays is investigated by TCAD simulations. The reduction is accomplished by taking advantage of an enhanced optical absorption in a highly-doped Si layer on the backside of the wafer. A simulation environment was

  18. Synthesis, crystal growth, optical, thermal, and mechanical properties of a nonlinear optical single crystal: ammonium sulfate hydrogen sulphamate (ASHS)

    Science.gov (United States)

    Sudhakar, K.; Nandhini, S.; Muniyappan, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P.

    2018-04-01

    Ammonium sulfate hydrogen sulphamate (ASHS), an inorganic nonlinear optical crystal, was grown from the aqueous solution by slow evaporation solution growth technique. The single-crystal XRD confirms that the grown single crystal belongs to the orthorhombic system with the space group of Pna21. Powder XRD confirms the crystalline nature and the diffraction planes were indexed. Crystalline perfection of grown crystal was analysed by high-resolution X-ray diffraction rocking curve technique. UV-Vis-NIR studies revealed that ASHS crystal has optical transparency 65% and lower cut-off wavelength at 218 nm. The violet light emission of the crystal was identified by photoluminescence studies. The particle size-dependent second-harmonic generation efficiency for ASHS crystal was evaluated by Kurtz-Perry powder technique using Nd:YAG laser which established the existence of phase matching. Surface laser damage threshold value was evaluated using Nd:YAG laser. Optical homogeneity of the crystal was evaluated using modified channel spectrum method through birefringence study. Thermal analysis reveals that ASHS crystal is stable up to 213 °C. The mechanical behaviour of the ASHS crystal was analysed using Vickers microhardness study.

  19. Optical single sideband modulation radio over fiber system by using a fiber-Bragg-grating-based acousto-optic filter

    Science.gov (United States)

    Gao, Song; Pei, Li; Li, Zhuoxuan; Liu, Chao; Wang, Yiqun; Weng, Sijun

    2013-03-01

    An optical single sideband (OSSB) modulation radio over a fiber system, by using an acousto-optic filter (AOF), is proposed and demonstrated. In the AOF, a uniform fiber Bragg grating is etched and modulated by an axially propagating acoustic wave. Due to the acousto-optic superlattice modulation, two secondary reflection peaks, centered on the primary reflection peak, are generated. In the scheme, an optical double-sideband signal passes though the AOF to realize OSSB modulation. Because the reflect depth of the primary peak is much deeper than those of the secondary peaks, the carrier experiences higher attenuation than the upper sideband, which means the carrier-to-sideband ratio (CSR) can be optimized at the same time. We demonstrate this scheme via simulations, and successfully reduce the CSR from 9.73 to 2.9 dB. As a result, the receiving sensitivity improved from -23.43 to -31.18 dBm at BER of 10-9 with 30 km long SMF.

  20. Performance demonstration of a single-frequency optically-pumped cesium beam frequency standard for space applications

    Science.gov (United States)

    Lecomte, S.; Haldimann, M.; Ruffieux, R.; Thomann, P.; Berthoud, P.

    2017-11-01

    Observatoire de Neuchâtel (ON) is developing a compact optically-pumped cesium beam frequency standard in the frame of an ESA-ARTES 5 project. The simplest optical scheme, which is based on a single optical frequency for both preparation and detection processes of atoms, has been chosen to fulfill reliability constraints of space applications. With our laboratory demonstrator operated at 852 nm (D2 line), we have measured a frequency stability of σy=2.74x10-12 τ -1/2, which is compliant with the Galileo requirement. The atomic resonator is fully compliant to be operated with a single diode laser at 894 nm (D1 line). Sensitivity measurements of the clock signal to the microwave power and to the optical pumping power are also presented. Present performance limitations are discussed and further improvements are proposed in order to reach our ultimate frequency stability goal of σy=1x10-12 τ -1/2. The clock driving software is also briefly described.

  1. Crystal growth and characterization of a semiorganic nonlinear optical single crystal of gamma glycine

    International Nuclear Information System (INIS)

    Prakash, J. Thomas Joseph; Kumararaman, S.

    2008-01-01

    Gamma glycine has been successfully synthesized by taking glycine and potassium chloride and single crystals have been grown by solvent evaporation method for the first time. The grown single crystals have been analyzed with XRD, Fourier transform infrared (FTIR), and thermo gravimetric and differential thermal analyses (TG/DTA) measurements. Its mechanical behavior has been assessed by Vickers microhardness measurements. Its nonlinear optical property has been tested by Kurtz powder technique. Its optical behavior was examined by UV-vis., and found that the crystal is transparent in the region between 240 and 1200 nm. Hence, it may be very much useful for the second harmonic generation (SHG) applications

  2. Single-chip ring resonator-based 1 x 8 optical beam forming network in CMOS-compatible waveguide technology

    NARCIS (Netherlands)

    Zhuang, L.; Roeloffzen, C.G.H.; Heideman, Rene; Borreman, A.; Meijerink, Arjan; van Etten, Wim

    2007-01-01

    Optical ring resonators (ORRs) are good candidates to provide continuously tunable delay in optical beam forming networks (OBFNs) for phased array antenna systems. Delay and splitting/combining elements can be integrated on a single optical chip to form an OBFN. A state-of-the-art ring resonator-

  3. Growth and characterization of nonlinear optical single crystal: Nicotinic L-tartaric

    Energy Technology Data Exchange (ETDEWEB)

    Sheelarani, V.; Shanthi, J., E-mail: shanthinelson@gmail.com [Department of Physics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore-641043 (India)

    2015-06-24

    Nonlinear optical single crystals were grown from Nicotinic and L-Tartaric acid by slow evaporation technique at room temperature. Structure of the grown crystal was confirmed by single crystal X-ray diffraction studies, The crystallinity of the Nicotinic L-Tartaric (NLT) crystals was confirmed from the powder XRD pattern. The transparent range and cut off wavelength of the grown crystal was studied by the UV–Vis spectroscopic analysis.The thermal stability of the crystal was studied by TG-DTA. The second harmonic generation (SHG) efficiency of NLT was confirmed by Kurtz Perry technique.

  4. Synthesis, growth, crystal structure, optical and third order nonlinear optical properties of quinolinium derivative single crystal: PNQI

    Science.gov (United States)

    Karthigha, S.; Krishnamoorthi, C.

    2018-03-01

    An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.

  5. Optical characteristics of Tl0.995Cu0.005InS2 single crystals

    Science.gov (United States)

    El-Nahass, M. M.; Ali, H. A. M.; Abu-Samaha, F. S. H.

    2013-04-01

    Optical properties of Tl0.995Cu0.005InS2 single crystals were studied using transmittance and reflectance measurements in the spectral wavelength range of 300-2500 nm. The optical constants (n and k) were calculated at room temperature. The analysis of the spectral behavior of the absorption coefficient in the absorption region revealed indirect transition. The refractive index dispersion data were analyzed in terms of the single oscillator model. Dispersion parameters such as the single oscillator energy (Eo), the dispersion energy (Ed), the high frequency dielectric constant (ε∞), the lattice dielectric constant (εL) and the ratio of free charge carrier concentration to the effective mass (N/m*) were estimated. The third order nonlinear susceptibility (χ(3)) was calculated according to the generalized Miller's rule. Also, the real and imaginary parts of the complex dielectric constant were determined.

  6. Measurement of single-top cross section and test of anomalous $Wtb$ coupling

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ji-Eun [Seoul National Univ. (Korea, Republic of)

    2010-01-01

    The top quark is most often produced in tt pairs via the strong interaction, however electroweak production of a singly-produced top quark is also possible. Electroweak single-top production is more difficult to observe than tt production. Studying single-top production is important for the following reasons. It provides direct measurement of the CKM matrix element and also single-top events are a background to several searches for SM or non-SM signals, such as Higgs boson searches. The information of spin polarization of top-quark can be used to t est anomalous W-t-b coupling. This thesis describes the result of a measurement of single-top cross-section and a test of anomalous W-t-b coupling using 4.8 f b-1 of data collected by the CDF Run II experiment at the Fermilab Tevatron. The measured cross-section is 1.83$+0.7\\atop{-0.6}$ pb and measured limit of |Vtb| is 0.41 at 95% CL. The fraction of V+A coupling is 0 ± 28 (%).

  7. Third order nonlinear optical properties of a paratellurite single crystal

    Science.gov (United States)

    Duclère, J.-R.; Hayakawa, T.; Roginskii, E. M.; Smirnov, M. B.; Mirgorodsky, A.; Couderc, V.; Masson, O.; Colas, M.; Noguera, O.; Rodriguez, V.; Thomas, P.

    2018-05-01

    The (a,b) plane angular dependence of the third-order nonlinear optical susceptibility, χ(3) , of a c-cut paratellurite (α-TeO2) single crystal was quantitatively evaluated here by the Z-scan technique, using a Ti:sapphire femtosecond laser operated at 800 nm. In particular, the mean value Re( ⟨χ(3)⟩a,b )(α-TeO2) of the optical tensor has been extracted from such experiments via a direct comparison with the data collected for a fused silica reference glass plate. A R e (⟨χ(3)⟩(a,b )(α-TeO2)):R e (χ(3))(SiO2 glass) ratio roughly equal to 49.1 is found, and our result compares thus very favourably with the unique experimental value (a ratio of ˜50) reported by Kim et al. [J. Am. Ceram. Soc. 76, 2486 (1993)] for a pure TeO2 glass. In addition, it is shown that the angular dependence of the phase modulation within the (a,b) plane can be fully understood in the light of the strong dextro-rotatory power known for TeO2 materials. Taking into account the optical activity, some analytical model serving to estimate the diagonal and non-diagonal components of the third order nonlinear susceptibility tensor has been thus developed. Finally, Re( χxxxx(3) ) and Re( χxxyy(3) ) values of 95.1 ×10-22 m 2/V2 and 42.0 ×10-22 m2/V2 , respectively, are then deduced for a paratellurite single crystal, considering fused silica as a reference.

  8. Optical trapping and Raman spectroscopy of single nanostructures using standing-wave Raman tweezers

    Science.gov (United States)

    Wu, Mu-ying; He, Lin; Chen, Gui-hua; Yang, Guang; Li, Yong-qing

    2017-08-01

    Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped micro-particle, but is generally less effective for individual nano-sized objects in the 10-100 nm range. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap (SWOT) with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus is more stable and sensitive in measuring nanoparticles in liquid with 4-8 fold increase in the Raman signals. It can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, polystyrene beads (100 nm), SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles with a low laser power of a few milliwatts. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.

  9. All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.

    Science.gov (United States)

    Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis

    2013-05-20

    This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation.

  10. Nano-optical functionality based on local photoisomerization in photochromic single crystal

    Science.gov (United States)

    Nakagomi, Ryo; Uchiyama, Kazuharu; Kubota, Satoru; Hatano, Eri; Uchida, Kingo; Naruse, Makoto; Hori, Hirokazu

    2018-01-01

    Towards the construction of functional devices and systems using optical near-field processes, we demonstrate the multivalent features in the path-branching phenomena in a photochromic single crystal observed in optical phase change between colorless (1o) and blue-colored (1c) phases that transmits in subwavelength scale over a macroscopic spatial range associated with local mechanical distortions induced. To observe the near-field optical processes of transmission path branching, we have developed a top-to-bottom double-probe scanning near-field optical microscope capable of nanometer-scale correlation measurements by two individually position-controlled probes that face each other sandwiching the photochromic material. We have experimentally confirmed that a local near-field optical excitation applied to one side of the photochromic crystal by a probe tip resulted in characteristic structures of subwavelength scale around 100 nm or less that are observed by the other probe tip located on the opposite side. The structures are different from those resulting from far-field excitations that are quantitively evaluated by autocorrelations. The results suggest that the mechanical distortion caused by the local phase change in the photochromic crystal suppresses the phase change of the neighboring molecules. This new type of optical-near-field-induced local photoisomerization has the potential to allow the construction of functional devices with multivalent properties for natural intelligence.

  11. Analyses of significant features of L-Prolinium Picrate single crystal: An excellent material for non linear optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Thukral, Kanika [Academy of Scientific and Innovative Research, CSIR- National Physical Laboratory, New Delhi, 110012 (India); CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110 012 (India); Vijayan, N., E-mail: nvijayan@nplindia.org [CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110 012 (India); Vij, Mahak [CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110 012 (India); Nagaraja, C.M. [Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab (India); Jayaramakrishnan, V. [Centro De Investigations En Optica, Loma del Bosque 115, Colonia Lomas del Campestre, León, Guanajuato, Código Postal, 37150 (Mexico); Jayalakshmy, M.S. [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, 686560 (India); Kant, Rajni [Department of Physics and Electronics, University of Jammu, Jammu Tawi, 180006 (India)

    2017-06-15

    Today the fundamental aspect of the researchers is to explore maximum physical properties of the material for device fabrication. In the present article, single crystal X-ray diffraction has been carried out to verify the formation of the synthesized compound. In addition to that, powder X-ray diffraction has been performed to obtain diffraction pattern of L-Prolinium Picrate single crystal. The strain present inside the single crystal was measured using Hall-Williamson equation from PXRD measurements. The dark current and photon current was obtained from photoconductivity technique whose plot depicted that the sample was negative photoconducting material. Optical homogeneity of the single crystal was analyzed using birefringence technique. Its resistance towards Nd: YAG laser was scrutinized for L-Prolinium Picrate single crystal by applying 1 pulse per second. Different thermal parameters like thermal conductivity, thermal diffusivity, thermal effusivity and specific heat were computed using photo-pyroelectric technique. Solid state parameters were calculated from Clausius Mossotti relation by taking structural information of the title compound. Also, optical parameters like refractive index, reflectance etc were calculated through UV–Vis–NIR analysis. - Highlights: • An optically transparent L-Prolinium Picrate single crystal was harvested from slow evaporation solution growth technique. • The compound shows negative photoconducting nature. • Its optical homogeneity was analyzed using birefringence. • Single shot of laser was applied to sample to measure laser damage threshold value. • The thermal parameters were computed from Photopyroelectric technique.

  12. Optical Sensor Based on a Single CdS Nanobelt

    Directory of Open Access Journals (Sweden)

    Lei Li

    2014-04-01

    Full Text Available In this paper, an optical sensor based on a cadmium sulfide (CdS nanobelt has been developed. The CdS nanobelt was synthesized by the vapor phase transportation (VPT method. X-Ray Diffraction (XRD and Transmission Electron Microscopy (TEM results revealed that the nanobelt had a hexagonal wurtzite structure of CdS and presented good crystal quality. A single nanobelt Schottky contact optical sensor was fabricated by the electron beam lithography (EBL technique, and the device current-voltage results showed back-to-back Schottky diode characteristics. The photosensitivity, dark current and the decay time of the sensor were 4 × 104, 31 ms and 0.2 pA, respectively. The high photosensitivity and the short decay time were because of the exponential dependence of photocurrent on the number of the surface charges and the configuration of the back to back Schottky junctions.

  13. Neutron Elastic Scattering Cross Sections Experimental Data and Optical Model Cross Section Calculations. A Compilation of Neutron Data from the Studsvik Neutron Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Holmqvist, B; Wiedling, T

    1969-06-15

    Neutron elastic scattering cross section measurements have been going on for a long period at the Studsvik Van de Graaff laboratory. The cross sections of a range of elements have been investigated in the energy interval 1.5 to 8 MeV. The experimental data have been compared with cross sections calculated with the optical model when using a local nuclear potential.

  14. Single molecule optical measurements of orientation and rotations of biological macromolecules.

    Science.gov (United States)

    Shroder, Deborah Y; Lippert, Lisa G; Goldman, Yale E

    2016-11-22

    Subdomains of macromolecules often undergo large orientation changes during their catalytic cycles that are essential for their activity. Tracking these rearrangements in real time opens a powerful window into the link between protein structure and functional output. Site-specific labeling of individual molecules with polarized optical probes and measurement of their spatial orientation can give insight into the crucial conformational changes, dynamics, and fluctuations of macromolecules. Here we describe the range of single molecule optical technologies that can extract orientation information from these probes, review the relevant types of probes and labeling techniques, and highlight the advantages and disadvantages of these technologies for addressing specific inquiries.

  15. Cantilever-based sensor with integrated optical read-out using single mode waveguides

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat

    2007-01-01

    This work presents the design, fabrication and mechanical characterisation of an integrated optical read-out scheme for cantilever-based biosensors. A cantilever can be used as a biosensor by monitoring its bending caused by the surface stress generated due to chemical reactions occurring on its...... surface. Here, we present a novel integrated optical read-out scheme based on single-mode waveguides that enables the fabrication of a compact system. The complete system is fabricated in the polymer SU-8. This manuscript shows the principle of operation and the design well as the fabrication...

  16. Electrical and optical transport properties of single layer WSe2

    Science.gov (United States)

    Tahir, M.

    2018-03-01

    The electronic properties of single layer WSe2 are distinct from the famous graphene due to strong spin orbit coupling, a huge band gap and an anisotropic lifting of the degeneracy of the valley degree of freedom under Zeeman field. In this work, band structure of the monolayer WSe2 is evaluated in the presence of spin and valley Zeeman fields to study the electrical and optical transport properties. Using Kubo formalism, an explicit expression for the electrical Hall conductivity is examined at finite temperatures. The electrical longitudinal conductivity is also evaluated. Further, the longitudinal and Hall optical conductivities are analyzed. It is observed that the contributions of the spin-up and spin-down states to the power absorption spectrum depend on the valley index. The numerical results exhibit absorption peaks as a function of photon energy, ℏ ω, in the range ∼ 1.5 -2 eV. Also, the optical response lies in the visible frequency range in contrast to the conventional two-dimensional electron gas or graphene where the response is limited to terahertz regime. This ability to isolate carriers in spin-valley coupled structures may make WSe2 a promising candidate for future spintronics, valleytronics and optical devices.

  17. Low-cost coherent receiver for long-reach optical access network using single-ended detection.

    Science.gov (United States)

    Zhang, Xuebing; Li, Zhaohui; Li, Jianping; Yu, Changyuan; Lau, Alan Pak Tao; Lu, Chao

    2014-09-15

    A low-cost coherent receiver using two 2×3 optical hybrids and single-ended detection is proposed for long-reach optical access network. This structure can detect the two polarization components of polarization division multiplexing (PDM) signals. Polarization de-multiplexing and signal-to-signal beat interference (SSBI) cancellation are realized by using only three photodiodes. Simulation results for 40 Gb/s PDM-OFDM transmissions indicate that the low-cost coherent receiver has 3.2 dB optical signal-to-noise ratio difference compared with the theoretical value.

  18. Composite Beam Cross-Section Analysis by a Single High-Order Element Layer

    DEFF Research Database (Denmark)

    Couturier, Philippe; Krenk, Steen

    2015-01-01

    An analysis procedure of general cross-section properties is presented. The formulation is based on the stress-strain states in the classic six equilibrium modes of a beam by considering a finite thickness slice modelled by a single layer of 3D finite elements. The theory is illustrated by applic......An analysis procedure of general cross-section properties is presented. The formulation is based on the stress-strain states in the classic six equilibrium modes of a beam by considering a finite thickness slice modelled by a single layer of 3D finite elements. The theory is illustrated...

  19. Flexible long-range surface plasmon polariton single-mode waveguide for optical interconnects

    DEFF Research Database (Denmark)

    Vernoux, Christian; Chen, Yiting; Markey, Laurent

    2018-01-01

    We present the design, fabrication and characterization of long-range surface plasmon polariton waveguide arrays with materials, mainly silicones, carefully selected with the aim to be used as mechanically flexible single-mode optical interconnections, the socalled "plasmonic arc" working at 1.55μm...

  20. Optical spectroscopy of single, planar, self-assembled InAs/InP quantum dots

    International Nuclear Information System (INIS)

    Kim, D.; Williams, R.L.; Lefebvre, J.; Lapointe, J.; Reimer, M.E.; Mckee, J.; Poole, P.J.

    2006-01-01

    We present optical spectra from numerous, single, self-assembled InAs/InP quantum dots. More than 50 individual dots are studied that emit in the 1.1-1.6 mm wavelength range. The dots are of high optical quality as judged by the clean, single exciton emission line at low power, the resolution limited linewidth, and the brightness. Each dot exhibits similar trends in the power evolution spectra, despite large variations in height and diameter. The level splittings in the p -shell increase with decreasing height, which we interpret to be from dot elongation along the [01 anti 1] direction. The evolution of the spectra with increasing power agrees well with predictions from effective bond orbital calculations. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Study of the Jet-Pini 160 keV optics in a single beamlet system

    International Nuclear Information System (INIS)

    Bottiglioni, F.; Bussac, J.P.; Jequier, F.

    1986-01-01

    The optics of the prototype of the extended performances PINI-injector, for the operation at 160 keV in D 2 , has been studied and tested on the separate test stand L.E.O., enabling experiments on a single beamlet. The results of the optics computations and of the experimentation on the beamlet are presented and discussed, namely as far profiles, divergence and steering are concerned

  2. Multi-distance diffuse optical spectroscopy with a single optode via hypotrochoidal scanning.

    Science.gov (United States)

    Applegate, Matthew B; Roblyer, Darren

    2018-02-15

    Frequency-domain diffuse optical spectroscopy (FD-DOS) is an established technique capable of determining optical properties and chromophore concentrations in biological tissue. Most FD-DOS systems use either manually positioned, handheld probes or complex arrays of source and detector fibers to acquire data from many tissue locations, allowing for the generation of 2D or 3D maps of tissue. Here, we present a new method to rapidly acquire a wide range of source-detector (SD) separations by mechanically scanning a single SD pair. The source and detector fibers are mounted on a scan head that traces a hypotrochoidal pattern over the sample that, when coupled with a high-speed FD-DOS system, enables the rapid collection of dozens of SD separations for depth-resolved imaging. We demonstrate that this system has an average error of 4±2.6% in absorption and 2±1.8% in scattering across all SD separations. Additionally, by linearly translating the device, the size and location of an absorbing inhomogeneity can be determined through the generation of B-scan images in a manner conceptually analogous to ultrasound imaging. This work demonstrates the potential of single optode diffuse optical scanning for depth resolved visualization of heterogeneous biological tissues at near real-time rates.

  3. Study of structural and optical properties of YAG and Nd:YAG single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kostić, S. [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Lazarević, Z.Ž., E-mail: lzorica@yahoo.com [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Radojević, V. [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade (Serbia); Milutinović, A.; Romčević, M.; Romčević, N.Ž. [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Valčić, A. [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade (Serbia)

    2015-03-15

    Highlights: • Transparent YAG and pale pink Nd:YAG single crystals were produced by the Czochralski technique. • Growth mechanisms and shape of the liquid/solid interface and incorporation of Nd{sup 3+} were studied. • The structure of the crystals was investigated by X-ray diffraction, Raman and IR spectroscopy. • The 15 Raman and 17 IR modes were observed. • The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. - Abstract: Yttrium aluminum garnet (YAG, Y{sub 3}Al{sub 5}O{sub 12}) and yttrium aluminum garnet doped with neodymium (Nd:YAG) single crystals were grown by the Czochralski technique. The critical diameter and the critical rate of rotation were calculated. Suitable polishing and etching solutions were determined. As a result of our experiments, the transparent YAG and pale pink Nd:YAG single crystals were produced. The obtained crystals were studied by X-ray diffraction, Raman and IR spectroscopy. The crystal structure was confirmed by XRD. The 15 Raman and 17 IR modes were observed. The Raman and IR spectroscopy results are in accordance with X-ray diffraction analysis. The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. The absence of a core was confirmed by viewing polished crystal slices. Also, it is important to emphasize that the obtained Nd:YAG single crystal has a concentration of 0.8 wt.% Nd{sup 3+} that is characteristic for laser materials.

  4. A robust single-beam optical trap for a gram-scale mechanical oscillator.

    Science.gov (United States)

    Altin, P A; Nguyen, T T-H; Slagmolen, B J J; Ward, R L; Shaddock, D A; McClelland, D E

    2017-11-06

    Precise optical control of microscopic particles has been mastered over the past three decades, with atoms, molecules and nano-particles now routinely trapped and cooled with extraordinary precision, enabling rapid progress in the study of quantum phenomena. Achieving the same level of control over macroscopic objects is expected to bring further advances in precision measurement, quantum information processing and fundamental tests of quantum mechanics. However, cavity optomechanical systems dominated by radiation pressure - so-called 'optical springs' - are inherently unstable due to the delayed dynamical response of the cavity. Here we demonstrate a fully stable, single-beam optical trap for a gram-scale mechanical oscillator. The interaction of radiation pressure with thermo-optic feedback generates damping that exceeds the mechanical loss by four orders of magnitude. The stability of the resultant spring is robust to changes in laser power and detuning, and allows purely passive self-locking of the cavity. Our results open up a new way of trapping and cooling macroscopic objects for optomechanical experiments.

  5. PREPARATION OF THE SINGLE MODE PLANAR OPTICAL SPLITTER MODULES AND THEIR CHARACTERIZATIONS

    Directory of Open Access Journals (Sweden)

    Vu Doan Mien

    2017-11-01

    Full Text Available Optical splitter modules have been prepared based on 1x8 single mode silica planar waveguide optical splitter chips with 250 µm spacing and v-groove fiber arrays for applications in fiber optic communications. We report the technology of precise optical coupling and packaging of the splitter modules and the measurements of the insertion loss (< 11 dB,  uniformity (< 0.80 dB and polarization dependence loss (PLD < 0.10 dB as well as the lateral profile and the image of the input and output lights for the wavelengths of 1310 nm and 1550 nm. The main characteristics of the prepared splitter modules are about the same for the commercial available products. The prepared modules have been tested for operation in the conditions of wide temperature range (5–80°C and humidity range (50–98% and no changes in the main characteristics were observed.

  6. Continuous parametric feedback cooling of a single atom in an optical cavity

    Science.gov (United States)

    Sames, C.; Hamsen, C.; Chibani, H.; Altin, P. A.; Wilk, T.; Rempe, G.

    2018-05-01

    We demonstrate a feedback algorithm to cool a single neutral atom trapped inside a standing-wave optical cavity. The algorithm is based on parametric modulation of the confining potential at twice the natural oscillation frequency of the atom, in combination with fast and repetitive atomic position measurements. The latter serve to continuously adjust the modulation phase to a value for which parametric excitation of the atomic motion is avoided. Cooling is limited by the measurement backaction which decoheres the atomic motion after only a few oscillations. Nonetheless, applying this feedback scheme to an ˜5 -kHz oscillation mode increases the average storage time of a single atom in the cavity by a factor of 60 to more than 2 s. In contrast to previous feedback schemes, our algorithm is also capable of cooling a much faster ˜500 -kHz oscillation mode within just microseconds. This demonstrates that parametric cooling is a powerful technique that can be applied in all experiments where optical access is limited.

  7. Optical properties of uniformly sized silicon nanocrystals within a single silicon oxide layer

    Energy Technology Data Exchange (ETDEWEB)

    En Naciri, A., E-mail: aotmane.en-naciri@univ-lorraine.fr [Universite de Lorraine, LCP-A2MC, Institut Jean Barriol (France); Miska, P. [Universite de Lorraine, Institut Jean Lamour CNRS UMR 7198 (France); Keita, A.-S. [Max Planck Institute for Intelligent Systems (Germany); Battie, Y. [Universite de Lorraine, LCP-A2MC, Institut Jean Barriol (France); Rinnert, H.; Vergnat, M. [Universite de Lorraine, Institut Jean Lamour CNRS UMR 7198 (France)

    2013-04-15

    Silicon nanocrystals (Si-NC) with different sizes (2-6 nm) are synthesized by evaporation. The system is composed of a single Si-NC layer that is well controlled in size. The numerical modeling of such system, without a large size distribution, is suitable to perform easily the optical calculations. The nanocrystal size and confinement effects on the optical properties are determined by photoluminescence (PL) measurements, absorption in the UV visible range, and spectroscopic ellipsometry (SE). The optical constants and the bandgap energies are then extracted and analyzed. The dependence of the optical responses with the decrease of the size of the Si-NC occurs not only with a drastic reduction of the amplitudes of dielectric function but also by a significant expansion of the optical gap. This study supports the idea of a presence of a critical size of Si-NC for which the confinement effect becomes weak. The evolution of those bandgap energies are discussed in comparison with values reported in literature.

  8. 1.28 Tbit/s/channel single-polarization DQPSK transmission over 525 km using ultrafast time-domain optical Fourier transformation

    DEFF Research Database (Denmark)

    Guan, P.; Mulvad, Hans Christian Hansen; Tomiyama, Y.

    2010-01-01

    A single-channel 1.28 Tbit/s transmission over 525 km is demonstrated for the first time with a single-polarization DQPSK signal. Ultrafast time-domain optical Fourier transformation is successfully applied to DQPSK signals and results in improved performance and increased system margin.......A single-channel 1.28 Tbit/s transmission over 525 km is demonstrated for the first time with a single-polarization DQPSK signal. Ultrafast time-domain optical Fourier transformation is successfully applied to DQPSK signals and results in improved performance and increased system margin....

  9. Fibre and components induced limitations in high capacity optical networks

    DEFF Research Database (Denmark)

    Peucheret, Christophe

    2003-01-01

    The design of future all-optical networks relies on the knowledge of the physical layer transport properties. In this thesis, we focus on two types of system impairments: those induced by the non-ideal transfer functions of optical filters to be found in network elements such as optical add...... design in order to maximise the spectral efficiency in a four add-drop node ring network. The concept of "normalised transmission sections" is introduced in order to ease the dimensioning of transparent domains in future all-optical networks. Normalised sections based on standard single mode fibre (SMF......-drop multiplexers (OADM) and optical cross-connects (OXC), as well as those due to the interaction of group-velocity dispersion, optical fibre non-linearities and accumulation of amplifier noise in the transmission path. The dispersion of fibre optics components is shown to limit their cascadability. Dispersion...

  10. Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier.

    Science.gov (United States)

    Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José

    2011-08-29

    A fully tunable microwave photonic phase shifter involving a single semiconductor optical amplifier (SOA) is proposed and demonstrated. 360° microwave phase shift has been achieved by tuning the carrier wavelength and the optical input power injected in an SOA while properly profiting from the dispersion feature of a conveniently designed notch filter. It is shown that the optical filter can be advantageously employed to switch between positive and negative microwave phase shifts. Numerical calculations corroborate the experimental results showing an excellent agreement.

  11. Optical implementation of multifocal programmable lens with single and multiple axes

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Lenny A; Millan, Maria S; Perez-Cabre, Elisabet, E-mail: lenny.alexandra.romero@upc.edu [Optics and Optometry Dep. Technical University of Catalonia Violinista Vellsola 37, 08222 Terrassa (Spain)

    2011-01-01

    In this work we analyse the generation of a diffractive optical element (DOE) consisting of a multifocal Fresnel lens by means of an LCoS (liquid cristal on silicon) spatial light modulator (SLM). The multifocal lens is composed of a set of lenses of different focal length that share a common optical axis (coaxial combination) or have different axes in parallel (multi-axis combination). For both configurations, we present several ways to combine the phase distributions for three lenses with different focal lengths (f1, f2, f3), into a single-phase distribution addressed to the SLM. Numerical simulations were carried out along with the experimental analysis to corroborate the results.

  12. All-optical Hilbert transformer based on a single phase-shifted fiber Bragg grating: design and analysis.

    Science.gov (United States)

    Asghari, Mohammad H; Azaña, José

    2009-02-01

    A simple all-fiber design for implementing an all-optical temporal Hilbert transformer is proposed and numerically demonstrated. We show that an all-optical Hilbert transformer can be implemented using a uniform-period fiber Bragg grating (FBG) with a properly designed amplitude-only grating apodization profile incorporating a single pi phase shift in the middle of the grating length. All-optical Hilbert transformers capable of processing arbitrary optical waveforms with bandwidths up to a few hundreds of gigahertz can be implemented using feasible FBGs.

  13. Polymer optical fiber Bragg grating inscription with a single UV laser pulse

    DEFF Research Database (Denmark)

    Pospori, Andreas; Marques, A.T.; Bang, Ole

    2017-01-01

    We experimentally demonstrate the first polymer optical fiber Bragg grating inscribed with only one krypton fluoride laser pulse. The device has been recorded in a single-mode poly(methyl methacrylate) optical fiber, with a core doped with benzyl dimethyl ketal for photosensitivity enhancement. One...... laser pulse with a duration of 15 ns, which provide energy density of 974 mJ/cm2, is adequate to introduce a refractive index change of 0.74×10-4 in the fiber core. After the exposure, the reflectivity of the grating increases for a few minutes following a second order exponential saturation...

  14. Synthesis, crystal structure, growth, optical and third order nonlinear optical studies of 8HQ2C5N single crystal - An efficient third-order nonlinear optical material

    Energy Technology Data Exchange (ETDEWEB)

    Divya Bharathi, M.; Ahila, G.; Mohana, J. [Department of Physics, Presidency College, Chennai 600005 (India); Chakkaravarthi, G. [Department of Physics, CPCL Polytechnic College, Chennai 600068 (India); Anbalagan, G., E-mail: anbu24663@yahoo.co.in [Department of Nuclear Physics, University of Madras, Chennai 600025 (India)

    2017-05-01

    A neoteric organic third order nonlinear optical material 8-hydroxyquinolinium 2-chloro-5-nitrobenzoate dihydrate (8HQ2C5N) was grown by slow cooling technique using ethanol: water (1:1) mixed solvent. The calculated low value of average etch pit solidity (4.12 × 10{sup 3} cm{sup −2}) indicated that the title crystal contain less defects. From the single crystal X-ray diffraction data, it was endowed that 8HQ2C5N crystal belongs to the monoclinic system with centrosymmetric space group P2{sub 1}/c and the cell parameters values, a = 9.6546 (4) Ǻ, b = 7.1637(3) Ǻ, c = 24.3606 (12) Ǻ, α = γ = 90°, β = 92.458(2)° and volume = 1683.29(13) Ǻ{sup 3}. The FT-IR and FT-Raman spectrum were used to affirm the functional group of the title compound. The chemical structure of 8HQ2C5N was scrutinized by {sup 13}C and {sup 1}H NMR spectral analysis and thermal stability through the differential scanning calorimetry study. Using optical studies the lower cut-off wavelength and optical band gap of 8HQ2C5N were found to be 364 nm and 3.17 eV respectively. Using the single oscillator model suggested by Wemple – Didomenico, the oscillator energy (E{sub o}), the dispersion energy (E{sub d}) and static dielectric constant (ε{sub o}) were estimated. The third-order susceptibility were determined as Im χ{sup (3)} = 2.51 × 10{sup −5} esu and Re χ{sup (3)} = 4.46 × 10{sup −7} esu. The theoretical third-order nonlinear optical susceptibility χ{sup (3)} was calculated and the results were compared with experimental value. Photoluminescence spectrum of 8HQ2C5N crystal showed the yellow emission. The crystal had the single shot laser damage threshold of 5.562 GW/cm{sup 2}. Microhardness measurement showed that 8HQ2C5N belongs to a soft material category. - Highlights: • A new organic single crystals were grown and the crystal structure was reported. • Crystal possess, good transmittance, thermal and mechanical stability. • Single shot LDT value is found to be

  15. Radiation resistance characteristics of optical communication system for single mode

    International Nuclear Information System (INIS)

    Ohe, Masamoto; Chigusa, Yoshiki; Kyodo, Tomohisa; Tanaka, Gohtaro; Watanabe, Hajime; Okamoto, Shin-ichi; Yamamoto, Takao.

    1988-01-01

    Optical communication has been utilized also for nuclear power stations and fuel reporocessing plants. As the sufficient safety countermeasures are required there, the amount of information becomes enormous, therefore, optical communication, by which the required space is expected to be reduced, becomes more important. Also in the application to submarine cables, attention must be paid to the radiation resistance as there are the effects of potassium contained in large amount in seawater and uranium deposits in sea bottom. Therefore, the reliability of the components of optical communication systems against radiation becomes a problem. In this study, single mode optical fibers and transmission and receipt modules were selected, and high dose rate irradiation supposing the case of using in a cell and low dose rate, long time irradiation supposing the case of submarine cables were carried out to evaluate the radiation resistance characteristics. The fibers tested were SiO 2 core/F-SiO 2 clad type and GeO 2 -SiO 2 core/SiO 2 clad type. The characteristics of increasing loss in irradiation and restoration after irradiation of the former type were superior to those of the latter type. The output of a receipt module was normal during irradiation, and the output power of a transmission module decreases, but other problems did not arise. (K.I.)

  16. Single-molecule approach to bacterial genomic comparisons via optical mapping.

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shiguo [Univ. Wisc.-Madison; Kile, A. [Univ. Wisc.-Madison; Bechner, M. [Univ. Wisc.-Madison; Kvikstad, E. [Univ. Wisc.-Madison; Deng, W. [Univ. Wisc.-Madison; Wei, J. [Univ. Wisc.-Madison; Severin, J. [Univ. Wisc.-Madison; Runnheim, R. [Univ. Wisc.-Madison; Churas, C. [Univ. Wisc.-Madison; Forrest, D. [Univ. Wisc.-Madison; Dimalanta, E. [Univ. Wisc.-Madison; Lamers, C. [Univ. Wisc.-Madison; Burland, V. [Univ. Wisc.-Madison; Blattner, F. R. [Univ. Wisc.-Madison; Schwartz, David C. [Univ. Wisc.-Madison

    2004-01-01

    Modern comparative genomics has been established, in part, by the sequencing and annotation of a broad range of microbial species. To gain further insights, new sequencing efforts are now dealing with the variety of strains or isolates that gives a species definition and range; however, this number vastly outstrips our ability to sequence them. Given the availability of a large number of microbial species, new whole genome approaches must be developed to fully leverage this information at the level of strain diversity that maximize discovery. Here, we describe how optical mapping, a single-molecule system, was used to identify and annotate chromosomal alterations between bacterial strains represented by several species. Since whole-genome optical maps are ordered restriction maps, sequenced strains of Shigella flexneri serotype 2a (2457T and 301), Yersinia pestis (CO 92 and KIM), and Escherichia coli were aligned as maps to identify regions of homology and to further characterize them as possible insertions, deletions, inversions, or translocations. Importantly, an unsequenced Shigella flexneri strain (serotype Y strain AMC[328Y]) was optically mapped and aligned with two sequenced ones to reveal one novel locus implicated in serotype conversion and several other loci containing insertion sequence elements or phage-related gene insertions. Our results suggest that genomic rearrangements and chromosomal breakpoints are readily identified and annotated against a prototypic sequenced strain by using the tools of optical mapping.

  17. Research on tunable multiwavelength fiber lasers with two-section birefringence fibers and a nonlinear optical loop

    Science.gov (United States)

    Chen, Jiao; Tong, Zhengrong; Zhang, Weihua; Xue, Lifang; Pan, Honggang

    2018-05-01

    Two types of tunable multiwavelength fiber lasers based on two-section polarization maintaining fibers (PMFs) cascaded/in parallel and nonlinear optical loop are proposed and experimentally demonstrated. Two-section cascaded PMFs and two polarization controllers (PCs) form the two-stage Lyot filter, which can generate comb spectrum to achieve multiwavelength output. When two sections of PMFs are in parallel, PCs in two paths are adjusted to change the beam’s polarization to suppress the light of one branch, and then the light of the other branch passes through the cavity. Additionally, a nonlinear optical loop acts as an intensity-dependent component, which can suppress the mode competition to maintain a stable output of multiwavelength lasing. The nonlinear optical loop is made by a 3 dB coupler, a PC3, and a 200 m high nonlinear fiber. Two types of tunable multiwavelength fiber lasers can achieve tuning of the channel space and the number of lasing wavelengths by adjusting PC1 and PC2. The channel space of the multiwavelengh laser can be tuned at nearly 0.4, 0.68, and 0.92 nm. Meanwhile, the spectral range of multiwavelength lasing can be controlled by PC3 in the nonlinear optical loop, and the tuning range of two multiwavelength lasers is about 2.28 and 1.45 nm, respectively.

  18. Single Top quark production cross section and properties using the ATLAS detector at the LHC

    CERN Document Server

    Sapp, Kevin; The ATLAS collaboration

    2015-01-01

    Measurements of single top-quark production in proton proton collisions at 7 and 8 TeV are presented. In the leading order process, a W boson is exchanged in the t-channel. The single top-quark and anti-top total production cross sections, their ratio, as well as a measurement of the inclusive production cross section is presented. In addition, a measurement of the production cross section of a single top quark in association with a W boson is presented. All measurements are compared to state-of-the-art theoretical calculations and the CKM matrix element |Vtb| is determined. In addition, the s-channel production is explored and limits on exotic production in single top quark processes are discussed. This includes the search for flavor changing neutral currents and the search for additional W’ bosons or a search for monotops.

  19. Optical performance of multifocal soft contact lenses via a single-pass method.

    Science.gov (United States)

    Bakaraju, Ravi C; Ehrmann, Klaus; Falk, Darrin; Ho, Arthur; Papas, Eric

    2012-08-01

    A physical model eye capable of carrying soft contact lenses (CLs) was used as a platform to evaluate optical performance of several commercial multifocals (MFCLs) with high- and low-add powers and a single-vision control. Optical performance was evaluated at three pupil sizes, six target vergences, and five CL-correcting positions using a spatially filtered monochromatic (632.8 nm) light source. The various target vergences were achieved by using negative trial lenses. A photosensor in the retinal plane recorded the image point-spread that enabled the computation of visual Strehl ratios. The centration of CLs was monitored by an additional integrated en face camera. Hydration of the correcting lens was maintained using a humidity chamber and repeated instillations of rewetting saline drops. All the MFCLs reduced performance for distance but considerably improved performance along the range of distance to near target vergences, relative to the single-vision CL. Performance was dependent on add power, design, pupil, and centration of the correcting CLs. Proclear (D) design produced good performance for intermediate vision, whereas Proclear (N) design performed well at near vision (p 4 mm in diameter. Acuvue Oasys bifocal produced performance comparable with single-vision CL for most vergences. Direct measurement of single-pass images at the retinal plane of a physical model eye used in conjunction with various MFCLs is demonstrated. This method may have utility in evaluating the relative effectiveness of commercial and prototype designs.

  20. Growth, optical, ICP and thermal studies of nonlinear optical single crystal: Sodium acid phthalate (NaAP)

    Science.gov (United States)

    Mahadevan, M.; Arivanandhan, M.; Elangovan, K.; Anandan, P.; Ramachandran, K.

    2017-07-01

    Good quality single crystals of sodium acid phthalate (NaAP) were grown by slow evaporation technique. Single crystal X-ray diffraction study of the grown crystal reveals that the crystal belongs to orthorhombic system with space group B2ab. Fourier transform infrared spectrum confirms the presence of the functional groups of the grown material. Inductively coupled plasma emission spectroscopy analysis is used to confirm the presence of Na element in the sample. Thermal analysis of the NaAP crystal shows that the crystal is stable up to 140°C. Optical transmittance of the grown crystal was recorded in the wavelength range from 200 and 800 nm using UV-Vis-NIR spectrophotometer. The second harmonic generation of NaAP was analysed using Kurtz powder technique.

  1. A simple optical fiber device for quantitative fluorescence microscopy of single living cells

    NARCIS (Netherlands)

    van Graft, M.; van Graft, Marja; Oosterhuis, B.; Oosterhuis, Bernard; van der Werf, Kees; de Grooth, B.G.; Greve, Jan

    1993-01-01

    simple and relatively inexpensive system is described for obtaining quantitative fluorescence measurements on single living cells loaded with a fluorescent probe to study cell physiological processes. The light emitted from the fluorescent cells is captured by and transported through an optical

  2. Single photon sources with single semiconductor quantum dots

    Science.gov (United States)

    Shan, Guang-Cun; Yin, Zhang-Qi; Shek, Chan Hung; Huang, Wei

    2014-04-01

    In this contribution, we briefly recall the basic concepts of quantum optics and properties of semiconductor quantum dot (QD) which are necessary to the understanding of the physics of single-photon generation with single QDs. Firstly, we address the theory of quantum emitter-cavity system, the fluorescence and optical properties of semiconductor QDs, and the photon statistics as well as optical properties of the QDs. We then review the localization of single semiconductor QDs in quantum confined optical microcavity systems to achieve their overall optical properties and performances in terms of strong coupling regime, efficiency, directionality, and polarization control. Furthermore, we will discuss the recent progress on the fabrication of single photon sources, and various approaches for embedding single QDs into microcavities or photonic crystal nanocavities and show how to extend the wavelength range. We focus in particular on new generations of electrically driven QD single photon source leading to high repetition rates, strong coupling regime, and high collection efficiencies at elevated temperature operation. Besides, new developments of room temperature single photon emission in the strong coupling regime are reviewed. The generation of indistinguishable photons and remaining challenges for practical single-photon sources are also discussed.

  3. Differential cross sections for single-electron capture in He{sup 2+}-D collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, D.; Dagnac, R. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France)]|[Toulouse-3 Univ., 31 (France)

    1995-06-14

    A translational energy spectroscopy technique was used to study single-electron capture into the He{sup +} (n = 2) and He{sup +} (n 3) states in He{sup 2+}-D collisions. Differential cross sections were determined at 4, 6 and 8 keV in the angular range 5`-1{sup o}30` (laboratory frame). As expected, single-electron capture into the n = 2 state was found to be the dominant process; total cross sections for capture into the He{sup +} (n = 3) state were compared to other experimental and theoretical results. (author).

  4. Single-meson inclusive cross sections and sequential decay of Reggeons, 2

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Toshihiro

    1984-09-01

    The single-particle inclusive cross sections of pions and kaons produced from the incident particles in pp and anti pp scattering is investigated under the assumption of the sequential decay mechanism of Reggeons. The many-particle production effect and the initial-decay effect are estimated from experimental data on pion production cross section with small momentum transfer at 100 and 175 GeV/c. Their Feynman-x dependence is in good agreement with the power-law behaviours C(1-X sub(F))/sup 5/ and C(1-X sub(F))/sup 3/. Predictions are given on kaon production cross section.

  5. Pulsed x-ray induced attenuation measurements of single mode optical fibers and coupler materials

    International Nuclear Information System (INIS)

    Johan, A.; Charre, P.

    1994-01-01

    Pulsed X-ray induced transient radiation attenuation measurements of single mode optical fibers have been performed versus total dose, light wavelength, optical power and fiber coil diameter in order to determine the behavior of parameters sensitive to ionizing radiation. The results did not show any photobleaching phenomenon and the attenuation was found independent of the spool diameter. As expected, transient attenuation was lower for higher wave-lengths. The recovery took place in the millisecond range and was independent of total dose, light wavelength and optical power. In optical modules and devices a large range of behaviors was observed according to coupler material i.e., Corning coupler showed a small peak attenuation that remained more than one day later; on the other hand LiTaO 3 material experienced an order of magnitude higher peak attenuation and a recovery in the millisecond range. For applications with optical fibers and integrated optics devices the authors showed that in many cases the optical fiber (length above 100 m) is the most sensitive device in a transient ionizing radiation field

  6. Ring resonator-based single-chip 1x8 optical beam forming network in LPCVD waveguide technology

    NARCIS (Netherlands)

    Zhuang, L.; Roeloffzen, C.G.H.; Heideman, Rene; Borreman, A.; Meijerink, Arjan; van Etten, Wim; Koonen, A.M.J.; Leijtens, X.J.M.; van den Boom, H.P.A.; Verdurmen, E.J.M.; Molina Vázquez, J.

    2006-01-01

    Optical ring resonators (ORRs) are good candidates to provide continuously tunable delay in beam forming networks (BFNs) for phased array antenna systems. Delay and splitting/combining elements can be integrated on a single optical chip to form an OBFN. A state-of-the-art 1×8 OBFN chip has been

  7. Three-dimensional rearrangement of single atoms using actively controlled optical microtraps.

    Science.gov (United States)

    Lee, Woojun; Kim, Hyosub; Ahn, Jaewook

    2016-05-02

    We propose and demonstrate three-dimensional rearrangements of single atoms. In experiments performed with single 87Rb atoms in optical microtraps actively controlled by a spatial light modulator, we demonstrate various dynamic rearrangements of up to N = 9 atoms including rotation, 2D vacancy filling, guiding, compactification, and 3D shuffling. With the capability of a phase-only Fourier mask to generate arbitrary shapes of the holographic microtraps, it was possible to place single atoms at arbitrary geometries of a few μm size and even continuously reconfigure them by conveying each atom. For this purpose, we loaded a series of computer-generated phase masks in the full frame rate of 60 Hz of the spatial light modulator, so the animation of phase mask transformed the holographic microtraps in real time, driving each atom along the assigned trajectory. Possible applications of this method of transformation of single atoms include preparation of scalable quantum platforms for quantum computation, quantum simulation, and quantum many-body physics.

  8. Excitation of random intense single-cycle light-pulse chains in optical fiber

    International Nuclear Information System (INIS)

    Ding, Y C; Zhang, F L; Gao, J B; Chen, Z Y; Lin, C Y; Yu, M Y

    2014-01-01

    Excitation of intense periodic single-cycle light pulses in a stochastic background arising from continuous wave stimulated Brillouin scattering (SBS) in a long optical fiber with weak optical feedback is found experimentally and modeled theoretically. Such intense light-pulse chains occur randomly and the optical feedback is a requirement for their excitation. The probability of these forms, among the large number of experimental output signals with identifiable waveforms, appearing is only about 3%, with the remainder exhibiting regular SBS characteristics. It is also found that pulses with low period numbers appear more frequently and the probability distribution for their occurrence in terms of the pulse power is roughly L-shaped, like that for rogue waves. The results from a three-wave-coupling model for SBS including feedback phase control agree well qualitatively with the observed phenomena. (paper)

  9. The effect of scattering on single photon transmission of optical angular momentum

    International Nuclear Information System (INIS)

    Andrews, D L

    2011-01-01

    Schemes for the communication and registration of optical angular momentum depend on the fidelity of transmission between optical system components. It is known that electron spin can be faithfully relayed between exciton states in quantum dots; it has also been shown by several theoretical and experimental studies that the use of beams conveying orbital angular momentum can significantly extend the density and efficiency of such information transfer. However, it remains unclear to what extent the operation of such a concept at the single photon level is practicable—especially where this involves optical propagation through a material system, in which forward scattering events can intervene. The possibility of transmitting and decoding angular momentum over nanoscale distances itself raises other important issues associated with near-field interrogation. This paper provides a framework to address these and related issues. A quantum electrodynamical representation is constructed and used to pursue the consequences of individual photons, from a Laguerre–Gaussian beam, undergoing single and multiple scattering events in the course of propagation. In this context, issues concerning orbital angular momentum conservation, and its possible compromise, are tackled by identifying the relevant components of the electromagnetic scattering and coupling tensors, using an irreducible Cartesian basis. The physical interpretation broadly supports the fidelity of quantum information transmission, but it also identifies potential limitations of principle

  10. The effect of scattering on single photon transmission of optical angular momentum

    Science.gov (United States)

    Andrews, D. L.

    2011-06-01

    Schemes for the communication and registration of optical angular momentum depend on the fidelity of transmission between optical system components. It is known that electron spin can be faithfully relayed between exciton states in quantum dots; it has also been shown by several theoretical and experimental studies that the use of beams conveying orbital angular momentum can significantly extend the density and efficiency of such information transfer. However, it remains unclear to what extent the operation of such a concept at the single photon level is practicable—especially where this involves optical propagation through a material system, in which forward scattering events can intervene. The possibility of transmitting and decoding angular momentum over nanoscale distances itself raises other important issues associated with near-field interrogation. This paper provides a framework to address these and related issues. A quantum electrodynamical representation is constructed and used to pursue the consequences of individual photons, from a Laguerre-Gaussian beam, undergoing single and multiple scattering events in the course of propagation. In this context, issues concerning orbital angular momentum conservation, and its possible compromise, are tackled by identifying the relevant components of the electromagnetic scattering and coupling tensors, using an irreducible Cartesian basis. The physical interpretation broadly supports the fidelity of quantum information transmission, but it also identifies potential limitations of principle.

  11. Optical Inspection In Hostile Industrial Environments: Single-Sensor VS. Imaging Methods

    Science.gov (United States)

    Cielo, P.; Dufour, M.; Sokalski, A.

    1988-11-01

    On-line and unsupervised industrial inspection for quality control and process monitoring is increasingly required in the modern automated factory. Optical techniques are particularly well suited to industrial inspection in hostile environments because of their noncontact nature, fast response time and imaging capabilities. Optical sensors can be used for remote inspection of high temperature products or otherwise inaccessible parts, provided they are in a line-of-sight relation with the sensor. Moreover, optical sensors are much easier to adapt to a variety of part shapes, position or orientation and conveyor speeds as compared to contact-based sensors. This is an important requirement in a flexible automation environment. A number of choices are possible in the design of optical inspection systems. General-purpose two-dimensional (2-D) or three-dimensional (3-D) imaging techniques have advanced very rapidly in the last years thanks to a substantial research effort as well as to the availability of increasingly powerful and affordable hardware and software. Imaging can be realized using 2-D arrays or simpler one-dimensional (1-D) line-array detectors. Alternatively, dedicated single-spot sensors require a smaller amount of data processing and often lead to robust sensors which are particularly appropriate to on-line operation in hostile industrial environments. Many specialists now feel that dedicated sensors or clusters of sensors are often more effective for specific industrial automation and control tasks, at least in the short run. This paper will discuss optomechanical and electro-optical choices with reference to the design of a number of on-line inspection sensors which have been recently developed at our institute. Case studies will include real-time surface roughness evaluation on polymer cables extruded at high speed, surface characterization of hot-rolled or galvanized-steel sheets, temperature evaluation and pinhole detection in aluminum foil, multi

  12. Program POD; A computer code to calculate nuclear elastic scattering cross sections with the optical model and neutron inelastic scattering cross sections by the distorted-wave born approximation

    International Nuclear Information System (INIS)

    Ichihara, Akira; Kunieda, Satoshi; Chiba, Satoshi; Iwamoto, Osamu; Shibata, Keiichi; Nakagawa, Tsuneo; Fukahori, Tokio; Katakura, Jun-ichi

    2005-07-01

    The computer code, POD, was developed to calculate angle-differential cross sections and analyzing powers for shape-elastic scattering for collisions of neutron or light ions with target nucleus. The cross sections are computed with the optical model. Angle-differential cross sections for neutron inelastic scattering can also be calculated with the distorted-wave Born approximation. The optical model potential parameters are the most essential inputs for those model computations. In this program, the cross sections and analyzing powers are obtained by using the existing local or global parameters. The parameters can also be inputted by users. In this report, the theoretical formulas, the computational methods, and the input parameters are explained. The sample inputs and outputs are also presented. (author)

  13. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    Science.gov (United States)

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  14. Single Top quark production cross section and properties using the ATLAS detector at the LHC

    CERN Document Server

    ATLAS Collaboration; The ATLAS collaboration

    2015-01-01

    Measurements of single top­quark production in proton proton collisions at 7 and 8 TeV are presented. In the leading order process,​a W boson is exchanged in the t­channel. The single top­ quark and anti­top total production cross sections, their ratio, as well as a measurement of the inclusive production cross section is presented. In addition, a measurement of the production cross section of a single top quark in association with a W boson is presented. All measurements are compared to state­-of­-the­-art theoretical calculations and the CKM matrix element |Vtb| is determined. In addition, the s­-channel production is explored and limits on exotic production in single top quark processes are discussed. This includes the search for flavor changing neutral currents and the search for additional W’ bosons or a search for monotops.

  15. Infrared-active optical phonons in LiFePO4 single crystals

    Science.gov (United States)

    Stanislavchuk, T. N.; Middlemiss, D. S.; Syzdek, J. S.; Janssen, Y.; Basistyy, R.; Sirenko, A. A.; Khalifah, P. G.; Grey, C. P.; Kostecki, R.

    2017-07-01

    Infrared-active optical phonons were studied in olivine LiFePO4 oriented single crystals by means of both rotating analyzer and rotating compensator spectroscopic ellipsometry in the spectral range between 50 and 1400 cm-1. The eigenfrequencies, oscillator strengths, and broadenings of the phonon modes were determined from fits of the anisotropic harmonic oscillator model to the data. Optical phonons in a heterosite FePO4 crystal were measured from the delithiated ab-surface of the LiFePO4 crystal and compared with the phonon modes of the latter. Good agreement was found between experimental data and the results of solid-state hybrid density functional theory calculations for the phonon modes in both LiFePO4 and FePO4.

  16. Electron impact ionization of B-like ion N2+. Resonance enhancement of the single-channel cross section

    International Nuclear Information System (INIS)

    Li Guohe; Qian Xingzhong; Pan Soufu

    1998-01-01

    The electron impact ionization cross sections of B-like ion N 2+ are calculated in the Coulomb-Born no exchange approximation by using R-matrix method, and the single differential cross section is given. The calculated results exhibit the Rydberg series of resonances. The resonance enhancement of the single-channel cross section is significantly greater than direct ionization cross section. It is agreement with that of Chidichimo

  17. Single step sequential polydimethylsiloxane wet etching to fabricate a microfluidic channel with various cross-sectional geometries

    Science.gov (United States)

    Wang, C.-K.; Liao, W.-H.; Wu, H.-M.; Lo, Y.-H.; Lin, T.-R.; Tung, Y.-C.

    2017-11-01

    Polydimethylsiloxane (PDMS) has become a widely used material to construct microfluidic devices for various biomedical and chemical applications due to its desirable material properties and manufacturability. PDMS microfluidic devices are usually fabricated using soft lithography replica molding methods with master molds made of photolithogrpahy patterned photoresist layers on silicon wafers. The fabricated microfluidic channels often have rectangular cross-sectional geometries with single or multiple heights. In this paper, we develop a single step sequential PDMS wet etching process that can be used to fabricate microfluidic channels with various cross-sectional geometries from single-layer PDMS microfluidic channels. The cross-sections of the fabricated channel can be non-rectangular, and varied along the flow direction. Furthermore, the fabricated cross-sectional geometries can be numerically simulated beforehand. In the experiments, we fabricate microfluidic channels with various cross-sectional geometries using the developed technique. In addition, we fabricate a microfluidic mixer with alternative mirrored cross-sectional geometries along the flow direction to demonstrate the practical usage of the developed technique.

  18. Heralded linear optical quantum Fredkin gate based on one auxiliary qubit and one single photon detector

    International Nuclear Information System (INIS)

    Zhu Chang-Hua; Cao Xin; Quan Dong-Xiao; Pei Chang-Xing

    2014-01-01

    Linear optical quantum Fredkin gate can be applied to quantum computing and quantum multi-user communication networks. In the existing linear optical scheme, two single photon detectors (SPDs) are used to herald the success of the quantum Fredkin gate while they have no photon count. But analysis results show that for non-perfect SPD, the lower the detector efficiency, the higher the heralded success rate by this scheme is. We propose an improved linear optical quantum Fredkin gate by designing a new heralding scheme with an auxiliary qubit and only one SPD, in which the higher the detection efficiency of the heralding detector, the higher the success rate of the gate is. The new heralding scheme can also work efficiently under a non-ideal single photon source. Based on this quantum Fredkin gate, large-scale quantum switching networks can be built. As an example, a quantum Beneš network is shown in which only one SPD is used. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. 4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues.

    Directory of Open Access Journals (Sweden)

    David Baddeley

    Full Text Available BACKGROUND: Optical super-resolution imaging of fluorescently stained biological samples is rapidly becoming an important tool to investigate protein distribution at the molecular scale. It is therefore important to develop practical super-resolution methods that allow capturing the full three-dimensional nature of biological systems and also can visualize multiple protein species in the same sample. METHODOLOGY/PRINCIPAL FINDINGS: We show that the use of a combination of conventional near-infrared dyes, such as Alexa 647, Alexa 680 and Alexa 750, all excited with a 671 nm diode laser, enables 3D multi-colour super-resolution imaging of complex biological samples. Optically thick samples, including human tissue sections, cardiac rat myocytes and densely grown neuronal cultures were imaged with lateral resolutions of ∼15 nm (std. dev. while reducing marker cross-talk to <1%. Using astigmatism an axial resolution of ∼65 nm (std. dev. was routinely achieved. The number of marker species that can be distinguished depends on the mean photon number of single molecule events. With the typical photon yields from Alexa 680 of ∼2000 up to 5 markers may in principle be resolved with <2% crosstalk. CONCLUSIONS/SIGNIFICANCE: Our approach is based entirely on the use of conventional, commercially available markers and requires only a single laser. It provides a very straightforward way to investigate biological samples at the nanometre scale and should help establish practical 4D super-resolution microscopy as a routine research tool in many laboratories.

  20. Single electron attachment and stripping cross sections for relativistic heavy ions

    International Nuclear Information System (INIS)

    Crawford, H.J.

    1979-06-01

    The results of a Bevalac experiment to measure the single electron attachment and stripping cross sections for relativistic (0.5 1 , and fully stripped, N 0 , ion beams emerging from the targets. Separate counters measured the number of ions in each charge state. The ratios N 1 /N 0 for different target thicknesses were fit to a simple growth curve to yield electron attachment and stripping cross sections. The data are compared to relativistic extrapolations of available theories. Clear evidence for two separate attachment processes, radiative and non-radiative, is found. Data are compared to a recently improved formulation for the stripping cross sections

  1. Anisotropic optical feedback of single frequency intra-cavity He–Ne laser

    International Nuclear Information System (INIS)

    Lu-Fei, Zhou; Shu-Lian, Zhang; Yi-Dong, Tan; Wei-Xin, Liu; Bin, Zhang

    2009-01-01

    This paper presents the anisotropic optical feedback of a single frequency intra-cavity He–Ne laser. A novel phenomenon was discovered that the laser output an elliptical polarized frequency instead of the initial linear polarized one. Two intensities with a phase difference were detected, both of which were modulated in the form of cosine wave and a fringe shift corresponds to a λ/2 movement of the feedback mirror. The phase difference can be continuously modulated by the wave plate in the external cavity. Frequency stabilization was used to stabilize the laser frequency so as to enlarge the measuring range and improve the measurement precision. This anisotropic optical feedback system offers a potential displacement measurement technology with the function of subdivision of λ/2 and in-time direction judgment. The three-mirror Fabry–Perot cavity model is used to present the experimental results. Given the lack of need of lasing adjustment, this full intra-cavity laser can significantly improve the simplicity and stability of the optical feedback system. (fluids, plasmas and electric discharges)

  2. The temporal evolution process from fluorescence bleaching to clean Raman spectra of single solid particles optically trapped in air

    Science.gov (United States)

    Gong, Zhiyong; Pan, Yong-Le; Videen, Gorden; Wang, Chuji

    2017-12-01

    We observe the entire temporal evolution process of fluorescence and Raman spectra of single solid particles optically trapped in air. The spectra initially contain strong fluorescence with weak Raman peaks, then the fluorescence was bleached within seconds, and finally only the clean Raman peaks remain. We construct an optical trap using two counter-propagating hollow beams, which is able to stably trap both absorbing and non-absorbing particles in air, for observing such temporal processes. This technique offers a new method to study dynamic changes in the fluorescence and Raman spectra from a single optically trapped particle in air.

  3. Self-cavity lasing in optically pumped single crystals of p-sexiphenyl

    International Nuclear Information System (INIS)

    Yanagi, Hisao; Tamura, Kenji; Sasaki, Fumio

    2016-01-01

    Organic single-crystal self-cavities are prepared by solution growth of p-sexiphenyl (p-6P). Based on Fabry-Pérot feedback inside a quasi-lozenge-shaped platelet crystal, edge-emitting laser is obtained under optical pumping. The multimode lasing band appears at the 0-1 or 0-2 vibronic progressions depending on the excitation conditions which affect the self-absorption effect. Cavity-size dependence of amplified spontaneous emission (ASE) is investigated with laser-etched single crystals of p-6P. As the cavity length of square-shaped crystal is reduced from 100 to 10 μm, ASE threshold fluence is decreased probably due to size-dependent light confinement in the crystal cavity.

  4. Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses.

    Science.gov (United States)

    Clark, Susan M; Fu, Kai-Mei C; Ladd, Thaddeus D; Yamamoto, Yoshihisa

    2007-07-27

    We describe a fast quantum computer based on optically controlled electron spins in charged quantum dots that are coupled to microcavities. This scheme uses broadband optical pulses to rotate electron spins and provide the clock signal to the system. Nonlocal two-qubit gates are performed by phase shifts induced by electron spins on laser pulses propagating along a shared waveguide. Numerical simulations of this scheme demonstrate high-fidelity single-qubit and two-qubit gates with operation times comparable to the inverse Zeeman frequency.

  5. Influence of VO2+ ions on structural and optical properties of potassium succinate-succinic acid single crystal for non-linear optical applications

    Science.gov (United States)

    Juliet sheela, K.; Subramanian, P.

    2018-04-01

    A transparent and good optical quality semi organic single crystal of vanadium doped potassium succinate-succinic acid (KSSA) was synthesized by slow evaporation technique at room temperature. The structural perfection was supported by the powder XRD of the KSSA-VO2+ single crystal. Optical behavior of the material was discovered from the absorption and transmission spectra of UV-vis-NIR characterization. Functional group and presence of metal ion in the specimen are depicted from FTIR traces. From the photoluminescence studies, emission of wavelength in the violet region (418 nm) at the excitation of 243 nm could be ascertained. EDAX, SEM measurements identify presence of elements and pictures the step-line growth and the imperfection presents in the grown crystal. EPR analysis extracts the information about the local site symmetry around the impurity ion, molecular orbital coefficients, admixture coefficients and ground state wave function of VO2+ doped KSSA single crystal. Second harmonic generation (SHG) efficiency of the grown crystal was investigated to explore the NLO characteristic of the material.

  6. Investigation on the growth, spectral, lifetime, mechanical analysis and third-order nonlinear optical studies of L-methionine admixtured D-mandelic acid single crystal: A promising material for nonlinear optical applications

    Science.gov (United States)

    Jayaprakash, P.; Sangeetha, P.; Kumari, C. Rathika Thaya; Caroline, M. Lydia

    2017-08-01

    A nonlinear optical bulk single crystal of L-methionine admixtured D-mandelic acid (LMDMA) has been grown by slow solvent evaporation technique using water as solvent at ambient temperature. The crystallized LMDMA single crystal subjected to single crystal X-ray diffraction study confirmed monoclinic system with the acentric space group P21. The FTIR analysis gives information about the modes of vibration in the various functional groups present in LMDMA. The UV-visible spectral analysis assessed the optical quality and linear optical properties such as extinction coefficient, reflectance, refractive index and from which optical conductivity and electric susceptibility were also evaluated. The frequency doubling efficiency was observed using Kurtz Perry powder technique. A multiple shot laser was utilized to evaluate the laser damage threshold energy of the crystal. Discrete thermodynamic properties were carried out by TG-DTA studies. The hardness, Meyer's index, yield strength, elastic stiffness constant, Knoop hardness, fracture toughness and brittleness index were analyzed using Vickers microhardness tester. Layer growth pattern and the surface defect were examined by chemical etching studies using optical microscope. Fluorescence emission spectrum was recorded and lifetime was also studied. The electric field response of crystal was investigated from the dielectric studies at various temperatures at different frequencies. The third-order nonlinear optical response in LMDMA has been investigated using Z-scan technique with He-Ne laser at 632.8 nm and nonlinear parameters such as refractive index (n2), absorption coefficient (β) and susceptibility (χ3) investigated extensively for they are in optical phase conjucation, high-speed optical switches and optical dielectric devices.

  7. STAX-2, Neutron Scattering Cross-Sections by Optical Model and Moldauer Theory with Hauser-Feshbach

    International Nuclear Information System (INIS)

    Tomita, Y.

    1972-01-01

    1 - Nature of physical problem solved: The program calculates neutron scattering cross sections by means of the optical model and Moldauer's theory, and can search for potential parameters which reproduce measured cross sections. The Hauser-Feshbach calculation is also possible. 2 - Restrictions on the complexity of the problem: The maximum number of levels is 25. The largest value of the orbital angular momentum is 10

  8. The use of Lorentz group formalism in solving polarization effects of a birefringent single mode optical fiber

    International Nuclear Information System (INIS)

    Ishiekwene, G.C.; Brown, C.S.; Mensah, S.Y.; Bak, A.E.

    2000-07-01

    A theoretical analysis on the polarization effects of a light beam propagating in a birefringent single-mode fiber is presented. We derive a system of differential equations representing the evolution of Stokes parameters and illustrate their application to polarization effects in a straight birefringent single mode optical fiber. The solutions to the set of equations are obtained using specifically the methods of the unified formalism for polarization optics which adopt the use of the Stokes-Mueller equation and the Lorentz group to model polarization phenomena in media such as optical fibers. The analytical results presented using this approach are identical to results obtained from other conventional methods. We observe the characteristic exponential decrease in the total intensity of the input light due to attenuation by the fiber. (author)

  9. Characteristics of single-atom trapping in a magneto-optical trap with a high magnetic-field gradient

    International Nuclear Information System (INIS)

    Yoon, Seokchan; Choi, Youngwoon; Park, Sangbum; Ji, Wangxi; Lee, Jai-Hyung; An, Kyungwon

    2007-01-01

    A quantitative study on characteristics of a magneto-optical trap with a single or a few atoms is presented. A very small number of 85 Rb atoms were trapped in a micron-size magneto-optical trap with a high magnetic-field gradient. In order to find the optimum condition for a single-atom trap, we have investigated how the number of atoms and the size of atomic cloud change as various experimental parameters, such as a magnetic-field gradient and the trapping laser intensity and detuning. The averaged number of atoms was measured very accurately with a calibration procedure based on the single-atom saturation curve of resonance fluorescence. In addition, the number of atoms in a trap could be controlled by suppressing stochastic loading events by means of a real-time active feedback on the magnetic-field gradient

  10. Combined wide pump tuning and high power of a continuous-wave, singly resonant optical parametric oscillator

    NARCIS (Netherlands)

    Herpen, M.M.J.W. van; Bisson, S.E.; Ngai, A.K.Y.; Harren, F.J.M.

    2004-01-01

    A new singly resonant, single-frequency optical parametric oscillator (OPO) has been developed for the 2.6-4.7 mum infrared wavelength region, using a high power (>20 W), widely tunable (1024-1034 nm) Yb:YAG pump source. With the OPO frequency stabilized with an intracavity etalon, the OPO achieved

  11. Growth, spectral and optical characterization of a novel nonlinear optical organic material: D-Alanine DL-Mandelic acid single crystal

    Science.gov (United States)

    Jayaprakash, P.; Mohamed, M. Peer; Caroline, M. Lydia

    2017-04-01

    An organic nonlinear optical single crystal, D-alanine DL-mandelic acid was synthesized and successfully grown by slow evaporation solution growth technique at ambient temperature using solvent of aqueous solution. The unit cell parameters were assessed from single crystal X-ray diffraction analysis. The presence of diverse functional groups and vibrational modes were identified using Fourier Transform Infra Red and Fourier Transform Raman spectral analyses. The chemical structure of grown crystal has been identified by Nuclear Magnetic Resonance spectroscopic study. Ultraviolet-visible spectral analysis reveal that the crystal has lower cut-off wavelength down to 259 nm, is a key factor to exhibit second harmonic generation signal. The electronic optical band gap and Urbach energy is calculated as 5.31 eV and 0.2425 eV respectively from the UV absorption profile. The diverse optical properties such as, extinction coefficient, reflectance, linear refractive index, optical conductivity was calculated using UV-visible data. The relative second harmonic efficiency of the compound is found to be 0.81 times greater than that of KH2PO4 (KDP). The thermal stability of the grown crystal was studied by thermogravimetric analysis and differential thermal analysis techniques. The luminescence spectrum exhibited two peaks (520 nm, 564 nm) due to the donation of protons from carboxylic acid to amino group. The Vickers microhardness test was carried out employing one of the as-grown hard crystal and there by hardness number (Hv), Meyer's index (n), yield strength (σy), elastic stiffness constant (C11) and Knoop hardness number (HK) were assessed. The dielectric behaviour of the as-grown crystal was analyzed for different temperatures (313 K, 333 K, 353 K, and 373 K) at different frequencies.

  12. Accurate geometrical optics model for single-lens stereovision system using a prism.

    Science.gov (United States)

    Cui, Xiaoyu; Lim, Kah Bin; Guo, Qiyong; Wang, DaoLei

    2012-09-01

    In this paper, we proposed a new method for analyzing the image formation of a prism. The prism was considered as a single optical system composed of some planes. By analyzing each plane individually and then combining them together, we derived a transformation matrix which can express the relationship between an object point and its image by the refraction of a prism. We also explained how to use this matrix for epipolar geometry and three-dimensional point reconstruction. Our method is based on optical geometry and could be used in a multiocular prism. Experimentation results are presented to prove the accuracy of our method is better than former researchers' and is comparable with that of the multicamera stereovision system.

  13. Single top quark production cross-section measurements using the ATLAS and CMS detectors at the LHC

    CERN Document Server

    Finelli, Kevin Daniel; The ATLAS collaboration

    2015-01-01

    Measurements of single top quark production in proton--proton collisions at 7 and 8 TeV using the ATLAS and CMS detectors at the LHC are presented. In the leading order process, a $W$ boson is exchanged in the $t$-channel. The single top quark and anti-top total production cross-sections ratio, as well as a measurement of the inclusive and fiducial production cross-sections are presented. In addition, a measurement of the production cross-section of a single top quark in association with a $W$ boson is presented. All measurements are compared to state-of-the-art theoretical calculations and the CKM matrix element $|V_{tb}|$ is determined. The $s$-channel production is also explored and limits on exotic production in single top quark processes are discussed. This includes the search for additional $W’$ bosons and a search for monotops.

  14. Reversely modulated optical single sideband scheme and its application in a 60-GHz full duplex ROF system

    NARCIS (Netherlands)

    Cao, Z.; Yu, J.J.; Chen, L.; Shu, Q.L.

    2012-01-01

    The reversely modulated optical single sideband scheme (IM-OSSB) based on a parallel Mach-Zehnder modulator (P-MZM) is proposed. In this P-MZM, one sub-MZM is employed for data modulation and the other is used for optical millimeter wave (mm-wave) generation. Due to the individual modulation, this

  15. 100 MH/sub z/ fiber optic single transient gamma ray detection system

    International Nuclear Information System (INIS)

    Ogle, J.W.; Smith, R.C.; Ward, M.; Ramsey, R.; Hollabaugh, J.

    1984-01-01

    A fiber optic system has been developed to measure single transient gamma rays. The gamma ray signature is converted to light by the Cerenkov process in a 20 cm length of radiation resistant optical fiber. The signal is transmitted over 1 km of optical fiber and detected by state-of-the-art, 175 MHz analog receivers. The receivers are based on silicon PIN detectors with transimpedance hybrid amplifiers and two stages of power amplification. The dc coupled receivers have less than 2% distortion up to 5 volts with less than 10 mV rms noise and a responsivity of 37,500 V/watt at 800 nm. A calibration system measures relative fiber to fiber transit time delays and system sensitivity. System bandwidth measurements utilized an electron linear accelerator (Linac) with a 50 ps electron pulse as the Cerenkov light source. The system will be described with supporting calibration and characterization data of parts of the system and the whole system. 5 references, 7 figures, 4 tables

  16. Localization Spectroscopy of a Single Ion in an Optical Lattice

    DEFF Research Database (Denmark)

    Legrand, Olivier Philippe Alexandre

    2015-01-01

    The work reported in this thesis primarily focuses on studies of the dynamics of a single laser-cooled ion, simultaneously confined in the harmonic potential of a linear Paul trap and a rapidly varying periodic potential – a so-called optical lattice – generated from an optical standing-wave. Bes...... as a new tool for future cavity quantum electrodynamics experiments in the Ion trap group at Aarhus University.......-wave. Besides providing a better understanding of the dynamics of an ion subjected to varying trapping conditions, this work establishes a basis for future studies of various quantum many-body physics models, for manipulations of the structure of large ion Coulomb crystals, and for optimization...... of the interaction between light and matter in connection with quantum information experiments. In addition to the deep, three-dimensional harmonic potential of the linear Paul trap which confines the ion in regions of several millimeters, one of the directions of the ion motion is constrained by the application...

  17. Cross-section of single-crystal materials used as thermal neutron filters

    International Nuclear Information System (INIS)

    Adib, M.

    2005-01-01

    Transmission properties of several single crystal materials important for neutron scattering instrumentation are presented. A computer codes are developed which permit the calculation of thermal diffuse and Bragg-scattering cross-sections of silicon., and sapphire as a function of material's constants, temperature and neutron energy, E, in the range 0.1 MeV .A discussion of the use of their single-crystal as a thermal neutron filter in terms of the optimum crystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons is given

  18. Optically-controlled platforms for transfection and single- and sub-cellular surgery

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Casey, Duncan; Glückstad, Jesper

    2015-01-01

    and specificity of optical trapping in conjunction with other modalities to perform single and sub-cellular surgery. These tools form highly tuneable platforms for the delivery or removal of material from cells of interest, but can simultaneously excite fluorescent probes for imaging purposes or plasmonic...... structures for very local heating. We discuss both the history and recent applications of the field, highlighting the key findings and developments over the last 40 years of biophotonics research....

  19. Construction of a single/multiple wavelength RZ optical pulse source at 40 GHz by use of wavelength conversion in a high-nonlinearity DSF-NOLM

    DEFF Research Database (Denmark)

    Yu, Jianjun; Yujun, Qian; Jeppesen, Palle

    2001-01-01

    A single or multiple wavelength RZ optical pulse source at 40 GHz is successfully obtained by using wavelength conversion in a nonlinear optical loop mirror consisting of high nonlinearity-dispersion shifted fiber.......A single or multiple wavelength RZ optical pulse source at 40 GHz is successfully obtained by using wavelength conversion in a nonlinear optical loop mirror consisting of high nonlinearity-dispersion shifted fiber....

  20. Optical depth sectioning in the aberration-corrected scanning transmission and scanning confocal electron microscope

    International Nuclear Information System (INIS)

    Behan, G; Nellist, P D

    2008-01-01

    The use of spherical aberration correctors in the scanning transmission electron microscope (STEM) has the effect of reducing the depth of field of the microscope, making three-dimensional imaging of a specimen possible by optical sectioning. Depth resolution can be improved further by placing aberration correctors and lenses pre and post specimen to achieve an imaging mode known as scanning confocal electron microscopy (SCEM). We present the calculated incoherent point spread functions (PSF) and optical transfer functions (OTF) of a STEM and SCEM. The OTF for a STEM is shown to have a missing cone region which results in severe blurring along the optic axis, which can be especially severe for extended objects. We also present strategies for reconstruction of experimental data, such as three-dimensional deconvolution of the point spread function.

  1. HADES. A computer code for fast neutron cross section from the Optical Model

    International Nuclear Information System (INIS)

    Guasp, J.; Navarro, C.

    1973-01-01

    A FORTRAN V computer code for UNIVAC 1108/6 using a local Optical Model with spin-orbit interaction is described. The code calculates fast neutron cross sections, angular distribution, and Legendre moments for heavy and intermediate spherical nuclei. It allows for the possibility of automatic variation of potential parameters for experimental data fitting. (Author) 55 refs

  2. EPR and optical absorption studies of VO2+ doped L-alanine (C3H7NO2) single crystals

    International Nuclear Information System (INIS)

    Biyik, Recep

    2009-01-01

    VO 2+ doped L-alanine (C 3 H 7 NO 2 ) single crystals and powders are examined by electron paramagnetic resonance (EPR) and optical absorption spectroscopy. Three magnetically different sites are resolved from angular variations of L-alanine single crystal EPR spectra. In some specific orientations each VO 2+ line splits into three superhyperfine lines with intensities of 1:2:1 and maximum splitting value of 2.23 mT. The local symmetries of VO 2+ complex sites are nearly axial. The optical absorption spectra show three bands. Spin Hamiltonian parameters are measured and molecular orbital coefficients are calculated by correlating EPR and optical absorption data for the central vanadyl ion.

  3. Indirect optical crosstalk reduction by highly-doped backside layer in PureB single-photon avalanche diode arrays

    NARCIS (Netherlands)

    Osrečki, Željko; Knežević, Tihomir; Nanver, Lis K.; Suligoj, Tomislav

    2017-01-01

    A method of reducing indirect optical crosstalk in a PureB single-photon avalanche diode (SPAD) array is investigated by TCAD simulations. The reduction is accomplished by taking advantage of the enhanced optical absorption of a highly-doped Si layer (p-type, 3×1020 cm-3) on the backside of the

  4. Nonlinear polarization effects in a birefringent single mode optical fiber

    International Nuclear Information System (INIS)

    Ishiekwene, G.C.; Mensah, S.Y.; Brown, C.S.

    2001-04-01

    The nonlinear polarization effects in a birefringent single mode optical fiber is studied using Jacobi elliptic functions. We find that the polarization state of the propagating beam depends on the initial polarization as well as the intensity of the input light in a complicated way. The Stokes polarization parameters are either periodic or aperiodic depending on the value of the Jacobian modulus. Our calculations suggest that the effective beat length of the fiber can become infinite at a higher critical value of the input power when polarization dependent losses are considered. (author)

  5. Single-atom trapping and transport in DMD-controlled optical tweezers

    Science.gov (United States)

    Stuart, Dustin; Kuhn, Axel

    2018-02-01

    We demonstrate the trapping and manipulation of single neutral atoms in reconfigurable arrays of optical tweezers. Our approach offers unparalleled speed by using a Texas instruments digital micro-mirror device as a holographic amplitude modulator with a frame rate of 20 000 per second. We show the trapping of static arrays of up to 20 atoms, as well as transport of individually selected atoms over a distance of 25 μm with laser cooling and 4 μm without. We discuss the limitations of the technique and the scope for technical improvements.

  6. Post-processing with linear optics for improving the quality of single-photon sources

    International Nuclear Information System (INIS)

    Berry, Dominic W; Scheel, Stefan; Myers, Casey R; Sanders, Barry C; Knight, Peter L; Laflamme, Raymond

    2004-01-01

    Triggered single-photon sources produce the vacuum state with non-negligible probability, but produce a much smaller multiphoton component. It is therefore reasonable to approximate the output of these photon sources as a mixture of the vacuum and single-photon states. We show that it is impossible to increase the probability for a single photon using linear optics and photodetection on fewer than four modes. This impossibility is due to the incoherence of the inputs; if the inputs were pure-state superpositions, it would be possible to obtain a perfect single-photon output. In the more general case, a chain of beam splitters can be used to increase the probability for a single photon, but at the expense of adding an additional multiphoton component. This improvement is robust against detector inefficiencies, but is degraded by distinguishable photons, dark counts or multiphoton components in the input

  7. 16 channel WDM regeneration in a single phase-sensitive amplifier through optical Fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Da Ros, Francesco; Lillieholm, Mads

    2016-01-01

    We demonstrate simultaneous phase regeneration of 16-WDM DPSK channels using optical Fourier transformation and a single phase-sensitive amplifier. The BERs of 16-WDM×10-Gbit/s phase noise degraded DPSK signals are improved by 0.4-1.3 orders of magnitude...

  8. Effect of imaginary part of an optical potential on reaction total cross sections

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.; Dobromyslov, M.B.; Kim Yng Pkhung; Shilov, V.M.

    1977-01-01

    The effect of the imaginary part of optical potential on the total cross sections of reactions is explained. The complex rectangular well model is used, i.e. the real rectangular well at r 16 O + 27 Al reactions and the partial permeabilities are presented. It is demonstrated that the S-matrix has proved to be unitary. Oscillations of the partial permeabilities and cross-sections are observed for small potential values in the Wsub(o) imaginary part, which no longer occur at larger Wsub(o). This corresponds to the overlapping and nonoverlapping quasistationary levels in complex rectangular well

  9. Self-reporting inhibitors: single crystallization process to get two optically pure enantiomers.

    Science.gov (United States)

    Wan, Xinhua; Ye, Xichong; Cui, Jiaxi; Li, Bowen; Li, Na; Zhang, Jie

    2018-05-22

    Collection of two optically pure enantiomers in a single crystallization process can significantly increase the chiral separation efficiency but it's hard to realize nowadays. Herein we describe, for the first time, a self-reporting strategy for visualizing the crystallization process by a kind of dyed self-assembled inhibitors made from the copolymers with tri(ethylene glycol)-grafting polymethylsiloxane as main chains and poly(N6-methacryloyl-L-lysine) as side chains. When applied with seeds together for the fractional crystallization of conglomerates, the inhibitors can label the formation of the secondary crystals and guide us to completely separate the crystallization process of two enantiomers with colorless crystals as the first product and red crystals as the secondary product. This method leads to high optical purity of D/L-Asn·H2O (99.9 ee% for D-crystals and 99.5 ee% for L-crystals) in a single crystallization process. Moreover, it requires low feeding amount of additives and shows excellent recyclability. We foresee its great potential in developing novel chiral separation methods that can be used in different scales. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Femtosecond single-beam direct laser poling of stable and efficient second-order nonlinear optical properties in glass

    International Nuclear Information System (INIS)

    Papon, G.; Marquestaut, N.; Royon, A.; Canioni, L.; Petit, Y.; Dussauze, M.; Rodriguez, V.; Cardinal, T.

    2014-01-01

    We depict a new approach for the localized creation in three dimensions (3D) of a highly demanded nonlinear optical function for integrated optics, namely second harmonic generation. We report on the nonlinear optical characteristics induced by single-beam femtosecond direct laser writing in a tailored silver-containing phosphate glass. The original spatial distribution of the nonlinear pattern, composed of four lines after one single laser writing translation, is observed and modeled with success, demonstrating the electric field induced origin of the second harmonic generation. These efficient second-order nonlinear structures (with χ eff (2)  ∼ 0.6 pm V −1 ) with sub-micron scale are impressively stable under thermal constraint up to glass transition temperature, which makes them very promising for new photonic applications, especially when 3D nonlinear architectures are desired

  11. Nanoscale and femtosecond optical autocorrelator based on a single plasmonic nanostructure

    International Nuclear Information System (INIS)

    Melentiev, P N; Afanasiev, A E; Balykin, V I; Tausenev, A V; Konyaschenko, A V; Klimov, V V

    2014-01-01

    We demonstrated a nanoscale size, ultrafast and multiorder optical autocorrelator with a single plasmonic nanostructure for measuring the spatio-temporal dynamics of femtosecond laser light. As a nanostructure, we use a split hole resonator (SHR), which was made in an aluminium nanofilm. The Al material yields the fastest response time (100 as). The SHR nanostructure ensures a high nonlinear optical efficiency of the interaction with laser radiation, which leads to (1) the second, (2) the third harmonics generation and (3) the multiphoton luminescence, which, in turn, are used to perform multi-order autocorrelation measurements. The nano-sized SHR makes it possible to conduct autocorrelation measurements (i) with a subwavelength spatial resolution and (ii) with no significant influence on the duration of the laser pulse. The time response realized by the SHR nanostructure is about 10 fs. (letter)

  12. UV-Vis Ratiometric Resonance Synchronous Spectroscopy for Determination of Nanoparticle and Molecular Optical Cross Sections.

    Science.gov (United States)

    Nettles, Charles B; Zhou, Yadong; Zou, Shengli; Zhang, Dongmao

    2016-03-01

    Demonstrated herein is a UV-vis Ratiometric Resonance Synchronous Spectroscopic (R2S2, pronounced as "R-two-S-two" for simplicity) technique where the R2S2 spectrum is obtained by dividing the resonance synchronous spectrum of a NP-containing solution by the solvent resonance synchronous spectrum. Combined with conventional UV-vis measurements, this R2S2 method enables experimental quantification of the absolute optical cross sections for a wide range of molecular and nanoparticle (NP) materials that range optically from pure photon absorbers or scatterers to simultaneous photon absorbers and scatterers, simultaneous photon absorbers and emitters, and all the way to simultaneous photon absorbers, scatterers, and emitters in the UV-vis wavelength region. Example applications of this R2S2 method were demonstrated for quantifying the Rayleigh scattering cross sections of solvents including water and toluene, absorption and resonance light scattering cross sections for plasmonic gold nanoparticles, and absorption, scattering, and on-resonance fluorescence cross sections for semiconductor quantum dots (Qdots). On-resonance fluorescence quantum yields were quantified for the model molecular fluorophore Eosin Y and fluorescent Qdots CdSe and CdSe/ZnS. The insights and methodology presented in this work should be of broad significance in physical and biological science research that involves photon/matter interactions.

  13. A design of calibration single star simulator with adjustable magnitude and optical spectrum output system

    Science.gov (United States)

    Hu, Guansheng; Zhang, Tao; Zhang, Xuan; Shi, Gentai; Bai, Haojie

    2018-03-01

    In order to achieve multi-color temperature and multi-magnitude output, magnitude and temperature can real-time adjust, a new type of calibration single star simulator was designed with adjustable magnitude and optical spectrum output in this article. xenon lamp and halogen tungsten lamp were used as light source. The control of spectrum band and temperature of star was realized with different multi-beam narrow band spectrum with light of varying intensity. When light source with different spectral characteristics and color temperature go into the magnitude regulator, the light energy attenuation were under control by adjusting the light luminosity. This method can completely satisfy the requirements of calibration single star simulator with adjustable magnitude and optical spectrum output in order to achieve the adjustable purpose of magnitude and spectrum.

  14. Optical Properties of the Fresnoite Ba2TiSi2O8 Single Crystal

    Directory of Open Access Journals (Sweden)

    Chuanying Shen

    2017-02-01

    Full Text Available In this work, using large-sized single crystals of high optical quality, the optical properties of Ba2TiSi2O8 were systematically investigated, including transmission spectra, refractive indices and nonlinear absorption properties. The crystal exhibits a high transmittance (>84% over a wide wavelength range from 340 to 2500 nm. The refractive indices in the range from 0.31256 to 1.01398 μm were measured, and Sellmeier’s equations were fitted by the least squares method. The nonlinear absorption properties were studied by using the open-aperture Z-scan technique, with a nonlinear absorption coefficient measured to be on the order of 0.257 cm/GW at the peak power density of 16.4 GW/cm2. Such high transmittance and wide transparency indicate that optical devices using the Ba2TiSi2O8crystal can be applied over a wide wavelength range. Furthermore, the small nonlinear absorption observed in Ba2TiSi2O8 will effectively increase the optical conversion efficiency, decreasing the generation of laser damage of the optical device.

  15. Top quark production at the LHC (single top and tt-bar cross sections)

    International Nuclear Information System (INIS)

    Lange, J.

    2014-01-01

    With the large number of top quarks produced at the LHC, top quark physics enters an era of precision and properties measurements. This article reviews the recent advances in top quark cross section measurements performed by ATLAS and CMS using data recorded in 2011 with integrated luminosities up to 5 fb -1 . They include precision inclusive cross sections, the establishment of challenging channels, first differential cross section measurements and single top production. An overall good agreement with Standard Model predictions is observed

  16. Electronic states and optical properties of single donor in GaN conical quantum dot with spherical edge

    Science.gov (United States)

    El Aouami, A.; Feddi, E.; El-Yadri, M.; Aghoutane, N.; Dujardin, F.; Duque, C. A.; Phuc, Huynh Vinh

    2018-02-01

    In this paper we present a theoretical investigation of quantum confinement effects on the electron and single donor states in GaN conical quantum dot with spherical edge. In the framework of the effective mass approximation, the Schrödinger equations of electron and donor have been solved analytically in an infinite potential barrier model. Our calculations show that the energies of electron and donor impurity are affected by the two characteristic parameters of the structure which are the angle Ω and the radial dimension R. We show that, despite the fact that the reduction of the two parameters Ω and R leads to the same confinement effects, the energy remains very sensitive to the variation of the radial part than the variation of the angular part. The analysis of the photoionization cross-section corresponding to optical transitions between the conduction band and the first donor energy level shows clearly that the reduction of the radius R causes a shift in resonance peaks towards the high energies. On the other hand, the optical transitions between 1 s - 1 p , 1 p - 1 d and 1 p - 2 s show that the increment of the conical aperture Ω (or reduction of R) implies a displacement of the excitation energy to higher energies.

  17. Dual-mode optical microscope based on single-pixel imaging

    Science.gov (United States)

    Rodríguez, A. D.; Clemente, P.; Tajahuerce, E.; Lancis, J.

    2016-07-01

    We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD. Data to be displayed are geometrically transformed before written into a memory cell to cancel optical artifacts coming from the diamond-like shaped structure of the micromirror array. The 24-bit color depth of the display is fully exploited to increase the frame rate by a factor of 24, which makes the technique practicable for real samples. Our commercial DMD-based LED-illumination is cost effective and can be easily coupled as an add-on module for already existing inverted microscopes. The reflection and transmission information provided by our dual microscope complement each other and can be useful for imaging non-uniform samples and to prevent self-shadowing effects.

  18. Systematics of intermediate-energy single-nucleon removal cross sections

    Science.gov (United States)

    Tostevin, J. A.; Gade, A.

    2014-11-01

    There is now a large and increasing body of experimental data and theoretical analyses for reactions that remove a single nucleon from an intermediate-energy beam of neutron- or proton-rich nuclei. In each such measurement, one obtains the inclusive cross section for the population of all bound final states of the mass A -1 reaction residue. These data, from different regions of the nuclear chart, and that involve weakly and strongly bound nucleons, are compared with theoretical expectations. These calculations include an approximate treatment of the reaction dynamics and shell-model descriptions of the projectile initial state, the bound final states of the residues, and the single-particle strengths computed from their overlap functions. The results are discussed in the light of recent data, more exclusive tests of the eikonal dynamical description, and calculations that take input from more microscopic nuclear structure models.

  19. Trapping, manipulation and rapid rotation of NBD-C8 fluorescent single microcrystals in optical tweezers

    International Nuclear Information System (INIS)

    GALAUP, Jean-Pierre; RODRIGUEZ-OTAZO, Mariela; AUGIER-CALDERIN, Angel; LAMERE; Jean-Francois; FERY-FORGUES, Suzanne

    2009-01-01

    We have built an optical tweezers experiment based on an inverted microscope to trap and manipulate single crystals of micro or sub-micrometer size made from fluorescent molecules of 4-octylamino-7-nitrobenzoxadiazole (NBD-C8). These single crystals have parallelepiped shapes and exhibit birefringence properties evidenced through optical experiments between crossed polarizers in a polarizing microscope. The crystals are uniaxial with their optical axis oriented along their largest dimension. Trapped in the optical trap, the organic micro-crystals are oriented in such a way that their long axis is along the direction of the beam propagation, and their short axis follows the direction of the linear polarization. Therefore, with linearly polarized light, simply rotating the light polarization can orient the crystal. When using circularly or only elliptically polarized light, the crystal can spontaneously rotate and reach rotation speed of several hundreds of turns per second. A surprising result has been observed: when the incident power is growing up, the rotation speed increases to reach a maximum value and then decreases even when the power is still growing up. Moreover, this evolution is irreversible. Different possible explanations can be considered. The development of a 3D control of the crystals by dynamical holography using liquid crystal spatial modulators will be presented and discussed on the basis of the most recent results obtained. (Author)

  20. A high sensitivity optically stimulated luminescence scanning system for measurement of single sand-sized grains

    DEFF Research Database (Denmark)

    Duller, G.A.T.; Bøtter-Jensen, L.; Kohsiek, P.

    1999-01-01

    An instrument has been designed for the routine analysis of the optically stimulated luminescence signal from single grains of sand. The system is capable of analysing over 3000 individual grains in a single measurement sequence, and the OSL signal from each grain can be read in less than 3 s....... The design principles are described, along with preliminary measurements that illustrate the operation of the system and its capabilities....

  1. Coherent harmonic production using a two-section undulator FEL

    Energy Technology Data Exchange (ETDEWEB)

    Jaroszynski, D.A. [Commissariat a l`Energie, Bruyeres-le-Chatel (France); Prazeres, R.; Glotin, F. [Centre Universitaire Paris-Sud (France)] [and others

    1995-12-31

    We present measurements and a theoretical analysis of a new method of generating harmonic radiation in a free-electron laser oscillator with a two section undulator in a single optical cavity. To produce coherent harmonic radiation the undulator is arranged so that the downstream undulator section resonance frequency matches a harmonic of the upstream undulator. Both the fundamental and the harmonic optical fields evolve in the same optical cavity and are coupled out with different extraction fractions using a hole in one of the cavity mirrors. We present measurements that show that the optical power at the second and third harmonic can be enhanced by more than an order of magnitude in this fundamental/harmonic configuration. We compare the production of harmonic radiation of a two sectioned fundamental/harmonic undulator with that produced from a FEL operating at its highest efficiency with a step-tapered undulator, where the bunching at the end of the first section is very large. We examine, the dependence of the harmonic power on the intracavity power by adjusting the optical cavity desynchronism, {delta}L. We also examine the evolution of the fundamental and harmonic powers as a function of cavity roundtrip number to evaluate the importance of the small signal gain at the harmonic. We compare our measurements with predictions of a multi-electron numerical model that follows the evolution of fundamental and harmonic power to saturation. This fundamental/harmonic mode, of operation of the FEL may have useful applications in the production of coherent X-ray and VUV radiation, a spectral range where high reflectivity optical cavity mirrors are difficult or impossible to manufacture.

  2. Study of the effect of doping on the temperature stability of the optical properties of germanium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Podkopaev, O. I. [Joint-Stock Company “Germanium” (Russian Federation); Shimanskiy, A. F., E-mail: shimanaf@mail.ru [Siberian Federal University (Russian Federation); Kopytkova, S. A.; Filatov, R. A. [Joint-Stock Company “Germanium” (Russian Federation); Golubovskaya, N. O. [Siberian Federal University (Russian Federation)

    2016-10-15

    The effect of doping on the optical transmittance of germanium single crystals is studied by infrared Fourier spectroscopy. It is established that the introduction of silicon and tellurium additives into germanium doped with antimony provides a means for improving the temperature stability of the optical properties of the crystals.

  3. Study of the effect of doping on the temperature stability of the optical properties of germanium single crystals

    International Nuclear Information System (INIS)

    Podkopaev, O. I.; Shimanskiy, A. F.; Kopytkova, S. A.; Filatov, R. A.; Golubovskaya, N. O.

    2016-01-01

    The effect of doping on the optical transmittance of germanium single crystals is studied by infrared Fourier spectroscopy. It is established that the introduction of silicon and tellurium additives into germanium doped with antimony provides a means for improving the temperature stability of the optical properties of the crystals.

  4. Advanced optical measurements for characterizing photophysical properties of single nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    Polsky, Ronen; Davis, Ryan W.; Arango, Dulce C.; Brozik, Susan Marie; Wheeler, David Roger

    2009-09-01

    Formation of complex nanomaterials would ideally involve single-pot reaction conditions with one reactive site per nanoparticle, resulting in a high yield of incrementally modified or oriented structures. Many studies in nanoparticle functionalization have sought to generate highly uniform nanoparticles with tailorable surface chemistry necessary to produce such conjugates, with limited success. In order to overcome these limitations, we have modified commercially available nanoparticles with multiple potential reaction sites for conjugation with single ssDNAs, proteins, and small unilamellar vesicles. These approaches combined heterobifunctional and biochemical template chemistries with single molecule optical methods for improved control of nanomaterial functionalization. Several interesting analytical results have been achieved by leveraging techniques unique to SNL, and provide multiple paths for future improvements for multiplex nanoparticle synthesis and characterization. Hyperspectral imaging has proven especially useful for assaying substrate immobilized fluorescent particles. In dynamic environments, temporal correlation spectroscopies have been employed for tracking changes in diffusion/hydrodynamic radii, particle size distributions, and identifying mobile versus immobile sample fractions at unbounded dilution. Finally, Raman fingerprinting of biological conjugates has been enabled by resonant signal enhancement provided by intimate interactions with nanoparticles and composite nanoshells.

  5. Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector

    International Nuclear Information System (INIS)

    Heath, Robert M.; Tanner, Michael G.; Casaburi, Alessandro; Hadfield, Robert H.; Webster, Mark G.; San Emeterio Alvarez, Lara; Jiang, Weitao; Barber, Zoe H.; Warburton, Richard J.

    2014-01-01

    The device physics of parallel-wire superconducting nanowire single photon detectors is based on a cascade process. Using nano-optical techniques and a parallel wire device with spatially separate pixels, we explicitly demonstrate the single- and multi-photon triggering regimes. We develop a model for describing efficiency of a detector operating in the arm-trigger regime. We investigate the timing response of the detector when illuminating a single pixel and two pixels. We see a change in the active area of the detector between the two regimes and find the two-pixel trigger regime to have a faster timing response than the one-pixel regime

  6. Diameter grouping in bulk samples of single-walled carbon nanotubes from optical absorption spectroscopy

    NARCIS (Netherlands)

    Golden, M.S.; Fink, J.; Dunsch, L.; Bauer, H.-D.; Reibold, M.; Knupfer, M.; Friedlein, R.; Pichler, T.; Jost, O.

    1999-01-01

    The influence of the synthesis parameters on the mean characteristics of single-wall carbon nanotubes in soot produced by the laser vaporization of graphite has been analyzed using optical absorption spectroscopy. The abundance and mean diameter of the nanotubes were found to be most influenced by

  7. Cavity Formation Modeling of Fiber Fuse in Single-Mode Optical Fibers

    Directory of Open Access Journals (Sweden)

    Yoshito Shuto

    2017-01-01

    Full Text Available The evolution of a fiber-fuse phenomenon in a single-mode optical fiber was studied theoretically. To clarify both the silica-glass densification and cavity formation, which have been observed in fiber fuse propagation, we investigated a nonlinear oscillation model using the Van Der Pol equation. This model was able to phenomenologically explain both the densification of the core material and the formation of periodic cavities in the core layer as a result of a relaxation oscillation.

  8. Differential-interference-contrast digital in-line holography microscopy based on a single-optical-element.

    Science.gov (United States)

    Zhang, Yuchao; Xie, Changqing

    2015-11-01

    Both digital in-line holography (DIH) and zone plate-based microscopy have received considerable interest as powerful imaging tools. However, the former suffers from a twin-image noise problem. The latter suffers from low efficiency and difficulty in fabrication. Here, we present an effective and efficient phase-contrast imaging approach, named differential-interference-contrast digital in-line holography (DIC-DIH), by using a single optical element to split the incident light into a plane wave and a converging spherical wave and generate a two-dimensional (2D) DIC effect simultaneously. Specifically, to improve image contrast, we present a new single optical element, termed 2D DIC compound photon sieves, by combining two overlaid binary gratings and a compound photon sieve through two logical XOR operations. The proof-of-concept experiments demonstrate that the proposed technique can eliminate the twin-image noise problem and improve image contrast with high efficiency. Additionally, we present an example of the phase-contrast imaging nonuniform thick photoresist development process.

  9. 2nd-order optical model of the isotopic dependence of heavy ion absorption cross sections for radiation transport studies

    Science.gov (United States)

    Cucinotta, Francis A.; Yan, Congchong; Saganti, Premkumar B.

    2018-01-01

    Heavy ion absorption cross sections play an important role in radiation transport codes used in risk assessment and for shielding studies of galactic cosmic ray (GCR) exposures. Due to the GCR primary nuclei composition and nuclear fragmentation leading to secondary nuclei heavy ions of charge number, Z with 3 ≤ Z ≥ 28 and mass numbers, A with 6 ≤ A ≥ 60 representing about 190 isotopes occur in GCR transport calculations. In this report we describe methods for developing a data-base of isotopic dependent heavy ion absorption cross sections for interactions. Calculations of a 2nd-order optical model solution to coupled-channel solutions to the Eikonal form of the nucleus-nucleus scattering amplitude are compared to 1st-order optical model solutions. The 2nd-order model takes into account two-body correlations in the projectile and target ground-states, which are ignored in the 1st-order optical model. Parameter free predictions are described using one-body and two-body ground state form factors for the isotopes considered and the free nucleon-nucleon scattering amplitude. Root mean square (RMS) matter radii for protons and neutrons are taken from electron and muon scattering data and nuclear structure models. We report on extensive comparisons to experimental data for energy-dependent absorption cross sections for over 100 isotopes of elements from Li to Fe interacting with carbon and aluminum targets. Agreement between model and experiments are generally within 10% for the 1st-order optical model and improved to less than 5% in the 2nd-order optical model in the majority of comparisons. Overall the 2nd-order optical model leads to a reduction in absorption compared to the 1st-order optical model for heavy ion interactions, which influences estimates of nuclear matter radii.

  10. Optical tweezers with 2.5 kHz bandwidth video detection for single-colloid electrophoresis

    Science.gov (United States)

    Otto, Oliver; Gutsche, Christof; Kremer, Friedrich; Keyser, Ulrich F.

    2008-02-01

    We developed an optical tweezers setup to study the electrophoretic motion of colloids in an external electric field. The setup is based on standard components for illumination and video detection. Our video based optical tracking of the colloid motion has a time resolution of 0.2ms, resulting in a bandwidth of 2.5kHz. This enables calibration of the optical tweezers by Brownian motion without applying a quadrant photodetector. We demonstrate that our system has a spatial resolution of 0.5nm and a force sensitivity of 20fN using a Fourier algorithm to detect periodic oscillations of the trapped colloid caused by an external ac field. The electrophoretic mobility and zeta potential of a single colloid can be extracted in aqueous solution avoiding screening effects common for usual bulk measurements.

  11. Single-crystal films of a combination of materials (co-crystal) involving DAST and IR-125 for electro-optic applications

    Science.gov (United States)

    Narayanan, A.; Titus, J.; Rajagopalan, H.; Vippa, P.; Thakur, M.

    2006-03-01

    Single-crystal film of DAST (4'-dimethylamino-N-methyl-4-stilbazolium tosylate) has been shown [1] to have exceptionally large electro-optic coefficients (r11 ˜ 770 pm/V at 633 nm). In this report, single crystal film of a combination of materials (co-crystal) involving DAST and a dye molecule IR-125 will be discussed. Modified shear method was used to prepare the co-crystal films. The film has been characterized using polarized optical microscopy, optical absorption spectroscopy and x-ray diffraction. The optical absorption spectrum has two major bands: one at about 350--600 nm corresponding to DAST and the other at about 600-900 nm corresponding to IR-125. The x-ray diffraction results show peaks involving the presence of DAST and IR-125 within the co-crystal film. Since the co-crystal has strong absorption at longer wavelengths it is expected to show higher electro-optic coefficients at longer wavelengths. Preliminary measurements at 1.55 μm indicate a high electro-optic coefficient of the co-crystal film. [1] Swamy, Kutty, Titus, Khatavkar, Thakur, Appl. Phys. Lett. 2004, 85, 4025; Kutty, Thakur, Appl. Phys. Lett. 2005, 87, 191111.

  12. Cavity QED with a single QD inside an optical microcavity

    International Nuclear Information System (INIS)

    Peter, E.; Bloch, J.; Lemaitre, A.; Hours, J.; Patriarche, G.; Cavanna, A.; Laurent, S.; Robert-Philip, I.; Senellart, P.; Martrou, D.; Gerard, J.M.

    2006-01-01

    To demonstrate strong coupling regime for a single quantum dot inside an optical microcavity, large oscillator strength quantum dots are needed. We show that quantum dots formed by the interface fluctuations of a thin GaAs quantum well are ideal systems for this purpose since they can present an oscillator strength larger than 100. By inserting a GaAs QD inside a state of the art microdisk microcavity, we demonstrate the strong coupling regime with a Rabi splitting of 400 μeV. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Optical Characterization and Applications of Single Walled Carbon Nanotubes

    Science.gov (United States)

    Strano, Michael S.

    2005-03-01

    Recent advances in the dispersion and separation of single walled carbon nanotubes have led to new methods of optical characterization and some novel applications. We find that Raman spectroscopy can be used to probe the aggregation state of single-walled carbon nanotubes in solution or as solids with a range of varying morphologies. Carbon nanotubes experience an orthogonal electronic dispersion when in electrical contact that broadens (from 40 meV to roughly 80 meV) and shifts the interband transition to lower energy (by 60 meV). We show that the magnitude of this shift is dependent on the extent of bundle organization and the inter-nanotube contact area. In the Raman spectrum, aggregation shifts the effective excitation profile and causes peaks to increase or decrease, depending on where the transition lies, relative to the excitation wavelength. The findings are particularly relevant for evaluating nanotube separation processes, where relative peak changes in the Raman spectrum can be confused for selective enrichment. We have also used gel electrophoresis and column chromatography conducted on individually dispersed, ultrasonicated single-walled carbon nanotubes to yield simultaneous separation by tube length and diameter. Electroelution after electrophoresis is shown to produce highly resolved fractions of nanotubes with average lengths between 92 and 435 nm. Separation by diameter is concomitant with length fractionation, and nanotubes that have been cut shortest also possess the greatest relative enrichments of large-diameter species. The relative quantum yield decreases nonlinearly as the nanotube length becomes shorter. These findings enable new applications of nanotubes as sensors and biomarkers. Particularly, molecular detection using near infrared (n-IR) light between 0.9 and 1.3 eV has important biomedical applications because of greater tissue penetration and reduced auto-fluorescent background in thick tissue or whole blood media. Carbon nanotubes

  14. Particle-induced bit errors in high performance fiber optic data links for satellite data management

    International Nuclear Information System (INIS)

    Marshall, P.W.; Carts, M.A.; Dale, C.J.; LaBel, K.A.

    1994-01-01

    Experimental test methods and analysis tools are demonstrated to assess particle-induced bit errors on fiber optic link receivers for satellites. Susceptibility to direct ionization from low LET particles is quantified by analyzing proton and helium ion data as a function of particle LET. Existing single event analysis approaches are shown to apply, with appropriate modifications, to the regime of temporally (rather than spatially) distributed bits, even though the sensitivity to single events exceeds conventional memory technologies by orders of magnitude. The cross-section LET dependence follows a Weibull distribution at data rates from 200 to 1,000 Mbps and at various incident optical power levels. The LET threshold for errors is shown, through both experiment and modeling, to be 0 in all cases. The error cross-section exhibits a strong inverse dependence on received optical power in the LET range where most orbital single events would occur, thus indicating that errors can be minimized by operating links with higher incident optical power. Also, an analytic model is described which incorporates the appropriate physical characteristics of the link as well as the optical and receiver electrical characteristics. Results indicate appropriate steps to assure suitable link performance even in severe particle orbits

  15. Optical Properties of a Single Carbon Chain-Doped Silicene Nanoribbon

    Science.gov (United States)

    Lu, Dao-Bang; Song, Yu-Ling; Huang, Xiao-yu; Wang, Chong

    2018-05-01

    Using first-principles spin polarization density function theory calculations, we have studied the electronic and optical properties of zigzag-edge silicene nanoribbons (ZSiNRs) doped with a single carbon chain. Because of the doped carbon chain, there are several defect states in the band structures of ZSiNRs across the Fermi level, and the ferromagnetic ground state is metallic. The dielectric functions in all three dimensions are completely different from each other, and thus the system exhibits strong optical anisotropism. The carbon chain influenced the dielectric functions most at low energy. The first peak in the E//x direction of the dielectric spectrum exhibits a significant blueshift, and its value has changed as well. The main absorption wavelength depends on the polarization direction of the incident light, but occurs within the UV region for all polarization directions. The peaks of the energy loss spectra correspond to the trailing edges in the reflectivity spectrum, and the highest peak corresponds to a plasmon frequency. Our results could be useful for investigating nanodevices based on silicene nanoribbons.

  16. Assessment of nerve ultrastructure by fibre-optic confocal microscopy.

    Science.gov (United States)

    Cushway, T R; Lanzetta, M; Cox, G; Trickett, R; Owen, E R

    1996-01-01

    Fibre-optic technology combined with confocality produces a microscope capable of optical thin sectioning. In this original study, tibial nerves have been stained in a rat model with a vital dye, 4-(4-diethylaminostyryl)-N-methylpyridinium iodide, and analysed by fibre-optic confocal microscopy to produce detailed images of nerve ultrastructure. Schwann cells, nodes of Ranvier and longitudinal myelinated sheaths enclosing axons were clearly visible. Single axons appeared as brightly staining longitudinal structures. This allowed easy tracing of multiple signal axons within the nerve tissue. An accurate measurement of internodal lengths was easily accomplished. This technique is comparable to current histological techniques, but does not require biopsy, thin sectioning or tissue fixing. This study offers a standard for further in vivo microscopy, including the possibility of monitoring the progression of nerve regeneration following microsurgical neurorraphy.

  17. Impurity-related linear and nonlinear optical response in quantum-well wires with triangular cross section

    Energy Technology Data Exchange (ETDEWEB)

    Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Mora-Ramos, M.E. [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos, México (Mexico); Kasapoglu, E.; Ungan, F.; Yesilgul, U. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Sakiroglu, S. [Dokuz Eylül University, Physics Department, 35160 Buca, İzmir (Turkey); Sari, H. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Sökmen, I. [Dokuz Eylül University, Physics Department, 35160 Buca, İzmir (Turkey)

    2013-11-15

    The 1s-like and 2p-like donor impurity energy states are studied in a semiconductor quantum wire of equilateral triangular cross section as functions of the impurity position and the geometrical size of the structure. Linear and nonlinear coefficients for the optical absorption and relative refractive index change associated with 1s→2p transitions are calculated for both the x-polarization and y-polarization of the incident light. The results show a mixed effect of redshift and blueshift depending on the location of the donor atom. Also, strong nonlinear contributions to the optical absorption coefficient are obtained for both polarizations in the on-center impurity case. -- Highlights: • The 1s- and 2p-like impurity states in triangular quantum-well wires. • Optical absorption and relative refractive index changes are calculated. • Redshift and blueshift in the optical structures depend on the donor position. • Strong nonlinear contributions to the absorption coefficient have been obtained.

  18. Competing bosonic condensates in optical lattice with a mixture of single and pair hoppings

    Energy Technology Data Exchange (ETDEWEB)

    Travin, V.M., E-mail: v.travin@int.pan.wroc.pl; Kopeć, T.K., E-mail: t.kopec@int.pan.wroc.pl

    2017-01-15

    A system of ultra-cold atoms with single boson and pair tunneling of bosonic atoms is considered in an optical lattice at arbitrary temperature. A mean-field theory was applied to the extended Bose-Hubbard Hamiltonian describing the system in order to investigate the competition between superfluid and pair superfluid as a function of the chemical potential and the temperature. To this end we have applied a method based on the Laplace transform method for the efficient calculation of the statistical sum for the quantum Hamiltonian. These results may be of interest for experiments on cold atom systems in optical lattices.

  19. Near surface mechanical properties of optical single crystals and surface response to deterministic microgrinding

    Science.gov (United States)

    Randi, Joseph A., III

    2005-12-01

    This thesis makes use of microindentation, nanoindentation and nanoscratching methods to better understand the mechanical properties of single crystalline silicon, calcium fluoride, and magnesium fluoride. These properties are measured and are used to predict the material's response to material removal, specifically by grinding and polishing, which is a combination of elastic, plastic and fracture processes. The hardness anisotropy during Knoop microindentation, hardness from nanoindentation, and scratch morphology from nanoscratching are reported. This information is related to the surface microroughness from grinding. We show that mechanical property relationships that predict the surface roughness from lapping and deterministic microgrinding of optical glasses are applicable to single crystals. We show the range of hardness from some of the more common crystallographic faces. Magnesium fluoride, having a tetragonal structure, has 2-fold hardness anisotropy. Nanoindentation, as expected provides higher hardness than microindentation, but anisotropy is not observed. Nanoscratching provides the scratch profile during loading, after the load has been removed, and the coefficient of friction during the loading. Ductile and brittle mode scratching is present with brittle mode cracking being orientation specific. Subsurface damage (SSD) measurements are made using a novel process known as the MRF technique. Magnetorheological finishing is used to polish spots into the ground surface where SSD can be viewed. SSD is measured using an optical microscope and knowledge of the spot profile. This technique is calibrated with a previous technique and implemented to accurately measure SSD in single crystals. The data collected are compared to the surface microroughness of the ground surface, resulting in an upper bound relationship. The results indicate that SSD is always less than 1.4 times the peak-to-valley surface microroughness for single crystals regardless of the

  20. Crucial role of molecular planarity on the second order nonlinear optical property of pyridine based chalcone single crystals

    Science.gov (United States)

    Menezes, Anthoni Praveen; Jayarama, A.; Ng, Seik Weng

    2015-05-01

    An efficient nonlinear optical material 2E-3-(4-bromophenyl)-1-(pyridin-3-yl) prop-2-en-1-one (BPP) was synthesized and single crystals were grown using slow evaporation solution growth technique at room temperature. Grown crystal had prismatic morphology and its structure was confirmed by various spectroscopic studies, elemental analysis, and single crystal X-ray diffraction (XRD) technique. The single crystal XRD of the crystal showed that BPP crystallizes in monoclinic system with noncentrosymmetric space group P21 and the cell parameters are a = 5.6428(7) Å, b = 3.8637(6) Å, c = 26.411(2) Å, β = 97.568(11) deg and v = 575.82(12) Å3. The UV-Visible spectrum reveals that the crystal is optically transparent and has high optical energy band gap of 3.1 eV. The powder second harmonic generation efficiency (SHG) of BPP is 6.8 times that of KDP. From thermal analysis it is found that the crystal melts at 139 °C and decomposes at 264 °C. High optical transparency down to blue region, higher powder SHG efficiency and better thermal stability than that of urea makes this chalcone derivative a promising candidate for SHG applications. Furthermore, effect of molecular planarity on SHG efficiency and role of pyridine ring adjacent to carbonyl group in forming noncentrosymmetric crystal systems of chalcone family is also discussed.

  1. Single-Top quark production cross section and properties using the ATLAS detector at the LHC

    CERN Document Server

    Stamm, Soren; The ATLAS collaboration

    2016-01-01

    Measurements of single top-quark production in proton proton collisions at 8 TeV and 13 TeV are presented. In the leading order process, a W boson is exchanged in the t-channel. The single top-quark and anti-top total production cross sections is presented. In addition, a measurement of the production cross section of a single top quark in association with a W boson is discussed. All measurements are compared to state-of-the-art theoretical calculations and the CKM matrix element |Vtb| is determined. Finally, the first evidence for s-channel production at LHC is presented. In this analysis the signal is extracted using a maximum-likelihood fit of a discriminant which is based on the matrix element method.

  2. Optical and magneto-optical properties of single crystals of RFe{sub 2} (R = Gd, Tb, Ho, and Lu) and GdCo{sub 2} intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.J.

    1999-02-12

    The author has studied the diagonal and off-diagonal optical conductivity of RFe{sub 2}(R = Gd, Tb, Ho, Lu) and GdCo{sub 2} single crystals grown by the flux method. Using spectroscopic ellipsometry the author has measured the dielectric function from 1.5 to 5.5 eV. The magneto-optical Kerr spectrometer at temperatures between 7 and 295 K and applied magnetic fields between 0.5 to 1.6 T. The apparatus and calibration method are described in detail. Using magneto-optical data and optical constants he derives the experimental value of the off-diagonal conductivity components. Theoretical calculations of optical conductivities and magneto-optical parameters were performed using the tight binding-linear muffin tin orbitals method within the local spin density approximation. He applied this TB-LMTO method to LuFe{sub 2}. The theoretical results obtained agree well with the experimental data. The oxidation effects on the diagonal part of the optical conductivity were considered using a three-phase model. The oxidation effects on the magneto-optical parameters were also considered by treating the oxide layer as a nonmagnetic thin transparent layer. These corrections change not only the magnitude but also the shape of the optical conductivity and the magneto-optical parameters.

  3. Growth of optical-quality anthracene crystals doped with dibenzoterrylene for controlled single photon production

    Energy Technology Data Exchange (ETDEWEB)

    Major, Kyle D., E-mail: kyle.major11@imperial.ac.uk; Lien, Yu-Hung; Polisseni, Claudio; Grandi, Samuele; Kho, Kiang Wei; Clark, Alex S.; Hwang, J.; Hinds, E. A., E-mail: ed.hinds@imperial.ac.uk [Centre for Cold Matter, Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2015-08-15

    Dibenzoterrylene (DBT) molecules within a crystalline anthracene matrix show promise as quantum emitters for controlled, single photon production. We present the design and construction of a chamber in which we reproducibly grow doped anthracene crystals of optical quality that are several mm across and a few μm thick. We demonstrate control of the DBT concentration over the range 6–300 parts per trillion and show that these DBT molecules are stable single-photon emitters. We interpret our data with a simple model that provides some information on the vapour pressure of DBT.

  4. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources

    NARCIS (Netherlands)

    Loch, R.A.; Sobierajski, R.; Louis, Eric; Bosgra, J.; Bosgra, J.; Bijkerk, Frederik

    2012-01-01

    The single shot damage thresholds of multilayer optics for highintensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly

  5. First nondestructive measurements of power MOSFET single event burnout cross sections

    International Nuclear Information System (INIS)

    Oberg, D.L.; Wert, J.L.

    1987-01-01

    A new technique to nondestructively measure single event burnout cross sections for N-channel power MOSFETs is presented. Previous measurements of power MOSFET burnout susceptibility have been destructive and thus not conducive to providing statistically meaningful burnout probabilities. The nondestructive technique and data for various device types taken at several accelerators, including the LBL Bevalac, are documented. Several new phenomena are observed

  6. Contribution to the optical model study by the measurement of the reaction sections; Contribution au modele optique par la mesure de sections de reaction

    Energy Technology Data Exchange (ETDEWEB)

    Delaunay, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    Excitation functions of reaction cross-section {delta}{sub R} for protons were obtained between 5 and 11 MeV, for {sup 141}Pr and {sup 150}Nd by radioactive techniques and, between 9 and 12 MeV, for Cu and Ni by the transmission method. Results were compared to the prevision of the optical model. Calculations were made to see in what part {delta}{sub R} is able to reduce the ambiguities of the optical model. (author) [French] Des fonctions d'excitation de section efficace de reaction par protons {delta}{sub R} ont ete obtenues pour {sup 141}Pr et {sup 150}Nd, entre 5 et 11 MeV, par des methodes de radioactivite et pour Cu et Ni, entre 9 et 12 MeV, par la methode de transmission. Les resultats ont ete compares aux previsions du modele optique. Des calculs ont ete faits pour voir le role que peut jouer {delta}{sub R} pour diminuer les differentes ambiguites du modele optique. (auteur)

  7. Simultaneous measurement of thermo-optic and thermal expansion coefficients with a single arm double interferometer.

    Science.gov (United States)

    Domenegueti, Jose Francisco Miras; Andrade, Acacio A; Pilla, Viviane; Zilio, Sergio Carlos

    2017-01-09

    A low-cost single arm double interferometer was developed for the concurrent measurement of linear thermal expansion (α) and thermo-optic (dn/dT) coefficients of transparent samples with plane and parallel surfaces. Owing to its common-path optical arrangement, the device is compact and stable, and allows the simultaneous measurement of interferences arising from a low-finesse Fabry-Perot etalon and from a Mach-Zehnder-type interferometer. The method was demonstrated with measurements of solid (silica, BK7, SF6) and liquid (water, ethanol and acetone) samples.

  8. Design and simulation of ion optics for ion sources for production of singly charged ions

    Science.gov (United States)

    Zelenak, A.; Bogomolov, S. L.

    2004-05-01

    During the last 2 years different types of the singly charged ion sources were developed for FLNR (JINR) new projects such as Dubna radioactive ion beams, (Phase I and Phase II), the production of the tritium ion beam and the MASHA mass separator. The ion optics simulations for 2.45 GHz electron cyclotron resonance source, rf source, and the plasma ion source were performed. In this article the design and simulation results of the optics of new ion sources are presented. The results of simulation are compared with measurements obtained during the experiments.

  9. Design and simulation of ion optics for ion sources for production of singly charged ions

    International Nuclear Information System (INIS)

    Zelenak, A.; Bogomolov, S.L.

    2004-01-01

    During the last 2 years different types of the singly charged ion sources were developed for FLNR (JINR) new projects such as Dubna radioactive ion beams, (Phase I and Phase II), the production of the tritium ion beam and the MASHA mass separator. The ion optics simulations for 2.45 GHz electron cyclotron resonance source, rf source, and the plasma ion source were performed. In this article the design and simulation results of the optics of new ion sources are presented. The results of simulation are compared with measurements obtained during the experiments

  10. Mapping the Local Density of Optical States of a Photonic Crystal with Single Quantum Dots

    DEFF Research Database (Denmark)

    Wang, Qin; Stobbe, Søren; Lodahl, Peter

    2011-01-01

    We use single self-assembled InGaAs quantum dots as internal probes to map the local density of optical states of photonic crystal membranes. The employed technique separates contributions from nonradiative recombination and spin-flip processes by properly accounting for the role of the exciton...... fine structure. We observe inhibition factors as high as 70 and compare our results to local density of optical states calculations available from the literature, thereby establishing a quantitative understanding of photon emission in photonic crystal membranes. © 2011 American Physical Society....

  11. Non linear optical studies on semiorganic single crystal: L-arginine 4-nitrophenalate 4-nitrophenol dihydrate (LAPP)

    Science.gov (United States)

    Mahadevan, M.; Sankar, P. K.; Vinitha, G.; Arivanandhan, M.; Ramachandran, K.; Anandan, P.

    2017-07-01

    L-arginine 4-nitrophenalate 4-nitrophenol dihydrate (LAPP) has been synthesized and grown by solution growth at room temperature using deionized water as a solvent. The various functional groups of the sample were identified by Fourier transform infra-red and Fourier transforms - Raman spectroscopic analyses. The Laser damage threshold of LAPP has been studied. Refractive index of LAPP single crystal was measured using Metricon prism coupler Instrument. The etching studies were carried out to study the quality of the grown crystals. The third order nonlinear optical properties of LAPP sample was analyzed by the Z-scan technique using 532 nm diode pumped CW Nd: YAG laser. The LAPP material exhibits negative optical nonlinearity. The results show that LAPP sample has potential applications in nonlinear optics and it can be exploited for optical limiting or switching.

  12. Hybrid integrated single-wavelength laser with silicon micro-ring reflector

    Science.gov (United States)

    Ren, Min; Pu, Jing; Krishnamurthy, Vivek; Xu, Zhengji; Lee, Chee-Wei; Li, Dongdong; Gonzaga, Leonard; Toh, Yeow T.; Tjiptoharsono, Febi; Wang, Qian

    2018-02-01

    A hybrid integrated single-wavelength laser with silicon micro-ring reflector is demonstrated theoretically and experimentally. It consists of a heterogeneously integrated III-V section for optical gain, an adiabatic taper for light coupling, and a silicon micro-ring reflector for both wavelength selection and light reflection. Heterogeneous integration processes for multiple III-V chips bonded to an 8-inch Si wafer have been developed, which is promising for massive production of hybrid lasers on Si. The III-V layer is introduced on top of a 220-nm thick SOI layer through low-temperature wafer-boning technology. The optical coupling efficiency of >85% between III-V and Si waveguide has been achieved. The silicon micro-ring reflector, as the key element of the hybrid laser, is studied, with its maximized reflectivity of 85.6% demonstrated experimentally. The compact single-wavelength laser enables fully monolithic integration on silicon wafer for optical communication and optical sensing application.

  13. Chiral multichromic single crystals for optical devices (LDRD 99406).

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Richard Alan; Felix, Ana M. (University of New Mexico, Albuquerque, NM)

    2006-12-01

    This report summarizes our findings during the study of a novel system that yields multi-colored materials as products. This system is quite unusual as it leads to multi-chromic behavior in single crystals, where one would expect that only a single color would exist. We have speculated that these novel solids might play a role in materials applications such as non-linear optics, liquid crystal displays, piezoelectric devices, and other similar applications. The system examined consisted of a main-group alkyl compound (a p block element such as gallium or aluminum) complexed with various organic di-imines. The di-imines had substituents of two types--either alkyl or aromatic groups attached to the nitrogen atoms. We observed that single crystals, characterized by X-ray crystallography, were obtained in most cases. Our research during January-July, 2006, was geared towards understanding the factors leading to the multi-chromic nature of the complexes. The main possibilities put forth initially considered (a) the chiral nature of the main group metal, (b) possible reduction of the metal to a lower-valent, radical state, (c) the nature of the ligand(s) attached to the main group metal, and (d) possible degradation products of the ligand leading to highly-colored products. The work carried out indicates that the most likely explanation considered involves degradation of the aromatic ligands (a combination of (c) and (d)), as the experiments performed can clearly rule out (a) and (b).

  14. Inclusive quasifree electrofission cross section for 238U

    International Nuclear Information System (INIS)

    Likhachev, V.P.; Carvalho, W.R. Jr.; Deppman, A.; Hussein, M.S.; Macedo, L.F.R.; Mesa, J.; Vaudeluci, M.S.; Arruda-Neto, J.D.T.; Evseev, I.G.; Pashchuk, S.A.; Schelin, H.R.; Garcia, F.; Rodriguez, O.; Margaryan, A.; Nesterenko, V.O.

    2003-01-01

    We present results from a joint theoretical and experimental study of inclusive quasifree electrofission of 238 U. The off-shell cross sections for the quasifree reaction stage have been calculated within the plane wave impulse approximation with distortion corrections included in the effective momentum approximation. Proton and neutron single-particle momentum distributions were calculated in the macroscopic-microscopic approach. The fissility for proton and neutron single hole excited states of the residual nuclei 237 Pa and 237,238 U was calculated within the compound nucleus model. Final state interaction corrections to residual nucleus excitation energy were calculated using the imaginary part of the optical potential. The total inclusive electrofission cross section was measured with high absolute precision, and all principal partial contributions are analyzed, in particular, the quasifree one

  15. Demonstration of Cascaded In-Line Single-Pump Fiber Optical Parametric Amplifiers in Recirculating Loop Transmission

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Ozolins, Oskars; An, Yi

    2012-01-01

    The performance of cascaded single-pump fiber optical parametric amplifiers (FOPAs) is experimentally studied for the first time using recirculating loop transmission with 80-km dispersion managed spans. Error-free performance has been achieved over 320 km for 40-Gbit/s CSRZ-OOK and CSRZ...

  16. single crystals

    Indian Academy of Sciences (India)

    2018-05-18

    May 18, 2018 ... Abstract. 4-Nitrobenzoic acid (4-NBA) single crystals were studied for their linear and nonlinear optical ... studies on the proper growth, linear and nonlinear optical ..... between the optic axes and optic sign of the biaxial crystal.

  17. Optical and structural characterization of GaSb and Te-doped GaSb single crystals

    International Nuclear Information System (INIS)

    Tirado-Mejia, L.; Villada, J.A.; Rios, M. de los; Penafiel, J.A.; Fonthal, G.; Espinosa-Arbelaez, D.G.; Ariza-Calderon, H.; Rodriguez-Garcia, M.E.

    2008-01-01

    Optical and structural properties of GaSb and Te-doped GaSb single crystals are reported herein. Utilizing the photoreflectance technique, the band gap energy for doped samples was obtained at 0.814 eV. Photoluminescence (PL) spectra showed a peak at 0.748 eV that according to this research, belongs to electronic states of pure GaSb and not to the longitudinal optical (LO) phonon replica as has been reported by other authors. Analysis of the full width at half maximum (FWHM) values of X-ray diffraction, as well as micro-Raman peaks showed that the inclusion of Te decreases the crystalline quality

  18. Covariant single-hole optical potential

    International Nuclear Information System (INIS)

    Kam, J. de

    1982-01-01

    In this investigation a covariant optical potential model is constructed for scattering processes of mesons from nuclei in which the meson interacts repeatedly with one of the target nucleons. The nuclear binding interactions in the intermediate scattering state are consistently taken into account. In particular for pions and K - projectiles this is important in view of the strong energy dependence of the elementary projectile-nucleon amplitude. Furthermore, this optical potential satisfies unitarity and relativistic covariance. The starting point in our discussion is the three-body model for the optical potential. To obtain a practical covariant theory I formulate the three-body model as a relativistic quasi two-body problem. Expressions for the transition interactions and propagators in the quasi two-body equations are found by imposing the correct s-channel unitarity relations and by using dispersion integrals. This is done in such a way that the correct non-relativistic limit is obtained, avoiding clustering problems. Corrections to the quasi two-body treatment from the Pauli principle and the required ground-state exclusion are taken into account. The covariant equations that we arrive at are amenable to practical calculations. (orig.)

  19. Optical characteristics of BaGa2S4:Ho3+ and BaGa2Se4:Ho3+ single crystals

    International Nuclear Information System (INIS)

    Choe, Sung-Hyu; Jin, Moon-Seog; Kim, Wha-Tek

    2005-01-01

    BaGa 2 S 4 , BaGa 2 S 4 :Ho 3+ , BaGa 2 Se 4 , and BaGa 2 Se 4 :Ho 3+ single crystals were grown by using the chemical transport reaction method. The optical energy gaps of the single crystals were investigated in the temperature region from 11 K to 300 K. The temperature dependence of the optical energy gap was well fitted by the Varshni equation. Two broad emission bands were observed in the photoluminescence spectra of the single crystals. These bands were attributed to donor-acceptor pair recombinations. Sharp emission peaks were observed in the BaGa 2 S 4 :Ho 3+ and the BaGa 2 Se 4 :Ho 3+ single crystals and were assigned to radiation recombination between split Stark levels of Ho 3+ .

  20. Mass number dependence of total neutron cross section; a discussion based on the semi-classical optical model

    International Nuclear Information System (INIS)

    Angeli, Istvan

    1990-01-01

    The dependence of total neutron cross section on mass number can be calculated by the black nucleus formula, according to the optical model. The fine structure of mass number dependence is studied, and a correction factor formula is given on the basis of a semi-classical optical model. Yielding results in good agreement with experimental data. In addition to the mass number dependence, the neutron-energy dependence can also be calculated using this model. (K.A.)

  1. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping

    Science.gov (United States)

    Hemphill, Ashton S.; Shen, Yuecheng; Liu, Yan; Wang, Lihong V.

    2017-11-01

    In biological applications, optical focusing is limited by the diffusion of light, which prevents focusing at depths greater than ˜1 mm in soft tissue. Wavefront shaping extends the depth by compensating for phase distortions induced by scattering and thus allows for focusing light through biological tissue beyond the optical diffusion limit by using constructive interference. However, due to physiological motion, light scattering in tissue is deterministic only within a brief speckle correlation time. In in vivo tissue, this speckle correlation time is on the order of milliseconds, and so the wavefront must be optimized within this brief period. The speed of digital wavefront shaping has typically been limited by the relatively long time required to measure and display the optimal phase pattern. This limitation stems from the low speeds of cameras, data transfer and processing, and spatial light modulators. While binary-phase modulation requiring only two images for the phase measurement has recently been reported, most techniques require at least three frames for the full-phase measurement. Here, we present a full-phase digital optical phase conjugation method based on off-axis holography for single-shot optical focusing through scattering media. By using off-axis holography in conjunction with graphics processing unit based processing, we take advantage of the single-shot full-phase measurement while using parallel computation to quickly reconstruct the phase map. With this system, we can focus light through scattering media with a system latency of approximately 9 ms, on the order of the in vivo speckle correlation time.

  2. Single Mode Fiber Optic Transceiver Using Short Wavelength Active Devices In Long Wavelength Fiber

    Science.gov (United States)

    Gillham, Frederick J.; Campbell, Daniel R.; Corke, Michael; Stowe, David W.

    1990-01-01

    Presently, single mode optical fiber technology is being utilized in systems to supply telephone service to the subscriber. However, in an attempt to be competitive with copper based systems, there are many development programs underway to determine the most cost effective solution while still providing a service that will either satisfy or be upgradeable to satisfy the demands of the consumer for the next 10 to 20 years. One such approach is to combine low cost laser transmitters and silicon receivers, which have been developed for the "compact disc" industry, with fiber that operates in the single mode regime at 1300 nm. In this paper, an optical transceiver will be presented, consisting of a compact disc laser, a silicon detector and a single mode coupler at 1300 nm. A possible system layout is presented which operates at 780 nm bi-directionally for POTS and upgradeable to 1300 nm for video services. There are several important design criteria that have to be considered in the development of such a system which will be addressed. These include: 1. Optimization of coupled power from laser to fiber while maintaining stable launched conditions over a wide range of environmental conditions. 2. Consideration of the multimode operation of the 1300 nm single mode fiber while operating in the 780 nm wavelength region. 3. Development of a low cost pseudo-wavelength division multiplexer for 1300 nm single mode/780 nm multimode operation and a low cost dual mode 50/50, 780 nm splitter using 1300 nm fiber. Details will be given of the design criteria and solution in terms of optimized design. Results of the performance of several prototype devices will be given with indications of the merits of this approach and where further development effort should be applied.

  3. Synthesis, growth, structure, mechanical and optical properties of a new semi-organic 2-methyl imidazolium dihydrogen phosphate single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Nagapandiselvi, P., E-mail: nagapandiselvip@ssn.edu.in [Department of Physics, SSN College of Engineering, Kalavakkam (India); Baby, C. [Sophisticated Analytical Instrument Facility, Indian Institute of Technology Madras, Chennai (India); Gopalakrishnan, R. [Crystal Research Lab, Department of Physics, Anna University, Chennai (India)

    2016-09-15

    Highlights: • 2MIDP crystals were grown by slow evaporation solution growth technique. • Single crystal XRD revealed self-assembled supramolecular framework. • Z scan technique is employed for third order nonlinear optical susceptibility. • Structure-property correlation is established. - Abstract: A new semi-organic compound, 2-methyl imidazolium dihydrogen phosphate (2MIDP), was prepared and good quality single crystals of 2MIDP were grown by slow evaporation solution growth technique. Crystal structure elucidated using Single crystal XRD showed that 2MIDP crystallizes in monoclinic system with P2{sub 1}/c space group. FT-IR, UV-Vis-NIR, Fluorescence and FT-NMR spectra confirm the molecular structure of 2MIDP. The UV-Vis-NIR spectra established the suitability of the compound for NLO applications. TG-DSC showed that 2MIDP is thermally stable up to 200 °C. Mechanical characteristics like hardness number (H{sub v}), stiffness constant (C{sub 11}), yield strength (σ{sub v}), fracture toughness (K{sub c}) and brittleness index (B{sub i}) were assessed using Vicker’s microhardness tester. Third order nonlinear optical properties determined from Z-scan measurement using femto and picosecond lasers showed two photon reverse saturable absorption. The enhancement of nonlinear optical properties in femto second laser, revealed the suitability of 2MIDP for optical limiting applications.

  4. Motion Control and Optical Interrogation of a Levitating Single Nitrogen Vacancy in Vacuum.

    Science.gov (United States)

    Conangla, Gerard P; Schell, Andreas W; Rica, Raúl A; Quidant, Romain

    2018-05-24

    Levitation optomechanics exploits the unique mechanical properties of trapped nano-objects in vacuum to address some of the limitations of clamped nanomechanical resonators. In particular, its performance is foreseen to contribute to a better understanding of quantum decoherence at the mesoscopic scale as well as to lead to novel ultrasensitive sensing schemes. While most efforts have focused so far on the optical trapping of low-absorption silica particles, further opportunities arise from levitating objects with internal degrees of freedom, such as color centers. Nevertheless, inefficient heat dissipation at low pressures poses a challenge because most nano-objects, even with low-absorption materials, experience photodamage in an optical trap. Here, by using a Paul trap, we demonstrate levitation in vacuum and center-of-mass feedback cooling of a nanodiamond hosting a single nitrogen-vacancy center. The achieved level of motion control enables us to optically interrogate and characterize the emitter response. The developed platform is applicable to a wide range of other nano-objects and represents a promising step toward coupling internal and external degrees of freedom.

  5. Phonon anomalies in optical spectra of LiNbO3 single crystals

    Directory of Open Access Journals (Sweden)

    ANDREJA VALCIC

    2004-06-01

    Full Text Available LiNbO3 single crystals were grown by the Czochralski technique in an air atmosphere. The critical crystal diameter Dc = 1.5 cm and the critical rate of rotation wc = 35 rpm were calculated by equations from the hydrodynamics of the melt. The domain inversion was carried out at 1430 K using a 3.75 V/cm electric field for 10 min. The obtained crystals were cut, polished and etched to determine the presence of dislocations and single domain structures. The optical properties were studied by infrared and Raman spectroscopy as a function of temperature. With decreasing temperature, an atypical behaviour of the phonon modes could be seen in the ferroelectrics LiNbO3. The obtained results are discussed and compared with published data.

  6. Single-Crystal Sapphire Optical Fiber Sensor Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, Gary [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Scott, Brian [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Wang, Anbo [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Yu, Zhihao [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States)

    2013-12-31

    This report summarizes technical progress on the program “Single-Crystal Sapphire Optical Fiber Sensor Instrumentation,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. This project was completed in three phases, each with a separate focus. Phase I of the program, from October 1999 to April 2002, was devoted to development of sensing schema for use in high temperature, harsh environments. Different sensing designs were proposed and tested in the laboratory. Phase II of the program, from April 2002 to April 2009, focused on bringing the sensor technologies, which had already been successfully demonstrated in the laboratory, to a level where the sensors could be deployed in harsh industrial environments and eventually become commercially viable through a series of field tests. Also, a new sensing scheme was developed and tested with numerous advantages over all previous ones in Phase II. Phase III of the program, September 2009 to December 2013, focused on development of the new sensing scheme for field testing in conjunction with materials engineering of the improved sensor packaging lifetimes. In Phase I, three different sensing principles were studied: sapphire air-gap extrinsic Fabry-Perot sensors; intensity-based polarimetric sensors; and broadband polarimetric sensors. Black body radiation tests and corrosion tests were also performed in this phase. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. At the beginning of Phase II, in June 2004, the BPDI sensor was tested at the Wabash River coal gasifier

  7. Single-resolution and multiresolution extended-Kalman-filter-based reconstruction approaches to optical refraction tomography.

    Science.gov (United States)

    Naik, Naren; Vasu, R M; Ananthasayanam, M R

    2010-02-20

    The problem of reconstruction of a refractive-index distribution (RID) in optical refraction tomography (ORT) with optical path-length difference (OPD) data is solved using two adaptive-estimation-based extended-Kalman-filter (EKF) approaches. First, a basic single-resolution EKF (SR-EKF) is applied to a state variable model describing the tomographic process, to estimate the RID of an optically transparent refracting object from noisy OPD data. The initialization of the biases and covariances corresponding to the state and measurement noise is discussed. The state and measurement noise biases and covariances are adaptively estimated. An EKF is then applied to the wavelet-transformed state variable model to yield a wavelet-based multiresolution EKF (MR-EKF) solution approach. To numerically validate the adaptive EKF approaches, we evaluate them with benchmark studies of standard stationary cases, where comparative results with commonly used efficient deterministic approaches can be obtained. Detailed reconstruction studies for the SR-EKF and two versions of the MR-EKF (with Haar and Daubechies-4 wavelets) compare well with those obtained from a typically used variant of the (deterministic) algebraic reconstruction technique, the average correction per projection method, thus establishing the capability of the EKF for ORT. To the best of our knowledge, the present work contains unique reconstruction studies encompassing the use of EKF for ORT in single-resolution and multiresolution formulations, and also in the use of adaptive estimation of the EKF's noise covariances.

  8. Fiber Optic Chemical Nanosensors Based on Engineered Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    M. Consales

    2008-01-01

    Full Text Available In this contribution, a review of the development of high-performance optochemical nanosensors based on the integration of carbon nanotubes with the optical fiber technology is presented. The paper first provide an overview of the amazing features of carbon nanotubes and their exploitation as highly adsorbent nanoscale materials for gas sensing applications. Successively, the attention is focused on the operating principle, fabrication, and characterization of fiber optic chemosensors in the Fabry-Perot type reflectometric configuration, realized by means of the deposition of a thin layer of single-walled carbon nanotubes (SWCNTs upon the distal end of standard silica optical fibers. This is followed by an extensive review of the excellent sensing capabilities of the realized SWCNTs-based chemical nanosensors against volatile organic compounds and other pollutants in different environments (air and water and operating conditions (room temperature and cryogenic temperatures. The experimental results reported here reveal that ppm and sub-ppm chemical detection limits, low response times, as well as fast and complete recovery of the sensor responses have been obtained in most of the investigated cases. This evidences the great potentialities of the proposed photonic nanosensors based on SWCNTs to be successfully employed for practical environmental monitoring applications both in liquid and vapor phase as well as for space. Furthermore, the use of novel SWCNTs-based composites as sensitive fiber coatings is proposed to enhance the sensing performance and to improve the adhesion of carbon nanotubes to the fiber surface. Finally, new advanced sensing configurations based on the use of hollow-core optical fibers coated and partially filled by carbon nanotubes are also presented.

  9. Fast all-optical multistate flip-flop operation realized by a single self-sustained micro-ring laser memory cell

    International Nuclear Information System (INIS)

    Wang, Zhuoran; Yuan, Guohui

    2013-01-01

    We investigate all-optical multistate flip-flop operation realized by a single self-sustained micro-ring laser memory cell based on a time-domain multi-mode nonlinear model. Each state is written by the corresponding 100 ps-width input non-return-to-zero (NRZ) pulse carrying the directional and wavelength information, and the cell remains in the written state until another trigger arrives. The effects of key parameters including the detuning frequency and injection power ratio on the injection locking and flipping regions of different modes in both directions of the micro-ring device are studied. By optimizing the operation conditions, we simulate the minimal switching speed for each mode. The fast switching speed of less than 20 ps and up to ten mode flip-flop operation indicate that this single optical memory cell can support ten states at a data rate of at least 10 Gbps, which is particularly valuable for the realization of future all-optical networking and functional sub-system technology. (letter)

  10. Microstructural, optical and electrical properties of Cl-doped CdTe single crystals

    Directory of Open Access Journals (Sweden)

    Choi Hyojeong

    2016-09-01

    Full Text Available Microstructural, optical and electrical properties of Cl-doped CdTe crystals grown by the low pressure Bridgman (LPB method were investigated for four different doping concentrations (unintentionally doped, 4.97 × 1019 cm−3, 9.94 × 1019 cm−3 and 1.99 × 1020 cm−3 and three different locations within the ingots (namely, samples from top, middle and bottom positions in the order of the distance from the tip of the ingot. It was shown that Cl dopant suppressed the unwanted secondary (5 1 1 crystalline orientation. Also, the average size and surface coverage of Te inclusions decreased with an increase in Cl doping concentration. Spectroscopic ellipsometry measurements showed that the optical quality of the Cl-doped CdTe single crystals was enhanced. The resistivity of the CdTe sample doped with Cl at the 1.99 × 1020 cm−3 was above 1010 Ω.cm.

  11. Electrical and optical 3D modelling of light-trapping single-photon avalanche diode

    Science.gov (United States)

    Zheng, Tianzhe; Zang, Kai; Morea, Matthew; Xue, Muyu; Lu, Ching-Ying; Jiang, Xiao; Zhang, Qiang; Kamins, Theodore I.; Harris, James S.

    2018-02-01

    Single-photon avalanche diodes (SPADs) have been widely used to push the frontier of scientific research (e.g., quantum science and single-molecule fluorescence) and practical applications (e.g., Lidar). However, there is a typical compromise between photon detection efficiency and jitter distribution. The light-trapping SPAD has been proposed to break this trade-off by coupling the vertically incoming photons into a laterally propagating mode while maintaining a small jitter and a thin Si device layer. In this work, we provide a 3D-based optical and electrical model based on practical fabrication conditions and discuss about design parameters, which include surface texturing, photon injection position, device area, and other features.

  12. Optical histology: a method to visualize microvasculature in thick tissue sections of mouse brain.

    Directory of Open Access Journals (Sweden)

    Austin J Moy

    Full Text Available The microvasculature is the network of blood vessels involved in delivering nutrients and gases necessary for tissue survival. Study of the microvasculature often involves immunohistological methods. While useful for visualizing microvasculature at the µm scale in specific regions of interest, immunohistology is not well suited to visualize the global microvascular architecture in an organ. Hence, use of immunohistology precludes visualization of the entire microvasculature of an organ, and thus impedes study of global changes in the microvasculature that occur in concert with changes in tissue due to various disease states. Therefore, there is a critical need for a simple, relatively rapid technique that will facilitate visualization of the microvascular network of an entire tissue.The systemic vasculature of a mouse is stained with the fluorescent lipophilic dye DiI using a method called "vessel painting". The brain, or other organ of interest, is harvested and fixed in 4% paraformaldehyde. The organ is then sliced into 1 mm sections and optically cleared, or made transparent, using FocusClear, a proprietary optical clearing agent. After optical clearing, the DiI-labeled tissue microvasculature is imaged using confocal fluorescence microscopy and adjacent image stacks tiled together to produce a depth-encoded map of the microvasculature in the tissue slice. We demonstrated that the use of optical clearing enhances both the tissue imaging depth and the estimate of the vascular density. Using our "optical histology" technique, we visualized microvasculature in the mouse brain to a depth of 850 µm.Presented here are maps of the microvasculature in 1 mm thick slices of mouse brain. Using combined optical clearing and optical imaging techniques, we devised a methodology to enhance the visualization of the microvasculature in thick tissues. We believe this technique could potentially be used to generate a three-dimensional map of the

  13. Developing new optical imaging techniques for single particle and molecule tracking in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Differential interference contrast (DIC) microscopy is a far-field as well as wide-field optical imaging technique. Since it is non-invasive and requires no sample staining, DIC microscopy is suitable for tracking the motion of target molecules in live cells without interfering their functions. In addition, high numerical aperture objectives and condensers can be used in DIC microscopy. The depth of focus of DIC is shallow, which gives DIC much better optical sectioning ability than those of phase contrast and dark field microscopies. In this work, DIC was utilized to study dynamic biological processes including endocytosis and intracellular transport in live cells. The suitability of DIC microscopy for single particle tracking in live cells was first demonstrated by using DIC to monitor the entire endocytosis process of one mesoporous silica nanoparticle (MSN) into a live mammalian cell. By taking advantage of the optical sectioning ability of DIC, we recorded the depth profile of the MSN during the endocytosis process. The shape change around the nanoparticle due to the formation of a vesicle was also captured. DIC microscopy was further modified that the sample can be illuminated and imaged at two wavelengths simultaneously. By using the new technique, noble metal nanoparticles with different shapes and sizes were selectively imaged. Among all the examined metal nanoparticles, gold nanoparticles in rod shapes were found to be especially useful. Due to their anisotropic optical properties, gold nanorods showed as diffraction-limited spots with disproportionate bright and dark parts that are strongly dependent on their orientation in the 3D space. Gold nanorods were developed as orientation nanoprobes and were successfully used to report the self-rotation of gliding microtubules on kinesin coated substrates. Gold nanorods were further used to study the rotational motions of cargoes during the endocytosis and intracellular transport processes in live mammalian

  14. Total and single differential cross sections for the electron impact ionization of the ground state of helium

    International Nuclear Information System (INIS)

    Singh, T.S.C.; Choudhury, K.B.; Singh, M.B.; Deb, N.C.; Mukherjee, S.C.; Mazumdar, P.S.

    1997-01-01

    Total cross sections (TCS) and single differential cross sections (SDCS) have been computed for the single ionization of the ground state of helium by electron impact in a distorted wave formalism which takes into account the effects of the initial and final channel distortions. The present TCS and SDCS results are in fair agreement with the measured values and other theoretical predictions for the incident electron energy E i > 150 eV. (orig.)

  15. Electronic and optical properties of vacancy defects in single-layer transition metal dichalcogenides

    Science.gov (United States)

    Khan, M. A.; Erementchouk, Mikhail; Hendrickson, Joshua; Leuenberger, Michael N.

    2017-06-01

    A detailed first-principles study has been performed to evaluate the electronic and optical properties of single-layer (SL) transition metal dichalcogenides (TMDCs) (M X 2 ; M = transition metal such as Mo, W, and X = S, Se, Te), in the presence of vacancy defects (VDs). Defects usually play an important role in tailoring electronic, optical, and magnetic properties of semiconductors. We consider three types of VDs in SL TMDCs: (i) X vacancy, (ii) X2 vacancy, and (iii) M vacancy. We show that VDs lead to localized defect states (LDS) in the band structure, which in turn gives rise to sharp transitions in in-plane and out-of-plane optical susceptibilities, χ∥ and χ⊥. The effects of spin-orbit coupling (SOC) are also considered. We find that SOC splitting in LDS is directly related to the atomic number of the transition metal atoms. Apart from electronic and optical properties we also find magnetic signatures (local magnetic moment of ˜μB ) in MoSe2 in the presence of the Mo vacancy, which breaks the time-reversal symmetry and therefore lifts the Kramers degeneracy. We show that a simple qualitative tight-binding model (TBM), involving only the hopping between atoms surrounding the vacancy with an on-site SOC term, is sufficient to capture the essential features of LDS. In addition, the existence of the LDS can be understood from the solution of the two-dimensional Dirac Hamiltonian by employing infinite mass boundary conditions. In order to provide a clear description of the optical absorption spectra, we use group theory to derive the optical selection rules between LDS for both χ∥ and χ⊥.

  16. Electrically tunable Brillouin fiber laser based on a metal-coated single-mode optical fiber

    Directory of Open Access Journals (Sweden)

    S.M. Popov

    Full Text Available We explore tunability of the Brillouin fiber laser employing Joule heating. For this purpose, 10-m-length of a metal-coated single-mode optical cavity fiber has been directly included into an electrical circuit, like a conductor wire. With the current up to ∼3.5 A the laser tuning is demonstrated over a spectrum range of ∼400 MHz. The observed laser line broadening up to ∼2 MHz is explained by frequency drift and mode-hoping in the laser caused by thermal noise. Keywords: Brillouin fiber laser, Metal-coated optical fiber, Laser tuning, Fiber sensors

  17. Fluorescence detection of single molecules using pulsed near-field optical excitation and time correlated photon counting

    International Nuclear Information System (INIS)

    Ambrose, W.P.; Goodwin, P.M.; Martin, J.C.; Keller, R.A.

    1994-01-01

    Pulsed excitation, time correlated single photon counting and time gated detection are used in near-field optical microscopy to enhance fluorescence images and measure the fluorescence lifetimes of single molecules of Rhodamine 6G on silica surfaces. Time gated detection is used to reject prompt scattered background and to improve the image signal to noise ratio. The excited state lifetime of a single Rhodamine 6G molecule is found to depend on the position of the near-field probe. We attribute the lifetime variations to spontaneous emission rate alterations by the fluorescence reflected from and quenching by the aluminum coated probe

  18. Comparison of optical-model and Lane-model analyses of sub-Coulomb protons on /sup 92,94/Zr

    International Nuclear Information System (INIS)

    Schrils, R.; Flynn, D.S.; Hershberger, R.L.; Gabbard, F.

    1979-01-01

    Accurate proton elastic-scattering cross sections were measured with enriched targets of /sup 92,94/Zr from E/sub p/ = 2.0 to 6.5 MeV. The elastic-scattering cross sections, together with absorption cross sections, were analyzed with a Lane model which employed the optical potential of Johnson et al. The resulting parameters were compared with those obtained with a single-channel optical model and negligible differences were found. Significant differences between the 92 Zr and 94 Zr real diffusenesses resulted from the inclusion of the (p,p) data in the analyses

  19. Quantitative optical extinction-based parametric method for sizing a single core-shell Ag-Ag2O nanoparticle

    International Nuclear Information System (INIS)

    Santillan, J M J; Scaffardi, L B; Schinca, D C

    2011-01-01

    This paper develops a parametric method for determining the core radius and shell thickness in small silver-silver-oxide core-shell nanoparticles (Nps) based on single particle optical extinction spectroscopy. The method is based on the study of the relationship between plasmon peak wavelength, full width at half maximum (FWHM) and contrast of the extinction spectra as a function of core radius and shell thickness. This study reveals that plasmon peak wavelength is strongly dependent on shell thickness, whereas FWHM and contrast depend on both variables. These characteristics may be used for establishing an easy and fast stepwise procedure to size core-shell NPs from single particle absorption spectrum. The importance of the method lies in the possibility of monitoring the growth of the silver-oxide layer around small spherical silver Nps in real time. Using the electrostatic approximation of Mie theory, core-shell single particle extinction spectra were calculated for a silver particle's core size smaller than about 20 nm and different thicknesses of silver oxide around it. Analysis of the obtained curves shows a very particular characteristic of the plasmon peak of small silver-silver-oxide Nps, expressed in the fact that its position is strongly dependent on oxide thickness and weakly dependent on the core radius. Even a very thin oxide layer shifts the plasmon peak noticeably, enabling plasmon tuning with appropriate shell thickness. This characteristic, together with the behaviour of FWHM and contrast of the extinction spectra can be combined into a parametric method for sizing both core and shell of single silver Nps in a medium using only optical information. In turn, shell thickness can be related to oxygen content in the Np's surrounding media. The method proposed is applied to size silver Nps from single particle extinction spectrum. The results are compared with full optical spectrum fitting using the electrostatic approximation in Mie theory. The method

  20. Many-particle theory of optical properties in low-dimensional nanostructures. Dynamics in single-walled carbon nanotubes and semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Malic, Ermin

    2008-09-02

    This work focuses on the theoretical investigation of optical properties of low-dimensional nanostructures, specifically single-walled carbon nanotubes (CNTs) and self-assembled InAs/GaAs quantum dots (QDs). The density-matrix formalism is applied to explain recent experimental results and to give insight into the underlying physics. A microscopic calculation of the absorption coefficient and the Rayleigh scattering cross section is performed by a novel approach combining the density-matrix formalism with the tight-binding wave functions. The calculated spectra of metallic nanotubes show a double-peaked structure resulting from the trigonal warping effect. The intensity ratios of the four lowest-lying transitions in both absorption and Rayleigh spectra can be explained by the different behavior of the optical matrix elements along the high-symmetry lines K-{gamma} and K-M. The Rayleigh line shape is predicted to be asymmetric, with an enhanced cross section for lower photon energies arising from non-resonant contributions of the optical susceptibility. Furthermore, the Coulomb interaction is shown to be maximal when the momentum transfer is low. For intersubband processes with a perpendicular momentum transfer, the coupling strength is reduced to less than 5%. The chirality and diameter dependence of the excitonic binding energy and the transition frequency are presented in Kataura plots. Furthermore, the influence of the surrounding environment on the optical properties of CNTs is investigated. Extending the confinement to all three spatial dimensions, semiconductor Bloch equation are derived to describe the dynamics in QD semiconductor lasers and amplifiers. A detailed microscopic analysis of the nonlinear turn-on dynamics of electrically pumped InAs/GaAs QD lasers is performed, showing the generation of relaxation oscillations on a nanosecond time scale in both the photon and charge carrier density. The theory predicts a strong damping of relaxation oscillations

  1. Many-particle theory of optical properties in low-dimensional nanostructures. Dynamics in single-walled carbon nanotubes and semiconductor quantum dots

    International Nuclear Information System (INIS)

    Malic, Ermin

    2008-01-01

    This work focuses on the theoretical investigation of optical properties of low-dimensional nanostructures, specifically single-walled carbon nanotubes (CNTs) and self-assembled InAs/GaAs quantum dots (QDs). The density-matrix formalism is applied to explain recent experimental results and to give insight into the underlying physics. A microscopic calculation of the absorption coefficient and the Rayleigh scattering cross section is performed by a novel approach combining the density-matrix formalism with the tight-binding wave functions. The calculated spectra of metallic nanotubes show a double-peaked structure resulting from the trigonal warping effect. The intensity ratios of the four lowest-lying transitions in both absorption and Rayleigh spectra can be explained by the different behavior of the optical matrix elements along the high-symmetry lines K-Γ and K-M. The Rayleigh line shape is predicted to be asymmetric, with an enhanced cross section for lower photon energies arising from non-resonant contributions of the optical susceptibility. Furthermore, the Coulomb interaction is shown to be maximal when the momentum transfer is low. For intersubband processes with a perpendicular momentum transfer, the coupling strength is reduced to less than 5%. The chirality and diameter dependence of the excitonic binding energy and the transition frequency are presented in Kataura plots. Furthermore, the influence of the surrounding environment on the optical properties of CNTs is investigated. Extending the confinement to all three spatial dimensions, semiconductor Bloch equation are derived to describe the dynamics in QD semiconductor lasers and amplifiers. A detailed microscopic analysis of the nonlinear turn-on dynamics of electrically pumped InAs/GaAs QD lasers is performed, showing the generation of relaxation oscillations on a nanosecond time scale in both the photon and charge carrier density. The theory predicts a strong damping of relaxation oscillations

  2. Optics of multiple ultrasharp grooves in metal

    DEFF Research Database (Denmark)

    Skjølstrup, Enok Johannes Haahr; Søndergaard, Thomas

    2017-01-01

    . When the multiple-groove array is illuminated by a plane wave the out-of-plane scattering is found to be extraordinarily large compared with the expected maximum from a geometric-optics estimate even for array widths of many wavelengths. The out-of-plane scattering is even higher per groove compared......The optics of multiple ultrasharp sub-wavelength grooves in metal is studied theoretically. Focus is on the transition from a single groove, where the scattering cross section is significant and can exceed the groove width, to infinitely many grooves in a periodic array with very low reflectance...

  3. Crystal growth and characterization of new semiorganic nonlinear optical single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kulshrestha, Shobha, E-mail: shobha011986@gmail.com; Shrivastava, A. K., E-mail: ashwaniaks@rediffmail.com [School of Studies in Physics, Jiwaji University Gwalior (M.P.) – 474 011 (India)

    2016-05-06

    An organic material of a L-histidine monohydrochloride single crystal was grown in a distilled water solution using the slow evaporation method at 40–45°C. The grown crystal was transparent and colourless, with a size of about 20 × 9 × 5 mm{sup 3}, obtained within a period of 21 days. The solubility of grown crystals have found out at various temperatures. The UV-visible transmittance studies show that the grown crystals have wide optical transparency in the entire visible region It is observed that the crystal has transparency window from 255nm to 700nm and its energy gap (Eg) found to be is 3.1eV. The grown crystal was subjected to powder X-ray diffraction analysis, confirming that the orthorhombic crystalline nature of the crystal. To identify the surface morphology, the as grown crystal was subjected to FE-SEM technique. The chemical composition of the grown crystal was estimated by Energy dispersive X-ray analysis. The optical behaviour of the grown crystal was analyzed by PL study.

  4. Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics.

    Science.gov (United States)

    Chen, Mo; Liu, Chao; Xian, Hao

    2015-10-10

    High-speed free-space optical communication systems using fiber-optic components can greatly improve the stability of the system and simplify the structure. However, propagation through atmospheric turbulence degrades the spatial coherence of the signal beam and limits the single-mode fiber (SMF) coupling efficiency. In this paper, we analyze the influence of the atmospheric turbulence on the SMF coupling efficiency over various turbulences. The results show that the SMF coupling efficiency drops from 81% without phase distortion to 10% when phase root mean square value equals 0.3λ. The simulations of SMF coupling with adaptive optics (AO) indicate that it is inevitable to compensate the high-order aberrations for SMF coupling over relatively strong turbulence. The SMF coupling efficiency experiments, using an AO system with a 137-element deformable mirror and a Hartmann-Shack wavefront sensor, obtain average coupling efficiency increasing from 1.3% in open loop to 46.1% in closed loop under a relatively strong turbulence, D/r0=15.1.

  5. Hermitian symmetry free optical-single-carrier frequency division multiple access for visible light communication

    Science.gov (United States)

    Azim, Ali W.; Le Guennec, Yannis; Maury, Ghislaine

    2018-05-01

    Optical-orthogonal frequency division multiplexing (O-OFDM) is an effective scheme for visible light communications (VLC), offering a candid extension to multiple access (MA) scenarios, i.e., O-OFDMA. However, O-OFDMA exhibits high peak-to-average power ratio (PAPR), which exacerbates the non-linear distortions from the light emitting diode (LED). To overcome high PAPR while sustaining MA, optical-single-carrier frequency-division multiple access (O-SCFDMA) is used. For both O-OFDMA and O-SCFDMA, Hermitian symmetry (HS) constraint is imposed in frequency-domain (FD) to obtain a real-valued time-domain (TD) signal for intensity modulation-direct detection (IM-DD) implementation of VLC. Howbeit, HS results in an increase of PAPR for O-SCFDMA. In this regard, we propose HS free (HSF) O-SCFDMA (HSFO-SCFDMA). We compare HSFO-SCFDMA with several approaches in key parameters, such as, bit error rate (BER), optical power penalty, PAPR, quantization, electrical power efficiency and system complexity. BER performance and optical power penalty is evaluated considering multipath VLC channel and taking into account the bandwidth limitation of LED in combination with its optimized driver. It is illustrated that HSFO-SCFDMA outperforms other alternatives.

  6. Cross section formulae on single W and Z boson productions in electron-positron collisions

    International Nuclear Information System (INIS)

    Katuya, Mituaki

    1987-01-01

    The formulae are given for the transverse momentum distributions and total cross sections for the single W boson and Z boson productions in electron-positron collisions by using the equivalent photon approximation. (author)

  7. Analysis of single-cell differences by use of an on-chip microculture system and optical trapping.

    Science.gov (United States)

    Wakamoto, Y; Inoue, I; Moriguchi, H; Yasuda, K

    2001-09-01

    A method is described for continuous observation of isolated single cells that enables genetically identical cells to be compared; it uses an on-chip microculture system and optical tweezers. Photolithography is used to construct microchambers with 5-microm-high walls made of thick photoresist (SU-8) on the surface of a glass slide. These microchambers are connected by a channel through which cells are transported, by means of optical tweezers, from a cultivation microchamber to an analysis microchamber, or from the analysis microchamber to a waste microchamber. The microchambers are covered with a semi-permeable membrane to separate them from nutrient medium circulating through a "cover chamber" above. Differential analysis of isolated direct descendants of single cells showed that this system could be used to compare genetically identical cells under contamination-free conditions. It should thus help in the clarification of heterogeneous phenomena, for example unequal cell division and cell differentiation.

  8. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio

    2016-01-01

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber...... preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made from ZEONEX grade 480R with a glass transition temperature of 138°C. The key advantages of the proposed...... SIPOF are low water absorption, high operating temperature and chemical inertness to acids and bases and many polar solvents as compared to the conventional poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In addition, the fiber Bragg grating writing time is short compared to microstructured...

  9. Optical model neutron cross sections calculations for Cu63, Cu65 and natural Cu in the energy range 1-15 Mev

    International Nuclear Information System (INIS)

    Iliescu, N.

    1975-01-01

    The theory of optical model and cross sections is developing. The neutron reactions considered in the high energy rate (0,1-15 MeV) were: total, elastic, elastic angular distributions, nonelastic, inelastic for resolved levels. This region was subdivided in two parts: in the first one, ranging from 0,1 to 1 MeV, the evaluation was mainly based on empirical fits of the experimental data, whereas in the second part the fits were carried out with theoretical models: optical and statistical. The potential parameters were obtained fitting the total, elastic, inelastic cross sections and elastic angular distributions. Using Hauser-Feshbach theory, angular distribution and cross sections for compound elastic scattering and inelastic scattering are calculated

  10. High performance mode locking characteristics of single section quantum dash lasers.

    Science.gov (United States)

    Rosales, Ricardo; Murdoch, S G; Watts, R T; Merghem, K; Martinez, Anthony; Lelarge, Francois; Accard, Alain; Barry, L P; Ramdane, Abderrahim

    2012-04-09

    Mode locking features of single section quantum dash based lasers are investigated. Particular interest is given to the static spectral phase profile determining the shape of the mode locked pulses. The phase profile dependence on cavity length and injection current is experimentally evaluated, demonstrating the possibility of efficiently using the wide spectral bandwidth exhibited by these quantum dash structures for the generation of high peak power sub-picosecond pulses with low radio frequency linewidths.

  11. Optical limiting properties of optically active phthalocyanine derivatives

    Science.gov (United States)

    Wang, Peng; Zhang, Shuang; Wu, Peiji; Ye, Cheng; Liu, Hongwei; Xi, Fu

    2001-06-01

    The optical limiting properties of four optically active phthalocyanine derivatives in chloroform solutions and epoxy resin thin plates were measured at 532 nm with 10 ns pulses. The excited state absorption cross-section σex and refractive-index cross-section σr were determined with the Z-scan technique. These chromophores possess larger σex than the ground state absorption cross-section σ0, indicating that they are the potential materials for reverse saturable absorption (RSA). The negative σr values of these chromophores add to the thermal contribution, producing a larger defocusing effect, which may be helpful in further enhancing their optical limiting performance. The optical limiting responses of the thin plate samples are stronger than those of the chloroform solutions.

  12. Calculating the reduced scattering coefficient of turbid media from a single optical reflectance signal

    Science.gov (United States)

    Johns, Maureen; Liu, Hanli

    2003-07-01

    When light interacts with tissue, it can be absorbed, scattered or reflected. Such quantitative information can be used to characterize the optical properties of tissue, differentiate tissue types in vivo, and identify normal versus diseased tissue. The purpose of this research is to develop an algorithm that determines the reduced scattering coefficient (μs") of tissues from a single optical reflectance spectrum with a small source-detector separation. The basic relationship between μs" and optical reflectance was developed using Monte Carlo simulations. This produced an analytical equation containing μs" as a function of reflectance. To experimentally validate this relationship, a 1.3-mm diameter fiber optic probe containing two 400-micron diameter fibers was used to deliver light to and collect light from Intralipid solutions of various concentrations. Simultaneous measurements from optical reflectance and an ISS oximeter were performed to validate the calculated μs" values determined by the reflectance measurement against the 'gold standard" ISS readings. The calculated μs" values deviate from the expected values by approximately -/+ 5% with Intralipid concentrations between 0.5 - 2.5%. The scattering properties within this concentration range are similar to those of in vivo tissues. Additional calculations are performed to determine the scattering properties of rat brain tissues and to discuss accuracy of the algorithm for measured samples with a broad range of the absorption coefficient (μa).

  13. Theoretical model for optical oximetry at the capillary level: exploring hemoglobin oxygen saturation through backscattering of single red blood cells

    Science.gov (United States)

    Liu, Rongrong; Spicer, Graham; Chen, Siyu; Zhang, Hao F.; Yi, Ji; Backman, Vadim

    2017-02-01

    Oxygen saturation (sO2) of red blood cells (RBCs) in capillaries can indirectly assess local tissue oxygenation and metabolic function. For example, the altered retinal oxygenation in diabetic retinopathy and local hypoxia during tumor development in cancer are reflected by abnormal sO2 of local capillary networks. However, it is far from clear whether accurate label-free optical oximetry (i.e., measuring hemoglobin sO2) is feasible from dispersed RBCs at the single capillary level. The sO2-dependent hemoglobin absorption contrast present in optical scattering signal is complicated by geometry-dependent scattering from RBCs. We present a numerical study of backscattering spectra from single RBCs based on the first-order Born approximation, considering practical factors: RBC orientations, size variation, and deformations. We show that the oscillatory spectral behavior of RBC geometries is smoothed by variations in cell size and orientation, resulting in clear sO2-dependent spectral contrast. In addition, this spectral contrast persists with different mean cellular hemoglobin content and different deformations of RBCs. This study shows for the first time the feasibility of, and provides a theoretical model for, label-free optical oximetry at the single capillary level using backscattering-based imaging modalities, challenging the popular view that such measurements are impossible at the single capillary level.

  14. Sustained neuroprotection from a single intravitreal injection of PGJ2 in a rodent model of anterior ischemic optic neuropathy.

    Science.gov (United States)

    Touitou, Valerie; Johnson, Mary A; Guo, Yan; Miller, Neil R; Bernstein, Steven L

    2013-11-11

    Nonarteritic anterior ischemic optic neuropathy (NAION) is the most common cause of sudden optic nerve-related vision loss in persons older than 50 in the United States. There currently is no treatment for this disorder. We previously showed that systemic administration of 15-deoxy, delta (12, 14) prostaglandin J2 (PGJ2) is neuroprotective in our rodent model of AION (rAION). In this study, we determined if a single intravitreal (IVT) injection of PGJ2 is neuroprotective after rAION, and if this method of administration is toxic to the retina, optic nerve, or both. TOXICITY was assessed after a single IVT injection of PGJ2 in one eye and PBS in the contralateral eye of normal, adult Long-Evans rats. EFFICACY was assessed by inducing rAION in one eye and injecting either PGJ2 or vehicle immediately following induction, with the fellow eye serving as naïve control. Visual evoked potentials (VEPs) and ERGs were performed before induction and at specific intervals thereafter. Animals were euthanized 30 days after induction, after which immunohistochemistry, transmission electron microscopy, and quantitative stereology of retinal ganglion cell (RGC) numbers were performed. IVT PGJ2 did not alter the VEP or ERG compared with PBS-injected control eyes, and neither IVT PGJ2 nor PBS reduced overall RGC numbers. IVT PGJ2 preserved VEP amplitude, reduced optic nerve edema, and resulted in significant preservation of RGCs and axons in eyes with rAION. A single IVT injection of PGJ2 is nontoxic to the retina and optic nerve and neuroprotective when given immediately after rAION induction.

  15. Optical properties of GaS:Ho3+ and GaS:Tm3+ single crystals

    International Nuclear Information System (INIS)

    Jin, Moon-Seog; Kim, Chang-Dae; Kim, Wha-Tek

    2004-01-01

    GaS:Ho 3+ and GaS:Tm 3+ single crystals were grown by using the chemical transport reaction method. We measured the optical absorption, the infra-red absorption, and the photoluminescence spectra of the single crystals. The direct and the indirect energy band gaps of the single crystals at 13 K were identified. Infra-red absorption peaks at 6 K appeared in the single crystals. Broad emission bands at 6 K were observed at 464 nm and 580 nm for GaS:Ho 3+ and 462 nm and 581 nm for GaS:Tm 3+ . These broad emission bands were identified as originating from donor-acceptor pair recombinations. Sharp emission peak groups were observed near 435 nm, 495 nm, and 660 nm for GaS:Ho 3+ and near 672 nm for GaS:Tm 3+ . These sharp emission peak groups were identified as being due to the electron transitions between the energy levels of Ho 3+ and Tm 3+ . Especially, white photoluminescence was obtained in the GaS:Ho 3+ single crystal.

  16. Broadband photonic single sideband frequency up-converter based on the cross polarization modulation effect in a semiconductor optical amplifier for radio-over-fiber systems.

    Science.gov (United States)

    Lee, Seung-Hun; Kim, Hyoung-Jun; Song, Jong-In

    2014-01-13

    A broadband photonic single sideband (SSB) frequency up-converter based on the cross polarization modulation (XPolM) effect in a semiconductor optical amplifier (SOA) is proposed and experimentally demonstrated. An optical radio frequency (RF) signal in the form of an optical single sideband (OSSB) is generated by the photonic SSB frequency up-converter to solve the power fading problem caused by fiber chromatic dispersion. The generated OSSB RF signal has almost identical optical carrier power and optical sideband power. This SSB frequency up-conversion scheme shows an almost flat electrical RF power response as a function of the RF frequency in a range from 31 GHz to 75 GHz after 40 km single mode fiber (SMF) transmission. The photonic SSB frequency up-conversion technique shows negligible phase noise degradation. The phase noise of the up-converted RF signal at 49 GHz for an offset of 10 kHz is -93.17 dBc/Hz. Linearity analysis shows that the photonic SSB frequency up-converter has a spurious free dynamic range (SFDR) value of 79.51 dB · Hz(2/3).

  17. Optical absorption in gel grown cadmium tartrate single crystals

    International Nuclear Information System (INIS)

    Arora, S K; Kothari, A J; Patel, R G; Chauha, K M; Chudasama, B N

    2006-01-01

    Single crystals of cadmium tartrate pentahydrate (CTP) have been grown by the famous gel technique. The slow and controlled reaction between Cd 2+ and (C 4 H 4 O 6 ) 2- ions in silica hydrogel results in formation of the insoluble product, CdC 4 H 4 O 6 .5H 2 O. Optical absorption spectra have been recorded in the range 200 to 2500 nm. Fundamental absorption edge for electronic transition has been analyzed. The direct allowed transition is found to be present in the region of relatively higher photon energy. Analysis of the segments of α 1/2 versus hν graph has been made to separate individual contribution of phonons. The phonons involved in the indirect transition are found to correspond to 335 and 420 cm -1 . Scattering of charge carriers in the lattice is found due to acoustic phonons

  18. Talys calculations for evaluation of neutron-induced single-event upset cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Bourselier, Jean-Christophe

    2005-08-15

    The computer code TALYS has been used to calculate interactions between cosmic-ray neutrons and silicon nuclei with the goal to describe single-event upset (SEU) cross sections in microelectronics devices. Calculations for the Si(n,X) reaction extend over an energy range of 2 to 200 MeV. The obtained energy spectra of the resulting residuals and light-ions have been integrated using several different critical charges as SEU threshold. It is found that the SEU cross section seems largely to be dominated by {sup 28}Si recoils from elastic scattering. Furthermore, the shape of the SEU cross section as a function of the energy of the incoming neutron changes drastically with decreasing critical charge. The results presented in this report stress the importance of performing studies at mono-energetic neutron beams to advance the understanding of the underlying mechanisms causing SEUs.

  19. Talys calculations for evaluation of neutron-induced single-event upset cross sections

    International Nuclear Information System (INIS)

    Bourselier, Jean-Christophe

    2005-08-01

    The computer code TALYS has been used to calculate interactions between cosmic-ray neutrons and silicon nuclei with the goal to describe single-event upset (SEU) cross sections in microelectronics devices. Calculations for the Si(n,X) reaction extend over an energy range of 2 to 200 MeV. The obtained energy spectra of the resulting residuals and light-ions have been integrated using several different critical charges as SEU threshold. It is found that the SEU cross section seems largely to be dominated by 28 Si recoils from elastic scattering. Furthermore, the shape of the SEU cross section as a function of the energy of the incoming neutron changes drastically with decreasing critical charge. The results presented in this report stress the importance of performing studies at mono-energetic neutron beams to advance the understanding of the underlying mechanisms causing SEUs

  20. Mobility and height detection of particle labels in an optical evanescent wave biosensor with single-label resolution

    Energy Technology Data Exchange (ETDEWEB)

    Van Ommering, Kim; Koets, Marjo; Schleipen, Jean J H B; Prins, Menno W J [Philips Research Laboratories, 5656 AE Eindhoven (Netherlands); Somers, Philip A; Van IJzendoorn, Leo J, E-mail: menno.prins@philips.co [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands)

    2010-04-21

    Particle labels are used in biosensors to detect the presence and concentration of analyte molecules. In this paper we demonstrate an optical technique to measure the mobility and height of bound particle labels on a biosensor surface with single-label resolution. The technique is based on the detection of the particle-induced light scattering in an optical evanescent field. We show that the thermal particle motion in the optical evanescent field leads to intensity fluctuations that can accurately be detected. The technique is demonstrated using 290 bp (99 nm) DNA as an analyte and using polystyrene particles and magnetic particles with diameters between 500 and 1000 nm as labels. The particle intensity histograms show that quantitative height measurements are obtained for particles with uniform optical properties, and the intensity versus position plots reflect the analyte-antibody orientation and the analyte flexibility. The novel optical detection technique will lead to biosensors with very high sensitivity and specificity.

  1. Optical Absorption and Emission Mechanisms of Single Defects in Hexagonal Boron Nitride

    Science.gov (United States)

    Jungwirth, Nicholas R.; Fuchs, Gregory D.

    2017-08-01

    We investigate the polarization selection rules of sharp zero-phonon lines (ZPLs) from isolated defects in hexagonal boron nitride (HBN) and compare our findings with the predictions of a Huang-Rhys model involving two electronic states. Our survey, which spans the spectral range ˜550 - 740 nm , reveals that, in disagreement with a two-level model, the absorption and emission dipoles are often misaligned. We relate the dipole misalignment angle (Δ θ ) of a ZPL to its energy shift from the excitation energy (Δ E ) and find that Δ θ ≈0 ° when Δ E corresponds to an allowed HBN phonon frequency and that 0 ° ≤Δ θ ≤90 ° when Δ E exceeds the maximum allowed HBN phonon frequency. Consequently, a two-level Huang-Rhys model succeeds at describing excitations mediated by the creation of one optical phonon but fails at describing excitations that require the creation of multiple phonons. We propose that direct excitations requiring the creation of multiple phonons are inefficient due to the low Huang-Rhys factors in HBN and that these ZPLs are instead excited indirectly via an intermediate electronic state. This hypothesis is corroborated by polarization measurements of an individual ZPL excited with two distinct wavelengths that indicate a single ZPL may be excited by multiple mechanisms. These findings provide new insight on the nature of the optical cycle of novel defect-based single-photon sources in HBN.

  2. Single nucleon emission in relativistic nucleus-nucleus reactions

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Significant discrepancies between theory and experiment have previously been noted for nucleon emission via electromagnetic processes in relativistic nucleus-nucleus collisions. The present work investigates the hypothesis that these discrepancies have arisen due to uncertainties about how to deduce the experimental electromagnetic cross section from the total measured cross section. An optical-model calculation of single neutron removal is added to electromagnetic cross sections and compared to the total experimental cross sections. Good agreement is found thereby resolving some of the earlier noted discrepancies. A detailed comparison to the recent work of Benesh, Cook, and Vary is made for both the impact parameter and the nuclear cross section. Good agreement is obtained giving an independent confirmation of the parameterized formulas developed by those authors

  3. Single-mode optical waveguides on native high-refractive-index substrates

    Directory of Open Access Journals (Sweden)

    Richard R. Grote

    2016-10-01

    Full Text Available High-refractive-index semiconductor optical waveguides form the basis for modern photonic integrated circuits (PICs. However, conventional methods for achieving optical confinement require a thick lower-refractive-index support layer that impedes large-scale co-integration with electronics and limits the materials on which PICs can be fabricated. To address this challenge, we present a general architecture for single-mode waveguides that confine light in a high-refractive-index material on a native substrate. The waveguide consists of a high-aspect-ratio fin of the guiding material surrounded by lower-refractive-index dielectrics and is compatible with standard top-down fabrication techniques. This letter describes a physically intuitive, semi-analytical, effective index model for designing fin waveguides, which is confirmed with fully vectorial numerical simulations. Design examples are presented for diamond and silicon at visible and telecommunications wavelengths, respectively, along with calculations of propagation loss due to bending, scattering, and substrate leakage. Potential methods of fabrication are also discussed. The proposed waveguide geometry allows PICs to be fabricated alongside silicon CMOS electronics on the same wafer, removes the need for heteroepitaxy in III-V PICs, and will enable wafer-scale photonic integration on emerging material platforms such as diamond and SiC.

  4. Calculation of neutron-induced single-event upset cross sections for semiconductor memory devices

    International Nuclear Information System (INIS)

    Ikeuchi, Taketo; Watanabe, Yukinobu; Nakashima, Hideki; Sun, Weili

    2001-01-01

    Neutron-induced single-event upset (SEU) cross sections for semiconductor memory devices are calculated by the Burst Generation Rate (BGR) method using LA150 data and QMD calculation in the neutron energy range between 20 MeV and 10 GeV. The calculated results are compared with the measured SEU cross sections for energies up to 160 MeV, and the validity of the calculation method and the nuclear data used is verified. The kind of reaction products and the neutron energy range that have the most effect on SEU are discussed. (author)

  5. Optical-sectioning microscopy of protoporphyrin IX fluorescence in human gliomas: standardization and quantitative comparison with histology

    Science.gov (United States)

    Wei, Linpeng; Chen, Ye; Yin, Chengbo; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T. C.

    2017-04-01

    Systemic delivery of 5-aminolevulinic acid leads to enhanced fluorescence image contrast in many tumors due to the increased accumulation of protoporphyrin IX (PpIX), a fluorescent porphyrin that is associated with tumor burden and proliferation. The value of PpIX-guided resection of malignant gliomas has been demonstrated in prospective randomized clinical studies in which a twofold greater extent of resection and improved progression-free survival have been observed. In low-grade gliomas and at the diffuse infiltrative margins of all gliomas, PpIX fluorescence is often too weak to be detected with current low-resolution surgical microscopes that are used in operating rooms. However, it has been demonstrated that high-resolution optical-sectioning microscopes are capable of detecting the sparse and punctate accumulations of PpIX that are undetectable via conventional low-power surgical fluorescence microscopes. To standardize the performance of high-resolution optical-sectioning devices for future clinical use, we have developed an imaging phantom and methods to ensure that the imaging of PpIX-expressing brain tissues can be performed reproducibly. Ex vivo imaging studies with a dual-axis confocal microscope demonstrate that these methods enable the acquisition of images from unsectioned human brain tissues that quantitatively and consistently correlate with images of histologically processed tissue sections.

  6. Development of an ultrasound microscope combined with optical microscope for multiparametric characterization of a single cell.

    Science.gov (United States)

    Arakawa, Mototaka; Shikama, Joe; Yoshida, Koki; Nagaoka, Ryo; Kobayashi, Kazuto; Saijo, Yoshifumi

    2015-09-01

    Biomechanics of the cell has been gathering much attention because it affects the pathological status in atherosclerosis and cancer. In the present study, an ultrasound microscope system combined with optical microscope for characterization of a single cell with multiple ultrasound parameters was developed. The central frequency of the transducer was 375 MHz and the scan area was 80 × 80 μm with up to 200 × 200 sampling points. An inverted optical microscope was incorporated in the design of the system, allowing for simultaneous optical observations of cultured cells. Two-dimensional mapping of multiple ultrasound parameters, such as sound speed, attenuation, and acoustic impedance, as well as the thickness, density, and bulk modulus of specimen/cell under investigation, etc., was realized by the system. Sound speed and thickness of a 3T3-L1 fibroblast cell were successfully obtained by the system. The ultrasound microscope system combined with optical microscope further enhances our understanding of cellular biomechanics.

  7. Single-shot electro-optic experiments for electron bunch diagnostics at Tsinghua Accelerator Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Du, Yingchao; Yan, Lixin; Hua, Jianfei; Zhang, Zhen; Zhou, Zheng [Accelerator Laboratory, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084 (China); Huang, Wenhui, E-mail: huangwh@mail.tsinghua.edu.cn [Accelerator Laboratory, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084 (China); Tang, Chuanxiang [Accelerator Laboratory, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084 (China); Li, Ming [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-10-21

    The electro-optic (EO) technique detects the Coulomb electric field distribution of relativistic electron bunches to obtain the associated longitudinal profile. This diagnostic method allows the direct time-resolved single-shot measurement and thus the real-time monitoring of the bunch profile and beam arrival time in a non-destructive way with sub-picosecond temporal resolution. In this paper, we report the measurement of the longitudinal profile of an electron bunch through electro-optic spectral decoding detection, in which the bunch profile is encoded into the spectra of the linearly chirped laser pulse. The experimental setup and measurement results of a 40 MeV electron bunch are presented, with a temporal profile length of 527 fs rms (~1.24 ps FWHM) and a beam arrival time jitter of 471 fs rms. Temporal resolution and future experimental improvement are also discussed.

  8. Fast all-optical flip-flop based on a single distributed feedback laser diode.

    Science.gov (United States)

    Huybrechts, Koen; Morthier, Geert; Baets, Roel

    2008-07-21

    Since there is an increasing demand for fast networks and switches, the electronic data processing imposes a severe bottleneck and all-optical processing techniques will be required in the future. All-optical flip-flops are one of the key components because they can act as temporary memory elements. Several designs have already been demonstrated but they are often relatively slow or complex to fabricate. We demonstrate experimentally fast flip-flop operation in a single DFB laser diode which is one of the standard elements in today's telecommunication industry. Injecting continuous wave light in the laser diode, a bistability is obtained due to the spatial hole burning effect. We can switch between the two states by using pulses with energies below 200 fJ resulting in flip-flop operation with switching times below 75 ps and repetition rates of up to 2 GHz.

  9. Single Particle Differentiation through 2D Optical Fiber Trapping and Back-Scattered Signal Statistical Analysis: An Exploratory Approach.

    Science.gov (United States)

    Paiva, Joana S; Ribeiro, Rita S R; Cunha, João P S; Rosa, Carla C; Jorge, Pedro A S

    2018-02-27

    Recent trends on microbiology point out the urge to develop optical micro-tools with multifunctionalities such as simultaneous manipulation and sensing. Considering that miniaturization has been recognized as one of the most important paradigms of emerging sensing biotechnologies, optical fiber tools, including Optical Fiber Tweezers (OFTs), are suitable candidates for developing multifunctional small sensors for Medicine and Biology. OFTs are flexible and versatile optotools based on fibers with one extremity patterned to form a micro-lens. These are able to focus laser beams and exert forces onto microparticles strong enough (piconewtons) to trap and manipulate them. In this paper, through an exploratory analysis of a 45 features set, including time and frequency-domain parameters of the back-scattered signal of particles trapped by a polymeric lens, we created a novel single feature able to differentiate synthetic particles (PMMA and Polystyrene) from living yeasts cells. This single statistical feature can be useful for the development of label-free hybrid optical fiber sensors with applications in infectious diseases detection or cells sorting. It can also contribute, by revealing the most significant information that can be extracted from the scattered signal, to the development of a simpler method for particles characterization (in terms of composition, heterogeneity degree) than existent technologies.

  10. A feasible quantum optical experiment capable of refuting noncontextuality for single photons

    International Nuclear Information System (INIS)

    Cereceda, Jose L

    2002-01-01

    Elaborating on a previous work by Simon et al (2000 Phys. Rev. Lett. 85 1783) we propose a realizable quantum optical single-photon experiment using standard present day technology, capable of discriminating maximally between the predictions of quantum mechanics (QM) and noncontextual hidden variable theories (NCHV). Quantum mechanics predicts a gross violation (up to a factor of 2) of the noncontextual Bell-like inequality associated with the proposed experiment. An actual maximal violation of this inequality would demonstrate (modulo fair sampling) an all-or-nothing type contradiction between QM and NCHV

  11. Fibre Optic Gyroscope Developments Using Integrated Optic Components

    Science.gov (United States)

    Minford, W. J.; DePaula, R. M.

    1988-09-01

    The sensing of rotation using counterpropagating optical beams in a fiber loop (the SAGNAC effect) has gone through extensive developments and demonstrations since first proved feasible by Vali and Shorthilll in 1976. The interferometric fiber gyroscope minimum configuration2 which uses a common input-output port and single-mode filter was developed to provide the extreme high stability necessary to reach the sensitivities at low rotation rates attainable with current state-of-the-art detectors. The simplicity and performance of this configuration has led to its acceptance and wide-spread use. In order to increase the mechanical stability of this system, all single-mode fiber components are employed and a further advancement to integrated optics has enabled most of the optical functions to be placed on a single mass-producible substrate. Recent improvements in the components (eg polarization maintaining fiber and low coherence sources) have further enhanced the performance of the minimum configuration gyro. This presentation focused on the impact of LiNbO3 integrated optic components on gyroscope developments. The use of Ti-indiffused LiNbO3 waveguide optical circuits in interferometric fiber optic gyroscopes has taken two directions: to utilize only the phase modulator, or to combine many of the minimum configuration optical functions on the electro-optic substrate. The high-bandwidth phase modulator is the driving force for using LiNbO3 waveguide devices. This device allows both biasing the gyro for maximum sensitivity and closing the loop via frequency shifting, for example, thus increasing the dynamic range of the gyro and the linearity of the scale factor. Efforts to implement most of the minimum configuration optical functions onto a single LiNbO3 substrate have been led by Thomson CSF.3 They have demonstrated an interferometric gyroscope with excellent performance using a LiNbO3 optical circuit containing a Y-splitter, phase modulator, and surface

  12. Nonlinear optical studies of single gold nanoparticles

    NARCIS (Netherlands)

    Dijk, Meindert Alexander van

    2007-01-01

    Gold nanoparticles are spherical clusters of gold atoms, with diameters typically between 1 and 100 nanometers. The applications of these particles are rather diverse, from optical labels for biological experiments to data carrier for optical data storage. The goal of my project was to develop new

  13. Three-dimensional multifunctional optical coherence tomography for skin imaging

    Science.gov (United States)

    Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Sasaoka, Tomoko; Yamanari, Masahiro; Sugiyama, Satoshi; Yasuno, Yoshiaki

    2016-02-01

    Optical coherence tomography (OCT) visualizes cross-sectional microstructures of biological tissues. Recent developments of multifunctional OCT (MF-OCT) provides multiple optical contrasts which can reveal currently unknown tissue properties. In this contribution we demonstrate multifunctional OCT specially designed for dermatological investigation. And by utilizing it to measure four different body parts of in vivo human skin, three-dimensional scattering OCT, OCT angiography, polarization uniformity tomography, and local birefringence tomography images were obtained by a single scan. They respectively contrast the structure and morphology, vasculature, melanin content and collagen traits of the tissue.

  14. Transparent Nanopore Cavity Arrays Enable Highly Parallelized Optical Studies of Single Membrane Proteins on Chip.

    Science.gov (United States)

    Diederichs, Tim; Nguyen, Quoc Hung; Urban, Michael; Tampé, Robert; Tornow, Marc

    2018-06-13

    Membrane proteins involved in transport processes are key targets for pharmaceutical research and industry. Despite continuous improvements and new developments in the field of electrical readouts for the analysis of transport kinetics, a well-suited methodology for high-throughput characterization of single transporters with nonionic substrates and slow turnover rates is still lacking. Here, we report on a novel architecture of silicon chips with embedded nanopore microcavities, based on a silicon-on-insulator technology for high-throughput optical readouts. Arrays containing more than 14 000 inverted-pyramidal cavities of 50 femtoliter volumes and 80 nm circular pore openings were constructed via high-resolution electron-beam lithography in combination with reactive ion etching and anisotropic wet etching. These cavities feature both, an optically transparent bottom and top cap. Atomic force microscopy analysis reveals an overall extremely smooth chip surface, particularly in the vicinity of the nanopores, which exhibits well-defined edges. Our unprecedented transparent chip design provides parallel and independent fluorescent readout of both cavities and buffer reservoir for unbiased single-transporter recordings. Spreading of large unilamellar vesicles with efficiencies up to 96% created nanopore-supported lipid bilayers, which are stable for more than 1 day. A high lipid mobility in the supported membrane was determined by fluorescent recovery after photobleaching. Flux kinetics of α-hemolysin were characterized at single-pore resolution with a rate constant of 0.96 ± 0.06 × 10 -3 s -1 . Here, we deliver an ideal chip platform for pharmaceutical research, which features high parallelism and throughput, synergistically combined with single-transporter resolution.

  15. Synthesis, optical, experimental and theoretical investigation of third order nonlinear optical properties of 8-hydroxyquinolinium 2-carboxy-6-nitrophthalate monohydrate single crystal

    Science.gov (United States)

    Bharathi, M. Divya; Bhuvaneswari, R.; Srividya, J.; Vinitha, G.; Prithiviraajan, R. N.; Anbalagan, G.

    2018-02-01

    Single crystals of 8-hydroxyquinolinium 2-carboxy-6-nitrophthalate monohydrate (8HQNP) were obtained from slow evaporation solution growth method using methanol-water (1:1) as a solvent. Powder X-ray diffraction was utilized to compute the unit cell parameters and dislocation density of 8HQNP crystal. The crystalline perfection of the as-grown crystal was investigated by high-resolution X-ray diffraction at room temperature. The molecular structure was analyzed by identifying the functional groups from FT-IR and FT-Raman spectra. The cut-off wavelength and the corresponding optical band gap obtained from an optical spectrum were 376 nm and 3.29 eV respectively. The dispersion nature of refractive index was investigated by the single-oscillator Wemple and Di-Domenico model. Red emission was observed in the photoluminescence spectrum when excited with 376 nm. The low birefringence and high laser damage threshold (8.538 GW/cm2) values dictate the suitability of the crystal for optical devices. Z-scan studies revealed the third order nonlinear absorption coefficient (β) and refractive index (n2) of the 8HQNP crystal. The theoretical value of third order nonlinear susceptibility obtained from density function theory is good accordance with the experimental value. The frontier molecular orbital energy gap decreases with increasing external electric field in different directions which attributed to the enhancement of the second hyperpolarizability. The grown title crystal is thermally stable up to 102 °C which was identified using thermal analysis. Mechanical strength of 8HQNP was estimated by using Vicker's microhardness studies.

  16. The transformation of optical bistability effect and of generated pulses in operation of a DFB laser with two sections

    International Nuclear Information System (INIS)

    Nguyen Van Phu; Dinh Van Hoang

    2005-01-01

    In this paper is presented the transformation of characteristics of optical bistability effect and of generated pulses in operation of a DFB laser with two sections. By solving the rate equations describing the operation of this laser the appearance of optical bistability effect in stationary regime and of short pulses in transient regime is obtained. With the variation of dynamical laser parameter we can evaluate the transformation indicated above. The method of examination used here is simple for determining the influence of any dynamical laser parameter on characteristics of optical bistability effect and generated pulses. (author)

  17. Investigation of inorganic nonlinear optical potassium penta borate tetra hydrate (PPBTH) single crystals grown by slow evaporation method

    Science.gov (United States)

    Arivuselvi, R.; Babu, P. Ramesh

    2018-03-01

    Borates family crystals were plays vital role in the field of non linear optics (NLO) due to needs of wide range of applications. In this report, NLO crystals (potassium penta borate tetra hydrate (KB5H8O12) are grown by slow evaporation method at room temperature (28° C) and studied their physical properties. The harvested single crystals are transparent with the dimension of 12 × 10 × 6 mm3 and colourless. X-ray diffraction of single crystals reveals that the grown crystal belongs to orthorhombic system with non-centrosymmetric space group Pba2. All the absorbed functional groups are present in the order of inorganic compounds expect 1688 cm-1 because of water (Osbnd H sbnd O blending) molecule present in the pristine. Crystals show transparent in the entire visible region with 5.9 eV optical band gap and also it shows excellence in both second and third order nonlinear optical properties. Crystals can withstand upto 154 °C without any phase changes which is observed using thermal (TGA/DTA) analysis.

  18. All-loop calculations of total, elastic and single diffractive cross sections in RFT via the stochastic approach

    International Nuclear Information System (INIS)

    Kolevatov, R. S.; Boreskov, K. G.

    2013-01-01

    We apply the stochastic approach to the calculation of the Reggeon Field Theory (RFT) elastic amplitude and its single diffractive cut. The results for the total, elastic and single difractive cross sections with account of all Pomeron loops are obtained.

  19. All-loop calculations of total, elastic and single diffractive cross sections in RFT via the stochastic approach

    Energy Technology Data Exchange (ETDEWEB)

    Kolevatov, R. S. [SUBATECH, Ecole des Mines de Nantes, 4 rue Alfred Kastler, 44307 Nantes Cedex 3 (France); Boreskov, K. G. [Institute of Theoretical and Experimental Physics, 117259, Moscow (Russian Federation)

    2013-04-15

    We apply the stochastic approach to the calculation of the Reggeon Field Theory (RFT) elastic amplitude and its single diffractive cut. The results for the total, elastic and single difractive cross sections with account of all Pomeron loops are obtained.

  20. Electron paramagnetic resonance and optical absorption of uranium ions diluted in CdF2 single crystals

    International Nuclear Information System (INIS)

    Pereira, J.J.C.R.

    1976-08-01

    The electron paramagnetic resonance (EPR) has been studied in conection with the optical absortion spectra of Uranium ions diluted in CdF 2 single crystals. Analyses of the EPR and optical absorption spectra obtained experimentally, and a comparison with known results in the isomorfic CaF 2 , SrF 2 and BaF 2 , allowed the identification of two paramagnetic centers associated with Uranium ions. These are the U(2+) ion in cubic symmetry having the triplet γ 5 as ground state, and the U(3+) ion in cubic symmetry having the dublet γ 6 as ground state. (Author) [pt

  1. Non-destructive local determination of doping additions and main components in single crystals

    International Nuclear Information System (INIS)

    Ehksperiandova, L.P.; Blank, A.B.; Kukhtina, N.N.; Afanasiadi, L.I.

    1994-01-01

    Procedures for local non-destructive determination of elements in optical and scintillation single crystals are developed. They are applied for determination of the main components (in cadmium tungstate) and doping additions (tellurium in zinc selenide, europium in gadolinium silicate). The metrological characteristics of the developed micro-analysis methods are estimated. Segregation of the main components and doping additions in the objects under consideration are investigated. Tellurium is found to be distributed uniformly on the cross-sections of bulk zinc selenide single crystals. The segregation of europium along gadolinium silicate ingots is almost absent. On the cross-section surface of cadmium tungstate single crystals the microregions are found characterized by the prevailing contents of cadmium or tungsten

  2. High-sensitivity bend angle measurements using optical fiber gratings.

    Science.gov (United States)

    Rauf, Abdul; Zhao, Jianlin; Jiang, Biqiang

    2013-07-20

    We present a high-sensitivity and more flexible bend measurement method, which is based on the coupling of core mode to the cladding modes at the bending region in concatenation with optical fiber grating serving as band reflector. The characteristics of a bend sensing arm composed of bending region and optical fiber grating is examined for different configurations including single fiber Bragg grating (FBG), chirped FBG (CFBG), and double FBGs. The bend loss curves for coated, stripped, and etched sections of fiber in the bending region with FBG, CFBG, and double FBG are obtained experimentally. The effect of separation between bending region and optical fiber grating on loss is measured. The loss responses for single FBG and CFBG configurations are compared to discover the effectiveness for practical applications. It is demonstrated that the sensitivity of the double FBG scheme is twice that of the single FBG and CFBG configurations, and hence acts as sensitivity multiplier. The bend loss response for different fiber diameters obtained through etching in 40% hydrofluoric acid, is measured in double FBG scheme that resulted in a significant increase in the sensitivity, and reduction of dead-zone.

  3. Quantitative optical extinction-based parametric method for sizing a single core-shell Ag-Ag{sub 2}O nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Santillan, J M J; Scaffardi, L B; Schinca, D C, E-mail: lucias@ciop.unlp.edu.ar [Centro de Investigaciones Opticas (CIOp), (CONICET La Plata-CIC) (Argentina)

    2011-03-16

    This paper develops a parametric method for determining the core radius and shell thickness in small silver-silver-oxide core-shell nanoparticles (Nps) based on single particle optical extinction spectroscopy. The method is based on the study of the relationship between plasmon peak wavelength, full width at half maximum (FWHM) and contrast of the extinction spectra as a function of core radius and shell thickness. This study reveals that plasmon peak wavelength is strongly dependent on shell thickness, whereas FWHM and contrast depend on both variables. These characteristics may be used for establishing an easy and fast stepwise procedure to size core-shell NPs from single particle absorption spectrum. The importance of the method lies in the possibility of monitoring the growth of the silver-oxide layer around small spherical silver Nps in real time. Using the electrostatic approximation of Mie theory, core-shell single particle extinction spectra were calculated for a silver particle's core size smaller than about 20 nm and different thicknesses of silver oxide around it. Analysis of the obtained curves shows a very particular characteristic of the plasmon peak of small silver-silver-oxide Nps, expressed in the fact that its position is strongly dependent on oxide thickness and weakly dependent on the core radius. Even a very thin oxide layer shifts the plasmon peak noticeably, enabling plasmon tuning with appropriate shell thickness. This characteristic, together with the behaviour of FWHM and contrast of the extinction spectra can be combined into a parametric method for sizing both core and shell of single silver Nps in a medium using only optical information. In turn, shell thickness can be related to oxygen content in the Np's surrounding media. The method proposed is applied to size silver Nps from single particle extinction spectrum. The results are compared with full optical spectrum fitting using the electrostatic approximation in Mie theory

  4. Growth, optical, electrical and photoconductivity studies of a novel nonlinear optical single crystal: Mercury cadmium chloride thiocyanate

    Science.gov (United States)

    Kumar, S. M. Ravi; Selvakumar, S.; Sagayaraj, P.; Anbarasi, A.

    2015-02-01

    SCN- ligand based organometallic non-linear optical mercury cadmium chloride thiocyanate (MCCTC) crystals are grown from water plus methanol mixed solvent by slow evaporation technique. The grown crystals are confirmed by single crystal X-ray diffraction analysis which reveals that the MCCTC belongs to rhombohedral system with R3c space group. MCCTC exhibits a SHG efficiency which is nearly 17 times more than that of KDP. The dielectric constant, dielectric loss measurements of the sample have been carried out for different frequencies (100 Hz to 5 MHz) and, temperatures (308 to 388 K) and the results are discussed. Photoconductivity study confirms that the title compound possesses negative photoconducting nature. The surface morphology of MCCTC was also investigated

  5. Structural and optical properties of WTe2 single crystals synthesized by DVT technique

    Science.gov (United States)

    Dixit, Vijay; Vyas, Chirag; Pathak, V. M.; Soalanki, G. K.; Patel, K. D.

    2018-05-01

    Layered transition metal di-chalcogenide (LTMDCs) crystals have attracted much attention due to their potential in optoelectronic device applications recently due to realization of their monolayer based structures. In the present investigation we report growth of WTe2 single crystals by direct vapor transport (DVT) technique. These crystals are then characterized by energy dispersive analysis of x-rays (EDAX) to study stoichiometric composition after growth. The structural properties are studied by x-ray diffraction (XRD) and selected area electron diffraction (SAED) is used to confirm orthorhombic structure of grown WTe2 crystal. Surface morphological properties of the crystals are also studied by scanning electron microscope (SEM). The optical properties of the grown crystals are studied by UV-Visible spectroscopy which gives direct band gap of 1.44 eV for grown WTe2 single crystals.

  6. Highly selective single-use fluoride ion optical sensor based on aluminum(III)-salen complex in thin polymeric film

    International Nuclear Information System (INIS)

    Badr, Ibrahim H.A.; Meyerhoff, Mark E.

    2005-01-01

    A highly selective optical sensor for fluoride ion based on the use of an aluminum(III)-salen complex as an ionophore within a thin polymeric film is described. The sensor is prepared by embedding the aluminum(III)-salen ionophore and a suitable lipophilic pH-sensitive indicator (ETH-7075) in a plasticized poly(vinyl chloride) (PVC) film. Optical response to fluoride occurs due to fluoride extraction into the polymer via formation of a strong complex with the aluminum(III)-salen species. Co-extraction of protons occurs simultaneously, with protonation of the indicator dye yielding the optical response at 529 nm. Films prepared using dioctylsebacate (DOS) are shown to exhibit better response (e.g., linear range, detection limit, and optical signal stability) compared to those prepared using ortho-nitrophenyloctyl ether (o-NPOE). Films formulated with aluminum(III)-salen and ETH-7075 indicator in 2 DOS:1 PVC, exhibit a significantly enhanced selectivity for fluoride over a wide range of lipophilic anions including salicylate, perchlorate, nitrate, and thiocyanate. The optimized films exhibit a sub-micromolar detection limit, using glycine-phosphate buffer, pH 3.00, as the test sample. The response times of the fluoride optical sensing films are in the range of 1-10 min depending on the fluoride ion concentration in the sample. The sensor exhibits very poor reversibility owing to a high co-extraction constant (log K = 8.5 ± 0.4), indicating that it can best be employed as a single-use transduction device. The utility of the aluminum(III)-salen based fluoride sensitive films as single-use sensors is demonstrated by casting polymeric films on the bottom of standard polypropylene microtiter plate wells (96 wells/plate). The modified microtiter plate optode format sensors exhibit response characteristics comparable to the classical optode films cast on quartz slides. The modified microtiter is utilized for the analysis of fluoride in diluted anti-cavity fluoride rinse

  7. Optical and thermal response of single-walled carbon nanotube–copper sulfide nanoparticle hybrid nanomaterials

    International Nuclear Information System (INIS)

    Tseng, Yi-Hsuan; He Yuan; Que Long; Lakshmanan, Santana; Yang Chang; Chen Wei

    2012-01-01

    This paper reports the optical and thermal response of a single-walled carbon nanotube–copper sulfide nanoparticle (SWNT–CuS NP) hybrid nanomaterial and its application as a thermoelectric generator. The hybrid nanomaterial was synthesized using oleylamine molecules as the linker molecules between SWNTs and CuS NPs. Measurements found that the hybrid nanomaterial has significantly increased light absorption (up to 80%) compared to the pure SWNT. Measurements also found that the hybrid nanomaterial thin-film devices exhibit a clear optical and thermal switching effect, which can be further enhanced up to 10 × by asymmetric illumination of light and thermal radiation on the thin-film devices instead of symmetric illumination. A simple prototype thermoelectric generator enabled by the hybrid nanomaterials is demonstrated, indicating a new route for achieving thermoelectricity. (paper)

  8. Single-particle properties of N = 12 to N = 20 silicon isotopes within the dispersive optical model

    Science.gov (United States)

    Bespalova, O. V.; Ermakova, T. A.; Klimochkina, A. A.; Spasskaya, T. I.

    2017-09-01

    Experimental neutron and proton single-particle energies in N = 12 to N = 20 silicon isotopes and data on neutron and proton scattering by nuclei of the isotope 28Si are analyzed on the basis of the dispersive optical model. Good agreement with available experimental data was attained. The occupation probabilities calculated for the single-particle states in question suggest a parallel-type filling of the 1 d and 2 s 1/2 neutron states in the isotopes 26,28,30,32,34Si. The single-particle spectra being considered are indicative of the closure of the Z = 14 proton subshell in the isotopes 30,32,34Si and the N = 20 neutron shell.

  9. Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy

    Science.gov (United States)

    Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Claude Boccara, A.; Bourdieu, Laurent

    2011-11-01

    Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.

  10. Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy.

    Science.gov (United States)

    Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Boccara, A Claude; Bourdieu, Laurent

    2011-11-01

    Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.

  11. Quantitative and Isolated Measurement of Far-Field Light Scattering by a Single Nanostructure

    Science.gov (United States)

    Kim, Donghyeong; Jeong, Kwang-Yong; Kim, Jinhyung; Ee, Ho-Seok; Kang, Ju-Hyung; Park, Hong-Gyu; Seo, Min-Kyo

    2017-11-01

    Light scattering by nanostructures has facilitated research on various optical phenomena and applications by interfacing the near fields and free-propagating radiation. However, direct quantitative measurement of far-field scattering by a single nanostructure on the wavelength scale or less is highly challenging. Conventional back-focal-plane imaging covers only a limited solid angle determined by the numerical aperture of the objectives and suffers from optical aberration and distortion. Here, we present a quantitative measurement of the differential far-field scattering cross section of a single nanostructure over the full hemisphere. In goniometer-based far-field scanning with a high signal-to-noise ratio of approximately 27.4 dB, weak scattering signals are efficiently isolated and detected under total-internal-reflection illumination. Systematic measurements reveal that the total and differential scattering cross sections of a Au nanorod are determined by the plasmonic Fabry-Perot resonances and the phase-matching conditions to the free-propagating radiation, respectively. We believe that our angle-resolved far-field measurement scheme provides a way to investigate and evaluate the physical properties and performance of nano-optical materials and phenomena.

  12. Optical study of phase transitions in single-crystalline RuP

    Science.gov (United States)

    Chen, R. Y.; Shi, Y. G.; Zheng, P.; Wang, L.; Dong, T.; Wang, N. L.

    2015-03-01

    RuP single crystals of MnP-type orthorhombic structure were synthesized by the Sn flux method. Temperature-dependent x-ray diffraction measurements reveal that the compound experiences two structural phase transitions, which are further confirmed by enormous anomalies shown in temperature-dependent resistivity and magnetic susceptibility. Particularly, the resistivity drops monotonically upon temperature cooling below the second transition, indicating that the material shows metallic behavior, in sharp contrast with the insulating ground state of polycrystalline samples. Optical conductivity measurements were also performed in order to unravel the mechanism of these two transitions. The measurement revealed a sudden reconstruction of band structure over a broad energy scale and a significant removal of conducting carriers below the first phase transition, while a charge-density-wave-like energy gap opens below the second phase transition.

  13. Current measurements by Faraday rotation in single mode optical fibers

    International Nuclear Information System (INIS)

    Chandler, G.I.; Jahoda, F.C.

    1984-01-01

    Development of techniques for measuring magnetic fields and currents by Faraday rotation in single-mode optical fibers has continued. We summarize the results of attempts to measure the toroidal plasma current in the ZT-40 Reversed-Field-Pinch using multi-turn fiber coils. The fiber response is reproducible and in accord with theory, but the amount and distribution of the stress-induced birefringence in this case are such that prediction of the sensor response at low currents is difficult if not impossible. The low-current difficulty can be overcome by twisting the fiber to induce a circular birefringence bias. We report the results of auxiliary experiments with a fiber that has been twisted with 15 turns per meter and then re-coated to lock the twist in place

  14. Building the Nanoplasmonics Toolbox Through Shape Modeling and Single Particle Optical Studies

    Science.gov (United States)

    Ringe, Emilie

    Interest in nanotechnology is driven by unprecedented properties tailorability, achievable by controlling particle structure and composition. Unlike bulk components, minute changes in size and shape affect the optical and electronic properties of nanoparticles. Characterization of such structure-function relationships and better understanding of structure control mechanisms is crucial to the development of applications such as plasmonic sensors and devices. The objective of the current research is thus twofold: to theoretically predict and understand how shape is controlled by synthesis conditions, and to experimentally unravel, through single particle studies, how shape, composition, size, and surrounding environment affect plasmonic properties in noble metal particles. Quantitative, predictive rules and fundamental knowledge obtained from this research contributes to the "nanoplasmonics toolbox", a library designed to provide scientists and engineers the tools to create and optimize novel nanotechnology applications. In this dissertation, single particle approaches are developed and used to unravel the effects of size, shape, substrate, aggregation state and surrounding environment on the optical response of metallic nanoparticles. Ag and Au nanocubes on different substrates are first presented, followed by the discussion of the concept of plasmon length, a universal parameter to describe plasmon energy for a variety of particle shapes and plasmon modes. Plasmonic sensing (both refractive index sensing and surface-enhanced Raman spectroscopy) and polarization effects are then studied at the single particle level. In the last two Chapters, analytical shape models based on the Wulff construction provide unique modeling tools for alloy and kinetically grown nanoparticles. The former reveals a size-dependence of the shape of small alloy particles (such as those used in catalysis) because of surface segregation, while the latter uniquely models the shape of many

  15. All optical OFDM transmission for passive optical networks

    Science.gov (United States)

    Kachare, Nitin; Ashik T., J.; Bai, K. Kalyani; Kumar, D. Sriram

    2017-06-01

    This paper demonstrates the idea of data transmission at a very higher rate (Tbits/s) through optical fibers in a passive optical network using the most efficient data transmission technique widely used in wireless communication that is orthogonal frequency division multiplexing. With an increase in internet users, data traffic has also increased significantly and the current dense wavelength division multiplexing (DWDM) systems may not support the next generation passive optical networks (PONs) requirements. The approach discussed in this paper allows to increase the downstream data rate per user and extend the standard single-mode fiber reach for future long-haul applications. All-optical OFDM is a promising solution for terabit per second capable single wavelength transmission, with high spectral efficiency and high tolerance to chromatic dispersion.

  16. KOP program for calculating cross sections of neutron and charged particle interactions with atomic nuclei using the optical model

    International Nuclear Information System (INIS)

    Grudzevich, O.D.; Zelenetskij, A.V.; Pashchenko, A.B.

    1986-01-01

    The last version of the KOP program for calculating cross sections of neutron and charged particle interaction with atomic nuclei within the scope of the optical model is described. The structure and program organization, library of total parameters of the optical potential, program identificators and peculiarities of its operation, input of source data and output of calculational results for printing are described in detail. The KOP program is described in Fortran- and adapted for EC-1033 computer

  17. Effect of Metal Dopant on Ninhydrin—Organic Nonlinear Optical Single Crystals

    Directory of Open Access Journals (Sweden)

    R. S. Sreenivasan

    2013-01-01

    Full Text Available In the present work, metal (Cu2+-substituted ninhydrin single crystals were grown by slow evaporation method. The grown crystals have been subjected to single crystal XRD, powder X-ray diffraction, FTIR, dielectric and SHG studies. Single crystal X-ray diffraction analysis reveals that the compound crystallizes in monoclinic system with noncentrosymmetric space group P21 with lattice parameters a=11.28 Å, b=5.98 Å, c=5.71 Å, α=90∘, β=98.57, γ=90∘, and V=381 (Å3, which agrees very well with the reported value. The sharp and strong peaks in the powder X-ray diffraction pattern confirm the good crystallinity of the grown crystals. The presence of dopants marginally altered the lattice parameters without affecting the basic structure of the crystal. The UV-Vis transmittance spectrum shows that the crystal has a good optical transmittance in the entire visible region with lower cutoff wavelength 314 nm. The vibrational frequencies of various functional groups in the crystals have been derived from FT-IR analysis. Based on the shifts in the vibrations, the presence of copper in the lattice of the grown crystal is clearly established from the pure ninhydrin crystals. Both dielectric constant and dielectric loss decrease with the increase in frequency. The second harmonic generation efficiency was measured by employing powder Kurtz method.

  18. Growth and characterization of dichlorobis L-proline Zn(II): A semiorganic nonlinear optical single crystal

    Science.gov (United States)

    Lydia Caroline, M.; Kandasamy, A.; Mohan, R.; Vasudevan, S.

    2009-02-01

    A semiorganic nonlinear optical material dichlorobis L-proline Zn (II) (DBLPZ), with molecular formula [ZnCl 2(C 5H 9NO 2) 2], has been synthesized from mixed solvents of deionised water and methanol. Single crystals of DBLPZ were successfully grown by the slow evaporation method at an ambient temperature. Single-crystal X-ray diffractometer was utilized to measure unit cell parameters and to confirm the crystal structure. The powder X-ray diffraction pattern of the grown DBLPZ has been indexed. The modes of vibration of different molecular groups present in the sample were identified by the FTIR spectral analysis. The optical transmittance window and the lower cutoff wavelength of the DBLPZ have been identified by UV-vis-NIR studies. Thermal stability of the DBLPZ was determined from TG/DTA/DSC curves, which indicate that the material is stable up to 242.3 °C. The existence of second harmonic generation signals was observed using Nd:YAG laser with fundamental wavelength of 1064 nm possessing SHG efficiency of 0.5 times of KDP and hence it can be a potential material for the frequency-doubling process.

  19. Measurement of the single-top-quark production cross section at CDF.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Copic, K; Cordelli, M; Cortiana, G; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schall, I; Scheidle, T; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2008-12-19

    We report a measurement of the single-top-quark production cross section in 2.2 fb;{-1} of pp collision data collected by the Collider Detector at Fermilab at sqrt[s]=1.96 TeV. Candidate events are classified as signal-like by three parallel analyses which use likelihood, matrix element, and neural network discriminants. These results are combined in order to improve the sensitivity. We observe a signal consistent with the standard model prediction, but inconsistent with the background-only model by 3.7 standard deviations with a median expected sensitivity of 4.9 standard deviations. We measure a cross section of 2.2(-0.6)(+0.7)(stat+syst) pb, extract the Cabibbo-Kobayashi-Maskawa matrix-element value |V(tb)|=0.88(-0.12)(+0.13)(stat+syst)+/-0.07(theory), and set the limit |V(tb)|>0.66 at the 95% C.L.

  20. Optical trapping and binding of particles in an optofluidic stable Fabry-Pérot resonator with single-sided injection.

    Science.gov (United States)

    Gaber, Noha; Malak, Maurine; Marty, Frédéric; Angelescu, Dan E; Richalot, Elodie; Bourouina, Tarik

    2014-07-07

    In this article, microparticles are manipulated inside an optofluidic Fabry-Pérot cylindrical cavity embedding a fluidic capillary tube, taking advantage of field enhancement and multiple reflections within the optically-resonant cavity. This enables trapping of suspended particles with single-side injection of light and with low optical power. A Hermite-Gaussian standing wave is developed inside the cavity, forming trapping spots at the locations of the electromagnetic field maxima with a strong intensity gradient. The particles get arranged in a pattern related to the mechanism affecting them: either optical trapping or optical binding. This is proven to eventually translate into either an axial one dimensional (1D) particle array or a cluster of particles. Numerical simulations are performed to model the field distributions inside the cavity allowing a behavioral understanding of the phenomena involved in each case.

  1. Optical design and studies of a tiled single grating pulse compressor for enhanced parametric space and compensation of tiling errors

    Science.gov (United States)

    Daiya, D.; Patidar, R. K.; Sharma, J.; Joshi, A. S.; Naik, P. A.; Gupta, P. D.

    2017-04-01

    A new optical design of tiled single grating pulse compressor has been proposed, set-up and studied. The parametric space, i.e. the laser beam diameters that can be accommodated in the pulse compressor for the given range of compression lengths, has been calculated and shown to have up to two fold enhancement in comparison to our earlier proposed optical designs. The new optical design of the tiled single grating pulse compressor has an additional advantage of self compensation of various tiling errors like longitudinal and lateral piston, tip and groove density mismatch, compared to the earlier designs. Experiments have been carried out for temporal compression of 650 ps positively chirped laser pulses, at central wavelength 1054 nm, down to 235 fs in the tiled grating pulse compressor set up with the proposed design. Further, far field studies have been performed to show the desired compensation of the tiling errors takes place in the new compressor.

  2. MODESTY, Statistical Reaction Cross-Sections and Particle Spectra in Decay Chain

    International Nuclear Information System (INIS)

    Mattes, W.

    1977-01-01

    1 - Nature of the physical problem solved: Code MODESTY calculates all energetically possible reaction cross sections and particle spectra within a nuclear decay chain. 2 - Method of solution: It is based on the statistical nuclear model following the method of Uhl (reference 1) where the optical model is used in the calculation of partial widths and the Blatt-Weisskopf single particle model for gamma rays

  3. Mobility and height detection of particle labels in an optical evanescent wave biosensor with single-label resolution

    NARCIS (Netherlands)

    van Ommering, K.; Somers, P.A.; Koets, M.; Schleipen, J.J.H.B.; IJzendoorn, van L.J.; Prins, M.W.J.

    2010-01-01

    Particle labels are used in biosensors to detect the presence and concentration of analyte molecules. In this paper we demonstrate an optical technique to measure the mobility and height of bound particle labels on a biosensor surface with single-label resolution. The technique is based on the

  4. Growth and physicochemical properties of second-order nonlinear optical 2-amino-5-chloropyridinium trichloroacetate single crystals

    Science.gov (United States)

    Renugadevi, R.; Kesavasamy, R.

    2015-09-01

    The growth of organic nonlinear optical (NLO) crystal 2-amino-5-chloropyridinium trichloroacetate (2A5CPTCA) has been synthesized and single crystals have been grown from methanol solvent by slow evaporation technique. The grown crystals were subjected to various characterization analyses in order to find out the suitability for device fabrication. Single crystal X-ray diffraction analysis reveals that 2A5CPTCA crystallizes in monoclinic system with the space group Cc. The grown crystal was further characterized by Fourier transform infrared spectral analysis to find out the functional groups. The nuclear magnetic resonance spectroscopy is a research technique that exploits the magnetic properties of certain atomic nuclei. The optical transparency window in the visible and near-IR (200--1100 nm) regions was found to be good for NLO applications. Thermogravimetric analysis and differential thermal analysis were used to study its thermal properties. The powder second harmonic generation efficiency measurement with Nd:YAG laser (1064 nm) radiation shows that the highest value when compared with the standard potassium dihydrogen phosphate crystal.

  5. Study of thermochemically reduced and electron-irradiated LiNbO3 single crystals by positron annihilation and optical absorption measurements

    International Nuclear Information System (INIS)

    Pareja, R.; Gonzalez, R.; Pedrosa, M.A.

    1984-01-01

    Irradiation of LiNbO 3 single crystals using Van de Graaff electrons with an energy of 1.5 MeV introduces an optical absorption band similar to that observed in thermochemically reduced samples. As-grown, reduced, or irradiated crystals show single-component positron lifetime spectra with an average decay time of 234 ps. (author)

  6. Single-mode optical fiber design with wide-band ultra low bending-loss for FTTH application.

    Science.gov (United States)

    Watekar, Pramod R; Ju, Seongmin; Han, Won-Taek

    2008-01-21

    We propose a new design of a single-mode optical fiber (SMF) which exhibits ultra low bend sensitivity over a wide communication band (1.3 microm to 1.65 microm). A five-cladding fiber structure has been proposed to minimize the bending loss, estimated to be as low as 4.4x10(-10) dB/turn for the bend radius of 10 mm.

  7. The Use of Ultrashort Picosecond Laser Pulses to Generate Quantum Optical Properties of Single Molecules in Biophysics

    Science.gov (United States)

    Ly, Sonny

    Generation of quantum optical states from ultrashort laser-molecule interactions have led to fascinating discoveries in physics and chemistry. In recent years, these interactions have been extended to probe phenomena in single molecule biophysics. Photons emitted from a single fluorescent molecule contains important properties about how the molecule behave and function in that particular environment. Analysis of the second order coherence function through fluorescence correlation spectroscopy plays a pivotal role in quantum optics. At very short nanosecond timescales, the coherence function predicts photon antibunching, a purely quantum optical phenomena which states that a single molecule can only emit one photon at a time. Photon antibunching is the only direct proof of single molecule emission. From the nanosecond to microsecond timescale, the coherence function gives information about rotational diffusion coefficients, and at longer millisecond timescales, gives information regarding the translational diffusion coefficients. In addition, energy transfer between molecules from dipole-dipole interaction results in FRET, a highly sensitive method to probe conformational dynamics at nanometer distances. Here I apply the quantum optical techniques of photon antibunching, fluorescence correlation spectroscopy and FRET to probe how lipid nanodiscs form and function at the single molecule level. Lipid nanodiscs are particles that contain two apolipoprotein (apo) A-I circumventing a lipid bilayer in a belt conformation. From a technological point of view, nanodiscs mimics a patch of cell membrane that have recently been used to reconstitute a variety of membrane proteins including cytochrome P450 and bacteriorhodopsin. They are also potential drug transport vehicles due to its small and stable 10nm diameter size. Biologically, nanodiscs resemble to high degree, high density lipoproteins (HDL) in our body and provides a model platform to study lipid-protein interactions

  8. Compact 6 dB Two-Color Continuous Variable Entangled Source Based on a Single Ring Optical Resonator

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2018-02-01

    Full Text Available Continuous-variable entangled optical beams at the degenerate wavelength of 0.8 μm or 1.5 μm have been investigated extensively, but separately. The two-color entangled states of these two useful wavelengths, with sufficiently high degrees of entanglement, still lag behind. In this work, we analyze the various limiting factors that affect the entanglement degree. On the basis of this, we successfully achieve 6 dB of two-color quadrature entangled light beams by improving the escape efficiency of the nondegenerate optical amplifier, the stability of the phase-locking servo system, and the detection efficiency. Our entangled source is constructed only from a single ring optical resonator, and thus is highly compact, which is suitable for applications in long-distance quantum communication networks.

  9. Crystal growth, structural, optical, thermal, mechanical, laser damage threshold and electrical properties of triphenylphosphine oxide 4-nitrophenol (TP4N) single crystals for nonlinear optical applications

    Science.gov (United States)

    Karuppasamy, P.; Senthil Pandian, Muthu; Ramasamy, P.; Verma, Sunil

    2018-05-01

    The optically good quality single crystals of triphenylphosphine oxide 4-nitrophenol (TP4N) with maximum dimension of 15 × 10 × 5 mm3 were grown by slow evaporation solution technique (SEST) at room temperature. The cell dimensions of the grown TP4N crystal were confirmed by single crystal X-ray diffraction (SXRD) and the crystalline purity was confirmed and planes were indexed by powder X-ray diffraction (PXRD) analysis. Functional groups of TP4N crystal were confirmed by Fourier transform infrared (FTIR) spectral analysis. The optical transmittance of the grown crystal was determined by the UV-Vis NIR spectral analysis and it has good optical transparency in the entire visible region. The band tail (Urbach) energy of the grown crystal was analyzed and it appears to be minimum, which indicates that the TP4N has good crystallinity. The position of valence band (Ev) and conduction band (Ec) of the TP4N have been determined from the electron affinity energy (EA) and the ionization energy (EI) of its elements and using the optical band gap. The thermal behaviour of the grown crystal was investigated by thermogravimetric and differential thermal analysis (TG-DTA). Vickers microhardness analysis was carried out to identify the mechanical stability of the grown crystal and their indentation size effect (ISE) was explained by the Meyer's law (ML), Hays-Kendall's (HK) approach, proportional specimen resistance (PSR) model, modified PSR model (MPSR), elastic/plastic deformation (EPD) model and indentation induced cracking (IIC) model. Chemical etching study was carried out to find the etch pit density (EPD) of the grown crystal. Laser damage threshold (LDT) value was measured by using Nd:YAG laser (1064 nm). The dielectric permittivity (ε՛) and dielectric loss (tan δ) as a function of frequency was measured. The electronic polarizability (α) of the TP4N crystal was calculated. It is well matched to the value which was calculated from Clausius-Mossotti relation

  10. Optical properties of the iron-based superconductor LiFeAs single crystal

    International Nuclear Information System (INIS)

    Min, Byeong Hun; Kwon, Yong Seung; Hong, Jong Beom; Yun, Jae Hyun; Bang, Yunkyu; Iizuka, Takuya; Kimura, Shin-ichi

    2013-01-01

    We have measured the reflectivity spectra of the LiFeAs (T c = 17.6 K) single crystal in the temperature range from 4 to 300 K. In the superconducting (SC) state (T c ), the clean opening of the optical absorption gap was observed below 25 cm −1 , indicating an isotropic full gap formation. In the normal state (T > T c ), the optical conductivity spectra display typical metallic behavior with the Drude-type spectra at low frequencies, but we found that the introduction of the two Drude components best fits the data, indicating the multiband nature of this compound. A theoretical analysis of the low-temperature data (T = 4 K c ) also suggests that two SC gaps best fit the data and their values were estimated as Δ 1 = 3.3 meV and Δ 2 = 1.59 meV, respectively. Using the Ferrell–Glover–Tinkham sum rule and dielectric function ϵ 1 (ω), the plasma frequency of the SC condensate (ω ps ) is consistently estimated to be 6665 cm −1 , implying that about 65% of the free carriers of the normal state condense into the SC condensate. To investigate the various interband transition processes (for ω > 200 cm −1 ), we have also performed the local-density approximation band calculation and calculated the optical spectra of the interband transitions. This theoretical result provided qualitative agreement with the experimental data below 4000 cm −1 . (paper)

  11. Single Nanowire Probe for Single Cell Endoscopy and Sensing

    Science.gov (United States)

    Yan, Ruoxue

    The ability to manipulate light in subwavelength photonic and plasmonic structures has shown great potentials in revolutionizing how information is generated, transformed and processed. Chemically synthesized nanowires, in particular, offers a unique toolbox not only for highly compact and integrated photonic modules and devices, including coherent and incoherent light sources, waveguides, photodetectors and photovoltaics, but also for new types of nanoscopic bio-probes for spot cargo delivery and in-situ single cell endoscopy and sensing. Such nanowire probes would enable us to carry out intracellular imaging and probing with high spatial resolution, monitor in-vivo biological processes within single living cells and greatly improve our fundamental understanding of cell functions, intracellular physiological processes, and cellular signal pathways. My work is aimed at developing a material and instrumental platform for such single nanowire probe. Successful optical integration of Ag nanowire plasmonic waveguides, which offers deep subwavelength mode confinement, and conventional photonic waveguides was demonstrated on a single nanowire level. The highest plasmonic-photonic coupling efficiency coupling was found at small coupling angles and low input frequencies. The frequency dependent propagation loss was observed in Ag nanowire and was confirmed by quantitative measurement and in agreement with theoretical expectations. Rational integration of dielectric and Ag nanowire waveguide components into hybrid optical-plasmonic routing devices has been demonstrated. This capability is essential for incorporating sub-100nm Ag nanowire waveguides into optical fiber based nanoprobes for single cell endoscopy. The nanoprobe system based on single nanowire waveguides was demonstrated by optically coupling semiconductor or metal nanowire with an optical fiber with tapered tip. This nanoprobe design requires minimal instrumentation which makes it cost efficient and readily

  12. Cross-sectional nanophotoluminescence studies of Stark effects in self-assembled quantum dots

    International Nuclear Information System (INIS)

    Htoon, H.; Keto, J. W.; Baklenov, O.; Holmes, A. L. Jr.; Shih, C. K.

    2000-01-01

    By using a cross-sectional geometry, we show the capability to perform single-dot spectroscopy in self-assembled quantum dots using far-field optics. By using this method, we study the quantum-confined Stark effect in self-assembled quantum dots. For single-stack quantum dots (QDs), we find that the spectra are redshifted with an increase in electric field. For vertically coupled double-stack quantum dots, while most of the QDs are redshifted, some QDs show blueshifted spectra, which can be interpreted as an evidence of coupled QD molecules. (c) 2000 American Institute of Physics

  13. Modeling satellite-Earth quantum channel downlinks with adaptive-optics coupling to single-mode fibers

    Science.gov (United States)

    Gruneisen, Mark T.; Flanagan, Michael B.; Sickmiller, Brett A.

    2017-12-01

    The efficient coupling of photons from a free-space quantum channel into a single-mode optical fiber (SMF) has important implications for quantum network concepts involving SMF interfaces to quantum detectors, atomic systems, integrated photonics, and direct coupling to a fiber network. Propagation through atmospheric turbulence, however, leads to wavefront errors that degrade mode matching with SMFs. In a free-space quantum channel, this leads to photon losses in proportion to the severity of the aberration. This is particularly problematic for satellite-Earth quantum channels, where atmospheric turbulence can lead to significant wavefront errors. This report considers propagation from low-Earth orbit to a terrestrial ground station and evaluates the efficiency with which photons couple either through a circular field stop or into an SMF situated in the focal plane of the optical receiver. The effects of atmospheric turbulence on the quantum channel are calculated numerically and quantified through the quantum bit error rate and secure key generation rates in a decoy-state BB84 protocol. Numerical simulations include the statistical nature of Kolmogorov turbulence, sky radiance, and an adaptive-optics system under closed-loop control.

  14. Single crystal growth, electronic structure and optical properties of Cs2HgBr4

    Science.gov (United States)

    Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Shkumat, P. N.; Parasyuk, O. V.; Fedorchuk, A. O.; Khyzhun, O. Y.

    2015-10-01

    We report on successful synthesis of high-quality single crystal of cesium mercury tetrabromide, Cs2HgBr4, by using the vertical Bridgman-Stockbarger method as well as on studies of its electronic structure. For the Cs2HgBr4 crystal, we have recorded X-ray photoelectron spectra for both pristine and Ar+ ion-bombarded surfaces. Our data indicate that the Cs2HgBr4 single crystal surface is rather sensitive with respect to Ar+ ion-bombardment. In particular, such a treatment of the Cs2HgBr4 single crystal surface alters its elemental stoichiometry. To explore peculiarities of the energy distribution of total and partial densities of states within the valence band and the conduction band of Cs2HgBr4, we have made band-structure calculations based on density functional theory (DFT) employing the augmented plane wave+local orbitals (APW+lo) method as incorporated in the WIEN2k package. The APW+lo calculations allow for concluding that the Br 4p states make the major contributions in the upper portion of the valence band, while its lower portion is dominated by contributors of the Hg 5d and Cs 5p states. Further, the main contributors to the bottom of the conduction band of Cs2HgBr4 are the unoccupied Br p and Hg s states. In addition, main optical characteristics of Cs2HgBr4 such as dispersion of the absorption coefficient, real and imaginary parts of dielectric function, electron energy-loss spectrum, refractive index, extinction coefficient and optical reflectivity have been explored from the first-principles band-structure calculations.

  15. Measurement of the Single Top Quark Production Cross Section at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Adelman, J.; /Chicago U., EFI; Akimoto, T.; /Tsukuba U.; Albrow, Michael G.; /Fermilab; Alvarez Gonzalez, B.; /CSIC, Catalunya; Amerio, S.; /INFN, Padua; Amidei, Dante E.; /Michigan U.; Anastassov, A.; /Northwestern U.; Annovi, Alberto; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab /Purdue U.

    2008-09-01

    We report a measurement of the single top quark production cross section in 2.2 fb{sup -1} of p{bar p} collision data collected by the Collider Detector at Fermilab at {radical}s = 1.96 TeV. Candidate events are classified as signal-like by three parallel analyses which use likelihood, matrix element, and neural network discriminants. These results are combined in order to improve the sensitivity. We observe a signal consistent with the standard model prediction, but inconsistent with the background only model by 3.7 standard deviations with a median expected sensitivity of 4.9 standard deviations. We measure a cross section of 2.2{sub -0.6}{sup +0.7}(stat+sys) pb, extract the CKM matrix element value |V{sub tb}| = 0.88{sub -0.12}{sup +0.13}(stat + sys) {+-} 0.07(theory), and set the limit |V{sub tb}| > 0.66 at the 95% C.L.

  16. Large Signal Circuit Model of Two-Section Gain Lever Quantum Dot Laser

    International Nuclear Information System (INIS)

    Horri Ashkan; Mirmoeini Seyedeh Zahra; Faez Rahim

    2012-01-01

    An equivalent circuit model for the design and analysis of two-section gain lever quantum dot (QD) laser is presented. This model is based on the three level rate equations with two independent carrier populations and a single longitudinal optical mode. By using the presented model, the effect of gain lever on QD laser performances is investigated. The results of simulation show that the main characteristics of laser such as threshold current, transient response, output power and modulation response are affected by differential gain ratios between the two-sections

  17. Cu-O network dependence of optical charge-transfer gaps and spin-pair excitations in single-CuO2-layer compounds

    International Nuclear Information System (INIS)

    Tokura, Y.; Koshihara, S.; Arima, T.; Takagi, H.; Ishibashi, S.; Ido, T.; Uchida, S.

    1990-01-01

    Spectra of optical conductivity and magnon Raman scattering have been investigated in single crystals of a parent family of cuprate superconductors with various types of Cu-O single-layer networks. The analysis of the spectra shows the systematic dependence of the charge-transfer gaps and covalent character of Cu-O bonds on the pattern of the Cu-O network, while the spin-exchange energy is rather convergent for all the single-CuO 2 -sheet compounds

  18. A dispersive optical model for n + 120Sn from -15 to +80 MeV and properties of neutron single-particle and single-hole states

    International Nuclear Information System (INIS)

    Chen Zemin; Walter, R L; Tornow, W; Weisel, G J; Howell, C R

    2004-01-01

    Data for σ(θ) and A y (θ) previously obtained at the Triangle Universities Nuclear Laboratory for 120 Sn(n, n) are combined with other measurements of σ(θ) and A y (θ) to create an elastic-scattering database from 9.9 to 24 MeV. In addition, relatively recent high-accuracy measurements of the neutron total cross section σ T for Sn from 5 to 80 MeV are combined with earlier σ T data to form a detailed σ T database from 0.24 to 80 MeV. All of these data are analysed in the framework of a dispersive optical model (DOM). The DOM is extended to negative energies to investigate properties of single-particle and single-hole bound states. The DOM also is used in calculations of compound-nucleus contributions to σ(θ), so that DOM predictions can be compared to σ(θ) measurements. Excellent agreement is obtained for the entire set of scattering data from 0.4 to 24 MeV, and for σ T values from 0.05 to 80 MeV. Calculations of bound-state quantities are compared to values derived from experiment for energies down to -15 MeV. Reasonable agreement for the binding energies is achieved, while the predicted spectroscopic factors disagree somewhat with the values found in stripping and pickup experiments. Finally, the DOM is modified to investigate two features (volume absorption that is asymmetric about the Fermi energy and zero absorption in the vicinity of the Fermi energy) that have been ignored in many DOM models. These modifications have little effect on the agreement of the calculations with the scattering data or with the bound-state quantities

  19. Cross-section measurement of single-top t-channel production at ATLAS

    International Nuclear Information System (INIS)

    Herrberg-Schubert, Ruth Hedwig Margarete

    2014-01-01

    This study presents the cross-section measurement of electroweak single-top quark production in the t-channel with a semi-leptonically decaying top quark. The study is based on 4.7 fb -1 of proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider in the year 2011. Selected events contain two highly energetic jets, one of which is identified as originating from a beauty quark, as well as a highly energetic electron or muon and transverse missing energy. The case of three and four jets is also considered but eventually discarded since their inclusion degrades the precision of the result. The event reconstruction is done with a chi-square-based kinematic fit using W boson and top quark mass constraints. The chi-square value in each event serves to classify the event as a signal-like or background-like process. The cross-section is extracted by performing a template-based maximum likelihood fit to the distribution that displays the best discriminatory power: This distribution is chosen such that the shape differences between signal and background with respect to the typical forward light jet kinematics of the t-channel are exploited. An observation of the single-top t-channel process with a significance of 5.7 σ is obtained, and the cross-section is measured to be 111 +29 -28 pb. Assuming vertical stroke V tb vertical stroke 2 >> vertical stroke V td vertical stroke 2 + vertical stroke V ts vertical stroke 2 as well as a (V-A), CP-conserving interaction, and allowing for the presence of anomalous couplings at the W-t-b vertex, the associated value of the CKM matrix element times an anomalous form factor is determined as vertical stroke V tb f L 1 vertical stroke =1.30 +0.13 -0.16 . The corresponding lower limit in the standard model scenario 0≤ vertical stroke V tb vertical stroke ≤1 amounts to 0.77 tb vertical stroke at 95% confidence level.

  20. Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, Janik; Kewes, Guenter; Schell, Andreas W.; Aichele, Thomas; Benson, Oliver [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Nuesse, Nils; Schoengen, Max; Loechel, Bernd [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Hanke, Tobias; Leitenstorfer, Alfred [Department of Physics and Center for Applied Photonics, Universitaet Konstanz, Konstanz (Germany); Bratschitsch, Rudolf [Department of Physics and Center for Applied Photonics, Universitaet Konstanz, Konstanz (Germany); Technische Universitaet Chemnitz, Institut fuer Physik, Chemnitz (Germany)

    2012-05-15

    We demonstrate the ability to modify the emission properties and enhance the interaction strength of single-photon emitters coupled to nanophotonic structures based on metals and dielectrics. Assembly of individual diamond nanocrystals, metal nanoparticles, and photonic crystal cavities to meta-structures is introduced. Experiments concerning controlled coupling of single defect centers in nanodiamonds to optical nanoantennas made of gold bowtie structures are reviewed. By placing one and the same emitter at various locations with high precision, a map of decay rate enhancements was obtained. Furthermore, we demonstrate the formation of a hybrid cavity quantum electrodynamics system in which a single defect center is coupled to a single mode of a gallium phosphite photonic crystal cavity. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Single-step fabrication of electrodes with controlled nanostructured surface roughness using optically-induced electrodeposition

    Science.gov (United States)

    Liu, N.; Li, M.; Liu, L.; Yang, Y.; Mai, J.; Pu, H.; Sun, Y.; Li, W. J.

    2018-02-01

    The customized fabrication of microelectrodes from gold nanoparticles (AuNPs) has attracted much attention due to their numerous applications in chemistry and biomedical engineering, such as for surface-enhanced Raman spectroscopy (SERS) and as catalyst sites for electrochemistry. Herein, we present a novel optically-induced electrodeposition (OED) method for rapidly fabricating gold electrodes which are also surface-modified with nanoparticles in one single step. The electrodeposition mechanism, with respect to the applied AC voltage signal and the elapsed deposition time, on the resulting morphology and particle sizes was investigated. The results from SEM and AFM analysis demonstrated that 80-200 nm gold particles can be formed on the surface of the gold electrodes. Simultaneously, both the size of the nanoparticles and the roughness of the fabricated electrodes can be regulated by the deposition time. Compared to state-of-the-art methods for fabricating microelectrodes with AuNPs, such as nano-seed-mediated growth and conventional electrodeposition, this OED technique has several advantages including: (1) electrode fabrication and surface modification using nanoparticles are completed in a single step, eliminating the need for prefabricating micro electrodes; (2) the patterning of electrodes is defined using a digitally-customized, projected optical image rather than using fixed physical masks; and (3) both the fabrication and surface modification processes are rapid, and the entire fabrication process only requires less than 6 s.

  2. Harnessing mode-selective nonlinear optics for on-chip multi-channel all-optical signal processing

    Directory of Open Access Journals (Sweden)

    Ming Ma

    2016-11-01

    Full Text Available All-optical signal processing based on nonlinear optical effects allows for the realization of important functions in telecommunications including wavelength conversion, optical multiplexing/demultiplexing, Fourier transformation, and regeneration, amongst others, on ultrafast time scales to support high data rate transmission. In integrated photonic subsystems, the majority of all-optical signal processing systems demonstrated to date typically process only a single channel at a time or perform a single processing function, which imposes a serious limitation on the functionality of integrated solutions. Here, we demonstrate how nonlinear optical effects can be harnessed in a mode-selective manner to perform simultaneous multi-channel (two and multi-functional optical signal processing (i.e., regenerative wavelength conversion in an integrated silicon photonic device. This approach, which can be scaled to a higher number of channels, opens up a new degree of freedom for performing a broad range of multi-channel nonlinear optical signal processing functions using a single integrated photonic device.

  3. Probing insect backscatter cross section and melanization using kHz optical remote detection system

    Science.gov (United States)

    Gebru, Alem; Brydegaard, Mikkel; Rohwer, Erich; Neethling, Pieter

    2017-01-01

    A kHz optical remote sensing system is implemented to determine insect melanization features. This is done by measuring the backscatter signal in the visible and near-infrared (VIS-NIR) and short-wave infrared (SWIR) in situ. It is shown that backscatter cross section in the SWIR is insensitive to melanization and absolute melanization can be derived from the ratio of backscatter cross section of different bands (SWIR/VIS-NIR). We have shown that reflectance from insect is stronger in the SWIR as compared to NIR and VIS. This reveals that melanization plays a big role to determine backscatter cross section. One can use this feature as a tool to improve insect species and age classification. To support the findings, we illustrated melanization feature using three different insects [dead, dried specimens of snow white moth (Spilosoma genus), fox moth (Macrothylacia), and leather beetle (Odontotaenius genus)]. It is shown that reflectance from the leather beetle in the VIS and NIR is more affected by melanization as compared with snow white moth.

  4. Quantum optics with single quantum dot devices

    International Nuclear Information System (INIS)

    Zwiller, Valery; Aichele, Thomas; Benson, Oliver

    2004-01-01

    A single radiative transition in a single-quantum emitter results in the emission of a single photon. Single quantum dots are single-quantum emitters with all the requirements to generate single photons at visible and near-infrared wavelengths. It is also possible to generate more than single photons with single quantum dots. In this paper we show that single quantum dots can be used to generate non-classical states of light, from single photons to photon triplets. Advanced solid state structures can be fabricated with single quantum dots as their active region. We also show results obtained on devices based on single quantum dots

  5. Study on relations between heavy ions single event upset cross sections and γ accumulated doses

    International Nuclear Information System (INIS)

    He Chaohui; Geng Bin; Wang Yanping; Peng Honglun; Yang Hailiang; Chen Xiaohua; Li Guozheng

    2002-01-01

    Experiments were done under 252 Cf and 60 Co γ source to study the relation between heavy ion Single Event Upset (SEU) cross sections and γ accumulated doses. There was no obvious rule and little influence of γ accumulated doses on SEU cross sections when Static Random Access Memories were in power off mode and static power on mode. In active measuring mode, the SEU cross section increased as the accumulated doses increasing when same data were written in memory cells. If reverse data, such as '55' and 'AA', were written in memory cells during the experiment, the SEU cross sections decreased to the level when memories were not irradiated under 60 Co γ source, even more small. It implied that the influence of γ accumulated doses on SEU cross sections can be set off by this method

  6. Efficient continuous-wave eye-safe region signal output from intra-cavity singly resonant optical parametric oscillator

    International Nuclear Information System (INIS)

    Li Bin; Ding Xin; Sheng Quan; Yin Su-Jia; Shi Chun-Peng; Li Xue; Wen Wu-Qi; Yao Jian-Quan; Yu Xuan-Yi

    2012-01-01

    We report an efficient continuous-wave (CW) tunable intra-cavity singly resonant optical parametric oscillator based on the multi-period periodically poled lithium niobate and using a laser diode (LD) end-pumped CW 1064 nm Nd:YVO 4 laser as the pump source. A highly efficiency CW operation is realized through a careful cavity design for mode matching and thermal stability. The signal tuning range is 1401–1500 nm obtained by varying the domain period. The maximum output power of 2.2 W at 1500 nm is obtained with a 17.1 W 808 nm LD power and the corresponding conversion efficiency is 12.9%. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  7. The DNA hybridization assay using single-walled carbon nanotubes as ultrasensitive, long-term optical labels

    International Nuclear Information System (INIS)

    Hwang, Eung-Soo; Cao, Chengfan; Hong, Sanghyun; Jung, Hye-Jin; Cha, Chang-Yong; Choi, Jae-Boong; Kim, Young-Jin; Baik, Seunghyun

    2006-01-01

    Single walled carbon nanotubes (SWNTs) exhibit strong Raman signals as well as fluorescence emissions in the near infrared region. Such signals do not blink or photobleach under prolonged excitation, which is an advantage in optical nano-biomarker applications. In this paper, we present single-stranded DNA conjugated SWNT probes to locate a particular sequence of DNA within a complex genome. Chromosomal DNAs of human fibroblasts and Escherichia coli are used as a target and a control, respectively. Southern blotting, which uses photostable Raman signals of nanotubes instead of fluorescent dyes, demonstrates excellent sensitivity and specificity of the probes. The results show that SWNTs may be used as generic nano-biomarkers for the precise detection of specific kinds of genes

  8. Optical energy gaps and photoluminescence peaks of BaGa2S4:Er3+ and BaGa2Se4:Er3+ single crystals

    International Nuclear Information System (INIS)

    Choe, Sung-Hyu; Jin, Moon-Seog; Kim, Wha-Tek

    2005-01-01

    BaGa 2 S 4 :Er 3+ and BaGa 2 Se 4 :Er 3+ single crystals were grown by using the chemical transport reaction method. The optical energy gaps of the BaGa 2 S 4 :Er 3+ and the BaGa 2 Se 4 :Er 3+ single crystals were found to be 4.045 eV and 3.073 eV, respectively, at 11 K. The temperature dependence of the optical energy gap was well fitted by the Varshni equation. Sharp emission peaks were observed in the photoluminescence spectra of the single crystals and assigned to radiation recombination between split Stark levels of the Er 3+ ion.

  9. EPR and optical absorption studies of paramagnetic molecular ion (VO2+) in Lithium Sodium Acid Phthalate single crystal

    Science.gov (United States)

    Subbulakshmi, N.; Kumar, M. Saravana; Sheela, K. Juliet; Krishnan, S. Radha; Shanmugam, V. M.; Subramanian, P.

    2017-12-01

    Electron Paramagnetic Resonance (EPR) spectroscopic studies of VO2+ ions as paramagnetic impurity in Lithium Sodium Acid Phthalate (LiNaP) single crystal have been done at room temperature on X-Band microwave frequency. The lattice parameter values are obtained for the chosen system from Single crystal X-ray diffraction study. Among the number of hyperfine lines in the EPR spectra only two sets are reported from EPR data. The principal values of g and A tensors are evaluated for the two different VO2+ sites I and II. They possess the crystalline field around the VO2+ as orthorhombic. Site II VO2+ ion is identified as substitutional in place of Na1 location and the other site I is identified as interstitial location. For both sites in LiNaP, VO2+ are identified in octahedral coordination with tetragonal distortion as seen from the spin Hamiltonian parameter values. The ground state of vanadyl ion in the LiNaP single crystal is dxy. Using optical absorption data the octahedral and tetragonal parameters are calculated. By correlating EPR and optical data, the molecular orbital bonding parameters have been discussed for both sites.

  10. Analysis of photogenerated random telegraph signal in single electron detector (photo-SET).

    Science.gov (United States)

    Troudi, M; Sghaier, Na; Kalboussi, A; Souifi, A

    2010-01-04

    In this paper, we analyzed slow single traps, situated inside the tunnel oxide of small area single electron photo-detector (photo-SET or nanopixel). The relationship between excitation signal (photons) and random-telegraph-signal (RTS) was evidenced. We demonstrated that photoinduced RTS observed on a photo-detector is due to the interaction between single photogenerated charges that tunnel from dot to dot and current path. Based on RTS analysis for various temperatures, gate bias and optical power we determined the characteristics of these single photogenerated traps: the energy position within the silicon bandgap, capture cross section and the position within the Si/SiO(x = 1.5) interfaces.

  11. SLP - A single level Breit-Wigner cross-section generating programme

    International Nuclear Information System (INIS)

    Doherty, G.

    1965-06-01

    Unbroadened cross-sections are calculated from a single level Breit-Wigner approximation which allows for resonance-potential interference but not resonance-resonance interference. Doppler broadening, and instrumental resolution broadening for thin samples, are optionally performed by successive numerical convolutions. An energy point selection and discard system enables the cross-section over a specified energy range to be represented to a required degree of accuracy using the minimum number of energy points. An energy grid prepared by the user can be incorporated in the calculation but the programme will usually be more efficient if only the end points of the energy range of interest are specified by the user and the intermediate energy points left to the programme to organise. The capacity of the programme varies with the energy range and type of resonance (narrow or broad). About fifty resonances may be sufficient to generate an energy grid of 4000 energy points, which is the maximum allowable energy vector. The programme is written in KDF9 EGTRAN (a FORTRAN dialect); output is printed and may be copied on cards, and intermediate results are stored on magnetic disc. (author)

  12. Determination of the optical properties of turbid media from a single Monte Carlo simulation

    International Nuclear Information System (INIS)

    Kienle, A.; Patterson, M.S.

    1996-01-01

    We describe a fast, accurate method for determination of the optical coefficients of 'semi-infinite' and 'infinite' turbid media. For the particular case of time-resolved reflectance from a biological medium, we show that a single Monte Carlo simulation can be used to fit the data and to derive the absorption and reduced scattering coefficients. Tests with independent Monte Carlo simulations showed that the errors in the deduced absorption and reduced scattering coefficients are smaller than 1% and 2%, respectively. (author)

  13. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre

    Science.gov (United States)

    Leite, Ivo T.; Turtaev, Sergey; Jiang, Xin; Šiler, Martin; Cuschieri, Alfred; Russell, Philip St. J.; Čižmár, Tomáš

    2018-01-01

    Holographic optical tweezers (HOT) hold great promise for many applications in biophotonics, allowing the creation and measurement of minuscule forces on biomolecules, molecular motors and cells. Geometries used in HOT currently rely on bulk optics, and their exploitation in vivo is compromised by the optically turbid nature of tissues. We present an alternative HOT approach in which multiple three-dimensional (3D) traps are introduced through a high-numerical-aperture multimode optical fibre, thus enabling an equally versatile means of manipulation through channels having cross-section comparable to the size of a single cell. Our work demonstrates real-time manipulation of 3D arrangements of micro-objects, as well as manipulation inside otherwise inaccessible cavities. We show that the traps can be formed over fibre lengths exceeding 100 mm and positioned with nanometric resolution. The results provide the basis for holographic manipulation and other high-numerical-aperture techniques, including advanced microscopy, through single-core-fibre endoscopes deep inside living tissues and other complex environments.

  14. Single- and double energy N{sup +} ion irradiated planar optical waveguides in Er: Tungsten–tellurite oxide glass and sillenite type Bismuth Germanate crystals working up to telecommunications wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Bányász, I., E-mail: banyasz@sunserv.kfki.hu [Department of Crystal Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Zolnai, Z.; Fried, M.; Lohner, T. [Research Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Berneschi, S.; Righini, G.C. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); “Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); Pelli, S.; Nunzi-Conti, G. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)

    2013-07-15

    Ion implantation proved to be a universal technique for producing waveguides in most optical materials. Tellurite glasses are good hosts of rare-earth elements for the development of fibre and integrated optical amplifiers and lasers covering all the main telecommunication bands. Er{sup 3+}-doped tellurite glasses are good candidates for the fabrication of broadband amplifiers in wavelength division multiplexing around 1.55 μm, as they exhibit large stimulated cross sections and broad emission bandwidth. Fabrication of channel waveguides in such a material via N{sup +} ion implantation was reported recently. Sillenite type Bismuth Germanate (BGO) crystals are good nonlinear optical materials. Parameters of waveguide fabrication in both materials via implantation of MeV-energy N{sup +} ions were optimized. First single-energy implantations at 3.5 MeV at various fluences were applied. Waveguide operation up to 1.5 μm was observed in both materials. Then double-energy implantations at a fixed upper energy of 3.5 MeV and lower energies between 2.5 and 3.1 MeV were performed to suppress leaky modes by increasing barrier width. Improvement of waveguide characteristics was found by m-line spectroscopy and spectroscopic ellipsometry.

  15. Differential cross sections for single ionization of H2 by 75keV proton impact

    International Nuclear Information System (INIS)

    Chowdhury, U; Schulz, M; Madison, D H

    2012-01-01

    We have calculated Triply differential cross sections (TDCS) and doubly differential cross sections (DDCS) for single ionization of H 2 by 75 keV proton impact using the molecular 3 body distorted wave Eikonal initial state (M3DW-EIS) approach. Previously published measured DDCS-P (differential in the projectile scattering angle and integrated over the ejected electron angles) found pronounced structures at relatively large angles which were interpreted as an interference resulting from the two-centered potential of the molecule.

  16. Hemodynamic monitoring in different cortical layers with a single fiber optical system

    Science.gov (United States)

    Yu, Linhui; Noor, M. Sohail; Kiss, Zelma H. T.; Murari, Kartikeya

    2018-02-01

    Functional monitoring of highly-localized deep brain structures is of great interest. However, due to light scattering, optical methods have limited depth penetration or can only measure from a large volume. In this research, we demonstrate continuous measurement of hemodynamics in different cortical layers in response to thalamic deep brain stimulation (DBS) using a single fiber optical system. A 200-μm-core-diameter multimode fiber is used to deliver and collect light from tissue. The fiber probe can be stereotaxically implanted into the brain region of interest at any depth to measure the di use reflectance spectra from a tissue volume of 0.02-0.03 mm3 near the fiber tip. Oxygenation is then extracted from the reflectance spectra using an algorithm based on Monte Carlo simulations. Measurements were performed on the surface (cortical layer I) and at 1.5 mm depth (cortical layer VI) of the motor cortex in anesthetized rats with thalamic DBS. Preliminary results revealed the oxygenation changes in response to DBS. Moreover, the baseline as well as the stimulus-evoked change in oxygenation were different at the two depths of cortex.

  17. Measurement of the Single Top Quark Production Cross Section in 1.96-TeV Proton-Antiproton Collisions

    International Nuclear Information System (INIS)

    Nakamura, Koji

    2009-01-01

    Top quarks are predominantly produced in pairs via the strong interaction in (bar p)p collisions at √s = 1.96 TeV . The top quark has a weak isospin 1/2, composing a weak isospin doublet with the bottom quark. This characteristic predicts not only top quark pair production via strong interaction but also single production together with a bottom quark via weak interaction. However, finding single top quark production is challenging since it is rarely produced (σ singletop = 2.9 pb) against background processes with the same final state like W+jets and t(bar t). A measurement of electroweak single top production probes the W-t-b vertex, which provides a direct determination of the Cabbibo-Kobayashi-Maskawa (CKM) matrix element |V tb |. The sample offers a source of almost 100% polarized top quarks. This thesis describes an optimized search for s-channel single top quark production and a measurement of the single top production cross section using 2.7 fb -1 of data accumulated with the CDF detector. We are using events with one high-p T lepton, large missing E T and two identified b-quark jets where one jet is identified using a secondary vertex tagger, called SecVtx, and the other jet is identified using SecVtx or a jet probability tagger, called JetProb. In this analysis we have developed a kinematics fitter and a likelihood-based separator between signal and background. As a result, we found that the probability (p-value) that the candidate events originate from a background fluctuation in the absence of single top s-channel production is 0.003, which is equivalent to 2.7 σ deviations in Gaussian statistics, and this excess corresponds to the single top s-channel cross section of 2.38 -0.84 +1.01 pb. An observed value of |V tb | is 1.43 -0.26 +0.38 (experimental) ± 0.11(theory). We also set the 95% CL. upper limit of σ s = 4.15 pb for the s-channel production cross section

  18. Electronic state and photoionization cross section of a single dopant in GaN/InGaN core/shell quantum dot under magnetic field and hydrostatic pressure

    Science.gov (United States)

    Aouami, A. El; Feddi, E.; Talbi, A.; Dujardin, F.; Duque, C. A.

    2018-06-01

    In this study, we have investigated the simultaneous influence of magnetic field combined to the hydrostatic pressure and the geometrical confinement on the behavior of a single dopant confined in GaN/InGaN core/shell quantum dots. Within the scheme of the effective-mass approximation, the eigenvalues equation has solved by using the variational method with one-parameter trial wavefunctions. Variation of the ground state binding energy of the single dopant is determined according to the magnetic field and hydrostatic pressure for several dimensions of the heterostructure. The results show that the binding energy is strongly dependent on the core/shell sizes, the magnetic field, and the hydrostatic pressure. The analysis of the photoionization cross section, corresponding to optical transitions associated to the first donor energy level and the conduction band, shows clearly that the reduction of the dot dimensions and/or the simultaneous influences of applied magnetic field, combined to the hydrostatic pressure strength, cause a shift in resonance peaks towards the higher energies with important variations in the magnitude of the resonant peaks.

  19. Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Maddox, B. R., E-mail: maddox3@llnl.gov; Akin, M. C., E-mail: akin1@llnl.gov; Teruya, A.; Hunt, D.; Hahn, D.; Cradick, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Morgan, D. V. [National Security Technologies LLC, Los Alamos, New Mexico 87544 (United States)

    2016-08-15

    Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from the sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10{sup 7} molybdenum Kα photons.

  20. Determination of the displacement cross section in single-walled carbon nanotubes under gamma irradiation

    International Nuclear Information System (INIS)

    Leyva, A.; Pinnera, I.; Cruz, C.; Abreu, Y.; Leyva, D.

    2009-01-01

    Using the threshold energy value reported in literature for C atoms in single-walled carbon nanotube and taking into account the McKinley-Feshbach approach, the effective atomic displacement cross-section in nanotubes exposed to the gamma rays was estimated. In this calculation the Kinchin-Pease approximation for the damage function was considered. (Author)

  1. A luminescence-optical spectroscopy study of Rb2KTiOF5 single crystals

    Science.gov (United States)

    Pustovarov, V. A.; Ogorodnikov, I. N.; Kozlov, A. V.; Isaenko, L. I.

    2018-06-01

    Large single crystals of Rb2KTiOF5 (RKTF), grown by slow solidification method, were studied (7-400 K) for various types of optical and radiation effects. The optical absorption spectra, the parameters of the Urbach rule at 293 K (σ = 0.24 and EU = 105 meV), the low-temperature reflection spectra (T = 7 K, E = 3.7-22 eV) were determined. The luminescence spectra (1.2-6.2 eV) and luminescence decay kinetics are studied upon excitation by a nanosecond electron beam (PCL), ultraviolet and vacuum ultraviolet light (PL), or X-rays radiation (XRL). PL excitation spectra under selective photoexcitation by synchrotron radiation (E = 3.7-22 eV, T = 7 K), temperature dependences of the intensity of steady-state XRL in different emission bands, as well as thermoluminescence (7-400 K) are studied. In the visible spectral region, we detected three luminescence bands that were attributed to radiative annihilation of intrinsic excitons (2.25 eV), recombination-type luminescence (2.1 eV) and luminescence of higher TiOF5 complexes (1.9 eV). The exponential component with lifetime of about 19 μs was revealed in the PCL decay kinetics at 2.25 eV. The low-energy onset of the intrinsic host absorption Ec = 3.55 eV was determined on the basis of the experimental data obtained. Spectra of optical constants were calculated by the Kramers-Krönig method, the energy of the onset of the interband transitions Eg = 4.2 eV was determined, and the main peaks of the optical spectra were identified.

  2. A systematics of optical model compound nucleus formation cross sections for neutrons, proton, deuteron, 3He and alpha particle incidents

    International Nuclear Information System (INIS)

    Murata, Toru

    2000-01-01

    Simple formulae to reproduce the optical model compound nucleus formation cross sections for neutron, proton, deuteron, triton, 3 He and alpha particles are presented for target nuclei of light to medium weight mass region. (author)

  3. The significance of the environmental 'cross-section' clause of article 130r section 2 subsection 2 of the EEC treaty for the realization of the Single European Market

    International Nuclear Information System (INIS)

    Breier, A.S.

    1992-01-01

    The completion of the single European Market on 31.12.1992 has not only led to economic advantages within the European Community. The author exemplifies the detrimental environmental effects brought about by the framing of tax, energy, goods traffic and aviation policies for the purposes of the Single Market in accordance with EEC Treaty. On viewing the factual material the author comes to the conclusion that at least the one-sided concepts of the two areas of traffic policy are incompatible with the environmental ''cross-section'' clause of Article 130r Section 2 Subsection 2 of the EEC Treaty. (orig.) [de

  4. Twisted intra-molecular charge transfer investigations of semiorganic triglycine phosphate single crystal for non linear optical applications

    Science.gov (United States)

    Meera, M. R.; Joselin Beaula, T.; Rayar, S. L.; Bena Jothy, V.

    2017-09-01

    NLO materials are gaining importance in technologies such as optical communication, optical computing and dynamic image processing. Many NLO crystals grown by mixing amino acids with various organic and inorganic acids have been reported in the literature. Hence, glycine mixed semi-organic material will be of special interest as a fundamental building block to develop many complex crystals with improved NLO properties. A semi organic Single crystal of Triglycine Phosphate (TGP) which was grown and spectral analysis have been using FTIR and Raman spectral analysis. Natural Bond Orbital Analysis and the atomic natural charges are also predicted. HOMO LUMO energy gap value suggests the possibility of charge transfer within the molecule.

  5. Optical characterization of single-crystal diamond grown by DC arc plasma jet CVD

    Science.gov (United States)

    Hei, Li-fu; Zhao, Yun; Wei, Jun-jun; Liu, Jin-long; Li, Cheng-ming; Lü, Fan-xiu

    2017-12-01

    Optical centers of single-crystal diamond grown by DC arc plasma jet chemical vapor deposition (CVD) were examined using a low-temperature photoluminescence (PL) technique. The results show that most of the nitrogen-vacancy (NV) complexes are present as NV- centers, although some H2 and H3 centers and B-aggregates are also present in the single-crystal diamond because of nitrogen aggregation resulting from high N2 incorporation and the high mobility of vacancies under growth temperatures of 950-1000°C. Furthermore, emissions of radiation-induced defects were also detected at 389, 467.5, 550, and 588.6 nm in the PL spectra. The reason for the formation of these radiation-induced defects is not clear. Although a Ni-based alloy was used during the diamond growth, Ni-related emissions were not detected in the PL spectra. In addition, the silicon-vacancy (Si-V)-related emission line at 737 nm, which has been observed in the spectra of many previously reported microwave plasma chemical vapor deposition (MPCVD) synthetic diamonds, was absent in the PL spectra of the single-crystal diamond prepared in this work. The high density of NV- centers, along with the absence of Ni-related defects and Si-V centers, makes the single-crystal diamond grown by DC arc plasma jet CVD a promising material for applications in quantum computing.

  6. Dynamic contrast-enhanced MR imaging of the rectum: Correlations between single-section and whole-tumor histogram analyses.

    Science.gov (United States)

    Choi, M H; Oh, S N; Park, G E; Yeo, D-M; Jung, S E

    2018-05-10

    To evaluate the interobserver and intermethod correlations of histogram metrics of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parameters acquired by multiple readers using the single-section and whole-tumor volume methods. Four DCE parameters (K trans , K ep , V e , V p ) were evaluated in 45 patients (31 men and 14 women; mean age, 61±11 years [range, 29-83 years]) with locally advanced rectal cancer using pre-chemoradiotherapy (CRT) MRI. Ten histogram metrics were extracted using two methods of lesion selection performed by three radiologists: the whole-tumor volume method for the whole tumor on axial section-by-section images and the single-section method for the entire area of the tumor on one axial image. The interobserver and intermethod correlations were evaluated using the intraclass correlation coefficients (ICCs). The ICCs showed excellent interobserver and intermethod correlations in most of histogram metrics of the DCE parameters. The ICCs among the three readers were > 0.7 (Phistogram metrics, except for the minimum and maximum. The intermethod correlations for most of the histogram metrics were excellent for each radiologist, regardless of the differences in the radiologists' experience. The interobserver and intermethod correlations for most of the histogram metrics of the DCE parameters are excellent in rectal cancer. Therefore, the single-section method may be a potential alternative to the whole-tumor volume method using pre-CRT MRI, despite the fact that the high agreement between the two methods cannot be extrapolated to post-CRT MRI. Copyright © 2018 Société française de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  7. Fiber-optical microphones and accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2010-01-01

    Polymer optical fibers (POFs) are ideal for applications as the sensing element in fiber-optical microphones and accelerometers based on fiber Bragg gratings (FBGs) due to their reduced Young’s Modulus of 3.2GPa, compared to 72GPa of Silica. To maximize the sensitivity and the dynamic range...... of the device the outer diameter and the length of the sensing fiber segment should be as small as possible. To this end we have fabricated 3mm FBGs in single-mode step-index POFs of diameter 115 micron, using 325nm UV writing and a phase-mask technique. 6mm POF sections with FBGs in the center have been glued...... to standard Silica SMF28 fibers. These POF FBGs have been characterized in terms of temperature and strain to find operating regimes with no hysteresis. Commercial fast wavelength interrogators (KHz) are shown to be able to track the thin POF FBGs and they are finally applied in a prototype accelerometer...

  8. Spatial optic multiplexer/diplexer

    International Nuclear Information System (INIS)

    Tremblay, P.L.

    1991-01-01

    An apparatus is described for simultaneous transmission of optic signals having different wavelengths over a single optic fiber. Multiple light signals are transmitted through optic fibers that are formed into a circumference surrounding a central core fiber. The multiple light signals are directed by a lens into a single receiving fiber where the light combines and is then focused into the central core fiber which transmits the light to a wavelength discriminating receiver assembly

  9. Quantum optics with single nanodiamonds flying over gold films: Towards a Robust quantum plasmonics

    Energy Technology Data Exchange (ETDEWEB)

    Mollet, O.; Drezet, A.; Huant, S. [Institut Néel, CNRS and Université Joseph Fourier, BP 166, F-38042 Grenoble (France)

    2013-12-04

    A nanodiamond (ND) hosting nitrogen-vacancy (NV) color centers is attached on the apex of an optical tip for near-field microscopy. Its fluorescence is used to launch surface plasmon-polaritons (SPPs) in a thin polycrystalline gold film. It is shown that the quantum nature of the initial source of light is preserved after conversion to SPPs. This opens the way to a deterministic quantum plasmonics, where single SPPs can be injected at well-defined positions in a plasmonic device produced by top-down approaches.

  10. Optical fiber switch

    Science.gov (United States)

    Early, James W.; Lester, Charles S.

    2002-01-01

    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

  11. Optical and transport properties of single crystal rubrene: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lipeng [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore); Lu, Jing [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore); Faculty of Chemistry, Northeast Normal University, Changchun (China); Long, Guankui; Zheng, Fulu [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore); Zhang, Jingping [Faculty of Chemistry, Northeast Normal University, Changchun (China); Zhao, Yang, E-mail: YZhao@ntu.edu.sg [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore)

    2016-12-20

    Optical and charge transport properties of single crystal rubrene are investigated using the multi-mode Brownian oscillator (MBO) model, the charge hopping model with quantum nuclear tunneling, and the Munn–Silbey approach. The MBO model is adopted to calculate absorption and photoluminescence spectra, yielding results in excellent agreement with measurements. In addition, temperature dependence of zero phonon lines (ZPL) and phonon sidebands (PSBs) of absorption spectra is also examined using the MBO model, revealing a nearly linear dependence of line widths of the ZPL and the PSBs on temperature. Model parameters obtained from MBO fitting and TD-DFT computation are then utilized for hole mobility calculations. It is found that temperature dependence of the calculated mobility is in general agreement with measurements, exhibiting “band-like” transport behavior.

  12. Single exosome detection in serum using microtoroid optical resonators (Conference Presentation)

    Science.gov (United States)

    Su, Judith

    2016-03-01

    Recently exosomes have attracted interest due to their potential as cancer biomarkers. We report the real time, label-free sensing of single exosomes in serum using microtoroid optical resonators. We use this approach to assay the progression of tumors implanted in mice by specifically detecting low concentrations of tumor-derived exosomes. Our approach measures the adsorption of individual exosomes onto a functionalized silica microtoroid by tracking changes in the optical resonant frequency of the microtoroid. When exosomes land on the microtoroid, they perturb its refractive index in the evanescent field and thus shift its resonance frequency. Through digital frequency locking, we are able to rapidly track these shifts with accuracies of better than 10 attometers (one part in 10^11). Samples taken from tumor-implanted mice from later weeks generated larger frequency shifts than those from earlier weeks. Control samples taken from a mouse with no tumor generated no such increase in signal between subsequent weeks. Analysis of shifts from tumor-implanted mouse samples show a distribution of unitary steps, with the maximum step having a height of ~1.2 fm, corresponding to an exosome size of 44 ± 4.8 nm. This size range corresponds to that found by performing nanoparticle tracking analysis on the same samples. Our results demonstrate development towards a minimally-invasive tumor "biopsy" that eliminates the need to find and access a tumor.

  13. Optical characterization of Pr3+-doped yttria-stabilized zirconia single crystals

    International Nuclear Information System (INIS)

    Savoini, B.; Munoz Santiuste, J.E.; Gonzalez, R.

    1997-01-01

    The optical absorption and fluorescence of Pr 3+ ions in yttria-stabilized zirconia single crystals are investigated. Fluorescence emissions from the 1 D 2 level are clearly dominant and low intensity emission lines from the 3 P 0 and 1 G 4 states are also observed. Analysis with the Judd-Ofelt theory of the absorption intensities has been made assuming that only ∼40% of the praseodymium ions contribute to the optical absorption bands. Quantum efficiency values of η( 3 P 0 )∼0.2 and η( 1 D 2 )∼ 1 are obtained at room temperature. 1 D 2 fluorescence quenching has been observed in heavily-doped samples due to cross relaxation processes among neighboring Pr 3+ ions. Analysis using the Inokuti-Hirayama model shows that electric dipole-dipole interactions are mainly responsible for the quenching effect. Pr 3+ ions are present in seven and sixfold configurations with a statistical distribution. The energy position of the 4f5d configuration is very different for each center. The fluorescence dynamics is explained by a mechanism involving thermally assisted population of the 3 P 1,2 + 1 I 6 upper levels and fast relaxation to the 1 D 2 level via states of the excited 4f5d configuration. copyright 1997 The American Physical Society

  14. Single-photon sources

    International Nuclear Information System (INIS)

    Lounis, Brahim; Orrit, Michel

    2005-01-01

    The concept of the photon, central to Einstein's explanation of the photoelectric effect, is exactly 100 years old. Yet, while photons have been detected individually for more than 50 years, devices producing individual photons on demand have only appeared in the last few years. New concepts for single-photon sources, or 'photon guns', have originated from recent progress in the optical detection, characterization and manipulation of single quantum objects. Single emitters usually deliver photons one at a time. This so-called antibunching of emitted photons can arise from various mechanisms, but ensures that the probability of obtaining two or more photons at the same time remains negligible. We briefly recall basic concepts in quantum optics and discuss potential applications of single-photon states to optical processing of quantum information: cryptography, computing and communication. A photon gun's properties are significantly improved by coupling it to a resonant cavity mode, either in the Purcell or strong-coupling regimes. We briefly recall early production of single photons with atomic beams, and the operation principles of macroscopic parametric sources, which are used in an overwhelming majority of quantum-optical experiments. We then review the photophysical and spectroscopic properties and compare the advantages and weaknesses of various single nanometre-scale objects used as single-photon sources: atoms or ions in the gas phase and, in condensed matter, organic molecules, defect centres, semiconductor nanocrystals and heterostructures. As new generations of sources are developed, coupling to cavities and nano-fabrication techniques lead to improved characteristics, delivery rates and spectral ranges. Judging from the brisk pace of recent progress, we expect single photons to soon proceed from demonstrations to applications and to bring with them the first practical uses of quantum information

  15. Scaling submillimeter single-cycle transients toward megavolts per centimeter field strength via optical rectification in the organic crystal OH1.

    Science.gov (United States)

    Ruchert, Clemens; Vicario, Carlo; Hauri, Christoph P

    2012-03-01

    We present the generation of high-power single-cycle terahertz (THz) pulses in the organic salt crystal 2-[3-(4-hydroxystyryl)-5.5-dimethylcyclohex-2-enylidene]malononitrile or OH1. Broadband THz radiation with a central frequency of 1.5 THz (λ(c)=200 μm) and high electric field strength of 440 kV/cm is produced by optical rectification driven by the signal of a powerful femtosecond optical parametric amplifier. A 1.5% pump to THz energy conversion efficiency is reported, and pulse energy stability better than 1% RMS is achieved. An approach toward the realization of higher field strength is discussed. © 2012 Optical Society of America

  16. Light distribution analysis of optical fibre probe-based near-field optical tweezers using FDTD

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B H; Yang, L J; Wang, Y [School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Heilongjiang, Harbin, 150001 (China)], E-mail: richelaw@163.com

    2009-09-01

    Optical fibre probe-based near-field optical tweezers overcomes the diffraction limit of conventional optical tweezers, utilizing strong mechanical forces and torque associated with highly enhanced electric fields to trap and manipulate nano-scale particles. Near-field evanescent wave generated at optical fibre probe decays rapidly with the distance that results a significant reduced trapping volume, thus it is necessary to analyze the near-field distribution of optical fibre probe. The finite difference time domain (FDTD) method is applied to characterize the near-field distribution of optical fibre probe. In terms of the distribution patterns, depolarization and polarization, the near-field distributions in longitudinal sections and cross-sections of tapered metal-coated optical fibre probe are calculated. The calculation results reveal that the incident polarized wave becomes depolarized after exiting from the nano-scale aperture of probe. The near-field distribution of the probe is unsymmetrical, and the near-field distribution in the cross-section vertical to the incident polarized wave is different from that in the cross-section parallel to the incident polarized wave. Moreover, the polarization of incident wave has a great impact on the light intensity distribution.

  17. CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss

    OpenAIRE

    Healy, Noel; Fokine, Michael; Franz, Yohann; Hawkins, Thomas; Jones, Maxwell; Ballato, John; Peacock, Anna C.; Gibson, Ursula J.

    2016-01-01

    Reduced losses in silicon-core fibers are obtained using CO2 laser directional recrystallization of the core. Single crystals with aspect ratios up to 1500:1 are reported, limited by the scan range of the equipment. This processing technique holds promise for bringing crystalline silicon-core fibers to a central role in nonlinear optics and signal processing applications.

  18. Multifunctional Bi2ZnOB2O6 single crystals for second and third order nonlinear optical applications

    International Nuclear Information System (INIS)

    Iliopoulos, K.; Kasprowicz, D.; Majchrowski, A.; Michalski, E.; Gindre, D.; Sahraoui, B.

    2013-01-01

    Bi 2 ZnOB 2 O 6 nonlinear optical single crystals were grown by means of the Kyropoulos method from stoichiometric melt. The second and third harmonic generation (SHG/THG) of Bi 2 ZnOB 2 O 6 crystals were investigated by the SHG/THG Maker fringes technique. Moreover, SHG microscopy studies were carried out providing two-dimensional SHG images as a function of the incident laser polarization. The high nonlinear optical efficiency combined with the possibility to grow high quality crystals make Bi 2 ZnOB 2 O 6 an excellent candidate for photonic applications

  19. Effects of the gamma-ray irradiation on the optical absorption of pure silica core single-mode fibres in the visible and NIR range

    International Nuclear Information System (INIS)

    Calderon, A.; Calvo, E.; Figueroa, C.F.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto, A.L.; Arce, P.; Barcala, J.M.; Ferrando, A.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C.

    2005-01-01

    Optical absorption induced by photon radiation was evaluated for several commercial pure silica core, single mode, optical fibres. The study was performed for three different wavelengths: 630, 670 and 785 nm. We have identified a fibre whose induced transmission loss stays below 1 dB/m after 300 kGy gamma-ray irradiation

  20. Ge-Au eutectic bonding of Ge (100) single crystals

    International Nuclear Information System (INIS)

    Knowlton, W.B.; Beeman, J.W.; Emes, J.H.; Loretto, D.; Itoh, K.M.; Haller, E.E.

    1993-01-01

    The author present preliminary results on the eutectic bonding between two (100) Ge single crystal surfaces using thin films of Au ranging from 900 angstrom/surface to 300 angstrom/surface and Pd (10% the thickness of Au). Following bonding, plan view optical microscopy (OM) of the cleaved interface of samples with Au thicknesses ≤ 500 angstrom/surface show a eutectic morphology more conducive to phonon transmission through the bond interface. High resolution transmission electron microscopy (HRTEM) cross sectional interface studies of a 300 angstrom/surface Au sample show epitaxial growth of Ge. In sections of the bond, lattice continuity of the Ge is apparent through the interface. TEM studies also reveal heteroepitaxial growth of Au with a Au-Ge lattice mismatch of less than 2%. Eutectic bonds with 200 angstrom/surface Au have been attained with characterization pending. An optical polishing technique for Ge has been optimized to insure intimate contact between the Ge surfaces prior to bonding. Interferometry analysis of the optically polished Ge surface shows that surface height fluctuations lie within ±150 angstrom across an interval of lmm. Characterization of phonon transmission through the interface is discussed with respect to low temperature detection of ballistic phonons

  1. Cross-section measurement of single-top t-channel production at ATLAS

    CERN Document Server

    Herrberg-Schubert, Ruth

    2014-06-02

    This study presents the cross-section measurement of electroweak single-top quark production in the t-channel with a semi-leptonically decaying top quark. The study is based on 4.7 fb^{-1} of proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider in the year 2011. Selected events contain two highly energetic jets, one of which is identified as originating from a beauty quark, as well as a highly energetic electron or muon and transverse missing energy. The case of three and four jets is also considered but eventually discarded since their inclusion degrades the precision of the result. The event reconstruction is done with a chi-square-based kinematic fit using W boson and top quark mass constraints. The chi-square value in each event serves to classify the event as a signal-like or background-like process. The cross-section is extracted by performing a template-based maximum likelihood fit to the distribution that displays the best discriminatory power: This distribution i...

  2. Roadmap on optical security

    Science.gov (United States)

    Javidi, Bahram; Carnicer, Artur; Yamaguchi, Masahiro; Nomura, Takanori; Pérez-Cabré, Elisabet; Millán, María S.; Nishchal, Naveen K.; Torroba, Roberto; Fredy Barrera, John; He, Wenqi; Peng, Xiang; Stern, Adrian; Rivenson, Yair; Alfalou, A.; Brosseau, C.; Guo, Changliang; Sheridan, John T.; Situ, Guohai; Naruse, Makoto; Matsumoto, Tsutomu; Juvells, Ignasi; Tajahuerce, Enrique; Lancis, Jesús; Chen, Wen; Chen, Xudong; Pinkse, Pepijn W. H.; Mosk, Allard P.; Markman, Adam

    2016-08-01

    Information security and authentication are important challenges facing society. Recent attacks by hackers on the databases of large commercial and financial companies have demonstrated that more research and development of advanced approaches are necessary to deny unauthorized access to critical data. Free space optical technology has been investigated by many researchers in information security, encryption, and authentication. The main motivation for using optics and photonics for information security is that optical waveforms possess many complex degrees of freedom such as amplitude, phase, polarization, large bandwidth, nonlinear transformations, quantum properties of photons, and multiplexing that can be combined in many ways to make information encryption more secure and more difficult to attack. This roadmap article presents an overview of the potential, recent advances, and challenges of optical security and encryption using free space optics. The roadmap on optical security is comprised of six categories that together include 16 short sections written by authors who have made relevant contributions in this field. The first category of this roadmap describes novel encryption approaches, including secure optical sensing which summarizes double random phase encryption applications and flaws [Yamaguchi], the digital holographic encryption in free space optical technique which describes encryption using multidimensional digital holography [Nomura], simultaneous encryption of multiple signals [Pérez-Cabré], asymmetric methods based on information truncation [Nishchal], and dynamic encryption of video sequences [Torroba]. Asymmetric and one-way cryptosystems are analyzed by Peng. The second category is on compression for encryption. In their respective contributions, Alfalou and Stern propose similar goals involving compressed data and compressive sensing encryption. The very important area of cryptanalysis is the topic of the third category with two sections

  3. The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence

    International Nuclear Information System (INIS)

    Olley, J.M.; Caitcheon, G.G.; Roberts, R.G.

    1999-01-01

    We examine the causes of the asymmetric distributions of dose observed from measurements of the optically stimulated luminescence emitted by small aliquots of fluvial quartz, and deduce that the asymmetry arises as a result of samples being composed of a mix of mainly well bleached grains with grains that were effectively unbleached at the time of deposition. We demonstrate that the shapes of the dose distributions can be used to assess the likelihood that aliquots consist only of grains that were well-bleached at the time of deposition. The more asymmetric the distribution, the greater the probability that the aliquots with the lowest dose most closely represent the true burial dose. Single grains with differing doses are present in each of the samples examined, and the population with the lowest dose gives an optical age consistent with the expected burial age. This result implies that the beta-dose heterogeneity in these deposits is small, and that the effects of micro-dosimetric variations on optical dating of individual grains are not significant for these samples. We demonstrate that single-grain dating of fluvial material is possible and practicable using standard Risoe optical dating equipment, and we conclude that application of a new regenerative-dose protocol to single grains of quartz, using the lowest dose population to estimate the burial dose, is the best available means of obtaining reliable luminescence ages for heterogeneously bleached fluvial sediments

  4. Failure of Stadard Optical Models to Reproduce Neutron Total Cross Section Difference in the W Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J D; Bauer, R W; Dietrich, F S; Grimes, S M; Finlay, R W; Abfalterer, W P; Bateman, F B; Haight, R C; Morgan, G L; Bauge, E; Delaroche, J P; Romain, P

    2001-11-01

    Recently cross section differences among the isotopes{sup 182,184,186}W have been measured as part of a study of total cross sections in the 5-560 MeV energy range. These measurements show oscillations up to 150 mb between 5 and 100 MeV. Spherical and deformed phenomenological optical potentials with typical radial and isospin dependences show very small oscillations, in disagreement with the data. In a simple Ramsauer model, this discrepancy can be traced to a cancellation between radial and isospin effects. Understanding this problem requires a more detailed model that incorporates a realistic description of the neutron and proton density distributions. This has been done with results of Hartree-Fock-Bogolyubov calculations using the Gogny force, together with a microscopic folding model employing a modification of the JLM potential as an effective interaction. This treatment yields a satisfactory interpretation of the observed total cross section differences.

  5. Optical spectroscopy of Pr3+ in M+Bi(XO4)2, M+ = Li or Na and X = W or Mo, locally disordered single crystals

    International Nuclear Information System (INIS)

    Mendez-Blas, A; Rico, M; Volkov, V; Cascales, C; Zaldo, C; Coya, C; Kling, A; Alves, L C

    2004-01-01

    NaBi(WO 4 ) 2 (NBW), NaBi(MoO 4 ) 2 (NBMo) and LiBi(MoO 4 ) 2 (LBMo) single crystals grown by the Czochralski technique have been doped up to a praseodymium concentration of Pr ∼1x10 20 cm -3 in the crystal. 10 K polarized optical absorption and photoluminescence measurements have been used to determine the energy position of 32, 39 and 36 Pr 3+ Stark levels in NBW, NBMo and LBMo crystals, respectively. These energy levels were labelled with the appropriate irreducible representations corresponding to a C 2 local symmetry of an average optical centre. Single-electron Hamiltonians including free-ion and crystal field interactions have been used in the fitting of experimental energy levels and in the simulation of the full sequence of the 4f 2 Pr 3+ configuration. 300 K absorption spectra of different 2S+1 L J Pr 3+ multiplets were determined and used in the context of the Judd-Ofelt theory and for the calculation of the 1 D 2 -related emission cross sections of this average Pr 3+ centre. Non-radiative electron relaxation from the 3 P 0 level feeds the 1 D 2 multiplet. This latter level efficiently decays radiatively to the ground 3 H 4 multiplet but still there is a significant rate of radiative decay to the 1 D → 3 F 3 praseodymium laser channel. For Pr ≥ 2x10 19 cm -3 , non-radiative electric dipole-dipole Pr pair energy transfer limits the radiative yield

  6. 428-Gb/s single-channel coherent optical OFDM transmission over 960-km SSMF with constellation expansion and LDPC coding.

    Science.gov (United States)

    Yang, Qi; Al Amin, Abdullah; Chen, Xi; Ma, Yiran; Chen, Simin; Shieh, William

    2010-08-02

    High-order modulation formats and advanced error correcting codes (ECC) are two promising techniques for improving the performance of ultrahigh-speed optical transport networks. In this paper, we present record receiver sensitivity for 107 Gb/s CO-OFDM transmission via constellation expansion to 16-QAM and rate-1/2 LDPC coding. We also show the single-channel transmission of a 428-Gb/s CO-OFDM signal over 960-km standard-single-mode-fiber (SSMF) without Raman amplification.

  7. EDITORIAL: Special section: Selected papers from OMS'05, the 1st Topical Meeting of the European Optical Society on Optical Microsystems (OMS)

    Science.gov (United States)

    Rendina, Ivo; Fazio, Eugenio; Ferraro, Pietro

    2006-07-01

    move forward separately. Thus, we wanted the meeting to encourage the cross-fertilization of ideas of all the people involved and active in the areas of optics, photonics, microelectronics and materials, by gathering together theoreticians, experimentalists and those interested in industrial applications. For these reasons the conference programme focused on fundamental as well as more applied topics. Photonic crystals, non-linear and quantum optics in micro-devices, nanophotonic-based devices, silicon-based optoelectronics and MOEMS, microsensors, biochips and the new characterization methods for materials and devices were among the hot topics of the conference. Special emphasis was also given to industrial applications and to technologies enabling the production of microsytems and their sub-components. In this special section of Journal of Optics A: Pure and Applied Optics, a series of interesting papers has been collected, reporting progress in the different aspects of microsystems design, production, characterization and testing. The papers embrace most of the various topics that were debated during the conference. We hope that these papers will not only report the most up-to-date research progress made in this field, but will also involve and stimulate everyone working in these areas to continue in the effort of developing more and better optical microsystems in the future. We would like to thank all the members of the Scientific and Industrial Committees for the high scientific content of the meeting and the European Optical Society for its support of the conference organization.

  8. Single-photon semiconductor photodiodes for distributed optical fiber sensors: state of the art and perspectives

    Science.gov (United States)

    Ripamonti, Giancarlo; Lacaita, Andrea L.

    1993-03-01

    The extreme sensitivity and time resolution of Geiger-mode avalanche photodiodes (GM- APDs) have already been exploited for optical time domain reflectometry (OTDR). Better than 1 cm spatial resolution in Rayleigh scattering detection was demonstrated. Distributed and quasi-distributed optical fiber sensors can take advantage of the capabilities of GM-APDs. Extensive studies have recently disclosed the main characteristics and limitations of silicon devices, both commercially available and developmental. In this paper we report an analysis of the performance of these detectors. The main characteristics of GM-APDs of interest for distributed optical fiber sensors are briefly reviewed. Command electronics (active quenching) is then introduced. The detector timing performance sets the maximum spatial resolution in experiments employing OTDR techniques. We highlight that the achievable time resolution depends on the physics of the avalanche spreading over the device area. On the basis of these results, trade-off between the important parameters (quantum efficiency, time resolution, background noise, and afterpulsing effects) is considered. Finally, we show first results on Germanium devices, capable of single photon sensitivity at 1.3 and 1.5 micrometers with sub- nanosecond time resolution.

  9. State-to-state differential cross sections for rotationally inelastic scattering of Na2 by He

    International Nuclear Information System (INIS)

    Bergmann, K.; Hefter, U.; Witt, J.

    1980-01-01

    State-to-state differential cross sections for rotational transitions of Na 2 in collisions with He are measured in the electronic and vibrational ground state at thermal collision energies using a new laser technique. Single rotational levels j/sub i/ are labelled by modulation of their population via laser optical pumping using a dye laser. The modulation of the fluorescence induced by an Ar + laser tuned to the level j/sub f/=28 is proportional to the cross section for collisional transfer j/sub i/→j/sub f/ and is detected at the scattering angle theta. A single optical fiber and a fiber bundle provide a flexible connection between the detector and the laser and photomultiplier, respectively. Transitions as large as Δj=20 are observed. At small angles elastic scattering is dominant, but rotationally inelastic processes become increasingly important at larger scattering angles. Rotational rainbow structure causing a steep onset of the cross section with the scattering angle theta (at fixed Δj) or a sharp cutoff with Δj (at fixed theta) is found. Preliminary results on rotational energy transfer in v=1 indicates that vibrational motion of the molecule favors larger rotational quantum jumps. semiclassical picture for the scattering of a hard ellipsoid gives a

  10. Optical frequency upconversion technique for transmission of wireless MIMO-type signals over optical fiber.

    Science.gov (United States)

    Shaddad, R Q; Mohammad, A B; Al-Gailani, S A; Al-Hetar, A M

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength.

  11. Measurement of muon neutrino and antineutrino induced single neutral pion production cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Colin E. [Yale Univ., New Haven, CT (United States)

    2011-05-01

    Elucidating the nature of neutrino oscillation continues to be a goal in the vanguard of the efforts of physics experiment. As neutrino oscillation searches seek an increasingly elusive signal, a thorough understanding of the possible backgrounds becomes ever more important. Measurements of neutrino-nucleus interaction cross sections are key to this understanding. Searches for νμ → νe oscillation - a channel that may yield insight into the vanishingly small mixing parameter θ13, CP violation, and the neutrino mass hierarchy - are particularly susceptible to contamination from neutral current single π0 (NC 1π0) production. Unfortunately, the available data concerning NC 1π0 production are limited in scope and statistics. Without satisfactory constraints, theoretical models of NC 1π0 production yield substantially differing predictions in the critical Eν ~ 1 GeV regime. Additional investigation of this interaction can ameliorate the current deficiencies. The Mini Booster Neutrino Experiment (MiniBooNE) is a short-baseline neutrino oscillation search operating at the Fermi National Accelerator Laboratory (Fermilab). While the oscillation search is the principal charge of the MiniBooNE collaboration, the extensive data (~ 106 neutrino events) offer a rich resource with which to conduct neutrino cross section measurements. This work concerns the measurement of both neutrino and antineutrino NC 1π0 production cross sections at MiniBooNE. The size of the event samples used in the analysis exceeds that of all other similar experiments combined by an order of magnitude. We present the first measurements of the absolute NC 1π0 cross section as well as the first differential cross sections in both neutrino and antineutrino mode. Specifically, we measure single differential cross sections with respect to pion momentum and pion angle. We find the

  12. A high-resolution optical imaging system for obtaining the serial transverse section images of biologic tissue

    Science.gov (United States)

    Wu, Li; Zhang, Bin; Wu, Ping; Liu, Qian; Gong, Hui

    2007-05-01

    A high-resolution optical imaging system was designed and developed to obtain the serial transverse section images of the biologic tissue, such as the mouse brain, in which new knife-edge imaging technology, high-speed and high-sensitive line-scan CCD and linear air bearing stages were adopted and incorporated with an OLYMPUS microscope. The section images on the tip of the knife-edge were synchronously captured by the reflection imaging in the microscope while cutting the biologic tissue. The biologic tissue can be sectioned at interval of 250 nm with the same resolution of the transverse section images obtained in x and y plane. And the cutting job can be automatically finished based on the control program wrote specially in advance, so we save the mass labor of the registration of the vast images data. In addition, by using this system a larger sample can be cut than conventional ultramicrotome so as to avoid the loss of the tissue structure information because of splitting the tissue sample to meet the size request of the ultramicrotome.

  13. Linear and nonlinear magneto-optical properties of an off-center single dopant in a spherical core/shell quantum dot

    Science.gov (United States)

    Feddi, E.; Talbi, A.; Mora-Ramos, M. E.; El Haouari, M.; Dujardin, F.; Duque, C. A.

    2017-11-01

    Using the effective mass approximation and a variational procedure, we have investigated the nonlinear optical absorption coefficient and the relative refractive index changes associated to a single dopant confined in core/shell quantum dots considering the influences of the core/shell dimensions, externally applied magnetic field, and dielectric mismatch. The results show that the optical absorption coefficient and the coefficients of relative refractive index change depend strongly on the core/shell sizes and they are blue shifted when the spatial confinement increases so this effect is magnified by higher structural dimensions. Additionally, it is obtained that both studied optical properties are sensitive to the dielectric environment in such a way that their amplitudes are very affected by the local field corrections.

  14. Optical properties of single semiconductor nanowires and nanowire ensembles. Probing surface physics by photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pfueller, Carsten

    2011-06-27

    This thesis presents a detailed investigation of the optical properties of semiconductor nanowires (NWs) in general and single GaN NWs and GaN NW ensembles in particular by photoluminescence (PL) spectroscopy. NWs are often considered as potential building blocks for future nanometer-scaled devices. This vision is based on several attractive features that are generally ascribed to NWs. For instance, they are expected to grow virtually free of strain and defects even on substrates with a large structural mismatch. In the first part of the thesis, some of these expectations are examined using semiconductor NWs of different materials. On the basis of the temperature-dependent PL of Au- and selfassisted GaAs/(Al,Ga)As core-shell NWs, the influence of foreign catalyst particles on the optical properties of NWs is investigated. For the Au-assisted NWs, we find a thermally activated, nonradiative recombination channel, possibly related to Auatoms incorporated from the catalyst. These results indicate the limited suitability of catalyst-assisted NWs for optoelectronic applications. The effect of the substrate choice is studied by comparing the PL of ZnO NWs grown on Si, Al{sub 2}O{sub 3}, and ZnO substrates. Their virtually identical optical characteristics indicate that the synthesis of NWs may indeed overcome the constraints that limit the heteroepitaxial deposition of thin films. The major part of this thesis discusses the optical properties of GaN NWs grown on Si substrates. The investigation of the PL of single GaN NWs and GaN NW ensembles reveals the significance of their large surface-to-volume ratio. Differences in the recombination behavior of GaNNW ensembles and GaN layers are observed. First, the large surface-to-volume ratio is discussed to be responsible for the different recombination mechanisms apparent in NWs. Second, certain optical features are only found in the PL of GaN NWs, but not in that of GaN layers. An unexpected broadening of the donor

  15. Integrated Optical Circuit Engineering

    Science.gov (United States)

    Sriram, S.

    1985-04-01

    Implementation of single-mode optical fiber systems depends largely on the availability of integrated optical components for such functions as switching, multiplexing, and modulation. The technology of integrated optics is maturing very rapidly, and its growth justifies the optimism that now exists in the optical community.

  16. Reconfigurable optical interconnection network for multimode optical fiber sensor arrays

    Science.gov (United States)

    Chen, R. T.; Robinson, D.; Lu, H.; Wang, M. R.; Jannson, T.; Baumbick, R.

    1992-01-01

    A single-source, single-detector architecture has been developed to implement a reconfigurable optical interconnection network multimode optical fiber sensor arrays. The network was realized by integrating LiNbO3 electrooptic (EO) gratings working at the Raman Na regime and a massive fan-out waveguide hologram (WH) working at the Bragg regime onto a multimode glass waveguide. The glass waveguide utilized the whole substrate as a guiding medium. A 1-to-59 massive waveguide fan-out was demonstrated using a WH operating at 514 nm. Measured diffraction efficiency of 59 percent was experimentally confirmed. Reconfigurability of the interconnection was carried out by generating an EO grating through an externally applied electric field. Unlike conventional single-mode integrated optical devices, the guided mode demonstrated has an azimuthal symmetry in mode profile which is the same as that of a fiber mode.

  17. MOCVD growth and characterization of near-surface InGaN/GaN single quantum wells for non-radiative coupling of optical excitations

    DEFF Research Database (Denmark)

    Svensk, O.; Suihkonen, S.; Sintonen, S.

    2012-01-01

    We report a study of the structural and optical properties of near‐surface InGaN/GaN single quantum wells, grown by metalorganic chemical vapour deposition, as a function of underneath layer structure and GaN capping thickness. Special attention is paid to characterize properties which...... are important for non‐radiative coupling applications, such as emission intensity at peak wavelength and surface morphology. We observe that utilization of indium containing underneath structures results in high optical quality while increasing surface roughness. Optical performance can be further improved...

  18. Reducing BER of spectral-amplitude coding optical code-division multiple-access systems by single photodiode detection technique

    Science.gov (United States)

    Al-Khafaji, H. M. R.; Aljunid, S. A.; Amphawan, A.; Fadhil, H. A.; Safar, A. M.

    2013-03-01

    In this paper, we present a single photodiode detection (SPD) technique for spectral-amplitude coding optical code-division multiple-access (SAC-OCDMA) systems. The proposed technique eliminates both phase-induced intensity noise (PIIN) and multiple-access interference (MAI) in the optical domain. Analytical results show that for 35 simultaneous users transmitting at data rate of 622 Mbps, the bit-error rate (BER) = 1.4x10^-28 for SPD technique is much better compared to 9.3x10^-6 and 9.6x10^-3 for the modified-AND as well as the AND detection techniques, respectively. Moreover, we verified the improved performance afforded by the proposed technique using data transmission simulations.

  19. Optic nerve tolerance to single and fractionated radiation simulating radiosurgery: a rabbit model using visual evoked potentials, fundoscopy and histology

    International Nuclear Information System (INIS)

    Bastin, Kenneth; Mehta, Minesh

    1997-01-01

    Purpose/Objective: To develop a rabbit model enabling single or fractionated optic nerve irradiation, measure post-irradiation visual evoked potentials (VEP), fundoscopic and histopathologic changes, and relate different radiation dosing fractions to these measurable physiologic changes. Materials and Methods: Forty male New Zealand white rabbits underwent surgical right orbital prolapse with template-guided optic nerve irradiation using an iridium-192 high dose rate afterloader. Rabbits were randomized into single fraction groups (0 (control), 10, 12.5, 15, 20, and 30 Gy (3 per group); or two fraction groups of 0 (control) 5, 7.5, 10, 15, and 20 Gy (3 per group); or three fractions groups of 10 and 15 Gy (2 per group). Bilateral fundoscopy and pattern-reversal VEPs (0.5 and 1 c/deg, 1 hertz) were performed at 6 and 12 months (mos) following scheduled irradiation. VEP peaks (P1) were measured. Sacrifice and necropsy followed 12 month evaluation, allowing for histological changes. Results: Excluding deaths from anesthesia (2), CNS mite infection (2), sepsis, pyothorax, 'undetermined' and technically non-analyzable VEP recordings, 24 complete rabbit data sets were evaluated. Fundoscopy demonstrated no gross changes at any dose. Histopathology demonstrated generalized optic nerve atrophy without radiation dose correlation. Among single fraction groups, VEP showed a 6 mos post-irradiation P1 prolongation only in the 20 and 30 Gy groups (maximum 67%). At 12 mos lower dose single fraction groups had a prolonged P1 peak. All fractionated groups above 5 Gy x 2 had P1 prolongation times at 6 mos (maximum 46% in the 15 Gy x 3 data set) but by 12 mos these groups had non-measurable, deteriorated VEPs. Correlating VEP P1 latency with the calculated linear quadratic formula (LQM) biologically equivalent dose (BED,α/β=3) for each group demonstrated a general correlation (t-Test P<.001) as shown: Conclusion: Using a rabbit model for selective optic nerve irradiation we conclude

  20. Measurement of the Single Top Quark Production Cross Section in 1.96-TeV Proton-Antiproton Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Koji [Univ. of Tsukuba (Japan)

    2009-02-01

    Top quarks are predominantly produced in pairs via the strong interaction in $\\bar{p}$p collisions at √s = 1.96 TeV . The top quark has a weak isospin 1/2, composing a weak isospin doublet with the bottom quark. This characteristic predicts not only top quark pair production via strong interaction but also single production together with a bottom quark via weak interaction. However, finding single top quark production is challenging since it is rarely produced (σ singletop = 2.9 pb) against background processes with the same final state like W+jets and t$\\bar{t}$. A measurement of electroweak single top production probes the W-t-b vertex, which provides a direct determination of the Cabbibo-Kobayashi-Maskawa (CKM) matrix element |Vtb|. The sample offers a source of almost 100% polarized top quarks. This thesis describes an optimized search for s-channel single top quark production and a measurement of the single top production cross section using 2.7 fb-1 of data accumulated with the CDF detector. We are using events with one high-pT lepton, large missing ET and two identified b-quark jets where one jet is identified using a secondary vertex tagger, called SecVtx, and the other jet is identified using SecVtx or a jet probability tagger, called JetProb. In this analysis we have developed a kinematics fitter and a likelihood-based separator between signal and background. As a result, we found that the probability (p-value) that the candidate events originate from a background fluctuation in the absence of single top s-channel production is 0.003, which is equivalent to 2.7 σ deviations in Gaussian statistics, and this excess corresponds to the single top s-channel cross section of 2.38-0.84+1.01 pb. An observed value of |Vtb| is 1.43-0.26+0.38(experimental) ± 0.11(theory). We also set the 95% CL. upper limit of σs = 4.15 pb for the s

  1. Reversible air-induced optical and electrical modulation of methylammonium lead bromide (MAPbBr3) single crystals

    Science.gov (United States)

    Zhang, Huotian; Liu, Yiting; Lu, Haizhou; Deng, Wan; Yang, Kang; Deng, Zunyi; Zhang, Xingmin; Yuan, Sijian; Wang, Jiao; Niu, Jiaxin; Zhang, Xiaolei; Jin, Qingyuan; Feng, Hongjian; Zhan, Yiqiang; Zheng, Lirong

    2017-09-01

    The photoluminescence (PL) variations of organic-inorganic hybrid lead halide perovskites in different atmospheres are well documented, while the fundamental mechanism still lacks comprehensive understandings. This study reports the reversible optical and electrical properties of methylammonium lead bromide (MAPbBr3 or CH3NH3PbBr3) single crystals caused by air infiltration. With the change in the surrounding atmosphere from air to vacuum, the PL intensity of perovskite single crystals decreases, while the conductivity increases. By means of first-principles computational studies, the shallow trap states are considered as key elements in PL and conductivity changes. These results have important implications for the characterization and application of organic-inorganic hybrid lead halide perovskites in vacuum.

  2. MEMS-based non-rotatory circumferential scanning optical probe for endoscopic optical coherence tomography

    Science.gov (United States)

    Xu, Yingshun; Singh, Janak; Siang, Teo Hui; Ramakrishna, Kotlanka; Premchandran, C. S.; Sheng, Chen Wei; Kuan, Chuah Tong; Chen, Nanguang; Olivo, Malini C.; Sheppard, Colin J. R.

    2007-07-01

    In this paper, we present a non-rotatory circumferential scanning optical probe integrated with a MEMS scanner for in vivo endoscopic optical coherence tomography (OCT). OCT is an emerging optical imaging technique that allows high resolution cross-sectional imaging of tissue microstructure. To extend its usage to endoscopic applications, a miniaturized optical probe based on Microelectromechanical Systems (MEMS) fabrication techniques is currently desired. A 3D electrothermally actuated micromirror realized using micromachining single crystal silicon (SCS) process highlights its very large angular deflection, about 45 degree, with low driving voltage for safety consideration. The micromirror is integrated with a GRIN lens into a waterproof package which is compatible with requirements for minimally invasive endoscopic procedures. To implement circumferential scanning substantially for diagnosis on certain pathological conditions, such as Barret's esophagus, the micromirror is mounted on 90 degree to optical axis of GRIN lens. 4 Bimorph actuators that are connected to the mirror on one end via supporting beams and springs are selected in this micromirror design. When actuators of the micromirror are driven by 4 channels of sinusoidal waveforms with 90 degree phase differences, beam focused by a GRIN is redirected out of the endoscope by 45 degree tilting mirror plate and achieve circumferential scanning pattern. This novel driving method making full use of very large angular deflection capability of our micromirror is totally different from previously developed or developing micromotor-like rotatory MEMS device for circumferential scanning.

  3. Atomic force microscopy imaging and 3-D reconstructions of serial thin sections of a single cell and its interior structures

    International Nuclear Information System (INIS)

    Chen Yong; Cai Jiye; Zhao Tao; Wang Chenxi; Dong Shuo; Luo Shuqian; Chen, Zheng W.

    2005-01-01

    The thin sectioning has been widely applied in electron microscopy (EM), and successfully used for an in situ observation of inner ultrastructure of cells. This powerful technique has recently been extended to the research field of atomic force microscopy (AFM). However, there have been no reports describing AFM imaging of serial thin sections and three-dimensional (3-D) reconstruction of cells and their inner structures. In the present study, we used AFM to scan serial thin sections approximately 60 nm thick of a mouse embryonic stem (ES) cell, and to observe the in situ inner ultrastructure including cell membrane, cytoplasm, mitochondria, nucleus membrane, and linear chromatin. The high-magnification AFM imaging of single mitochondria clearly demonstrated the outer membrane, inner boundary membrane and cristal membrane of mitochondria in the cellular compartment. Importantly, AFM imaging on six serial thin sections of a single mouse ES cell showed that mitochondria underwent sequential changes in the number, morphology and distribution. These nanoscale images allowed us to perform 3-D surface reconstruction of interested interior structures in cells. Based on the serial in situ images, 3-D models of morphological characteristics, numbers and distributions of interior structures of the single ES cells were validated and reconstructed. Our results suggest that the combined AFM and serial-thin-section technique is useful for the nanoscale imaging and 3-D reconstruction of single cells and their inner structures. This technique may facilitate studies of proliferating and differentiating stages of stem cells or somatic cells at a nanoscale

  4. Measurement of inelastic, single- and double-diffraction cross sections in proton-proton collisions at the LHC with ALICE

    CERN Document Server

    Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Agostinelli, Andrea; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Nazeer; Ahmad, Arshad; Ahn, Sul-Ah; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Arend, Andreas; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Asryan, Andzhey; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Boccioli, Marco; Bock, Nicolas; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boyer, Bruno Alexandre; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Busch, Oliver; Buthelezi, Edith Zinhle; Caballero Orduna, Diego; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Wisla; Carena, Francesco; Carlin Filho, Nelson; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Castillo Hernandez, Juan Francisco; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chawla, Isha; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Colamaria, Fabio; Colella, Domenico; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crescio, Elisabetta; Crochet, Philippe; Cruz Alaniz, Emilia; Cuautle, Eleazar; Cunqueiro, Leticia; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Kushal; Das, Indranil; Das, Debasish; Dash, Sadhana; Dash, Ajay Kumar; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; Delagrange, Hugues; Deloff, Andrzej; De Marco, Nora; Denes, Ervin; De Pasquale, Salvatore; Deppman, Airton; D'Erasmo, Ginevra; de Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Di Bari, Domenico; Dietel, Thomas; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Dutta Majumdar, Mihir Ranjan; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erazmus, Barbara; Erdal, Hege Austrheim; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fearick, Roger Worsley; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Ferretti, Roberta; Festanti, Andrea; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Mihaela; Gheata, Andrei George; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Girard, Martin Robert; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonzalez Ferreiro, Elena; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Gros, Philippe; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerra Gutierrez, Cesar; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Ramni; Gupta, Anik; Gutbrod, Hans; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Han, Byounghee; Hanratty, Luke David; Hansen, Alexander; Harmanova, Zuzana; Harris, John William; Hartig, Matthias; Hasegan, Dumitru; Hatzifotiadou, Despoina; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard; Hille, Per Thomas; Hippolyte, Boris; Horaguchi, Takuma; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Pier Giorgio; Innocenti, Gian Michele; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Vladimir; Ivanov, Marian; Ivanov, Andrey; Ivanytskyi, Oleksii; Jacobs, Peter; Jang, Haeng Jin; Janik, Malgorzata Anna; Janik, Rudolf; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jirden, Lennart; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kaidalov, Alexei; Kakoyan, Vanik; Kalcher, Sebastian; Kalinak, Peter; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Shuaib Ahmad; Khan, Palash; Khan, Mohisin Mohammed; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Minwoo; Kim, Se Yong; Kim, Dong Jo; Kim, Do Won; Kim, Jonghyun; Kim, Jin Sook; Kim, Taesoo; Kim, Mimae; Kim, Beomkyu; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kliemant, Michael; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Koch, Kathrin; Kohler, Markus; Kollegger, Thorsten; Kolojvari, Anatoly; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Kour, Ravjeet; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kraus, Ingrid Christine; Kravcakova, Adela; Krawutschke, Tobias; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucheriaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paul; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Vasily; Kushpil, Svetlana; Kvaerno, Henning; Kweon, Min Jung; Kwon, Youngil; Ladron de Guevara, Pedro; Lakomov, Igor; Langoy, Rune; La Pointe, Sarah Louise; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; La Rocca, Paola; Lea, Ramona; Le Bornec, Yves; Lechman, Mateusz; Lee, Ki Sang; Lee, Sung Chul; Lee, Graham Richard; Lefevre, Frederic; Lehnert, Joerg Walter; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon, Hermes; Leoncino, Marco; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Levai, Peter; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Liu, Lijiao; Loggins, Vera; Loginov, Vitaly; Lohn, Stefan Bernhard; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luquin, Lionel; Luzzi, Cinzia; Ma, Ke; Ma, Rongrong; Madagodahettige-Don, Dilan Minthaka; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Mangotra, Lalit Kumar; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Marin Tobon, Cesar Augusto; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Davalos, Arnulfo; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matthews, Zoe Louise; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Musa, Luciano; Musso, Alfredo; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Navin, Sparsh; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Niida, Takafumi; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Vladimir; Nikulin, Sergey; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Novitzky, Norbert; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Ochirov, Alexander; Oeschler, Helmut Oskar; Oh, Sun Kun; Oh, Saehanseul; Oleniacz, Janusz; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Ortona, Giacomo; Oskarsson, Anders Nils Erik; Ostrowski, Piotr Krystian; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozawa, Kyoichiro; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Pastircak, Blahoslav; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Perini, Diego; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Piccotti, Anna; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piyarathna, Danthasinghe; Planinic, Mirko; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pocheptsov, Timur; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polak, Karel; Polichtchouk, Boris; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puddu, Giovanna; Pulvirenti, Alberto; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Quercigh, Emanuele; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Ramirez Reyes, Abdiel; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Rehman, Attiq Ur; Reichelt, Patrick; Reicher, Martijn; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rodrigues Fernandes Rabacal, Bartolomeu; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sano, Satoshi; Santo, Rainer; Santoro, Romualdo; Sarkamo, Juho Jaako; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Hans Rudolf; Schmidt, Christian Joachim; Schreiner, Steffen; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca; Segato, Gianfranco; Selioujenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Satish; Sharma, Natasha; Sharma, Rohini; Shigaki, Kenta; Shimomura, Maya; Shtejer, Katherin; Sibiriak, Yury; Siciliano, Melinda; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Son, Hyungsuk; Song, Myunggeun; Song, Jihye; Soos, Csaba; Soramel, Francesca; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szostak, Artur Krzysztof; Szymanski, Maciej; Takahashi, Jun; Tapia Takaki, Daniel Jesus; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Tlusty, David; Toia, Alberica; Torii, Hisayuki; Toscano, Luca; Trubnikov, Victor; Truesdale, David Christopher; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urban, Jozef; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Vande Vyvre, Pierre; van Leeuwen, Marco; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Yury; Vinogradov, Leonid; Vinogradov, Alexander; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vranic, Danilo; vrebekk, Gaute; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wan, Renzhuo; Wang, Mengliang; Wang, Dong; Wang, Yifei; Wang, Yaping; Watanabe, Kengo; Weber, Michael; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Alexander; Wilk, Grzegorz Andrzej; Williams, Crispin; Windelband, Bernd Stefan; Xaplanteris Karampatsos, Leonidas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Shiming; Yang, Hongyan; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yu, Weilin; Yuan, Xianbao; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Xiaoming; Zhang, Haitao; Zhou, You; Zhou, Fengchu; Zhou, Daicui; Zhu, Jianlin; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2013-01-01

    Measurements of cross sections of inelastic and diffractive processes in proton--proton collisions at LHC energies were carried out with the ALICE detector. The fractions of diffractive processes in inelastic collisions were determined from a study of gaps in charged particle pseudorapidity distributions: for single diffraction (diffractive mass $M_X 3$) $\\sigma_{\\rm DD}/\\sigma_{\\rm INEL} = 0.11 \\pm 0.03, 0.12 \\pm 0.05$, and $0.12^{+0.05}_{-0.04}$, respectively at $\\sqrt{s} = 0.9, 2.76$, and 7 TeV. To measure the inelastic cross section, beam properties were determined with van der Meer scans, and, using a simulation of diffraction adjusted to data, the following values were obtained: $\\sigma_{\\rm INEL} = 62.8^{+2.4}_{-4.0} (model) \\pm 1.2 (lumi)$ mb at $\\sqrt{s} =$ 2.76 TeV and $73.2^{+2.0}_{-4.6} (model) \\pm 2.6 (lumi)$ mb at $\\sqrt{s}$ = 7 TeV. The single- and double-diffractive cross sections were calculated combining relative rates of diffraction with inelastic cross sections. The results are compared t...

  5. Local detection efficiency of a NbN superconducting single photon detector explored by a scattering scanning near-field optical microscope.

    Science.gov (United States)

    Wang, Qiang; Renema, Jelmer J; Engel, Andreas; van Exter, Martin P; de Dood, Michiel J A

    2015-09-21

    We propose an experiment to directly probe the local response of a superconducting single photon detector using a sharp metal tip in a scattering scanning near-field optical microscope. The optical absorption is obtained by simulating the tip-detector system, where the tip-detector is illuminated from the side, with the tip functioning as an optical antenna. The local detection efficiency is calculated by considering the recently introduced position-dependent threshold current in the detector. The calculated response for a 150 nm wide detector shows a peak close to the edge that can be spatially resolved with an estimated resolution of ∼ 20 nm, using a tip with parameters that are experimentally accessible.

  6. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Benjamin J. [Department of Physics and Astronomy, University of Southern California, 920 Bloom Walk, Los Angeles, California 90089-0484 (United States); El-Naggar, Mohamed Y., E-mail: mnaggar@usc.edu [Department of Physics and Astronomy, University of Southern California, 920 Bloom Walk, Los Angeles, California 90089-0484 (United States); Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0484 (United States); Department of Chemistry, University of Southern California, Los Angeles, California 90089-0484 (United States)

    2015-06-15

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions.

  7. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces.

    Science.gov (United States)

    Gross, Benjamin J; El-Naggar, Mohamed Y

    2015-06-01

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions.

  8. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces

    International Nuclear Information System (INIS)

    Gross, Benjamin J.; El-Naggar, Mohamed Y.

    2015-01-01

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions

  9. Raman spectroscopy of individual monocytes reveals that single-beam optical trapping of mononuclear cells occurs by their nucleus

    International Nuclear Information System (INIS)

    Fore, Samantha; Chan, James; Taylor, Douglas; Huser, Thomas

    2011-01-01

    We show that laser tweezers Raman spectroscopy of eukaryotic cells with a significantly larger diameter than the tight focus of a single-beam laser trap leads to optical trapping of the cell by its optically densest part, i.e. typically the cell's nucleus. Raman spectra of individual optically trapped monocytes are compared with location-specific Raman spectra of monocytes adhered to a substrate. When the cell's nucleus is stained with a fluorescent live cell stain, the Raman spectrum of the DNA-specific stain is observed only in the nucleus of individual monocytes. Optically trapped monocytes display the same behavior. We also show that the Raman spectra of individual monocytes exhibit the characteristic Raman signature of cells that have not yet fully differentiated and that individual primary monocytes can be distinguished from transformed monocytes based on their Raman spectra. This work provides further evidence that laser tweezers Raman spectroscopy of individual cells provides meaningful biochemical information in an entirely non-destructive fashion that permits discerning differences between cell types and cellular activity

  10. Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states

    Science.gov (United States)

    de Léséleuc, Sylvain; Barredo, Daniel; Lienhard, Vincent; Browaeys, Antoine; Lahaye, Thierry

    2018-05-01

    We study experimentally various physical limitations and technical imperfections that lead to damping and finite contrast of optically driven Rabi oscillations between ground and Rydberg states of a single atom. Finite contrast is due to preparation and detection errors, and we show how to model and measure them accurately. Part of these errors originates from the finite lifetime of Rydberg states, and we observe its n3 scaling with the principal quantum number n . To explain the damping of Rabi oscillations, we use simple numerical models taking into account independently measured experimental imperfections and show that the observed damping actually results from the accumulation of several small effects, each at the level of a few percent. We discuss prospects for improving the coherence of ground-Rydberg Rabi oscillations in view of applications in quantum simulation and quantum information processing with arrays of single Rydberg atoms.

  11. Acousto-optic interaction in polyimide coated optical fibers with flexural waves

    OpenAIRE

    ALCUSA-SÁEZ, E. P.; Díez, A.; Rivera-Pérez, E.; Margulis, W.; Norin, L.; Andrés, M. V.

    2017-01-01

    Acousto-optic coupling in polyimide-coated single-mode optical fibers using flexural elastic waves is demonstrated. The effect of the polyimide coating on the acousto-optic interaction process is analyzed in detailed. Theoretical and experimental results are in good agreement. Although the elastic attenuation is significant, we show that acousto-optic coupling can be produced with a reasonably good efficiency. To our knowledge, it is the first experimental demonstration of acousto-optic coupl...

  12. Condition monitoring of shaft of single-phase induction motor using optical sensor

    Science.gov (United States)

    Fulzele, Asmita G.; Arajpure, V. G.; Holay, P. P.; Patil, N. M.

    2012-05-01

    Transmission type of optical technique is developed to sense the condition of rotating shafts from a distance. A parallel laser beam is passed tangential over the surface of rotating shaft of a single phase induction motor and its flickering shadow is received on a photo sensor. Variations in sensor voltage output are observed on a digital storage oscilloscope. It is demonstrated that this signal carries information about shaft defects like miss alignment, play and impacts in bearings along with surface deformities. Mathematical model of signals corresponding to these shaft defects is developed. During the development and testing of the sensor, effects of reflections are investigated, sensing phenomenon is simulated, frequency response of the sensor is obtained and its performance is compared with conventional accelerometer.

  13. Optical characteristics of modified fiber tips in single fiber, laser Doppler flowmetry

    Science.gov (United States)

    Oberg, P. Ake; Cai, Hongming; Rohman, Hakan; Larsson, Sven-Erik

    1994-02-01

    Percutaneous laser Doppler flowmetry (LDF) and bipolar surface electromyography (EMG) were used simultaneously for measurement of skeletal muscle (trapezius) perfusion in relation to static load and fatigue. On-line computer (386 SX) processing of the LDF- and EMG- signals made possible interpretation of the relationship between the perfusion and the activity of the muscle. The single fiber laser Doppler technique was used in order to minimize the trauma. A ray-tracing program was developed in the C language by which the optical properties of the fiber and fiber ends could be simulated. Isoirradiance graphs were calculated for three fiber end types and the radiance characteristics were measured for each fiber end. The three types of fiber-tips were evaluated and compared in flow model measurements.

  14. Optical and electrical properties of ZrSe3 single crystals grown by chemical vapour transport technique

    International Nuclear Information System (INIS)

    Patel, Kaushik; Prajapati, Jagdish; Vaidya, Rajiv; Patel, S.G.

    2005-01-01

    Single crystals of the lamellar compound, ZrSe 3 , were grown by chemical vapour transport technique using iodine as a transporting agent. The grown crystals were characterized with the help of energy dispersive analysis by X-ray (EDAX), which gave confirmation about the stoichiometry. The optical band gap measurement of as grown crystals was carried out with the help of optical absorption spectra in the range 700-1450 nm. The indirect as well as direct band gap of ZrSe 3 were found to be 1.1 eV and 1.47 eV, respectively. The resistivity of the as grown crystals was measured using van der Pauw method. The Hall parameters of the grown crystals were determined at room temperature from Hall effect measurements. Electrical resistivity measurements were performed on this crystal in the temperature range 303-423 K. The crystals were found to exhibit semiconducting nature in this range. The activation energy and anisotropy measurements were carried out for this crystal. Pressure dependence of electrical resistance was studied using Bridgman opposed anvils set up up to 8 GPa. The semiconducting nature of ZrSe 3 single crystal was inferred from the graph of resistance vs pressure. The results obtained are discussed in detail. (author)

  15. Optical spectroscopy of iodine-doped single-wall carbon nanotubes of different diameter

    International Nuclear Information System (INIS)

    Tonkikh, Alexander A.; Obraztsova, Elena D.; Pozharov, Anatolii S.; Obraztsova, Ekaterina A.; Belkin, Alexey V.

    2012-01-01

    Single-wall carbon nanotubes with polyiodide chains inside are interesting from two points of view. According to predictions, first, the iodine structure type inside the nanotube is determined by the nanotube geometry. Second, after iodination all nanotubes become metallic. In this work, we made an attempt to check both predictions. To study the diameter-dependent properties we have taken for a gas-phase iodination the pristine single-wall carbon nanotubes grown by three different techniques providing a different average diameter: a chemical vapor deposition with a Co/Mo catalyst (CoMoCat) with a diameter range (0.6-1.3) nm, a high-pressure CO decomposition (HiPCO) - a diameter range (0.8-1.5) nm, and an aerosol technique with Fe catalyst - a diameter range (1.3-2.0) nm. The Raman spectra have shown a complication of the polyiodide chain structure while the nanotube diameter increased. The optical spectroscopy data (a suppression of E 11 band in the UV-Vis-NIR absorption spectrum) have confirmed the theoretical prediction about transformation of all nanotubes into metallic phase after doping. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Investigations on nucleation, HRXRD, optical, piezoelectric, polarizability and Z-scan analysis of L-arginine maleate dihydrate single crystals

    Science.gov (United States)

    Sakthy Priya, S.; Alexandar, A.; Surendran, P.; Lakshmanan, A.; Rameshkumar, P.; Sagayaraj, P.

    2017-04-01

    An efficient organic nonlinear optical single crystal of L-arginine maleate dihydrate (LAMD) has been grown by slow evaporation solution technique (SEST) and slow cooling technique (SCT). The crystalline perfection of the crystal was examined using high-resolution X-ray diffractometry (HRXRD) analysis. Photoluminescence study confirmed the optical properties and defects level in the crystal lattice. Electromechanical behaviour was observed using piezoelectric co-efficient (d33) analysis. The photoconductivity analysis confirmed the negative photoconducting nature of the material. The dielectric constant and loss were measured as a function of frequency with varying temperature and vice-versa. The laser damage threshold (LDT) measurement was carried out using Nd:YAG Laser with a wavelength of 1064 nm (Focal length is 35 cm) and the obtained results showed that LDT value of the crystal is high compared to KDP crystal. The high laser damage threshold of the grown crystal makes it a potential candidate for second and higher order nonlinear optical device application. The third order nonlinear optical parameters of LAMD crystal is determined by open-aperture and closed-aperture studies using Z-scan technique. The third order linear and nonlinear optical parameters such as the nonlinear refractive index (n2), two photon absorption coefficient (β), Real part (Reχ3) and imaginary part (Imχ3) of third-order nonlinear optical susceptibility are calculated.

  17. Neutron-/sup 90/Zr mean field from a dispersive optical model analysis

    International Nuclear Information System (INIS)

    Delaroche, J.P.; Wang, Y.; Rapaport, J.

    1989-01-01

    Elastic scattering cross sections have been measured for 8, 10, and 24 MeV neutrons incident on /sup 90/Zr. These measurements, together with other neutron elastic scattering and total cross section data available up to 29 MeV, are used in grid searches to obtain an optical model potential which contains a dispersion relation term. This potential is then extrapolated toward negative energies to predict bound single-particle state properties. An overall good description of the data at positive and negative energies is achieved

  18. Single-, double-, and triple-photoionization cross sections of carbon monoxide (CO) and ionic fragmentation of CO+, CO2+, and CO3+

    International Nuclear Information System (INIS)

    Masuoka, T.; Nakamura, E.

    1993-01-01

    Single-, double-, and triple-photoionization processes of carbon monoxide (CO) have been studied in the photon-energy region of 37--100 eV by use of time-of-flight mass spectrometry and a photoion-photoion-coincidence method together with synchrotron radiation. The single-, double-, and triple-photoionization cross sections of CO are determined. Ion branching ratios and the partial cross sections for the individual ions respectively produced from the precursors CO + and CO 2+ are determined separately at excitation energies where the molecular and dissociative single- and double-photoionization processes compete. The threshold for the molecular double photoionization was found to be 41.3±0.2 eV. Furthermore, in single photoionization, the production of CO + is dominant whereas with double photoionization dissociation becomes dominant

  19. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation.

    Science.gov (United States)

    Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing

    2015-05-29

    A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system.

  20. Progress in nano-electro optics characterization of nano-optical materials and optical near-field interactions

    CERN Document Server

    Ohtsu, Motoichi

    2005-01-01

    This volume focuses on the characterization of nano-optical materials and optical-near field interactions. It begins with the techniques for characterizing the magneto-optical Kerr effect and continues with methods to determine structural and optical properties in high-quality quantum wires with high spatial uniformity. Further topics include: near-field luminescence mapping in InGaN/GaN single quantum well structures in order to interpret the recombination mechanism in InGaN-based nano-structures; and theoretical treatment of the optical near field and optical near-field interactions, providing the basis for investigating the signal transport and associated dissipation in nano-optical devices. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics.