WorldWideScience

Sample records for single nutrient input

  1. Reducing future nutrient inputs to the Black Sea.

    Science.gov (United States)

    Strokal, Maryna Petrivna; Kroeze, Carolien; Kopilevych, Volodymyr Abramovych; Voytenko, Larysa Vladyslavivna

    2014-01-01

    Rivers export increasing amounts of dissolved inorganic (DIN, DIP) and organic (DON, DOP) nitrogen and phosphorus to the Black Sea causing coastal eutrophication. The aim of this study is to explore future trends in river export of these nutrients to the sea through a sensitivity analysis. We used the Global NEWS (Nutrient Export from WaterSheds) model to this end. We calculated that between 2000 and 2050 nutrient inputs to the Black Sea may increase or decrease, depending on the assumed environmental management. We analyzed the effects of agricultural and sewage management on nutrient inputs to the sea in 2050 relative to two Millennium Ecosystem Assessment (MEA) scenarios, Global Orchestration (GO) and Adaptive Mosaic (AM). In these baselines, total N and P inputs to the Black Sea decrease between 2000 and 2050, but not for all rivers and nutrient forms. Our results indicate that it is possible to reduce nutrient inputs to the sea further between 2000 and 2050 in particular for dissolved inorganic N and P and for many river basins, but not for all. For scenarios assuming combined agricultural and sewage management dissolved inorganic N and P inputs to the Black Sea are reduced by up to two-thirds between 2000 and 2050 and dissolved organic N and P inputs by one-third. River export of DIN is mainly affected by agricultural management and that of DIP by sewage management. On the other hand, in scenarios assuming increased fertilizer use for, for instance bioenergy crops, nutrient inputs to the sea increase. An increase in DIP inputs by southern rivers seems difficult to avoid because of the increasing number of people connected to sewage systems. © 2013 Elsevier B.V. All rights reserved.

  2. External Nutrient Inputs into Lake Kivu: Rivers and Atmospheric ...

    African Journals Online (AJOL)

    Quantifying the external nutrients inputs is a key factor for understanding the formation of methane in Lake Kivu. This tectonic lake located between Rwanda and DRC contains a big quantity of dissolved gases predominated by carbon dioxide, methane and sulphide. The CH4 is most probably produced in the lake, mainly in ...

  3. Nutrients and defoliation increase soil carbon inputs in grassland.

    Science.gov (United States)

    Ziter, Carly; MacDougall, Andrew S

    2013-01-01

    Given the regulatory impact of resources and consumers on plant production, decomposition, and soil carbon sequestration, anthropogenic changes to nutrient inputs and grazing have likely transformed how grasslands process atmospheric CO2. The direction and magnitude of these changes, however, remain unclear in this system, whose soils contain -20% of the world's carbon pool. Nutrients stimulate production but can also increase tissue palatability and decomposition. Grazing variously affects tissue quality and quantity, decreasing, standing biomass, but potentially increasing leaf nutrient concentrations, root production, or investment in tissue defenses that slow litter decay. Here, we quantified individual and interactive impacts of nutrient addition and simulated grazing (mowing) on above- and belowground production, tissue quality, and soil carbon inputs in a western North American grassland with globally distributed agronomic species. Given that nutrients and grazing are often connected with increased root production and higher foliar tissue quality, we hypothesized that these treatments would combine to reduce inputs of recalcitrant-rich litter critical for C storage. This hypothesis was unsupported. Nutrients and defoliation combined to significantly increase belowground production but did not affect root tissue quality. There were no significant interactions between nutrients and defoliation for any measured response. Three years of nutrient addition increased root and shoot biomass by 37% and 23%, respectively, and had no impact on decomposition, resulting in a -15% increase in soil organic matter and soil carbon. Defoliation triggered a significant burst of short-lived lignin-rich roots, presumably a compensatory response to foliar loss, which increased root litter inputs by 33%. The majority of root and shoot responses were positively correlated, with aboveground biomass a reasonable proxy for whole plant responses. The exceptions were decomposition, with

  4. Single VDTA Based Dual Mode Single Input Multioutput Biquad Filter

    Directory of Open Access Journals (Sweden)

    Rajeshwari Pandey

    2016-01-01

    Full Text Available This paper presents a dual mode, single input multioutput (SIMO biquad filter configuration using single voltage differencing transconductance amplifier (VDTA, three capacitors, and a grounded resistor. The proposed topology can be used to synthesize low pass (LP, high pass (HP, and band pass (BP filter functions. It can be configured as voltage mode (VM or current mode (CM structure with appropriate input excitation choice. The angular frequency (ω0 of the proposed structure can be controlled independently of quality factor (Q0. Workability of the proposed biquad configuration is demonstrated through PSPICE simulations using 0.18 μm TSMC CMOS process parameters.

  5. Identification of single-input-single-output quantum linear systems

    Science.gov (United States)

    Levitt, Matthew; GuÅ£ǎ, Mǎdǎlin

    2017-03-01

    The purpose of this paper is to investigate system identification for single-input-single-output general (active or passive) quantum linear systems. For a given input we address the following questions: (1) Which parameters can be identified by measuring the output? (2) How can we construct a system realization from sufficient input-output data? We show that for time-dependent inputs, the systems which cannot be distinguished are related by symplectic transformations acting on the space of system modes. This complements a previous result of Guţă and Yamamoto [IEEE Trans. Autom. Control 61, 921 (2016), 10.1109/TAC.2015.2448491] for passive linear systems. In the regime of stationary quantum noise input, the output is completely determined by the power spectrum. We define the notion of global minimality for a given power spectrum, and characterize globally minimal systems as those with a fully mixed stationary state. We show that in the case of systems with a cascade realization, the power spectrum completely fixes the transfer function, so the system can be identified up to a symplectic transformation. We give a method for constructing a globally minimal subsystem direct from the power spectrum. Restricting to passive systems the analysis simplifies so that identifiability may be completely understood from the eigenvalues of a particular system matrix.

  6. Mixing in Visakhapatnam harbour and nutrient inputs to nearshore waters, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    RamaRaju, V.S.; Sarma, V.V.; Raju, G.R.K.; Rao, V.S.

    in the Visakhapatnam harbour probably occurs relatively slow. The distribution curves for saline water fraction and nonconservative nutrient (phosphate) concentration in different seasons are also presented. The nutrient inputs from the Visakhapatnam harbour...

  7. The MARINA model (Model to Assess River Inputs of Nutrients to seAs)

    OpenAIRE

    Strokal, Maryna; Kroeze, Carolien; Wang, Mengru; Bai, Zhaohai; Ma, Lin

    2016-01-01

    Chinese agriculture has been developing fast towards industrial food production systems that discharge nutrient-rich wastewater into rivers. As a result, nutrient export by rivers has been increasing, resulting in coastal water pollution. We developed a Model to Assess River Inputs of Nutrients to seAs (MARINA) for China. The MARINA Nutrient Model quantifies river export of nutrients by source at the sub-basin scale as a function of human activities on land. MARINA is a downscaled version for...

  8. Scientific and technical advisory committee review of the nutrient inputs to the watershed model

    Science.gov (United States)

    The following is a report by a STAC Review Team concerning the methods and documentation used by the Chesapeake Bay Partnership for evaluation of nutrient inputs to Phase 6 of the Chesapeake Bay Watershed Model. The “STAC Review of the Nutrient Inputs to the Watershed Model” (previously referred to...

  9. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact

    NARCIS (Netherlands)

    Slomp, C.P.; Van Cappellen, P.

    2004-01-01

    Nutrient input through submarine groundwater discharge (SGD) rivals river inputs in certain regions and may play a significant role in nutrient cycling and primary productivity in the coastal ocean. In this paper, we review the key factors determining the fluxes of nitrogen (N) and phosphorus (P)

  10. The MARINA model (Model to Assess River Inputs of Nutrients to seAs)

    NARCIS (Netherlands)

    Strokal, Maryna; Kroeze, Carolien; Wang, Mengru; Bai, Zhaohai; Ma, Lin

    2016-01-01

    Chinese agriculture has been developing fast towards industrial food production systems that discharge nutrient-rich wastewater into rivers. As a result, nutrient export by rivers has been increasing, resulting in coastal water pollution. We developed a Model to Assess River Inputs of Nutrients

  11. Data-driven nutrient analysis and reality check: Human inputs, catchment delivery and management effects

    Science.gov (United States)

    Destouni, G.

    2017-12-01

    Measures for mitigating nutrient loads to aquatic ecosystems should have observable effects, e.g, in the Baltic region after joint first periods of nutrient management actions under the Baltic Sea Action Plan (BASP; since 2007) and the EU Water Framework Directive (WFD; since 2009). Looking for such observable effects, all openly available water and nutrient monitoring data since 2003 are compiled and analyzed for Sweden as a case study. Results show that hydro-climatically driven water discharge dominates the determination of waterborne loads of both phosphorus and nitrogen. Furthermore, the nutrient loads and water discharge are all similarly well correlated with the ecosystem status classification of Swedish water bodies according to the WFD. Nutrient concentrations, which are hydro-climatically correlated and should thus reflect human effects better than loads, have changed only slightly over the study period (2003-2013) and even increased in moderate-to-bad status waters, where the WFD and BSAP jointly target nutrient decreases. These results indicate insufficient distinction and mitigation of human-driven nutrient components by the internationally harmonized applications of both the WFD and the BSAP. Aiming for better general identification of such components, nutrient data for the large transboundary catchments of the Baltic Sea and the Sava River are compared. The comparison shows cross-regional consistency in nutrient relationships to driving hydro-climatic conditions (water discharge) for nutrient loads, and socio-economic conditions (population density and farmland share) for nutrient concentrations. A data-driven screening methodology is further developed for estimating nutrient input and retention-delivery in catchments. Its first application to nested Sava River catchments identifies characteristic regional values of nutrient input per area and relative delivery, and hotspots of much larger inputs, related to urban high-population areas.

  12. Nutrient inputs into the Gulf of Finland: Trends and water protection targets

    Science.gov (United States)

    Knuuttila, Seppo; Räike, Antti; Ekholm, Petri; Kondratyev, Sergey

    2017-07-01

    The catchment area of the Gulf of Finland (GOF) is nearly 14 times larger than the sea area and is home to 12 million people. The GOF is thus heavily polluted by nutrients, and eutrophication is one of the major environmental concerns. The aim of this study was to estimate trends in the nutrient input and to evaluate whether current water protection targets (national, EU, HELCOM) will be achieved. We used both national and international (HELCOM) databases to evaluate nutrient inputs from the surrounding three countries (Estonia, Finland and Russia). The average nitrogen (N) input into the GOF was 112,000 t y- 1 for the period 2009-2013, with rivers responsible for 79%, direct point sources accounting for 10% and deposition for 11% of the input. Phosphorus (P) input was 4270 t y- 1, of which rivers were responsible for 88% and point sources for 12%. The largest proportions (61% for N and 73% for P) of the inputs came from Russia, despite the specific areal inputs (input divided by land area) being smaller than in Estonia and Finland. The changes in nutrient inputs into the GOF are largely due to the changes in Russian inputs, and in particular changes in the nutrient fluxes of the River Neva. The latest available flow-normalised data showed that N export decreased slightly from 1994 to 2010, while flow-normalised P export had clearly decreased by 2010. The P input ending up in the GOF as a whole has decreased significantly over the past 10 years as a result of the re-construction of wastewater treatment infrastructure in St Petersburg and following control of a P leak at the Phosphorit factory in 2012. This measure also explains the steep decrease in riverine P export during recent years. Further reduction of inputs to meet the ambitious nutrient reduction goals of HELCOM and of WFD seems to be a challenge for Finland and Estonia in particular. Russia appears to have already reached approximately 90% of the BSAP's reduction target, with fulfilment of the remainder

  13. Digital data used to relate nutrient inputs to water quality in the Chesapeake Bay watershed

    Science.gov (United States)

    Brakebill, John W.; Preston, Stephen D.

    1999-01-01

    Digital data sets were compiled by the U. S. Geological Survey (USGS) and used as input for a collection of Spatially Referenced Regressions On Watershed attributes for the Chesapeake Bay region. These regressions relate streamwater loads to nutrient sources and the factors that affect the transport of these nutrients throughout the watershed. A digital segmented network based on watershed boundaries serves as the primary foundation for spatially referencing total nitrogen and total phosphorus source and land-surface characteristic data sets within a Geographic Information System. Digital data sets of atmospheric wet deposition of nitrate, point-source discharge locations, land cover, and agricultural sources such as fertilizer and manure were created and compiled from numerous sources and represent nitrogen and phosphorus inputs. Some land-surface characteristics representing factors that affect the transport of nutrients include land use, land cover, average annual precipitation and temperature, slope, and soil permeability. Nutrient input and land-surface characteristic data sets merged with the segmented watershed network provide the spatial detail by watershed segment required by the models. Nutrient stream loads were estimated for total nitrogen, total phosphorus, nitrate/nitrite, amonium, phosphate, and total suspended soilds at as many as 109 sites within the Chesapeake Bay watershed. The total nitrogen and total phosphorus load estimates are the dependent variables for the regressions and were used for model calibration. Other nutrient-load estimates may be used for calibration in future applications of the models.

  14. Radium tracing nutrient inputs through submarine groundwater discharge in the global ocean.

    Science.gov (United States)

    Cho, Hyung-Mi; Kim, Guebuem; Kwon, Eun Young; Moosdorf, Nils; Garcia-Orellana, Jordi; Santos, Isaac R

    2018-02-05

    Riverine and atmospheric inputs are often considered as the main terrestrial sources of dissolved inorganic nitrogen (DIN), phosphorus (DIP), and silicon (DSi) in the ocean. However, the fluxes of nutrients via submarine groundwater discharge (SGD) often exceed riverine inputs in different local and regional scale settings. In this study, we provide a first approximation of global nutrient fluxes to the ocean via total SGD, including pore water fluxes, by combining a global compilation of nutrient concentrations in groundwater and the SGD-derived 228 Ra fluxes. In order to avoid overestimations in calculating SGD-derived nutrient fluxes, the endmember value of nutrients in global groundwater was chosen from saline groundwater samples (salinity >10) which showed relatively lower values over all regions. The results show that the total SGD-derived fluxes of DIN, DIP, and DSi could be approximately 1.4-, 1.6-, and 0.7-fold of the river fluxes to the global ocean (Indo-Pacific and Atlantic Oceans), respectively. Although significant portions of these SGD-derived nutrient fluxes are thought to be recycled within sediment-aquifer systems over various timescales, SGD-derived nutrient fluxes should be included in the global ocean budget in order to better understand dynamic interactions at the land-ocean interface.

  15. Land cover models to predict non-point nutrient inputs for selected ...

    African Journals Online (AJOL)

    WQSAM is a practical water quality model for use in guiding southern African water quality management. However, the estimation of non-point nutrient inputs within WQSAM is uncertain, as it is achieved through a combination of calibration and expert knowledge. Non-point source loads can be correlated to particular land ...

  16. Influence of nutrient input on the trophic state of a tropical brackish ...

    Indian Academy of Sciences (India)

    The lagoon showed both spatial and temporal variation in nutrient concentration, mostly altered by fresh-water input, regulated the chlorophyll distribution as well. Dissolved inorganic N:P ratio in the lagoon showed nitrogen limitation in May and December, 2011. Chlorophyll in the lagoon varied between 3.38 and 17.66 mg ...

  17. Food inputs, water quality and nutrient accumulation in integrated pond systems: A multivariate approach

    NARCIS (Netherlands)

    Nhan, D.K.; Milstein, A.; Verdegem, M.C.J.; Verreth, J.A.J.

    2006-01-01

    A participatory on-farm study was conducted to explore the effects of food input patterns on water quality and sediment nutrient accumulation in ponds, and to identify different types of integrated pond systems. Ten integrated agriculture-aquaculture (IAA) farms, in which ponds associate with fruit

  18. Summer inputs of riverine nutrients to the Baltic Sea: Bioavailability and eutrophication relevance

    DEFF Research Database (Denmark)

    Stepanauskas, R.; Jørgensen, N.O.G.; Eigaard, Ole Ritzau

    2002-01-01

    of the Baltic Sea watershed, with respect to summer concentrations, chemical composition, and biological availability of N and P. The broad spectrum of rivers studied enabled us to assess whether the input of terrigenous organic matter can be an important nutrient source, at various levels of anthropogenic...

  19. Fresh meteoric versus recirculated saline groundwater nutrient inputs into a subtropical estuary

    International Nuclear Information System (INIS)

    Sadat-Noori, Mahmood; Santos, Isaac R.; Tait, Douglas R.; Maher, Damien T.

    2016-01-01

    The role of groundwater in transporting nutrients to coastal aquatic systems has recently received considerable attention. However, the relative importance of fresh versus saline groundwater-derived nutrient inputs to estuaries and how these groundwater pathways may alter surface water N:P ratios remains poorly constrained. We performed detailed time series measurements of nutrients in a tidal estuary (Hat Head, NSW, Australia) and used radium to quantify the contribution of fresh and saline groundwater to total surface water estuarine exports under contrasting hydrological conditions (wet and dry season). Tidally integrated nutrient fluxes showed that the estuary was a source of nutrients to the coastal waters. Dissolved inorganic nitrogen (DIN) export was 7-fold higher than the average global areal flux rate for rivers likely due to the small catchment size, surrounding wetlands and high groundwater inputs. Fresh groundwater discharge was dominant in the wet season accounting for up to 45% of total dissolved nitrogen (TDN) and 48% of total dissolved phosphorus (TDP) estuarine exports. In the dry season, fresh and saline groundwater accounted for 21 and 33% of TDN export, respectively. The combined fresh and saline groundwater fluxes of NO 3 , PO 4 , NH 4 , DON, DOP, TDN and TDP were estimated to account for 66, 58, 55, 31, 21, 53 and 47% of surface water exports, respectively. Groundwater-derived nitrogen inputs to the estuary were responsible for a change in the surface water N:P ratio from typical N-limiting conditions to P-limiting as predicted by previous studies. This shows the importance of both fresh and saline groundwater as a source of nutrients for coastal productivity and nutrient budgets of coastal waters. - Highlights: • Groundwater TDN and TDP fluxes account for 53 and 47% of surface water exports. • The estuary DIN export was 7-fold higher than the average global areal flux. • Fresh GW nutrient input dominated the wet season and saline GW the

  20. Fresh meteoric versus recirculated saline groundwater nutrient inputs into a subtropical estuary

    Energy Technology Data Exchange (ETDEWEB)

    Sadat-Noori, Mahmood, E-mail: mahmood.sadat-noori@scu.edu.au [National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW (Australia); School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW (Australia); Santos, Isaac R. [National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW (Australia); Tait, Douglas R. [National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW (Australia); School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW (Australia); Maher, Damien T. [School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW (Australia)

    2016-10-01

    The role of groundwater in transporting nutrients to coastal aquatic systems has recently received considerable attention. However, the relative importance of fresh versus saline groundwater-derived nutrient inputs to estuaries and how these groundwater pathways may alter surface water N:P ratios remains poorly constrained. We performed detailed time series measurements of nutrients in a tidal estuary (Hat Head, NSW, Australia) and used radium to quantify the contribution of fresh and saline groundwater to total surface water estuarine exports under contrasting hydrological conditions (wet and dry season). Tidally integrated nutrient fluxes showed that the estuary was a source of nutrients to the coastal waters. Dissolved inorganic nitrogen (DIN) export was 7-fold higher than the average global areal flux rate for rivers likely due to the small catchment size, surrounding wetlands and high groundwater inputs. Fresh groundwater discharge was dominant in the wet season accounting for up to 45% of total dissolved nitrogen (TDN) and 48% of total dissolved phosphorus (TDP) estuarine exports. In the dry season, fresh and saline groundwater accounted for 21 and 33% of TDN export, respectively. The combined fresh and saline groundwater fluxes of NO{sub 3}, PO{sub 4}, NH{sub 4}, DON, DOP, TDN and TDP were estimated to account for 66, 58, 55, 31, 21, 53 and 47% of surface water exports, respectively. Groundwater-derived nitrogen inputs to the estuary were responsible for a change in the surface water N:P ratio from typical N-limiting conditions to P-limiting as predicted by previous studies. This shows the importance of both fresh and saline groundwater as a source of nutrients for coastal productivity and nutrient budgets of coastal waters. - Highlights: • Groundwater TDN and TDP fluxes account for 53 and 47% of surface water exports. • The estuary DIN export was 7-fold higher than the average global areal flux. • Fresh GW nutrient input dominated the wet season and

  1. Nutrient and organic matter inputs to Hawaiian anchialine ponds: influences of n-fixing and non-n-fixing trees

    Science.gov (United States)

    Kehauwealani K. Nelson-Kaula; Rebecca Ostertag; R. Flint Hughes; Bruce D. Dudley

    2016-01-01

    Invasive nitrogen-fixing plants often increase energy and nutrient inputs to both terrestrial and aquatic ecosystems via litterfall, and these effects may be more pronounced in areas lacking native N2-fixers. We examined organic matter and nutrient inputs to and around anchialine ponds...

  2. Nutrient inputs through submarine groundwater discharge in an embayment: A radon investigation in Daya Bay, China

    Science.gov (United States)

    Wang, Xuejing; Li, Hailong; Yang, Jinzhong; Zheng, Chunmiao; Zhang, Yan; An, An; Zhang, Meng; Xiao, Kai

    2017-08-01

    Daya Bay, a semi-closed bay of the South China Sea, is famous for its aquaculture, agriculture and tourism. Although routine environmental investigations in the bay have been conducted since the early 1980s, evaluations of submarine groundwater discharge (SGD), an important process in exchange between groundwater and coastal seawater, and its environmental impacts have never been reported. In this study, naturally occurring radon isotope (222Rn) was measured continuously at two sites (north-west and middle-east sites) and used as a tracer to estimate SGD and associated nutrient inputs into the bay. The SGD rates estimated based on the 222Rn mass balance model were, on average, 28.2 cm/d at north-west site and 30.9 cm/d at middle-east site. The large SGD rate at middle-east site may be due to the large tidal amplitude and the sandy component with high permeability in sediments. The SGD-driven nutrient fluxes, which were calculated as the product of SGD flux and the difference of nutrient concentrations between coastal groundwater and seawater, were 3.28 × 105 mol/d for dissolved nitrates (NO3-N), 5.84 × 103 mol/d for dissolved inorganic phosphorous (DIP), and 8.97 × 105 mol/d for reactive silicate (Si). These nutrient inputs are comparable to or even higher than those supplied by local rivers. In addition, these SGD-driven nutrients have a nitrogen-phosphorous ratio as high as ∼43, which may significantly affect the ecology of coastal waters and lead to frequent occurrence of harmful algal blooms.

  3. An RF input coupler for a superconducting single cell cavity

    International Nuclear Information System (INIS)

    Fechner, B.; Ouchi, Nobuo; Kusano, Joichi; Mizumoto, Motoharu; Mukugi, Ken; Krawczyk, F.

    1999-03-01

    Japan Atomic Energy Research Institute proposes a high intensity proton accelerator for the Neutron Science Project. A superconducting linac is a main option for the high energy part of the accelerator. Design and development work for the superconducting accelerating cavities (resonant frequency of 600 MHz) is in progress. Superconducting cavities have an advantage of very high accelerating efficiency because RF wall loss is very small and much of the RF power fed to the cavity is consumed for the beam acceleration. On the other hand, an RF input coupler for the superconducting cavity has to be matched to the beam loading. Therefore, estimation of coupling coefficient or external quality factor (Qext) of the RF input coupler is important for the design of the couplers. In this work, Qext's were calculated by the electromagnetic analysis code (MAFIA) and were compared with those by the measurements. A β (ratio of the particle velocity to the light velocity) = 0.5 single-cell cavity with either axial coupler or side coupler was used in this work. In the experiments, a model cavity made by copper is applied. Both 2- and 3-dimensional calculations were performed in the axial coupler geometry and the results were compared. The agreements between calculated and measured values are good and this method for calculation of Qext is confirmed to be proper for the design of the RF input couplers. (author)

  4. Assessing sustainability of low-external-input farm management systems with the nutrient monitoring approach: a case study in Kenya

    NARCIS (Netherlands)

    Jager, de A.; Onduru, D.; Wijk, van M.S.; Vlaming, J.; Gachini, G.N.

    2001-01-01

    In the search for Integrated Nutrient Management practices in response to the widely observed soil fertility decline in Sub-Saharan Africa, the potential of low-external-input and organic farming remains to be systematically examined. The nutrient monitoring concept was used to assess the impact of

  5. LONG-TERM CHANGES IN WATERSHED NUTRIENT INPUTS AND RIVERINE EXPORTS IN THE NEUSE RIVER, NORTH CAROLINA. (U915590)

    Science.gov (United States)

    We compared patterns of historical watershed nutrient inputs with in-river nutrient loads for the Neuse River, NC. Basin-wide sources of both nitrogen and phosphorus have increased substantially during the past century, marked by a sharp increase in the last 10 years resulting...

  6. The MARINA model (Model to Assess River Inputs of Nutrients to seAs): Model description and results for China.

    Science.gov (United States)

    Strokal, Maryna; Kroeze, Carolien; Wang, Mengru; Bai, Zhaohai; Ma, Lin

    2016-08-15

    Chinese agriculture has been developing fast towards industrial food production systems that discharge nutrient-rich wastewater into rivers. As a result, nutrient export by rivers has been increasing, resulting in coastal water pollution. We developed a Model to Assess River Inputs of Nutrients to seAs (MARINA) for China. The MARINA Nutrient Model quantifies river export of nutrients by source at the sub-basin scale as a function of human activities on land. MARINA is a downscaled version for China of the Global NEWS-2 (Nutrient Export from WaterSheds) model with an improved approach for nutrient losses from animal production and population. We use the model to quantify dissolved inorganic and organic nitrogen (N) and phosphorus (P) export by six large rivers draining into the Bohai Gulf (Yellow, Hai, Liao), Yellow Sea (Yangtze, Huai) and South China Sea (Pearl) in 1970, 2000 and 2050. We addressed uncertainties in the MARINA Nutrient model. Between 1970 and 2000 river export of dissolved N and P increased by a factor of 2-8 depending on sea and nutrient form. Thus, the risk for coastal eutrophication increased. Direct losses of manure to rivers contribute to 60-78% of nutrient inputs to the Bohai Gulf and 20-74% of nutrient inputs to the other seas in 2000. Sewage is an important source of dissolved inorganic P, and synthetic fertilizers of dissolved inorganic N. Over half of the nutrients exported by the Yangtze and Pearl rivers originated from human activities in downstream and middlestream sub-basins. The Yellow River exported up to 70% of dissolved inorganic N and P from downstream sub-basins and of dissolved organic N and P from middlestream sub-basins. Rivers draining into the Bohai Gulf are drier, and thus transport fewer nutrients. For the future we calculate further increases in river export of nutrients. The MARINA Nutrient model quantifies the main sources of coastal water pollution for sub-basins. This information can contribute to formulation of

  7. Nutrient input influences fungal community composition and size and can stimulate manganese (II) oxidation in caves.

    Science.gov (United States)

    Carmichael, Sarah K; Zorn, Bryan T; Santelli, Cara M; Roble, Leigh A; Carmichael, Mary J; Bräuer, Suzanna L

    2015-08-01

    Little is known about the fungal role in biogeochemical cycling in oligotrophic ecosystems. This study compared fungal communities and assessed the role of exogenous carbon on microbial community structure and function in two southern Appalachian caves: an anthropogenically impacted cave and a near-pristine cave. Due to carbon input from shallow soils, the anthropogenically impacted cave had an order of magnitude greater fungal and bacterial quantitative-polymerase chain reaction (qPCR) gene copy numbers, had significantly greater community diversity, and was dominated by ascomycotal phylotypes common in early phase, labile organic matter decomposition. Fungal assemblages in the near-pristine cave samples were dominated by Basidiomycota typically found in deeper soils (and/or in late phase, recalcitrant organic matter decomposition), suggesting more oligotrophic conditions. In situ carbon and manganese (II) [Mn(II)] addition over 10 weeks resulted in growth of fungal mycelia followed by increased Mn(II) oxidation. A before/after comparison of the fungal communities indicated that this enrichment increased the quantity of fungal and bacterial cells, yet decreased overall fungal diversity. Anthropogenic carbon sources can therefore dramatically influence the diversity and quantity of fungi, impact microbial community function, and stimulate Mn(II) oxidation, resulting in a cascade of changes that can strongly influence nutrient and trace element biogeochemical cycles in karst aquifers. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Effect of enhanced nitrogen input on release of nutrients and nutrient availability in stands of tall fern Athyrium distentifolium

    Science.gov (United States)

    Tå¯Ma, Ivan; Holuib, Petr; Záhora, Jaroslav; Fiala, Karel

    2010-05-01

    Improved light conditions, after destruction of tree canopy, soil acidification and increased nitrogen availability, support intensive spreading of acidophilous perennial grasses and stands of tall fern (Athyrium distentifolium) on deforested sites in the Moravian-Silesian Beskydy Mts. (the Czech Republic). The aim of the study was to determine how higher inputs of nitrogen affect the release of nutrients during decomposition processes of fern litter. The experimental site was chosen on a southwest-facing slope of the Kněhyně Mt. (49o31´ N, 18o 32´E, 1170 m a.s.l.) in the Moravian-Silesin Beskydy Mts. in the Czech Republic. The area is characterized by an annual mean air temperature of 5.6 oC and annual precipitation of 1110 mm. A large fern stand was divided in four blocks (5x3 m) and on two of them higher doses of nitrogen were applied (50 kgN/ha in five doses in the course of the growing season). Similarly, mesh-bags with fresh natural litter of fern were used to determine rate of litter decomposition during one year. Samples were inserted in both nitrogen treated and untreated fern stands in autumn 2006 and 2007 collected in autumn 2007 and 2008. On the basis of litter amount estimated at the start and at the end of exposure and of actual content of minerals in original and exposed litter, the release and/or accumulation of minerals during decomposition were calculated. The availability (more or less in the case of ammonia-nitrogen) and movement of percolated nitrogen (mainly in the case of nitrate-nitrogen) was estimated in situ by the trapping of mineral N into the ion exchange resin (IER) inserted into special cover. The decomposition rate of native A. distentifolium litter was approximately the same (29-30 %) at both nitrogen availability, however the element release from decomposed litter was higher for N, P and Ca in both years and for K and Mg in the first year as well. However, decomposition rate of cellulose was two times greater in fern stands

  9. Soil Fertility and Electrical Conductivity Affected by Organic Waste Rates and Nutrient Inputs

    Directory of Open Access Journals (Sweden)

    Davi Lopes do Carmo

    2016-01-01

    Full Text Available ABSTRACT The composition of organic waste (OW and its effect on soil processes may change soil fertility and electrical conductivity (EC. The side effects of waste use in crop fertilization are poorly understood for Brazilian soils. This study examined the effect of the addition of 15 different organic wastes to Oxisols and a Neosol on pH, base saturation, EC, cation exchange capacity (CEC at pH 7, and the availability of Al, macro (P, K, Ca2+, Mg2+ and S and micronutrients (B, Fe2+, Mn2+, Cu2+ and Zn2+. Soil samples (150 g were treated with chicken, pig, horse, cattle, and quail manures, sewage sludge 1 and 2, eucalyptus sawdust, plant substrate, coconut fiber, pine bark, coffee husk, peat, limed compost, and biochar. Wastes were added considering a fixed amount of C (2 g kg-1, which resulted in waste rates ranging from 2.5 to 25.6 Mg ha-1. The soil-waste mixtures were incubated for 330 days in laboratory conditions. The waste liming or acidification values were soil-dependent. The use of some manures and compost increased the pH to levels above of those considered adequate for plant growth. The soil EC was slightly increased in the Neosol and in the medium textured Oxisol, but it was sharply changed (from 195 to 394 µS cm-1 by the addition of organic wastes in the clayey Oxisol, although the EC values were below the range considered safe for plant growth. Changes in the soil availability of P, K+, Ca2+ and Zn2+ were highly related to the inputs of these nutrients by the wastes, and other factors in soil changed due to waste use. Organic waste use simultaneously affects different soil fertility attributes; thus, in addition to the target nutrient added to the soil, the soil acidity buffering capacity and the waste liming and agronomic value must be taken into account in the waste rate definition.

  10. Atmospheric nutrient inputs to the northern levantine basin from a long-term observation: sources and comparison with riverine inputs

    Directory of Open Access Journals (Sweden)

    M. Koçak

    2010-12-01

    Full Text Available Aerosol and rainwater samples have been collected at a rural site located on the coastline of the Eastern Mediterranean, Erdemli, Turkey between January 1999 and December 2007. Riverine sampling was carried out at five Rivers (Ceyhan, Seyhan, Göksu, Berdan and Lamas draining into the Northeastern Levantine Basin (NLB between March 2002 and July 2007. Samples have been analyzed for macronutrients of phosphate, silicate, nitrate and ammonium (PO43−, Sidiss, NO3 and NH4+. Phosphate and silicate in aerosol and rainwater showed higher and larger variations during the transitional period when air flows predominantly originate from North Africa and Middle East/Arabian Peninsula. Deficiency of alkaline material have been found to be the main reason of the acidic rain events whilst high pH values (>7 have been associated with high Sidiss concentrations due to sporadic dust events. In general, lowest nitrate and ammonium concentrations in aerosol and rainwater have been associated with air flow from the Mediterranean Sea. Comparison of atmospheric with riverine fluxes demonstrated that DIN and PO43− fluxes to NLB have been dominated by atmosphere (~90% and ~60% respectively whereas the input of Si was mainly derived from riverine runoff (~90%. N/P ratios in the atmospheric deposition (233; riverine discharge (28 revealed that NLB receives excessive amounts of DIN and this unbalanced P and N inputs may provoke even more phosphorus deficiency. Observed molar Si/N ratio suggested Si limitation relative to nitrogen might cause a switch from diatom dominated communities to non-siliceous populations particularly at coastal NLB.

  11. Fatal attraction: vegetation responses to nutrient inputs attract herbivores to infectious anthrax carcass sites.

    Science.gov (United States)

    Turner, Wendy C; Kausrud, Kyrre L; Krishnappa, Yathin S; Cromsigt, Joris P G M; Ganz, Holly H; Mapaure, Isaac; Cloete, Claudine C; Havarua, Zepee; Küsters, Martina; Getz, Wayne M; Stenseth, Nils Chr

    2014-11-22

    Parasites can shape the foraging behaviour of their hosts through cues indicating risk of infection. When cues for risk co-occur with desired traits such as forage quality, individuals face a trade-off between nutrient acquisition and parasite exposure. We evaluated how this trade-off may influence disease transmission in a 3-year experimental study of anthrax in a guild of mammalian herbivores in Etosha National Park, Namibia. At plains zebra (Equus quagga) carcass sites we assessed (i) carcass nutrient effects on soils and grasses, (ii) concentrations of Bacillus anthracis (BA) on grasses and in soils, and (iii) herbivore grazing behaviour, compared with control sites, using motion-sensing camera traps. We found that carcass-mediated nutrient pulses improved soil and vegetation, and that BA is found on grasses up to 2 years after death. Host foraging responses to carcass sites shifted from avoidance to attraction, and ultimately to no preference, with the strength and duration of these behavioural responses varying among herbivore species. Our results demonstrate that animal carcasses alter the environment and attract grazing hosts to parasite aggregations. This attraction may enhance transmission rates, suggesting that hosts are limited in their ability to trade off nutrient intake with parasite avoidance when relying on indirect cues. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. Nutrient and Fecal Indicator Bacteria Inputs from Submarine Groundwater Discharge on the North Shore of Kauai

    Science.gov (United States)

    Knee, K.; Boehm, A.; Paytan, A.

    2006-12-01

    Submarine groundwater discharge (SGD) is a potentially important source of freshwater, nutrients, and pollution to the coastal ocean, yet it has not been well quantified for most locations. This poster investigates the impacts of SGD in Hanalei Bay, Ha'ena, and Princeville, three locations on the north shore of Kaua'i, Hawai'i, during two sampling trips conducted in March 2005 and August 2006. The short-lived isotopes of radium, 223Ra and 224Ra, were used to calculate the flux of groundwater into the coastal ocean in these areas. Nutrient concentrations and levels of total coliform bacteria, E. coli, and Enterococcus were measured in groundwater, the nearshore ocean, rivers, and streams. Fluxes of nutrients and bacteria associated with groundwater discharge were estimated. The results indicate that nutrient subsidies to the nearshore ocean from SGD may be comparable to those from rivers and streams, and that FIB subsidies may also be significant in some areas. More sampling is necessary to assess seasonal variability, which may be significant.

  13. Effect of variable annual precipitation and nutrient input on nitrogen and phosphorus transport from two Midwestern agricultural watersheds

    Science.gov (United States)

    Kalkhoff, Stephen J.; Hubbard, Laura E.; Tomer, Mark D.; James, D.E.

    2016-01-01

    Precipitation patterns and nutrient inputs affect transport of nitrate (NO3-N) and phosphorus (TP) from Midwest watersheds. Nutrient concentrations and yields from two subsurface-drained watersheds, the Little Cobb River (LCR) in southern Minnesota and the South Fork Iowa River (SFIR) in northern Iowa, were evaluated during 1996–2007 to document relative differences in timings and amounts of nutrients transported. Both watersheds are located in the prairie pothole region, but the SFIR exhibits a longer growing season and more livestock production. The SFIR yielded significantly more NO3-N than the LCR watershed (31.2 versus 21.3 kg NO3-N ha− 1 y− 1). The SFIR watershed also yielded more TP than the LCR watershed (1.13 versus 0.51 kg TP ha− 1 yr− 1), despite greater TP concentrations in the LCR. About 65% of NO3-N and 50% of TP loads were transported during April–June, and < 20% of the annual loads were transported later in the growing season from July–September. Monthly NO3-N and TP loads peaked in April from the LCR but peaked in June from the SFIR; this difference was attributed to greater snowmelt runoff in the LCR. The annual NO3-N yield increased with increasing annual runoff at a similar rate in both watersheds, but the LCR watershed yielded less annual NO3-N than the SFIR for a similar annual runoff. These two watersheds are within 150 km of one another and have similar dominant agricultural systems, but differences in climate and cropping inputs affected amounts and timing of nutrient transport.

  14. Development of NUPREP PC Version and Input Structures for NUCIRC Single Channel Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Churl; Jun, Ji Su; Park, Joo Hwan

    2007-12-15

    The input file for a steady-state thermal-hydraulic code NUCIRC consists of common channel input data and specific channel input data in a case of single channel analysis. Even when all the data is ready for the 380 channels' single channel analyses, it takes long time and requires enormous effort to compose an input file by hand-editing. The automatic pre-processor for this tedious job is a NUPREP code. In this study, a NUPREP PC version has been developed from the source list in the program manual of NUCIRC-MOD2.000 that is imported in a form of an execution file. In this procedure, some errors found in PC executions and lost statements are fixed accordingly. It is confirmed that the developed NUPREP code produces input file correctly for the CANDU-6 single channel analysis. Additionally, the NUCIRC input structure and data format are summarized for a single channel analysis and the input CARDs required for the creep information of aged channels are listed.

  15. Development of NUPREP PC Version and Input Structures for NUCIRC Single Channel Analyses

    International Nuclear Information System (INIS)

    Yoon, Churl; Jun, Ji Su; Park, Joo Hwan

    2007-12-01

    The input file for a steady-state thermal-hydraulic code NUCIRC consists of common channel input data and specific channel input data in a case of single channel analysis. Even when all the data is ready for the 380 channels' single channel analyses, it takes long time and requires enormous effort to compose an input file by hand-editing. The automatic pre-processor for this tedious job is a NUPREP code. In this study, a NUPREP PC version has been developed from the source list in the program manual of NUCIRC-MOD2.000 that is imported in a form of an execution file. In this procedure, some errors found in PC executions and lost statements are fixed accordingly. It is confirmed that the developed NUPREP code produces input file correctly for the CANDU-6 single channel analysis. Additionally, the NUCIRC input structure and data format are summarized for a single channel analysis and the input CARDs required for the creep information of aged channels are listed

  16. Hydro-climatic dominated on long-term input-output nutrient budget of subtropical forest ecosystem

    Science.gov (United States)

    Chang, C. T.; Wang, C. P.; Huang, J. C.; Lin, T. C.

    2016-12-01

    Two-decadal budget of atmospheric deposition (input) and streamwater export (output) from 1994 to 2013 were collected in a subtropical forest at northeastern Taiwan. There were significant decline trends of summer SO42- and NO3- fluxes (June-August), but not for the winter. With the identifications of possible sources of air pollutants from atmospheric backward trajectories model and local air quality observations, the declining of sulfate and nitrate in the summer was possibly due to decreases of local emissions of SO2 and NOx. In contrast, the non-declining long-range transport of acid species might contribute a large portion of the acid deposition in the winter and led to the lack of significant declining trends of SO42- and NO3- fluxes. The results suggest that long-range transport of acidic pollutants could be a threat to forest ecosystems in the region. The two-decadal budget also revealed that both input and output of ions were positively correlated with water quantity, indicating strong hydro-climatic dominated the input-output nutrient cycling. Especially for the greater ions export via stream water during the wet summer growing season, which is noticeably contrast to the paradigm of biological control resulting in low ions export during the growing season. Our study is of significant implication under the trends of warming climate because global climate change could directly affect biogeochemical cycles particularly in the tropical/subtropical ecosystems through amplifying the seasonal precipitation.

  17. Learning transitive verbs from single-word verbs in the input by young children acquiring English.

    Science.gov (United States)

    Ninio, Anat

    2016-09-01

    The environmental context of verbs addressed by adults to young children is claimed to be uninformative regarding the verbs' meaning, yielding the Syntactic Bootstrapping Hypothesis that, for verb learning, full sentences are needed to demonstrate the semantic arguments of verbs. However, reanalysis of Gleitman's (1990) original data regarding input to a blind child revealed the context of single-word parental verbs to be more transparent than that of sentences. We tested the hypothesis that English-speaking children learn their early verbs from parents' single-word utterances. Distribution of single-word transitive verbs produced by a large sample of young children was strongly predicted by the relative token frequency of verbs in parental single-word utterances, but multiword sentences had no predictive value. Analysis of the interactive context showed that objects of verbs are retrievable by pragmatic inference, as is the meaning of the verbs. Single-word input appears optimal for learning an initial vocabulary of verbs.

  18. Agricultural conversion without external water and nutrient inputs reduces terrestrial vegetation productivity

    Science.gov (United States)

    Smith, W. Kolby; Cleveland, Cory C.; Reed, Sasha C.; Running, Steven W.

    2014-01-01

    Driven by global population and standard of living increases, humanity co-opts a growing share of the planet's natural resources resulting in many well-known environmental trade-offs. In this study, we explored the impact of agriculture on a resource fundamental to life on Earth: terrestrial vegetation growth (net primary production; NPP). We demonstrate that agricultural conversion has reduced terrestrial NPP by ~7.0%. Increases in NPP due to agricultural conversion were observed only in areas receiving external inputs (i.e., irrigation and/or fertilization). NPP reductions were found for ~88% of agricultural lands, with the largest reductions observed in areas formerly occupied by tropical forests and savannas (~71% and ~66% reductions, respectively). Without policies that explicitly consider the impact of agricultural conversion on primary production, future demand-driven increases in agricultural output will likely continue to drive net declines in global terrestrial productivity, with potential detrimental consequences for net ecosystem carbon storage and subsequent climate warming.

  19. Modeling of the impact of Rhone River nutrient inputs on the dynamics of planktonic diversity

    Science.gov (United States)

    Alekseenko, Elena; Baklouti, Melika; Garreau, Pierre; Guyennon, Arnaud; Carlotti, François

    2014-05-01

    conditions (for which the sea surface layer is well mixed). As a first step, these scenarios will allow to investigate the impact of changes in the N:P ratios of the Rhone River on the structure of the planktonic community at short time scale (two years). Acknowledgements The present research is a contribution to the Labex OT-Med (n° ANR-11-LABX-0061) funded by the French Government «Investissements d'Avenir» program of the French National Research Agency (ANR) through the A*MIDEX project (n° ANR-11-IDEX-0001-02). We thank our collegue P. Raimbault for the access to the MOOSE project dataset about the nutrient composition of the Rhone River . References Alekseenko E., Raybaud V., Espinasse B., Carlotti F., Queguiner B., Thouvenin B., Garreau P., Baklouti M. (2014) Seasonal dynamics and stoichiometry of the planktonic community in the NW Mediterranean Sea: a 3D modeling approach. Ocean Dynamics IN PRESS. http://dx.doi.org/10.1007/s10236-013-0669-2 Baklouti M, Diaz F, Pinazo C, Faure V, Quequiner B (2006a) Investigation of mechanistic formulations depicting phytoplankton dynamics for models of marine pelagic ecosystems and description of a new model. Prog Oceanogr 71:1-33 Baklouti M, Faure V, Pawlowski L, Sciandra A (2006b) Investigation and sensitivity analysis of a mechanistic phytoplankton model implemented in a new modular tool (Eco3M) dedicated to biogeochemical modelling. Prog Oceanogr 71:34-58 Lazure P, Dumas F (2008) An external-internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv Water Resour 31(2):233-250 Ludwig, W., Dumont, E., Meybeck, M., Heussner, S. (2009). River discharges of water and nutrients to the Mediterranean and Black Sea: Major drivers for ecosystem changes during past and future decades? Progress in Oceanography 80, pp. 199-217 Malanotte-Rizoli, P. and Pan-Med Group. (2012) Physical forcing and physical/biochemical variability of the Mediterranean Sea : A review of unresolved issues and directions of

  20. Graphical user interface for input output characterization of single variable and multivariable highly nonlinear systems

    Directory of Open Access Journals (Sweden)

    Shahrukh Adnan Khan M. D.

    2017-01-01

    Full Text Available This paper presents a Graphical User Interface (GUI software utility for the input/output characterization of single variable and multivariable nonlinear systems by obtaining the sinusoidal input describing function (SIDF of the plant. The software utility is developed on MATLAB R2011a environment. The developed GUI holds no restriction on the nonlinearity type, arrangement and system order; provided that output(s of the system is obtainable either though simulation or experiments. An insight to the GUI and its features are presented in this paper and example problems from both single variable and multivariable cases are demonstrated. The formulation of input/output behavior of the system is discussed and the nucleus of the MATLAB command underlying the user interface has been outlined. Some of the industries that would benefit from this software utility includes but not limited to aerospace, defense technology, robotics and automotive.

  1. Minimum Symbol Error Rate Detection in Single-Input Multiple-Output Channels with Markov Noise

    DEFF Research Database (Denmark)

    Christensen, Lars P.B.

    2005-01-01

    Minimum symbol error rate detection in Single-Input Multiple- Output(SIMO) channels with Markov noise is presented. The special case of zero-mean Gauss-Markov noise is examined closer as it only requires knowledge of the second-order moments. In this special case, it is shown that optimal detection...

  2. Single freeform surface design for prescribed input wavefront and target irradiance.

    Science.gov (United States)

    Bösel, Christoph; Gross, Herbert

    2017-09-01

    In beam shaping applications, the minimization of the number of necessary optical elements for the beam shaping process can benefit the compactness of the optical system and reduce its cost. The single freeform surface design for input wavefronts, which are neither planar nor spherical, is therefore of interest. In this work, the design of single freeform surfaces for a given zero-étendue source and complex target irradiances is investigated. Hence, not only collimated input beams or point sources are assumed. Instead, a predefined input ray direction vector field and irradiance distribution on a source plane, which has to be redistributed by a single freeform surface to give the predefined target irradiance, is considered. To solve this design problem, a partial differential equation (PDE) or PDE system, respectively, for the unknown surface and its corresponding ray mapping is derived from energy conservation and the ray-tracing equations. In contrast to former PDE formulations of the single freeform design problem, the derived PDE of Monge-Ampère type is formulated for general zero-étendue sources in Cartesian coordinates. The PDE system is discretized with finite differences, and the resulting nonlinear equation system is solved by a root-finding algorithm. The basis of the efficient solution of the PDE system builds the introduction of an initial iterate construction approach for a given input direction vector field, which uses optimal mass transport with a quadratic cost function. After a detailed description of the numerical algorithm, the efficiency of the design method is demonstrated by applying it to several design examples. This includes the redistribution of a collimated input beam beyond the paraxial approximation, the shaping of point source radiation, and the shaping of an astigmatic input wavefront into a complex target irradiance distribution.

  3. Differential response of carbon cycling to long-term nutrient input and altered hydrological conditions in a continental Canadian peatland

    Science.gov (United States)

    Berger, Sina; Praetzel, Leandra S. E.; Goebel, Marie; Blodau, Christian; Knorr, Klaus-Holger

    2018-02-01

    Peatlands play an important role in global carbon cycling, but their responses to long-term anthropogenically changed hydrologic conditions and nutrient infiltration are not well known. While experimental manipulation studies, e.g., fertilization or water table manipulations, exist on the plot scale, only few studies have addressed such factors under in situ conditions. Therefore, an ecological gradient from the center to the periphery of a continental Canadian peatland bordering a eutrophic water reservoir, as reflected by increasing nutrient input, enhanced water level fluctuations, and increasing coverage of vascular plants, was used for a case study of carbon cycling along a sequence of four differently altered sites. We monitored carbon dioxide (CO2) and methane (CH4) surface fluxes and dissolved inorganic carbon (DIC) and CH4 concentrations in peat profiles from April 2014 through September 2015. Moreover, we studied bulk peat and pore-water quality and we applied δ13C-CH4 and δ13C-CO2 stable isotope abundance analyses to examine dominant CH4 production and emission pathways during the growing season of 2015. We observed differential responses of carbon cycling at the four sites, presumably driven by abundances of plant functional types and vicinity to the reservoir. A shrub-dominated site in close vicinity to the reservoir was a comparably weak sink for CO2 (in 1.5 years: -1093 ± 794, in 1 year: +135 ± 281 g CO2 m-2; a net release) as compared to two graminoid-moss-dominated sites and a moss-dominated site (in 1.5 years: -1552 to -2260 g CO2 m-2, in 1 year: -896 to -1282 g CO2 m-2). Also, the shrub-dominated site featured notably low DIC pore-water concentrations and comparably 13C-enriched CH4 (δ13C- CH4: -57.81 ± 7.03 ‰) and depleted CO2 (δ13C-CO2: -15.85 ± 3.61 ‰) in a more decomposed peat, suggesting a higher share of CH4 oxidation and differences in predominant methanogenic pathways. In comparison to all other sites, the graminoid

  4. Anthropogenic influences on the input and biogeochemical cycling of nutrients and mercury in Great Salt Lake, Utah, USA

    International Nuclear Information System (INIS)

    Naftz, David; Angeroth, Cory; Kenney, Terry; Waddell, Bruce; Darnall, Nathan; Silva, Steven; Perschon, Clay; Whitehead, John

    2008-01-01

    Despite the ecological and economic importance of Great Salt Lake (GSL), little is known about the input and biogeochemical cycling of nutrients and trace elements in the lake. In response to increasing public concern regarding anthropogenic inputs to the GSL ecosystem, the US Geological Survey (USGS) and US Fish and Wildlife Service (USFWS) initiated coordinated studies to quantify and evaluate the significance of nutrient and Hg inputs into GSL. A 6 per mille decrease in δ 15 N observed in brine shrimp (Artemia franciscana) samples collected from GSL during summer time periods is likely due to the consumption of cyanobacteria produced in freshwater bays entering the lake. Supporting data collected from the outflow of Farmington Bay indicates decreasing trends in δ 15 N in particulate organic matter (POM) during the mid-summer time period, reflective of increasing proportions of cyanobacteria in algae exported to GSL on a seasonal basis. The C:N molar ratio of POM in outflow from Farmington Bay decreases during the summer period, supportive of the increased activity of N fixation indicated by decreasing δ 15 N in brine shrimp and POM. Although N fixation is only taking place in the relatively freshwater inflows to GSL, data indicate that influx of fresh water influences large areas of the lake. Separation of GSL into two distinct hydrologic and geochemical systems from the construction of a railroad causeway in the late 1950s has created a persistent and widespread anoxic layer in the southern part of GSL. This anoxic layer, referred to as the deep brine layer (DBL), has high rates of SO 4 2- reduction, likely increasing the Hg methylation capacity. High concentrations of methyl mercury (CH 3 Hg) (median concentration = 24 ng/L) were observed in the DBL with a significant proportion (31-60%) of total Hg in the CH 3 Hg form. Hydroacoustic and sediment-trap evidence indicate that turbulence introduced by internal waves generated during sustained wind events can

  5. Anthropogenic influences on the input and biogeochemical cycling of nutrients and mercury in Great Salt Lake, Utah, USA

    Energy Technology Data Exchange (ETDEWEB)

    Naftz, David [US Geological Survey, Salt Lake City 84119, UT (United States)], E-mail: dlnaftz@usgs.gov; Angeroth, Cory; Kenney, Terry [US Geological Survey, Salt Lake City 84119, UT (United States); Waddell, Bruce; Darnall, Nathan [US Fish and Wildlife Service, Salt Lake City, UT (United States); Silva, Steven [US Geological Survey, Menlo Park, CA (United States); Perschon, Clay [Utah Division of Wildlife Resources, Salt Lake City, UT (United States); Whitehead, John [Utah Department of Environmental Quality, Salt Lake City, UT (United States)

    2008-06-15

    Despite the ecological and economic importance of Great Salt Lake (GSL), little is known about the input and biogeochemical cycling of nutrients and trace elements in the lake. In response to increasing public concern regarding anthropogenic inputs to the GSL ecosystem, the US Geological Survey (USGS) and US Fish and Wildlife Service (USFWS) initiated coordinated studies to quantify and evaluate the significance of nutrient and Hg inputs into GSL. A 6 per mille decrease in {delta}{sup 15}N observed in brine shrimp (Artemia franciscana) samples collected from GSL during summer time periods is likely due to the consumption of cyanobacteria produced in freshwater bays entering the lake. Supporting data collected from the outflow of Farmington Bay indicates decreasing trends in {delta}{sup 15}N in particulate organic matter (POM) during the mid-summer time period, reflective of increasing proportions of cyanobacteria in algae exported to GSL on a seasonal basis. The C:N molar ratio of POM in outflow from Farmington Bay decreases during the summer period, supportive of the increased activity of N fixation indicated by decreasing {delta}{sup 15}N in brine shrimp and POM. Although N fixation is only taking place in the relatively freshwater inflows to GSL, data indicate that influx of fresh water influences large areas of the lake. Separation of GSL into two distinct hydrologic and geochemical systems from the construction of a railroad causeway in the late 1950s has created a persistent and widespread anoxic layer in the southern part of GSL. This anoxic layer, referred to as the deep brine layer (DBL), has high rates of SO{sub 4}{sup 2-} reduction, likely increasing the Hg methylation capacity. High concentrations of methyl mercury (CH{sub 3}Hg) (median concentration = 24 ng/L) were observed in the DBL with a significant proportion (31-60%) of total Hg in the CH{sub 3}Hg form. Hydroacoustic and sediment-trap evidence indicate that turbulence introduced by internal waves

  6. Whole dairy matrix or single nutrients in assessment of health effects: current evidence and knowledge gaps.

    Science.gov (United States)

    Thorning, Tanja Kongerslev; Bertram, Hanne Christine; Bonjour, Jean-Philippe; de Groot, Lisette; Dupont, Didier; Feeney, Emma; Ipsen, Richard; Lecerf, Jean Michel; Mackie, Alan; McKinley, Michelle C; Michalski, Marie-Caroline; Rémond, Didier; Risérus, Ulf; Soedamah-Muthu, Sabita S; Tholstrup, Tine; Weaver, Connie; Astrup, Arne; Givens, Ian

    2017-05-01

    Foods consist of a large number of different nutrients that are contained in a complex structure. The nature of the food structure and the nutrients therein (i.e., the food matrix) will determine the nutrient digestion and absorption, thereby altering the overall nutritional properties of the food. Thus, the food matrix may exhibit a different relation with health indicators compared to single nutrients studied in isolation. The evidence for a dairy matrix effect was presented and discussed by an expert panel at a closed workshop, and the following consensus was reached: 1 ) Current evidence does not support a positive association between intake of dairy products and risk of cardiovascular disease (i.e., stroke and coronary heart disease) and type 2 diabetes. In contrast, fermented dairy products, such as cheese and yogurt, generally show inverse associations. 2 ) Intervention studies have indicated that the metabolic effects of whole dairy may be different than those of single dairy constituents when considering the effects on body weight, cardiometabolic disease risk, and bone health. 3 ) Different dairy products seem to be distinctly linked to health effects and disease risk markers. 4 ) Different dairy structures and common processing methods may enhance interactions between nutrients in the dairy matrix, which may modify the metabolic effects of dairy consumption. 5 ) In conclusion, the nutritional values of dairy products should not be considered equivalent to their nutrient contents but, rather, be considered on the basis of the biofunctionality of the nutrients within dairy food structures. 6 ) Further research on the health effects of whole dairy foods is warranted alongside the more traditional approach of studying the health effects of single nutrients. Future diet assessments and recommendations should carefully consider the evidence of the effects of whole foods alongside the evidence of the effects of individual nutrients. Current knowledge gaps and

  7. A single-input, single-output electromagnetically-transduced microresonator array

    International Nuclear Information System (INIS)

    Sabater, A B; Hunkler, A G; Rhoads, J F

    2014-01-01

    Resonant microsystems have found broad applicability in environmental and inertial sensing, signal filtering and timing applications. Despite this breadth in utility, a common constraint on these devices is throughput, or the total amount of information that they can process. In recent years, elastically-coupled arrays of microresonators have been used to increase the throughput in sensing contexts, but these arrays are often more complicated to design than their isolated counterparts, due to the potential for collective behaviors (such as vibration localization) to arise. An alternative solution to the throughput constraint is to use arrays of electromagnetically-transduced microresonators. These arrays can be designed such that the mechanical resonances are spaced far apart and the mechanical coupling between the microresonators is insignificant. Thus, when the entire array is actuated and sensed, a resonance in the electrical response can be directly correlated to a specific microresonator vibrating, as collective behaviors have been avoided. This work details the design, analysis and experimental characterization of an electromagnetically-transduced microresonator array in both low- and atmospheric-pressure environments, and demonstrates that the system could be used as a sensor in ambient conditions. While this device has direct application as a resonant-based sensor that requires only a single source and measurement system to track multiple resonances, with simple modification, this array could find uses in tunable oscillator and frequency multiplexing contexts. (paper)

  8. Soil fertility in deserts: a review on the influence of biological soil crusts and the effect of soil surface disturbance on nutrient inputs and losses

    Science.gov (United States)

    Reynolds, R.; Phillips, S.; Duniway, M.; Belnap, J.

    2003-01-01

    Sources of desert soil fertility include parent material weathering, aeolian deposition, and on-site C and N biotic fixation. While parent materials provide many soil nutrients, aeolian deposition can provide up to 75% of plant-essential nutrients including N, P, K, Mg, Na, Mn, Cu, and Fe. Soil surface biota are often sticky, and help retain wind-deposited nutrients, as well as providing much of the N inputs. Carbon inputs are from both plants and soil surface biota. Most desert soils are protected by cyanobacterial-lichen-moss soil crusts, chemical crusts and/or desert pavement. Experimental disturbances applied in US deserts show disruption of soil surfaces result in decreased N and C inputs from soil biota by up to 100%. The ability to glue aeolian deposits in place is compromised, and underlying soils are exposed to erosion. The ability to withstand wind increases with biological and physical soil crust development. While most undisturbed sites show little sediment production, disturbance by vehicles or livestock produce up to 36 times more sediment production, with soil movement initiated at wind velocities well below commonly-occurring wind speeds. Soil fines and flora are often concentrated in the top 3 mm of the soil surface. Winds across disturbed areas can quickly remove this material from the soil surface, thereby potentially removing much of current and future soil fertility. Thus, disturbances of desert soil surfaces can both reduce fertility inputs and accelerate fertility losses.

  9. Three-Input Single-Output Voltage-Mode Multifunction Filter with Electronic Controllability Based on Single Commercially Available IC

    Directory of Open Access Journals (Sweden)

    Supachai Klungtong

    2017-01-01

    Full Text Available This paper presents a second-order voltage-mode filter with three inputs and single-output voltage using single commercially available IC, one resistor, and two capacitors. The used commercially available IC, called LT1228, is manufactured by Linear Technology Corporation. The proposed filter is based on parallel RLC circuit. The filter provides five output filter responses, namely, band-pass (BP, band-reject (BR, low-pass (LP, high-pass (HP, and all-pass (AP functions. The selection of each filter response can be done without the requirement of active and passive component matching condition. Furthermore, the natural frequency and quality factor are electronically controlled. Besides, the nonideal case is also investigated. The output voltage node exhibits low impedance. The experimental results can validate the theoretical analyses.

  10. Deposição de nutrientes pela serapilheira em um fragmento de Floresta Estacional Decidual no Rio Grande do Sul Nutrients input from litter in a seasonal deciduous forest fragment in Rio Grande do Sul

    Directory of Open Access Journals (Sweden)

    Joseane Savian Marafiga

    2012-12-01

    Full Text Available O conhecimento do aporte de nutrientes das espécies que compõem a Floresta Estacional Decidual é ainda incipiente. Objetivou-se, neste trabalho, determinar a deposição de nutrientes pela serapilheira de diferentes espécies, em uma Floresta Estacional Decidual, no município de Itaara, RS. Para a coleta de serapilheira, foram demarcadas seis parcelas de 25,0 m x 17,0 m cada, sendo distribuídos cinco coletores em cada parcela. As coletas de serapilheira foram realizadas mensalmente, no período de janeiro de 2006 a dezembro de 2007. A serapilheira foi separada em folhas, galhos finos (diâmetro Knowledge on nutrient deposition from species that compose the Deciduous Forest is incipient. The objective of this study was to determine the nutrient input by different species, from litter deposition in a Seasonal Deciduous Forest in Itaara, RS. Six plots (25.0 m x 17.0 m were installed for litter collection,. In each plot, 5 mesh-screen traps were allocated. The litter was monthly collected from January 2006 to December 2007. Litter was sorted out in leaves, twigs (diameter < 0.5 cm and mixture (flowers, fruits, seeds and non identified plant parts. Leaves were separated regarding the most representative species in the forest. The material was analyzed for the levels of macro and micronutrients. The concentration of nutrients differed between species. The highest nutrient input occurred from the leaf fraction, followed by twigs and mixture. Among the evaluated species, Parapiptadenia rigida showed the highest nutrient transfer, except for Mn that was highest in Matayba elaeagnoides, and Ocotea pulchella.

  11. Uncertainty of solute flux estimation in ungauged small streams: potential implications for input-output nutrient mass balances at stream reach scale

    Directory of Open Access Journals (Sweden)

    A. Butturini

    2005-01-01

    Full Text Available Input-output mass balances within stream reaches provide in situ estimates of stream nutrient retention/release under a wide spectrum of hydrological conditions. Providing good estimates of the mass balances for nutrients depends on precise hydrological monitoring and good chemical characterisation of stream water at the input and output ends of the stream reach. There is a need to optimise the hydrological monitoring and the frequencies of water sampling to yield precise annual mass balances, so as to avoid undue cost - high resolution monitoring and subsequent chemical analysis can be labour intensive and costly. In this paper, simulation exercises were performed using a data set created to represent the instantaneous discharge and solute dynamics at the input and output ends of a model stream reach during a one year period. At the output end, stream discharge and water chemistry were monitored continuously, while the input end was assumed to be ungauged; water sampling frequency was changed arbitrarily. Instantaneous discharge at the ungauged sampling point was estimated with an empirical power model linking the discharge to the catchment area (Hooper, 1986. The model thus substitutes for the additional gauge station. Simulations showed that 10 days was the longest chemical sampling interval which could provide reach annual mass balances of acceptable precision. Presently, the relationship between discharge and catchment area is usually assumed to be linear but simulations indicate that small departures from the linearity of this relationship could cause dramatic changes in the mass balance estimations.

  12. Compact ASD Topologies for Single-Phase Integrated Motor Drives with Sinusoidal Input Current

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede; Thoegersen, Paul

    2005-01-01

    A standard configuration of an Adjustable Speed Drive (ASD) consists of two separate units: an AC motor, which runs with fixed speed when it is supplied from a constant frequency grid voltage and a frequency converter, which is used to provide the motor with variable voltage-variable frequency......-density integration of the converter caused by the large size of the passive components (electrolytic capacitors and iron chokes) and vibration of the converter enclosure. This paper analyzes the implementation aspects for obtaining a compact and cost effective single-phase ASD with sinusoidal input current...... for high frequency operation, higher core losses will occur, but outside the converter enclosure. The advantages are: the reduction of the number of active semiconductor devices, the reduction of the ASD size and the better integration potential....

  13. Thinking outside of the Lake: Can controls on nutrient inputs into Lake Erie benefit stream conservation in its watershed?

    Science.gov (United States)

    Investment in agricultural conservation practices (CPs) to address Lake Erie's re-eutrophication may offer benefits that extend beyond the lake, such as improved habitat conditions for fish communities throughout the watershed. If such conditions are not explicitly considered in Lake Erie nutrient ...

  14. Single-input Multiple-output Tunable Log-domain Current-mode Universal Filter

    Directory of Open Access Journals (Sweden)

    P. Prommee

    2013-06-01

    Full Text Available This paper describes the design of a current-mode single-input multiple-output (SIMO universal filter based on the log-domain filtering concept. The circuit is a direct realization of a first-order differential equation for obtaining the lossy integrator circuit. Lossless integrators are realized by log-domain lossy integrators. The proposed filter comprises only two grounded capacitors and twenty-four transistors. This filter suits to operate in very high frequency (VHF applications. The pole-frequency of the proposed filter can be controlled over five decade frequency range through bias currents. The pole-Q can be independently controlled with the pole-frequency. Non-ideal effects on the filter are studied in detail. A validated BJT model is used in the simulations operated by a single power supply, as low as 2.5 V. The simulation results using PSpice are included to confirm the good performances and are in agreement with the theory.

  15. Isotopic signatures of eelgrass (Zostera marina L.) as bioindicator of anthropogenic nutrient input in the western Baltic Sea

    International Nuclear Information System (INIS)

    Schubert, Philipp R.; Karez, Rolf; Reusch, Thorsten B.H.; Dierking, Jan

    2013-01-01

    Highlights: • Anthropogenic nitrogen (N) inputs are a global problem, but difficult to quantify. • We tested the use of eelgrass δ 15 N as proxy of such inputs in the Baltic Sea. • The method revealed distinct spatial patterns in sewage N across a eutrophic bay. • Traditional eutrophication measures corroborated the results from δ 15 N values. • Eelgrass δ 15 N ratios have high potential as proxy of sewage-derived N in the Baltic. -- Abstract: Eutrophication is a global environmental problem. Better management of this threat requires more accurate assessments of anthropogenic nitrogen (N) inputs to coastal systems than can be obtained with traditional measures. Recently, primary producer N isotopic signatures have emerged as useful proxy of such inputs. Here, we demonstrated for the first time the applicability of this method using the widespread eelgrass (Zostera marina) in the highly eutrophic Baltic Sea. Spatial availability of sewage N across a bay with one major sewage outflow predicted by eelgrass δ 15 N was high near and downstream of the outflow compared to upstream, but returned to upstream levels within 4 km downstream from the outfall. General conclusions were corroborated by traditional eutrophication measures, but in contrast to these measures were fully quantitative. Eelgrass N isotope ratios therefore show high potential for coastal screens of eutrophication in the Baltic Sea, and in other areas with eelgrass meadows

  16. New topology of multiple-input single-output PV system for DC load applications

    Directory of Open Access Journals (Sweden)

    Mohsen M. ELhagry

    2016-12-01

    Full Text Available Improving PV system structure and maximizing the output power of a PV system has drawn many researchers attention nowadays. A proposed multi-input single-output PV system is proposed in this paper. The system consists of multiple PV modules; each module feeds a DC–DC converter. The outputs of the converters are tied together to form a DC voltage source. In order to minimize the output ripples of the converters, the control signal of each converter is time shifted from each other by a certain time interval depending on the number of converters used in the topology. In this study a battery is used as the main load, the load current used as the control variable. A fuzzy logic controller designed to modulate the operating point of the system to get the maximum power. The results show that the proposed system has very good response for various operating conditions of the PV system. In addition the output filter is minimized with excellent quality of the DC output voltage.

  17. Scintillation analysis of multiple-input single-output underwater optical links.

    Science.gov (United States)

    Gökçe, Muhsİn Caner; Baykal, Yahya

    2016-08-01

    Multiple-input single-output (MISO) techniques are employed in underwater wireless optical communication (UWOC) links to mitigate the degrading effects of oceanic turbulence. In this paper, we consider a MISO UWOC system which consists of a laser beam array as transmitter and a point detector as receiver. Our aim is to find the scintillation index at the detector in order to quantify the system performance. For this purpose, the average intensity and the average of the square of the intensity are derived in underwater turbulence by using the extended Huygens-Fresnel principle. The scintillation index and the average bit-error-rate (⟨BER⟩) formulas presented in this paper depend on the oceanic turbulence parameters, such as the rate of dissipation of the mean-squared temperature, rate of dissipation of kinetic energy per unit mass of fluid, Kolmogorov microscale, and the ratio of temperature to salinity contributions to the refractive index spectrum, the link length, and the wavelength. Recently, we have derived an equivalent structure constant of atmospheric turbulence and expressed it in terms of the oceanic turbulence parameters [Appl. Opt.55, 1228 (2016)APOPAI0003-693510.1364/AO.55.001228]. In the formulation in this paper, this equivalent structure constant is utilized, which enables us to employ the existing similar formulation valid in atmospheric turbulence.

  18. Three-Dimensional Terahertz Coded-Aperture Imaging Based on Single Input Multiple Output Technology.

    Science.gov (United States)

    Chen, Shuo; Luo, Chenggao; Deng, Bin; Wang, Hongqiang; Cheng, Yongqiang; Zhuang, Zhaowen

    2018-01-19

    As a promising radar imaging technique, terahertz coded-aperture imaging (TCAI) can achieve high-resolution, forward-looking, and staring imaging by producing spatiotemporal independent signals with coded apertures. In this paper, we propose a three-dimensional (3D) TCAI architecture based on single input multiple output (SIMO) technology, which can reduce the coding and sampling times sharply. The coded aperture applied in the proposed TCAI architecture loads either purposive or random phase modulation factor. In the transmitting process, the purposive phase modulation factor drives the terahertz beam to scan the divided 3D imaging cells. In the receiving process, the random phase modulation factor is adopted to modulate the terahertz wave to be spatiotemporally independent for high resolution. Considering human-scale targets, images of each 3D imaging cell are reconstructed one by one to decompose the global computational complexity, and then are synthesized together to obtain the complete high-resolution image. As for each imaging cell, the multi-resolution imaging method helps to reduce the computational burden on a large-scale reference-signal matrix. The experimental results demonstrate that the proposed architecture can achieve high-resolution imaging with much less time for 3D targets and has great potential in applications such as security screening, nondestructive detection, medical diagnosis, etc.

  19. Three-Dimensional Terahertz Coded-Aperture Imaging Based on Single Input Multiple Output Technology

    Directory of Open Access Journals (Sweden)

    Shuo Chen

    2018-01-01

    Full Text Available As a promising radar imaging technique, terahertz coded-aperture imaging (TCAI can achieve high-resolution, forward-looking, and staring imaging by producing spatiotemporal independent signals with coded apertures. In this paper, we propose a three-dimensional (3D TCAI architecture based on single input multiple output (SIMO technology, which can reduce the coding and sampling times sharply. The coded aperture applied in the proposed TCAI architecture loads either purposive or random phase modulation factor. In the transmitting process, the purposive phase modulation factor drives the terahertz beam to scan the divided 3D imaging cells. In the receiving process, the random phase modulation factor is adopted to modulate the terahertz wave to be spatiotemporally independent for high resolution. Considering human-scale targets, images of each 3D imaging cell are reconstructed one by one to decompose the global computational complexity, and then are synthesized together to obtain the complete high-resolution image. As for each imaging cell, the multi-resolution imaging method helps to reduce the computational burden on a large-scale reference-signal matrix. The experimental results demonstrate that the proposed architecture can achieve high-resolution imaging with much less time for 3D targets and has great potential in applications such as security screening, nondestructive detection, medical diagnosis, etc.

  20. Nutrient input through submarine groundwater discharge in two major Chinese estuaries: the Pearl River Estuary and the Changjiang River Estuary

    Science.gov (United States)

    Liu, Jianan; Du, Jinzhou; Wu, Ying; Liu, Sumei

    2018-04-01

    In this study, we used a 224Ra mass balance model to evaluate the importance of submarine groundwater discharge (SGD) for the budgets of biogenic elements in two major Chinese estuaries: the Pearl River Estuary (PRE) and the Changjiang River Estuary (CRE). The apparent water age in the PRE was estimated to be 4.8 ± 1.1 days in the dry season and 1.8 ± 0.6 days in the wet season using a physical model based on the tidal prism. In the dry season, the water age in the CRE was estimated to be 11.7 ± 3.0 days using the 224Ra/223Ra activities ratios apparent age model. By applying the 224Ra mass balance model, we obtained calculations of the SGD flow in the PRE of (4.5-10) × 108 m3 d-1 (0.23-0.50 m3 m-2 d-1) and (1.2-2.7) × 108 m3 d-1 (0.06-0.14 m3 m-2 d-1) in the dry season and wet season, respectively, and the estimated SGD flux was (4.6-11) × 109 m3 d-1 (0.18-0.45 m3 m-2 d-1) in the dry season of the CRE. In comparison with the nutrient fluxes from the rivers, the SGD-derived nutrient fluxes may play a vital role in controlling the nutrient budgets and stoichiometry in the study areas. The large amount of dissolved inorganic nitrogen and phosphorus fluxes together with high N: P ratios into the PRE and CRE would potentially contribute to eutrophication and the occurrence of red tides along the adjacent waters.

  1. A Direct Algorithm for Pole Placement by State-derivative Feedback for Single-input Linear Systems

    Directory of Open Access Journals (Sweden)

    Taha H. S. Abdelaziz

    2003-01-01

    Full Text Available This paper deals with the direct solution of the pole placement problem for single-input linear systems using state-derivative feedback. This pole placement problem is always solvable for any controllable systems if all eigenvalues of the original system are nonzero. Then any arbitrary closed-loop poles can be placed in order to achieve the desired system performance. The solving procedure results in a formula similar to the Ackermann formula. Its derivation is based on the transformation of a linear single-input system into Frobenius canonical form by a special coordinate transformation, then solving the pole placement problem by state derivative feedback. Finally the solution is extended also for single-input time-varying control systems. The simulation results are included to show the effectiveness of the proposed approach.

  2. Variability of δ15N in soil and plants at a New Zealand hill country site: correlations with soil chemistry and nutrient inputs

    International Nuclear Information System (INIS)

    Hawke, D.J.

    2000-01-01

    This study investigated 15 N enrichment and nutrient cycling in hill country used for semi-extensive pastoral agriculture, at a site where pre-European seabird breeding occurred. Soil (>15 cm) and plant samples were taken from 18 ridgeline and sideslope transects. Three stock camps (locations which grazing animals frequent) were identified within the study area, two on the ridgeline and one on the sideslope. Soil 15 N enrichment was greatest at stock camps, and lowest where stock input was minimal. Soil natural abundance 15 N (815N) was therefore an index of stock nutrient inputs. Soil δ 15 N increased with decreasing C:N ratio, consistent with N loss through volatilisation and/or nitrate leaching from net mineralisation. Plant δ 15 N from stock camps was lower than its associated soil, implying that 15 N enrichment of plant-available N was lower than that of total soil N. However, the correlation between plant δ 15 N and soil δ 15 N varied between stock camps, indicating differences in N cycling. Olsen P was higher at stock camps, although again differences were found between stock camps. Total P and N were correlated neither with stock camps nor topography, but were higher than expected from parent material concentrations and literature results, respectively. It is postulated that significant contributions of both elements from former seabird breeding remain in the soil. Copyright (2000) CSIRO Publishing

  3. Impacts of the Nutrient Inputs from Riverine on the Dynamic and Community Structure of Fungal-like Protists in the Coastal Ocean Ecosystems

    Science.gov (United States)

    Duan, Y.; Wang, G.; Xie, N.

    2016-02-01

    The coastal ocean connects terrestrial (e.g., rivers and estuaries) with oceanic ecosystems and is considered as a major component of global carbon cycles and budgets. The coastal waters are featured with a high biodiversity and high primary production. Because of the excessive primary production, a large fraction of primary organic matter becomes available to consumers as detritus in the coastal waters. Bacterioplankton have long been known to play a key role in the degradation of this detritus, and export and storage of organic matter in the coastal ecosystems. However, the primary and secondary production and the carbon biogeochemical processes in the ecosystems are largely regulated by nutrient inputs from riverine and other anthropogenic activities through heterotrophic microbial communities. Thraustochytrids, commonly known as fungal-like protists, are unicellular heterotrophic protists and are recently acknowledged to play a significant role in ocean carbon cycling. Their abundance exceeds that of bacterioplankton in the most time of the year in the coastal waters of China. Also, their abundance and diversity are largely regulated by nutrients inputs from riverine and other anthropogenic activities. Our findings support that thraustochytrids are a dominant heterotrophic microbial group in the coastal waters. Evidently, thraustochytrids are an import, but neglected, component in microbial carbon biogeochemical processes of the coastal ocean.

  4. Metal and nutrient behavior in the Raritan estuary, New Jersey, U.S.A.: The effect of multiple freshwater and industrial waste inputs

    Science.gov (United States)

    Maest, A.S.; Crerar, D.A.; Stallard, R.F.; Ryan, J.N.

    1990-01-01

    A geochemical analysis of the Raritan estuary during high and low river flow is presented. Several statistical and graphical approaches, in addition to a hydrodynamic model of the Raritan estuary, are used to demonstrate the effects of lateral inputs on trace-element distribution in a complicated fluvial-marine system. Results from factor and cluster analysis show that nutrient-salinity distributions on both sampling dates are controlled primarily by freshwater-saltwater mixing. Industrial and municipal waste sources within the estuary are important in controlling dissolved organic carbon (at low flow) and dissolved and bottom sediment trace metals. Biological and physico-chemical reactions have a significant, but secondary effect on nutrient and trace-metal distributions with salinity. Apparent flux calculations and property-property plots show that for dissolved phosphate, nitrate and inorganic carbon, the Raritan estuary can be divided into two mixing zones, with the Raritan River controlling nutrient concentrations in the lower-salinity stretches and the South River controlling their distributions at intermediate and higher salinities. High enrichment factors of most metals in estuary bottom sediment reveal that this is an important and semi-permanent sink for trace metals in the Raritan system. Previous work on suspended sediment in the estuary and river substantiates that this load is also an important sink for trace metals; however, many of these metals are in leachable modes which are more susceptible to release and incorporation into the food chain. ?? 1990.

  5. Surprise! Infants Consider Possible Bases of Generalization for a Single Input Example

    Science.gov (United States)

    Gerken, LouAnn; Dawson, Colin; Chatila, Razanne; Tenenbaum, Josh

    2015-01-01

    Infants have been shown to generalize from a small number of input examples. However, existing studies allow two possible means of generalization. One is via a process of noting similarities shared by several examples. Alternatively, generalization may reflect an implicit desire to explain the input. The latter view suggests that generalization…

  6. Single-Channel Blind Estimation of Arterial Input Function and Tissue Impulse Response in DCE-MRI

    Czech Academy of Sciences Publication Activity Database

    Taxt, T.; Jiřík, Radovan; Rygh, C. B.; Grüner, R.; Bartoš, M.; Andersen, E.; Curry, F. R.; Reed, R. K.

    2012-01-01

    Roč. 59, č. 4 (2012), s. 1012-1021 ISSN 0018-9294 Institutional support: RVO:68081731 Keywords : arterial input function (AIF) * blind deconvolution * dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) * multichannel * perfusion * single channel Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.348, year: 2012

  7. Aporte de nutrientes pela serapilheira em uma área degradada e revegetada com leguminosas arbóreas Nutrient input through litter in a degraded area revegetated with legume trees

    Directory of Open Access Journals (Sweden)

    G. S. Costa

    2004-10-01

    this work was to evaluate the nutrient input through litterfall, in one area degraded by soil remotion, replanted with ten-year-old nitrogen-fixing legume trees Acacia auriculiformis (acácia, Gliricidia sepium (gliricídia, and Mimosa caesalpiniifolia (sabiá and another neighbor area with a secondary growth Atlantic forest ("capoeira" fragment. The experiment was carried out at the Embrapa - Agrobiologia research station, Km 47, Seropédica, State of Rio de Janeiro, Brazil. The litterfall was quantified in litter traps with an area of 0.25 m²; nutrients and polyphenols of the litter components were determined. The litterfall quantity varied according to the legume tree species, reaching a dry mass (DM of 5.7 Mg ha-1 year-1 where gliricídia predominated, and 11.2 Mg ha-1 year-1 under sabiá land cover including some litterfall from acácia. The litterfall production under "capoeira" was 9.2 Mg ha-1 year-1 . The gliricídia litterfall showed the lowest polyphenol concentration and was richest in nutrients (N, P, Ca, and Mg, representing the most favorable litter quality for decomposition processes. The nutrient input was correlated with the amount of litterfall. The annual nutrient input in kg ha-1 year-1 ranged from 130-170 for N, 4.9-7.9 for P, 24-31 for K, 150-190 for Ca, and 29-40 for Mg. These values are similar or superior to those observed in "capoeira" which are 140 for N, 4.9 for P, 110 for Ca, and 31.7 for Mg, except for 63 for K. Land revegetation with legume trees added large quantities of organic matter and N to the system through litterfall in a relatively short time, improving nutrient cycling and the rehabilitation process.

  8. Reconstruction of neuronal input through modeling single-neuron dynamics and computations

    International Nuclear Information System (INIS)

    Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin; Chan, Wai-lok

    2016-01-01

    Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.

  9. Reconstruction of neuronal input through modeling single-neuron dynamics and computations

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin, E-mail: dengbin@tju.edu.cn; Chan, Wai-lok [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2016-06-15

    Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.

  10. Effects of changing nutrient inputs on the ratio of small pelagic fish stock and phytoplankton biomass in the Black Sea

    Science.gov (United States)

    Yunev, Oleg A.; Velikova, Violeta; Carstensen, Jacob

    2017-10-01

    Significant increases in nitrogen and phosphorus inputs to the Black Sea in the second half of the 20th century caused eutrophication and drastically decreasing Si:N and Si:P ratios. Combined with climate change, overfishing of top predators and a huge outbreak of the non-indigenous ctenophore Mnemiopsis, the pelagic food web was strongly modified and its efficiency for channeling primary production to higher trophic levels substantially reduced. We used the ratio between small pelagic fish stock and phytoplankton biomass on the Danube shelf and in the open Black Sea to investigate long-term changes in food web functioning. The ratio had 1) highest values for the pre-eutrophication period when diatoms and copepods dominated the pelagic food web ('muscle food chain'), 2) decreased during the eutrophication period with stronger prevalence of autotrophic pico- and nanophytoplankton, bacteria, heterotrophic nanoflagellates, microzooplankton, Noctiluca and jellyfish ('jelly food chain' with increased importance of the microbial loop), 3) lowest values during the ecological crisis (1989-1992), when small pelagic fish stocks collapsed, and 4) increased after 1993, indicating that the ecosystem went out of the crisis and exhibited a trend of recovery. However, in the last period (1993-2008) the ratio remained close to values observed in the middle eutrophication phase, suggesting that the ecosystem was far from fully recovered. Since early 2000s, fluctuating pelagic fish stocks, with a tendency to decreasing fish landing again, have been observed in the Black Sea. Additionally, the quality of food for the small pelagic fish has deteriorated due to warming trends and the legacy of eutrophication, giving support for the 'jelly food chain', exhibiting low energy transfer and prevalence of organisms with high respiration rate and low nutritional value.

  11. A Compact Three-Phase Single-Input/Dual-Output Matrix Converter

    DEFF Research Database (Denmark)

    Liu, Xiong; Wang, Peng; Loh, Poh Chiang

    2012-01-01

    This paper presents a novel matrix converter with one ac input and two ac outputs. The presented topology is based on the traditional indirect matrix converter, but with its rear-end six-switch inverter replaced by a compact nine-switch inverter. With only three extra switches added, the proposed...

  12. Reliability-Oriented Design and Analysis of Input Capacitors in Single-Phase Transformer-less Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Wang, Huai; Yang, Yongheng; Blaabjerg, Frede

    2013-01-01

    . A reliability-oriented design guideline is proposed in this paper for the input capacitors in single-phase transformer-less PV inverters. The guideline ensures that the service time requirement is to be accomplished under different power levels and ambient temperature profiles. The theoretical analysis has been......While 99% efficiency has been reported, the target of 20 years of service time imposes new challenge to cost-effective solutions for grid-connected photovoltaic (PV) inverters. Aluminum electrolytic capacitors are the weak-link in terms of reliability and lifetime in single-phase PV systems...

  13. Analyses of single nucleotide polymorphisms in selected nutrient-sensitive genes in weight-regain prevention

    DEFF Research Database (Denmark)

    Larsen, Lesli Hingstrup; Ängquist, Lars Henrik; Vimaleswaran, Karani S

    2012-01-01

    Differences in the interindividual response to dietary intervention could be modified by genetic variation in nutrient-sensitive genes.......Differences in the interindividual response to dietary intervention could be modified by genetic variation in nutrient-sensitive genes....

  14. Dynamics of a Birth-Pulse Single-Species Model with Restricted Toxin Input and Pulse Harvesting

    Directory of Open Access Journals (Sweden)

    Yi Ma

    2010-01-01

    Full Text Available We consider a birth-pulses single-species model with restricted toxin input and pulse harvesting in a polluted environment. Pollution accumulates as a slowly decaying stock and is assumed to affect the growth of the renewable resource population. Firstly, by using the discrete dynamical system determined by the stroboscopic map, we obtain an exact 1-period solution of system whose birth function is Ricker function or Beverton-Holt function and obtain the threshold conditions for their stability. Furthermore, we show that the timing of harvesting has a strong impact on the maximum annual sustainable yield. The best timing of harvesting is immediately after the birth pulses. Finally, we investigate the effect of the amount of toxin input on the stable resource population size. We find that when the birth rate is comparatively lower, the population size is decreasing with the increase of toxin input; that when the birth rate is high, the population size may begin to rise and then drop with the increase of toxin input.

  15. SISTEM KONTROL OTOMATIK DENGAN MODEL SINGLE-INPUT-DUAL-OUTPUT DALAM KENDALI EFISIENSI UMUR-PEMAKAIAN INSTRUMEN

    Directory of Open Access Journals (Sweden)

    S.N.M.P. Simamora

    2014-10-01

    Full Text Available Efficiency condition occurs when the value of the used outputs compared to the resource total that has been used almost close to the value 1 (absolute environment. An instrument to achieve efficiency if the power output level has decreased significantly in the life of the instrument used, if it compared to the previous condition, when the instrument is not equipped with additional systems (or proposed model improvement. Even more effective if the inputs model that are used in unison to achieve a homogeneous output. On this research has been designed and implemented the automatic control system for models of single input-dual-output, wherein the sampling instruments used are lamp and fan. Source voltage used is AC (alternate-current and tested using quantitative research methods and instrumentation (with measuring instruments are observed. The results obtained demonstrate the efficiency of the instrument experienced a significant current model of single-input-dual-output applied separately instrument trials such as lamp and fan when it compared to the condition or state before. And the result show that the design has been built, can also run well.

  16. Numerical Modeling of the Effects of Nutrient-rich Coastal-water Input on the Phytoplankton in the Gulf of California

    Science.gov (United States)

    Bermudez, A.; Rivas, D.

    2015-12-01

    Phytoplankton bloom dynamics depends on the interactions of favorable physical, chemical, and biotic conditions, particularly on the available nutrients that enhance phytoplankton growth, like nitrogen. Costal and estuarine environments are heavily influenced by exogenous sources of nitrogen; the anthropogenic inputs include urban and rural wastewater coming from agricultural activities (i.e., fertilizers and animal waste). In response, new production is often enhanced, leading eutrophication and phytoplankton blooms, including harmful taxa. These events have become more frequent, and with it the interest to evaluate their effects on marine ecosystems and the impact on human health. In the Gulf of California the harmful algal blooms (HABs) had affected aquaculture, fisheries, and even tourism, thereby it is important to generate information about biological and physical factors that can influence their appearance. A numerical model is a tool that may bring key information about the origin and distribution of phytoplankton blooms. Herein the analysis is based on a three-dimensional, hydrodynamical numerical model, coupled to a Nitrogen-Phytoplankton-Zooplankton-Detritus (NPZD) model. Several numerical simulations using different forcing and scenarios are carried out in order to evaluate the processes that influence the phytoplankton growth. These numerical results are compared to available observations. Thus, the main environmental factors triggering the generation of HABs can be identified.

  17. Identification of biomechanical nonlinearity in whole-body vibration using a reverse path multi-input-single-output method

    Science.gov (United States)

    Huang, Ya; Ferguson, Neil S.

    2018-04-01

    The study implements a classic signal analysis technique, typically applied to structural dynamics, to examine the nonlinear characteristics seen in the apparent mass of a recumbent person during whole-body horizontal random vibration. The nonlinearity in the present context refers to the amount of 'output' that is not correlated or coherent to the 'input', usually indicated by values of the coherence function that are less than unity. The analysis is based on the longitudinal horizontal inline and vertical cross-axis apparent mass of twelve human subjects exposed to 0.25-20 Hz random acceleration vibration at 0.125 and 1.0 ms-2 r.m.s. The conditioned reverse path frequency response functions (FRF) reveal that the uncorrelated 'linear' relationship between physical input (acceleration) and outputs (inline and cross-axis forces) has much greater variation around the primary resonance frequency between 0.5 and 5 Hz. By reversing the input and outputs of the physical system, it is possible to assemble additional mathematical inputs from the physical output forces and mathematical constructs (e.g. square root of inline force). Depending on the specific construct, this can improve the summed multiple coherence at frequencies where the response magnitude is low. In the present case this is between 6 and 20 Hz. The statistical measures of the response force time histories of each of the twelve subjects indicate that there are potential anatomical 'end-stops' for the sprung mass in the inline axis. No previous study has applied this reverse path multi-input-single-output approach to human vibration kinematic and kinetic data before. The implementation demonstrated in the present study will allow new and existing data to be examined using this different analytical tool.

  18. Interfacing sensory input with motor output: does the control architecture converge to a serial process along a single channel?

    Science.gov (United States)

    van de Kamp, Cornelis; Gawthrop, Peter J; Gollee, Henrik; Lakie, Martin; Loram, Ian D

    2013-01-01

    Modular organization in control architecture may underlie the versatility of human motor control; but the nature of the interface relating sensory input through task-selection in the space of performance variables to control actions in the space of the elemental variables is currently unknown. Our central question is whether the control architecture converges to a serial process along a single channel? In discrete reaction time experiments, psychologists have firmly associated a serial single channel hypothesis with refractoriness and response selection [psychological refractory period (PRP)]. Recently, we developed a methodology and evidence identifying refractoriness in sustained control of an external single degree-of-freedom system. We hypothesize that multi-segmental whole-body control also shows refractoriness. Eight participants controlled their whole body to ensure a head marker tracked a target as fast and accurately as possible. Analysis showed enhanced delays in response to stimuli with close temporal proximity to the preceding stimulus. Consistent with our preceding work, this evidence is incompatible with control as a linear time invariant process. This evidence is consistent with a single-channel serial ballistic process within the intermittent control paradigm with an intermittent interval of around 0.5 s. A control architecture reproducing intentional human movement control must reproduce refractoriness. Intermittent control is designed to provide computational time for an online optimization process and is appropriate for flexible adaptive control. For human motor control we suggest that parallel sensory input converges to a serial, single channel process involving planning, selection, and temporal inhibition of alternative responses prior to low dimensional motor output. Such design could aid robots to reproduce the flexibility of human control.

  19. Double tuning a single input probe for heteronuclear NMR spectroscopy at low field

    Science.gov (United States)

    Tadanki, Sasidhar; Colon, Raul D.; Moore, Jay; Waddell, Kevin W.

    2012-10-01

    Applications of PASADENA in biomedicine are continuing to emerge due to recent demonstrations that hyperpolarized metabolic substrates and the corresponding reaction products persist sufficiently long to be detected in vivo. Biomedical applications of PASADENA typically differ from their basic science counterparts in that the polarization endowed by addition of parahydrogen is usually transferred from nascent protons to coupled storage nuclei for subsequent detection on a higher field imaging instrument. These pre-imaging preparations usually take place at low field, but commercial spectrometers capable of heteronuclear pulsed NMR at frequencies in the range of 100 kHz to 1 MHz are scarce though, in comparison to single channel consoles in that field regime. Reported here is a probe circuit that can be used in conjunction with a phase and amplitude modulation scheme we have developed called PANORAMIC (Precession And Nutation for Observing Rotations At Multiple Intervals about the Carrier), that expands a single channel console capability to double or generally multiple resonance with minimal hardware modifications. The demands of this application are geared towards uniform preparation, and since the hyperpolarized molecules are being detected externally at high field, detection sensitivity is secondary to applied field uniformity over a large reaction volume to accommodate heterogeneous chemistry of gas molecules at a liquid interface. The probe circuit was therefore configured with a large (40 mL) Helmholtz sample coil for uniformity, and double-tuned to the Larmor precession frequencies of 13C/1H (128/510 kHz) within a custom solenoidal electromagnet at a static field of 12 mT. Traditional (on-resonant) as well as PANORAMIC NMR signals with signal to noise ratios of approximately 75 have been routinely acquired with this probe and spectrometer setup from 1024 repetitions on the high frequency channel. The proton excitation pulse width was 240 μs at 6.31 W

  20. Calibration of a single-photon counting detectors without the need of input photon flux calibration (Conference Presentation)

    Science.gov (United States)

    Gerrits, Thomas

    2017-05-01

    Calibration of fiber-coupled single-photon detectors usually requires knowledge of the input photon flux inside the fiber and/or knowledge of the linearity of a reference power meter. Many approaches have been presented in the past to accurately measure the photon detection probability of a single photon detector [1-6]. Under certain assumptions, one can utilize waveguide-coupled single photon detectors and a series of photon-counting measurements and a single-photon source to calibrate the detection efficiency of a single photon detector without the need of a reference power meter and the knowledge of the incoming photon flux. Here, this method is presented. Furthermore, if a reference detector is used, the detection efficiency of all evanescently coupled waveguide detectors can be measured, and the measurement outcome does not depend on splicing or fiber connection losses within in the setup, i.e., the measurement is setup-independent. In addition, the method, when using a reference detector, can be utilized to measure and distinguish between the absorption of a waveguide-coupled single photon detector and its internal detection efficiency. [1] A. J. Miller et al, Opt. Express 19, 9102-9110 (2011) [2] I. Muller et al., Metrologia 51, S329 (2014). [3] A. L. Migdall, Instrumentation and Measurement, IEEE Transactions on 50, 478-481 (2001). [4] S. V. Polyakov, A. L. Migdall, Optics Express 15, 1390-1407 (2007). [5] A. Avella et al., Optics Express 19, 23249-23257 (2011). [6] T. Lunghi et al., Opt. Express 22, 18078-18092 (2014)

  1. Single input state, single–mode fiber–based polarization sensitive optical frequency domain imaging by eigenpolarization referencing

    Science.gov (United States)

    Lippok, Norman; Villiger, Martin; Jun, Chang–Su; Bouma, Brett E.

    2015-01-01

    Fiber–based polarization sensitive OFDI is more challenging than free–space implementations. Using multiple input states, fiber–based systems provide sample birefringence information with the benefit of a flexible sample arm but come at the cost of increased system and acquisition complexity, and either reduce acquisition speed or require increased acquisition bandwidth. Here we show that with the calibration of a single polarization state, fiber–based configurations can approach the conceptual simplicity of traditional free–space configurations. We remotely control the polarization state of the light incident at the sample using the eigenpolarization states of a wave plate as a reference, and determine the Jones matrix of the output fiber. We demonstrate this method for polarization sensitive imaging of biological samples. PMID:25927775

  2. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Nutrient Inputs from Fertilizer and Manure, Nitrogen and Phosphorus (N&P), 2002

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the estimated amount of nitrogen and phosphorus in kilograms for the year 2002, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is County-Level Estimates of Nutrient Inputs to the Land Surface of the Conterminous United States, 1982-2001 (Ruddy and others, 2006). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production

  3. Modeling and CFD Simulation of nutrient Distribution in picoliter bioreactors for bacterial growth studies on single-cell level

    OpenAIRE

    Westerwalbesloh, Christoph; Grünberger, Alexander; Stute, Birgit; Weber, Sophie; Wiechert, Wolfgang; Kohlheyer, Dietrich; von Lieres, Eric

    2015-01-01

    A microfluidic device for microbial single-cell cultivation of bacteria was modeled and simulated using COMSOL Multiphysics. The liquid velocity field and the mass transfer within the supply channels and cultivation chambers were calculated to gain insight in the distribution of supplied nutrients and metabolic products secreted by the cultivated bacteria. The goal was to identify potential substrate limitations or product accumulations within the cultivation device. The metabolic uptake and ...

  4. Fusarium spp. is able to grow and invade healthy human nails as a single source of nutrients.

    Science.gov (United States)

    Galletti, J; Negri, M; Grassi, F L; Kioshima-Cotica, É S; Svidzinski, T I E

    2015-09-01

    Onychomycosis caused by Fusarium spp. is emerging, but some factors associated with its development remain unclear, such as whether this genus is keratinolytic. The main aim of the present study was to evaluate the ability of Fusarium to use the human nail as a single source of nutrients. We also performed an epidemiological study and antifungal susceptibility testing of Fusarium spp. that were isolated from patients with onychomycosis. The epidemiological study showed that Fusarium species accounted for 12.4 % of onychomycosis cases, and it was the most common among nondermatophyte molds. The most frequent species identified were F. oxysporum (36.5 %), F. solani (31.8 %), and F. subglutinans (8.3 %). Fluconazole was not active against Fusarium spp., and the response to terbinafine varied according to species. Fusarium was able to grow in vitro without the addition of nutrients and invade healthy nails. Thus, we found that Fusarium uses keratin as a single source of nutrients, and the model proposed herein may be useful for future studies on the pathogenesis of onychomycosis.

  5. Optogenetic stimulation of lateral amygdala input to posterior piriform cortex modulates single-unit and ensemble odor processing

    Directory of Open Access Journals (Sweden)

    Benjamin eSadrian

    2015-12-01

    Full Text Available Olfactory information is synthesized within the olfactory cortex to provide not only an odor percept, but also a contextual significance that supports appropriate behavioral response to specific odor cues. The piriform cortex serves as a communication hub within this circuit by sharing reciprocal connectivity with higher processing regions, such as the lateral entorhinal cortex and amygdala. The functional significance of these descending inputs on piriform cortical processing of odorants is currently not well understood. We have employed optogenetic methods to selectively stimulate lateral and basolateral amygdala (BLA afferent fibers innervating the posterior piriform cortex (pPCX to quantify BLA modulation of pPCX odor-evoked activity. Single unit odor-evoked activity of anaesthetized BLA-infected animals was significantly modulated compared with control animal recordings, with individual cells displaying either enhancement or suppression of odor-driven spiking. In addition, BLA activation induced a decorrelation of odor-evoked pPCX ensemble activity relative to odor alone. Together these results indicate a modulatory role in pPCX odor processing for the BLA complex, which could contribute to learned changes in PCX activity following associative conditioning.

  6. Paired single cell co-culture microenvironments isolated by two-phase flow with continuous nutrient renewal.

    Science.gov (United States)

    Chen, Yu-Chih; Cheng, Yu-Heng; Kim, Hong Sun; Ingram, Patrick N; Nor, Jacques E; Yoon, Euisik

    2014-08-21

    Cancer-stromal cell interactions are a critical process in tumorigenesis. Conventional dish-based assays, which simply mix two cell types, have limitations in three aspects: 1) limited control of the cell microenvironment; 2) inability to study cell behavior in a single-cell manner; and 3) have difficulties in characterizing single cell behavior within a highly heterogeneous cell population (e.g. tumor). An innovative use of microfluidic technology is for improving the spatial resolution for single cell assays. However, it is challenging to isolate the paired interacting cells while maintaining nutrient renewal. In this work, two-phase flow was used as a simple isolation method, separating the microenvironment of each individual chamber. As nutrients in an isolated chamber are consumed by cells, media exchange is required. To connect the cell culture chamber to the media exchange layer, we demonstrated a 3D microsystem integration technique using vertical connections fabricated by deep reactive-ion etching (DRIE). Compared to previous approaches, the presented process allows area reduction of vertical connections by an order of magnitude, enabling compact 3D integration. A semi-permeable membrane was sandwiched between the cell culture layer and the media exchange layer. The selectivity of the semi-permeable membrane results in the retention of the signaling proteins within the chamber while allowing free diffusion of nutrients (e.g., glucose and amino acids). Thus, paracrine signals are accumulated inside the chamber without cross-talk between cells in other chambers. Utilizing these innovations, we co-cultured UM-SCC-1 (head and neck squamous cell carcinoma) cells and endothelial cells to simulate tumor proliferation enhancement in the vascular endothelial niche.

  7. Thermally-fluctuated single-flux-quantum pulse intervals reflected in input-output characteristics of a double-flux-quantum amplifier

    Science.gov (United States)

    Mizugaki, Yoshinao; Urai, Yoshiaki; Shimada, Hiroshi

    2017-07-01

    A double-flux-quantum amplifier (DFQA) is a voltage multiplier of quantum accuracy, which we have employed at the final stage of a single-flux-quantum (SFQ) digital-to-analog converter (DAC). We recently found that experimental input-output (IO) characteristics of DFQAs were always slightly different from numerical results assuming ideally-periodic SFQ pulse trains. That is, experimental IO characteristics obtained using an over-biasing method were gradually deteriorated near their maximum operation voltages. Numerical simulation including the over-biasing method at a finite temperature suggested that the difference was likely to be attributed to thermally-fluctuated intervals of input SFQ pulses.

  8. Modeling and CFD simulation of nutrient distribution in picoliter bioreactors for bacterial growth studies on single-cell level.

    Science.gov (United States)

    Westerwalbesloh, Christoph; Grünberger, Alexander; Stute, Birgit; Weber, Sophie; Wiechert, Wolfgang; Kohlheyer, Dietrich; von Lieres, Eric

    2015-11-07

    A microfluidic device for microbial single-cell cultivation of bacteria was modeled and simulated using COMSOL Multiphysics. The liquid velocity field and the mass transfer within the supply channels and cultivation chambers were calculated to gain insight in the distribution of supplied nutrients and metabolic products secreted by the cultivated bacteria. The goal was to identify potential substrate limitations or product accumulations within the cultivation device. The metabolic uptake and production rates, colony size, and growth medium composition were varied covering a wide range of operating conditions. Simulations with glucose as substrate did not show limitations within the typically used concentration range, but for alternative substrates limitations could not be ruled out. This lays the foundation for further studies and the optimization of existing picoliter bioreactor systems.

  9. FPGA implementation of a single-input fuzzy logic controller for boost converter with the absence of an external analog-to-digital converter

    DEFF Research Database (Denmark)

    Taeed, Fazel; Salam, Z.; Ayob, S.

    2012-01-01

    In this paper, the single-input fuzzy logic controller (FLC) (SIFLC) for boost converter output-voltage regulation is proposed. The SIFLC utilizes the signed distance method that reduces the multidimensional rule table to 1-D with only one input variable, i.e., distance d. The simplification allows...... for the control surface to be approximated by a piecewise linear. It is shown that, despite the simplicity of SIFLC, its control performance is almost equivalent to that of the conventional FLC. As a proof of concept, the SIFLC is implemented using the Altera EP2C35F672C6N field-programmable gate array (FPGA......) and applied on a 50-W boost converter. The SIFLC is compared to the proportional-integral controller; the simulation and practical results indicate that SIFLC exhibits excellent performance for step load and input reference changes. Another feature of this work is the absence of an external analog...

  10. Effects of Reservoir Filling on Sediment and Nutrient Removal in the Lower Susquehanna River Reservoir: An Input-Output Analysis Based on Long-Term Monitoring

    Science.gov (United States)

    Ball, W. P.; Zhang, Q.; Hirsch, R. M.

    2015-12-01

    Reduction of suspended sediment (SS), total phosphorus (TP), and total nitrogen is an important focus for Chesapeake Bay watershed management. Susquehanna River, the bay's largest tributary, has drawn attention because SS load from behind Conowingo Dam (near the river fall-line) has risen dramatically recently. To better understand these changes, we evaluated decadal-scale (1986-2013) history of concentrations and fluxes using data from sites above and below the reservoir. First, observed concentration-discharge relationships show declined SS and TP concentrations at the reservoir inlet under most discharges in recent years, but such changes have not been propagated to emerge at the outlet, implying recently diminished reservoir trapping. Second, best estimates of loadings show declined net depositions of SS and TP in recent decades, which occurred under a range of discharges, with the 75th~99.5th percentile of Conowingo discharge dominating such changes and carrying most sediment/nutrient loadings. Finally, stationary models that better accommodate effects of riverflow variability also show diminished reservoir trapping of SS and TP, which occurred under a range of flows including those well below the literature-documented scour threshold. These findings have significant implications in regard to our understanding and management of this major reservoir and illustrate the value of long-term monitoring programs.

  11. Nutrient recovery from industrial wastewater as single cell protein by a co-culture of green microalgae and methanotrophs

    DEFF Research Database (Denmark)

    Rasouli, Zahra; Valverde Pérez, Borja; D'Este, Martina

    2018-01-01

    Conventional water treatment technologies remove nutrients via resource intensive processes. However, new approaches for nutrient recycling are needed to provide food to the increasing population. This work explores the use of microbial biomass as a means to recover nutrients from industrial...

  12. Promoting effects of a single Rhodopseudomonas palustris inoculant on plant growth by Brassica rapa chinensis under low fertilizer input.

    Science.gov (United States)

    Wong, Wai-Tak; Tseng, Ching-Han; Hsu, Shu-Hua; Lur, Huu-Sheng; Mo, Chia-Wei; Huang, Chu-Ning; Hsu, Shu-Chiung; Lee, Kung-Ta; Liu, Chi-Te

    2014-09-17

    Several Rhodopseudomonas palustris strains have been isolated from rice paddy fields in Taiwan by combining the Winogradsky column method and molecular marker detection. These isolates were initially screened by employing seed germination and seedling vigor assays to evaluate their potential as inoculants. To fulfill the demand in the present farming system for reducing the application of chemical fertilizers, we assessed the plant growth-promoting effects of the R. palustris YSC3, YSC4, and PS3 inoculants on Brassica rapa chinensis (Chinese cabbage) cultivated under a half quantity of fertilizer. The results obtained showed that supplementation with approximately 4.0×10(6) CFU g(-1) soil of the PS3 inoculant at half the amount of fertilizer consistently produced the same plant growth potential as 100% fertility, and also increased the nitrogen use efficiency of the applied fertilizer nutrients. Furthermore, we noted that the plant growth-promotion rate elicited by PS3 was markedly higher with old seeds than with new seeds, suggesting it has the potential to boost the development of seedlings that were germinated from carry-over seeds of poor quality. These beneficial traits suggest that the PS3 isolate may serve as a potential PGPR inoculant for integrated nutrient management in agriculture.

  13. Simulation Performance of Multiple-Input Multiple-Output Systems Employing Single-Carrier Modulation and Orthogonal Frequency Division Multiplexing

    National Research Council Canada - National Science Library

    Saglam, Halil D

    2004-01-01

    ...) systems utilizing Alamouti-based space-time block coding (STBC) technique. The MIMO communication systems using STBC technique employing both single-carrier modulation and orthogonal frequency division multiplexing (OFDM...

  14. Three-Input Single-Output Electronically Controllable Dual-Mode Universal Biquad Filter Using DO-CCCIIs

    Directory of Open Access Journals (Sweden)

    M. Siripruchyanun

    2007-01-01

    Full Text Available This article presents a dual-mode (voltage-mode and current-mode universal biquadratic filter performing completely standard functions: lowpass, highpass, bandpass, band-reject, and allpass functions, based on plus-type dual-output second-generation, current controlled, current conveyor (DO-CCCII+. The features of the circuit are that the bandwidth and natural frequency can be tuned electronically via the input bias currents: the circuit description is very simple, consisting of merely 2 DO-CCCIIs and 2 capacitors: the circuit can provide either the voltage-mode or current-mode filter without changing circuit topology. Additionally, each function response can be selected by suitably selecting input signals with digital method. Without any external resistors, the proposed circuit is very suitable to further develop into an integrated circuit. The PSPICE simulation results are depicted. The given results agree well with the theoretical anticipation. The maximum power consumption is approximately 1.81 mW at ±1.5 V supply voltages.

  15. Assessing sustainability of a low-input single-farm vegetable box-scheme using emergy and LCA methodology

    DEFF Research Database (Denmark)

    Markussen, Mads Ville; Kulak, M.; Østergård, Hanne

    2012-01-01

    , the emergy method lacks some of the standardization and robustness of LCA. In this study we apply both methods to the same case study. The case considered is an organic stockless vegetable farm of 7 ha in UK which distributes its products in weekly boxes to 250 local consumers. The farm has systematically...... support from labor) of the total emergy input to the system. The local non-renewable source ground water makes up 6%. Emergy flow of goods from society makes up the rest with fuel (28%), electricity (18%), woodchip compost (13%), potable water (8%) and machinery (6%) being the most important. Hotspots......, but are based on different theories of values and system boundaries. LCA draws system boundaries around the studied system as supported by human dominated processes (resource extraction, refining, transportation etc.), whereas emergy accounting in addition considers processes occurring in natural systems and...

  16. Experimental measurement of link gain and correlation in a single-input multiple-output ultraviolet communication system with diversity reception

    Science.gov (United States)

    Han, Dahai; Zhang, Min; Li, Qing

    2017-08-01

    The experiment is designed and taken to measure the link gain in a single-input multiple-output ultraviolet (UV) communication system with diversity reception, and the correlation of multichannel is also taken into account. Theoretical and experimental research on the multireceiver UV communication system suggests that diversity reception is an effective way to gain high BER performance even if the link gain correlation is non-negligible (with normal level correlation coefficient). The link gain of diversity reception is compared particularly with the gain from expanding the detecting area to find its boundary for performance improvement and the distance limit between receivers. The experimental results provide more reliable guidelines for receiver design in UVC systems and other scattering wireless optical communication channels with diversity reception applied such as multiple-input multiple-output.

  17. Single Nutrients and Immunity

    Science.gov (United States)

    1982-02-01

    HA antibody re- sponses. sponse after the administration of Salmonella Rats fed a riboflavin-deficient diet showed pullorum antigens, although no...pools of thymi- rats with severe folic acid deficiency after dine triphosphate and deoxyadenosine tri- inoculation with formalinized R. tiphi in...antigens. with Salmonella typhimurium ( 15 1). Chevalier and Aschkenasy (147) found that Newberne and colleagues (152-155) also a 7% dietary content of

  18. Nutrient presses and pulses differentially impact plants, herbivores, detritivores and their natural enemies.

    Directory of Open Access Journals (Sweden)

    Shannon M Murphy

    Full Text Available Anthropogenic nutrient inputs into native ecosystems cause fluctuations in resources that normally limit plant growth, which has important consequences for associated food webs. Such inputs from agricultural and urban habitats into nearby natural systems are increasing globally and can be highly variable, spanning the range from sporadic to continuous. Despite the global increase in anthropogenically-derived nutrient inputs into native ecosystems, the consequences of variation in subsidy duration on native plants and their associated food webs are poorly known. Specifically, while some studies have examined the effects of nutrient subsidies on native ecosystems for a single year (a nutrient pulse, repeated introductions of nutrients across multiple years (a nutrient press better reflect the persistent nature of anthropogenic nutrient enrichment. We therefore contrasted the effects of a one-year nutrient pulse with a four-year nutrient press on arthropod consumers in two salt marshes. Salt marshes represent an ideal system to address the differential impacts of nutrient pulses and presses on ecosystem and community dynamics because human development and other anthropogenic activities lead to recurrent introductions of nutrients into these natural systems. We found that plant biomass and %N as well as arthropod density fell after the nutrient pulse ended but remained elevated throughout the nutrient press. Notably, higher trophic levels responded more strongly than lower trophic levels to fertilization, and the predator/prey ratio increased each year of the nutrient press, demonstrating that food web responses to anthropogenic nutrient enrichment can take years to fully manifest themselves. Vegetation at the two marshes also exhibited an apparent tradeoff between increasing %N and biomass in response to fertilization. Our research emphasizes the need for long-term, spatially diverse studies of nutrient enrichment in order to understand how

  19. A method to synchronize signals from multiple patient monitoring devices through a single input channel for inclusion in list-mode acquisitions

    Energy Technology Data Exchange (ETDEWEB)

    O’Connor, J. Michael; Pretorius, P. Hendrik; Johnson, Karen; King, Michael A., E-mail: Michael.King@umassmed.edu [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)

    2013-12-15

    Purpose: This technical note documents a method that the authors developed for combining a signal to synchronize a patient-monitoring device with a second physiological signal for inclusion into list-mode acquisition. Our specific application requires synchronizing an external patient motion-tracking system with a medical imaging system by multiplexing the tracking input with the ECG input. The authors believe that their methodology can be adapted for use in a variety of medical imaging modalities including single photon emission computed tomography (SPECT) and positron emission tomography (PET). Methods: The authors insert a unique pulse sequence into a single physiological input channel. This sequence is then recorded in the list-mode acquisition along with the R-wave pulse used for ECG gating. The specific form of our pulse sequence allows for recognition of the time point being synchronized even when portions of the pulse sequence are lost due to collisions with R-wave pulses. This was achieved by altering our software used in binning the list-mode data to recognize even a portion of our pulse sequence. Limitations on heart rates at which our pulse sequence could be reliably detected were investigated by simulating the mixing of the two signals as a function of heart rate and time point during the cardiac cycle at which our pulse sequence is mixed with the cardiac signal. Results: The authors have successfully achieved accurate temporal synchronization of our motion-tracking system with acquisition of SPECT projections used in 17 recent clinical research cases. In our simulation analysis the authors determined that synchronization to enable compensation for body and respiratory motion could be achieved for heart rates up to 125 beats-per-minute (bpm). Conclusions: Synchronization of list-mode acquisition with external patient monitoring devices such as those employed in motion-tracking can reliably be achieved using a simple method that can be implemented using

  20. Development of phytoplankton communities: Implications of nutrient injections on phytoplankton composition, pH and ecosystem production

    DEFF Research Database (Denmark)

    Jakobsen, Hans; Blanda, Elisa; Stæhr, Peter Anton

    2015-01-01

    The development of a marine phytoplankton community was studied in a series of mesocosm tanks exposed to different levels of nutrient inputs. Key ecosystem variables such as phytoplankton species development, ecosystem net production (NEP), pH and bacteria production were measured. The overall aim...... was to mimic the consequences of extreme weather events by applying nutrients in either repeated (pulse treatment) versus a single inputs (full treatment). Regardless of treatment type, pH increased steadily, until nutrients became exhausted. During the experiment, potentially nuisance dinoflagellates......, turning the ecosystem net heterotrophic. This study suggests that a single nutrient dose drives pH higher than multiple smaller nutrient doses injected albeit the total amount of nutrient injected to the treatments was similar. Such changes affect pH, species composition and rates of pelagic production...

  1. Implementasi dan Evaluasi Kinerja Multi Input SingleOutput Orthogonal Frequency Division Multiplexing (MISO OFDM Menggunakan Wireless Open Access Research Platform (WARP

    Directory of Open Access Journals (Sweden)

    Galih Permana Putra

    2017-01-01

    Full Text Available Teknologi komunikasi nirkabel terus berkembang untuk memenuhi kebutuhan manusia akan koneksi informasi yang cepat, pengiriman data yang berkapasitas besar dan dapat diandalkan. Di dalam proses tersebut banyak sekali gangguan yang dapat mempengaruhi penurunan kinerja komunikasi diantaranya adalah multipath fading [1]. Multi Input Single Output (MISO merupakan salah satu teknik space diversity yang menggunakan banyak antena dengan tujuan untuk mengatasi multipath fading. Adapun pada proses transmisi digunakan teknik Orthogonal Frequency-Division Multiplexing (OFDM yang bertujuan memberikan keuntungan dalam hal efisiensi pada saat transmisi data dan mampu menghindari Inter Simbol Interference (ISI. Pada penelitian ini akan dibandingkan kinerja sistem MISO OFDM dan SISO OFDM yang akan disimulasikan dan di implementasikan pada modul Wireless Open Access Penelitian Platform (WARP untuk mengevaluasi kinerja BER sebagai fungsi dari daya pancar dan jarak variasi. Parameter yang digunakan di dalam pengukuran berdasarkan IEEE 802.11 a/g karena menggunakan frekuensi 2,4 Ghz. Terdapat dua skema pengukuran yaitu SISO OFDM dan MISO OFDM dengan variasi jarak 4,6 dan 8 meter dengan variasi daya pancar -35 s/d -4 dBm dengan peningkatan gain 5 kali secara berkala. Dari dua skema yang dilaksanakan dapat disimpulkan bahwa semakin jauh jarak antara pemancar dan penerima maka dibutuhkan penambahan gain untuk menjaga kualitas data yang dikirimkan. Disamping itu, terdapat perbedaan nilai gain untuk mencapai nilai BER = dibutuhkan penambahan gain = - 33 sedangkan pada SISO OFM dibutuhkan penambahan gain = -18.

  2. Crop yield, root growth, and nutrient dynamics in a conventional and three organic cropping systems with different levels of external inputs and N re-cycling through fertility building crops

    DEFF Research Database (Denmark)

    Thorup-Kristensen, Kristian; Dresbøll, Dorte Bodin; Kristensen, Hanne Lakkenborg

    2012-01-01

    of the organic rotation, both relying on green manures and catch crops grown during the autumn after the main crop as their main source of soil fertility, and the O3 system further leaving rows of the green manures to grow as intercrops between vegetable rows to improve the conditions for biodiversity...... calculated based on total land area was only 63% of conventional yields. Differences in quality parameters of the harvested crops, i.e. nutrient content, dry matter content or damages by pests or diseases were few and not systematic, whereas clear effects on nutrient balances and nitrogen leaching indicators...

  3. Modeling global nutrient export from watersheds

    NARCIS (Netherlands)

    Kroeze, C.; Bouwman, L.|info:eu-repo/dai/nl/090428048; Seitzinger, S.

    2012-01-01

    We describe how global models can be used to analyze past and future trends in nutrient export from watersheds and how such models can be used to analyze causes and effects of coastal eutrophication. Future nutrient inputs to coastal waters may be higher than today, and nutrient ratios may depart

  4. Benchmarking nutrient use efficiency of dairy farms

    NARCIS (Netherlands)

    Mu, W.; Groen, E.A.; Middelaar, van C.E.; Bokkers, E.A.M.; Hennart, S.; Stilmant, D.; Boer, de I.J.M.

    2017-01-01

    The nutrient use efficiency (NUE) of a system, generally computed as the amount of nutrients in valuable outputs over the amount of nutrients in all inputs, is commonly used to benchmark the environmental performance of dairy farms. Benchmarking the NUE of farms, however, may lead to biased

  5. Separation of input function for rapid measurement of quantitative CMRO{sub 2} and CBF in a single PET scan with a dual tracer administration method

    Energy Technology Data Exchange (ETDEWEB)

    Kudomi, Nobuyuki; Watabe, Hiroshi; Hayashi, Takuya; Iida, Hidehiro [Department of Investigative Radiology, Advanced Medical-Engineering Center, National Cardiovascular Center-Research Institute, 5-7-1, Fujishirodai, Suita, Osaka 565-8565 (Japan)

    2007-04-07

    Cerebral metabolic rate of oxygen (CMRO{sub 2}), oxygen extraction fraction (OEF) and cerebral blood flow (CBF) images can be quantified using positron emission tomography (PET) by administrating {sup 15}O-labelled water (H{sup 15}{sub 2}O) and oxygen ({sup 15}O{sub 2}). Conventionally, those images are measured with separate scans for three tracers C{sup 15}O for CBV, H{sup 15}{sub 2}O for CBF and {sup 15}O{sub 2} for CMRO{sub 2}, and there are additional waiting times between the scans in order to minimize the influence of the radioactivity from the previous tracers, which results in a relatively long study period. We have proposed a dual tracer autoradiographic (DARG) approach (Kudomi et al 2005), which enabled us to measure CBF, OEF and CMRO{sub 2} rapidly by sequentially administrating H{sup 15}{sub 2}O and {sup 15}O{sub 2} within a short time. Because quantitative CBF and CMRO{sub 2} values are sensitive to arterial input function, it is necessary to obtain accurate input function and a drawback of this approach is to require separation of the measured arterial blood time-activity curve (TAC) into pure water and oxygen input functions under the existence of residual radioactivity from the first injected tracer. For this separation, frequent manual sampling was required. The present paper describes two calculation methods: namely a linear and a model-based method, to separate the measured arterial TAC into its water and oxygen components. In order to validate these methods, we first generated a blood TAC for the DARG approach by combining the water and oxygen input functions obtained in a series of PET studies on normal human subjects. The combined data were then separated into water and oxygen components by the present methods. CBF and CMRO{sub 2} were calculated using those separated input functions and tissue TAC. The quantitative accuracy in the CBF and CMRO{sub 2} values by the DARG approach did not exceed the acceptable range, i.e., errors in those

  6. Above-ground biomass and nutrient accumulation in the tropical ...

    African Journals Online (AJOL)

    This means that the impact of logging in the Ebom rainforest remains low. However, additional research is needed on nutrient input in the forest from outside as well as on the impact of logging on nutrient leaching in order to get a complete picture of the nutrient cycles. Key-words: phytomass, nutrient pools, logging, ...

  7. ENVIRONMENTAL ACCOUNTING IN AGRICULTURE: NUTRIENT ACCOUNTING AND OTHER ASPECTS

    OpenAIRE

    URFI, P.; BACSI, ZS.; SÁRDI, K.; POLGÁR, P.J.; SOMOGYI, T.

    2002-01-01

    While traditional accounting focuses on accounting for capital assets, costs, yields valued and sold in the market, environmental accounting intends to do the same with non-marketed capital assets, costs and yields, that is, externalities. The farm level nutrient balances are based on an input-output comparison, in which the nutrients entering the farm within inputs are compared to nutrients leaving the farm within the sold products. The method considers the amounts of nutrients entering the ...

  8. Chemical sensors are hybrid-input memristors

    Science.gov (United States)

    Sysoev, V. I.; Arkhipov, V. E.; Okotrub, A. V.; Pershin, Y. V.

    2018-04-01

    Memristors are two-terminal electronic devices whose resistance depends on the history of input signal (voltage or current). Here we demonstrate that the chemical gas sensors can be considered as memristors with a generalized (hybrid) input, namely, with the input consisting of the voltage, analyte concentrations and applied temperature. The concept of hybrid-input memristors is demonstrated experimentally using a single-walled carbon nanotubes chemical sensor. It is shown that with respect to the hybrid input, the sensor exhibits some features common with memristors such as the hysteretic input-output characteristics. This different perspective on chemical gas sensors may open new possibilities for smart sensor applications.

  9. Long- and short-term changes in nutrient availability following commercial sawlog harvest via cable logging

    Science.gov (United States)

    Jennifer Knoepp; Wayne Swank; Bruce L. Haines

    2014-01-01

    Soil nutrient availability often limits forest productivity and soils have considerable variation in their ability to supply nutrients. Most southern Appalachian forests are minimally managed with no fertilizer inputs or routine thinning regime. Nutrient availability is regulated by atmospheric inputs and the internal cycling of nutrients through such processes as...

  10. On the distinguishability and observer design for single-input single-output continuous-time switched affine systems under bounded disturbances with application to chaos-based modulation

    Czech Academy of Sciences Publication Activity Database

    Gómez-Gutiérrez, D.; Renato Vázquez, C.; Čelikovský, Sergej; Ramírez-Trevino, A.; Castillo-Toledo, B.

    2017-01-01

    Roč. 34, č. 1 (2017), s. 49-58 ISSN 0947-3580 R&D Projects: GA ČR GA13-20433S Institutional support: RVO:67985556 Keywords : Unknown input observers * Chaos-based modulation * Chaotic synchronization * Message-embedding Subject RIV: BC - Control Systems Theory OBOR OECD: Automation and control systems Impact factor: 1.944, year: 2016 http://library.utia.cas.cz/separaty/2017/TR/celikovsky-0471410.pdf

  11. Trends in nutrients

    Science.gov (United States)

    Heathwaite, A.L.; Johnes, P.J.; Peters, N.E.

    1996-01-01

    The roles of nitrogen (N) and phosphorus (P) as key nutrients determining the trophic status of water bodies are examined, and evidence reviewed for trends in concentrations of N and P species which occur in freshwaters, primarily in northern temperate environments. Data are reported for water bodies undergoing eutrophication and acidification, especially water bodies receiving increased nitrogen inputs through the atmospheric deposition of nitrogen oxides (NOx). Nutrient loading on groundwaters and surface freshwaters is assessed with respect to causes and rates of (change, relative rates of change for N and P, and implications of change for the future management of lakes, rivers and groundwaters. In particular, the nature and emphasis of studies for N species and P fractions in lakes versus rivers and groundwaters are contrasted. This review paper primarily focuses on results from North America and Europe, particularly for the UK where a wide range of data sets exists. Few nutrient loading data have been published on water bodies in less developed countries; however, some of the available data are presented to provide a global perspective. In general, N and P concentrations have increased dramatically (>20 times background concentrations) in many areas and causes vary considerably, ranging from urbanization to changes in agricultural practices.

  12. Engineering crop nutrient efficiency for sustainable agriculture.

    Science.gov (United States)

    Chen, Liyu; Liao, Hong

    2017-10-01

    Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency. © 2017 Institute of Botany, Chinese Academy of Sciences.

  13. Effects of Soy-based allochthonous nutrient inputs on intensively ...

    African Journals Online (AJOL)

    hope&shola

    contents were determined using Ackermann et al. (1969) method. Each of the diet was also wet-digested using perchloric acid and nitric acid mixtures (Diks ..... pp.361 - 400. Cardinale BJ, Palmer MA, Collins SL(2002).Species diversity enhances ecosystem function through interspecific facilitation. Nature, 415:426-. 429.

  14. Input-output supervisor

    International Nuclear Information System (INIS)

    Dupuy, R.

    1970-01-01

    The input-output supervisor is the program which monitors the flow of informations between core storage and peripheral equipments of a computer. This work is composed of three parts: 1 - Study of a generalized input-output supervisor. With sample modifications it looks like most of input-output supervisors which are running now on computers. 2 - Application of this theory on a magnetic drum. 3 - Hardware requirement for time-sharing. (author) [fr

  15. Variable Input Power Supply.

    Science.gov (United States)

    An electronic power supply using pulse width modulated (PWM) voltage regulation provides a regulated output for a wide range of input voltages. Thus...switch to change the level of voltage regulation and the turns ratio of the primary winding of the power supply output transformer, thereby obtaining increased tolerance to input voltage change. (Author)

  16. SSYST-2 input description

    International Nuclear Information System (INIS)

    Meyder, R.

    1980-11-01

    The codes system SSYST-2 is designed to analyse the thermal and mechanical behaviour of a fuel rod during a LOCA. The report contains a short introduction into the SSYST structure, a complete input-list for all modules and several tested input-list for a LOCA-analysis. (orig.) [de

  17. MDS MIC Catalog Inputs

    Science.gov (United States)

    Johnson-Throop, Kathy A.; Vowell, C. W.; Smith, Byron; Darcy, Jeannette

    2006-01-01

    This viewgraph presentation reviews the inputs to the MDS Medical Information Communique (MIC) catalog. The purpose of the group is to provide input for updating the MDS MIC Catalog and to request that MMOP assign Action Item to other working groups and FSs to support the MITWG Process for developing MIC-DDs.

  18. PLEXOS Input Data Generator

    Energy Technology Data Exchange (ETDEWEB)

    2017-02-01

    The PLEXOS Input Data Generator (PIDG) is a tool that enables PLEXOS users to better version their data, automate data processing, collaborate in developing inputs, and transfer data between different production cost modeling and other power systems analysis software. PIDG can process data that is in a generalized format from multiple input sources, including CSV files, PostgreSQL databases, and PSS/E .raw files and write it to an Excel file that can be imported into PLEXOS with only limited manual intervention.

  19. ENVIRONMENTAL ACCOUNTING IN AGRICULTURE: NUTRIENT ACCOUNTING AND OTHER ASPECTS

    Directory of Open Access Journals (Sweden)

    P URFI

    2003-04-01

    Full Text Available While traditional accounting focuses on accounting for capital assets, costs, yields valued and sold in the market, environmental accounting intends to do the same with non-marketed capital assets, costs and yields, that is, externalities. The farm level nutrient balances are based on an input-output comparison, in which the nutrients entering the farm within inputs are compared to nutrients leaving the farm within the sold products. The method considers the amounts of nutrients entering the farm but not leaving it with the products to be wastes polluting the environment. The weakness of this approach is the handling of stock changes. In a farming year high amounts of nutrients contained in unsold products are not wastes, nor are they stored in the soil, but are stored in the stocks. To handle this problem the concepts of external nutrient balance and internal nutrient balance are introduced, and are tested in case studies of two Hungarian mixed farms.

  20. Nutrient cycling strategies.

    NARCIS (Netherlands)

    Breemen, van N.

    1995-01-01

    This paper briefly reviews pathways by which plants can influence the nutrient cycle, and thereby the nutrient supply of themselves and of their competitors. Higher or lower internal nutrient use efficiency positively feeds back into the nutrient cycle, and helps to increase or decrease soil

  1. ColloInputGenerator

    DEFF Research Database (Denmark)

    2013-01-01

    you to input a text file with a raw list of lexemes that appear in the construction under investigation. This is converted into an a frequency with the format described above. Open this file in a spreadsheet and fill in the corpus-wide word frequencies and save the file as a text file. You can now use...

  2. Incorporating hydrologic variability into nutrient spiraling

    Science.gov (United States)

    Doyle, Martin W.

    2005-09-01

    Nutrient spiraling describes the path of a nutrient molecule within a stream ecosystem, combining the biochemical cycling processes with the downstream driving force of stream discharge. To date, nutrient spiraling approaches have been hampered by their inability to deal with fluctuating flows, as most studies have characterized nutrient retention within only a small range of discharges near base flow. Here hydrologic variability is incorporated into nutrient spiraling theory by drawing on the fluvial geomorphic concept of effective discharge. The effective discharge for nutrient retention is proposed to be that discharge which, over long periods of time, is responsible for the greatest portion of nutrient retention. A developed analytical model predicts that the effective discharge for nutrient retention will equal the modal discharge for small streams or those with little discharge variability. As modal discharge increases or discharge variability increases, the effective discharge becomes increasingly less than the modal discharge. In addition to the effective discharge, a new metric is proposed, the functionally equivalent discharge, which is the single discharge that will reproduce the magnitude of nutrient retention generated by the full hydrologic frequency distribution when all discharge takes place at that rate. The functionally equivalent discharge was found to be the same as the modal discharge at low hydrologic variability, but increasingly different from the modal discharge at large hydrologic variability. The functionally equivalent discharge provides a simple quantitative means of incorporating hydrologic variability into long-term nutrient budgets.

  3. Effectiveness of cattail ('Typha' spp. management techniques depends on exogenous nitrogen inputs

    Directory of Open Access Journals (Sweden)

    Kenneth J. Elgersma

    2017-05-01

    Full Text Available Wetlands occupy a position in the landscape that makes them vulnerable to the effects of current land use and the legacies of past land use. Many wetlands in agricultural regions like the North American Midwest are strongly affected by elevated nutrient inputs as well as high rates of invasion by the hybrid cattail 'Typha' x 'glauca'. These two stressors also exacerbate each other: increased nutrients increase invasion success, and invasions increase nutrient retention and nutrient loads in the wetland. This interaction could create a positive feedback that would inhibit efforts to manage and control invasions, but little is known about the effects of past or present nutrient inputs on wetland invasive plant management. We augmented a previously-published community-ecosystem model (MONDRIAN to simulate the most common invasive plant management tools: burning, mowing, and herbicide application. We then simulated different management strategies and 3 different durations in low and high nutrient input conditions, and found that the most effective management strategy and duration depends strongly on the amount of nutrients entering the wetland. In high-nutrient wetlands where invasions were most successful, a combination of herbicide and fire was most effective at reducing invasion. However, in low-nutrient wetlands this approach did little to reduce invasion. A longer treatment duration (6 years was generally better than a 1-year treatment in high-nutrient wetlands, but was generally worse than the 1-year treatment in low-nutrient wetlands. At the ecosystem level, we found that management effects were relatively modest: there was little effect of management on ecosystem C storage, and while some management strategies decreased wetland nitrogen retention, this effect was transient and disappeared shortly after management ceased. Our results suggest that considering nutrient inputs in invaded wetlands can inform and improve management, and reducing

  4. Nutrient characterisation of river inflow into the estuaries of the ...

    African Journals Online (AJOL)

    2014-10-02

    Oct 2, 2014 ... This study used the DWA long-term monitoring data to determine the nutrient inputs to estuaries from rivers, using the Gouritz Water Management Area (WMA) as a case study. Seasonal profiles, nutrient fluxes, temporal trends and wastewa- ter discharge loads were investigated to identify primary nutri-.

  5. The metabolic response of P. putida KT2442 producing high levels of polyhydroxyalkanoate under single- and multiple-nutrient-limited growth: Highlights from a multi-level omics approach

    Directory of Open Access Journals (Sweden)

    Poblete-Castro Ignacio

    2012-03-01

    Full Text Available Abstract Background Pseudomonas putida KT2442 is a natural producer of polyhydroxyalkanoates (PHAs, which can substitute petroleum-based non-renewable plastics and form the basis for the production of tailor-made biopolymers. However, despite the substantial body of work on PHA production by P. putida strains, it is not yet clear how the bacterium re-arranges its whole metabolism when it senses the limitation of nitrogen and the excess of fatty acids as carbon source, to result in a large accumulation of PHAs within the cell. In the present study we investigated the metabolic response of KT2442 using a systems biology approach to highlight the differences between single- and multiple-nutrient-limited growth in chemostat cultures. Results We found that 26, 62, and 81% of the cell dry weight consist of PHA under conditions of carbon, dual, and nitrogen limitation, respectively. Under nitrogen limitation a specific PHA production rate of 0.43 (g·(g·h-1 was obtained. The residual biomass was not constant for dual- and strict nitrogen-limiting growth, showing a different feature in comparison to other P. putida strains. Dual limitation resulted in patterns of gene expression, protein level, and metabolite concentrations that substantially differ from those observed under exclusive carbon or nitrogen limitation. The most pronounced differences were found in the energy metabolism, fatty acid metabolism, as well as stress proteins and enzymes belonging to the transport system. Conclusion This is the first study where the interrelationship between nutrient limitations and PHA synthesis has been investigated under well-controlled conditions using a system level approach. The knowledge generated will be of great assistance for the development of bioprocesses and further metabolic engineering work in this versatile organism to both enhance and diversify the industrial production of PHAs.

  6. Nutrient limitation in tropical savannas across multiple scales and mechanisms.

    Science.gov (United States)

    Pellegrini, Adam F A

    2016-02-01

    Nutrients have been hypothesized to influence the distribution of the savanna biome through two possible mechanisms. Low nutrient availability may restrict growth rates of trees, thereby allowing for intermittent fires to maintain low tree cover; alternatively, nutrient deficiency may even place an absolute constraint on the ability of forests to form, independent of fire. However, we have little understanding of the scales at which nutrient limitation operates, what nutrients are limiting, and the mechanisms that influence how nutrient limitation regulates savanna-forest transitions. Here, I review literature, synthesize existing data, and present a simple calculation of nutrient demand to evaluate how nutrient limitation may regulate the distribution of the savanna biome. The literature primarily supports the hypothesis that nutrients may interact dynamically with fire to restrict the transition of savanna into forest. A compilation of indirect metrics of nutrient limitation suggest that nitrogen and phosphorus are both in short supply and may limit plants. Nutrient demand calculations provided a number of insights. First, trees required high rates of nitrogen and phosphorus supply relative to empirically determined inputs. Second, nutrient demand increased as landscapes approached the transition point between savanna and forest. Third, the potential for fire-driven nutrient losses remained high throughout transitions, which may exaggerate limitation and could be a key feedback stabilizing the savanna biome. Fourth, nutrient limitation varied between functional groups, with fast-growing forest species having substantially greater nutrient demand and a higher susceptibility to fire-driven nutrient losses. Finally, African savanna trees required substantially larger amounts of nutrients supplied at greater rates, although this varied across plant functional groups. In summary, the ability of nutrients to control transitions emerges at individual and landscape

  7. Nutrient additions to mitigate for loss of Pacific salmon: consequences for stream biofilm and nutrient dynamics

    Science.gov (United States)

    Marcarelli, Amy M.; Baxter, Colden V.; Wipfli, Mark S.

    2014-01-01

    Mitigation activities designed to supplement nutrient and organic matter inputs to streams experiencing decline or loss of Pacific salmon typically presuppose that an important pathway by which salmon nutrients are moved to fish (anadromous and/or resident) is via nutrient incorporation by biofilms and subsequent bottom-up stimulation of biofilm production, which is nutrient-limited in many ecosystems where salmon returns have declined. Our objective was to quantify the magnitude of nutrient incorporation and biofilm dynamics that underpin this indirect pathway in response to experimental additions of salmon carcasses and pelletized fish meal (a.k.a., salmon carcass analogs) to 500-m reaches of central Idaho streams over three years. Biofilm standing crops increased 2–8-fold and incorporated marine-derived nutrients (measured using 15N and 13C) in the month following treatment, but these responses did not persist year-to-year. Biofilms were nitrogen (N) limited before treatments, and remained N limited in analog, but not carcass-treated reaches. Despite these biofilm responses, in the month following treatment total N load was equal to 33–47% of the N added to the treated reaches, and N spiraling measurements suggested that as much as 20%, but more likely 2–3% of added N was taken up by microbes. Design of biologically and cost-effective strategies for nutrient addition will require understanding the rates at which stream microbes take up nutrients and the downstream distance traveled by exported nutrients.

  8. Adapted breeds for organic and low input dairy systems

    DEFF Research Database (Denmark)

    Horn, Marco; Ferris, C; Sairanen, A

    2014-01-01

    Part of SOLID is to understand how contrasting genotypes adapt to a systematic restriction of nutrient and energy supply. In new studies, a number of genotypes identified as being adapted to organic and low input systems were compared with conventional breeds....

  9. GARFEM input deck description

    Energy Technology Data Exchange (ETDEWEB)

    Zdunek, A.; Soederberg, M. (Aeronautical Research Inst. of Sweden, Bromma (Sweden))

    1989-01-01

    The input card deck for the finite element program GARFEM version 3.2 is described in this manual. The program includes, but is not limited to, capabilities to handle the following problems: * Linear bar and beam element structures, * Geometrically non-linear problems (bar and beam), both static and transient dynamic analysis, * Transient response dynamics from a catalog of time varying external forcing function types or input function tables, * Eigenvalue solution (modes and frequencies), * Multi point constraints (MPC) for the modelling of mechanisms and e.g. rigid links. The MPC definition is used only in the geometrically linearized sense, * Beams with disjunct shear axis and neutral axis, * Beams with rigid offset. An interface exist that connects GARFEM with the program GAROS. GAROS is a program for aeroelastic analysis of rotating structures. Since this interface was developed GARFEM now serves as a preprocessor program in place of NASTRAN which was formerly used. Documentation of the methods applied in GARFEM exists but is so far limited to the capacities in existence before the GAROS interface was developed.

  10. Input or intimacy

    Directory of Open Access Journals (Sweden)

    Judit Navracsics

    2014-01-01

    Full Text Available According to the critical period hypothesis, the earlier the acquisition of a second language starts, the better. Owing to the plasticity of the brain, up until a certain age a second language can be acquired successfully according to this view. Early second language learners are commonly said to have an advantage over later ones especially in phonetic/phonological acquisition. Native-like pronunciation is said to be most likely to be achieved by young learners. However, there is evidence of accentfree speech in second languages learnt after puberty as well. Occasionally, on the other hand, a nonnative accent may appear even in early second (or third language acquisition. Cross-linguistic influences are natural in multilingual development, and we would expect the dominant language to have an impact on the weaker one(s. The dominant language is usually the one that provides the largest amount of input for the child. But is it always the amount that counts? Perhaps sometimes other factors, such as emotions, ome into play? In this paper, data obtained from an EnglishPersian-Hungarian trilingual pair of siblings (under age 4 and 3 respectively is analyzed, with a special focus on cross-linguistic influences at the phonetic/phonological levels. It will be shown that beyond the amount of input there are more important factors that trigger interference in multilingual development.

  11. FLUTAN input specifications

    International Nuclear Information System (INIS)

    Borgwaldt, H.; Baumann, W.; Willerding, G.

    1991-05-01

    FLUTAN is a highly vectorized computer code for 3-D fluiddynamic and thermal-hydraulic analyses in cartesian and cylinder coordinates. It is related to the family of COMMIX codes originally developed at Argonne National Laboratory, USA. To a large extent, FLUTAN relies on basic concepts and structures imported from COMMIX-1B and COMMIX-2 which were made available to KfK in the frame of cooperation contracts in the fast reactor safety field. While on the one hand not all features of the original COMMIX versions have been implemented in FLUTAN, the code on the other hand includes some essential innovative options like CRESOR solution algorithm, general 3-dimensional rebalacing scheme for solving the pressure equation, and LECUSSO-QUICK-FRAM techniques suitable for reducing 'numerical diffusion' in both the enthalphy and momentum equations. This report provides users with detailed input instructions, presents formulations of the various model options, and explains by means of comprehensive sample input, how to use the code. (orig.) [de

  12. Modelling concept of lettuce breeding for nutrient efficiency

    NARCIS (Netherlands)

    Kerbiriou, P.J.; Stomph, T.J.; Lammerts Van Bueren, E.; Struik, P.C.

    2014-01-01

    Modern lettuce cultivars are bred for use under high levels of input of water and nutrients, and therefore less adapted to low-input or organic conditions in which nitrate availability varies over time and within the soil profile. To create robust cultivars it is necessary to assess which traits

  13. Soluble organic nutrient fluxes

    Science.gov (United States)

    Robert G. Qualls; Bruce L. Haines; Wayne Swank

    2014-01-01

    Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...

  14. Modeling the soil nutrient balance of integrated agriculture-aquaculture systems in the Mekong Delta, Vietnam

    NARCIS (Netherlands)

    Phong, L.T.; Stoorvogel, J.J.; Mensvoort, van M.E.F.; Udo, H.M.J.

    2011-01-01

    This study quantifies soil nutrient balances of Integrated Agriculture-Aquaculture Systems in the Mekong Delta of Vietnam. Eleven farms were monitored to collect data on farm activities and nutrient inputs and outputs to compute these balances of the rice-based and high input fish system in O Mon

  15. Streamwater chemistry and nutrient budgets for forested watersheds in New England: variability and management implications

    Science.gov (United States)

    J.W. Hornbeck; S.W. Bailey; D.C. Buso; J.B. Shanley

    1997-01-01

    Chemistry of precipitation and streamwater and resulting input-output budgets for nutrient ions were determined concurrently for three years on three upland, forested watersheds located within an 80 km radius in central New England. Chemistry of precipitation and inputs of nutrients via wet deposition were similar among the three watersheds and were generally typical...

  16. GAROS input deck description

    Energy Technology Data Exchange (ETDEWEB)

    Vollan, A.; Soederberg, M. (Aeronautical Research Inst. of Sweden, Bromma (Sweden))

    1989-01-01

    This report describes the input for the programs GAROS1 and GAROS2, version 5.8 and later, February 1988. The GAROS system, developed by Arne Vollan, Omega GmbH, is used for the analysis of the mechanical and aeroelastic properties for general rotating systems. It has been specially designed to meet the requirements of aeroelastic stability and dynamic response of horizontal axis wind energy converters. Some of the special characteristics are: * The rotor may have one or more blades. * The blades may be rigidly attached to the hub, or they may be fully articulated. * The full elastic properties of the blades, the hub, the machine house and the tower are taken into account. * With the same basic model, a number of different analyses can be performed: Snap-shot analysis, Floquet method, transient response analysis, frequency response analysis etc.

  17. Access to Research Inputs

    DEFF Research Database (Denmark)

    Czarnitzki, Dirk; Grimpe, Christoph; Pellens, Maikel

    The viability of modern open science norms and practices depend on public disclosure of new knowledge, methods, and materials. However, increasing industry funding of research can restrict the dissemination of results and materials. We show, through a survey sample of 837 German scientists in life...... sciences, natural sciences, engineering, and social sciences, that scientists who receive industry funding are twice as likely to deny requests for research inputs as those who do not. Receiving external funding in general does not affect denying others access. Scientists who receive external funding...... of any kind are, however, 50% more likely to be denied access to research materials by others, but this is not affected by being funded specifically by industry....

  18. Access to Research Inputs

    DEFF Research Database (Denmark)

    Czarnitzki, Dirk; Grimpe, Christoph; Pellens, Maikel

    2015-01-01

    The viability of modern open science norms and practices depends on public disclosure of new knowledge, methods, and materials. However, increasing industry funding of research can restrict the dissemination of results and materials. We show, through a survey sample of 837 German scientists in life...... sciences, natural sciences, engineering, and social sciences, that scientists who receive industry funding are twice as likely to deny requests for research inputs as those who do not. Receiving external funding in general does not affect denying others access. Scientists who receive external funding...... of any kind are, however, 50 % more likely to be denied access to research materials by others, but this is not affected by being funded specifically by industry...

  19. Nitrogen enrichment and speciation in a coral reef lagoon driven by groundwater inputs of bird guano

    Science.gov (United States)

    McMahon, Ashly; Santos, Isaac R.

    2017-09-01

    While the influence of river inputs on coral reef biogeochemistry has been investigated, there is limited information on nutrient fluxes related to submarine groundwater discharge (SGD). Here, we investigate whether significant saline groundwater-derived nutrient inputs from bird guano drive coral reef photosynthesis and calcification off Heron Island (Great Barrier Reef, Australia). We used multiple experimental approaches including groundwater sampling, beach face transects, and detailed time series observations to assess the dynamics and speciation of groundwater nutrients as they travel across the island and discharge into the coral reef lagoon. Nitrogen speciation shifted from nitrate-dominated groundwater (>90% of total dissolved nitrogen) to a coral reef lagoon dominated by dissolved organic nitrogen (DON; ˜86%). There was a minimum input of nitrate of 2.1 mmol m-2 d-1 into the lagoon from tidally driven submarine groundwater discharge estimated from a radon mass balance model. An independent approach based on the enrichment of dissolved nutrients during isolation at low tide implied nitrate fluxes of 5.4 mmol m-2 d-1. A correlation was observed between nitrate and daytime net ecosystem production and calcification. We suggest that groundwater nutrients derived from bird guano may offer a significant addition to oligotrophic coral reef lagoons and fuel ecosystem productivity and the coastal carbon cycle near Heron Island. The large input of groundwater nutrients in Heron Island may serve as a natural ecological analogue to other coral reefs subject to large nutrient inputs from anthropogenic sources.

  20. Modeling and generating input processes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.E.

    1987-01-01

    This tutorial paper provides information relevant to the selection and generation of stochastic inputs to simulation studies. The primary area considered is multivariate but much of the philosophy at least is relevant to univariate inputs as well. 14 refs.

  1. Produtividade, qualidade dos frutos e estado nutricional do tomateiro tipo longa vida conduzido com um cacho, em cultivo hidropônico, em função das fontes de nutrientes Productivity, fruit quality and nutritional status of single truss long shelf life tomato, cultivated in hydroponic system, with different nutrient sources

    Directory of Open Access Journals (Sweden)

    Adriano A. Fernandes

    2002-12-01

    Full Text Available Avaliou-se a produtividade, qualidade dos frutos e estado nutricional do tomateiro longa vida, conduzido com um cacho e cultivado em soluções nutritivas preparadas com diferentes conjuntos de fontes de nutrientes. O experimento foi conduzido de 04/05/99 a 13/09/99 em casa de vegetação da UFV. Foram avaliados dois conjuntos de fontes de nutrientes para compor as soluções de crescimento vegetativo e dois para as soluções de frutificação. As combinações desses conjuntos deram origem a quatro tratamentos que foram dispostos no delineamento de blocos ao acaso com oito repetições. As mudas de tomate, híbrido Carmen, com 36 dias de idade foram colocadas em vasos de 8,6 L, com espaçamento de 0,35 x 0,70 m. Foi feita análise foliar para determinar o estado nutricional da planta. Avaliou-se também a partição dos nutrientes Ca, Mg e K no fruto. Os dados obtidos foram submetidos à análise de variância e as médias dos tratamentos, comparadas pelo teste de Tukey a 5% de probabilidade. Para as características avaliadas não foram encontradas diferenças significativas entre os tratamentos. A produção média de frutos por planta foi de 920 g, com ciclo de 96 dias, o que corresponderia no espaçamento adotado à produtividade média de 142 t ha-1 ano-1. A concentração de N, P, K, Ca, Mg e S, nas folhas foram, respectivamente, 3,18; 1,25; 5,11; 4,50; 0,88; e 1,79 dag kg-1, e as concentrações de Fe, Zn, Cu, Mn e B foram, respectivamente, 209; 96; 10; 665; e 209 mg kg-1. No fruto o Ca e K apresentaram maior concentração na região proximal ao pedúnculo, ao contrário do Mg, que nessa porção apresentou menor concentração.There were evaluated the yield, fruit quality and nutritional status of single truss and long shelf life tomato, cultivated in nutritive solutions prepared with different nutrient sources. The experiment was carried out from 04/05/99 to 13/09/99 in a greenhouse of the Universidade Federal de Viçosa, Brazil. Two

  2. Modelling and mapping of spatial differentiated impacts of nitrogen input to ecosystems within the framework of the UNECE-Convention of Air Pollution Prevention. Part I. Simulations of nutrient cycle and leaching form German forest ecosystems considering changes in deposition and climate; Modellierung und Kartierung raeumlich differenzierter Wirkungen von Stickstoffeintraegen in Oekosysteme im Rahmen der UNECE-Luftreinhaltekonvention. Teilbericht I. Simulationen oekosystemarer Stoffumsetzungen und Stoffaustraege aus Waldoekosystemen in Duetschland unter Beruecksichtigung geaenderter Stoffeintraege und Klimabedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Wochele, Sandra; Kiese, Ralf; Butterbach-Bahl, Klaus; Grote, R. [Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen (DE). Inst. for Meteorology and Climate Research Atmospheric Environmental Research (IMK-IFU)

    2010-03-15

    Semi-natural ecosystems are exposed to high atmospheric deposition for decades. In contrary to sulphur deposition which could be significantly reduced due to international conventions on air pollution prevention during the last decades, deposition of both, reduced and oxidized nitrogen is still on a very high level in average 40 kg N ha{sup -1} yr{sup -1} in forest ecosystems in Germany. The FuE-Project ''Modelling and mapping of spatial differentiated impacts of nitrogen input to ecosystems within the framework of the UNECE - Convention of Air Pollution Prevention'' was jointly conducted by 4 partner institutions and studied impacts of atmospheric nitrogen deposition and climate change on physico-chemical properties of forest soils, nutrient storage and nutrient export (Karlsruhe Institute of Technology, IMK-IFU) as well as biodiversity of vegetation (OeKO-DATA and Waldkunde Institute Eberswalde) and soil organisms (Giessen University). Work carried out at IMK-IFU initially concentrated on the implementation of the soil acidification model SAFE into the biogeochemical model framework MoBiLE already developed at IMK-IFU. Based on different deposition and climate scenarios prediction of the soil C/N ratio, nitrogen losses (N{sub 2}O emissions) into the atmosphere and via nitrate leaching into the hydrosphere were made using the biogeochemical Forest-DNDC-SAFE model (realized from the MoBiLE framework). Additionally changes in base saturation and pH values were simulated for the period 1920-2060. Simulation results for 62 Level II sites in Germany show, that with the decline of the SO{sub 4}{sup -} deposition soil acidification could be mitigated, although sites with high nitrogen deposition (> 40 kg N ha{sup -1} yr{sup -1}) do recover slower than others with lower nitrogen deposition. At most sites the decline in nitrogen deposition did not yet lead to a regeneration concerning nutrient status (significant re-widening of the C/N ratio) and

  3. Reprocessing input data validation

    International Nuclear Information System (INIS)

    Persiani, P.J.; Bucher, R.G.; Pond, R.B.; Cornella, R.J.

    1990-01-01

    The Isotope Correlation Technique (ICT), in conjunction with the gravimetric (Pu/U ratio) method for mass determination, provides an independent verification of the input accountancy at the dissolver or accountancy stage of the reprocessing plant. The Isotope Correlation Technique has been applied to many classes of domestic and international reactor systems (light-water, heavy-water, graphite, and liquid-metal) operating in a variety of modes (power, research, production, and breeder), and for a variety of reprocessing fuel cycle management strategies. Analysis of reprocessing operations data based on isotopic correlations derived for assemblies in a PWR environment and fuel management scheme, yielded differences between the measurement-derived and ICT-derived plutonium mass determinations of (-0.02 ± 0.23)% for the measured U-235 and (+0.50 ± 0.31)% for the measured Pu-239, for a core campaign. The ICT analyses has been implemented for the plutonium isotopics in a depleted uranium assembly in a heavy-water, enriched uranium system and for the uranium isotopes in the fuel assemblies in light-water, highly-enriched systems. 7 refs., 5 figs., 4 tabs

  4. Nutrient delivery to Lake Winnipeg from the Red-Assiniboine River Basin – A binational application of the SPARROW model

    Science.gov (United States)

    Benoy, Glenn A; Jenkinson, R. Wayne; Robertson, Dale M.; Saad, David A.

    2016-01-01

    Excessive phosphorus (TP) and nitrogen (TN) inputs from the Red–Assiniboine River Basin (RARB) have been linked to eutrophication of Lake Winnipeg; therefore, it is important for the management of water resources to understand where and from what sources these nutrients originate. The RARB straddles the Canada–United States border and includes portions of two provinces and three states. This study represents the first binationally focused application of SPAtially Referenced Regressions on Watershed attributes (SPARROW) models to estimate loads and sources of TP and TN by jurisdiction and basin at multiple spatial scales. Major hurdles overcome to develop these models included: (1) harmonization of geospatial data sets, particularly construction of a contiguous stream network; and (2) use of novel calibration steps to accommodate limitations in spatial variability across the model extent and in the number of calibration sites. Using nutrient inputs for a 2002 base year, a RARB TP SPARROW model was calibrated that included inputs from agriculture, forests and wetlands, wastewater treatment plants (WWTPs) and stream channels, and a TN model was calibrated that included inputs from agriculture, WWTPs and atmospheric deposition. At the RARB outlet, downstream from Winnipeg, Manitoba, the majority of the delivered TP and TN came from the Red River Basin (90%), followed by the Upper Assiniboine River and Souris River basins. Agriculture was the single most important TP and TN source for each major basin, province and state. In general, stream channels (historically deposited nutrients and from bank erosion) were the second most important source of TP. Performance metrics for the RARB SPARROW model are similarly robust compared to other, larger US SPARROW models making it a potentially useful tool to address questions of where nutrients originate and their relative contributions to loads delivered to Lake Winnipeg.

  5. Nutrient budgets for large Chinese estuaries

    Directory of Open Access Journals (Sweden)

    S. M. Liu

    2009-10-01

    Full Text Available Chinese rivers deliver about 5–10% of global freshwater input and 15–20% of the global continental sediment to the world ocean. We report the riverine fluxes and concentrations of major nutrients (nitrogen, phosphorus, and silicon in the rivers of the contiguous landmass of China and Korea in the northeast Asia. The rivers are generally enriched with dissolved inorganic nitrogen (DIN and depleted in dissolved inorganic phosphate (PO43− with very high DIN: PO43− concentration ratios. DIN, phosphorus, and silicon levels and loads in rivers are mainly affected by agriculture activities and urbanization, anthropogenic activities and adsorption on particulates, and rock types, climate and physical denudation intensity, respectively. Nutrient transports by rivers in the summer are 3–4 times higher than those in the winter with the exception of NH4+. The flux of NH4+ is rather constant throughout the year due to the anthropogenic sources such as the sewer discharge. As nutrient composition has changed in the rivers, ecosystems in estuaries and coastal sea have also changed in recent decades. Among the changes, a shift of limiting nutrients from phosphorus to nitrogen for phytoplankton production with urbanization is noticeable and in some areas silicon becomes the limiting nutrient for diatom productivity. A simple steady-state mass-balance box model was employed to assess nutrient budgets in the estuaries. The major Chinese estuaries export <15% of nitrogen, <6% of phosphorus required for phytoplankton production and ~4% of silicon required for diatom growth in the Chinese Seas (Bohai, Yellow Sea, East China Sea, South China Sea. This suggests that land-derived nutrients are largely confined to the immediate estuaries, and ecosystem in the coastal sea beyond the estuaries is mainly supported by other nutrient sources such as regeneration, open ocean and

  6. Nutrients that limit growth in the ocean.

    Science.gov (United States)

    Bristow, Laura A; Mohr, Wiebke; Ahmerkamp, Soeren; Kuypers, Marcel M M

    2017-06-05

    Phytoplankton form the basis of the marine food web and are responsible for approximately half of global carbon dioxide (CO2) fixation (∼ 50 Pg of carbon per year). Thus, these microscopic, photosynthetic organisms are vital in controlling the atmospheric CO2 concentration and Earth's climate. Phytoplankton are dependent on sunlight and their CO2-fixation activity is therefore restricted to the upper, sunlit surface ocean (that is, the euphotic zone). CO2 usually does not limit phytoplankton growth due to its high concentration in seawater. However, the vast majority of oceanic surface waters are depleted in inorganic nitrogen, phosphorus, iron and/or silica; nutrients that limit primary production in the ocean (Figure 1). Phytoplankton growth is mainly supported by either the recycling of nutrients or by reintroduction of nutrients from deeper waters by mixing. A small percentage of primary production, though, is fueled by 'external' or 'new' nutrients and it is these nutrients that determine the amount of carbon that can be sequestered long term in the deep ocean. For most nutrients such as phosphorus, iron, and silica, the external supply is limited to atmospheric deposition and/or coastal and riverine inputs, whereas their main sink is the sedimentation of particulate matter. Nitrogen, however, has an additional, biological source, the fixation of N2 gas, as well as biological sinks via the processes of denitrification and anammox. Despite the comparatively small contributions to the overall turnover of nutrients in the ocean, it is these biological processes that determine the ocean's capacity to sequester CO2 from the atmosphere on time scales of ocean circulation (∼ 1000 years). This primer will highlight shifts in the traditional paradigms of nutrient limitation in the ocean, with a focus on the uniqueness of the nitrogen cycling and its biological sources and sinks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Serial Input Output

    Energy Technology Data Exchange (ETDEWEB)

    Waite, Anthony; /SLAC

    2011-09-07

    Serial Input/Output (SIO) is designed to be a long term storage format of a sophistication somewhere between simple ASCII files and the techniques provided by inter alia Objectivity and Root. The former tend to be low density, information lossy (floating point numbers lose precision) and inflexible. The latter require abstract descriptions of the data with all that that implies in terms of extra complexity. The basic building blocks of SIO are streams, records and blocks. Streams provide the connections between the program and files. The user can define an arbitrary list of streams as required. A given stream must be opened for either reading or writing. SIO does not support read/write streams. If a stream is closed during the execution of a program, it can be reopened in either read or write mode to the same or a different file. Records represent a coherent grouping of data. Records consist of a collection of blocks (see next paragraph). The user can define a variety of records (headers, events, error logs, etc.) and request that any of them be written to any stream. When SIO reads a file, it first decodes the record name and if that record has been defined and unpacking has been requested for it, SIO proceeds to unpack the blocks. Blocks are user provided objects which do the real work of reading/writing the data. The user is responsible for writing the code for these blocks and for identifying these blocks to SIO at run time. To write a collection of blocks, the user must first connect them to a record. The record can then be written to a stream as described above. Note that the same block can be connected to many different records. When SIO reads a record, it scans through the blocks written and calls the corresponding block object (if it has been defined) to decode it. Undefined blocks are skipped. Each of these categories (streams, records and blocks) have some characteristics in common. Every stream, record and block has a name with the condition that each

  8. SDR Input Power Estimation Algorithms

    Science.gov (United States)

    Nappier, Jennifer M.; Briones, Janette C.

    2013-01-01

    The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCAN) Testbed on the International Space Station (ISS) provides experimenters an opportunity to develop and demonstrate experimental waveforms in space. The SDR has an analog and a digital automatic gain control (AGC) and the response of the AGCs to changes in SDR input power and temperature was characterized prior to the launch and installation of the SCAN Testbed on the ISS. The AGCs were used to estimate the SDR input power and SNR of the received signal and the characterization results showed a nonlinear response to SDR input power and temperature. In order to estimate the SDR input from the AGCs, three algorithms were developed and implemented on the ground software of the SCAN Testbed. The algorithms include a linear straight line estimator, which used the digital AGC and the temperature to estimate the SDR input power over a narrower section of the SDR input power range. There is a linear adaptive filter algorithm that uses both AGCs and the temperature to estimate the SDR input power over a wide input power range. Finally, an algorithm that uses neural networks was designed to estimate the input power over a wide range. This paper describes the algorithms in detail and their associated performance in estimating the SDR input power.

  9. Intermediate inputs and economic productivity.

    Science.gov (United States)

    Baptist, Simon; Hepburn, Cameron

    2013-03-13

    Many models of economic growth exclude materials, energy and other intermediate inputs from the production function. Growing environmental pressures and resource prices suggest that this may be increasingly inappropriate. This paper explores the relationship between intermediate input intensity, productivity and national accounts using a panel dataset of manufacturing subsectors in the USA over 47 years. The first contribution is to identify sectoral production functions that incorporate intermediate inputs, while allowing for heterogeneity in both technology and productivity. The second contribution is that the paper finds a negative correlation between intermediate input intensity and total factor productivity (TFP)--sectors that are less intensive in their use of intermediate inputs have higher productivity. This finding is replicated at the firm level. We propose tentative hypotheses to explain this association, but testing and further disaggregation of intermediate inputs is left for further work. Further work could also explore more directly the relationship between material inputs and economic growth--given the high proportion of materials in intermediate inputs, the results in this paper are suggestive of further work on material efficiency. Depending upon the nature of the mechanism linking a reduction in intermediate input intensity to an increase in TFP, the implications could be significant. A third contribution is to suggest that an empirical bias in productivity, as measured in national accounts, may arise due to the exclusion of intermediate inputs. Current conventions of measuring productivity in national accounts may overstate the productivity of resource-intensive sectors relative to other sectors.

  10. Using existing questionnaires in latent class analysis: should we use summary scores or single items as input? A methodological study using a cohort of patients with low back pain

    Directory of Open Access Journals (Sweden)

    Nielsen AM

    2016-04-01

    Full Text Available Anne Molgaard Nielsen,1 Werner Vach,2 Peter Kent,1,3 Lise Hestbaek,1,4 Alice Kongsted1,4 1Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark; 2Center for Medical Biometry and Medical Informatics, Medical Center, University of Freiburg, Freiburg, Germany; 3School of Physiotherapy and Exercise Science, Curtin University, Perth, Australia; 4Nordic Institute of Chiropractic and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark Background: Latent class analysis (LCA is increasingly being used in health research, but optimal approaches to handling complex clinical data are unclear. One issue is that commonly used questionnaires are multidimensional, but expressed as summary scores. Using the example of low back pain (LBP, the aim of this study was to explore and descriptively compare the application of LCA when using questionnaire summary scores and when using single items to subgrouping of patients based on multidimensional data. Materials and methods: Baseline data from 928 LBP patients in an observational study were classified into four health domains (psychology, pain, activity, and participation using the World Health Organization’s International Classification of Functioning, Disability, and Health framework. LCA was performed within each health domain using the strategies of summary-score and single-item analyses. The resulting subgroups were descriptively compared using statistical measures and clinical interpretability. Results: For each health domain, the preferred model solution ranged from five to seven subgroups for the summary-score strategy and seven to eight subgroups for the single-item strategy. There was considerable overlap between the results of the two strategies, indicating that they were reflecting the same underlying data structure. However, in three of the four health domains, the single-item strategy resulted in a more nuanced description, in terms

  11. Diffusion Performance of Fertilizer Nutrient through Polymer Latex Film.

    Science.gov (United States)

    An, Di; Yang, Ling; Liu, Boyang; Wang, Ting-Jie; Kan, Chengyou

    2017-12-20

    Matching the nutrient release rate of coated fertilizer with the nutrient uptake rate of the crop is the best way to increase the utilization efficiency of nutrients and reduce environmental pollution from the fertilizer. The diffusion property and mechanism of nutrients through the film are the theoretical basis for the product pattern design of coated fertilizers. For the coated fertilizer with a single-component nutrient, an extended solution-diffusion model was used to describe the difference of nutrient release rate, and the release rate is proportional to the permeation coefficient and the solubility of the nutrient. For the double- and triple-component fertilizer of N-K, N-P, and N-P-K, because of the interaction among nutrient molecules and ions, the release rates of different nutrients were significantly affected by the components in the composite fertilizer. Coating the single-component fertilizer (i.e., nitrogen fertilizer, phosphate fertilizer, and potash fertilizer) first and subsequently bulk blending is expected to be a promising way to adjust flexibly the nutrient release rate to meet the nutrient uptake rate of the crop.

  12. Diagnosing oceanic nutrient deficiency

    Science.gov (United States)

    Moore, C. Mark

    2016-11-01

    The supply of a range of nutrient elements to surface waters is an important driver of oceanic production and the subsequent linked cycling of the nutrients and carbon. Relative deficiencies of different nutrients with respect to biological requirements, within both surface and internal water masses, can be both a key indicator and driver of the potential for these nutrients to become limiting for the production of new organic material in the upper ocean. The availability of high-quality, full-depth and global-scale datasets on the concentrations of a wide range of both macro- and micro-nutrients produced through the international GEOTRACES programme provides the potential for estimation of multi-element deficiencies at unprecedented scales. Resultant coherent large-scale patterns in diagnosed deficiency can be linked to the interacting physical-chemical-biological processes which drive upper ocean nutrient biogeochemistry. Calculations of ranked deficiencies across multiple elements further highlight important remaining uncertainties in the stoichiometric plasticity of nutrient ratios within oceanic microbial systems and caveats with regards to linkages to upper ocean nutrient limitation. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  13. Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum.

    Science.gov (United States)

    Paerl, Hans

    2008-01-01

    Nutrient and hydrologic conditions strongly influence harmful planktonic and benthic cyanobacterial bloom (CHAB) dynamics in aquatic ecosystems ranging from streams and lakes to coastal ecosystems. Urbanization, agricultural and industrial development have led to increased nitrogen (N) and phosphorus (P) discharge, which affect CHAB potentials of receiving waters. The amounts, proportions and chemical composition of N and P sources can influence the composition, magnitude and duration of blooms. This, in turn, has ramifications for food web dynamics (toxic or inedible CHABs), nutrient and oxygen cycling and nutrient budgets. Some CHABs are capable of N2 fixation, a process that can influence N availability and budgets. Certain invasive N2 fixing taxa (e.g., Cylindrospermopsis, Lyngbya) also effectively compete for fixed N during spring, N-enriched runoff periods, while they use N2 fixation to supplant their N needs during N-deplete summer months. Control of these taxa is strongly dependent on P supply. However, additional factors, such as molar N:P supply ratios, organic matter availability, light attenuation, freshwater discharge, flushing rates (residence time) and water column stability play interactive roles in determining CHAB composition (i.e. N2 fixing vs. non-N2 fixing taxa) and biomass. Bloom potentials of nutrient-impacted waters are sensitive to water residence (or flushing) time, temperatures (preference for > 15 degrees C), vertical mixing and turbidity. These physical forcing features can control absolute growth rates of bloom taxa. Human activities may affect "bottom up" physical-chemical modulators either directly, by controlling hydrologic, nutrient, sediment and toxic discharges, or indirectly, by influencing climate. Control and management of cyanobacterial and other phytoplankton blooms invariably includes nutrient input constraints, most often focused on N and/or P. While single nutrient input constraints may be effective in some water bodies

  14. Essential Nutrients, Feed Classification and Nutrient Content of Feeds

    OpenAIRE

    Hall, John Burton, 1960-; Seay, William W.; Baker, Scott M., 1968-

    2005-01-01

    The cow-calf herd's primary source of nutrition is forages, but forages are variable in nutrient content. By knowing the nutrient content of their base forages, producers can then identify the deficient nutrients that need to be supplemented.

  15. Including spatial data in nutrient balance modelling on dairy farms

    Science.gov (United States)

    van Leeuwen, Maricke; van Middelaar, Corina; Stoof, Cathelijne; Oenema, Jouke; Stoorvogel, Jetse; de Boer, Imke

    2017-04-01

    The Annual Nutrient Cycle Assessment (ANCA) calculates the nitrogen (N) and phosphorus (P) balance at a dairy farm, while taking into account the subsequent nutrient cycles of the herd, manure, soil and crop components. Since January 2016, Dutch dairy farmers are required to use ANCA in order to increase understanding of nutrient flows and to minimize nutrient losses to the environment. A nutrient balance calculates the difference between nutrient inputs and outputs. Nutrients enter the farm via purchased feed, fertilizers, deposition and fixation by legumes (nitrogen), and leave the farm via milk, livestock, manure, and roughages. A positive balance indicates to which extent N and/or P are lost to the environment via gaseous emissions (N), leaching, run-off and accumulation in soil. A negative balance indicates that N and/or P are depleted from soil. ANCA was designed to calculate average nutrient flows on farm level (for the herd, manure, soil and crop components). ANCA was not designed to perform calculations of nutrient flows at the field level, as it uses averaged nutrient inputs and outputs across all fields, and it does not include field specific soil characteristics. Land management decisions, however, such as the level of N and P application, are typically taken at the field level given the specific crop and soil characteristics. Therefore the information that ANCA provides is likely not sufficient to support farmers' decisions on land management to minimize nutrient losses to the environment. This is particularly a problem when land management and soils vary between fields. For an accurate estimate of nutrient flows in a given farming system that can be used to optimize land management, the spatial scale of nutrient inputs and outputs (and thus the effect of land management and soil variation) could be essential. Our aim was to determine the effect of the spatial scale of nutrient inputs and outputs on modelled nutrient flows and nutrient use efficiencies

  16. Nutrient Content Claims

    Science.gov (United States)

    ... 8, 2014 Articles from Diabetes Forecast® magazine: wcie-nutrition, . In this section Food What Can I Eat Food Tips Eating Out Quick Meal Ideas Cutting Back on Sodium Nutrient Content Claims Snacks Taking ...

  17. Effects of Nitrogen Inputs and Watershed Characteristics on Summer Stream Nitrogen Concentrations: A National-Scale Analysis

    Science.gov (United States)

    Bellmore, R. A.; Compton, J.; Weber, M.; Hill, R. A.; Thornbrugh, D.; Brooks, J. R.

    2015-12-01

    Nitrogen (N) inputs to the landscape have been linked previously to N loads exported from watersheds at the national scale; however, stream N concentration is arguably more relevant than N load for drinking water quality, freshwater biological responses and establishment of nutrient criteria. In this study, we combine national-scale anthropogenic N input data, including synthetic fertilizer, crop biological N fixation, manure applied to farmland, atmospheric N deposition, and point source inputs, with data from the 2008-09 National Rivers and Streams Assessment to quantify the relationship between N inputs and in-stream concentrations of total N (TN), dissolved inorganic N (DIN), and total organic N (TON) (calculated as TN - DIN). In conjunction with simple linear regression, we use multiple regression to understand how watershed and stream reach attributes modify the effect of N inputs on N concentrations. Median TN was 0.50 mg N L-1 with a maximum of 25.8 mg N L-1. Total N inputs ranged from less than 1 to 196 kg N ha-1 y-1, with a median of 14.4 kg N ha-1 y-1. Atmospheric N deposition was the single largest anthropogenic N source in the majority of sites, but agricultural sources generally dominate total N inputs in sites with elevated N concentrations. The sum of all N inputs were positively correlated with concentrations of all forms of N [r2 = 0.44, 0.43, and 0.18 for TN, DIN, and TON, respectively (all log-transformed), n = 1112], indicating that watershed N inputs are strongly related to stream N concentrations during the summer, despite this being a biologically active and N-retentive period. Additionally, model results suggest that watershed characteristics like wetland area, riparian disturbance and forest cover moderate the effects of watershed N loading on in-stream N concentrations, and different forms of N are likely to respond differently to increasing agricultural and atmospheric N inputs depending on local watershed characteristics.

  18. Precipitation controls on nutrient budgets in subtropical and tropical forests and the implications under changing climate

    Science.gov (United States)

    Chang, Chung-Te; Wang, Lih-Jih; Huang, Chuan, Jr.; Liu, Chiung-Pin; Wang, Chiao-Ping; Lin, Neng-Huei; Wang, Lixin; Lin, Teng-Chiu

    2017-05-01

    Biological, geological and hydrological drivers collectively control forest biogeochemical cycling. However, based on a close examination of recent literature, we argue that the role of hydrological control particularly precipitation on nutrient budgets is significantly underestimated in subtropical and tropical forests, hindering our predictions of future forest nutrient status under a changing climate in these systems. To test this hypothesis, we analyzed two decades of monthly nutrient input and output data in precipitation and streamwater from a subtropical forested watershed in Taiwan, one of the few sites that has long-term nutrient input-output data in the tropics and subtropics. The results showed that monthly input and output of all ions and budgets (output - input) of most ions were positively correlated with precipitation quantity and there was a surprisingly greater net ion export during the wet growing season, indicating strong precipitation control on the nutrient budget. The strong precipitation control is also supported by the divergence of acidic precipitation and near neutral acidity of streamwater, with the former being independent from precipitation quantity but the latter being positively related to precipitation quantity. An additional synthesis of annual precipitation quantity and nutrient budgets of 32 forests across the globe showed a strong correlation between precipitation quantity and nutrient output-input budget, indicating that strong precipitation control is ubiquitous at the global scale and is particularly important in the humid tropical and subtropical forests. Our results imply that climate change could directly affect ecosystem nutrient cycling in the tropics through changes in precipitation pattern and amount.

  19. Long Term Large Scale river nutrient changes across the UK

    Science.gov (United States)

    Bell, Victoria; Naden, Pam; Tipping, Ed; Davies, Helen; Davies, Jessica; Dragosits, Ulli; Muhammed, Shibu; Quinton, John; Stuart, Marianne; Whitmore, Andy; Wu, Lianhai

    2017-04-01

    During recent decades and centuries, pools and fluxes of Carbon, Nitrogen and Phosphorus (C, N and P) in UK rivers and ecosystems have been transformed by the spread and fertiliser-based intensification of agriculture (necessary to sustain human populations), by atmospheric pollution, by human waste (rising in line with population growth), and now by climate change. The principal objective of the UK's NERC-funded Macronutrients LTLS research project has been to account for observable terrestrial and aquatic pools, concentrations and fluxes of C, N and P on the basis of past inputs, biotic and abiotic interactions, and transport processes. More specifically, over the last 200 years, what have been the temporal responses of plant and soil nutrient pools in different UK catchments to nutrient enrichment, and what have been the consequent effects on nutrient transfers from land to the atmosphere, freshwaters and estuaries? The work described here addresses the second question by providing an integrated quantitative description of the interlinked land and water pools and annual fluxes of C, N and P for UK catchments over time. A national-scale modelling environment has been developed, combining simple physically-based gridded models that can be parameterised using recent observations before application to long timescales. The LTLS Integrated Model (LTLS-IM) uses readily-available driving data (climate, land-use, nutrient inputs, topography), and model estimates of both terrestrial and freshwater nutrient loads have been compared with measurements from sites across the UK. Here, the focus is on the freshwater nutrient component of the LTLS-IM, but the terrestrial nutrient inputs required for this are provided by models of nutrient processes in semi-natural and agricultural systems, and from simple models of nutrients arising from human waste. In the freshwater model, lateral routing of dissolved and particulate nutrients and within-river processing such as

  20. Managed nutrient reduction impacts on nutrient concentrations, water clarity, primary production, and hypoxia in a north temperate estuary

    Science.gov (United States)

    Oviatt, Candace; Smith, Leslie; Krumholz, Jason; Coupland, Catherine; Stoffel, Heather; Keller, Aimee; McManus, M. Conor; Reed, Laura

    2017-12-01

    Except for the Providence River and side embayments like Greenwich Bay, Narragansett Bay can no longer be considered eutrophic. In summer 2012 managed nitrogen treatment in Narragansett Bay achieved a goal of reducing effluent dissolved inorganic nitrogen inputs by over 50%. Narragansett Bay represents a small northeast US estuary that had been heavily loaded with sewage effluent nutrients since the late 1800s. The input reduction was reflected in standing stock nutrients resulting in a statistically significant 60% reduction in concentration. In the Providence River estuary, total nitrogen decreased from 100 μm to about 40 μm, for example. We tested four environmental changes that might be associated with the nitrogen reduction. System apparent production was significantly decreased by 31% and 45% in the upper and mid Bay. Nutrient reductions resulted in statistically improved water clarity in the mid and upper Bay and in a 34% reduction in summer hypoxia. Nitrogen reduction also reduced the winter spring diatom bloom; winter chlorophyll levels after nutrient reduction have been significantly lower than before the reduction. The impact on the Bay will continue to evolve over the next few years and be a natural experiment for other temperate estuaries that will be experiencing nitrogen reduction. To provide perspective we review factors effecting hypoxia in other estuaries with managed nutrient reduction and conclude that, as in Narragansett Bay, physical factors can be as important as nutrients. On a positive note managed nutrient reduction has mitigated further deterioration in most estuaries.

  1. Material input of nuclear fuel

    International Nuclear Information System (INIS)

    Rissanen, S.; Tarjanne, R.

    2001-01-01

    The Material Input (MI) of nuclear fuel, expressed in terms of the total amount of natural material needed for manufacturing a product, is examined. The suitability of the MI method for assessing the environmental impacts of fuels is also discussed. Material input is expressed as a Material Input Coefficient (MIC), equalling to the total mass of natural material divided by the mass of the completed product. The material input coefficient is, however, only an intermediate result, which should not be used as such for the comparison of different fuels, because the energy contents of nuclear fuel is about 100 000-fold compared to the energy contents of fossil fuels. As a final result, the material input is expressed in proportion to the amount of generated electricity, which is called MIPS (Material Input Per Service unit). Material input is a simplified and commensurable indicator for the use of natural material, but because it does not take into account the harmfulness of materials or the way how the residual material is processed, it does not alone express the amount of environmental impacts. The examination of the mere amount does not differentiate between for example coal, natural gas or waste rock containing usually just sand. Natural gas is, however, substantially more harmful for the ecosystem than sand. Therefore, other methods should also be used to consider the environmental load of a product. The material input coefficient of nuclear fuel is calculated using data from different types of mines. The calculations are made among other things by using the data of an open pit mine (Key Lake, Canada), an underground mine (McArthur River, Canada) and a by-product mine (Olympic Dam, Australia). Furthermore, the coefficient is calculated for nuclear fuel corresponding to the nuclear fuel supply of Teollisuuden Voima (TVO) company in 2001. Because there is some uncertainty in the initial data, the inaccuracy of the final results can be even 20-50 per cent. The value

  2. Comparison of robust input shapers

    Science.gov (United States)

    Vaughan, Joshua; Yano, Aika; Singhose, William

    2008-09-01

    The rapid movement of machines is a challenging control problem because it often results in high levels of vibration. As a result, flexible machines are typically moved relatively slowly. Input shaping is a control method that allows much higher speeds of motion by limiting vibration induced by the reference command. To design an input-shaping controller, estimates of the system natural frequency and damping ratio are required. However, real world systems cannot be modeled exactly, making the robustness to modeling errors an important consideration. Many robust input shapers have been developed, but robust shapers typically have longer durations that slow the system response. This creates a compromise between shaper robustness and rise time. This paper analyzes the compromise between rapidity of motion and shaper robustness for several input-shaping methods. Experimental results from a portable bridge crane verify the theoretical predictions.

  3. Impact of Temperature and Nutrients on Carbon: Nutrient Tissue Stoichiometry of Submerged Aquatic Plants: An Experiment and Meta-Analysis.

    Science.gov (United States)

    Velthuis, Mandy; van Deelen, Emma; van Donk, Ellen; Zhang, Peiyu; Bakker, Elisabeth S

    2017-01-01

    Human activity is currently changing our environment rapidly, with predicted temperature increases of 1-5°C over the coming century and increased nitrogen and phosphorus inputs in aquatic ecosystems. In the shallow parts of these ecosystems, submerged aquatic plants enhance water clarity by resource competition with phytoplankton, provide habitat, and serve as a food source for other organisms. The carbon:nutrient stoichiometry of submerged aquatic plants can be affected by changes in both temperature and nutrient availability. We hypothesized that elevated temperature leads to higher carbon:nutrient ratios through enhanced nutrient-use efficiency, while nutrient addition leads to lower carbon:nutrient ratios by the luxurious uptake of nutrients. We addressed these hypotheses with an experimental and a meta-analytical approach. We performed a full-factorial microcosm experiment with the freshwater plant Elodea nuttallii grown at 10, 15, 20, and 25°C on sediment consisting of pond soil/sand mixtures with 100, 50, 25, and 12.5% pond soil. To address the effect of climatic warming and nutrient addition on the carbon:nutrient stoichiometry of submerged freshwater and marine plants we performed a meta-analysis on experimental studies that elevated temperature and/or added nutrients (nitrogen and phosphorus). In the microcosm experiment, C:N ratios of Elodea nuttallii decreased with increasing temperature, and this effect was most pronounced at intermediate nutrient availability. Furthermore, higher nutrient availability led to decreased aboveground C:P ratios. In the meta-analysis, nutrient addition led to a 25, 22, and 16% reduction in aboveground C:N and C:P ratios and belowground C:N ratios, accompanied with increased N content. No consistent effect of elevated temperature on plant stoichiometry could be observed, as very few studies were found on this topic and contrasting results were reported. We conclude that while nutrient addition consistently leads to

  4. Impact of Temperature and Nutrients on Carbon: Nutrient Tissue Stoichiometry of Submerged Aquatic Plants: An Experiment and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Mandy Velthuis

    2017-05-01

    Full Text Available Human activity is currently changing our environment rapidly, with predicted temperature increases of 1–5°C over the coming century and increased nitrogen and phosphorus inputs in aquatic ecosystems. In the shallow parts of these ecosystems, submerged aquatic plants enhance water clarity by resource competition with phytoplankton, provide habitat, and serve as a food source for other organisms. The carbon:nutrient stoichiometry of submerged aquatic plants can be affected by changes in both temperature and nutrient availability. We hypothesized that elevated temperature leads to higher carbon:nutrient ratios through enhanced nutrient-use efficiency, while nutrient addition leads to lower carbon:nutrient ratios by the luxurious uptake of nutrients. We addressed these hypotheses with an experimental and a meta-analytical approach. We performed a full-factorial microcosm experiment with the freshwater plant Elodea nuttallii grown at 10, 15, 20, and 25°C on sediment consisting of pond soil/sand mixtures with 100, 50, 25, and 12.5% pond soil. To address the effect of climatic warming and nutrient addition on the carbon:nutrient stoichiometry of submerged freshwater and marine plants we performed a meta-analysis on experimental studies that elevated temperature and/or added nutrients (nitrogen and phosphorus. In the microcosm experiment, C:N ratios of Elodea nuttallii decreased with increasing temperature, and this effect was most pronounced at intermediate nutrient availability. Furthermore, higher nutrient availability led to decreased aboveground C:P ratios. In the meta-analysis, nutrient addition led to a 25, 22, and 16% reduction in aboveground C:N and C:P ratios and belowground C:N ratios, accompanied with increased N content. No consistent effect of elevated temperature on plant stoichiometry could be observed, as very few studies were found on this topic and contrasting results were reported. We conclude that while nutrient addition

  5. Micro-Level Management of Agricultural Inputs: Emerging Approaches

    Directory of Open Access Journals (Sweden)

    Jonathan Weekley

    2012-12-01

    Full Text Available Through the development of superior plant varieties that benefit from high agrochemical inputs and irrigation, the agricultural Green Revolution has doubled crop yields, yet introduced unintended impacts on environment. An expected 50% growth in world population during the 21st century demands novel integration of advanced technologies and low-input production systems based on soil and plant biology, targeting precision delivery of inputs synchronized with growth stages of crop plants. Further, successful systems will integrate subsurface water, air and nutrient delivery, real-time soil parameter data and computer-based decision-making to mitigate plant stress and actively manipulate microbial rhizosphere communities that stimulate productivity. Such an approach will ensure food security and mitigate impacts of climate change.

  6. Nutrient Dynamics of the Delta: Effects on Primary Producers

    Directory of Open Access Journals (Sweden)

    Clifford N. Dahm

    2016-12-01

    Full Text Available doi: https://doi.org/10.15447/sfews.2016v14iss4art4Increasing clarity of Delta waters, the emergence of harmful algal blooms, the proliferation of aquatic water weeds, and the altered food web of the Delta have brought nutrient dynamics to the forefront. This paper focuses on the sources of nutrients, the transformation and uptake of nutrients, and the links of nutrients to primary producers. The largest loads of nutrients to the Delta come from the Sacramento River with the San Joaquin River seasonally important, especially in the summer. Nutrient concentrations reflect riverine inputs in winter and internal biological processes during periods of lower flow with internal nitrogen losses within the Delta estimated at approximately 30% annually. Light regime, grazing pressure, and nutrient availability influence rates of primary production at different times and locations within the Delta. The roles of the chemical form of dissolved inorganic nitrogen in growth rates of primary producers in the Delta and the structure of the open-water algal community are currently topics of much interest and considerable debate. Harmful algal blooms have been noted since the late 1990s, and the extent of invasive aquatic macrophytes (both submerged and free-floating forms has increased especially during years of drought. Elevated nutrient loads must be considered in terms of their ability to support this excess biomass. Modern sensor technology and networks are now deployed that make high-frequency measurements of nitrate, ammonium, and phosphate. Data from such instruments allow a much more detailed assessment of the spatial and temporal dynamics of nutrients. Four fruitful directions for future research include utilizing continuous sensor data to estimate rates of primary production and ecosystem respiration, linking hydrodynamic models of the Delta with the transport and fate of dissolved nutrients, studying nutrient dynamics in various habitat types, and

  7. Nutrients distribution and trophic status assessment in the northern Beibu Gulf, China

    Science.gov (United States)

    Lai, Junxiang; Jiang, Fajun; Ke, Ke; Xu, Mingben; Lei, Fu; Chen, Bo

    2014-09-01

    Using historical and 2010 field data, the distribution of nutrients in the northern Beibu Gulf of China is described. There was a decreasing trend in the concentration of nutrients from the north coast to offshore waters of the northern Beibu Gulf, reflecting the influence of inputs from land-based sources. High concentrations of dissolved inorganic nitrogen (DIN) and phosphate (PO4-P) occurred mainly at Fangchenggang Bay, Qinzhou Bay, and Lianzhou Bay. Four different methods were used to assess eutrophication. The trophic status of the Beibu Gulf was characterized using the single factor, Eutrophication index (EI), Trophic index (TRIX) and Assessment of Estuarine Trophic Status (ASSETS) methods. Based on nutrient concentrations, 73.9% of DIN and 26.7% of PO4-P samples exceeded the fourth grade Seawater Quality Standard of China. Eutrophication index values varied widely, but higher levels of eutrophication were generally found in bays and estuaries. TRIX values ranged from 2.61 to 7.27, with an average of 4.98, indicating a mesotrophic and moderately productive system. A positive correlation between TRIX and harmful algal species richness and abundance was observed. The ASSETS model evaluates eutrophication status based on a Pressure-State-Response approach, including three main indices: influencing factors, overall eutrophic condition, and future outlook. The Beibu Gulf was graded as moderate using ASSETS. The single factor and Chinese nutrient index methods were considered inadequate for the assessment of trophic status. TRIX can be used as an indicator of trophic state and ASSETS showed good potential to assess eutrophication. The results of TRIX and ASSETS depend on threshold values. To establish these values, further research is required within the northern Beibu Gulf.

  8. Nutrient synchrony in preruminant calves

    NARCIS (Netherlands)

    Borne, van den J.J.G.C.

    2006-01-01

    In animal nutrition, the nutrient composition of the daily feed supply is composed to match the nutrient requirements for the desired performance. The time of nutrient availability within a day is usually considered not to affect the fate of nutrients. The aim of this thesis was to evaluate effects

  9. Critical double impulse input and bound of earthquake input energy to building structure

    Directory of Open Access Journals (Sweden)

    Kotaro eKojima

    2015-06-01

    Full Text Available A theory of earthquake input energy to building structures under single impulse is useful for disclosing the property of energy transfer function. This property shows that the area of the energy transfer function is constant irrespective of natural period and damping of building structures. However single impulse may be unrealistic from a certain viewpoint because the frequency characteristic of input cannot be expressed by this input. In order to resolve such issue, a double impulse is introduced in this paper. The frequency characteristic of the Fourier amplitude of the double impulse is found in an explicit manner and a critical excitation problem is formulated with an interval of two impulses as a variable. The solution to that critical excitation problem is derived. An upper bound of the earthquake input energy is then derived by taking full advantage of the property of the energy transfer function that the area of the energy transfer function is constant. The relation of the double impulse to the corresponding one-cycle sinusoidal wave as a representative of near-fault pulse-type waves is also investigated.

  10. Changes in nitrogen isotope ratios in estuarine biota following nutrient reductions to Narragansett Bay

    Science.gov (United States)

    Increased nutrient inputs globally have resulted in widespread eutrophication to many coastal water bodies including Narragansett Bay. Efforts to reduce point source nitrogen load¬ings from waste water treatment facilities (WWTFs) and combined sewer overflows (CSOs) started i...

  11. Integrated Urban Nutrient Management

    Science.gov (United States)

    Nhapi, I.; Veenstra, S.; Siebel, M. A.; Gijzen, H. J.

    Most cities, especially from the developing countries, are facing serious problems with the management of nutrients, necessitating an urgent review of current waste management systems. Whilst highly efficient technologies are available, the inclusion of these in a well-thought out and systematic approach is necessary to contain the nutrient influxes and outfluxes from towns. Five intervention measures are proposed in this paper. The first is to manage the use and generation of nutrients by drastically minimising water consumption and employing other cleaner production approaches. The second deals with the optimal reuse of nutrients and water at the smallest possible level, like at the household and on-plot level. The second option is to covert the waste into something useful for reuse, and, where not possible, to something which is envi- ronmentally neutral. This involves treatment, but applying technologies that makes the best use of side products via reuse. Where the first three options will have failed, two least preferred options could be used. Waste can be dispersed or diluted to enhance self-purification capacities of downstream water bodies. The last option is to store the wastewater for some parts of the year when there is water shortage to allow for polishing during the standing period. The success of urban nutrient planning requires an integrated approach, proving specific solutions to specific situations. This, in turn, requires appropriate institutional responses.

  12. Mariculture: significant and expanding cause of coastal nutrient enrichment

    International Nuclear Information System (INIS)

    Bouwman, Lex; Beusen, Arthur; Glibert, Patricia M; Overbeek, Ciska; Pawlowski, Marcin; Herrera, Jorge; Mulsow, Sandor; Yu, Rencheng; Zhou, Mingjiang

    2013-01-01

    Mariculture (marine aquaculture) generates nutrient waste either through the excretion by the reared organisms, or through direct enrichment by, or remineralization of, externally applied feed inputs. Importantly, the waste from fish or shellfish cannot easily be managed, as most is in dissolved form and released directly to the aquatic environment. The release of dissolved and particulate nutrients by intensive mariculture results in increasing nutrient loads (finfish and crustaceans), and changes in nutrient stoichiometry (all mariculture types). Based on different scenarios, we project that nutrients from mariculture will increase up to six fold by 2050 with exceedance of the nutrient assimilative capacity in parts of the world where mariculture growth is already rapid. Increasing nutrient loads and altered nutrient forms (increased availability of reduced relative to oxidized forms of nitrogen) and/or stoichiometric proportions (altered nitrogen:phosphorus ratios) may promote an increase in harmful algal blooms (HABs) either directly or via stimulation of algae on which mixotrophic HABs may feed. HABs can kill or intoxicate the mariculture product with severe economic losses, and can increase risks to human health. (letter)

  13. The subtropical nutrient spiral

    Science.gov (United States)

    Jenkins, William J.; Doney, Scott C.

    2003-12-01

    We present an extended series of observations and more comprehensive analysis of a tracer-based measure of new production in the Sargasso Sea near Bermuda using the 3He flux gauge technique. The estimated annually averaged nitrate flux of 0.84 ± 0.26 mol m-2 yr-1 constitutes only that nitrate physically transported to the euphotic zone, not nitrogen from biological sources (e.g., nitrogen fixation or zooplankton migration). We show that the flux estimate is quantitatively consistent with other observations, including decade timescale evolution of the 3H + 3He inventory in the main thermocline and export production estimates. However, we argue that the flux cannot be supplied in the long term by local diapycnal or isopycnal processes. These considerations lead us to propose a three-dimensional pathway whereby nutrients remineralized within the main thermocline are returned to the seasonally accessible layers within the subtropical gyre. We describe this mechanism, which we call "the nutrient spiral," as a sequence of steps where (1) nutrient-rich thermocline waters are entrained into the Gulf Stream, (2) enhanced diapycnal mixing moves nutrients upward onto lighter densities, (3) detrainment and enhanced isopycnal mixing injects these waters into the seasonally accessible layer of the gyre recirculation region, and (4) the nutrients become available to biota via eddy heaving and wintertime convection. The spiral is closed when nutrients are utilized, exported, and then remineralized within the thermocline. We present evidence regarding the characteristics of the spiral and discuss some implications of its operation within the biogeochemical cycle of the subtropical ocean.

  14. Environmental impacts and nutrient recycling on pastures grazed by cattle

    Directory of Open Access Journals (Sweden)

    J.M.B. Vendramini

    2007-07-01

    Full Text Available Grasslands are being replaced by urbanization and more profitable agricultural activities around the world. Producers may be faced with land constraints and need to consider intensification of the remaining grasslands as a means of maintaining overall production on a decreasing land resource. However, intensification of the grazing system is usually associated with greater nutrient inputs, including those from commercial fertilizers and supplement fed to animals. Excessive loading of nutrients in intensive grazing systems via fertilizer and animal wastes can cause nutrient buildup in the soil and subsequent water quality problems. Surface runoff and leaching of nutrients are the two major process affecting water quality. Nitrogen and P represent major nutrient concerns as related to water quality. Increased nitrate concentrations render groundwater unsuitable for drinking and can cause serious health issues for humans. Excessive N and P concentrations may contribute to eutrophication of streams and lakes. Maximizing efficiency of nutrient recycling through the soil-forage-animal system minimizes off-site nutrient transport and decreases production costs by reducing the quantity of commercial fertilizer needed. Management strategies to reduce soil and water contamination include refining the balance of nutrient inputs from feeds and fertilizers as well as accounting for the nutrients recycled through the decomposition of plant litter and animal wastes. Current interest in the development and adoption of efficient and sustainable agriculture systems has led forage researchers to amplify the scope of grasslands research by increasing multidisciplinary efforts. There is an increased interest in quantifying the impacts of forage-animal management strategies on the environment, with the goal of developing economically viable best management practices that result in optimum forage production and profitability, while protecting the environment

  15. Organic amendments and nutrient leaching in soil columns

    Science.gov (United States)

    The lack of nutrient build up in reclaimed coal mine soils would therefore require additional inputs to maintain plant productivity and establishment of a healthy ecosystem. In a greenhouse experiment, reclaimed coal mine soil were amended with fresh and composted poultry manure at the rates based ...

  16. Mariculture: significant and expanding cause of coastal nutrient enrichment

    NARCIS (Netherlands)

    Bouwman, L.; Beusen, A.; Glibert, P.M.; Overbeek, C.; Pawlowski, M.; Herrera, J.; Mulsow, S.; Yu, R.; Zhou, M.

    2013-01-01

    Mariculture (marine aquaculture) generates nutrient waste either through the excretion by the reared organisms, or through direct enrichment by, or remineralization of, externally applied feed inputs. Importantly, the waste from fish or shellfish cannot easily be managed, as most is in dissolved

  17. Phytoplankton and Nutrient Dynamics of a Tropical Estuarine ...

    African Journals Online (AJOL)

    ... season assemblages were characterized by relatively large number of chlorophyta and pennate diatoms in the freshwater and brackishwater zones of the estuary. The dynamic throughput of the estuary is a function of seasonal nutrient input and the effect of the adjacent sea on the estuary. African Research Review Vol.

  18. Nonlinear responses of coastal salt marshes to nutrient additions and sea level rise

    Science.gov (United States)

    Increasing nutrients and accelerated sea level rise (SLR) can cause marsh loss in some coastal systems. Responses to nutrients and SLR are complex and vary with soil matrix, marsh elevation, sediment inputs, and hydroperiod. We describe field and greenhouse studies examining sing...

  19. Megafauna moves nutrients uphill.

    Science.gov (United States)

    Gross, Michael

    2016-01-11

    Large animals have a disproportionate capacity to transport nutrients along gradients and against water flow directions, making them more available to ecosystems and ultimately saving them from disappearing in sea floor sediments. Megafauna extinctions have reduced this capacity dramatically, while humans and their livestock aren’t stepping in to restore this important ecosystem service.

  20. The advanced LIGO input optics.

    Science.gov (United States)

    Mueller, Chris L; Arain, Muzammil A; Ciani, Giacomo; DeRosa, Ryan T; Effler, Anamaria; Feldbaum, David; Frolov, Valery V; Fulda, Paul; Gleason, Joseph; Heintze, Matthew; Kawabe, Keita; King, Eleanor J; Kokeyama, Keiko; Korth, William Z; Martin, Rodica M; Mullavey, Adam; Peold, Jan; Quetschke, Volker; Reitze, David H; Tanner, David B; Vorvick, Cheryl; Williams, Luke F; Mueller, Guido

    2016-01-01

    The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design.

  1. The advanced LIGO input optics

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Chris L., E-mail: cmueller@phys.ufl.edu; Arain, Muzammil A.; Ciani, Giacomo; Feldbaum, David; Fulda, Paul; Gleason, Joseph; Heintze, Matthew; Martin, Rodica M.; Reitze, David H.; Tanner, David B.; Williams, Luke F.; Mueller, Guido [University of Florida, Gainesville, Florida 32611 (United States); DeRosa, Ryan T.; Effler, Anamaria; Kokeyama, Keiko [Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Frolov, Valery V.; Mullavey, Adam [LIGO Livingston Observatory, Livingston, Louisiana 70754 (United States); Kawabe, Keita; Vorvick, Cheryl [LIGO Hanford Observatory, Richland, Washington 99352 (United States); King, Eleanor J. [University of Adelaide, Adelaide, SA 5005 (Australia); and others

    2016-01-15

    The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design.

  2. Decentralized control with input saturation

    NARCIS (Netherlands)

    Saberi, Ali; Stoorvogel, Antonie Arij; Sannuti, Peddapullaiah

    In decentralized control it is known that the system can be stabilized only if the so-called fixed modes are all stable. If we have input constraints then (semi-)global stability requires all poles to be in the closed left half plane. This paper establishes that these two requirements are necessary

  3. Remote input/output station

    CERN Multimedia

    1972-01-01

    A general view of the remote input/output station installed in building 112 (ISR) and used for submitting jobs to the CDC 6500 and 6600. The card reader on the left and the line printer on the right are operated by programmers on a self-service basis.

  4. World Input-Output Network.

    Directory of Open Access Journals (Sweden)

    Federica Cerina

    Full Text Available Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD is one of the first efforts to construct the global multi-regional input-output (GMRIO tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries.

  5. Parameter setting and input reduction

    NARCIS (Netherlands)

    Evers, A.; van Kampen, N.J.|info:eu-repo/dai/nl/126439737

    2008-01-01

    The language acquisition procedure identifies certain properties of the target grammar before others. The evidence from the input is processed in a stepwise order. Section 1 equates that order and its typical effects with an order of parameter setting. The question is how the acquisition procedure

  6. Discrete Input Signaling for MISO Visible Light Communication Channels

    KAUST Repository

    Arfaoui, Mohamed Amine

    2017-05-12

    In this paper, we study the achievable secrecy rate of visible light communication (VLC) links for discrete input distributions. We consider single user single eavesdropper multiple-input single-output (MISO) links. In addition, both beamforming and robust beamforming are considered. In the former case, the location of the eavesdropper is assumed to be known, whereas in the latter case, the location of the eavesdropper is unknown. We compare the obtained results with those achieved by some continuous distributions including the truncated generalized normal (TGN) distribution and the uniform distribution. We numerically show that the secrecy rate achieved by the discrete input distribution with a finite support is significantly improved as compared to those achieved by the TGN and the uniform distributions.

  7. Do organic inputs matter – a meta-analysis of additional yield effects for arable crops in Europe

    NARCIS (Netherlands)

    Hijbeek, R.; Ittersum, van M.K.; Berge, Ten H.F.M.; Gort, G.; Spiegel, H.; Whitmore, A.P.

    2017-01-01

    Background and aims: Organic inputs have a positive effect on the soil organic matter balance. They are therefore an important asset for soil fertility and crop growth. This study quantifies the additional yield effect due to organic inputs for arable crops in Europe when macro-nutrients are not

  8. Identification of genotypic variation for nitrogen response in potato (Solanum tuberosum) under low nitrogen input circumstances

    OpenAIRE

    Tiemens-Hulscher, M.; Lammerts Van Bueren, E.; Struik, P.C.

    2009-01-01

    Nitrogen is an essential nutrient for crop growth. The demand for nitrogen in the potato crop is relatively high. However, in organic farming nitrogen input is rather limited, compared with conventional farming. In this research nine potato varieties were tested at three nitrogen levels. Genotypic variation for yield, leaf area index, period of maximum soil cover, sensitivity for N-shortage and nitrogen efficiency under low input circumstances was found. However, in these experiments varietie...

  9. Do organic inputs matter – a meta-analysis of additional yield effects for arable crops in Europe

    OpenAIRE

    Hijbeek, R.; Ittersum, van, M.K.; Berge, Ten, H.F.M.; Gort, G.; Spiegel, H.; Whitmore, A.P.

    2017-01-01

    Background and aims: Organic inputs have a positive effect on the soil organic matter balance. They are therefore an important asset for soil fertility and crop growth. This study quantifies the additional yield effect due to organic inputs for arable crops in Europe when macro-nutrients are not a limiting factor. Methods: A meta-analysis was performed using data from 20 long-term experiments in Europe. Maxima of yield response curves to nitrogen were compared, with and without organic inputs...

  10. Late gestational nutrient restriction

    DEFF Research Database (Denmark)

    Tygesen, Malin Plumhoff; Nielsen, Mette Olaf; Nørgaard, Peder

    2008-01-01

    We investigated the effect of 50% nutrient restriction during the last 6 weeks of gestation on twin-pregnant ewes' plasma glucose, non-esterified fatty acid, ß-hydroxybutyrate, insulin, IGF-1 and leptin concentrations and the effects on lamb birth weight and ewes' lactation performance. Plasma...... metabolite and hormone concentrations in restricted ewes suggest that maternal tissues were being mobilised. Despite the ewes' adaptations their lambs weighed significantly less at birth. Furthermore, colostrum and milk yields were markedly reduced up until the latest measurement at 3 weeks post partum...... despite adlibitum access to feed. Reduced milk yields coincided with reduced plasma IGF-1 concentration pre partum in nutrient restricted ewes indicating, that mammary gland development may have been compromised. The present data suggest that leptin is not involved in the regulation of early lactation...

  11. Nutrients in the nexus

    Science.gov (United States)

    Davidson, Eric A.; Niphong, Rachel; Ferguson, Richard B.; Palm, Cheryl; Osmond, Deanna L.; Baron, Jill S.

    2016-01-01

    Synthetic nitrogen (N) fertilizer has enabled modern agriculture to greatly improve human nutrition during the twentieth century, but it has also created unintended human health and environmental pollution challenges for the twenty-first century. Averaged globally, about half of the fertilizer-N applied to farms is removed with the crops, while the other half remains in the soil or is lost from farmers’ fields, resulting in water and air pollution. As human population continues to grow and food security improves in the developing world, the dual development goals of producing more nutritious food with low pollution will require both technological and socio-economic innovations in agriculture. Two case studies presented here, one in sub-Saharan Africa and the other in Midwestern United States, demonstrate how management of nutrients, water, and energy is inextricably linked in both small-scale and large-scale food production, and that science-based solutions to improve the efficiency of nutrient use can optimize food production while minimizing pollution. To achieve the needed large increases in nutrient use efficiency, however, technological developments must be accompanied by policies that recognize the complex economic and social factors affecting farmer decision-making and national policy priorities. Farmers need access to affordable nutrient supplies and support information, and the costs of improving efficiencies and avoiding pollution may need to be shared by society through innovative policies. Success will require interdisciplinary partnerships across public and private sectors, including farmers, private sector crop advisors, commodity supply chains, government agencies, university research and extension, and consumers.

  12. Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland

    Science.gov (United States)

    Lü, Xiao-Tao; Reed, Sasha; Yu, Qiang; He, Nian-Peng; Wang, Zheng-Wen; Han, Xing-Guo

    2013-01-01

    Human activities have significantly altered nitrogen (N) availability in most terrestrial ecosystems, with consequences for community composition and ecosystem functioning. Although studies of how changes in N availability affect biodiversity and community composition are relatively common, much less remains known about the effects of N inputs on the coupled biogeochemical cycling of N and phosphorus (P), and still fewer data exist regarding how increased N inputs affect the internal cycling of these two elements in plants. Nutrient resorption is an important driver of plant nutrient economies and of the quality of litter plants produce. Accordingly, resorption patterns have marked ecological implications for plant population and community fitness, as well as for ecosystem nutrient cycling. In a semiarid grassland in northern China, we studied the effects of a wide range of N inputs on foliar nutrient resorption of two dominant grasses, Leymus chinensis and Stipa grandis. After 4 years of treatments, N and P availability in soil and N and P concentrations in green and senesced grass leaves increased with increasing rates of N addition. Foliar N and P resorption significantly decreased along the N addition gradient, implying a resorption-mediated, positive plant–soil feedback induced by N inputs. Furthermore, N : P resorption ratios were negatively correlated with the rates of N addition, indicating the sensitivity of plant N and P stoichiometry to N inputs. Taken together, the results demonstrate that N additions accelerate ecosystem uptake and turnover of both N and P in the temperate steppe and that N and P cycles are coupled in dynamic ways. The convergence of N and P resorption in response to N inputs emphasizes the importance of nutrient resorption as a pathway by which plants and ecosystems adjust in the face of increasing N availability.

  13. Bone nutrients for vegetarians.

    Science.gov (United States)

    Mangels, Ann Reed

    2014-07-01

    The process of bone mineralization and resorption is complex and is affected by numerous factors, including dietary constituents. Although some dietary factors involved in bone health, such as calcium and vitamin D, are typically associated with dairy products, plant-based sources of these nutrients also supply other key nutrients involved in bone maintenance. Some research suggests that vegetarian diets, especially vegan diets, are associated with lower bone mineral density (BMD), but this does not appear to be clinically significant. Vegan diets are not associated with an increased fracture risk if calcium intake is adequate. Dietary factors in plant-based diets that support the development and maintenance of bone mass include calcium, vitamin D, protein, potassium, and soy isoflavones. Other factors present in plant-based diets such as oxalic acid and phytic acid can potentially interfere with absorption and retention of calcium and thereby have a negative effect on BMD. Impaired vitamin B-12 status also negatively affects BMD. The role of protein in calcium balance is multifaceted. Overall, calcium and protein intakes in accord with Dietary Reference Intakes are recommended for vegetarians, including vegans. Fortified foods are often helpful in meeting recommendations for calcium and vitamin D. Plant-based diets can provide adequate amounts of key nutrients for bone health. © 2014 American Society for Nutrition.

  14. Strong hydrological control on nutrient cycling of subtropical rainforests

    Science.gov (United States)

    Lin, T. C.; Chang, C. T.; Huang, J. C.; Wang, L.; Lin, N. H.

    2016-12-01

    Forest nutrient cycling is strongly controlled by both biological and hydrological factors. However, based on a close examination of earlier reports, we highlight the role of hydrological control on nutrient cycling at a global scale and is more important at humid tropical and subtropical forests. we analyzed the nutrient budget of precipitation input and stream water output from 1994 to 2013 in a subtropical forest in Taiwan and conducted a data synthesis using results from 32 forests across the globe. The results revealed that monthly input and output of ions were positively correlated with water quantity, indicating hydrological control on nutrient cycling. Hydrological control is also evident from the greater ions export via stream water during the warm and wet growing season. The synthesis also illustrates that strong hydrological control leads to lower nitrogen retention and greater net loss of base cations in humid regions, particularly in the humid tropical and subtropical forests. Our result is of great significance in an era of global climate change because climate change could directly affect ecosystem nutrient cycling particularly in the tropics through changes in patterns of precipitation regime.

  15. Nutrient and Phytoplankton Analysis of a Mediterranean Coastal Area

    Science.gov (United States)

    Sebastiá, M. T.; Rodilla, M.

    2013-01-01

    Identifying and quantifying the key anthropogenic nutrient input sources are essential to adopting management measures that can target input for maximum effect in controlling the phytoplankton biomass. In this study, three systems characterized by distinctive main nutrient sources were sampled along a Mediterranean coast transect. These sources were groundwater discharge in the Ahuir area, the Serpis river discharge in the Venecia area, and a submarine wastewater outfall 1,900 m from the coast. The study area includes factors considered important in determining a coastal area as a sensitive area: it has significant nutrient sources, tourism is a major source of income in the region, and it includes an area of high water residence time (Venecia area) which is affected by the harbor facilities and by wastewater discharges. We found that in the Ahuir and the submarine wastewater outfall areas, the effects of freshwater inputs were reduced because of a greater water exchange with the oligotrophic Mediterranean waters. On the other hand, in the Venecia area, the highest levels of nutrient concentration and phytoplankton biomass were attributed to the greatest water residence time. In this enclosed area, harmful dinoflagellates were detected ( Alexandrium sp. and Dinophysis caudata). If the planned enlargement of the Gandia Harbor proceeds, it may increase the vulnerability of this system and provide the proper conditions of confinement for the dinoflagellate blooms' development. Management measures should first target phosphorus inputs as this is the most potential-limiting nutrient in the Venecia area and comes from a point source that is easier to control. Finally, we recommend that harbor environmental management plans include regular monitoring of water quality in adjacent waters to identify adverse phytoplankton community changes.

  16. Identification of genotypic variation for nitrogen response in potato (Solanum tuberosum) under low nitrogen input circumstances

    NARCIS (Netherlands)

    Tiemens-Hulscher, M.; Lammerts Van Bueren, E.; Struik, P.C.

    2009-01-01

    Nitrogen is an essential nutrient for crop growth. The demand for nitrogen in the potato crop is relatively high. However, in organic farming nitrogen input is rather limited, compared with conventional farming. In this research nine potato varieties were tested at three nitrogen levels. Genotypic

  17. Sewage input reduces the consumption of Rhizophora mangle propagules by crabs in a subtropical mangrove system.

    Science.gov (United States)

    Boehm, Frederike Ricarda; Sandrini-Neto, Leonardo; Moens, Tom; da Cunha Lana, Paulo

    2016-12-01

    Mangrove forests are highly productive and play a major role in global carbon cycling. Their carbon accumulation can be influenced through the consumption of nutrient-poor leaves and propagules by herbivore crabs. Anthropogenic nutrient input from sewage contamination is widespread in these often naturally nutrient-limited ecosystems. We hypothesised that sewage-mediated nutrient input to mangrove stands of Paranaguá Bay (southern Brazil), would alter the nutrient sources available for crabs, e.g. through microphytobenthos increase, and that this would reflect in their feeding behaviour. We predicted that propagules of Rhizophora mangle in contaminated stands would experience lower grazing pressure from their two main local consumers (Ucides cordatus and Goniopsis cruentata). We compared herbivory rates on R. mangle propagules in sewage contaminated and uncontaminated mangrove stands. We found that herbivory rates were significantly lower in contaminated than uncontaminated forests, but this pattern could not be clearly attributed to increased nutrient availability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Nutrient trading and green roof initiatives

    Energy Technology Data Exchange (ETDEWEB)

    Evans, D.; Stevenson, H.; Leeth, S. [McGuireWoods LLP, Richmond, VA (United States)

    2005-07-01

    Green roofs help to reduce urban stormwater runoff by reducing the impervious surfaces within a site, and can help to reduce the nutrient concentrations of runoff volumes that contribute to poor water quality in lakes and coastal waters. This paper investigated the use of green roof systems with reference to Virginia's new nutrient trading scheme in the Chesapeake Bay watershed. The scheme was established as part of a plan to allow facilities to obtain allocations to offset waste load allocations or permitted capacity. A review of the trading scheme and its relationship to various statutes and regulations was provided. Results of the study showed that green roofs are a viable option for controlling and reducing nutrient input to the bay and its tributaries. The state of Virginia has noted its interest in promoting alternative means of addressing stormwater quantity and quality. However, additional economic and policy support is needed at the federal, state, and local level to promote the use of green roofs. Grants and low-interest loans for the construction of green roofs are needed, as well as laws supporting or requiring green roofs where feasible. Local laws providing density bonuses for the use of green roofs may also increase interest in the technology. It was also noted that individual green roof projects that do not wish to be included in the allocations systems can offer project sponsors the opportunity to generate revenues from the sale of credits and offsets. It was concluded that Virginia's water quality permitting and nutrient trading program may provide an important vehicle for promoting and increasing the use of green roofs in the state. 14 refs.

  19. Are large macroalgal blooms necessarily bad? Nutrient impacts on seagrass in upwelling-influenced estuaries.

    Science.gov (United States)

    Hessing-Lewis, Margot L; Hacker, Sally D; Menge, Bruce A; McConville, Sea-oh; Henderson, Jeremy

    2015-07-01

    Knowledge of nutrient pathways and their resulting ecological interactions can alleviate numerous environmental problems associated with nutrient increases in both natural and managed systems. Although not unique, coastal systems are particularly prone to complex ecological interactions resulting from nutrient inputs from both the land and sea. Nutrient inputs to coastal systems often spur ulvoid macroalgal blooms, with negative consequences for seagrasses, primarily through shading, as well as through changes in local biogeochemistry. We conducted complementary field and mesocosm experiments in an upwelling-influenced estuary, where marine-derived nutrients dominate, to understand the direct and indirect effects of nutrients on the macroalgal-eelgrass (Zostera marina L.) interaction. In the field experiment, we found weak evidence that nutrients and/or macroalgal treatments had a negative effect on eelgrass. However, in the mesocosm experiment, we found that a combination of nutrient and macroalgal treatments led to strongly negative eelgrass responses, primarily via indirect effects associated with macroalgal additions. Together, increased total light attenuation and decreased sediment oxygen levels were associated with larger effects on eelgrass than shading alone, which was evaluated using mimic algae treatments that did not alter sediment redox potential. Nutrient addition in the mesocosms directly affected seagrass density; biomass, and morphology, but not as strongly as macroalgae. We hypothesize that the contrary results from these parallel experiments are a consequence of differences in the hydrodynamics between field and mesocosm settings. We suggest that the high rates of water movement and tidal submersion of our intertidal field experiments alleviated the light reduction and negative biogeochemical changes in the sediment associated with macroalgal canopies, as well as the nutrient effects observed in the mesocosm experiments. Furthermore, adaptation

  20. WERF Nutrient Challenge investigates limits of nutrient removal technologies.

    Science.gov (United States)

    Neethling, J B; Clark, D; Pramanik, A; Stensel, H D; Sandino, J; Tsuchihashi, R

    2010-01-01

    The WERF Nutrient Challenge is a multi-year collaborative research initiative established in 2007 to develop and provide current information about wastewater treatment nutrients (specifically nitrogen and phosphorus in wastewater), their characteristics, and bioavailability in aquatic environments to help regulators make informed decisions. The Nutrient Challenge will also provide data on nutrient removal so that treatment facilities can select sustainable, cost-effective methods and technologies to meet permit limits. To meet these goals, the Nutrient Challenge has teamed with a wide array of utilities, agencies, consultants, universities and other researchers and practitioners to collaborate on projects that advance these goals. The Nutrient Challenge is focusing on a different approach to collaborating and leveraging resources (financial and intellectual) on research projects by targeting existing projects and research that correspond with its goals and funding those aspects that the Nutrient Challenge identified as a priority. Because the Nutrient Challenge is focused on collaboration, outreach is an absolutely necessary component of its effectiveness. Through workshops, webinars, a web portal and online compendium, published papers, and conference lectures, the Nutrient Challenge is both presenting important new information, and soliciting new partnerships.

  1. Produção de fitomassa, acúmulo de nutrientes e fixação biológica de nitrogênio por adubos verdes em cultivo isolado e consorciado Phytomass yield, nutrients accumulation and biological nitrogen fixation by single and associated green manures

    Directory of Open Access Journals (Sweden)

    Adriano Perin

    2004-01-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos dos cultivos isolado e consorciado dos adubos verdes de verão crotalária (Crotalaria juncea e milheto (Pennisetum americanum na produção de fitomassa, nos teores e acúmulo de nutrientes e na fixação biológica de nitrogênio (FBN. O delineamento experimental adotado foi blocos ao acaso, com quatro repetições, em que os tratamentos constaram dos adubos verdes crotalária, milheto, crotalária + milheto e vegetação espontânea. A crotalária apresentou maior produção de fitomassa, que foi 108% maior que a da vegetação espontânea e 31% superior a do milheto. No consórcio crotalária + milheto, a leguminosa contribuiu com 65% da massa de matéria seca total. A presença da crotalária resultou em maiores teores de N e Ca, enquanto o milheto e as ervas espontâneas apresentaram maiores teores de potássio. O acúmulo de P e Mg foi fortemente influenciado pela produção de fitomassa, atingindo valores elevados com a presença da crotalária, ao passo que o acúmulo de N e Ca resultou tanto dos maiores teores quanto da maior produção de fitomassa nos tratamentos com a leguminosa. A FBN foi 61% na leguminosa quando consorciada e 57% quando isolada, incorporando ao solo via FBN 89 e 173 kg/ha de N, respectivamente, constituindo-se excelente estratégia de incremento de N ao solo.The objective of this work was to evaluate the effects of sole and intercropping systems of the summer green manures sunnhemp (Crotalaria juncea and millet (Pennisetum americanum in phytomass yield, content and accumulation of nutrients and biological nitrogen fixation (BNF. The experimental design was a randomized complete block with four replicates, and treatments consisted of green manures sunnhemp, millet, sunnhemp + millet and spontaneous vegetation. The sunnhemp stood out in the phytomass yield, being 108% greater than the spontaneous vegetation and 31% superior to millet. In the sunnhemp + millet

  2. Nutrient profiling for regulatory purposes.

    Science.gov (United States)

    Rayner, Mike

    2017-08-01

    In this paper, I first provide definitions of nutrient profiling and of a nutrient profile model. I set out the purposes of nutrient profiling: both general and specific. I give two examples of nutrient profile models that have been developed for regulatory purposes by the Food Standards Agency (FSA) in the UK and the WHO for its European Region - the UK FSA/Ofcom and the WHO-Euro models - and compare the way the models are constructed and function, how they have been developed, the extent to which they have been tested and validated and their use in regulation. Finally I draw some conclusions about the future use of nutrient profiling for regulatory purposes. I argue that its full potential has yet to be realised and give some reasons why. I pose some urgent research questions with respect to nutrient profiling.

  3. Atmospheric Inputs of Nitrogen, Carbon, and Phosphorus across an Urban Area: Unaccounted Fluxes and Canopy Influences

    Science.gov (United States)

    Decina, Stephen M.; Templer, Pamela H.; Hutyra, Lucy R.

    2018-02-01

    Rates of atmospheric deposition are declining across the United States, yet urban areas remain hotspots of atmospheric deposition. While past studies show elevated rates of inorganic nitrogen (N) deposition in cities, less is known about atmospheric inputs of organic N, organic carbon (C), and organic and inorganic phosphorus (P), all of which can affect ecosystem processes, water quality, and air quality. Further, the effect of the tree canopy on amounts and forms of nutrients reaching urban ground surfaces is not well-characterized. We measured growing season rates of total N, organic C, and total P in bulk atmospheric inputs, throughfall, and soil solution around the greater Boston area. We found that organic N constitutes a third of total N inputs, organic C inputs are comparable to rural inputs, and inorganic P inputs are 1.2 times higher than those in sewage effluent. Atmospheric inputs are enhanced two-to-eight times in late spring and are elevated beneath tree canopies, suggesting that trees augment atmospheric inputs to ground surfaces. Additionally, throughfall inputs may directly enter runoff when trees extend above impervious surfaces, as is the case with 26.1% of Boston's tree canopy. Our results indicate that the urban atmosphere is a significant source of elemental inputs that may impact urban ecosystems and efforts to improve water quality, particularly in terms of P. Further, as cities create policies encouraging tree planting to provide ecosystem services, locating trees above permeable surfaces to reduce runoff nutrient loads may be essential to managing urban biogeochemical cycling and water quality.

  4. Human waste: An underestimated source of nutrient pollution in coastal seas of Bangladesh, India and Pakistan.

    Science.gov (United States)

    Amin, Md Nurul; Kroeze, Carolien; Strokal, Maryna

    2017-05-15

    Many people practice open defecation in south Asia. As a result, lot of human waste containing nutrients such as nitrogen (N) and phosphorus (P) enter rivers. Rivers transport these nutrients to coastal waters, resulting in marine pollution. This source of nutrient pollution is, however, ignored in many nutrient models. We quantify nutrient export by large rivers to coastal seas of Bangladesh, India and Pakistan, and the associated eutrophication potential in 2000 and 2050. Our new estimates for N and P inputs from human waste are one to two orders of magnitude higher than earlier model calculations. This leads to higher river export of nutrients to coastal seas, increasing the risk of coastal eutrophication potential (ICEP). The newly calculated future ICEP, for instance, Godavori river is 3 times higher than according to earlier studies. Our modeling approach is simple and transparent and can easily be applied to other data-poor basins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Nutrients and neurodevelopment: lipids.

    Science.gov (United States)

    González, Horacio F; Visentin, Silvana

    2016-10-01

    Nutrients, lipids in particular, make up the central nervous system structure and play major functional roles: they stimulate development, migration, and nerve cell differentiation. They are part of gray matter, white matter, nerve nuclei, and synaptogenesis. Breast milk contains lipids which are crucial for infant brain development. The lipid profile of breast milk was used as a guideline for the development of breast milk substitutes. However, to date, no substitute has matched it. Complementary feeding should include docosahexaenoic acid, arachidonic acid, other polyunsaturated fatty acids, saturated fatty acids, and complex lipids found in milk fat. The lipid composition of breast milk depends on maternal intake and nutritional status during pregnancy and breast-feeding. It has a great impact on development. Our goal is to review scientific literature regarding the role of lipids on infant brain development and the importance of breast milk lipid composition, maternal diet, and complementary feeding. Sociedad Argentina de Pediatría.

  6. Swift recovery of Sphagnum nutrient concentrations after excess supply.

    Science.gov (United States)

    Limpens, Juul; Heijmans, Monique M P D

    2008-08-01

    Although numerous studies have addressed the effects of increased N deposition on nutrient-poor environments such as raised bogs, few studies have dealt with to what extent, and on what time-scale, reductions in atmospheric N supply would lead to recovery of the ecosystems in question. Since a considerable part of the negative effects of elevated N deposition on raised bogs can be related to an imbalance in tissue nutrient concentrations of the dominant peat-former Sphagnum, changes in Sphagnum nutrient concentration after excess N supply may be used as an early indicator of ecosystem response. This study focuses on the N and P concentrations of Sphagnum magellanicum and Sphagnum fallax before, during and after a factorial fertilization experiment with N and P in two small peatlands subject to a background bulk deposition of 2 g N m(-2) year(-1). Three years of adding N (4.0 g N m(-2) year(-1)) increased the N concentration, and adding P (0.3 g P m(-2) year(-1)) increased the P concentration in Sphagnum relative to the control treatment at both sites. Fifteen months after the nutrient additions had ceased, N concentrations were similar to the control whereas P concentrations, although strongly reduced, were still slightly elevated. The changes in the N and P concentrations were accompanied by changes in the distribution of nutrients over the capitulum and the stem and were congruent with changes in translocation. Adding N reduced the stem P concentration, whereas adding P reduced the stem N concentration in favor of the capitulum. Sphagnum nutrient concentrations quickly respond to reductions in excess nutrient supply, indicating that a management policy aimed at reducing atmospheric nutrient input to bogs can yield results within a few years.

  7. Nutrient and Anti nutrient Composition of Jams Prepared from ...

    African Journals Online (AJOL)

    Objective: This study was aimed at determining the nutrient and anti nutrient composition of jams prepared from Hibiscus sabdariffa calyx extract Materials and methods: Hibiscus sabdariffa calyx, otherwise known as Red Roselle usually processed into a refreshing drink “Zobo” in Nigeria was extracted with distilled water ...

  8. Effect of combined water and nutrient management on runoff and sorghum yield in semi-arid Burkina Faso

    NARCIS (Netherlands)

    Zougmoré, R.; Mando, A.; Ringersma, J.; Stroosnijder, L.

    2003-01-01

    In the semiarid regions of sub-Saharan Africa, fertilizer recovery and nutrient release from organic sources are often moisture limited. Moreover, in these regions runoff brings about large nutrient losses from fertilizer or organic inputs. This study was conducted in the north sudanian climate zone

  9. Influence of nutrient input on the trophic state of a tropical brackish ...

    Indian Academy of Sciences (India)

    primary production. Special emphasis was given to find the abundance and role of dissolved urea in phytoplankton biomass distribution in the lagoon water. Trophic state of .... TSISD; total nitrogen, TSITN; chlorophyll pigments,. TSICHL; and total ..... of bacteria in urea dynamics in coastal surface waters;. Mar. Ecol. Prog.

  10. Influence of nutrient input on the trophic state of a tropical brackish ...

    Indian Academy of Sciences (India)

    Ecosystem level changes in water quality and biotic communities in coastal lagoons have been associated ... in lagoon water. Trophic state index calculated for different sectors of the lagoon confirmed the inter- sectoral and inter-seasonal shift from mesotrophic to eutrophic .... After 72 hr of incubation at room temperature,.

  11. School Inputs, Household Substitution, and Test Scores

    OpenAIRE

    Das, Jishnu; Dercon, Stefan; Krishnan, Pramila; Sundararaman, Venkatesh; Muralidharan, Karthik; Habyarimana, James

    2013-01-01

    Empirical studies of the relationship between school inputs and test scores typically do not account for the fact that households will respond to changes in school inputs. This paper presents a dynamic household optimization model relating test scores to school and household inputs, and tests its predictions in two very different low-income country settings -- Zambia and India. The authors...

  12. Textual Enhancement of Input: Issues and Possibilities

    Science.gov (United States)

    Han, ZhaoHong; Park, Eun Sung; Combs, Charles

    2008-01-01

    The input enhancement hypothesis proposed by Sharwood Smith (1991, 1993) has stimulated considerable research over the last 15 years. This article reviews the research on textual enhancement of input (TE), an area where the majority of input enhancement studies have aggregated. Methodological idiosyncrasies are the norm of this body of research.…

  13. Legacy nutrient dynamics and patterns of catchment response under changing land use and management

    Science.gov (United States)

    Attinger, S.; Van, M. K.; Basu, N. B.

    2017-12-01

    Watersheds are complex heterogeneous systems that store, transform, and release water and nutrients under a broad distribution of both natural and anthropogenic controls. Many current watershed models, from complex numerical models to simpler reservoir-type models, are considered to be well-developed in their ability to predict fluxes of water and nutrients to streams and groundwater. They are generally less adept, however, at capturing watershed storage dynamics. In other words, many current models are run with an assumption of steady-state dynamics, and focus on nutrient flows rather than changes in nutrient stocks within watersheds. Although these commonly used modeling approaches may be able to adequately capture short-term watershed dynamics, they are unable to represent the clear nonlinearities or hysteresis responses observed in watersheds experiencing significant changes in nutrient inputs. To address such a lack, we have, in the present work, developed a parsimonious modeling approach designed to capture long-term catchment responses to spatial and temporal changes in nutrient inputs. In this approach, we conceptualize the catchment as a biogeochemical reactor that is driven by nutrient inputs, characterized internally by both biogeochemical degradation and residence or travel time distributions, resulting in a specific nutrient output. For the model simulations, we define a range of different scenarios to represent real-world changes in land use and management implemented to improve water quality. We then introduce the concept of state-space trajectories to describe system responses to these potential changes in anthropogenic forcings. We also increase model complexity, in a stepwise fashion, by dividing the catchment into multiple biogeochemical reactors, coupled in series or in parallel. Using this approach, we attempt to answer the following questions: (1) What level of model complexity is needed to capture observed system responses? (2) How can we

  14. Main nutrient patterns and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition study

    NARCIS (Netherlands)

    Moskal, Aurélie; Freisling, Heinz; Byrnes, Graham; Assi, Nada; Fahey, Michael T.; Jenab, Mazda; Ferrari, Pietro; Tjønneland, Anne; Petersen, Kristina EN; Dahm, Christina C.; Hansen, Camilla Plambeck; Affret, Aurélie; Boutron-Ruault, Marie Christine; Cadeau, Claire; Kühn, Tilman; Katzke, Verena; Iqbal, Khalid; Boeing, Heiner; Trichopoulou, Antonia; Bamia, Christina; Naska, Androniki; Masala, Giovanna; de Magistris, Maria Santucci; Sieri, Sabina; Tumino, Rosario; Sacerdote, Carlotta; Peeters, Petra H.; Bueno-de-Mesquita, Bas H.; Engeset, Dagrun; Licaj, Idlir; Skeie, Guri; Ardanaz, Eva; Buckland, Genevieve; Castaño, José M Huerta; Quirós, José R.; Amiano, Pilar; Molina-Portillo, Elena; Winkvist, Anna; Myte, Robin; Ericson, Ulrika; Sonestedt, Emily; Perez-Cornago, Aurora; Wareham, Nick; Khaw, Kay Tee; Huybrechts, Inge; Tsilidis, Konstantinos K.; Ward, Heather; Gunter, Marc J.; Slimani, Nadia

    2016-01-01

    Background:Much of the current literature on diet–colorectal cancer (CRC) associations focused on studies of single foods/nutrients, whereas less is known about nutrient patterns. We investigated the association between major nutrient patterns and CRC risk in participants of the European Prospective

  15. On the Importance of Lateral Nutrient Transport: A Shift in the New Production Paradigm for the Subtropical Ocean Gyres

    Science.gov (United States)

    Letscher, R. T.; Primeau, F.; Moore, J. K.

    2016-02-01

    A widely used assumption for estimating the strength of the organic carbon export flux is that one-dimensional vertical processes dominate the supply and loss of nutrients to the euphotic zone. However, for the North Atlantic subtropical gyre, lateral inputs of nutrients by convergent Ekman transport have been suggested to be important. Here we use a biogeochemical ocean circulation model constrained by dissolved organic matter concentration measurements to show that on annual timescales, lateral transport of organic and inorganic nitrogen (N) and phosphorus (P) from the gyre margins and its subsequent biological utilization supplies a flux that can exceed vertical nutrient supply across all subtropical gyre systems. Lateral nutrient transport supplies 25-40% of the N and 40-70% of the P necessary to balance new and export production in these regions. We also find that the proportion of the nutrient supply sustained by lateral transport in the gyres is strongly correlated with ecosystem stoichiometry, exhibiting high N:P and C:P within the gyres receiving the most nutrients laterally. Our results suggest that the predicted future decline in biological carbon export due to decreasing vertical inputs of nutrients to surface waters might be partly offset by a concomitant increase in ecosystem carbon to nutrient ratios accompanying a shift to an increased importance of lateral nutrient inputs in the subtropical gyres.

  16. Usefulness of Models in Precision Nutrient Management

    DEFF Research Database (Denmark)

    Plauborg, Finn; Manevski, Kiril; Zhenjiang, Zhou

    characterize soil condition by mapping a variety of physical-chemical properties including salinity, water content, texture, bulk density. vis–NIR spectroscopy shows the potential for use directly for the characterisation of soil quality, or soil fertility as the spectra contain information on soil organic...... and mineral composition. Mapping of crop status and the spatial-temporal variability within fields with red-infrared reflection are used to support decision on split fertilisation and more precise dosing. The interpretation and use of these various data in precise nutrient management is not straightforward......, especially as the various soil and crop state variables or indicators are a result of several processes integrated over time. The present paper explore the possibility to use a physically based model to interpret the spatial variable data and if the model sensitivity to changes in input my lead to a valid...

  17. Nutrient management in substrate systems

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.

    2009-01-01

    Speaking about nutrient solutions in soilless cultivation, different solutions can be discerned. Originally, in soilless culture only one nutrient solution was taken into account, being the solution in the containers in which the plants were grown. Such solutions were intensively moved by air

  18. The Nutrient Density of Snacks

    Directory of Open Access Journals (Sweden)

    Julie Hess BA

    2017-03-01

    Full Text Available Background: Although Americans receive almost a quarter of their daily energy from snacks, snacking remains a poorly defined and understood eating occasion. However, there is little dietary guidance about choosing snacks. Families, clinicians, and researchers need a comprehensive approach to assessing their nutritional value. Objective: To quantify and compare the nutrient density of commonly consumed snacks by their overall nutrient profiles using the Nutrient-Rich Foods (NRF Index 10.3. Methods: NRF Index scores were calculated for the top 3 selling products (based on 2014 market research data in different snack categories. These NRF scores were averaged to provide an overall nutrient-density score for each category. Results: Based on NRF scores, yogurt (55.3, milk (52.5, and fruit (30.1 emerged as the most nutrient-dense snacks. Ice cream (−4.4, pies and cakes (−11.1, and carbonated soft drinks (−17.2 emerged as the most nutrient-poor snacks. Conclusions: The NRF Index is a useful tool for assessing the overall nutritional value of snacks based on nutrients to limit and nutrients to encourage.

  19. On the input distribution and optimal beamforming for the MISO VLC wiretap channel

    KAUST Repository

    Arfaoui, Mohamed Amine

    2017-05-12

    We investigate in this paper the achievable secrecy rate of the multiple-input single-output (MISO) visible light communication (VLC) Gaussian wiretap channel with single user and single eavesdropper. We consider the cases when the location of eavesdropper is known or unknown to the transmitter. In the former case, we derive the optimal beamforming in closed form, subject to constrained inputs. In the latter case, we apply robust beamforming. Furthermore, we study the achievable secrecy rate when the input follows the truncated generalized normal (TGN) distribution. We present several examples which demonstrate the substantial improvements in the secrecy rates achieved by the proposed techniques.

  20. Manipulating stored phonological input during verbal working memory

    Science.gov (United States)

    Cogan, Gregory B.; Iyer, Asha; Melloni, Lucia; Thesen, Thomas; Friedman, Daniel; Doyle, Werner; Devinsky, Orrin; Pesaran, Bijan

    2016-01-01

    Verbal working memory (vWM), involves storing and manipulating information in phonological sensory input. An influential theory of vWM proposes that manipulation is carried out by a central executive while storage is performed by two interacting systems: A phonological input buffer that captures sound-based information and an articulatory rehearsal system that controls speech motor output. Whether, when, and how neural activity in the brain encodes these components remains unknown. Here, we read-out the contents of vWM from neural activity in human subjects as they manipulate stored speech sounds. As predicted, we identify storage systems that contain both phonological sensory and articulatory motor representations. Surprisingly however, we find that manipulation does not involve a single central executive but rather involves two systems with distinct contributions to successful manipulation. We propose, therefore, that multiple subsystems comprise the central executive needed to manipulate stored phonological input for articulatory motor output in vWM. PMID:27941789

  1. Jointness through vessel capacity input in a multispecies fishery

    DEFF Research Database (Denmark)

    Hansen, Lars Gårn; Jensen, Carsten Lynge

    2014-01-01

    The success of regulations of multispecies fisheries may depend critically on understanding output dependencies correctly. An example is purse seine fisheries that target several species over the season but are specialized in the sense that each species are targeted individually. Such fisheries...... are typically modeled as either independent single species fisheries or using standard multispecies functional forms characterized by jointness in inputs. We argue that production of each species is essentially independent but that jointness may be caused by competition for fixed but allocable input of vessel...... capacity. We develop a fixed but allocatable input model of purse seine fisheries capturing this particular type of jointness. We estimate the model for the Norwegian purse seine fishery and find that it is characterized by nonjointness, while estimations for this fishery using the standard models imply...

  2. Turn customer input into innovation.

    Science.gov (United States)

    Ulwick, Anthony W

    2002-01-01

    It's difficult to find a company these days that doesn't strive to be customer-driven. Too bad, then, that most companies go about the process of listening to customers all wrong--so wrong, in fact, that they undermine innovation and, ultimately, the bottom line. What usually happens is this: Companies ask their customers what they want. Customers offer solutions in the form of products or services. Companies then deliver these tangibles, and customers just don't buy. The reason is simple--customers aren't expert or informed enough to come up with solutions. That's what your R&D team is for. Rather, customers should be asked only for outcomes--what they want a new product or service to do for them. The form the solutions take should be up to you, and you alone. Using Cordis Corporation as an example, this article describes, in fine detail, a series of effective steps for capturing, analyzing, and utilizing customer input. First come indepth interviews, in which a moderator works with customers to deconstruct a process or activity in order to unearth "desired outcomes." Addressing participants' comments one at a time, the moderator rephrases them to be both unambiguous and measurable. Once the interviews are complete, researchers then compile a comprehensive list of outcomes that participants rank in order of importance and degree to which they are satisfied by existing products. Finally, using a simple mathematical formula called the "opportunity calculation," researchers can learn the relative attractiveness of key opportunity areas. These data can be used to uncover opportunities for product development, to properly segment markets, and to conduct competitive analysis.

  3. Integrated nutrients management for 'desi' cotton

    International Nuclear Information System (INIS)

    Qazi, M.A.; Akram, M.; Ahmad, N.; Khattak, M.A.

    2007-01-01

    Intensive cropping with no return of crop residues and other organic inputs result in the loss of soil organic matter (SOM) and nutrient supply in (Desi) cotton-wheat cropping system in Pakistan. For appraisal of problem and finding solution to sustainability, we evaluated six treatments comprised of two fertilizer doses and three management techniques over a period of three years (2003-05) monitoring their effects on seed cotton yield and soil fertility. The techniques included chemical fertilizers, municipal solid waste manure (MSWM) integrated with chemical fertilizers in 1:4 ratios with, and without pesticides. The results revealed that cotton yields. Were enhanced by 19% due to site-specific fertilizer dose over conventional dose. Ignoring weeds control by means of herbicided application resulted in 5% decrease of seed cotton yield in IPNM technique positive effect of MSWM integration was noted on soil test phosphorus and SOM. Site-specific fertilizer application and integrated plant nutrient management by MSWM proved their suitability as the techniques not only improve soil quality in terms of sustained levels of organic matter and phosphorus but also provide a safe way of waste disposal. (author)

  4. Trophic cascades of bottom-up and top-down forcing on nutrients and plankton in the Kattegat, evaluated by modelling

    Science.gov (United States)

    Petersen, Marcell Elo; Maar, Marie; Larsen, Janus; Møller, Eva Friis; Hansen, Per Juel

    2017-05-01

    The aim of the study was to investigate the relative importance of bottom-up and top-down forcing on trophic cascades in the pelagic food-web and the implications for water quality indicators (summer phytoplankton biomass and winter nutrients) in relation to management. The 3D ecological model ERGOM was validated and applied in a local set-up of the Kattegat, Denmark, using the off-line Flexsem framework. The model scenarios were conducted by changing the forcing by ± 20% of nutrient inputs (bottom-up) and mesozooplankton mortality (top-down), and both types of forcing combined. The model results showed that cascading effects operated differently depending on the forcing type. In the single-forcing bottom-up scenarios, the cascade directions were in the same direction as the forcing. For scenarios involving top-down, there was a skipped-level-transmission in the trophic responses that was either attenuated or amplified at different trophic levels. On a seasonal scale, bottom-up forcing showed strongest response during winter-spring for DIN and Chl a concentrations, whereas top-down forcing had the highest cascade strength during summer for Chl a concentrations and microzooplankton biomass. On annual basis, the system was more bottom-up than top-down controlled. Microzooplankton was found to play an important role in the pelagic food web as mediator of nutrient and energy fluxes. This study demonstrated that the best scenario for improved water quality was a combined reduction in nutrient input and mesozooplankton mortality calling for the need of an integrated management of marine areas exploited by human activities.

  5. Approaches and uncertainties in nutrient budgets; Implications for nutrient management and environmental policies

    NARCIS (Netherlands)

    Oenema, O.; Kros, J.; Vries, de W.

    2003-01-01

    Nutrient budgets of agroecosystems are constructed either (i) to increase the understanding of nutrient cycling, (ii) as performance indicator and awareness raiser in nutrient management and environmental policy, or (iii) as regulating policy instrument to enforce a certain nutrient management

  6. The imprint of crop choice on global nutrient needs

    International Nuclear Information System (INIS)

    Jobbágy, Esteban G; Sala, Osvaldo E

    2014-01-01

    Solutions to meet growing food requirements in a world of limited suitable land and degrading environment focus mainly on increasing crop yields, particularly in poorly performing regions, and reducing animal product consumption. Increasing yields could alleviate land requirements, but imposing higher soil nutrient withdrawals and in most cases larger fertilizer inputs. Lowering animal product consumption favors a more efficient use of land as well as soil and fertilizer nutrients; yet actual saving may largely depend on which crops and how much fertilizer are used to feed livestock versus people. We show, with a global analysis, how the choice of cultivated plant species used to feed people and livestock influences global food production as well as soil nutrient withdrawals and fertilizer additions. The 3 to 15-fold differences in soil nutrient withdrawals per unit of energy or protein produced that we report across major crops explain how composition shifts over the last 20 years have reduced N, maintained P and increased K harvest withdrawals from soils while contributing to increasing dietary energy, protein and, particularly, vegetable fat outputs. Being highly variable across crops, global fertilization rates do not relate to actual soil nutrient withdrawals, but to monetary values of harvested products. Future changes in crop composition could contribute to achieve more sustainable food systems, optimizing land and fertilizer use. (letter)

  7. Reducing Nutrient Losses with Directed Fertilization of Degraded Soils

    Science.gov (United States)

    Menzies, E.; Walter, M. T.; Schneider, R.

    2016-12-01

    Degraded soils around the world are stunting agricultural productivity in places where people need it the most. In China, hundreds of years of agriculture and human activity have turned large swaths of productive grasslands into expanses of sandy soils where nothing can grow. Returning soils such as these to healthy productive landscapes is crucial to the livelihoods of rural families and to feeding the expanding population of China and the world at large. Buried wood chips can be used to improve the soils' water holding capacity but additional nutrient inputs are crucial to support plant growth and completely restore degraded soils in China and elsewhere. Improperly applied fertilizer can cause large fluxes of soluble nutrients such as nitrogen (N) and phosphorus (P) to pollute groundwater, and reach surface water bodies causing harmful algal blooms or eutrophication. Similarly, fertilization can create increases in nutrient losses in the form of greenhouse gases (GHGs). It is imperative that nutrient additions to this system be done in a way that fosters restoration and a return to productivity, but minimizes nutrient losses to adjacent surface water bodies and the atmosphere. The primary objective of this study is to characterize soluble and gaseous N and P losses from degraded sandy soils with wood chip and fertilizer amendments in order to identify optimal fertilization methods, frequencies, and quantities for soil restoration. A laboratory soil column study is currently underway to begin examining these questions results of this study will be presented at the Fall Meeting.

  8. The imprint of crop choice on global nutrient needs

    Science.gov (United States)

    Jobbágy, Esteban G.; Sala, Osvaldo E.

    2014-08-01

    Solutions to meet growing food requirements in a world of limited suitable land and degrading environment focus mainly on increasing crop yields, particularly in poorly performing regions, and reducing animal product consumption. Increasing yields could alleviate land requirements, but imposing higher soil nutrient withdrawals and in most cases larger fertilizer inputs. Lowering animal product consumption favors a more efficient use of land as well as soil and fertilizer nutrients; yet actual saving may largely depend on which crops and how much fertilizer are used to feed livestock versus people. We show, with a global analysis, how the choice of cultivated plant species used to feed people and livestock influences global food production as well as soil nutrient withdrawals and fertilizer additions. The 3 to 15-fold differences in soil nutrient withdrawals per unit of energy or protein produced that we report across major crops explain how composition shifts over the last 20 years have reduced N, maintained P and increased K harvest withdrawals from soils while contributing to increasing dietary energy, protein and, particularly, vegetable fat outputs. Being highly variable across crops, global fertilization rates do not relate to actual soil nutrient withdrawals, but to monetary values of harvested products. Future changes in crop composition could contribute to achieve more sustainable food systems, optimizing land and fertilizer use.

  9. Impacts of Dry Atmospheric Deposition on Aquatic Systems - Nutrients, Trace Metals and Lead Isotopes

    OpenAIRE

    Chien, Chia-Te

    2017-01-01

    Atmospheric deposition is a source of new N, P and trace metals to the ocean and water bodies on land. Nutrient and trace metal inputs from atmospheric deposition have been shown to induce phytoplankton growth and impact water chemistry. The three chapters presented in this thesis examine dry atmospheric deposition impacts on phytoplankton and water chemistry including: (1) How African dust impact phytoplankton growth at the low nutrient low chlorophyll (LNLC) ocean off Barbados; (2) Evaluate...

  10. Multi-Input Convolutional Neural Network for Flower Grading

    Directory of Open Access Journals (Sweden)

    Yu Sun

    2017-01-01

    Full Text Available Flower grading is a significant task because it is extremely convenient for managing the flowers in greenhouse and market. With the development of computer vision, flower grading has become an interdisciplinary focus in both botany and computer vision. A new dataset named BjfuGloxinia contains three quality grades; each grade consists of 107 samples and 321 images. A multi-input convolutional neural network is designed for large scale flower grading. Multi-input CNN achieves a satisfactory accuracy of 89.6% on the BjfuGloxinia after data augmentation. Compared with a single-input CNN, the accuracy of multi-input CNN is increased by 5% on average, demonstrating that multi-input convolutional neural network is a promising model for flower grading. Although data augmentation contributes to the model, the accuracy is still limited by lack of samples diversity. Majority of misclassification is derived from the medium class. The image processing based bud detection is useful for reducing the misclassification, increasing the accuracy of flower grading to approximately 93.9%.

  11. Are some parents' interaction styles associated with richer grammatical input?

    Science.gov (United States)

    Fitzgerald, Colleen E; Hadley, Pamela A; Rispoli, Matthew

    2013-08-01

    Evidence for tense marking in child-directed speech varies both across languages ( Guasti, 2002; Legate & Yang, 2007) and across speakers of a single language ( Hadley, Rispoli, Fitzgerald, & Bahnsen, 2011). The purpose of this study was to understand how parent interaction styles and register use overlap with the tense-marking properties of child-directed speech. This study investigated how parent interaction style, measured by utterance function, and parent register use when asking questions interacted with verb forms in child-directed input to identify interaction styles associated with the richest grammatical input. Participants were 15 parent-toddler dyads. The communicative function of parent utterances and the form of their questions were coded from language samples of parent-child play when children were 21 months of age. Verbs were coded for linguistic form (e.g., imperative, modal, copula). Directives and reduced questions were both negatively related to input informativeness (i.e., the proportion of unambiguous evidence for tense). Other-focused descriptives were positively related to input informativeness. Predictable overlap existed between the characteristics of parents' interaction styles and register use and their input informativeness. An other-focused descriptive style most strongly related to richer evidence for the +Tense grammar of English.

  12. Assessment of nutrient loadings of a large multipurpose prairie reservoir

    Science.gov (United States)

    Morales-Marín, L. A.; Wheater, H. S.; Lindenschmidt, K. E.

    2017-07-01

    The relatively low water flow velocities in reservoirs cause them to have high capacities for retaining sediments and pollutants, which can lead to a reduction in downstream nutrient loading. Hence, nutrients can progressively accumulate in reservoirs, resulting in the deterioration of aquatic ecosystems and water quality. Lake Diefenbaker (LD) is a large multipurpose reservoir, located on the South Saskatchewan River (SSR), that serves as a major source of freshwater in Saskatchewan, Canada. Over the past several years, changes in land use (e.g. expansion of urban areas and industrial developments) in the reservoir's catchment have heightened concerns about future water quality in the catchment and in the reservoir. Intensification of agricultural activities has led to an increase in augmented the application of manure and fertilizer for crops and pasture. Although previous research has attempted to quantify nutrient retention in LD, there is a knowledge gap related to the identification of major nutrient sources and quantification of nutrient export from the catchment at different spatial scales. Using the SPAtially Referenced Regression On Watershed (SPARROW) model, this gap has been addressed by assessing water quality regionally, and identifying spatial patterns of factors and processes that affect water quality in the LD catchment. Model results indicate that LD retains about 70% of the inflowing total nitrogen (TN) and 90% of the inflowing total phosphorus (TP) loads, of which fertilizer and manure applied to agricultural fields contribute the greatest proportion. The SPARROW model will be useful as a tool to guide the optimal implementation of nutrient management plans to reduce nutrient inputs to LD.

  13. Decomposition, nutrient release patterns and nutrient fluxes from ...

    African Journals Online (AJOL)

    Studies were conducted on leaf litter fall, decomposition, nutrient release patterns and nutrient fluxes of Akyaakrom (AS) and Dopiri (DS) secondary forest leaf litter in Dwinyama watershed. Leaf litter production were 9.1 and 6.8 t ha-1 y-1 in AS and 8.9 and 6.5 t ha-1 y-1 in DS in the 1st (September 1998-August 1999) and ...

  14. Investigating the Effects of Multimedia Input Modality on L2 Listening Skills of Turkish EFL Learners

    Science.gov (United States)

    Inceçay, Volkan; Koçoglu, Zeynep

    2017-01-01

    The present study examined whether or not different input delivery modes have an effect on listening comprehension of Turkish students learning English at the university level. It investigated the effect of one single mode, which is audio-only, and three dual input delivery modes, which were audio-video, audio-video with target language subtitles…

  15. Optimal input design for model discrimination using Pontryagin's maximum principle: Application to kinetic model structures

    NARCIS (Netherlands)

    Keesman, K.J.; Walter, E.

    2014-01-01

    The paper presents a methodology for an optimal input design for model discrimination. To allow analytical solutions, the method, using Pontryagin’s maximum principle, is developed for non-linear single-state systems that are affine in their joint input. The method is demonstrated on a fed-batch

  16. The role of catchment vegetation in reducing atmospheric inputs of pollutant aerosols in Ganga river.

    Science.gov (United States)

    Shubhashish, Kumar; Pandey, Richa; Pandey, Jitendra

    2012-08-01

    The role of woody perennials in the Ganga river basin in modifying the run-off quality as influenced by atmospheric deposition of pollutant aerosols was investigated. The concentration of seven nutrients and eight metals were measured in atmospheric deposits as well as in run-off water under the influence of five woody perennials. Nutrient retention was recorded maximum for Bougainvillea spectabilis ranged from 4.30 % to 33.70 %. Metal retention was recorded highest for Ficus benghalensis ranged from 5.15 % to 36.98 %. Although some species showed nutrient enrichment, all the species considered in the study invariably contribute to reduce nutrients and metal concentration in run-off water. Reduction in run off was recorded maximum for B. spectabilis (nutrient 6.48 %-40.66 %; metal 7.86 %-22.85 %) and minimum for Ficus religiosa (nutrient 1.68 %-27.19 %; metal 6.55 %-31.55 %). The study forms the first report on the use of woody perennials in reducing input of atmospheric pollutants to Ganga river and has relevance in formulating strategies for river basin management.

  17. Anthropogenic Nutrient Loading in the Northeastern US 1920-2000

    Science.gov (United States)

    Hale, R. L.; Ng, M.; Brideau, J. M.; Hoover, J. H.; Thomas, B.

    2010-12-01

    Human activities have dramatically altered biogeochemical cycles on local to global scales. Altered fluxes of nutrients (nitrogen, phosphorus) to freshwater systems have been driven directly by human-mediated fluxes (e.g., industrial N fixation) and indirectly due to changes in land and water systems that alter rates of biogeochemical transformations and transport vectors for nutrients. The Northeastern United States as a region underwent many biophysical and political changes over the 20th century, making it an excellent case study for understanding human-biogeochemical relationships over time. From 1920 to 2000, this region experienced significant losses of agricultural land and increases in forest and urban land cover. Furthermore, major national and state legislation, including nuisance laws and the Clean Water Act, was passed during the 20th century to control pollution problems, and major technological advances in wastewater treatment were made. Our goals were to: 1) describe quantitative changes in the spatial patterns of water quality over time, 2) understand the proximate (e.g., changes in land use, new technology) and 3) ultimate (e.g., major demographic, economic, social shifts) drivers of those patterns. Using data from the historic Census of Agriculture, the National Atmospheric Deposition Program, and primary literature, we create a comprehensive time series database of anthropogenic N and P inputs to the Northeast terrestrial system. Inputs are estimated for each county at decadal time scales. Inputs included atmospheric deposition of nitrogen, fertilizer, manure, enhanced biological nitrogen fixation, and domestic waste. We used this database, in conjunction with data on land use, reservoirs, climate, and stream nutrient loads estimated from USGS NWIS to develop a modified export coefficient model for 26 watersheds in the Northeast. We then used this model to estimate nutrient loads at the decadal scale for all HUC 8 watersheds in our study region

  18. Nutrient disequilibrium in agro-ecosystems: Concepts and case studies

    International Nuclear Information System (INIS)

    Smaling, Eric

    2002-01-01

    Full text: Amongst the problems that African agriculture faces, soil fertility decline is mentioned as a major pressure. The declining state (lower soil fertility) has led to different responses by researchers, landusers and policy makers. All responses directly or indirectly boil down to some form of 'Integrated Nutrient Management' (INM), which is defined as the 'judicious' manipulation of nutrient stocks and flows. As INM is complex and multi-faceted, it is difficult to derive simple indicators for policy makers from it. The concept of stocks (state) and flows (pressure), however, links well with economic sciences. A continental study revealed that Africa is losing nutrients at a rather alarming rate, i.e., 22 kg N, 2.5 kg P and 15 kg K per ha per year (Stoorvogel and Smaling, 1990). These values represent the sum of the outputs minus the sum of the inputs mentioned below. IN 1 mineral fertilizer OUT 1 nutrients in harvested parts, milk, meat, etc. IN 2 organic fertilizer OUT 2 nutrients in removed crop residues IN 3 atmospheric deposition OUT 3 leaching IN 4 biological N fixation OUT 4 gaseous losses IN 5 sedimentation OUT 5 runoff and erosion This study however, commissioned by FAO, had to deal with a lot of higher-scale problems, i.e., using FAO's production yearbooks, using the 1:5,000,000 FAO Soil Map of the World, generalisation, simplification, and the use of proxies (transfer functions). It triggered many studies at lower spatial scales (field, farm, village, watershed), in which inputs and outputs are accompanied by internal flows within the system. In other words, INM can be geared towards: adding nutrients to the system; saving nutrient from being lost from the system; recycling so as to maximize nutrient use efficiency. Measurement of nutrient flows is complex: a simple fertilizer trial implies adding nutrients, and harvesting part of the extra nutrients, but what happens to the nutrients that were not taken up by the crop? More spatially complex is

  19. Issues in ecology: Nutrient pollution of coastal rivers, bays, and seas

    Science.gov (United States)

    Howarth, Robert W.; Anderson, D. B.; Cloern, James E.; Elfring, Chris; Hopkinson, Charles S.; Lapointe, Brian; Maloney, Thomas J.; Marcus, Nancy; McGlathery, Karen; Sharpley, A.N.; Walker, D.

    2000-01-01

    Over the past 40 years, antipollution laws have greatly reduced discharges of toxic substances into our coastal waters. This effort, however, has focused largely on point-source pollution of industrial and municipal effluent. No comparable effort has been made to restrict the input of nitrogen (N) from municipal effluent, nor to control the flows of N and phosphorus (P) that enter waterways from dispersed or nonpoint sources such as agricultural and urban runoff or as airborne pollutants. As a result, inputs of nonpoint pollutants, particularly N, have increased dramatically. Nonpoint pollution from N and P now represents the largest pollution problem facing the vital coastal waters of the United States. Nutrient pollution is the common thread that links an array of problems along the nation’s coastline, including eutrophication, harmful algal blooms, ”dead zones,” fish kills, some shellfish poisonings, loss of seagrass and kelp beds, some coral reef destruction, and even some marine mammal and seabird deaths. More than 60 percent of our coastal rivers and bays in every coastal state of the continental United States are moderately to severely degraded by nutrient pollution. This degradation is particularly severe in the mid Atlantic states, in the southeast, and in the Gulf of Mexico. A recent report from the National Research Council entitled “Clean Coastal Waters: Understanding and Reduc- ing the Effects of Nutrient Pollution” concludes that: Nutrient over-enrichment of coastal ecosystems generally triggers ecological changes that decrease the biologi- cal diversity of bays and estuaries. While moderate N enrichment of some coastal waters may increase fish production, over-enrichment generally degrades the marine food web that supports commercially valuable fish. The marked increase in nutrient pollution of coastal waters has been accompanied by an increase in harmful algal blooms, and in at least some cases, pollution has triggered these blooms. High

  20. Nutrient supply to organic agriculture as governed by EU regulations and standards in six European countries

    DEFF Research Database (Denmark)

    Løes, Anne Kristin; Bünemann, E.K.; Cooper, J.

    2017-01-01

    Organic farming systems need to replace nutrients exported via farm products, especially phosphorus (P) which may otherwise become depleted in soil in the long term. In Europe, EU regulations for organic production are shaping the farming systems with respect to inputs of nutrients. Permitted off......-farm P sources include conventional animal manure, composted or anaerobically digested organic residues, rock phosphate, and some animal residues such as meat and bone meal. The recent proposed revision of EU regulations for organic production (2014) puts less emphasis on closing nutrient cycles...

  1. Growth performance and nutrient digestibility of broiler chickens fed ...

    African Journals Online (AJOL)

    Two hundred and seventy (270), day old chicks were used in a completely randomized design experimental layout to test the growth performance and nutrient digestibility of broiler chickens fed single phase diets containing natuzyme™ treated groundnut shell at 0, 5, 10, 15, 20 and 25 % inclusion levels. The treatments ...

  2. Nutrient management in food production: achieving agronomic and environmental targets

    NARCIS (Netherlands)

    Oenema, O.; Pietrzak, S.

    2002-01-01

    The notion of management has undergone many changes during the past century. Nowadays, management is perceived as “specialized activity to achieve targets.” Skill in management is the single most important factor determining the economic and environmental performance of agroecosystems. Nutrient

  3. Nutrient and Coliform Loading (NCL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a database of available fecal coliform bacteria, fecal streptococci bacteria, and nutrient loading data. Loading for contaminants other than fecal coliform...

  4. Aeolian dust nutrient contributions increase with substrate age in semi-arid ecosystems

    Science.gov (United States)

    Coble, A. A.; Hart, S. C.; Ketterer, M. E.; Newman, G. S.

    2013-12-01

    Rock-derived nutrients supplied by mineral weathering become depleted over time, and without an additional nutrient source the ecosystem may eventually regress or reach a terminal steady state. Previous studies have demonstrated that aeolian dust act as parent materials of soils and important nutrients to plants in arid regions, but the relative importance of these exogenous nutrients to the function of dry ecosystems during soil development is uncertain. Here, using strontium isotopes as a tracer and a well-constrained, three million year old substrate age gradient, we show that aeolian-derived nutrients become increasingly important to plant-available soil pools and tree (Pinus edulis) growth during the latter stages of soil development in a semi-arid climate. Furthermore, the depth of nutrient uptake increased on older substrates, suggesting that trees in arid regions acquire nutrients from greater depths as ecosystem development progresses presumably in response to nutrient depletion in the more weathered surface soils. Our results contribute to the unification of biogeochemical theory by demonstrating the similarity in roles of atmospheric nutrient inputs during ecosystem development across contrasting climates.

  5. Plants cause ecosystem nutrient depletion via the interruption of bird-derived spatial subsidies

    Science.gov (United States)

    Young, Hillary S.; McCauley, Douglas J.; Dunbar, Robert B.; Dirzo, Rodolfo

    2010-01-01

    Plant introductions and subsequent community shifts are known to affect nutrient cycling, but most such studies have focused on nutrient enrichment effects. The nature of plant-driven nutrient depletions and the mechanisms by which these might occur are relatively poorly understood. In this study we demonstrate that the proliferation of the commonly introduced coconut palm, Cocos nucifera, interrupts the flow of allochthonous marine subsidies to terrestrial ecosystems via an indirect effect: impact on birds. Birds avoid nesting or roosting in C. nucifera, thus reducing the critical nutrient inputs they bring from the marine environment. These decreases in marine subsidies then lead to reductions in available soil nutrients, decreases in leaf nutrient quality, diminished leaf palatability, and reduced herbivory. This nutrient depletion pathway contrasts the more typical patterns of nutrient enrichment that follow plant species introductions. Research on the effects of spatial subsidy disruptions on ecosystems has not yet examined interruptions driven by changes within the recipient community, such as plant community shifts. The ubiquity of coconut palm introductions across the tropics and subtropics makes these observations particularly noteworthy. Equally important, the case of C. nucifera provides a strong demonstration of how plant community changes can dramatically impact the supply of allochthonous nutrients and thereby reshape energy flow in ecosystems. PMID:20133852

  6. Salmon-mediated nutrient flux in selected streams of the Columbia River basin, USA

    Science.gov (United States)

    Kohler, Andre E.; Kusnierz, Paul C.; Copeland, Timothy; Venditti, David A.; Denny, Lytle; Gable, Josh; Lewis, Bert; Kinzer, Ryan; Barnett, Bruce; Wipfli, Mark S.

    2013-01-01

    Salmon provide an important resource subsidy and linkage between marine and land-based ecosystems. This flow of energy and nutrients is not uni-directional (i.e., upstream only); in addition to passive nutrient export via stream flow, juvenile emigrants actively export nutrients from freshwater environments. In some cases, nutrient export can exceed import. We evaluated nutrient fluxes in streams across central Idaho, USA using Chinook salmon (Oncorhynchus tshawytscha) adult escapement and juvenile production data from 1998 to 2008. We found in the majority of stream-years evaluated, adults imported more nutrients than progeny exported; however, in 3% of the years, juveniles exported more nutrients than their parents imported. On average, juvenile emigrants exported 22 ± 3% of the nitrogen and 30 ± 4% of the phosphorus their parents imported. This relationship was density dependent and nonlinear; during periods of low adult abundance juveniles were larger and exported up to 194% and 268% of parental nitrogen and phosphorus inputs, respectively. We highlight minimum escapement thresholds that appear to 1) maintain consistently positive net nutrient flux and 2) reduce the average proportional rate of export across study streams. Our results suggest a state-shift occurs when adult spawner abundance falls below a threshold to a point where the probability of juvenile nutrient exports exceeding adult imports becomes increasingly likely.

  7. Feasibility of Estimating Relative Nutrient Contributions of Agriculture and Forests Using MODIS Time Series

    Science.gov (United States)

    Ross, Kenton W.; Gasser, Gerald; Spiering, Bruce

    2010-01-01

    Around the Gulf of Mexico, high-input crops in several regions make a significant contribution to nutrient loading of small to medium estuaries and to the near-shore Gulf. Some crops cultivated near the coast include sorghum in Texas, rice in Texas and Louisiana, sugarcane in Florida and Louisiana, citrus orchards in Florida, pecan orchards in Mississippi and Alabama, and heavy sod and ornamental production around Mobile and Tampa Bay. In addition to crops, management of timberlands in proximity to the coasts also plays a role in nutrient loading. In the summer of 2008, a feasibility project is planned to explore the use of NASA data to enhance the spatial and temporal resolution of near-coast nutrient source information available to the coastal community. The purpose of this project is to demonstrate the viability of nutrient source information products applicable to small to medium watersheds surrounding the Gulf of Mexico. Conceptually, these products are intended to complement estuarine nutrient monitoring.

  8. Feasibility of Estimating Relative Nutrient Contributions of Agriculture using MODIS Time Series

    Science.gov (United States)

    Ross, Kenton W.; Gasser, Gerald; Spiering, Bruce

    2008-01-01

    Around the Gulf of Mexico, high-input crops in several regions make a significant contribution to nutrient loading of small to medium estuaries and to the near-shore Gulf. Some crops cultivated near the coast include sorghum in Texas, rice in Texas and Louisiana, sugarcane in Florida and Louisiana, citrus orchards in Florida, pecan orchards in Mississippi and Alabama, and heavy sod and ornamental production around Mobile and Tampa Bay. In addition to crops, management of timberlands in proximity to the coasts also plays a role in nutrient loading. In the summer of 2008, a feasibility project is planned to explore the use of NASA data to enhance the spatial and temporal resolution of near-coast nutrient source information available to the coastal community. The purpose of this project is to demonstrate the viability of nutrient source information products applicable to small to medium watersheds surrounding the Gulf of Mexico. Conceptually, these products are intended to complement estuarine nutrient monitoring.

  9. Input characterization of a shock test strructure.

    Energy Technology Data Exchange (ETDEWEB)

    Hylok, J. E. (Jeffrey E.); Groethe, M. A.; Maupin, R. D. (Ryan D.)

    2004-01-01

    Often in experimental work, measuring input forces and pressures is a difficult and sometimes impossible task. For one particular shock test article, its input sensitivity required a detailed measurement of the pressure input. This paper discusses the use of a surrogate mass mock test article to measure spatial and temporal variations of the shock input within and between experiments. Also discussed will be the challenges and solutions in making some of the high speed transient measurements. The current input characterization work appears as part of the second phase in an extensive model validation project. During the first phase, the system under analysis displayed sensitivities to the shock input's qualitative and quantitative (magnitude) characteristics. However, multiple shortcomings existed in the characterization of the input. First, the experimental measurements of the input were made on a significantly simplified structure only, and the spatial fidelity of the measurements was minimal. Second, the sensors used for the pressure measurement contained known errors that could not be fully quantified. Finally, the measurements examined only one input pressure path (from contact with the energetic material). Airblast levels from the energetic materials were unknown. The result was a large discrepancy between the energy content in the analysis and experiments.

  10. Nutrient imbalance in Norway spruce

    International Nuclear Information System (INIS)

    Thelin, Gunnar

    2000-11-01

    The studies presented in my thesis indicate that growing Norway spruce in monoculture does not constitute sustainable forest management in a high N and S deposition environment, such as in southern Sweden. The combination of N-induced high growth rates and leaching due to soil acidification causes soil reserves of nutrients to decrease. This will increase the risk of nutrient imbalance within the trees when nutrient demands are not met. The development of nutrient imbalance in Scania, southern Sweden, was shown as negative trends in needle and soil nutrient status from the mid-80s to the present in Norway spruce and Scots pine stands. This imbalance appears to be connected to high levels of N and S deposition. Clear negative effects on tree vitality were found when using a new branch development method. Today, growth and vitality seems to be limited by K, rather than N, in spruce stands older than 40 years. However, younger stands appear to be able to absorb the deposited N without negative effects on growth and vitality. When investigating effects of nutrient stress on tree vitality, indicators such as branch length and shoot multiplication rate, which include effects accumulated over several years, are suitable. Countermeasures are needed in order to maintain the forest production at a high level. Positive effects on tree nutrient status after vitality fertilization (N-free fertilization) was shown in two micronutrient deficient stands in south-central Sweden. In addition, tree vitality was positively affected after the application of a site-adapted fertilizer to the canopy. Site-adaption of fertilizers will most likely improve the possibilities of a positive response on tree growth and vitality in declining stands. In a survey of Norway spruce in mixtures with beech, birch, or oak compared to monocultures it was shown that spruce nutrient status was higher in mixtures with deciduous species than in monocultures. By using mixed-species stands the need for

  11. Nutrient imbalance in Norway spruce

    Energy Technology Data Exchange (ETDEWEB)

    Thelin, Gunnar

    2000-11-01

    The studies presented in my thesis indicate that growing Norway spruce in monoculture does not constitute sustainable forest management in a high N and S deposition environment, such as in southern Sweden. The combination of N-induced high growth rates and leaching due to soil acidification causes soil reserves of nutrients to decrease. This will increase the risk of nutrient imbalance within the trees when nutrient demands are not met. The development of nutrient imbalance in Scania, southern Sweden, was shown as negative trends in needle and soil nutrient status from the mid-80s to the present in Norway spruce and Scots pine stands. This imbalance appears to be connected to high levels of N and S deposition. Clear negative effects on tree vitality were found when using a new branch development method. Today, growth and vitality seems to be limited by K, rather than N, in spruce stands older than 40 years. However, younger stands appear to be able to absorb the deposited N without negative effects on growth and vitality. When investigating effects of nutrient stress on tree vitality, indicators such as branch length and shoot multiplication rate, which include effects accumulated over several years, are suitable. Countermeasures are needed in order to maintain the forest production at a high level. Positive effects on tree nutrient status after vitality fertilization (N-free fertilization) was shown in two micronutrient deficient stands in south-central Sweden. In addition, tree vitality was positively affected after the application of a site-adapted fertilizer to the canopy. Site-adaption of fertilizers will most likely improve the possibilities of a positive response on tree growth and vitality in declining stands. In a survey of Norway spruce in mixtures with beech, birch, or oak compared to monocultures it was shown that spruce nutrient status was higher in mixtures with deciduous species than in monocultures. By using mixed-species stands the need for

  12. Phosphate addition enhanced soil inorganic nutrients to a large extent in three tropical forests.

    Science.gov (United States)

    Zhu, Feifei; Lu, Xiankai; Liu, Lei; Mo, Jiangming

    2015-01-21

    Elevated nitrogen (N) deposition may constrain soil phosphorus (P) and base cation availability in tropical forests, for which limited evidence have yet been available. In this study, we reported responses of soil inorganic nutrients to full factorial N and P treatments in three tropical forests different in initial soil N status (N-saturated old-growth forest and two less-N-rich younger forests). Responses of microbial biomass, annual litterfall production and nutrient input were also monitored. Results showed that N treatments decreased soil inorganic nutrients (except N) in all three forests, but the underlying mechanisms varied depending on forests: through inhibition on litter decomposition in the old-growth forest and through Al(3+) replacement of Ca(2+) in the two younger forests. In contrast, besides great elevation in soil available P, P treatments induced 60%, 50%, 26% increases in sum of exchangeable (K(+)+Ca(2+)+Mg(2+)) in the old-growth and the two younger forests, respectively. These positive effects of P were closely related to P-stimulated microbial biomass and litter nutrient input, implying possible stimulation of nutrient return. Our results suggest that N deposition may result in decreases in soil inorganic nutrients (except N) and that P addition can enhance soil inorganic nutrients to support ecosystem processes in these tropical forests.

  13. Long-term soil nutrient dynamics comparison under smallholding land and farmland policy in northeast of China.

    Science.gov (United States)

    Ouyang, Wei; Wei, Xinfeng; Hao, Fanghua

    2013-04-15

    There are two kinds of land policies, the smallholding land policy (SLP) and the farmland policy (FLP) in China. The farmland nutrient dynamics under the two land policies were analysed with the soil system budget method. The averaged nitrogen (N) input of the SLP and the FLP over sixteen years increased about 23.9% and 33.3%, respectively and the phosphorus (P) input climbed about 39.1% and 42.3%, respectively. The statistical analysis showed that the land policies had significant impacts on N and P input from fertilizer and manure, but did not obviously affect the N input from seeds and biological N fixation. The efficiency percentage of N of the SLP and the FLP climbed about 54.5% and 59.4%, respectively, and the P efficiency improved by 52.7% and 82.6%, respectively. About the nutrient output, the F-test analysis indicated that the land polices had remarkable impacts on N output by crop uptake, ammonia volatilisation, denitrification, leaching and runoff, and P output by uptake, runoff, and leach. The balance showed that the absolute loss of N from land deceased about 43.6% and 46.0%, respectively, in the SLP and the FLP, and P discharge reduced about 34.2% and 75.2%, respectively. The F-test analysis of N and P efficiency and balance of between two polices both indicated that the FLP had significant impact on nutrient dynamic. With the Mitscherlich model, the correlations between nutrient input and crop uptake, usage efficiency and loss were analysed and showed that was a threshold value for the optimal nutrient input with the highest efficiency rate. For the optimal nutrient efficiency, the space for extra P addition was bigger than the N input. The FLP have more advantage than the SLP on the crop yield, nutrient efficiency and environmental discharge. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Bilinearity in spatiotemporal integration of synaptic inputs.

    Directory of Open Access Journals (Sweden)

    Songting Li

    2014-12-01

    Full Text Available Neurons process information via integration of synaptic inputs from dendrites. Many experimental results demonstrate dendritic integration could be highly nonlinear, yet few theoretical analyses have been performed to obtain a precise quantitative characterization analytically. Based on asymptotic analysis of a two-compartment passive cable model, given a pair of time-dependent synaptic conductance inputs, we derive a bilinear spatiotemporal dendritic integration rule. The summed somatic potential can be well approximated by the linear summation of the two postsynaptic potentials elicited separately, plus a third additional bilinear term proportional to their product with a proportionality coefficient [Formula: see text]. The rule is valid for a pair of synaptic inputs of all types, including excitation-inhibition, excitation-excitation, and inhibition-inhibition. In addition, the rule is valid during the whole dendritic integration process for a pair of synaptic inputs with arbitrary input time differences and input locations. The coefficient [Formula: see text] is demonstrated to be nearly independent of the input strengths but is dependent on input times and input locations. This rule is then verified through simulation of a realistic pyramidal neuron model and in electrophysiological experiments of rat hippocampal CA1 neurons. The rule is further generalized to describe the spatiotemporal dendritic integration of multiple excitatory and inhibitory synaptic inputs. The integration of multiple inputs can be decomposed into the sum of all possible pairwise integration, where each paired integration obeys the bilinear rule. This decomposition leads to a graph representation of dendritic integration, which can be viewed as functionally sparse.

  15. Nutrient depletion in Bacillus subtilis biofilms triggers matrix production

    International Nuclear Information System (INIS)

    Zhang, Wenbo; Seminara, Agnese; Suaris, Melanie; Angelini, Thomas E; Brenner, Michael P; Weitz, David A

    2014-01-01

    Many types of bacteria form colonies that grow into physically robust and strongly adhesive aggregates known as biofilms. A distinguishing characteristic of bacterial biofilms is an extracellular polymeric substance (EPS) matrix that encases the cells and provides physical integrity to the colony. The EPS matrix consists of a large amount of polysaccharide, as well as protein filaments, DNA and degraded cellular materials. The genetic pathways that control the transformation of a colony into a biofilm have been widely studied, and yield a spatiotemporal heterogeneity in EPS production. Spatial gradients in metabolites parallel this heterogeneity in EPS, but nutrient concentration as an underlying physiological initiator of EPS production has not been explored. Here, we study the role of nutrient depletion in EPS production in Bacillus subtilis biofilms. By monitoring simultaneously biofilm size and matrix production, we find that EPS production increases at a critical colony thickness that depends on the initial amount of carbon sources in the medium. Through studies of individual cells in liquid culture we find that EPS production can be triggered at the single-cell level by reducing nutrient concentration. To connect the single-cell assays with conditions in the biofilm, we calculate carbon concentration with a model for the reaction and diffusion of nutrients in the biofilm. This model predicts the relationship between the initial concentration of carbon and the thickness of the colony at the point of internal nutrient deprivation. (paper)

  16. READDATA: a FORTRAN 77 codeword input package

    International Nuclear Information System (INIS)

    Lander, P.A.

    1983-07-01

    A new codeword input package has been produced as a result of the incompatibility between different dialects of FORTRAN, especially when character variables are passed as parameters. This report is for those who wish to use a codeword input package with FORTRAN 77. The package, called ''Readdata'', attempts to combine the best features of its predecessors such as BINPUT and pseudo-BINPUT. (author)

  17. CREATING INPUT TABLES FROM WAPDEG FOR RIP

    International Nuclear Information System (INIS)

    K.G. Mon

    1998-01-01

    The purpose of this calculation is to create tables for input into RIP ver. 5.18 (Integrated Probabilistic Simulator for Environmental Systems) from WAPDEG ver. 3.06 (Waste Package Degradation) output. This calculation details the creation of the RIP input tables for TSPA-VA REV.00

  18. Modality of Input and Vocabulary Acquisition

    Science.gov (United States)

    Sydorenko, Tetyana

    2010-01-01

    This study examines the effect of input modality (video, audio, and captions, i.e., on-screen text in the same language as audio) on (a) the learning of written and aural word forms, (b) overall vocabulary gains, (c) attention to input, and (d) vocabulary learning strategies of beginning L2 learners. Twenty-six second-semester learners of Russian…

  19. Farmer and input marketer's involvement in researchextension ...

    African Journals Online (AJOL)

    This study determined the level of involvement of farmers and input marketers in the Research-Extension-Farmer-Input Linkage System (REFILS) continuum of activities in the Southeastern agro-ecological zone of Nigeria. Data were collected with the aid of structured questionnaire administered to 80 randomly selected ...

  20. Exact nonradial input, output, and productivity measurement

    OpenAIRE

    Robert G. Chambers

    2002-01-01

    The use of measures originally suggested by Bennet, Bowley, and Hicks in the context of cost of living, welfare, and consumer surplus measurement to measure inputs, outputs, and productivity is examined. Suitably normalized versions of the Bennet-Bowley measures are shown to be exact and superlative measures of input, output, and productivity indicators.

  1. Input Enhancement and L2 Question Formation.

    Science.gov (United States)

    White, Lydia; And Others

    1991-01-01

    Investigated the extent to which form-focused instruction and corrective feedback (i.e., "input enhancement"), provided within a primarily communicative program, contribute to learners' accuracy in question formation. Study results are interpreted as evidence that input enhancement can bring about genuine changes in learners' interlanguage…

  2. Statistical identification of effective input variables. [SCREEN

    Energy Technology Data Exchange (ETDEWEB)

    Vaurio, J.K.

    1982-09-01

    A statistical sensitivity analysis procedure has been developed for ranking the input data of large computer codes in the order of sensitivity-importance. The method is economical for large codes with many input variables, since it uses a relatively small number of computer runs. No prior judgemental elimination of input variables is needed. The sceening method is based on stagewise correlation and extensive regression analysis of output values calculated with selected input value combinations. The regression process deals with multivariate nonlinear functions, and statistical tests are also available for identifying input variables that contribute to threshold effects, i.e., discontinuities in the output variables. A computer code SCREEN has been developed for implementing the screening techniques. The efficiency has been demonstrated by several examples and applied to a fast reactor safety analysis code (Venus-II). However, the methods and the coding are general and not limited to such applications.

  3. Meridional patterns of inorganic nutrient limitation and co-limitation of bacterial growth in the Atlantic Ocean

    Science.gov (United States)

    Hale, Michelle S.; Li, William K. W.; Rivkin, Richard B.

    2017-11-01

    Growth of heterotrophic bacteria is generally considered to be controlled by temperature and the availability of organic substrates, however there is evidence that bacterial growth can also be limited by the concentrations or supply rate of inorganic nutrients (i.e. nitrogen, phosphorus or iron). We examined spatial and seasonal patterns of organic carbon and inorganic nutrient (N and P) limitation of bacterial growth along each of two meridional transects through the Atlantic Ocean, during contrasting seasons. Here we used nutrient bioassays to demonstrate widespread inorganic nutrient limitation and co-limitation with organic carbon in the oligotrophic temperate, tropical and subtropical ocean. There were distinct seasonal and spatial differences in the inorganic and organic nutrient limitation of bacterial growth, with inorganic nitrogen as the primary limiting nutrient in May/June, and inorganic nitrogen and organic carbon co-limiting growth in October/November. There was no evidence that the availability of inorganic phosphorus limited bacterial growth in the Southern Hemisphere. We propose that the patterns of nutrient-dependent bacterial growth reflect seasonal and spatial differences in aeolian inputs and the quality of dissolved organic matter, and that bacteria directly compete with autotrophs for inorganic nutrients in the oligotrophic regions of the World Ocean. The findings of this study have important implications for understanding the balance between the biological and microbial carbon pumps, and the modelling of the net metabolic balance of the Ocean in response to climate-driven changes in nutrient inputs.

  4. Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers

    NARCIS (Netherlands)

    Liu, C.; Kroeze, C.; Hoekstra, Arjen Ysbert; Gerbens-Leenes, Winnie

    2012-01-01

    The grey water footprint (GWF) is an indicator of aquatic pollution. We calculate past and future trends in GWFs related to anthropogenic nitrogen (N) and phosphorus (P) inputs into major rivers around the world. GWFs were calculated from past, current and future nutrient loads in river basins using

  5. Use of composts to improve soil properties and crop productivity under low input agricultural system in West Africa

    NARCIS (Netherlands)

    Ouédraogo, E.; Mando, A.; Zombré, N.P.

    2000-01-01

    Lack of adequate nutrient supply and poor soil structure are the principal constraints to crop production under low input agriculture systems of West Africa. Experiments at two sites (Mediga and Yimtenga) were conducted in Burkina Faso to assess the impact of compost on improving crop production and

  6. Do different cow types respond differently to a reduction on concentrate supplementation in an Alpine low-input dairy system?

    DEFF Research Database (Denmark)

    Horn, Marco; Steinwidder, Andreas; Pfister, Rupert

    2014-01-01

    Forage based low-input dairy systems include a certain risk of a temporary undersupply with nutrients and energy. Therefore the aim of the present study was to investigate the productive, reproductive and metabolic response of two different dairy cow types to a reduction of concentrate supplement...

  7. Compost supplementation with nutrients and microorganisms in composting process.

    Science.gov (United States)

    Sánchez, Óscar J; Ospina, Diego A; Montoya, Sandra

    2017-11-01

    The composting is an aerobic, microorganism-mediated, solid-state fermentation process by which different organic materials are transformed into more stable compounds. The product obtained is the compost, which contributes to the improvement of physical, chemical and microbiological properties of the soil. However, the compost usage in agriculture is constrained because of its long-time action and reduced supply of nutrients to the crops. To enhance the content of nutrients assimilable by the plants in the compost, its supplementation with nutrients and inoculation with microorganisms have been proposed. The objective of this work was to review the state of the art on compost supplementation with nutrients and the role played by the microorganisms involved (or added) in their transformation during the composting process. The phases of composting are briefly compiled and different strategies for supplementation are analyzed. The utilization of nitrogenous materials and addition of microorganisms fixing nitrogen from the atmosphere or oxidizing ammonia into more assimilable for plants nitrogenous forms are analyzed. Several strategies for nitrogen conservation during composting are presented as well. The supplementation with phosphorus and utilization of microorganisms solubilizing phosphorus and potassium are also discussed. Main groups of microorganisms relevant during the composting process are described as well as most important strategies to identify them. In general, the development of this type of nutrient-enriched bio-inputs requires research and development not only in the supplementation of compost itself, but also in the isolation and identification of microorganisms and genes allowing the degradation and conversion of nitrogenous substances and materials containing potassium and phosphorus present in the feedstocks undergoing the composting process. In this sense, most important research trends and strategies to increase nutrient content in the compost

  8. How northern freshwater input can stabilise thermohaline circulation

    Directory of Open Access Journals (Sweden)

    Erwin Lambert

    2016-11-01

    Full Text Available The North Atlantic thermohaline circulation (THC carries heat and salt towards the Arctic. This circulation is partly sustained by buoyancy loss and is generally believed to be inhibited by northern freshwater input as indicated by the ‘box-model’ of Stommel (1961. The inferred freshwater-sensitivity of the THC, however, varies considerably between studies, both quantitatively and qualitatively. The northernmost branch of the Atlantic THC, which forms a double estuarine circulation in the Arctic Mediterranean, is one example where both buoyancy loss and buoyancy gain facilitate circulation. We have built on Stommel's original concept to examine the freshwater-sensitivity of a double estuarine circulation. The net inflow into the double estuary is found to be more sensitive to a change in the distribution of freshwater than to a change in the total freshwater input. A double estuarine circulation is more stable than a single overturning, requiring a larger amount and more localised freshwater input into regions of buoyancy loss to induce a thermohaline ‘collapse’. For the Arctic Mediterranean, these findings imply that the Atlantic inflow may be relatively insensitive to increased freshwater input. Complementing Stommel's thermal and haline flow regimes, the double estuarine circulation allows for a third: the throughflow regime. In this regime, a THC with warm poleward surface flow can be sustained without production of dense water; a decrease in high-latitude dense water formation does therefore not necessarily affect regional surface conditions as strongly as generally thought.

  9. Modal participation in multiple input Ibrahim time domain identification

    DEFF Research Database (Denmark)

    Brincker, Rune; Olsen, Peter; Amador, Sandro

    2017-01-01

    The Ibrahim time domain (ITD) identification technique was one of the first techniques formulated for multiple output modal analysis based on impulse response functions or general free decays. However, the technique has not been used much in recent decades due to the fact that the technique was o...... of the identification technique are investigated in a simulation study with closely spaced modes. The simulation study shows that the multiple-input formulation provides estimates with significantly smaller errors on both mode shape and natural frequency estimates....... was originally formulated for single input systems that suffer from well-known problems in case of closely spaced modes. In this paper, a known, but more modern formulation of the ITD technique is discussed. In this formulation the technique becomes multiple input by adding some Toeplitz matrices over a set...... matrix has full rank. This secures that all modes will be contained in the estimated system matrix. Finally, it is discussed how correlation functions estimated from the operational responses of structures can be used as free decays for the multiple-input ITD formulation, and the estimation errors...

  10. Fogwater Inputs to a Cloud Forest in Puerto Rico

    Science.gov (United States)

    Eugster, W.; Burkard, R.; Holwerda, F.; Bruijnzeel, S.; Scatena, F. N.; Siegwolf, R.

    2002-12-01

    Fog is highly persistent at upper elevations of humid tropical mountains and is an important pathway for water and nutrient inputs to mountain forest ecosystems. Measurements of fogwater fluxes were performed in the Luquillo mountains of Puerto Rico using the eddy covariance approach and a Caltech-type active strand cloudwater collector. Rainfall and throughfall were collected between 25 June--7 August 2002. Samples of fog, rain, stemflow and throughfall were analyzed for inorganic ion and stable isotope concentrations (δ18O and δD). Initial results indicate that fog inputs can occur during periods without rain and last for up to several days. The isotope ratios in rainwater and fogwater are rather similar, indicative of the proximity of the Carribbean Sea and the close interrelation between the origins of fog and rain at our experimental site. Largest differences in isotope ratios for fog were found between daytime convective and nighttime stable conditions. Throughfall was always exceeding rainfall, indicating (a) the relevance of fogwater inputs and (b) the potentially significant undersampling of rainfall due to relatively high wind speeds (5.7 m/s mean) and the exposition of our field site close to a mountain ridge. Our size-resolved measurements of cloud droplets (40 size bins between 2 and 50 μm aerodynamic diameter) indicate that the liquid water content of fog in the Luquillo mountains is 5 times higher than previously assumed, and thus does not differ from the values reported from other mountain ranges in other climate zones. Average deposition rates are 0.88 mm and 6.5 mm per day for fog and rain, respectively.

  11. Nutrient acquisition strategies of mammalian cells.

    Science.gov (United States)

    Palm, Wilhelm; Thompson, Craig B

    2017-06-07

    Mammalian cells are surrounded by diverse nutrients, such as glucose, amino acids, various macromolecules and micronutrients, which they can import through transmembrane transporters and endolysosomal pathways. By using different nutrient sources, cells gain metabolic flexibility to survive periods of starvation. Quiescent cells take up sufficient nutrients to sustain homeostasis. However, proliferating cells depend on growth-factor-induced increases in nutrient uptake to support biomass formation. Here, we review cellular nutrient acquisition strategies and their regulation by growth factors and cell-intrinsic nutrient sensors. We also discuss how oncogenes and tumour suppressors promote nutrient uptake and thereby support the survival and growth of cancer cells.

  12. Measuring Input Thresholds on an Existing Board

    Science.gov (United States)

    Kuperman, Igor; Gutrich, Daniel G.; Berkun, Andrew C.

    2011-01-01

    A critical PECL (positive emitter-coupled logic) interface to Xilinx interface needed to be changed on an existing flight board. The new Xilinx input interface used a CMOS (complementary metal-oxide semiconductor) type of input, and the driver could meet its thresholds typically, but not in worst-case, according to the data sheet. The previous interface had been based on comparison with an external reference, but the CMOS input is based on comparison with an internal divider from the power supply. A way to measure what the exact input threshold was for this device for 64 inputs on a flight board was needed. The measurement technique allowed an accurate measurement of the voltage required to switch a Xilinx input from high to low for each of the 64 lines, while only probing two of them. Directly driving an external voltage was considered too risky, and tests done on any other unit could not be used to qualify the flight board. The two lines directly probed gave an absolute voltage threshold calibration, while data collected on the remaining 62 lines without probing gave relative measurements that could be used to identify any outliers. The PECL interface was forced to a long-period square wave by driving a saturated square wave into the ADC (analog to digital converter). The active pull-down circuit was turned off, causing each line to rise rapidly and fall slowly according to the input s weak pull-down circuitry. The fall time shows up as a change in the pulse width of the signal ready by the Xilinx. This change in pulse width is a function of capacitance, pulldown current, and input threshold. Capacitance was known from the different trace lengths, plus a gate input capacitance, which is the same for all inputs. The pull-down current is the same for all inputs including the two that are probed directly. The data was combined, and the Excel solver tool was used to find input thresholds for the 62 lines. This was repeated over different supply voltages and

  13. TOR Signaling and Nutrient Sensing.

    Science.gov (United States)

    Dobrenel, Thomas; Caldana, Camila; Hanson, Johannes; Robaglia, Christophe; Vincentz, Michel; Veit, Bruce; Meyer, Christian

    2016-04-29

    All living organisms rely on nutrients to sustain cell metabolism and energy production, which in turn need to be adjusted based on available resources. The evolutionarily conserved target of rapamycin (TOR) protein kinase is a central regulatory hub that connects environmental information about the quantity and quality of nutrients to developmental and metabolic processes in order to maintain cellular homeostasis. TOR is activated by both nitrogen and carbon metabolites and promotes energy-consuming processes such as cell division, mRNA translation, and anabolism in times of abundance while repressing nutrient remobilization through autophagy. In animals and yeasts, TOR acts antagonistically to the starvation-induced AMP-activated kinase (AMPK)/sucrose nonfermenting 1 (Snf1) kinase, called Snf1-related kinase 1 (SnRK1) in plants. This review summarizes the immense knowledge on the relationship between TOR signaling and nutrients in nonphotosynthetic organisms and presents recent findings in plants that illuminate the crucial role of this pathway in conveying nutrient-derived signals and regulating many aspects of metabolism and growth.

  14. Nutrient canal of the fibula

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo-Hyuk; Ehara, Shigeru; Tamakawa, Yoshiharu [Departments of Radiology, Iwate Medical University School of Medicine, Morioka (Japan); Horiguchi, Masahura [Department of Anatomy I, Iwate Medical University School of Medicine, Morioka (Japan)

    2000-01-01

    Objective. To investigate the radiological features of the nutrient canal in the fibula.Design and patients. One hundred and seventy-nine dried fibulae were studied regarding the type, number, location, and direction of the nutrient canal. They were classified into a usual type (type I: a radiolucent line confined to the cortex) and an atypical type (type II: a radiolucent line extending beyond the cortex).Results. Among the total of 230 nutrient canals seen on radiography, 197 (86%) were type I and 33 (14%) were type II. On CT scans, the ossified rim of the canal extended into the medullary cavity in type II canals. The most common site was the posteromedial aspect in both type I and type II canals. Type II canals were significantly more common in fibulae with two or three nutrient canals. The frequency of the upward direction was more common in type II canals.Conclusion. Nutrient canals with extension of the ossified rim into the medullary canal are the cause of linear lucency that may simulate a fracture. Their features are slightly different from those of usual canals. (orig.)

  15. Phytoplankton and nutrient dynamics in Winyah Bay, SC.

    Science.gov (United States)

    Boneillo, G. E.; Brooks, S. S.; Brown, S. L.; Woodford, K. M.; Wright, C. R.

    2016-02-01

    Winyah Bay is a coastal plain estuary located in South Carolina that has been classified for a moderate risk of Eutrophication by NOAA. Winyah Bay receives freshwater input from four rivers, the Waccamaw, Sampit, Black, and Pee Dee Rivers. The Waccamaw, Sampit and Black River are blackwater systems that discharge elevated amounts of colored dissolved organic matter. During the summer and fall of 2015, bioassay experiments were performed to simultaneously examine both light and nutrient (nitrogen & phosphate) limitation throughout Winyah Bay. Sampling stations near the mouth of the Waccamaw and Sampit Rivers showed that phytoplankton were light limited in the late summer instead of nutrient limited. These stations were located in the industrialized area of the bay and typically had the highest nutrient concentrations and highest turbidity, with Secchi depths typically less than 0.5 meters. Results indicated that phytoplankton may be nitrogen limited near the mouth of Winyah Bay, where nutrient concentrations and turbidity were observed to be lower than locations further upstream. There was also an observed dissolved oxygen and pH gradient during the summer of 2015. Dissolved oxygen levels less than 4.0 mg/L were routinely observed near the industrialized head of the estuary and corresponded with lower pH values.

  16. The fate of riverine nutrients on Arctic shelves

    Directory of Open Access Journals (Sweden)

    V. Le Fouest

    2013-06-01

    Full Text Available Present and future levels of primary production (PP in the Arctic Ocean (AO depend on nutrient inputs to the photic zone via vertical mixing, upwelling and external sources. In this regard, the importance of horizontal river supply relative to oceanic processes is poorly constrained at the pan-Arctic scale. We compiled extensive historical (1954–2012 data on discharge and nutrient concentrations to estimate fluxes of nitrate, soluble reactive phosphate (SRP, silicate, dissolved organic carbon (DOC, dissolved organic nitrogen (DON, particulate organic nitrogen (PON and particulate organic carbon (POC from 9 large Arctic rivers and assess their potential impact on the biogeochemistry of shelf waters. Several key points can be emphasized from this analysis. The contribution of riverine nitrate to new PP (PPnew is very small at the regional scale (9 mol N may exceed the combined riverine supply of nitrate and ammonium (3.4 × 109 mol N. Nevertheless, overall nitrogen limitation of AO phytoplankton is expected to persist even when projected increases of riverine DON and nitrate supply are taken into account. This analysis underscores the need to better contrast oceanic nutrient supply processes with the composition and fate of changing riverine nutrient deliveries in future scenarios of plankton community structure, function and production in the coastal AO.

  17. Nutrient supply of plants in aquaponic systems

    OpenAIRE

    Andras Bittsanszky; Nikolett Uzinger; Gábor Gyulai; Alex Mathis; Ranka Junge; Morris Villarroel; Benzion Kotzen; Tamas Komives

    2016-01-01

    In this preliminary article we present data on plant nutrient concentrations in aquaponic systems, and compare them to nutrient concentrations in “standard” hydroponic solutions. Our data shows that the nutrient concentrations supplied by the fish in aquaponic system are significantly lower for most nutrients, compared to hydroponic systems. Nevertheless, plants do thrive in solutions that have lower nutrient levels than “standard” hydroponic solutions. This is especially true for green leafy...

  18. MARS code manual volume II: input requirements

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Kim, Kyung Doo; Bae, Sung Won; Jeong, Jae Jun; Lee, Seung Wook; Hwang, Moon Kyu

    2010-02-01

    Korea Advanced Energy Research Institute (KAERI) conceived and started the development of MARS code with the main objective of producing a state-of-the-art realistic thermal hydraulic systems analysis code with multi-dimensional analysis capability. MARS achieves this objective by very tightly integrating the one dimensional RELAP5/MOD3 with the multi-dimensional COBRA-TF codes. The method of integration of the two codes is based on the dynamic link library techniques, and the system pressure equation matrices of both codes are implicitly integrated and solved simultaneously. In addition, the Equation-Of-State (EOS) for the light water was unified by replacing the EOS of COBRA-TF by that of the RELAP5. This input manual provides a complete list of input required to run MARS. The manual is divided largely into two parts, namely, the one-dimensional part and the multi-dimensional part. The inputs for auxiliary parts such as minor edit requests and graph formatting inputs are shared by the two parts and as such mixed input is possible. The overall structure of the input is modeled on the structure of the RELAP5 and as such the layout of the manual is very similar to that of the RELAP. This similitude to RELAP5 input is intentional as this input scheme will allow minimum modification between the inputs of RELAP5 and MARS3.1. MARS3.1 development team would like to express its appreciation to the RELAP5 Development Team and the USNRC for making this manual possible

  19. Integrating agronomic principles into production function estimation: A dichotomy of growth inputs and facilitating inputs

    NARCIS (Netherlands)

    Zhengfei, G.; Oude Lansink, A.G.J.M.; Ittersum, van M.K.; Wossink, G.A.A.

    2006-01-01

    This article presents a general conceptual framework for integrating agronomic principles into economic production analysis. We categorize inputs in crop production into growth inputs and facilitating inputs. Based on this dichotomy we specify an asymmetric production function. The robustness of the

  20. Soil nutrient availability and reproductive effort drive patterns in nutrient resorption in Pentachlethra macroloba

    Science.gov (United States)

    K. L. Tully; Tana Wood; A. M. Schwantes; D. Lawrence

    2013-01-01

    The removal of nutrients from senescing tissues, nutrient resorption, is a key strategy for conserving nutrients in plants. However, our understanding of what drives patterns of nutrient resorption in tropical trees is limited. We examined the effects of nutrient sources (stand-level and tree-level soil fertility) and sinks (reproductive effort) on nitrogen (N) and...

  1. Input-dependent wave attenuation in a critically-balanced model of cortex.

    Directory of Open Access Journals (Sweden)

    Xiao-Hu Yan

    Full Text Available A number of studies have suggested that many properties of brain activity can be understood in terms of critical systems. However it is still not known how the long-range susceptibilities characteristic of criticality arise in the living brain from its local connectivity structures. Here we prove that a dynamically critically-poised model of cortex acquires an infinitely-long ranged susceptibility in the absence of input. When an input is presented, the susceptibility attenuates exponentially as a function of distance, with an increasing spatial attenuation constant (i.e., decreasing range the larger the input. This is in direct agreement with recent results that show that waves of local field potential activity evoked by single spikes in primary visual cortex of cat and macaque attenuate with a characteristic length that also increases with decreasing contrast of the visual stimulus. A susceptibility that changes spatial range with input strength can be thought to implement an input-dependent spatial integration: when the input is large, no additional evidence is needed in addition to the local input; when the input is weak, evidence needs to be integrated over a larger spatial domain to achieve a decision. Such input-strength-dependent strategies have been demonstrated in visual processing. Our results suggest that input-strength dependent spatial integration may be a natural feature of a critically-balanced cortical network.

  2. Development of food tables and use with computers. Review of nutrient data bases.

    Science.gov (United States)

    Hertzler, A A; Hoover, L W

    1977-01-01

    Numerous tables of food composition have been compiled since the 1890s to meet the needs for nutrient data by nutritionists, researchers, and consumers. Early tables included values for protein, fat, carbohydrate, and calories. By 1945, values for several vitamins and minerals were listed in tables of food composition. The contents of food composition tables have been updated and expanded as laboratory procedures for analyzing nutrients have been improved. A trend toward increased specificity for most nutrient classifications has resulted in consideration of up to one hundred nutritional components in the development of nutrient data bases. Tables of food composition have varied in number of food items, number of nutrients, and classification schemes. Food-group designations have been used in some tables as a technique to categorize data for similar food items. Computer-stored nutrient data bases tend to vary in much the same manner as printed tables of food composition. Computer-assisted diagnostic procedures for editing input data for validity and verifying reasonable relationships among nutrient data have been developed to detect data inconsistencies. As data for new food products are included and the effects of food processing methods are determined, food composition tables and computer-stored nutrient data bases are expected to become more comprehensive, reliable, and suitable for various uses.

  3. Nutrient processes at the stream-lake interface for a channelized versus unmodified stream mouth

    Science.gov (United States)

    Niswonger, Richard G.; Naranjo, Ramon C.; Smith, David; Constantz, James E.; Allander, Kip K.; Rosenberry, Donald O.; Neilson, Bethany; Rosen, Michael R.; Stonestrom, David A.

    2017-01-01

    Inorganic forms of nitrogen and phosphorous impact freshwater lakes by stimulating primary production and affecting water quality and ecosystem health. Communities around the world are motivated to sustain and restore freshwater resources and are interested in processes controlling nutrient inputs. We studied the environment where streams flow into lakes, referred to as the stream-lake interface (SLI), for a channelized and unmodified stream outlet. Channelization is done to protect infrastructure or recreational beach areas. We collected hydraulic and nutrient data for surface water and shallow groundwater in two SLIs to develop conceptual models that describe characteristics that are representative of these hydrologic features. Water, heat, and solute transport models were used to evaluate hydrologic conceptualizations and estimate mean residence times of water in the sediment. A nutrient mass balance model is developed to estimate net rates of adsorption and desorption, mineralization, and nitrification along subsurface flow paths. Results indicate that SLIs are dynamic sources of nutrients to lakes and that the common practice of channelizing the stream at the SLI decreases nutrient concentrations in pore water discharging along the lakeshore. This is in contrast to the unmodified SLI that forms a barrier beach that disconnects the stream from the lake and results in higher nutrient concentrations in pore water discharging to the lake. These results are significant because nutrient delivery through pore water seepage at the lakebed from the natural SLI contributes to nearshore algal communities and produces elevated concentrations of inorganic nutrients in the benthic zone where attached algae grow.

  4. Seasonal variation in physicochemical properties of coastal waters of Kalpakkam, east coast of India with special emphasis on nutrients.

    Science.gov (United States)

    Satpathy, K K; Mohanty, A K; Natesan, U; Prasad, M V R; Sarkar, S K

    2010-05-01

    A study pertaining to the seasonal variation in physicochemical properties of the coastal waters was carried out at Kalpakkam coast for a period of 1 year (February 2006 to January 2007). It revealed that the coastal water was significantly influenced by freshwater input during North East (NE) monsoon and post-monsoon periods. Concentration of all the nutrients and dissolved oxygen (DO) was relatively high during the NE monsoon, whereas, salinity and chlorophyll-a (chl-a) were at their minimum level during this period. Phytoplankton production peak was observed in summer during which a typical marine condition prevailed. The present observed values of nitrate, phosphate, silicate, and turbidity are significantly high (five to ten times) compared to that of the pre-Tsunami period from this coast. Relatively low DO and chl-a concentration was noticed during the post-Tsunami period. A notable feature of this study is that though nutrient concentration in the coastal waters during post-Tsunami period has increased significantly, turbidity, the most single dominating factor, was found to adversely affect the phytoplankton production during post-Tsunami period as reflected by relatively low chl-a concentration. Thus, the post-Tsunami period may result in a change in coastal biodiversity pattern concomitant with change in coastal water quality.

  5. Modeling sources of nutrients in rivers draining into the Bay of Bengal—a scenario analysis

    NARCIS (Netherlands)

    Pedde, Simona; Kroeze, Carolien; Mayorga, Emilio; Seitzinger, Sybil Putnam

    2017-01-01

    We model future trends in river export of nutrients to the Bay of Bengal, and the sources of this pollution. We focus on total nitrogen (TN), total phosphorus (TP), and dissolved silica (DSi) inputs to the Bay of Bengal Large Marine Ecosystem (BOB LME) in the years 2000, 2030, and 2050. In 2000,

  6. Precipitation nutrients in the open and under two forests in Minnesota

    Science.gov (United States)

    Elon S. Verry; D.R. Timmons

    1977-01-01

    Concentrations of N, P, K, Ca, Mg, and Na were measured in rain and snow in the open, and in throughfall and stemflow under black spruce and aspen forests in north-central Minnesota. Concentrations of total P in rain and black spruce throughfall were inversely related to storm size. Annual precipitation nutrient inputs to the forest floor were calculated for each site...

  7. Dietary influences on nutrient partitioning and anatomical body composition of growing pigs; modelling and experimental approaches

    NARCIS (Netherlands)

    Halas, V.

    2004-01-01

    Prediction of pig performance from data on nutrient intake and animal properties makes it easier to obtain a better productivity. It provides tools to arrive at desired outputs, or to calculate required inputs. Thus it enables production to be flexible, safe and less erratic. It is to be expected

  8. Economic Optimization of Nutrient Application to Coffee in Northern Tanzania Using SAFERNAC

    NARCIS (Netherlands)

    Maro, G.P.; Janssen, B.H.; Msanya, B.M.; Mrema, J.P.

    2014-01-01

    The aim of this work, as an extension to SAFERNAC model, was to establish economically optimum combinations of N, P and K application to Arabica coffee in the Northern coffee zone of Tanzania. The study was conducted in Hai and Lushoto districts between 2010 and 2012. Prices of nutrient inputs and

  9. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients

    NARCIS (Netherlands)

    Meisner, A.; De Boer, W.; Cornelissen, J.H.C.; Van der Putten, W.H.

    2012-01-01

    Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to

  10. Reactive transport modeling of biogeochemical dynamics in subterranean estuaries: Implications for submarine groundwater discharge of nutrients

    NARCIS (Netherlands)

    Spiteri, C.

    2007-01-01

    The quality of groundwater, in particular in coastal areas, is increasingly deteriorating due to the input of nutrients (NO3-, NH4+ and PO4) from septic systems and agricultural leaching. The discharge of groundwater to coastal waters, termed submarine groundwater discharge (SGD), is now recognized

  11. Nutrient-enhancement of Matooke banana for improved nutrient ...

    African Journals Online (AJOL)

    A total of 173 PLHIVregistered with Rakai Health Science Project were chosen and interviewed using structured questionnaires to determine the current contribution of banana to the household food security. Nutrient intake data were collected using Gibson s 24-hour recall method and food frequency questionnaires.

  12. Effect of Processing Methods on the Nutrients and Anti Nutrients ...

    African Journals Online (AJOL)

    appropriate methods for retaining its nutrients and reducing to a moderate level, its antinutrients compositions. The leaves were subjected to different processing methods such as boiling for 3mins at 100oC, blanching at 62oC for 5mins, squeeze-washing with 250ml of clean water for 3 rounds each lasting 3mins, a combine ...

  13. Nutrient enrichment effect on macroinvertebrates in a lowland stream of Argentina

    Directory of Open Access Journals (Sweden)

    Agustina Cortelezzi

    2015-06-01

    Full Text Available ABSTRACT One of the most important effects derived from the intensive land use is the increase of nutrient concentration in the aquatic systems due to superficial drainage. Besides, the increment of precipitations in South America connected to the global climate change could intensify these anthropic impacts due to the changes in the runoff pattern and a greater discharge of water in the streams and rivers. The pampean streams are singular environments with high natural nutrient concentrations which could be increased even more if the predictions of global climate change for the area are met. In this context, the effect of experimental nutrient addition on macroinvertebrates in a lowland stream is studied. Samplings were carried out from March 2007 to February 2009 in two reaches (fertilized and unfertilized, upstream and downstream from the input of nutrients. The addition of nutrients caused an increase in the phosphorus concentration in the fertilized reach which was not observed for nitrogen concentration. From all macroinvertebrates studied only two taxa had significant differences in their abundance after fertilization: Corbicula fluminea and Ostracoda. Our results reveal that the disturbance caused by the increase of nutrients on the benthic community depends on basal nutrients concentration. The weak response of macroinvertebrates to fertilization in the pampean streams could be due to their tolerance to high concentrations of nutrients in relation to their evolutionary history in streams naturally enriched with nutrients. Further research concerning the thresholds of nutrients affecting macroinvertebrates and about the adaptive advantages of taxa in naturally eutrophic environments is still needed. This information will allow for a better understanding of the processes of nutrient cycling and for the construction of restoration measures in natural eutrophic ecosystems.

  14. Multiple Input - Multiple Output (MIMO) SAR

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort will research and implement advanced Multiple-Input Multiple-Output (MIMO) Synthetic Aperture Radar (SAR) techniques which have the potential to improve...

  15. Carbon and nutrient losses during manure storage under traditional and improved practices in smallholder crop-livestock systems - evidence from Kenya

    NARCIS (Netherlands)

    Tittonell, P.A.; Rufino, M.C.; Janssen, B.H.; Giller, K.E.

    2010-01-01

    In the absence of mineral fertiliser, animal manure may be the only nutrient resource available to smallholder farmers in Africa, and manure is often the main input of C to the soil when crop residues are removed from the fields. Assessments of C and nutrient balances and cycling within

  16. Response of the soil microbial community and soil nutrient bioavailability to biomass harvesting and reserve tree retention in northern Minnesota aspen-dominated forests

    Science.gov (United States)

    Tera E. Lewandowski; Jodi A. Forrester; David J. Mladenoff; Anthony W. D' Amato; Brian J. Palik

    2016-01-01

    Intensive forest biomass harvesting, or the removal of harvesting slash (woody debris from tree branches and tops) for use as biofuel, has the potential to negatively affect the soil microbial community (SMC) due to loss of carbon and nutrient inputs from the slash, alteration of the soil microclimate, and increased nutrient leaching. These effects could result in...

  17. Long-term reductions in anthropogenic nutrients link to improvements in Chesapeake Bay habitat.

    Science.gov (United States)

    Ruhl, Henry A; Rybicki, Nancy B

    2010-09-21

    Great effort continues to focus on ecosystem restoration and reduction of nutrient inputs thought to be responsible, in part, for declines in estuary habitats worldwide. The ability of environmental policy to address restoration is limited, in part, by uncertainty in the relationships between costly restoration and benefits. Here, we present results from an 18-y field investigation (1990-2007) of submerged aquatic vegetation (SAV) community dynamics and water quality in the Potomac River, a major tributary of the Chesapeake Bay. River and anthropogenic discharges lower water clarity by introducing nutrients that stimulate phytoplankton and epiphyte growth as well as suspended sediments. Efforts to restore the Chesapeake Bay are often viewed as failing. Overall nutrient reduction and SAV restoration goals have not been met. In the Potomac River, however, reduced in situ nutrients, wastewater-treatment effluent nitrogen, and total suspended solids were significantly correlated to increased SAV abundance and diversity. Species composition and relative abundance also correlated with nutrient and water-quality conditions, indicating declining fitness of exotic species relative to native species during restoration. Our results suggest that environmental policies that reduce anthropogenic nutrient inputs do result in improved habitat quality, with increased diversity and native species abundances. The results also help elucidate why SAV cover has improved only in some areas of the Chesapeake Bay.

  18. Diffusive boundary layers of the colony-forming plankton alga Phaeocystis sp - implications for nutrient uptake and cellular growth

    DEFF Research Database (Denmark)

    Ploug, H.; Stolte, W.; Jørgensen, BB

    1999-01-01

    with concentrations of 2 and 0.2 mu M, respectively, was sufficient to support nutrient demands for 1 cell doubling in colonies in 6-10 h, respectively, at a shear rate of 0.1 s(-1). The same nutrient concentration levels could theoretically support nutrient demands of single cells for one cell doubling within 2-3 h....... It was concluded that the lower grazing pressure in the size class of colonies relative to that of single free-living cells may be more important for colony formation than nutrient concentrations....

  19. Nutrient leaching in a Colombian savanna Oxisol amended with biochar.

    Science.gov (United States)

    Major, Julie; Rondon, Marco; Molina, Diego; Riha, Susan J; Lehmann, Johannes

    2012-01-01

    Nutrient leaching in highly weathered tropical soils often poses a challenge for crop production. We investigated the effects of applying 20 t ha biochar (BC) to a Colombian savanna Oxisol on soil hydrology and nutrient leaching in field experiments. Measurements were made over the third and fourth years after a single BC application. Nutrient contents in the soil solution were measured under one maize and one soybean crop each year that were routinely fertilized with mineral fertilizers. Leaching by unsaturated water flux was calculated using soil solution sampled with suction cup lysimeters and water flux estimates generated by the model HYDRUS 1-D. No significant difference ( > 0.05) was observed in surface-saturated hydraulic conductivity or soil water retention curves, resulting in no relevant changes in water percolation after BC additions in the studied soils. However, due to differences in soil solution concentrations, leaching of inorganic N, Ca, Mg, and K measured up to a depth of 0.6 m increased ( soil solution concentrations and downward movement of nutrients in the root zone and decreased leaching of Ca, Mg, and Sr at 1.2 m, possibly by a combination of retention and crop nutrient uptake. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. A dual porosity model of nutrient uptake by root hairs

    KAUST Repository

    Zygalakis, K. C.

    2011-08-09

    Summary: • The importance of root hairs in the uptake of sparingly soluble nutrients is understood qualitatively, but not quantitatively, and this limits efforts to breed plants tolerant of nutrient-deficient soils. • Here, we develop a mathematical model of nutrient uptake by root hairs allowing for hair geometry and the details of nutrient transport through soil, including diffusion within and between soil particles. We give illustrative results for phosphate uptake. • Compared with conventional \\'single porosity\\' models, this \\'dual porosity\\' model predicts greater root uptake because more nutrient is available by slow release from within soil particles. Also the effect of soil moisture is less important with the dual porosity model because the effective volume available for diffusion in the soil is larger, and the predicted effects of hair length and density are different. • Consistent with experimental observations, with the dual porosity model, increases in hair length give greater increases in uptake than increases in hair density per unit main root length. The effect of hair density is less in dry soil because the minimum concentration in solution for net influx is reached more rapidly. The effect of hair length is much less sensitive to soil moisture. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  1. Recycling nutrients in algae biorefinery

    NARCIS (Netherlands)

    Garcia Alba, Laura; Vos, M.P.; Torri, C.; Fabbri, D.; Kersten, Sascha R.A.; Brilman, Derk Willem Frederik

    2013-01-01

    Algal fuel cells: Repeated nutrient recycling is demonstrated by reusing the aqueous phase obtained from the hydrothermal liquefaction (HTL) of microalgae. This is achieved, for the first time, by performing a complete set of four continuous growth–HTL cycles. Results show similar growth rates in

  2. Nutrients for the aging eye

    Directory of Open Access Journals (Sweden)

    Rasmussen HM

    2013-06-01

    Full Text Available Helen M Rasmussen,1 Elizabeth J Johnson2 1Educational Studies, Lesley University, Cambridge, MA, USA; 2Carotenoid and Health Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA Abstract: The incidence of age-related eye diseases is expected to rise with the aging of the population. Oxidation and inflammation are implicated in the etiology of these diseases. There is evidence that dietary antioxidants and anti-inflammatories may provide benefit in decreasing the risk of age-related eye disease. Nutrients of interest are vitamins C and E, β-carotene, zinc, lutein, zeaxanthin, and the omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid. While a recent survey finds that among the baby boomers (45–65 years old, vision is the most important of the five senses, well over half of those surveyed were not aware of the important nutrients that play a key role in eye health. This is evident from a national survey that finds that intake of these key nutrients from dietary sources is below the recommendations or guidelines. Therefore, it is important to educate this population and to create an awareness of the nutrients and foods of particular interest in the prevention of age-related eye disease. Keywords: nutrition, aging, eye health

  3. Regulating nutrient allocation in plants

    Science.gov (United States)

    Udvardi, Michael; Yang, Jiading; Worley, Eric

    2014-12-09

    The invention provides coding and promoter sequences for a VS-1 and AP-2 gene, which affects the developmental process of senescence in plants. Vectors, transgenic plants, seeds, and host cells comprising heterologous VS-1 and AP-2 genes are also provided. Additionally provided are methods of altering nutrient allocation and composition in a plant using the VS-1 and AP-2 genes.

  4. Ubiquitination In Plant Nutrient Utilisation

    Directory of Open Access Journals (Sweden)

    Gary eYates

    2013-11-01

    Full Text Available Ubiquitin is well established as a major modifier of signaling in eukaryotes. However the extent to which plants rely on ubiquitin for regulating nutrient uptake is still in its infancy. The main characteristic of ubiquitination is the conjugation of ubiquitin onto lysine residues of acceptor proteins. In most cases the targeted protein is rapidly degraded by the 26S proteasome, the major proteolysis machinery in eukaryotic cells. The Ubiquitin-Proteasome System is responsible for removing most abnormal peptides and short-lived cellular regulators, which, in turn, control many processes. This allows cells to respond rapidly to intracellular signals and changing environmental conditions. This perspective will discuss how plants utilize ubiquitin conjugation for sensing environmental nutrient levels. We will highlight recent advances in understanding how ubiquitin aids nutrient homeostasis by affecting the trafficking of membrane bound transporters. Given the overrepresentation of genes encoding ubiquitin-metabolizing enzymes in plants, intracellular signaling events regulated by ubiquitin that lead to transcriptional responses due to nutrient starvation is an under explored area ripe for new discoveries.

  5. Nutrient Management in Pine Forests

    Science.gov (United States)

    Allan E. Tiarks

    1999-01-01

    Coastal plain soils are naturally low in fertility and many pine stands will give an economic response to fertilization, especially phosphorus. Maintaining the nutrients that are on the site by limiting displacement of logging slash during and after the harvest can be important in maintaining the productivity of the site and reducing the amount of fertilizer required...

  6. Productivity and nutrient cycling in bioenergy cropping systems

    Science.gov (United States)

    Heggenstaller, Andrew Howard

    One of the greatest obstacles confronting large-scale biomass production for energy applications is the development of cropping systems that balance the need for increased productive capacity with the maintenance of other critical ecosystem functions including nutrient cycling and retention. To address questions of productivity and nutrient dynamics in bioenergy cropping systems, we conducted two sets of field experiments during 2005-2007, investigating annual and perennial cropping systems designed to generate biomass energy feedstocks. In the first experiment we evaluated productivity and crop and soil nutrient dynamics in three prototypical bioenergy double-crop systems, and in a conventionally managed sole-crop corn system. Double-cropping systems included fall-seeded forage triticale (x Triticosecale Wittmack), succeeded by one of three summer-adapted crops: corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], or sunn hemp (Crotalaria juncea L.). Total dry matter production was greater for triticale/corn and triticale/sorghum-sudangrass compared to sole-crop corn. Functional growth analysis revealed that photosynthetic duration was more important than photosynthetic efficiency in determining biomass productivity of sole-crop corn and double-crop triticale/corn, and that greater yield in the tiritcale/corn system was the outcome of photosynthesis occurring over an extended duration. Increased growth duration in double-crop systems was also associated with reductions in potentially leachable soil nitrogen relative to sole-crop corn. However, nutrient removal in harvested biomass was also greater in the double-crop systems, indicating that over the long-term, double-cropping would mandate increased fertilizer inputs. In a second experiment we assessed the effects of N fertilization on biomass and nutrient partitioning between aboveground and belowground crop components, and on carbon storage by four perennial, warm-season grasses: big bluestem

  7. Alarming nutrient pollution of Chinese rivers as a result of agricultural transitions

    Science.gov (United States)

    Strokal, Maryna; Ma, Lin; Bai, Zhaohai; Luan, Shengji; Kroeze, Carolien; Oenema, Oene; Velthof, Gerard; Zhang, Fusuo

    2016-02-01

    Transitions in Chinese agriculture resulted in industrial animal production systems, disconnected from crop production. We analyzed side-effects of these transitions on total dissolved nitrogen (TDN) and phosphorus (TDP) inputs to rivers. In 2000, when transitions were ongoing, 30%-70% of the manure was directly discharged to rivers (range for sub-basins). Before the transition (1970) this was only 5%. Meanwhile, animal numbers more than doubled. As a result, TDN and TDP inputs to rivers increased 2- to 45-fold (range for sub-basins) during 1970-2000. Direct manure discharge accounts for over two-thirds of nutrients in the northern rivers and for 20%-95% of nutrients in the central and southern rivers. Environmental concern is growing in China. However, in the future, direct manure inputs may increase. Animal production is the largest cause of aquatic eutrophication. Our study is a warning signal and an urgent call for action to recycle animal manure in arable farming.

  8. Unprecedented carbon accumulation in mined soils: the synergistic effect of resource input and plant species invasion.

    Science.gov (United States)

    Silva, Lucas C R; Corrêa, Rodrigo S; Doane, Timothy A; Pereira, Engil I P; Horwath, William R

    2013-09-01

    Opencast mining causes severe impacts on natural environments, often resulting in permanent damage to soils and vegetation. In the present study we use a 14-year restoration chronosequence to investigate how resource input and spontaneous plant colonization promote the revegetation and reconstruction of mined soils in central Brazil. Using a multi-proxy approach, combining vegetation surveys with the analysis of plant and soil isotopic abundances (delta13C and delta15N) and chemical and physical fractionation of organic matter in soil profiles, we show that: (1) after several decades without vegetation cover, the input of nutrient-rich biosolids into exposed regoliths prompted the establishment of a diverse plant community (> 30 species); (2) the synergistic effect of resource input and plant colonization yielded unprecedented increases in soil carbon, accumulating as chemically stable compounds in occluded physical fractions and reaching much higher levels than observed in undisturbed ecosystems; and (3) invasive grasses progressively excluded native species, limiting nutrient availability, but contributing more than 65% of the total accumulated soil organic carbon. These results show that soil-plant feedbacks regulate the amount of available resources, determining successional trajectories and alternative stable equilibria in degraded areas undergoing restoration. External inputs promote plant colonization, soil formation, and carbon sequestration, at the cost of excluding native species. The introduction of native woody species would suppress invasive grasses and increase nutrient availability, bringing the system closer to its original state. However, it is difficult to predict whether soil carbon levels could be maintained without the exotic grass cover. We discuss theoretical and practical implications of these findings, describing how the combination of resource manipulation and management of invasive species could be used to optimize restoration strategies

  9. Nutrient management for rice production

    International Nuclear Information System (INIS)

    Khan, A.R.; Chandra, D.; Nanda, P.; Singh, S.S.; Singh, S.R.; Ghorai, A.K.

    2002-06-01

    The nutrient removed by the crops far exceeds the amounts replenished through fertilizer, causing a much greater strain on the native soil reserves. The situation is further aggravated in countries like India, where sub-optimal fertilizer used by the farmers is a common phenomenon rather than an exception. The total consumption of nutrients of all crops in India, even though reached 15 million tons in 1997, remains much below the estimated nutrient removal of 25 million tons (Swarup and Goneshamurthy, 1998). The gap between nutrient removal supplied through fertilizer has widened further in 2000 to 34 million tons of plant nutrients from the soil against an estimated fertilizer availability of 18 million tons (Singh and Dwivedi, 1996). Nitrogen is the nutrient which limits the most the rice production worldwide. In Asia, where more than 90 percent of the world's rice is produced, about 60 percent of the N fertilizer consumed is used on rice (Stangel and De Dutta, 1985). Conjunctive use of organic material along with fertilizer has been proved an efficient source of nitrogen. Organic residue recycling is becoming an increasingly important aspect of environmentally sound sustainable agriculture. Returning residues like green manure to the soil is necessary for maintaining soil organic matter, which is important for favourable soil structure, soil water retention and soil microbial flora and fauna activities. Use of organic manures in conjunction or as an alternative to chemical fertilizer is receiving attention. Green manure, addition to some extent, helps not only in enhancing the yield but also in improving the physical and chemical nature of soils. The excessive application of chemical fertilizers made it imperative that a part of inorganic fertilizer may be substituted with the recycling of organic wastes. Organic manure has been recorded to enhance the efficiency and reduce the requirement of chemical fertilizers. Partial nitrogen substitution through organic

  10. Low transient storage and uptake efficiencies in seven agricultural streams: implications for nutrient demand.

    Science.gov (United States)

    Sheibley, Richard W; Duff, John H; Tesoriero, Anthony J

    2014-11-01

    We used mass load budgets, transient storage modeling, and nutrient spiraling metrics to characterize nitrate (NO), ammonium (NH), and inorganic phosphorus (SRP) demand in seven agricultural streams across the United States and to identify in-stream services that may control these conditions. Retention of one or all nutrients was observed in all but one stream, but demand for all nutrients was low relative to the mass in transport. Transient storage metrics (/, , , and ) correlated with NO retention but not NH or SRP retention, suggesting in-stream services associated with transient storage and stream water residence time could influence reach-scale NO demand. However, because the fraction of median reach-scale travel time due to transient storage () was ≤1.2% across the sites, only a relatively small demand for NO could be generated by transient storage. In contrast, net uptake of nutrients from the water column calculated from nutrient spiraling metrics were not significant at any site because uptake lengths calculated from background nutrient concentrations were statistically insignificant and therefore much longer than the study reaches. These results suggest that low transient storage coupled with high surface water NO inputs have resulted in uptake efficiencies that are not sufficient to offset groundwater inputs of N. Nutrient retention has been linked to physical and hydrogeologic elements that drive flow through transient storage areas where residence time and biotic contact are maximized; however, our findings indicate that similar mechanisms are unable to generate a significant nutrient demand in these streams relative to the loads. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Identifying and tracking simulated synaptic inputs from neuronal firing: insights from in vitro experiments.

    Directory of Open Access Journals (Sweden)

    Maxim Volgushev

    2015-03-01

    Full Text Available Accurately describing synaptic interactions between neurons and how interactions change over time are key challenges for systems neuroscience. Although intracellular electrophysiology is a powerful tool for studying synaptic integration and plasticity, it is limited by the small number of neurons that can be recorded simultaneously in vitro and by the technical difficulty of intracellular recording in vivo. One way around these difficulties may be to use large-scale extracellular recording of spike trains and apply statistical methods to model and infer functional connections between neurons. These techniques have the potential to reveal large-scale connectivity structure based on the spike timing alone. However, the interpretation of functional connectivity is often approximate, since only a small fraction of presynaptic inputs are typically observed. Here we use in vitro current injection in layer 2/3 pyramidal neurons to validate methods for inferring functional connectivity in a setting where input to the neuron is controlled. In experiments with partially-defined input, we inject a single simulated input with known amplitude on a background of fluctuating noise. In a fully-defined input paradigm, we then control the synaptic weights and timing of many simulated presynaptic neurons. By analyzing the firing of neurons in response to these artificial inputs, we ask 1 How does functional connectivity inferred from spikes relate to simulated synaptic input? and 2 What are the limitations of connectivity inference? We find that individual current-based synaptic inputs are detectable over a broad range of amplitudes and conditions. Detectability depends on input amplitude and output firing rate, and excitatory inputs are detected more readily than inhibitory. Moreover, as we model increasing numbers of presynaptic inputs, we are able to estimate connection strengths more accurately and detect the presence of connections more quickly. These results

  12. Nutrient and energy recovery from urine

    NARCIS (Netherlands)

    Kuntke, P.

    2013-01-01

    Keywords: urine, urine treatment, nutrient recovery, microbial fuel cells, energy production from urine, membrane capacitive deionization. In conventional wastewater treatment plants large amounts of energy are required for the removal and recovery of nutrients (i.e. nitrogen and phosphorus).

  13. Nutrient supply of plants in aquaponic systems

    Directory of Open Access Journals (Sweden)

    Andras Bittsanszky

    2016-10-01

    Full Text Available In this preliminary article we present data on plant nutrient concentrations in aquaponics systems, and we compare them to nutrient concentrations in “standard” hydroponic solutions. Our data shows that the nutrient concentrations supplied by the fish in the aquaponics system are significantly lower for most nutrients compared to hydroponic systems. Nevertheless, plants do thrive in solutions that have lower nutrient levels compared to “standard” hydroponic solutions. This is especially true for green leafy vegetables that rarely need additional nutritional supplementation. It is concluded that in the highly complex system of aquaponics, special care has to be taken, via continuous monitoring of the chemical composition of the circulating water, to provide adequate concentrations and ratios of nutrients, and especially for the potentially toxic component, ammonium. If certain plants require nutrient supplementation, we consider that one based on organic substances would be most beneficial. However, protocols for the application of such nutrient amendments still need to be developed.

  14. Simulating stream transport of nutrients in the eastern United States, 2002, using a spatially-referenced regression model and 1:100,000-scale hydrography

    Science.gov (United States)

    Hoos, Anne B.; Moore, Richard B.; Garcia, Ana Maria; Noe, Gregory B.; Terziotti, Silvia E.; Johnston, Craig M.; Dennis, Robin L.

    2013-01-01

    Existing Spatially Referenced Regression on Watershed attributes (SPARROW) nutrient models for the northeastern and southeastern regions of the United States were recalibrated to achieve a hydrographically consistent model with which to assess nutrient sources and stream transport and investigate specific management questions about the effects of wetlands and atmospheric deposition on nutrient transport. Recalibrated nitrogen models for the northeast and southeast were sufficiently similar to be merged into a single nitrogen model for the eastern United States. The atmospheric deposition source in the nitrogen model has been improved to account for individual components of atmospheric input, derived from emissions from agricultural manure, agricultural livestock, vehicles, power plants, other industry, and background sources. This accounting makes it possible to simulate the effects of altering an individual component of atmospheric deposition, such as nitrate emissions from vehicles or power plants. Regional differences in transport of phosphorus through wetlands and reservoirs were investigated and resulted in two distinct phosphorus models for the northeast and southeast. The recalibrated nitrogen and phosphorus models account explicitly for the influence of wetlands on regional-scale land-phase and aqueous-phase transport of nutrients and therefore allow comparison of the water-quality functions of different wetland systems over large spatial scales. Seven wetland systems were associated with enhanced transport of either nitrogen or phosphorus in streams, probably because of the export of dissolved organic nitrogen and bank erosion. Six wetland systems were associated with mitigating the delivery of either nitrogen or phosphorus to streams, probably because of sedimentation, phosphate sorption, and ground water infiltration.

  15. Harmonize input selection for sediment transport prediction

    Science.gov (United States)

    Afan, Haitham Abdulmohsin; Keshtegar, Behrooz; Mohtar, Wan Hanna Melini Wan; El-Shafie, Ahmed

    2017-09-01

    In this paper, three modeling approaches using a Neural Network (NN), Response Surface Method (RSM) and response surface method basis Global Harmony Search (GHS) are applied to predict the daily time series suspended sediment load. Generally, the input variables for forecasting the suspended sediment load are manually selected based on the maximum correlations of input variables in the modeling approaches based on NN and RSM. The RSM is improved to select the input variables by using the errors terms of training data based on the GHS, namely as response surface method and global harmony search (RSM-GHS) modeling method. The second-order polynomial function with cross terms is applied to calibrate the time series suspended sediment load with three, four and five input variables in the proposed RSM-GHS. The linear, square and cross corrections of twenty input variables of antecedent values of suspended sediment load and water discharge are investigated to achieve the best predictions of the RSM based on the GHS method. The performances of the NN, RSM and proposed RSM-GHS including both accuracy and simplicity are compared through several comparative predicted and error statistics. The results illustrated that the proposed RSM-GHS is as uncomplicated as the RSM but performed better, where fewer errors and better correlation was observed (R = 0.95, MAE = 18.09 (ton/day), RMSE = 25.16 (ton/day)) compared to the ANN (R = 0.91, MAE = 20.17 (ton/day), RMSE = 33.09 (ton/day)) and RSM (R = 0.91, MAE = 20.06 (ton/day), RMSE = 31.92 (ton/day)) for all types of input variables.

  16. Factors affecting nutrient trends in major rivers of the Chesapeake Bay Watershed

    Science.gov (United States)

    Sprague, Lori A.; Langland, M.J.; Yochum, S.E.; Edwards, R.E.; Blomquist, J.D.; Phillips, S.W.; Shenk, G.W.; Preston, S.D.

    2000-01-01

    Trends in nutrient loads and flow-adjusted concentrations in the major rivers entering Chesapeake Bay were computed on the basis of water-quality data collected between 1985 and 1998 at 29 monitoring stations in the Susquehanna, Potomac, James, Rappahannock, York, Patuxent, and Choptank River Basins. Two computer models?the Chesapeake Bay Watershed Model (WSM) and the U.S. Geological Survey?s 'Spatially Referenced Regressions on Watershed attributes' (SPARROW) Model?were used to help explain the major factors affecting the trends. Results from WSM simulations provided information on temporal changes in contributions from major nutrient sources, and results from SPARROW model simulations provided spatial detail on the distribution of nutrient yields in these basins. Additional data on nutrient sources, basin characteristics, implementation of management practices, and ground-water inputs to surface water were analyzed to help explain the trends. The major factors affecting the trends were changes in nutrient sources and natural variations in streamflow. The dominant source of nitrogen and phosphorus from 1985 to 1998 in six of the seven tributary basins to Chesapeake Bay was determined to be agriculture. Because of the predominance of agricultural inputs, changes in agricultural nutrient sources such as manure and fertilizer, combined with decreases in agricultural acreage and implementation of best management practices (BMPs), had the greatest impact on the trends in flow-adjusted nutrient concentrations. Urban acreage and population, however, were noted to be increasing throughout the Chesapeake Bay Watershed, and as a result, delivered loads of nutrients from urban areas increased during the study period. Overall, agricultural nutrient management, in combination with load decreases from point sources due to facility upgrades and the phosphate detergent ban, led to downward trends in flow-adjusted nutrient concentrations atmany of the monitoring stations in the

  17. Modality of Input and Vocabulary Acquisition

    OpenAIRE

    Tetyana Sydorenko

    2010-01-01

    This study examines the effect of input modality (video, audio, and captions, i.e., on-screen text in the same language as audio) on (a) the learning of written and aural word forms, (b) overall vocabulary gains, (c) attention to input, and (d) vocabulary learning strategies of beginning L2 learners. Twenty-six second-semester learners of Russian participated in this study. Group one (N = 8) saw video with audio and captions (VAC); group two (N = 9) saw video with audio (VA); group three (N =...

  18. Shaped input distributions for structural damage localization

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Bernal, Dionisio; Damkilde, Lars

    2018-01-01

    ). Accordingly, damage is localized when the vibration signature induced by the shaped inputs in the damaged state corresponds to that in the reference state, hereby implying that the approach does not point directly to damage. Instead, it operates with interrogation based on postulated damage patterns......, resulting in a system identification-free procedure whose primary merits, besides avoiding the typical bottleneck of system identification, include a low demand on output sensors, robustness towards noise, and conceptual simplicity. The price paid for these merits is reliance on a relatively accurate model...... of the structure in its reference state and the need for multiple controllable inputs....

  19. Nuclear reaction inputs based on effective interactions

    Energy Technology Data Exchange (ETDEWEB)

    Hilaire, S.; Peru, S.; Dubray, N.; Dupuis, M.; Bauge, E. [CEA, DAM, DIF, Arpajon (France); Goriely, S. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium)

    2016-11-15

    Extensive nuclear structure studies have been performed for decades using effective interactions as sole input. They have shown a remarkable ability to describe rather accurately many types of nuclear properties. In the early 2000 s, a major effort has been engaged to produce nuclear reaction input data out of the Gogny interaction, in order to challenge its quality also with respect to nuclear reaction observables. The status of this project, well advanced today thanks to the use of modern computers as well as modern nuclear reaction codes, is reviewed and future developments are discussed. (orig.)

  20. Consumer input into standards revision: changing practice.

    Science.gov (United States)

    Beal, G; Chan, A; Chapman, S; Edgar, J; McInnis-Perry, G; Osborne, M; Mina, E S

    2007-02-01

    As part of ongoing quality improvement initiatives, the Canadian Standards for Psychiatric-Mental Health Nursing were recently revised. For the first time since the standards were published in 1995, the input of consumers of mental health services was sought. Thirty-one consumers from across Canada participated in focus groups, and answered questions related to the domains of practice as identified in the standards document. Through this input, consumers were able to inform the committee regarding areas of satisfaction and dissatisfaction from their unique perspective. Through this article, the process of consumer collaboration is illustrated in relation to how it shaped Standards revision, and finally how it affected the practitioners involved.

  1. A parallel input composite transimpedance amplifier

    Science.gov (United States)

    Kim, D. J.; Kim, C.

    2018-01-01

    A new approach to high performance current to voltage preamplifier design is presented. The design using multiple operational amplifiers (op-amps) has a parasitic capacitance compensation network and a composite amplifier topology for fast, precision, and low noise performance. The input stage consisting of a parallel linked JFET op-amps and a high-speed bipolar junction transistor (BJT) gain stage driving the output in the composite amplifier topology, cooperating with the capacitance compensation feedback network, ensures wide bandwidth stability in the presence of input capacitance above 40 nF. The design is ideal for any two-probe measurement, including high impedance transport and scanning tunneling microscopy measurements.

  2. Production Risk and Optimal Input Decisions

    OpenAIRE

    Bharat Ramaswami

    1992-01-01

    The paper examines the impact of production risk on a producer's optimal input decisions. Whether producers use more or fewer inputs in a yield-risky environment depends on the sign of the marginal risk premium, which is determined by risk preferences and technology. I present the weakest condition on technology that is sufficient to sign the marginal risk premium for all risk-averse preferences. If this condition fails to hold, the marginal risk premium is not of the same sign for all risk a...

  3. ASR in a Human Word Recognition Model: Generating Phonemic Input for Shortlist

    OpenAIRE

    Scharenborg, O.E.; Boves, L.W.J.; Veth, J.M. de

    2002-01-01

    The current version of the psycholinguistic model of human word recognition Shortlist suffers from two unrealistic constraints. First, the input of Shortlist must consist of a single string of phoneme symbols. Second, the current version of the search in Shortlist makes it difficult to deal with insertions and deletions in the input phoneme string. This research attempts to fully automatically derive a phoneme string from the acoustic signal that is as close as possible to the number of phone...

  4. Fisheries management under nutrient influence

    DEFF Research Database (Denmark)

    Hammarlund, Cecilia; Nielsen, Max; Waldo, Staffan

    2018-01-01

    A fisheries management model that identifies the economic optimal management of fisheries under the influence of nutrients is presented. The model starts from the idea that growth in fish biomass increases with increasing availability of nutrients owing to higher food availability up to a peak......, after which growth falls due to eutrophication. The model is applied to Swedish and Danish cod fisheries in the Western Baltic Sea and identifies the welfare contribution of the fisheries, measured as the sum of resource rent and producer surplus. In 2010, the welfare contribution was −28......% of the landing value. Maximizing the model with respect to effort alone and additionally over nitrogen concentration increases the contribution to 11% of the landing value in 2010. The analysis shows that the welfare effect of reducing fishing effort through management reforms is large, but that the effect...

  5. Automated nutrient analyses in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Whitledge, T.E.; Malloy, S.C.; Patton, C.J.; Wirick, C.D.

    1981-02-01

    This manual was assembled for use as a guide for analyzing the nutrient content of seawater samples collected in the marine coastal zone of the Northeast United States and the Bering Sea. Some modifications (changes in dilution or sample pump tube sizes) may be necessary to achieve optimum measurements in very pronounced oligotrophic, eutrophic or brackish areas. Information is presented under the following section headings: theory and mechanics of automated analysis; continuous flow system description; operation of autoanalyzer system; cookbook of current nutrient methods; automated analyzer and data analysis software; computer interfacing and hardware modifications; and trouble shooting. The three appendixes are entitled: references and additional reading; manifold components and chemicals; and software listings. (JGB)

  6. Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community.

    Science.gov (United States)

    Burson, Amanda; Stomp, Maayke; Greenwell, Emma; Grosse, Julia; Huisman, Jef

    2018-02-17

    A key challenge in ecology is to understand how nutrients and light affect the biodiversity and community structure of phytoplankton and plant communities. According to resource competition models, ratios of limiting nutrients are major determinants of the species composition. At high nutrient levels, however, species interactions may shift to competition for light, which might make nutrient ratios less relevant. The "nutrient-load hypothesis" merges these two perspectives, by extending the classic model of competition for two nutrients to include competition for light. Here, we test five key predictions of the nutrient-load hypothesis using multispecies competition experiments. A marine phytoplankton community sampled from the North Sea was inoculated in laboratory chemostats provided with different nitrogen (N) and phosphorus (P) loads, to induce either single resource limitation or co-limitation of N, P and light. Four of the five predictions were validated by the experiments. In particular, different resource limitations favored the dominance of different species. Increasing nutrient loads caused changes in phytoplankton species composition, even if the N:P ratio of the nutrient loads remained constant, by shifting the species interactions from competition for nutrients to competition for light. In all treatments, small species became dominant whereas larger species were competitively excluded, supporting the common view that small cell size provides a competitive advantage under resource-limited conditions. Contrary to expectation, all treatments led to coexistence of diatoms, cyanobacteria and green algae, resulting in a higher diversity of species than predicted by theory. Because the coexisting species comprised three phyla with different photosynthetic pigments, we speculate that niche differentiation in the light spectrum might play a role. Our results show that mechanistic resource competition models that integrate nutrient-based and light

  7. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands

    Science.gov (United States)

    Wolf, Kristin L.; Noe, Gregory; Ahn, Changwoo

    2013-01-01

    Greater connectivity to stream surface water may result in greater inputs of allochthonous nutrients that could stimulate internal nitrogen (N) and phosphorus (P) cycling in natural, restored, and created riparian wetlands. This study investigated the effects of hydrologic connectivity to stream water on soil nutrient fluxes in plots (n = 20) located among four created and two natural freshwater wetlands of varying hydrology in the Piedmont physiographic province of Virginia. Surface water was slightly deeper; hydrologic inputs of sediment, sediment-N, and ammonium were greater; and soil net ammonification, N mineralization, and N turnover were greater in plots with stream water classified as their primary water source compared with plots with precipitation or groundwater as their primary water source. Soil water-filled pore space, inputs of nitrate, and soil net nitrification, P mineralization, and denitrification enzyme activity (DEA) were similar among plots. Soil ammonification, N mineralization, and N turnover rates increased with the loading rate of ammonium to the soil surface. Phosphorus mineralization and ammonification also increased with sedimentation and sediment-N loading rate. Nitrification flux and DEA were positively associated in these wetlands. In conclusion, hydrologic connectivity to stream water increased allochthonous inputs that stimulated soil N and P cycling and that likely led to greater retention of sediment and nutrients in created and natural wetlands. Our findings suggest that wetland creation and restoration projects should be designed to allow connectivity with stream water if the goal is to optimize the function of water quality improvement in a watershed.

  8. Modeling Antibiotic Tolerance in Biofilms by Accounting for Nutrient Limitation

    OpenAIRE

    Roberts, Mark E.; Stewart, Philip S.

    2004-01-01

    A mathematical model of biofilm dynamics was used to investigate the protection from antibiotic killing that can be afforded to microorganisms in biofilms based on a mechanism of localized nutrient limitation and slow growth. The model assumed that the rate of killing by the antibiotic was directly proportional to the local growth rate. Growth rates in the biofilm were calculated by using the local concentration of a single growth-limiting substrate with Monod kinetics. The concentration prof...

  9. Dairy Analytics and Nutrient Analysis (DANA) Prototype System User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Sam Alessi; Dennis Keiser

    2012-10-01

    parameters be held and managed in a single managed data repository, while allows users to customize standard values and perform individual analysis. Server-based calculations can be easily extended, versions and upgrades managed, and any changes are immediately available to all users. This user manual describes how to use and/or modify input database tables, run DANA, view and modify reports.

  10. Nutrient quality of fast food kids meals

    Science.gov (United States)

    Exposure of children to kids’ meals at fast food restaurants is high; however, the nutrient quality of such meals has not been systematically assessed. We assessed the nutrient quality of fast food meals marketed to young children, i.e., "kids meals". The nutrient quality of kids’ meals was assessed...

  11. Spectral Quantitation Of Hydroponic Nutrients

    Science.gov (United States)

    Schlager, Kenneth J.; Kahle, Scott J.; Wilson, Monica A.; Boehlen, Michelle

    1996-01-01

    Instrument continuously monitors hydroponic solution by use of absorption and emission spectrometry to determine concentrations of principal nutrients, including nitrate, iron, potassium, calcium, magnesium, phosphorus, sodium, and others. Does not depend on extraction and processing of samples, use of such surrograte parameters as pH or electrical conductivity for control, or addition of analytical reagents to solution. Solution not chemically altered by analysis and can be returned to hydroponic process stream after analysis.

  12. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight

    KAUST Repository

    Howard, Meredith D. A.

    2014-01-26

    Anthropogenic nutrients have been shown to provide significant sources of nitrogen (N) that have been linked to increased primary production and harmful algal blooms worldwide. There is a general perception that in upwelling regions, the flux of anthropogenic nutrient inputs is small relative to upwelling flux, and therefore anthropogenic inputs have relatively little effect on the productivity of coastal waters. To test the hypothesis that natural sources (e.g., upwelling) greatly exceed anthropogenic nutrient sources to the Southern California Bight (SCB), this study compared the source contributions of N from four major nutrient sources: (1) upwelling, (2) treated wastewater effluent discharged to ocean outfalls, (3) riverine runoff, and (4) atmospheric deposition. This comparison was made using large regional data sets combined with modeling on both regional and local scales. At the regional bight-wide spatial scale, upwelling was the largest source of N by an order of magnitude to effluent and two orders of magnitude to riverine runoff. However, at smaller spatial scales, more relevant to algal bloom development, natural and anthropogenic contributions were equivalent. In particular, wastewater effluent and upwelling contributed the same quantity of N in several subregions of the SCB. These findings contradict the currently held perception that in upwelling-dominated regions anthropogenic nutrient inputs are negligible, and suggest that anthropogenic nutrients, mainly wastewater effluent, can provide a significant source of nitrogen for nearshore productivity in Southern California coastal waters.

  13. Rhizosphere priming: a nutrient perspective

    Directory of Open Access Journals (Sweden)

    Feike Auke Dijkstra

    2013-07-01

    Full Text Available Rhizosphere priming is the change in decomposition of soil organic matter (SOM caused by root activity. Rhizosphere priming plays a crucial role in soil carbon (C dynamics and their response to global climate change. Rhizosphere priming may be affected by soil nutrient availability, but rhizosphere priming itself can also affect nutrient supply to plants. These interactive effects may be of particular relevance in understanding the sustained increase in plant growth and nutrient supply in response to a rise in atmospheric CO2 concentration. We examined how these interactions were affected by elevated CO2 in two similar semiarid grassland field studies. We found that an increase in rhizosphere priming enhanced the release of nitrogen (N through decomposition of a larger fraction of SOM in one study, but not in the other. We postulate that rhizosphere priming may enhance N supply to plants in systems that are N limited, but that rhizosphere priming may not occur in systems that are phosphorus (P limited. Under P limitation, rhizodeposition may be used for mobilisation of P, rather than for decomposition of SOM. Therefore, with increasing atmospheric CO2 concentrations, rhizosphere priming may play a larger role in affecting C sequestration in N poor than in P poor soils.

  14. Novel Agricultural Conservation System with Sustained Yield and Decreased Water, Nutrient, Energy, and Carbon Footprints

    Science.gov (United States)

    Hansen, K.; Shukla, S.; Holt, N.; Hendricks, G.; Sishodia, R. P.

    2017-12-01

    Fresh fruits and vegetables are conventionally grown in raised bed plasticulture (RBP), a high intensity, high input, and high output production system. In 2016, the fresh market plasticulture industry covered 680,000 ha in the US, producing crops (e.g. tomato, peppers, melons, and strawberries) valued at ten billion dollars. To meet the increasing future demand for fresh fruits and vegetables and sustain the production potential of croplands, a transformation of the conventional food-water-energy nexus is essential. A novel agricultural conservation system, compact bed geometry, has been proposed to shift the paradigm in RBP, sustaining yield and decreasing inputs (e.g. water, nutrients, energy, and carbon). Compact bed geometries fit the shape of the wetting front created when water is applied through drip irrigation on the production soil, creating a taller (23-30 cm) and thinner bed (66-41 cm). Two seasons of tomato (single row) and pepper (double row) production, in the environmentally fragile watershed of the Florida Everglades, highlight the potential impact of compact bed geometry on environmental sustainability in agricultural production. No difference in plant growth or yield was detected, with a reduction of 5-50% in irrigation water, up to 20% less N application, 12% less P, 20% less K, and 5-15% less carbon dioxide emissions. The hydrologic benefits of compact bed geometry include 26% less runoff generation, decreased need for active drainage pumping, and increased residence time for irrigation water within the bed, overall decreasing instances of nutrient leaching. A water related co-benefit observed was a reduction in the occurrences of Phytophthora capsici in pepper, which has the potential to reduce yield by as much as 70%. Non-water co-benefits include up to a 250/ ha reduction in production cost, with the potential to save the industry 200 million dollars annually. This economic benefit has led to rapid industry adoption, with more than 20

  15. Secure communication based on multi-input multi-output chaotic system with large message amplitude

    International Nuclear Information System (INIS)

    Zheng, G.; Boutat, D.; Floquet, T.; Barbot, J.P.

    2009-01-01

    This paper deals with the problem of secure communication based on multi-input multi-output (MIMO) chaotic systems. Single input secure communication based on chaos can be easily extended to multiple ones by some combinations technologies, however all the combined inputs possess the same risk to be broken. In order to reduce this risk, a new secure communication scheme based on chaos with MIMO is discussed in this paper. Moreover, since the amplitude of messages in traditional schemes is limited because it would affect the quality of synchronization, the proposed scheme is also improved into an amplitude-independent one.

  16. Nutrient Effects on Belowground Organic Matter in a ...

    Science.gov (United States)

    Belowground structure and carbon dioxide emission rates were examined in minerogenic marshes of the North Inlet estuary, a system dominated by depositional processes and typical of the southeastern USA. Three areas were sampled: a long-term nutrient enrichment experiment (Goat Island); a fringing marsh that only receives drainage from an entirely forested watershed (upper Crab Haul Creek); and three locations along a creek basin that receives drainage from a residential and golf course development situated at its headwaters (Debidue Creek). Responses to fertilization at Goat Island were an increase in soil organic matter, an increase in number of rhizomes, enlarged rhizome diameters, decreased fine root mass, and increased carbon dioxide emission rates. At the Crab Haul Creek, the greatest abundances of coarse roots and rhizomes were observed in the high marsh compared to the low marsh and creekbank. The upper and mid Debidue Creek, which may be influenced by nutrient inputs associated with land development, had significantly fewer rhizomes compared to the mouth, which was dominated by exchange with bay waters. Carbon dioxide emission rates at the fertilized Goat Island plots were similar in magnitude to the upper Debidue Creek and significantly greater than the Goat Island control plots and the Crab Haul Creek. Inputs of sediment and particulates in marshes dominated by depositional processes such as the North Inlet may buffer the system from adverse effects of

  17. NUTRIENTS

    OpenAIRE

    Hedrick, VE; Passaro, EM; Davy, BM; You, W; Zoellner, JM

    2017-01-01

    Few data assessing non-nutritive sweetener (NNS) intake are available, especially within rural, health-disparate populations, where obesity and related co-morbidities are prevalent. The objective of this study is to characterize NNS intake for this population and examine the variance in demographics, cardio-metabolic outcomes, and dietary intake between NNS consumers and non-consumers. A cross-sectional sample (n = 301) of Virginian adults from a randomized controlled trial (data collected fr...

  18. Brain Emotional Learning Based Intelligent Decoupler for Nonlinear Multi-Input Multi-Output Distillation Columns

    Directory of Open Access Journals (Sweden)

    M. H. El-Saify

    2017-01-01

    Full Text Available The distillation process is vital in many fields of chemical industries, such as the two-coupled distillation columns that are usually highly nonlinear Multi-Input Multi-Output (MIMO coupled processes. The control of MIMO process is usually implemented via a decentralized approach using a set of Single-Input Single-Output (SISO loop controllers. Decoupling the MIMO process into group of single loops requires proper input-output pairing and development of decoupling compensator unit. This paper proposes a novel intelligent decoupling approach for MIMO processes based on new MIMO brain emotional learning architecture. A MIMO architecture of Brain Emotional Learning Based Intelligent Controller (BELBIC is developed and applied as a decoupler for 4 input/4 output highly nonlinear coupled distillation columns process. Moreover, the performance of the proposed Brain Emotional Learning Based Intelligent Decoupler (BELBID is enhanced using Particle Swarm Optimization (PSO technique. The performance is compared with the PSO optimized steady state decoupling compensation matrix. Mathematical models of the distillation columns and the decouplers are built and tested in simulation environment by applying the same inputs. The results prove remarkable success of the BELBID in minimizing the loops interactions without degrading the output that every input has been paired with.

  19. Sensitivity analysis of a pulse nutrient addition technique for estimating nutrient uptake in large streams

    Science.gov (United States)

    Laurence Lin; J.R. Webster

    2012-01-01

    The constant nutrient addition technique has been used extensively to measure nutrient uptake in streams. However, this technique is impractical for large streams, and the pulse nutrient addition (PNA) has been suggested as an alternative. We developed a computer model to simulate Monod kinetics nutrient uptake in large rivers and used this model to evaluate the...

  20. Modeling farm nutrient flows in the North China Plain to reduce nutrient losses

    NARCIS (Netherlands)

    Zhao, Zhanqing; Bai, Zhaohai; Wei, Sha; Ma, Wenqi; Wang, Mengru; Kroeze, Carolien; Ma, Lin

    2017-01-01

    Years of poor nutrient management practices in the agriculture industry in the North China Plain have led to large losses of nutrients to the environment, causing severe ecological consequences. Analyzing farm nutrient flows is urgently needed in order to reduce nutrient losses. A farm-level

  1. KAJIAN INPUT ENERGI PADA BUDIDAYA PADI METODE SYSTEM OF RICE INTENSIFICATION Studies on Energy Input in System of Rice Intensification Method of Rice Cultivation

    Directory of Open Access Journals (Sweden)

    Bambang Purwantana

    2012-05-01

    Full Text Available System of Rice Intensification (SRI is a rice cultivation method that intensively control and manage macro and micro nutrients as well as irrigation. This paper quantifies and compares the energy uses of SRI and conventional rice cultiva- tion systems. The study was conducted at some SRI’s experimental plots in the districts of Sleman, Kulonprogo, and Bantul, the province of Yogyakarta. The calculation of the energy was based on the farmers’ work schedule, the time required for each operation, the number of laborers, machines, tools, fuel, and all materials and inputs used. The result shows that SRI method consumed 35% less energy to conventional rice cultivation. Energy inputs from seed, water, fertilizer and pesticide were significantly reduces. However, there was higher input of human energy due to compost- ing, land preparation and weeding operations. The specific energy of SRI method was 1.96 MJ ha-1 lower than conven- tional method of 4.43 MJ ha-1. In the SRI method, 56.2 % of energy consumed was classified as direct energy and 43.8% was indirect energy. The SRI method used 61.9 % of renewable energy and 38.1 % of non-renewable energy. The working efficiency in composting and weeding operations should be improved in perspective of machine and tools to reduce the use of human energy. ABSTRAK System of Rice Intensification (SRI, merupakan suatu metode budidaya padi secara intensif dengan pengendalian unsur-unsur hara makro dan mikro disertai pengendalian dan pengaturan kebutuhan air. Penelitian ini bertujuan untuk menganalisis penggunaan energi dan mengidentifikasi kemungkinan penghematan energi pada budidaya padi SRI. Pe- nelitian dilakukan di Kabupaten Sleman, Kulonprogo, dan Bantul, Propinsi Daerah Istimewa Yogyakarta. Pengamatan dilakukan pada plot-plot percobaan budidaya padi SRI dengan melakukan audit seluruh input energi selama proses budidaya dan dikomparasikan dengan input energi pada budidaya padi cara konvensional. Hasil

  2. The global nutrient challenge. From science to public engagement

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, M.A.; Howard, C.M. [NERC Centre for Ecology and Hydrology, Edinburgh (United Kingdom); Bleeker, A. [Energy research Centre of the Netherlands, Petten (Netherlands); Datta, A. [United Nations Environment Programme, Nairobi (Kenya)

    2013-04-15

    Among the many environment and development challenges facing humanity, it is fair to say that nutrients do not currently feature so regularly in the newspapers, radio and television. The media tends to prefer easy single issues which affect our daily lives in a clear-cut way. The role of carbon in climate change is a good example. We all depend on climate. Burning fossil fuels makes more carbon dioxide, tending to change temperature and rainfall patterns, to which we can easily relate. The science is complex, but it is a simple message for the public to understand. It does not take long to think of several other easily grasped threats, like urban air pollution, poor drinking water, or even the occurrence of horsemeat in food chains. It is perhaps for these reasons that the role of nutrients in environmental change has received much less public attention. After all, nutrients - including nitrogen, phosphorus and many micronutrients - play multiple roles in our world; they affect many biogeochemical processes and they lead to a plethora of interacting threats. If we are not careful, we can quickly get buried in the complexity of the different ways in which our lives are affected by these elements. The outcome is that it can become hard to convey the science of global nutrient cycles in a way that the public can understand. These are points about which we have given substantial thought as we contributed to a recently launched report Our Nutrient World: The challenge to produce more food and energy with less pollution (Sutton et al., 2013). The report was commissioned by the United Nations Environment Programme (UNEP) and conducted by the Global Partnership on Nutrient Management in cooperation with the International Nitrogen Initiative. The commission was not to provide a full scientific assessment, but rather to develop a global overview of the challenges associated with nutrient management. Drawing on existing knowledge, the aim was to distill the nature of the

  3. Facilitating agricultural input distribution in Uganda - Experiences ...

    African Journals Online (AJOL)

    Mo

    long-term sustainability, AT Uganda Ltd. redefined the approach emphasizing a demand driven input market by shifting responsibility for supply ... that have undergone training in business management, product knowledge and marketing. Over 400 demonstration ..... from the SMS mobile phone messages. Other channels.

  4. A summary of WIMSD4 input option

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1980-07-01

    A description is given of all the available input data options in the ICL 4/70 and IBM 370 versions of WIMSD4, with little more than a reference where there is already adequate documentation but with rather more detail where no such documentation exists. (author)

  5. Input and Intake in Language Acquisition

    Science.gov (United States)

    Gagliardi, Ann C.

    2012-01-01

    This dissertation presents an approach for a productive way forward in the study of language acquisition, sealing the rift between claims of an innate linguistic hypothesis space and powerful domain general statistical inference. This approach breaks language acquisition into its component parts, distinguishing the input in the environment from…

  6. The Contrast Theory of negative input.

    Science.gov (United States)

    Saxton, M

    1997-02-01

    Beliefs about whether or not children receive corrective input for grammatical errors depend crucially on how one defines the concept of correction. Arguably, previous conceptualizations do not provide a viable basis for empirical research (Gold, 1967; Brown & Hanlon, 1970; Hirsh-Pasek, Treiman & Schneiderman, 1984). Within the Contrast Theory of negative input, an alternative definition of negative evidence is offered, based on the idea that the unique discourse structure created in the juxtaposition of child error and adult correct form can reveal to the child the contrast, or conflict, between the two forms, and hence provide a basis for rejecting the erroneous form. A within-subjects experimental design was implemented for 36 children (mean age 5;0), in order to compare the immediate effects of negative evidence with those of positive input, on the acquisition of six novel irregular past tense forms. Children reproduced the correct irregular model more often, and persisted with fewer errors, following negative evidence rather than positive input.

  7. Managing variations in dairy cow nutrient supply under grazing.

    Science.gov (United States)

    Peyraud, J L; Delagarde, R

    2013-03-01

    Grazed pasture, which is the cheapest source of nutrients for dairy cows, should form the basis of profitable and low-input animal production systems. Management of high-producing dairy cows at pasture is thus a major challenge in most countries. The objective of the present paper is to review the factors that can affect nutrient supply for grazing dairy cows in order to point out areas with scope for improvement on managing variations in nutrient supply to achieve high animal performance while maintaining efficient pasture utilisation per hectare (ha). Reviewing the range in animal requirements, intake capacity and pasture nutritive values shows that high-producing cows cannot satisfy their energy requirements from grazing alone and favourable to unfavourable situations for grazing dairy cows may be classified according to pasture quality and availability. Predictive models also enable calculation of supplementation levels required to meet energy requirements in all situations. Solutions to maintain acceptable level of production per cow and high output per ha are discussed. Strategies of concentrate supplementation and increasing use of legumes in mixed swards are the most promising. It is concluded that although high-producing cow cannot express their potential milk production at grazing, there is scope to improve animal performance at grazing given recent developments in our understanding of factors influencing forage intake and digestion of grazed forages.

  8. Nutrients, Recycling, and Biological Populations in Upwelling Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Whitledge, T. E.

    1980-01-01

    Nutrient recycling has been studied in the upwelling areas of Baja California, Northwest Africa, and Peru. Regeneration by biological populations in these areas contributes significant quantities of recycled nitrogen which is utilized in productivity processes. Each area has a different combination of organisms which leads to differences in the relative contributions of zooplankton, nekton, or benthos to the nutrient cycles. Comparisons of ammonium regeneration rates of zooplankton and nekton-micronekton populations in the three upwelling areas show that zooplankton recycle relatively less nitrogen in the Baja California and Peru systems than nekton. In the Northwest Africa upwelling region, however, zooplankton, fish, and benthic inputs are all substantial. In recent years the Peruvian upwelling system has been altered with the decline of the anchoveta population and an increase in the importance of zooplankton in nutrient recycling. The distribution of recycled nitrogen (ammonium and urea) in transects across the shelf at 10°S and 15°S indicates that regeneration is relatively more important at 10°S in the region of the wide shelf. In both areas the distribution of ammonium and urea are not entirely coincident thereby indicating differences in their production and/or utilization.

  9. Leaders’ receptivity to subordinates’ creative input: the role of achievement goals and composition of creative input

    NARCIS (Netherlands)

    Sijbom, R.B.L.; Janssen, O.; van Yperen, N.W.

    2015-01-01

    We identified leaders’ achievement goals and composition of creative input as important factors that can clarify when and why leaders are receptive to, and supportive of, subordinates’ creative input. As hypothesized, in two experimental studies, we found that relative to mastery goal leaders,

  10. Geologic sources of nutrients for aquatic ecosystems (Invited)

    Science.gov (United States)

    Dahlgren, R. A.; Jeffres, C.; Nichols, A. L.; Deas, M.; Willis, A.; Mount, J.

    2010-12-01

    Nutrient inputs from geologic materials are not typically considered an ecologically significant source of nutrients for freshwater aquatic ecosystems. However, in volcanic terrains where regional groundwater interacts with volcanic and underlying sedimentary deposits, nutrients (nitrogen and phosphorus) from geologic sources can provide ecologically significant inputs of nutrients to fuel aquatic food webs. The Big Springs-Shasta River complex emanating from the flanks of Mt. Shasta, a stratovolcano in northern California, creates a unique ecological niche that we propose as the explanation for the exceptionally high historical abundances and productivity of salmonids in the Shasta River. The Big Springs complex is a slightly-thermal springs (natural flow of 2.6 m3/s) that is the primary source of water for the Shasta River. The spring waters have a mean recharge elevation of 2880 m on Mt. Shasta. During the 20-50 years of transport as groundwater, both nitrogen and phosphorus are released from the underlying marine sedimentary and volcanic rocks. Mean NO3-N and soluble-reactive PO4-P concentrations over a two year period were 0.48 mg/L and 0.15 mg/L, respectively. The PO4 concentrations are in equilibrium with hydroxyapatite (Ca2OHPO4) suggesting that release of PO4 by chemical weathering of the highly weatherable volcanic deposits is the primary source of the PO4. The primary source of nitrogen is from detrital organic matter incorporated in the marine sedimentary rocks during diagensis. This “geologic” nitrogen is released from rocks by hydrothermal waters and transported with the groundwater. The nitrogen and phosphorus coupled with year round consistent water flow volumes and thermal buffering (10-12o C) fuel primary productivity and enhance food web productivity. Abundant nutrients allow for high rates of primary productivity, providing food for invertebrates, which ultimately comprise the primary food source for salmonids. These volcanic-derived, spring

  11. Contribution of riverine nutrients to the silicon biogeochemistry of the global ocean – a model study

    Directory of Open Access Journals (Sweden)

    C. Y. Bernard

    2011-03-01

    Full Text Available Continental shelf seas are known to support a large fraction of the global primary production. Yet, they are mostly ignored or neglected in global biogeochemical models. A number of processes that control the transfer of dissolved nutrients from rivers to the open ocean remain poorly understood. This applies in particular to dissolved silica which drives the growth of diatoms that form a large part of the phytoplankton biomass and are thus an important contributor to export production of carbon.

    Here, the representation of the biogeochemical cycling along continents is improved by coupling a high resolution database of riverine fluxes of nutrients to the global biogeochemical ocean general circulation model HAMOCC5-OM. Focusing on silicon (Si, but including the whole suite of nutrients – carbon (C, nitrogen (N and phosphorus (P in various forms – inputs are implemented in the model at coastal coupling points using the COSCAT global database of 156 mega-river-ensemble catchments from Meybeck et al. (2006. The catchments connect to the ocean through coastal segments according to three sets of criteria: natural limits, continental shelf topography, and geophysical dynamics.

    According to the model the largest effects on nutrient concentrations occur in hot spots such as the Amazon plume, the Arctic – with high nutrient inputs in relation to its total volume, and areas that encounter the largest increase in human activity, e.g., Southern Asia.

  12. Nutrient Enrichment of Coastal Receiving Waters from Catchments Across the USA

    Science.gov (United States)

    Boyer, E. W.; Bricker, S. B.; Smith, R. A.; Alexander, R. B.; Schwarz, G. B.

    2005-05-01

    Though the abundant supply of reactive nutrients to the landscape provides many benefits to society in terms of food and energy production, the environmental consequences of nutrient over-enrichment are severe, particularly in the coastal zone. We assess eutrophication of surface waters, considered to be the most widespread water quality problem in the USA. We highlight hot spots of mass loadings of nutrients to coastal receiving waters based on results from several spatially referenced regression models applied at the national scale. We explore inter-annual variability and long-term trends of nutrient delivery from several key catchments to sensitive estuaries based on long-term monitoring data. We assess the coastal response and ecological effects resulting from these nutrient loads, considering differences such as the physicochemical characteristics and hydrological residence times of estuaries. Further, we discuss the need to understand precursor source of nitrogen to receiving waters. For example, recent research on algal blooms in both the east and west coasts of the US shows that the growth of toxic and harmful algae is stimulated specifically by urea, an organic nitrogen compound dominant in nitrogen inputs from agricultural and urban runoff, over inorganic nitrogen sources such as ammonium and nitrate that are dominant in nitrogen inputs from atmospheric deposition.

  13. Effects of Litter Removal and Addition on the Nutrient Mineralization Dynamics in Hyperseasonal Tropical Savannas of the Brazilian Pantanal

    Science.gov (United States)

    Hentz, C. S.; Pinto-Jr, O. B.; Vourlitis, G. L.

    2015-12-01

    The tropical savanna of Brazil (cerrado) is extremely species diverse and it encompasses many different physiognomic features, which are influenced by rainfall, fire, and soil nutrient availability. Plant litter decomposition recycles nutrients to the soil, and in turn, assists plant growth. However the rate at which these nutrients become available to the soil is poorly understood. Thus, a six month field experiment that encompassed the wet and dry seasons was conducted to assess how different quantities of litter inputs affect nutrient (P, N, C, K, Ca, and Mg) availability. It was hypothesized that nutrient mineralization would be significantly influenced by manipulation of the surface litter and that there would be a positive correlation between soil moisture and nutrient mineralization. Initial results indicate that there were significant differences in mineralization over time for all nutrients, except P, supporting our hypothesis of changes in mineralization with soil moisture. However, there were no significant differences between litter treatments and net mineralization rates for all the nutrients tested. Our results indicate that litterpool size has little effect on short-term nutrient mineralization dynamics.

  14. Multiobjective reservoir operating rules based on cascade reservoir input variable selection method

    Science.gov (United States)

    Yang, Guang; Guo, Shenglian; Liu, Pan; Li, Liping; Xu, Chongyu

    2017-04-01

    The input variable selection in multiobjective cascade reservoir operation is an important and difficult task. To address this problem, this study proposes the cascade reservoir input variable selection (CIS) method that searches for the most valuable input variables for decision making in multiple-objectivity cascade reservoir operations. From a case study of Hanjiang cascade reservoirs in China, we derive reservoir operating rules based on the combination of CIS and Gaussian radial basis functions (RBFs) methods and optimize the rules through Pareto-archived dynamically dimensioned search (PA-DDS) with two objectives: to maximize both power generation and water supply. We select the most effective input variables and evaluate their impacts on cascade reservoir operations. From the simulated trajectories of reservoir water level, power generation, and water supply, we analyze the multiobjective operating rules with several input variables. The results demonstrate that the CIS method performs well in the selection of input variables for the cascade reservoir operation, and the RBFs method can fully express the nonlinear operating rules for cascade reservoirs. We conclude that the CIS method is an effective and stable approach to identifying the most valuable information from a large number of candidate input variables. While the reservoir storage state is the most valuable information for the Hanjiang cascade reservoir multiobjective operation, the reservoir inflow is the most effective input variable for the single-objective operation of Danjiangkou.

  15. Utilization of Natural Farm Resources for Promoting High Energy Efficiency in Low-Input Organic Farming

    Directory of Open Access Journals (Sweden)

    Veronica Arthurson

    2011-05-01

    Full Text Available Both organic and conventional farming processes require energy input in the form of diesel fuel for farming equipment, animal feed, and fertilizer compounds. The most significant difference between the two methods is the use in conventional farming of mineral fertilizers and pesticides that are minimally employed in organic management. It is argued that organic farming is more environmentally friendly, given that synthetic fertilizers mainly used at conventional farms are replaced with animal manure and cover crops. Nutrient uptake by plants is additionally enhanced by the effective use of rhizobia and other types of plant growth-promoting bacteria, in combination with arbuscular mycorrhizal fungi. This article aims to compare the amounts and/or types of energy and nutrients required for both farming systems and provide feasible suggestions for the sustainable use of farm resources in combination with good crop yields.

  16. Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture

    KAUST Repository

    Xiao, Xi

    2017-04-21

    China is facing intense coastal eutrophication. Large-scale seaweed aquaculture in China is popular, now accounting for over 2/3\\'s of global production. Here, we estimate the nutrient removal capability of large-scale Chinese seaweed farms to determine its significance in mitigating eutrophication. We combined estimates of yield and nutrient concentration of Chinese seaweed aquaculture to quantify that one hectare of seaweed aquaculture removes the equivalent nutrient inputs entering 17.8 ha for nitrogen and 126.7 ha for phosphorus of Chinese coastal waters, respectively. Chinese seaweed aquaculture annually removes approximately 75,000 t nitrogen and 9,500 t phosphorus. Whereas removal of the total N inputs to Chinese coastal waters requires a seaweed farming area 17 times larger than the extant area, one and a half times more of the seaweed area would be able to remove close to 100% of the P inputs. With the current growth rate of seaweed aquaculture, we project this industry will remove 100% of the current phosphorus inputs to Chinese coastal waters by 2026. Hence, seaweed aquaculture already plays a hitherto unrealized role in mitigating coastal eutrophication, a role that may be greatly expanded with future growth of seaweed aquaculture.

  17. Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture

    Science.gov (United States)

    Xiao, Xi; Agusti, Susana; Lin, Fang; Li, Ke; Pan, Yaoru; Yu, Yan; Zheng, Yuhan; Wu, Jiaping; Duarte, Carlos M.

    2017-04-01

    China is facing intense coastal eutrophication. Large-scale seaweed aquaculture in China is popular, now accounting for over 2/3’s of global production. Here, we estimate the nutrient removal capability of large-scale Chinese seaweed farms to determine its significance in mitigating eutrophication. We combined estimates of yield and nutrient concentration of Chinese seaweed aquaculture to quantify that one hectare of seaweed aquaculture removes the equivalent nutrient inputs entering 17.8 ha for nitrogen and 126.7 ha for phosphorus of Chinese coastal waters, respectively. Chinese seaweed aquaculture annually removes approximately 75,000 t nitrogen and 9,500 t phosphorus. Whereas removal of the total N inputs to Chinese coastal waters requires a seaweed farming area 17 times larger than the extant area, one and a half times more of the seaweed area would be able to remove close to 100% of the P inputs. With the current growth rate of seaweed aquaculture, we project this industry will remove 100% of the current phosphorus inputs to Chinese coastal waters by 2026. Hence, seaweed aquaculture already plays a hitherto unrealized role in mitigating coastal eutrophication, a role that may be greatly expanded with future growth of seaweed aquaculture.

  18. Nutrient Management in Recirculating Hydroponic Culture

    Science.gov (United States)

    Bugbee, Bruce

    2004-01-01

    There is an increasing need to recirculate and reuse nutrient solutions in order to reduce environmental and economic costs. However, one of the weakest points in hydroponics is the lack of information on managing the nutrient solution. Many growers and research scientists dump out nutrient solutions and refill at weekly intervals. Other authors have recommended measuring the concentrations of individual nutrients in solution as a key to nutrient control and maintenance. Dumping and replacing solution is unnecessary. Monitoring ions in solution is not always necessary; in fact the rapid depletion of some nutrients often causes people to add toxic amounts of nutrients to the solution. Monitoring ions in solution is interesting, but it is not the key to effective maintenance.

  19. Nutrient management strategies on Dutch dairy farms: an empirical analysis

    NARCIS (Netherlands)

    Ondersteijn, C.J.M.

    2002-01-01

    Key Words: MINAS; nitrogen surplus; phosphate surplus; nutrient efficiency; nutrient productivity; financial consequences; strategic management; perceived environmental uncertainty; nutrient management planning; dairy farming; The Netherlands.

    Agricultural nutrients are a

  20. Nutrient variations and isotopic evidences of particulate organic matter provenance in fringing reefs, South China

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Di; Cao, Wenzhi, E-mail: wzcao@xmu.edu.cn; Liang, Ying; Huang, Zheng

    2016-10-01

    Nutrient over-enrichment is considered to be one of the causes of coral decline. Increase in traditional fishing in the Xuwen National Coral Reefs Reserve tract (XW) and tourism around the Sanya National Coral Reefs Reserve tract (SY) are causing this coral decline. This study reviews the current state of knowledge of the nutrient status of coastal fringing reefs in South China and evaluates the primary sources of nutrients using stable isotope method. Surveys of seawater nutrients showed that the seawater remained clean in both the XW and SY coastal coral reef areas. Based on the isotopic differences between anthropogenic sewage and naturally occurring aquatic nutrients, the isotopic values of particulate organic matter (POM) and the C/N ratios were successfully used to identify the presence of anthropogenic nutrients in aquatic environments. The δ{sup 13}C, δ{sup 15}N and C/N compositions of POM from XW and SY (− 21.18 ± 2.11‰, 10.30 ± 5.54‰, and 5.35 ± 0.69 and − 20.80 ± 1.34‰, 7.06 ± 3.95‰, and 5.77 ± 2.15, respectively) showed statistically significant variations with the season. The δ{sup 13}C and δ{sup 15}N values of POM suggest marine and terrestrial-derived nutrient sources. Organic carbon is a mixture of marine phytoplankton, marine benthic algae and terrestrial-derived plants. The δ{sup 15}N values suggest terrestrial-derived sewage and upwelling-dominated nitrogen sources. In the presence of natural upwelling and coastal currents, coastal coral reef areas are more vulnerable to the increasing anthropogenic nutrient inputs. Anthropogenic activities might lead to large increases in the nutrient concentrations and could trigger the shift from coral- to macroalgae-dominated ecosystems, which would ultimately result in the degradation of the coastal coral reef ecosystem. These results provide some understanding of the declining coral reef ecosystem and the importance of conservation areas and coastal coral reef resource management

  1. Nutrient variations and isotopic evidences of particulate organic matter provenance in fringing reefs, South China

    International Nuclear Information System (INIS)

    Cao, Di; Cao, Wenzhi; Liang, Ying; Huang, Zheng

    2016-01-01

    Nutrient over-enrichment is considered to be one of the causes of coral decline. Increase in traditional fishing in the Xuwen National Coral Reefs Reserve tract (XW) and tourism around the Sanya National Coral Reefs Reserve tract (SY) are causing this coral decline. This study reviews the current state of knowledge of the nutrient status of coastal fringing reefs in South China and evaluates the primary sources of nutrients using stable isotope method. Surveys of seawater nutrients showed that the seawater remained clean in both the XW and SY coastal coral reef areas. Based on the isotopic differences between anthropogenic sewage and naturally occurring aquatic nutrients, the isotopic values of particulate organic matter (POM) and the C/N ratios were successfully used to identify the presence of anthropogenic nutrients in aquatic environments. The δ 13 C, δ 15 N and C/N compositions of POM from XW and SY (− 21.18 ± 2.11‰, 10.30 ± 5.54‰, and 5.35 ± 0.69 and − 20.80 ± 1.34‰, 7.06 ± 3.95‰, and 5.77 ± 2.15, respectively) showed statistically significant variations with the season. The δ 13 C and δ 15 N values of POM suggest marine and terrestrial-derived nutrient sources. Organic carbon is a mixture of marine phytoplankton, marine benthic algae and terrestrial-derived plants. The δ 15 N values suggest terrestrial-derived sewage and upwelling-dominated nitrogen sources. In the presence of natural upwelling and coastal currents, coastal coral reef areas are more vulnerable to the increasing anthropogenic nutrient inputs. Anthropogenic activities might lead to large increases in the nutrient concentrations and could trigger the shift from coral- to macroalgae-dominated ecosystems, which would ultimately result in the degradation of the coastal coral reef ecosystem. These results provide some understanding of the declining coral reef ecosystem and the importance of conservation areas and coastal coral reef resource management. - Highlights: • The

  2. Role of nutrients in metabolic syndrome: a 2017 update

    Directory of Open Access Journals (Sweden)

    Kern HJ

    2018-02-01

    Full Text Available Hua J Kern, Susan Hazels Mitmesser The Nature’s Bounty Co., Ronkonkoma, NY, USA Abstract: Metabolic syndrome (MetS and its associated chronic disorders including cardiovascular disease and type 2 diabetes are public health concerns in the USA and worldwide. “Good health is an investment in economic growth,” and nutrition is one of the recommended preventive measures to manage these chronic diseases. However, it is unclear whether and to what extent nutrients could be beneficial to the improvement of MetS. To help answer this question, we performed a literature review of the emerging human data on single nutrients and MetS: PubMed was searched from January 1, 2005 to June 12, 2017, using a combination of the following keywords: “nutrient” OR “vitamin” OR “mineral” OR “nutraceutical” AND “metabolic syndrome.” The summary of literature comprises macronutrients (proteins/amino acids, fatty acids, fibers, and sugar, micronutrients (antioxidant vitamins, vitamin D, folate, magnesium, and chromium, polyphenols (flavonoids, resveratrol, isoflavones, and chlorogenic acid, and other compounds (α-lipoic acid, benfotiamine, fucoxanthin, policosanol, and stanols. Bearing a holistic approach in mind, we also highlighted select lifestyle factors that may contribute to MetS (such as circadian rhythm and nutrition in early life. Observational studies have generated positive evidence supporting the beneficial role of numerous nutrients in MetS. Although the results of some clinical trials are consistent with the observational data, causality is not always clear or consistent across trials. Both nutrition and health are complex and dynamic systems with a hierarchical nature. When we design confirmatory trials to investigate nutrient(s and MetS, instead of the traditional “single-nutrient” concept, it is worth considering a holistic approach to integrate groups or classes of nutrients, lifestyle influencers (ie, diet and physical

  3. Herbicide and nutrient transport from an irrigation district into the South Saskatchewan River.

    Science.gov (United States)

    Cessna, A J; Elliott, J A; Tollefson, L; Nicholaichuk, W

    2001-01-01

    Pesticides and nutrients can be transported from treated agricultural land in irrigation runoff and thus can affect the quality of receiving waters. A 3-yr study was carried out to assess possible detrimental effects on the downstream water quality of the South Saskatchewan River due to herbicide and plant nutrient inputs via drainage water from an irrigation district. Automated water samplers and flow monitors were used to intensively sample the drainage water and to monitor daily flows in two major drainage ditches, which drained approximately 40% of the flood-irrigated land within the irrigation district. Over three years, there were no detectable inputs of ethalfluralin into the river and those of trifluralin were less than 0.002% of the amount applied to flood-irrigated fields. Inputs of MCPA, bromoxynil, dicamba and mecoprop were 0.06% or less of the amounts applied, whereas that for clopyralid was 0.31%. The relatively higher input (1.4%) of 2,4-D to the river was probably due its presence in the irrigation water. Corresponding inputs of P (as total P) and N (as nitrate plus ammonia) were 2.2 and 1.9% of applied fertilizer, respectively. Due to dilution of the drainage water in the river, maximum daily herbicide (with the exception of 2,4-D) and nutrient loadings to the river would not have resulted in significant concentration increases in the river water. There was no consistent remedial effect on herbicides entering the river due to passage of the drainage water through a natural wetland. In contrast, a considerable portion of the nutrients entering the river originated from the wetland.

  4. Long-term trends in nutrient budgets of the western Dutch Wadden Sea (1976-2012)

    Science.gov (United States)

    Jung, A. S.; Brinkman, A. G.; Folmer, E. O.; Herman, P. M. J.; van der Veer, H. W.; Philippart, C. J. M.

    2017-09-01

    Long-term field observations of nitrogen [N] and phosphorus [P] concentrations were used to construct nutrient budgets for the western Dutch Wadden Sea between 1976 and 2012. Nutrients come into the western Dutch Wadden Sea via river runoff, through exchange with the coastal zone of the North Sea, neighbouring tidal basins and through atmospheric deposition (for N). The highest concentrations in phosphorus and nitrogen were observed in the mid-1980s. Improved phosphorus removal at waste water treatment plants, management of fertilization in agriculture and removal of phosphates from detergents led to reduced riverine nutrient inputs and, consequently, reduced nutrient concentrations in the Wadden Sea. The budgets suggest that the period of the initial net import of phosphorus and nitrogen switched to a net export in 1981 for nitrogen and in 1992 for phosphorus. Such different behaviour in nutrient budgets during the rise and fall of external nutrient concentrations may be the result of different sediment-water exchange dynamics for P and N. It is hypothesized that during the period of increasing eutrophication (1976-1981) P, and to a lesser degree N, were stored in sediments as organic and inorganic nutrients. In the following period (1981-1992) external nutrient concentrations (especially in the North Sea) decreased, but P concentrations in the Wadden Sea remained high due to prolonged sediment release, whilst denitrification removed substantial amounts of N. From 1992 onwards, P and N budgets were closed by net loss, most probably because P stores were then depleted and denitrification continued. Under the present conditions (lower rates of sediment import and depleted P stores), nutrient concentrations in this area are expected to be more strongly influenced by wind-driven exchange with the North Sea and precipitation-driven discharge from Lake IJssel. This implies that the consequences of climate change will be more important, than during the 1970s and 1980s.

  5. Nutrient intake and nutrient patterns and risk of lung cancer among heavy smokers: results from the COSMOS screening study with annual low-dose CT

    International Nuclear Information System (INIS)

    Gnagnarella, Patrizia; Maisonneuve, Patrick; Bellomi, Massimo; Rampinelli, Cristiano; Bertolotti, Raffaella; Spaggiari, Lorenzo; Palli, Domenico; Veronesi, Giulia

    2013-01-01

    The role of nutrients in lung cancer aetiology remains controversial and has never been evaluated in the context of screening. Our aim was to investigate the role of single nutrients and nutrient patterns in the aetiology of lung cancer in heavy smokers. Asymptomatic heavy smokers (≥20 pack-years) were invited to undergo annual low-dose computed tomography. We assessed diet using a self-administered food frequency questionnaire and collected information on multivitamin supplement use. We performed principal component analysis identifying four nutrient patterns and used Cox proportional Hazards regression to assess the association between nutrients and nutrients patterns and lung cancer risk. During a mean follow-up of 5.7 years, 178 of 4,336 participants were diagnosed with lung cancer by screening. We found a significant risk reduction of lung cancer with increasing vegetable fat consumption (HR for highest vs. lowest quartile = 0.50, 95 % CI = 0.31–0.80; P-trend = 0.02). Participants classified in the high “vitamins and fiber” pattern score had a significant risk reduction of lung cancer (HR = 0.57; 95 % CI = 0.36–0.90, P-trend = 0.01). Among heavy smokers enrolled in a screening trial, high vegetable fat intake and adherence to the “vitamin and fiber” nutrient pattern were associated with reduced lung cancer incidence.

  6. Insects, infestations and nutrient fluxes

    Science.gov (United States)

    Michalzik, B.

    2012-04-01

    Forest ecosystems are characterized by a high temporal and spatial variability in the vertical transfer of energy and matter within the canopy and the soil compartment. The mechanisms and controlling factors behind canopy processes and system-internal transfer dynamics are imperfectly understood at the moment. Seasonal flux diversities and inhomogeneities in throughfall composition have been reported from coniferous and deciduous forests, and in most cases leaf leaching has been considered as principle driver for differences in the amount and quality of nutrients and organic compounds (Tukey and Morgan 1963). Since herbivorous insects and the processes they initiate received less attention in past times, ecologists now emphasize the need for linking biological processes occurring in different ecosystem strata to explain rates and variability of nutrient cycling (Bardgett et al. 1998, Wardle et al. 2004). Consequently, herbivore insects in the canopies of forests are increasingly identified to play an important role for the (re)cycling and availability of nutrients, or, more generally, for the functioning of ecosystems not only in outbreak situations but also at endemic (non-outbreak) density levels (Stadler et al. 2001, Hunter et al. 2003). Before, little attention was paid to insect herbivores when quantifying element and energy fluxes through ecosystems, although the numerous and different functions insects fulfill in ecosystems (e.g. as pollinators, herbivores or detritivores) were unanimously recognized (Schowalter 2000). Amongst the reasons for this restraint was the argument that the total biomass of insects tends to be relatively low compared to the biomass of trees or the pool of soil organic matter (Ohmart et al. 1983). A second argument which was put forward to justify the inferior role of insects in nutrient cycling were the supposed low defoliation losses between 5-10% of the annual leaf biomass, or net primary production, due to insect herbivory under

  7. Recovery from disturbance requires resynchronization of ecosystem nutrient cycles.

    Science.gov (United States)

    Rastetter, E B; Yanai, R D; Thomas, R Q; Vadeboncoeur, M A; Fahey, T J; Fisk, M C; Kwiatkowski, B L; Hamburg, S P

    2013-04-01

    Nitrogen (N) and phosphorus (P) are tightly cycled in most terrestrial ecosystems, with plant uptake more than 10 times higher than the rate of supply from deposition and weathering. This near-total dependence on recycled nutrients and the stoichiometric constraints on resource use by plants and microbes mean that the two cycles have to be synchronized such that the ratio of N:P in plant uptake, litterfall, and net mineralization are nearly the same. Disturbance can disrupt this synchronization if there is a disproportionate loss of one nutrient relative to the other. We model the resynchronization of N and P cycles following harvest of a northern hardwood forest. In our simulations, nutrient loss in the harvest is small relative to postharvest losses. The low N:P ratio of harvest residue results in a preferential release of P and retention of N. The P release is in excess of plant requirements and P is lost from the active ecosystem cycle through secondary mineral formation and leaching early in succession. Because external P inputs are small, the resynchronization of the N and P cycles later in succession is achieved by a commensurate loss of N. Through succession, the ecosystem undergoes alternating periods of N limitation, then P limitation, and eventually co-limitation as the two cycles resynchronize. However, our simulations indicate that the overall rate and extent of recovery is limited by P unless a mechanism exists either to prevent the P loss early in succession (e.g., P sequestration not stoichiometrically constrained by N) or to increase the P supply to the ecosystem later in succession (e.g., biologically enhanced weathering). Our model provides a heuristic perspective from which to assess the resynchronization among tightly cycled nutrients and the effect of that resynchronization on recovery of ecosystems from disturbance.

  8. Nutrientes minerales en alimentos industrializados

    OpenAIRE

    Hernández F., Eloisa; Facultad de Farmacia y Bioquímica de la Universidad Nacional Mayor de San Marcos, Lima, Perú.; Quispe, Clara; Facultad de Farmacia y Bioquímica de la Universidad Nacional Mayor de San Marcos, Lima, Perú.; Alencastre M., Ana; Facultad de Farmacia y Bioquímica de la Universidad Nacional Mayor de San Marcos, Lima, Perú.

    2014-01-01

    Hasta el momento los alimentos industrializados que se consumen en nuestro medio aún no han sido estudiados por su contenido de nutrientes minerales. Se presenta los contenidos de fósforo, calcio, hierro, sodio, potasio, cobre y magnesio en 33 alimentos de procedencia nacional e importados. El 70% de estos alimentos son preferentemente consumidos por niños. Se ha empleado métodos oficiales de A.O.A.C.: para fósforo el método colorimétrico, los otros minerales mediante Absorción Atómica, Espec...

  9. Dietary pattern classifications with nutrient intake and body composition changes in Korean elderly

    OpenAIRE

    Oh, Chorong; No, Jae-Kyung; Kim, Hak-Seon

    2014-01-01

    BACKGROUND/OBJECTIVES The body composition changes in aging increased the risk of metabolic disorder. Recent dietary studies have increasingly focused on the correlations between dietary patterns and chronic diseases to overcome the limitations of traditional single-nutrient studies because nutrients in food have complex relations that interact. SUBJECTS/METHODS This study was conducted to classify a dietary pattern among Korean elderly using cluster analysis and to explore the relationships ...

  10. Application of computer voice input/output

    International Nuclear Information System (INIS)

    Ford, W.; Shirk, D.G.

    1981-01-01

    The advent of microprocessors and other large-scale integration (LSI) circuits is making voice input and output for computers and instruments practical; specialized LSI chips for speech processing are appearing on the market. Voice can be used to input data or to issue instrument commands; this allows the operator to engage in other tasks, move about, and to use standard data entry systems. Voice synthesizers can generate audible, easily understood instructions. Using voice characteristics, a control system can verify speaker identity for security purposes. Two simple voice-controlled systems have been designed at Los Alamos for nuclear safeguards applicaations. Each can easily be expanded as time allows. The first system is for instrument control that accepts voice commands and issues audible operator prompts. The second system is for access control. The speaker's voice is used to verify his identity and to actuate external devices

  11. Do efficiency scores depend on input mix?

    DEFF Research Database (Denmark)

    Asmild, Mette; Hougaard, Jens Leth; Kronborg, Dorte

    2013-01-01

    In this paper we examine the possibility of using the standard Kruskal-Wallis (KW) rank test in order to evaluate whether the distribution of efficiency scores resulting from Data Envelopment Analysis (DEA) is independent of the input (or output) mix of the observations. Since the DEA frontier...... is estimated, many standard assumptions for evaluating the KW test statistic are violated. Therefore, we propose to explore its statistical properties by the use of simulation studies. The simulations are performed conditional on the observed input mixes. The method, unlike existing approaches...... the assumption of mix independence is rejected the implication is that it, for example, is impossible to determine whether machine intensive project are more or less efficient than labor intensive projects....

  12. Multimodal interfaces with voice and gesture input

    Energy Technology Data Exchange (ETDEWEB)

    Milota, A.D.; Blattner, M.M.

    1995-07-20

    The modalities of speech and gesture have different strengths and weaknesses, but combined they create synergy where each modality corrects the weaknesses of the other. We believe that a multimodal system such a one interwining speech and gesture must start from a different foundation than ones which are based solely on pen input. In order to provide a basis for the design of a speech and gesture system, we have examined the research in other disciplines such as anthropology and linguistics. The result of this investigation was a taxonomy that gave us material for the incorporation of gestures whose meanings are largely transparent to the users. This study describes the taxonomy and gives examples of applications to pen input systems.

  13. Nutrient Status Assessment in Individuals and Populations for Healthy Aging—Statement from an Expert Workshop

    Directory of Open Access Journals (Sweden)

    Szabolcs Péter

    2015-12-01

    Full Text Available A workshop organized by the University Medical Center Groningen addressed various current issues regarding nutrient status of individuals and populations, tools and strategies for its assessment, and opportunities to intervene. The importance of nutrient deficiencies and information on nutrient status for health has been illustrated, in particular for elderly and specific patient groups. The nutrient profile of individuals can be connected to phenotypes, like hypertension or obesity, as well as to socio-economic data. This approach provides information on the relationship between nutrition (nutrient intake and status and health outcomes and, for instance, allows us to use the findings to communicate and advocate a healthy lifestyle. Nutrition is complex: a broader profile of nutrients should be considered rather than focusing solely on a single nutrient. Evaluating food patterns instead of intake of individual nutrients provides better insight into relationships between nutrition and health and disease. This approach would allow us to provide feedback to individuals about their status and ways to improve their nutritional habits. In addition, it would provide tools for scientists and health authorities to update and develop public health recommendations.

  14. Nutrient Status Assessment in Individuals and Populations for Healthy Aging-Statement from an Expert Workshop.

    Science.gov (United States)

    Péter, Szabolcs; Saris, Wim H M; Mathers, John C; Feskens, Edith; Schols, Annemie; Navis, Gerjan; Kuipers, Folkert; Weber, Peter; Eggersdorfer, Manfred

    2015-12-16

    A workshop organized by the University Medical Center Groningen addressed various current issues regarding nutrient status of individuals and populations, tools and strategies for its assessment, and opportunities to intervene. The importance of nutrient deficiencies and information on nutrient status for health has been illustrated, in particular for elderly and specific patient groups. The nutrient profile of individuals can be connected to phenotypes, like hypertension or obesity, as well as to socio-economic data. This approach provides information on the relationship between nutrition (nutrient intake and status) and health outcomes and, for instance, allows us to use the findings to communicate and advocate a healthy lifestyle. Nutrition is complex: a broader profile of nutrients should be considered rather than focusing solely on a single nutrient. Evaluating food patterns instead of intake of individual nutrients provides better insight into relationships between nutrition and health and disease. This approach would allow us to provide feedback to individuals about their status and ways to improve their nutritional habits. In addition, it would provide tools for scientists and health authorities to update and develop public health recommendations.

  15. Changing Atmospheric Acidity and the Oceanic Solubility of Nutrients

    Science.gov (United States)

    Baker, Alex; Sarin, Manmohan; Duce, Robert; Jickells, Tim; Kanakidou, Maria; Myriokefalitakis, Stelios; Ito, Akinori; Turner, David; Mahowald, Natalie; Middag, Rob; Guieu, Cecile; Gao, Yuan; Croot, Peter; Shelley, Rachel; Perron, Morgane

    2017-04-01

    The atmospheric deposition of nutrients to the ocean is known to play a significant role in the marine carbon cycle. The impact of such deposition is dependent on the identity of the nutrient in question (e.g., N, P, Fe, Co, Zn, Ni, Cd), the location of the deposition, and the bioavailability of the deposited nutrient. Bioavailability is largely governed by the chemical speciation of a nutrient and, in general, insoluble species are not bioavailable. For Fe and P (and perhaps the other nutrient trace metals) solubility increases during transport through the atmosphere. The causes of this increase are complex, but interactions of aerosol particles with acids appears to play a significant role. Emissions of acidic (SO2 and NOx) and alkaline (NH3) gases have increased significantly since the Industrial Revolution, with a net increase in atmospheric acidity. This implies that Fe and P solubility may also have increased over this time period, potentially resulting in increased marine productivity. More recently, pollution controls have decreased emissions of SO2 from some regions and further reductions in SO2 and NOx are likely in the future. Emissions of NH3 are much more difficult to control however, and are projected to stabilise or increase slightly to the end of this century. Future anthropogenic emissions are thus likely to change the acidity of the atmosphere downwind of major urban / industrial centres, with potential consequences for the supply of soluble nutrients to the ocean. To address these issues UN/GESAMP Working Group 38, The Atmospheric Input of Chemicals to the Ocean, is convening a workshop on this topic at the University of East Anglia in February, 2017. The goals of this workshop are to review and synthesize the current scientific information on the solubility of aerosol-associated key biogeochemical elements, the biogeochemical controls on aerosol solubility, and the pH sensitivity of those controls; to consider the likely changes in solubility of

  16. Input Quality in the Sugar Beet Industry

    OpenAIRE

    Boland, Michael A.; Marsh, Thomas L.

    2006-01-01

    Using 23 years of data (1978-2000), this study examines seven vertically integrated sugar beet plants representing three different companies in the United States. The objective of this research is to identify the marginal costs of producing sugar beets for vertically integrated sugar beet processors as a way of determining the cost savings from higher quality sugar beets. In doing so, we account for quality differences in the sugar beet input that are used to manufacture the refined sugar out...

  17. Sensory Synergy as Environmental Input Integration

    Directory of Open Access Journals (Sweden)

    Fady eAlnajjar

    2015-01-01

    Full Text Available The development of a method to feed proper environmental inputs back to the central nervous system (CNS remains one of the challenges in achieving natural movement when part of the body is replaced with an artificial device. Muscle synergies are widely accepted as a biologically plausible interpretation of the neural dynamics between the CNS and the muscular system. Yet the sensorineural dynamics of environmental feedback to the CNS has not been investigated in detail. In this study, we address this issue by exploring the concept of sensory synergy. In contrast to muscle synergy, we hypothesize that sensory synergy plays an essential role in integrating the overall environmental inputs to provide low-dimensional information to the CNS. We assume that sensor synergy and muscle synergy communicate using these low-dimensional signals. To examine our hypothesis, we conducted posture control experiments involving lateral disturbance with 9 healthy participants. Proprioceptive information represented by the changes on muscle lengths were estimated by using the musculoskeletal model analysis software SIMM. Changes on muscles lengths were then used to compute sensory synergies. The experimental results indicate that the environmental inputs were translated into the two dimensional signals and used to move the upper limb to the desired position immediately after the lateral disturbance. Participants who showed high skill in posture control were found to be likely to have a strong correlation between sensory and muscle signaling as well as high coordination between the utilized sensory synergies. These results suggest the importance of integrating environmental inputs into suitable low-dimensional signals before providing them to the CNS. This mechanism should be essential when designing the prosthesis’ sensory system to make the controller simpler

  18. Sensory synergy as environmental input integration.

    Science.gov (United States)

    Alnajjar, Fady; Itkonen, Matti; Berenz, Vincent; Tournier, Maxime; Nagai, Chikara; Shimoda, Shingo

    2014-01-01

    The development of a method to feed proper environmental inputs back to the central nervous system (CNS) remains one of the challenges in achieving natural movement when part of the body is replaced with an artificial device. Muscle synergies are widely accepted as a biologically plausible interpretation of the neural dynamics between the CNS and the muscular system. Yet the sensorineural dynamics of environmental feedback to the CNS has not been investigated in detail. In this study, we address this issue by exploring the concept of sensory synergy. In contrast to muscle synergy, we hypothesize that sensory synergy plays an essential role in integrating the overall environmental inputs to provide low-dimensional information to the CNS. We assume that sensor synergy and muscle synergy communicate using these low-dimensional signals. To examine our hypothesis, we conducted posture control experiments involving lateral disturbance with nine healthy participants. Proprioceptive information represented by the changes on muscle lengths were estimated by using the musculoskeletal model analysis software SIMM. Changes on muscles lengths were then used to compute sensory synergies. The experimental results indicate that the environmental inputs were translated into the two dimensional signals and used to move the upper limb to the desired position immediately after the lateral disturbance. Participants who showed high skill in posture control were found to be likely to have a strong correlation between sensory and muscle signaling as well as high coordination between the utilized sensory synergies. These results suggest the importance of integrating environmental inputs into suitable low-dimensional signals before providing them to the CNS. This mechanism should be essential when designing the prosthesis' sensory system to make the controller simpler.

  19. Molecular structure input on the web

    Directory of Open Access Journals (Sweden)

    Ertl Peter

    2010-02-01

    Full Text Available Abstract A molecule editor, that is program for input and editing of molecules, is an indispensable part of every cheminformatics or molecular processing system. This review focuses on a special type of molecule editors, namely those that are used for molecule structure input on the web. Scientific computing is now moving more and more in the direction of web services and cloud computing, with servers scattered all around the Internet. Thus a web browser has become the universal scientific user interface, and a tool to edit molecules directly within the web browser is essential. The review covers a history of web-based structure input, starting with simple text entry boxes and early molecule editors based on clickable maps, before moving to the current situation dominated by Java applets. One typical example - the popular JME Molecule Editor - will be described in more detail. Modern Ajax server-side molecule editors are also presented. And finally, the possible future direction of web-based molecule editing, based on technologies like JavaScript and Flash, is discussed.

  20. PREP-45, Input Preparation for CITATION-2

    International Nuclear Information System (INIS)

    Ramalho Carlos, C.A.

    1995-01-01

    1 - Description of program or function: A Fortran program has been created, which saves much effort in preparing sections 004 (intervals in the coordinates) and 005 (zone numbers) of the input data file for the multigroup theory code CITATION (version CITATION-2, NESC0387/09), particularly when a thin complicated mesh is used. 2 - Method of solution: A domain is defined for CITATION calculations through specifying its sub-domains (e.g. graphite, lead, beryllium, water and fuel sub-domains) in a compact and simple way. An independent and previous geometrical specification is made of the various types of elements which are envisaged to constitute the contents of the reactor core grid positions. Then the load table for the configuration is input and scanned throughout, thus enabling the geometric mesh description to be produced (section 004). Also the zone placement (section 005) is achieved by means of element description subroutines for the different types of element (which may require appropriate but simple changes in the actual cases). The output of PREP45 is directly obtained in a format which is compatible with CITATION-2 input. 3 - Restrictions on the complexity of the problem: Only rectangular two-dimensional Cartesian coordinates are considered. A maximum of 12 sub-domains in the x direction (18 in the y direction) and up to 8 distinct element types are considered in this version. Other limitations exist which can nevertheless be overcome with simple changes in the source program

  1. Role of the fish astyanax aeneus (Characidae) as a keystone nutrient recycler in low-nutrient neotropical streams

    Science.gov (United States)

    Small, G.E.; Pringle, C.M.; Pyron, M.; Duff, J.H.

    2011-01-01

    Nutrient recycling by animals is a potentially important biogeochemical process in both terrestrial and aquatic ecosystems. Stoichiometric traits of individual species may result in some taxa playing disproportionately important roles in the recycling of nutrients relative to their biomass, acting as keystone nutrient recyclers. We examined factors controlling the relative contribution of 12 Neotropical fish species to nutrient recycling in four streams spanning a range of phosphorus (P) levels. In high-P conditions (135 ??g/L soluble reactive phosphorus, SRP), most species fed on P-enriched diets and P excretion rates were high across species. In low-P conditions (3 ??g/L SRP), aquatic food resources were depleted in P, and species with higher body P content showed low rates of P recycling. However, fishes that were subsidized by terrestrial inputs were decoupled from aquatic P availability and therefore excreted P at disproportionately high rates. One of these species, Astyanax aeneus (Characidae), represented 12% of the total population and 18% of the total biomass of the fish assemblage in our focal low-P study stream but had P excretion rates >10-fold higher than other abundant fishes. As a result, we estimated that P excretion by A. aeneus accounted for 90% of the P recycled by this fish assemblage and also supplied ???90% of the stream P demand in this P-limited ecosystem. Nitrogen excretion rates showed little variation among species, and the contribution of a given species to ecosystem N recycling was largely dependent upon the total biomass of that species. Because of the high variability in P excretion rates among fish species, ecosystem-level P recycling could be particularly sensitive to changes in fish community structure in P-limited systems. ?? 2011 by the Ecological Society of America.

  2. A freshwater food web model for the combined effects of nutrients and insecticide stress and subsequent recovery

    NARCIS (Netherlands)

    Traas, T.P.; Janse, J.H.; Brink, van den P.J.; Brock, T.C.M.; Aldenberg, T.

    2004-01-01

    A microcosm experiment that addressed the interaction between eutrophication processes and contaminants was analyzed using a food web model. Both direct and indirect effects of nutrient additions and a single insecticide application (chlorpyrifos) on biomass dynamics and recovery of functional

  3. Identifying best-fitting inputs in health-economic model calibration: a Pareto frontier approach.

    Science.gov (United States)

    Enns, Eva A; Cipriano, Lauren E; Simons, Cyrena T; Kong, Chung Yin

    2015-02-01

    To identify best-fitting input sets using model calibration, individual calibration target fits are often combined into a single goodness-of-fit (GOF) measure using a set of weights. Decisions in the calibration process, such as which weights to use, influence which sets of model inputs are identified as best-fitting, potentially leading to different health economic conclusions. We present an alternative approach to identifying best-fitting input sets based on the concept of Pareto-optimality. A set of model inputs is on the Pareto frontier if no other input set simultaneously fits all calibration targets as well or better. We demonstrate the Pareto frontier approach in the calibration of 2 models: a simple, illustrative Markov model and a previously published cost-effectiveness model of transcatheter aortic valve replacement (TAVR). For each model, we compare the input sets on the Pareto frontier to an equal number of best-fitting input sets according to 2 possible weighted-sum GOF scoring systems, and we compare the health economic conclusions arising from these different definitions of best-fitting. For the simple model, outcomes evaluated over the best-fitting input sets according to the 2 weighted-sum GOF schemes were virtually nonoverlapping on the cost-effectiveness plane and resulted in very different incremental cost-effectiveness ratios ($79,300 [95% CI 72,500-87,600] v. $139,700 [95% CI 79,900-182,800] per quality-adjusted life-year [QALY] gained). Input sets on the Pareto frontier spanned both regions ($79,000 [95% CI 64,900-156,200] per QALY gained). The TAVR model yielded similar results. Choices in generating a summary GOF score may result in different health economic conclusions. The Pareto frontier approach eliminates the need to make these choices by using an intuitive and transparent notion of optimality as the basis for identifying best-fitting input sets. © The Author(s) 2014.

  4. Identifying priorities for nutrient mitigation using river concentration-flow relationships: The Thames basin, UK

    Science.gov (United States)

    Bowes, Michael J.; Jarvie, Helen P.; Naden, Pamela S.; Old, Gareth H.; Scarlett, Peter M.; Roberts, Colin; Armstrong, Linda K.; Harman, Sarah A.; Wickham, Heather D.; Collins, Adrian L.

    2014-09-01

    The introduction of tertiary treatment to many of the sewage treatment works (STW) across the Thames basin in southern England has resulted in major reductions in river phosphorus (P) concentrations. Despite this, excessive phytoplankton growth is still a problem in the River Thames and many of its tributaries. There is an urgent need to determine if future resources should focus on P removal from the remaining STW, or on reducing agricultural inputs, to improve ecological status. Nutrient concentration-flow relationships for monitoring sites along the River Thames and 15 of its major tributaries were used to estimate the relative inputs of phosphorus and nitrogen from continuous (sewage point sources) and rain-related (diffuse and within-channel) sources, using the Load Apportionment Model (LAM). The model showed that diffuse sources and remobilisation of within-channel phosphorus contributed the majority of the annual P load at all monitoring sites. However, the majority of rivers in the Thames basin are still dominated by STW P inputs during the ecologically-sensitive spring-autumn growing season. Therefore, further STW improvements would be the most effective way of improving water quality and ecological status along the length of the River Thames, and 12 of the 15 tributaries. The LAM outputs were in agreement with other indicators of sewage input, such as sewered population density, phosphorus speciation and boron concentration. The majority of N inputs were from diffuse sources, and LAM suggests that introducing mitigation measures to reduce inputs from agriculture and groundwater would be most appropriate for all but one monitoring site in this study. The utilisation of nutrient concentration-flow data and LAM provide a simple, rapid and effective screening tool for determining nutrient sources and most effective mitigation options.

  5. Technical Note: A comparison of two empirical approaches to estimate in-stream net nutrient uptake

    Science.gov (United States)

    von Schiller, D.; Bernal, S.; Martí, E.

    2011-04-01

    To establish the relevance of in-stream processes on nutrient export at catchment scale it is important to accurately estimate whole-reach net nutrient uptake rates that consider both uptake and release processes. Two empirical approaches have been used in the literature to estimate these rates: (a) the mass balance approach, which considers changes in ambient nutrient loads corrected by groundwater inputs between two stream locations separated by a certain distance, and (b) the spiralling approach, which is based on the patterns of longitudinal variation in ambient nutrient concentrations along a reach following the nutrient spiralling concept. In this study, we compared the estimates of in-stream net nutrient uptake rates of nitrate (NO3) and ammonium (NH4) and the associated uncertainty obtained with these two approaches at different ambient conditions using a data set of monthly samplings in two contrasting stream reaches during two hydrological years. Overall, the rates calculated with the mass balance approach tended to be higher than those calculated with the spiralling approach only at high ambient nitrogen (N) concentrations. Uncertainty associated with these estimates also differed between both approaches, especially for NH4 due to the general lack of significant longitudinal patterns in concentration. The advantages and disadvantages of each of the approaches are discussed.

  6. Nutrient budgets and effluent characteristics in giant freshwater prawn (Macrobrachium rosenbergii) culture ponds.

    Science.gov (United States)

    Adhikari, Subhendu; Sahu, Bharat Chandra; Mahapatra, Abhijit S; Dey, Lambodar

    2014-05-01

    It is important to understand nutrient budgets of aquaculture practices for efficiency of input resources and to utilize all output nutrient sources. The aim of the present study was to develop a nutrient budget for giant freshwater prawn (Macrobrachium rosenbergii) culture ponds. The study was conducted in farmer's ponds (0.25-0.5 ha) of Odisha, India, and the results showed that feed accounted 97% total nitrogen (N), 98.7% total phosphorus (P) and 90% total organic carbon (OC), respectively. The harvested prawn accounted for recovery of 37% N, 10% P and 15% OC, respectively. The N, P and OC accumulated in sediment were 52%, 76%, and 65%, respectively. Nutrient loads in the effluents were 2.22 ± 0.66 kg inorganic N, 0.40 ± 0.15 kg P, and 21.01 ± 6.4 kg OC per ton of prawn production. The present study implicated that high nutrient values observed in both water and sediment provide important opportunities for nutrient reuse through pond sediment applications to croplands as an organic manure, as well as pond water irrigation to crops as a "liquid fertilizer".

  7. Mapping of trophic states based on nutrients concentration and phytoplankton abundance in Jatibarang Reservoir

    Science.gov (United States)

    Rudiyanti, Siti; Anggoro, Sutrisno; Rahman, Arif

    2018-02-01

    Jatibarang Reservoir is one of the Indonesian Reservoirs, which used for human activities such as tourism and agriculture. These activities will provide input of organic matter and nutrients into the water. These materials will impact water quality and eutrophication process. Eutrophication is the water enrichment by nutrients, especially nitrogen and phosphorus which can promote the growth of phytoplankton. Some indicators of eutrophication are increasing nutrients, trophic states, and change of phytoplankton composition. The relationship between water quality and phytoplankton community can be used as an indicator of trophic states in Jatibarang Reservoir. The aim of this study was to analyze the effect of nutrients concentration and phytoplankton abundance to the trophic states and mapping trophic states based on nutrients concentration and phytoplankton in Jatibarang Reservoir. This study was conducted in June and July 2017 at 9 stations around Jatibarang Reservoir. The results showed that average concentration of nitrate, phosphate, and chlorophyll-a in Jatibarang Reservoir was 0.69 mg/L, 0.27 mg/L, and 1.66 mg/m3, respectively. The phytoplankton abundance ranged 16-62,200 cells/L, consists of 21 genera of four classes, i.e. Chlorophyceae, Cyanophyceae, Bacillariophyceae, and Dinophyceae. Cyanophyceae was a dominant phytoplankton group based on the composition of abundance (>80%). High nutrient concentrations and phytoplankton dominated by Anabaena (Cyanophyceae) which indicated that the waters in Jatibarang Reservoir were eutrophic.

  8. Evaluation of nutrient retention in vegetated filter strips using the SWAT model.

    Science.gov (United States)

    Elçi, Alper

    2017-11-01

    Nutrient fluxes in stream basins need to be controlled to achieve good water quality status. In stream basins with intensive agricultural activities, nutrients predominantly come from diffuse sources. Therefore, best management practices (BMPs) are increasingly implemented to reduce nutrient input to streams. The objective of this study is to evaluate the impact of vegetated filter strip (VFS) application as an agricultural BMP. For this purpose, SWAT is chosen, a semi-distributed water quality assessment model that works at the watershed scale, and applied on the Nif stream basin, a small-sized basin in Western Turkey. The model is calibrated with an automated procedure against measured monthly discharge data. Nutrient loads for each sub-basin are estimated considering basin-wide data on chemical fertilizer and manure usage, population data for septic tank effluents and information about the land cover. Nutrient loads for 19 sub-basins are predicted on an annual basis. Average total nitrogen and total phosphorus loads are estimated as 47.85 t/yr and 13.36 t/yr for the entire basin. Results show that VFS application in one sub-basin offers limited retention of nutrients and that a selection of 20-m filter width is most effective from a cost-benefit perspective.

  9. The C32 alkane-1,15-diol as a tracer for riverine input in coastal seas

    OpenAIRE

    Lattaud, J.; Kim, J.-H; de Jonge, C.; Zell, C.; Sinninghe Damsté, J.S.; Schouten, S.

    2017-01-01

    Long chain alkyl diols are lipids that occur ubiquitously in marine sediments and are used as a proxy for sea surface temperature (SST), using the Long chain Diol Index (LDI), and for upwelling intensity/high nutrient conditions. The distribution of 1,13- and 1,15-diols has been documented in open marine and lacustrine sediments and suspended particulate matter, but rarely in coastal seas receiving a significant riverine, and thus continental organic matter, input. Here we studied the distrib...

  10. Encoding of whisker input by cerebellar Purkinje cells.

    Science.gov (United States)

    Bosman, Laurens W J; Koekkoek, Sebastiaan K E; Shapiro, Jöel; Rijken, Bianca F M; Zandstra, Froukje; van der Ende, Barry; Owens, Cullen B; Potters, Jan-Willem; de Gruijl, Jornt R; Ruigrok, Tom J H; De Zeeuw, Chris I

    2010-10-01

    The cerebellar cortex is crucial for sensorimotor integration. Sensorimotor inputs converge on cerebellar Purkinje cells via two afferent pathways: the climbing fibre pathway triggering complex spikes, and the mossy fibre–parallel fibre pathway, modulating the simple spike activities of Purkinje cells. We used, for the first time, the mouse whisker system as a model system to study the encoding of somatosensory input by Purkinje cells.We show that most Purkinje cells in ipsilateral crus 1 and crus 2 of awake mice respond to whisker stimulation with complex spike and/or simple spike responses. Single-whisker stimulation in anaesthetised mice revealed that the receptive fields of complex spike and simple spike responses were strikingly different. Complex spike responses, which proved to be sensitive to the amplitude, speed and direction of whisker movement, were evoked by only one or a few whiskers. Simple spike responses, which were not affected by the direction of movement, could be evoked by many individual whiskers. The receptive fields of Purkinje cells were largely intermingled, and we suggest that this facilitates the rapid integration of sensory inputs from different sources. Furthermore, we describe that individual Purkinje cells, at least under anaesthesia, may be bound in two functional ensembles based on the receptive fields and the synchrony of the complex spike and simple spike responses. The ‘complex spike ensembles’ were oriented in the sagittal plane, following the anatomical organization of the climbing fibres, while the ‘simple spike ensembles’ were oriented in the transversal plane, as are the beams of parallel fibres.

  11. Managing urban nutrient biogeochemistry for sustainable urbanization.

    Science.gov (United States)

    Lin, Tao; Gibson, Valerie; Cui, Shenghui; Yu, Chang-Ping; Chen, Shaohua; Ye, Zhilong; Zhu, Yong-Guan

    2014-09-01

    Urban ecosystems are unique in the sense that human activities are the major drivers of biogeochemical processes. Along with the demographic movement into cities, nutrients flow towards the urban zone (nutrient urbanization), causing the degradation of environmental quality and ecosystem health. In this paper, we summarize the characteristics of nutrient cycling within the urban ecosystem compared to natural ecosystems. The dynamic process of nutrient urbanization is then explored taking Xiamen city, China, as an example to examine the influence of rapid urbanization on food sourced nitrogen and phosphorus metabolism. Subsequently, the concept of a nutrient footprint and calculation method is introduced from a lifecycle perspective. Finally, we propose three system approaches to mend the broken biogeochemical cycling. Our study will contribute to a holistic solution which achieves synergies between environmental quality and food security, by integrating technologies for nutrient recovery and waste reduction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Nutrient-gene interaction: metabolic genotype-phenotype relationship.

    Science.gov (United States)

    Go, Vay Liang W; Nguyen, Christine T H; Harris, Diane M; Lee, Wai-Nang Paul

    2005-12-01

    The U.S. Department of Health and Human Services (DHHS)/USDA Dietary Guidelines for Americans is a science and population evidence-based guide on diet and physical activity, providing advice and recommendations to promote a healthier lifestyle and reduce the risk of chronic diseases, including cancer. These recommendations are supported by the comprehensive evidence-based review on diet and cancer prevention conducted by the American Institute for Cancer Research, National Cancer Institute, World Health Organization/International Agency for Research on Cancer, and others. However, influencing dietary effects are the individual genetic predispositions that are the basis for considerable interindividual variations in cancer risk within the population and in nutrient homeostasis, which is maintained by genomic-nutrient and metabolic-phenotype interactions. Although genetics is an important component, it accounts for only a portion of this variation. An individual's overall phenotype, including health status, is achieved and maintained by the sum of metabolic activities functioning under differing circumstances within the life cycle and the complex interactions among genotype, metabolic phenotype, and the environment. In this postgenomic era, high-throughput groups of technologies in genomics, proteomics, and metabolomics measure and analyze DNA sequences, RNA transcripts, proteins, and nutrient-metabolic fluxes in a single experiment. These advances have transformed biomarker studies on nutrient-gene interactions from a reductionist concept into a holistic practice in which many regulated genes involved in metabolism, along with its metabolic phenotypes, can be measured through functional genomics and metabolic profiling. The overall integration of data and information from the building blocks of metabolism-based nutrient-gene interaction can lead to future individualized dietary recommendations to diminish cancer risk.

  13. TOPIC: a debugging code for torus geometry input data of Monte Carlo transport code

    International Nuclear Information System (INIS)

    Iida, Hiromasa; Kawasaki, Hiromitsu.

    1979-06-01

    TOPIC has been developed for debugging geometry input data of the Monte Carlo transport code. the code has the following features: (1) It debugs the geometry input data of not only MORSE-GG but also MORSE-I capable of treating torus geometry. (2) Its calculation results are shown in figures drawn by Plotter or COM, and the regions not defined or doubly defined are easily detected. (3) It finds a multitude of input data errors in a single run. (4) The input data required in this code are few, so that it is readily usable in a time sharing system of FACOM 230-60/75 computer. Example TOPIC calculations in design study of tokamak fusion reactors (JXFR, INTOR-J) are presented. (author)

  14. Design and Implementation of Kana-Input Navigation System for Kids based on the Cyber Assistant

    Directory of Open Access Journals (Sweden)

    Hiroshi Matsuda

    2004-02-01

    Full Text Available In Japan, it has increased the opportunity for young children to experience the personal computer in elementary schools. However, in order to use computer, many domestic barriers have confronted young children (Kids because they cannot read difficult Kanji characters and had not learnt Roman alphabet yet. As a result, they cannot input text strings by JIS Kana keyboard. In this research, we developed Kana-Input NaVigation System for kids (KINVS based on the Cyber Assistant System (CAS. CAS is a Human-Style Software Robot based on the 3D-CG real-time animation and voice synthesis technology. KINVS enables to input Hiragana/Katakana characters by mouse operation only (without keyboard operation and CAS supports them by using speaking, facial expression, body action and sound effects. KINVS displays the 3D-Stage like a classroom. In this room, Blackboard, Interactive parts to input Kana-characters, and CAS are placed. As some results of preliminary experiments, it is definitely unfit for Kids to double-click objects quickly or to move the Scrollbar by mouse dragging. So, mouse input method of KINVS are designed to use only single click and wheeler rotation. To input characters, Kids clicks or rotates the Interactive Parts. KINVS reports all information by voice speaking and Kana subtitles instead of Kanji text. Furthermore, to verify the functional feature of KINVS, we measured how long Kids had taken to input long text by using KINVS.

  15. Plant community and soil chemistry responses to long-term nitrogen inputs drive changes in alpine bacterial communities.

    Science.gov (United States)

    Yuan, Xia; Knelman, Joseph E; Gasarch, Eve; Wang, Deli; Nemergut, Diana R; Seastedt, Timothy R

    2016-06-01

    Bacterial community composition and diversity was studied in alpine tundra soils across a plant species and moisture gradient in 20 y-old experimental plots with four nutrient addition regimes (control, nitrogen (N), phosphorus (P) or both nutrients). Different bacterial communities inhabited different alpine meadows, reflecting differences in moisture, nutrients and plant species. Bacterial community alpha-diversity metrics were strongly correlated with plant richness and the production of forbs. After meadow type, N addition proved the strongest determinant of bacterial community structure. Structural Equation Modeling demonstrated that tundra bacterial community responses to N addition occur via changes in plant community composition and soil pH resulting from N inputs, thus disentangling the influence of direct (resource availability) vs. indirect (changes in plant community structure and soil pH) N effects that have remained unexplored in past work examining bacterial responses to long-term N inputs in these vulnerable environments. Across meadow types, the relative influence of these indirect N effects on bacterial community structure varied. In explicitly evaluating the relative importance of direct and indirect effects of long-term N addition on bacterial communities, this study provides new mechanistic understandings of the interaction between plant and microbial community responses to N inputs amidst environmental change.

  16. Methane productivity and nutrient recovery from manure

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, H.B.

    2003-07-01

    The efficient recovery of energy and improvements in the handling of nutrients from manure have attracted increased research focus during recent decades. Anaerobic digestion is a key process in any strategy for the recovery of energy, while slurry separation is an important component in an improved nutrient-handling strategy. This thesis is divided into two parts: the first deals mainly with nutrient recovery strategies and the second examines biological degradation processes, including controlled anaerobic digestion. (au)

  17. A dynamic growth model for prediction of nutrient partitioning and manure production in growing–finishing pigs: Model development and evaluation

    DEFF Research Database (Denmark)

    Danfær, Allan Christian; Jørgensen, Henry; Kebreab, E

    2015-01-01

    trials using growing–finishing pig diets that had a wide range of nutrient chemical composition. Nutrient and water excretion were quantified using the principle of mass conservation. The average daily observed and predicted manure production was 3.79 and 3.99 kg/d, respectively, with a RMSPE of 0.49 kg......Nutrient loading and air emissions from swine operations raise environmental concerns. The objective of the study was to describe and evaluate a mathematical model (Davis Swine Model) of nutrient partitioning and predict manure excretion and composition on a daily basis. State variables...... the body constituent pools. It was assumed that fluxes of metabolites follow saturation kinetics, depending on metabolite concentrations. The main inputs to the model were diet nutrient composition, feed intake, water-to-feed ratio, and initial BW. First, the model was challenged with nutrient partitioning...

  18. Biomass and nutrient cycling by winter cover crops

    Directory of Open Access Journals (Sweden)

    Jana Koefender

    Full Text Available ABSTRACT Cover crops are of fundamental importance for the sustainability of the no-tillage system, to ensure soil coverage and to provide benefits for the subsequent crop. The objective of this study was to evaluate the production of biomass and the content and accumulation of nutrients by winter cover crops. The experimental design used in the experiment was a randomized complete block with four replications and six treatments: oilseed radish, vetch, black oats, vetch + black oats, vetch + oilseed radish and fallow. Black oat, oilseed radish in single cultivation and black oat + vetch and vetch + oilseed radish intercroppings showed higher dry matter production. Vetch + oilseed radish intercropping demonstrates higher performance regarding cycling of nutrients, with higher accumulations of N, P, K, Ca, Mg, S, Cu, Zn, Fe, Na and B.

  19. Ion input via rainwater in the southwestern region of Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Francine Neves Calil

    2010-09-01

    Full Text Available Ion input via rainfall alone and after interception by the forest canopy, constitutes an important path ofbiochemical cycling, although few studies have provided information on the subject so far. The objective of this work is toquantify ion inputs, via rainfall, in the southwestern region of Rio Grande do Sul state, Brazil. Ten rain gauges were mountedin a field area. The quantification of stored water volume, along with sample collection for determination of nitrate, nitrite,ammonium, phosphorus, sulfur, chlorine, calcium, magnesium, potassium and sodium contents, was done fortnightly fromSeptember 2006 to August 2008. Local annual average precipitation in the relevant period was 1,588.3 mm. The concentrationof chemical elements in rainwater was found to vary throughout, being inversely correlated with the increase in rainfall, whilepotassium, ammonium, phosphate, sulfate, chloride and sodium were found to have a significant mutual correlation (p <0.01.Based on the annual amount of nutrient input via rainwater, it can be inferred that rainfall is an important source of chemicalelement input into the forest system.

  20. Stream Nitrogen Inputs Reflect Groundwater Across a Snowmelt-Dominated Montane to Urban Watershed.

    Science.gov (United States)

    Hall, Steven J; Weintraub, Samantha R; Eiriksson, David; Brooks, Paul D; Baker, Michelle A; Bowen, Gabriel J; Bowling, David R

    2016-02-02

    Snowmelt dominates the hydrograph of many temperate montane streams, yet little work has characterized how streamwater sources and nitrogen (N) dynamics vary across wildland to urban land use gradients in these watersheds. Across a third-order catchment in Salt Lake City, Utah, we asked where and when groundwater vs shallow surface water inputs controlled stream discharge and N dynamics. Stream water isotopes (δ(2)H and δ(18)O) reflected a consistent snowmelt water source during baseflow. Near-chemostatic relationships between conservative ions and discharge implied that groundwater dominated discharge year-round across the montane and urban sites, challenging the conceptual emphasis on direct stormwater inputs to urban streams. Stream and groundwater NO3(-) concentrations remained consistently low during snowmelt and baseflow in most montane and urban stream reaches, indicating effective subsurface N retention or denitrification and minimal impact of fertilizer or deposition N sources. Rather, NO3(-) concentrations increased 50-fold following urban groundwater inputs, showing that subsurface flow paths potentially impact nutrient loading more than surficial land use. Isotopic composition of H2O and NO3(-) suggested that snowmelt-derived urban groundwater intercepted NO3(-) from leaking sewers. Sewer maintenance could potentially mitigate hotspots of stream N inputs at mountain/valley transitions, which have been largely overlooked in semiarid urban ecosystems.

  1. Scaling laws in phytoplankton nutrient uptake affinity

    DEFF Research Database (Denmark)

    Lindemann, Christian; Fiksen, Øyvind; Andersen, Ken Haste

    2016-01-01

    Nutrient uptake affinity affects the competitive ability of microbial organisms at low nutrient concentrations. From the theory of diffusion limitation it follows that uptake affinity scales linearly with the cell radius. This is in conflict with some observations suggesting that uptake affinity...... scales to a quantity that is closer to the square of the radius, i.e. to cell surface area. We show that this apparent conflict can be resolved by nutrient uptake theory. Pure diffusion limitation assumes that the cell is a perfect sink which means that it is able to absorb all encountered nutrients...

  2. Bulk input queues with quorum and multiple vacations

    Directory of Open Access Journals (Sweden)

    Dshalalow Jewgeni H.

    1996-01-01

    Full Text Available The authors study a single-server queueing system with bulk arrivals and batch service in accordance to the general quorum discipline: a batch taken for service is not less than r and not greater than R ( ≥ r . The server takes vacations each time the queue level falls below r ( ≥ 1 in accordance with the multiple vacation discipline. The input to the system is assumed to be a compound Poisson process. The analysis of the system is based on the theory of first excess processes developed by the first author. A preliminary analysis of such processes enabled the authors to obtain all major characteristics for the queueing process in an analytically tractable form. Some examples and applications are given.

  3. Variation in active and passive resource inputs to experimental pools: mechanisms and possible consequences for food webs

    Science.gov (United States)

    Kraus, Johanna M.; Pletcher, Leanna T.; Vonesh, James R.

    2010-01-01

    1. Cross-ecosystem movements of resources, including detritus, nutrients and living prey, can strongly influence food web dynamics in recipient habitats. Variation in resource inputs is thought to be driven by factors external to the recipient habitat (e.g. donor habitat productivity and boundary conditions). However, inputs of or by ‘active’ living resources may be strongly influenced by recipient habitat quality when organisms exhibit behavioural habitat selection when crossing ecosystem boundaries. 2. To examine whether behavioural responses to recipient habitat quality alter the relative inputs of ‘active’ living and ‘passive’ detrital resources to recipient food webs, we manipulated the presence of caged predatory fish and measured biomass, energy and organic content of inputs to outdoor experimental pools of adult aquatic insects, frog eggs, terrestrial plant matter and terrestrial arthropods. 3. Caged fish reduced the biomass, energy and organic matter donated to pools by tree frog eggs by ∼70%, but did not alter insect colonisation or passive allochthonous inputs of terrestrial arthropods and plant material. Terrestrial plant matter and adult aquatic insects provided the most energy and organic matter inputs to the pools (40–50%), while terrestrial arthropods provided the least (7%). Inputs of frog egg were relatively small but varied considerably among pools and over time (3%, range = 0–20%). Absolute and proportional amounts varied by input type. 4. Aquatic predators can strongly affect the magnitude of active, but not passive, inputs and that the effect of recipient habitat quality on active inputs is variable. Furthermore, some active inputs (i.e. aquatic insect colonists) can provide similar amounts of energy and organic matter as passive inputs of terrestrial plant matter, which are well known to be important. Because inputs differ in quality and the trophic level they subsidise, proportional changes in input type could have

  4. High-order sliding mode observer for fractional commensurate linear systems with unknown input

    KAUST Repository

    Belkhatir, Zehor

    2017-05-20

    In this paper, a high-order sliding mode observer (HOSMO) is proposed for the joint estimation of the pseudo-state and the unknown input of fractional commensurate linear systems with single unknown input and a single output. The convergence of the proposed observer is proved using a Lyapunov-based approach. In addition, an enhanced variant of the proposed fractional-HOSMO is introduced to avoid the peaking phenomenon and thus to improve the estimation results in the transient phase. Simulation results are provided to illustrate the performance of the proposed fractional observer in both noise-free and noisy cases. The effect of the observer’s gains on the estimated pseudo-state and unknown input is also discussed.

  5. Impact of wildfire on stream nutrient chemistry and ecosystem metabolism in boreal forest catchments of interior Alaska

    Science.gov (United States)

    Emma F. Betts; Jeremy B. Jones

    2009-01-01

    With climatic warming, wildfire occurrence is increasing in the boreal forest of interior Alaska. Loss of catchment vegetation during fire can impact streams directly through altered solute and debris inputs and changed light and temperature regimes. Over longer time scales, fire can accelerate permafrost degradation, altering catchment hydrology and stream nutrient...

  6. Flexible input, dazzling output with IBM i

    CERN Document Server

    Victória-Pereira, Rafael

    2014-01-01

    Link your IBM i system to the modern business server world! This book presents easier and more flexible ways to get data into your IBM i system, along with rather surprising methods to export and present the vital business data it contains. You'll learn how to automate file transfers, seamlessly connect PC applications with your RPG programs, and much more. Input operations will become more flexible and user-proof, with self-correcting import processes and direct file transfers that require a minimum of user intervention. Also learn novel ways to present information: your DB2 data will look gr

  7. Sensitivity Analysis of Selected DIVOPS Input Factors

    Science.gov (United States)

    1977-12-01

    v40. .............. o..... ....... H-3 viii CAA- TD -77-9 SENSITIVITY ANALYSIS OF SELECTED DIVOPS INPUT FACTORS CHAPTER 1 INTRODUCTION 1-1. BACKGROUND...u UI 3,743 3,79 3,183 3.790 3,709 J.648 U 1 3,793 J.791 4,74b D 3.703 3.700 3.733 i 3,14U 3,147 3,844 3,0442 3.753 3.751 U 3,406 3,b70 J, IZ4 Jlbd J

  8. Shaped input distributions for structural damage localization

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Bernal, Dionisio; Damkilde, Lars

    2018-01-01

    localization method is cast, which operates on the premise of shaping inputs—whose spatial distribution is fixed—by use of a theoretical model such that these inputs, in one structural subdomain at the time, suppress certain steady-state vibration quantities (depending on the type of damage one seeks...... patterns, which results in a system identification-free procedure whose primary merits, besides avoiding the typical bottleneck of system identification, include a low demand on output sensors, robustness towards noise, and conceptual simplicity. The applicability of the method is verified in the context...

  9. ADAPTIVE SUBOPTIMAL CONTROL OF INPUT CONSTRAINED PLANTS

    Directory of Open Access Journals (Sweden)

    Valerii Azarskov

    2011-03-01

    Full Text Available Abstract. This paper deals with adaptive regulation of a discrete-time linear time-invariant plant witharbitrary bounded disturbances whose control input is constrained to lie within certain limits. The adaptivecontrol algorithm exploits the one-step-ahead control strategy and the gradient projection type estimationprocedure using the modified dead zone. The convergence property of the estimation algorithm is shown tobe ensured. The sufficient conditions guaranteeing the global asymptotical stability and simultaneously thesuboptimality of the closed-loop systems are derived. Numerical examples and simulations are presented tosupport the theoretical results.

  10. Long term continuous field survey to assess nutrient emission impact from irrigated paddy field into river catchment

    Science.gov (United States)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2017-04-01

    In order to achieve good river environment, it is very important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. As we could reduce impact from urban and industrial activities by wastewater treatment, pollution from point sources are likely to be controlled. Besides them, nutrient emission from agricultural activity is dominant pollution source into the river system. In many countries in Asia and Africa, rice is widely cultivated and paddy field covers large areas. In Japan 54% of its arable land is occupied with irrigated paddy field. While paddy field can deteriorate river water quality due to fertilization, it is also suggested that paddy field can purify water. We carried out field survey in middle reach of the Tone River Basin with focus on a paddy field IM. The objectives of the research are 1) understanding of water and nutrient balance in paddy field, 2) data collection for assessing nutrient emission. Field survey was conducted from June 2015 to October 2016 covering two flooding seasons in summer. In our measurement, all input and output were measured regarding water, N and P to quantify water and nutrient balance in the paddy field. By measuring water quality and flow rate of inflow, outflow, infiltrating water, ground water and flooding water, we tried to quantitatively understand water, N and P cycle in a paddy field including seasonal trends, and changes accompanied with rainy events and agricultural activities like fertilization. Concerning water balance, infiltration rate was estimated by following equation. Infiltration=Irrigation water + Precipitation - Evapotranspiration -Outflow We estimated mean daily water balance during flooding season. Infiltration is 11.9mm/day in our estimation for summer in 2015. Daily water reduction depth (WRD) is sum of Evapotranspiration and Infiltration. WRD is 21.5mm/day in IM and agrees with average value in previous research. Regarding nutrient balance, we estimated an annual N and

  11. Dual-Input Isolated Full-Bridge Boost DC-DC Converter Based on the Distributed Transformers

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2012-01-01

    In this paper, a new two-input isolated boost dc-dc converter based on a distributed multi-transformer structure which is suitable for hybrid renewable energy systems is investigated and designed. With a novel transformer winding-connecting strategy, the two input ports can be decoupled completely...... and the single-input mode, respectively. The main advantage of the proposed topology is that the four transformers and the secondary rectifiers are fully utilized whether the converter is connected with two input power sources or only one input. Although the four transformers are employed, the nominal powers...... of each transformer and rectifier are both reduced by four times. Furthermore, some special issues on converter design, such as increasing number of the input ports, the magnetic integration and the ground loop decoupling are discussed. A 2 kW prototype was built and tested. Experiments on the converter...

  12. Resuspension and estuarine nutrient cycling: insights from the Neuse River Estuary

    Directory of Open Access Journals (Sweden)

    D. R. Corbett

    2010-10-01

    Full Text Available For at least the past several decades, North Carolina's Neuse River Estuary (NRE has been subject to water quality problems relating to increased eutrophication. Research initiated in the past several years have addressed the nutrient processes of the water column and the passive diffusion processes of the benthic sedimentary environment. Resuspension of bottom sediments, by bioturbation, tides, or winds, may also have a significant effect on the flux of nutrients in an estuarine system These processes can result in the advective transport of sediment porewater, rich with nitrogen, phosphorus and carbon, into the water column. Thus, estimates of nutrient and carbon inputs from the sediments may be too low.

    This study focused on the potential change in bottom water nutrient concentrations associated with measured resuspension events. Previous research used short-lived radionuclides and meteorological data to characterize the sediment dynamics of the benthic system of the estuary. These techniques in conjunction with the presented porewater inventories allowed evaluation of the depth to which sediments have been disturbed and the advective flux of nutrients to the water column. The largest removal episode occurred in the lower NRE as the result of a wind event and was estimated that the top 2.2 cm of sediment and corresponding porewater were removed. NH4+ advective flux (resuspended was 2 to 6 times greater than simply diffusion. Phosphate fluxes were estimated to be 15 times greater than the benthic diffusive flux. Bottom water conditions with elevated NH4+ and PO43− indicate that nutrients stored in the sediments continue to play an important role in overall water quality and this study suggests that the advective flux of nutrients to the water column is critical to understand estuarine nutrient cycling.

  13. Energy and nutrient deposition and excretion in the reproducing sow: model development and evaluation

    DEFF Research Database (Denmark)

    Hansen, A V; Strathe, A B; Theil, Peter Kappel

    2014-01-01

    was related to predictions of body fat and protein loss from the lactation model. Nitrogen intake, urine N, fecal N, and milk N were predicted with RMSPE as percentage of observed mean of 9.7, 17.9, 10.0, and 7.7%, respectively. The model provided a framework, but more refinements and improvements in accuracy......Air and nutrient emissions from swine operations raise environmental concerns. During the reproduction phase, sows consume and excrete large quantities of nutrients. The objective of this study was to develop a mathematical model to describe energy and nutrient partitioning and predict manure...... excretion and composition and methane emissions on a daily basis. The model was structured to contain gestation and lactation modules, which can be run separately or sequentially, with outputs from the gestation module used as inputs to the lactation module. In the gestating module, energy and protein...

  14. The implications of phasing out conventional nutrient supply in organic agriculture

    DEFF Research Database (Denmark)

    Oelofse, Myles; Jensen, Lars Stoumann; Magid, Jakob

    2013-01-01

    Soil fertility management in organic systems, regulated by the organic standards, should seek to build healthy, fertile soils and reduce reliance on external inputs. The use of nutrients from conventional sources, such as animal manures from conventional farms, is currently permitted......, with restrictions, in the organic regulations. However, the reliance of organic agriculture on the conventional system is considered problematic. In light of this, the organic sector in Denmark has recently decided to gradually phase out, and ultimately ban, the use of conventional manures and straws in organic...... agriculture in Denmark. Core focal areas for phasing out conventional nutrients are as follows: (1) amendments to crop selection and rotations, (2) alternative nutrient sources (organic wastes) and (3) increased cooperation between organic livestock and arable farmers. Using Denmark as a case, this article...

  15. How much nutrients could biochar-related positive priming effect provide to crops?

    Science.gov (United States)

    Abiven, Samuel

    2017-04-01

    From a carbon mass balance perspective, positive priming effect is usually seen as a counter balancing effect of the global change mitigation potential of biochar. However, the decomposition of the native organic matter due to the inputs of another source of carbon can be also seen as a possible source of nutrients for the crop on the short scale. The direction of priming effect reported in several recent publications, i.e. positive during the first months / years, and then negative on the longer term, indicate that this nutrient mining may be an aspect to look at when it comes to crop yield improvement effect due to biochar. In this presentation, I will review the existing knowledge about this nutrient priming effect and try to quantify it importance.

  16. NUTRIENT UPTAKE: A Microcomputer Program to Predict Nutrient Absorption from Soil by Roots.

    Science.gov (United States)

    Oates, Kenneth; Barber, S. A.

    1987-01-01

    Discusses the use of a computer program designed to solve the mathematical model associated with soil nutrient uptake by plant roots and to predict the nutrient uptake. Describes a user-friendly personal computer version of this program. (TW)

  17. DC-DC converter with a wide load range and a wide input-voltage range

    NARCIS (Netherlands)

    Ting, Y.

    2015-01-01

    This thesis investigated the possibility of increasing the efficiency of a DC-DC converter over a wide load range and a wide input-voltage range based on the Single Active Bridge (SAB) topology with two approaches. The first approach involved making changes to the topology whereas the second made

  18. Comparison of plasma input and reference tissue models for analysing [(11)C]flumazenil studies

    NARCIS (Netherlands)

    Klumpers, Ursula M. H.; Veltman, Dick J.; Boellaard, Ronald; Comans, Emile F.; Zuketto, Cassandra; Yaqub, Maqsood; Mourik, Jurgen E. M.; Lubberink, Mark; Hoogendijk, Witte J. G.; Lammertsma, Adriaan A.

    2008-01-01

    A single-tissue compartment model with plasma input is the established method for analysing [(11)C]flumazenil ([(11)C]FMZ) studies. However, arterial cannulation and measurement of metabolites are time-consuming. Therefore, a reference tissue approach is appealing, but this approach has not been

  19. Improving the Performance of Water Demand Forecasting Models by Using Weather Input

    NARCIS (Netherlands)

    Bakker, M.; Van Duist, H.; Van Schagen, K.; Vreeburg, J.; Rietveld, L.

    2014-01-01

    Literature shows that water demand forecasting models which use water demand as single input, are capable of generating a fairly accurate forecast. However, at changing weather conditions the forecasting errors are quite large. In this paper three different forecasting models are studied: an

  20. Identifying priorities for nutrient mitigation using river concentration-flow relationships: the Thames basin, UK

    OpenAIRE

    Bowes, Michael J.; Jarvie, Helen P.; Naden, Pamela S.; Old, Gareth H.; Scarlett, Peter M.; Roberts, Colin; Armstrong, Linda K.; Harman, Sarah A.; Wickham, Heather D.; Collins, Adrian L.

    2014-01-01

    The introduction of tertiary treatment to many of the sewage treatment works (STW) across the Thames basin in southern England has resulted in major reductions in river phosphorus (P) concentrations. Despite this, excessive phytoplankton growth is still a problem in the River Thames and many of its tributaries. There is an urgent need to determine if future resources should focus on P removal from the remaining STW, or on reducing agricultural inputs, to improve ecological status. Nutrient...

  1. Regulatory and practical challenges in controlling trace element inputs from land application of CFB ash

    Energy Technology Data Exchange (ETDEWEB)

    Hope-Simpson, M.; Goodyear, N. [Nova Scotia Agricultural College, Truro, NS (Canada)

    2001-07-01

    A study was conducted at the Point Aconi Generating Station in Cape Breton to evaluate the use of circulating fluidized bed (CFB) ash as an agricultural soil amendment. CFB ash is the alkaline by-product of an advanced coal combustion method that makes it possible for power plants to burn low grade fuels while achieving 90 per cent sulphur capture. At Point Aconi, more than 100,000 tonnes of residue are generated annually. The ash remains largely landfilled and represents the largest single source of industrial by-product in Nova Scotia. This study was conducted to improve the use of this by-product which has a pH of more than 12. The two objectives of the study were to determine the feasibility of using the ash as an agricultural liming agent, and to assess the potential for elemental toxicities in soils and crops resulting from the use of CFB ash to soils. Three years of field trials involving the use of CFB ash to cabbage, rutabaga, forage crops and turfgrass were conducted. Laboratory studies also determined soil pH and levels of nutrients in soils and crops. Twenty three elements in the ash were also determined. The regulatory framework regarding the commercialization and use of inorganic by-products as liming agents in Canada was also analyzed. The use of CFB residues has been evaluated for more than 20 years in the United States but Canada may have unique conditions involving fuel sources for CFB combustion, regulatory requirements, climate, soils, plus an agricultural industry that changes from province to province. Also, not much research has devoted to the potential risk to the food chain posed by trace elements present in the more alkaline CFB residues. The study showed that CFB ash was an effective liming agent with no significant adverse effects on crop quality or excessive soil loading of metals. It was concluded that ash is an acceptable liming agent for both food and non-food crops. The ash used in this study was high in As, Ba, Fe, Mn, Mo, Pb, Sr

  2. Nutrient Models Developments Using Runoff-Nutrient Relationships in an Agricultural Prairie Basin, Manitoba.

    Science.gov (United States)

    Mahmood, T. H.; Pomeroy, J. W.; Wheater, H. S.; Elliott, J. A.; Baulch, H. M.; Lindenschmidt, K. E.

    2015-12-01

    Nutrient export to streams and lakes from agricultural activities can result in significant deterioration of water quality and aquatic ecosystem health. In Western Canada, particular concerns arise for prairie agricultural systems, which are dominated by the effects of a cold climate. Insufficient attention has been given to understand the links between cold region watershed responses and nutrient concentration and a robust watershed-scale modeling framework is needed to simulate nutrient concentration and loads. Long-term, field observations of nutrient concentration-runoff relationships were used to develop nutrient concentration models for the Tobacco Creek Model Watershed (TCMW) which drains into the Red River basin. Field observations include streamflow concentrations of N and P at multiple scales from two headwater basins. Distinct nutrient concentration-runoff models for snowmelt, rain on snow (ROS) and rainfall runoff processes were developed from observed runoff-nutrient concentration relationships. Snowmelt runoff had a moderately positive correlation with particulate nutrient concentrations but no correlation with that of dissolved nutrients. ROS runoff had a weak relationship with both particulate and dissolved nutrient concentrations. Rainfall runoff had the strongest positive correlation with particulate nutrient concentrations but no association with that of dissolved nutrients. The modeling approach also identified a clear hysteretic behavior in the relationship between runoff and particulate nutrient concentration during the 2013 snowmelt runoff event at the basin outlet gauge. The models provide insight into the hydrological controls on nutrient export from cold regions watersheds and the strong effects of inter-annual climatic variability. Snowmelt runoff is a reliable exporter of large nutrient loads while nutrient export by rainfall runoff exceeded snowmelt runoff during hydrologically wet summers such as 2002, 2005, 2011 and 2013.

  3. Modality of Input and Vocabulary Acquisition

    Directory of Open Access Journals (Sweden)

    Tetyana Sydorenko

    2010-06-01

    Full Text Available This study examines the effect of input modality (video, audio, and captions, i.e., on-screen text in the same language as audio on (a the learning of written and aural word forms, (b overall vocabulary gains, (c attention to input, and (d vocabulary learning strategies of beginning L2 learners. Twenty-six second-semester learners of Russian participated in this study. Group one (N = 8 saw video with audio and captions (VAC; group two (N = 9 saw video with audio (VA; group three (N = 9 saw video with captions (VC. All participants completed written and aural vocabulary tests and a final questionnaire.The results indicate that groups with captions (VAC and VC scored higher on written than on aural recognition of word forms, while the reverse applied to the VA group. The VAC group learned more word meanings than the VA group. Results from the questionnaire suggest that learners paid most attention to captions, followed by video and audio, and acquired most words by associating them with visual images. Pedagogical implications of this study are that captioned video tends to aid recognition of written word forms and the learning of word meaning, while non-captioned video tends to improve listening comprehension as it facilitates recognition of aural word forms.

  4. Radionuclides in the oceans inputs and inventories

    International Nuclear Information System (INIS)

    Guegueniat, P.; Germain, P.; Metivier, H.

    1996-01-01

    Ten years after Chernobyl, following the decision by France to end nuclear weapon testing in the Pacific ocean, after the end of the OECD-NEA Coordinated Research and Environmental Surveillance programme related to low-level waste dumping in the deep ocean, and one hundred years after the discovery of radioactivity, the IPSN wanted to compile and review the available information on artificial radioactivity levels in seas and oceans. International experts have been invited to present data on inputs and inventories of radionuclides in the marine environment, and to describe the evolution of radioactivity levels in water, sediments and living organisms. Different sources of radionuclides present in the aquatic environment are described: atmospheric fallout before and after Chernobyl, industrial wastes, dumped wastes and ships, nuclear ship accidents, river inputs, earth-sea atmospheric transfers and experimental sites for nuclear testing. Radioactivity levels due to these sources are dealt with at ocean (Atlantic, Pacific and Indian) and sea level (Channel, North Sea, Irish Sea, Mediterranean, Baltic, Black Sea and Arctic seas). These data collected in the present book give an up-to-date assessment of radionuclide distributions which will be very useful to address scientific and wider public concerns about radionuclides found in the aquatic environment. It gives many references useful to those who want to deepen their understanding of particular aspects of marine radioecology. (authors)

  5. [Prosody, speech input and language acquisition].

    Science.gov (United States)

    Jungheim, M; Miller, S; Kühn, D; Ptok, M

    2014-04-01

    In order to acquire language, children require speech input. The prosody of the speech input plays an important role. In most cultures adults modify their code when communicating with children. Compared to normal speech this code differs especially with regard to prosody. For this review a selective literature search in PubMed and Scopus was performed. Prosodic characteristics are a key feature of spoken language. By analysing prosodic features, children gain knowledge about underlying grammatical structures. Child-directed speech (CDS) is modified in a way that meaningful sequences are highlighted acoustically so that important information can be extracted from the continuous speech flow more easily. CDS is said to enhance the representation of linguistic signs. Taking into consideration what has previously been described in the literature regarding the perception of suprasegmentals, CDS seems to be able to support language acquisition due to the correspondence of prosodic and syntactic units. However, no findings have been reported, stating that the linguistically reduced CDS could hinder first language acquisition.

  6. Optimization of input-constrained systems

    Science.gov (United States)

    Malki, Suleyman; Spaanenburg, Lambert

    2009-05-01

    The computational demands of algorithms are rapidly growing. The naive implementation uses extended doubleprecision floating-point numbers and has therefore extreme difficulties in maintaining real-time performance. For fixedpoint numbers, the value representation pushes in two directions (value range and step size) to set the applicationdependent word size. In the general case, checking all combinations of all different values on all system inputs will easily become computationally infeasible. Checking corner cases only helps to reduce the combinatorial explosion, as still checking for accuracy and precision to limit word size remains a considerable effort. A range of evolutionary techniques have been tried where the sheer size of the problem withstands an extensive search. When the value range can be limited, the problem becomes tractable and a constructive approach becomes feasible. We propose an approach that is reminiscent of the Quine-Mc.Cluskey logic minimization procedure. Next to the conjunctive search as popular in Boolean minimization, we investigate the disjunctive approach that starts from a presumed minimal word size. To eliminate the occurrence of anomalies, this still has to be checked for larger word sizes. The procedure has initially been implemented using Java and Matlab. We have applied the above procedure to feed-forward and to cellular neural networks (CNN) as typical examples of input-constrained systems. In the case of hole-filling by means of a CNN, we find that the 1461 different coefficient sets can be reduced to 360, each giving robust behaviour on 7-bits internal words.

  7. Cometary micrometeorites and input of prebiotic compounds

    Directory of Open Access Journals (Sweden)

    Engrand C.

    2014-02-01

    Full Text Available The apparition of life on the early Earth was probably favored by inputs of extraterrestrial matter brought by carbonaceous chondrite-like objects or cometary material. Interplanetary dust collected nowadays on Earth is related to carbonaceous chondrites and to cometary material. They contain in particular at least a few percent of organic matter, organic compounds (amino-acids, PAHs,…, hydrous silicates, and could have largely contributed to the budget of prebiotic matter on Earth, about 4 Ga ago. A new population of cometary dust was recently discovered in the Concordia Antarctic micrometeorite collection. These “Ultracarbonaceous Antarctic Micrometeorites” (UCAMMs are dominated by deuterium-rich and nitrogen-rich organic matter. They seem related to the “CHON” grains identified in the comet Halley in 1986. Although rare in the micrometeorites flux (<5% of the micrometeorites, UCAMMs could have significantly contributed to the input of prebiotic matter. Their content in soluble organic matter is currently under study.

  8. FLUTAN 2.0. Input specifications

    International Nuclear Information System (INIS)

    Willerding, G.; Baumann, W.

    1996-05-01

    FLUTAN is a highly vectorized computer code for 3D fluiddynamic and thermal-hydraulic analyses in Cartesian or cylinder coordinates. It is related to the family of COMMIX codes originally developed at Argonne National Laboratory, USA, and particularly to COMMIX-1A and COMMIX-1B, which were made available to FZK in the frame of cooperation contracts within the fast reactor safety field. FLUTAN 2.0 is an improved version of the FLUTAN code released in 1992. It offers some additional innovations, e.g. the QUICK-LECUSSO-FRAM techniques for reducing numerical diffusion in the k-ε turbulence model equations; a higher sophisticated wall model for specifying a mass flow outside the surface walls together with its flow path and its associated inlet and outlet flow temperatures; and a revised and upgraded pressure boundary condition to fully include the outlet cells in the solution process of the conservation equations. Last but not least, a so-called visualization option based on VISART standards has been provided. This report contains detailed input instructions, presents formulations of the various model options, and explains how to use the code by means of comprehensive sample input. (orig.) [de

  9. FED, Geometry Input Generator for Program TRUMP

    International Nuclear Information System (INIS)

    Schauer, D.A.; Elrod, D.C.

    1996-01-01

    1 - Description of program or function: FED reduces the effort required to obtain the necessary geometric input for problems which are to be solved using the heat-transfer code, TRUMP (NESC 771). TRUMP calculates transient and steady-state temperature distributions in multidimensional systems. FED can properly zone any body of revolution in one, or three dimensions. 2 - Method of solution: The region of interest must first be divided into areas which may consist of a common material. The boundaries of these areas are the required FED input. Each area is subdivided into volume nodes, and the geometrical properties are calculated. Finally, FED connects the adjacent nodes to one another, using the proper surface area, interface distance, and, if specified, radiation form factor and interface conductance. 3 - Restrictions on the complexity of the problem: Rectangular bodies can only be approximated by using a very large radius of revolution compared to the total radial thickness and by considering only a small angular segment in the circumferential direction

  10. Ground motion input in seismic evaluation studies

    International Nuclear Information System (INIS)

    Sewell, R.T.; Wu, S.C.

    1996-07-01

    This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants

  11. Annual litterfall dynamics and nutrient deposition depending on elevation and land use at Mt. Kilimanjaro

    Science.gov (United States)

    Becker, J.; Pabst, H.; Mnyonga, J.; Kuzyakov, Y.

    2015-10-01

    Litterfall is one of the major pathways connecting above- and below-ground processes. The effects of climate and land-use change on carbon (C) and nutrient inputs by litterfall are poorly known. We quantified and analyzed annual patterns of C and nutrient deposition via litterfall in natural forests and agroforestry systems along the unique elevation gradient of Mt. Kilimanjaro. Tree litter in three natural (lower montane, Ocotea and Podocarpus forests), two sustainably used (homegardens) and one intensively managed (shaded coffee plantation) ecosystems was collected on a biweekly basis from May 2012 to July 2013. Leaves, branches and remaining residues were separated and analyzed for C and nutrient contents. The annual pattern of litterfall was closely related to rainfall seasonality, exhibiting a large peak towards the end of the dry season (August-October). This peak decreased at higher elevations with decreasing rainfall seasonality. Macronutrients (N, P, K) in leaf litter increased at mid elevation (2100 m a.s.l.) and with land-use intensity. Carbon content and micronutrients (Al, Fe, Mn, Na) however, were unaffected or decreased with land-use intensity. While leaf litterfall decreased with elevation, total annual input was independent of climate. Compared to natural forests, the nutrient cycles in agroforestry ecosystems were accelerated by fertilization and the associated changes in dominant tree species.

  12. Irrigation and weed control alter soil microbiology and nutrient availability in North Carolina Sandhill peach orchards.

    Science.gov (United States)

    Zhang, Yi; Wang, Liangju; Yuan, Yongge; Xu, Jing; Tu, Cong; Fisk, Connie; Zhang, Weijian; Chen, Xin; Ritchie, David; Hu, Shuijin

    2018-02-15

    Orchard management practices such as weed control and irrigation are primarily aimed at maximizing fruit yields and economic profits. However, the impact of these practices on soil fertility and soil microbiology is often overlooked. We conducted a two-factor experimental manipulation of weed control by herbicide and trickle irrigation in a nutrient-poor peach (Prunus persica L. cv. Contender) orchard near Jackson Springs, North Carolina. After three and eight years of treatments, an array of soil fertility parameters were examined, including soil pH, soil N, P and cation nutrients, microbial biomass and respiration, N mineralization, and presence of arbuscular mycorrhizal fungi (AMF). Three general trends emerged: 1) irrigation significantly increased soil microbial biomass and activity, 2) infection rate of mycorrhizal fungi within roots were significantly higher under irrigation than non-irrigation treatments, but no significant difference in the AMF community composition was detected among treatments, 3) weed control through herbicides reduced soil organic matter, microbial biomass and activity, and mineral nutrients, but had no significant impacts on root mycorrhizal infection and AMF communities. Weed-control treatments directly decreased availability of soil nutrients in year 8, especially soil extractable inorganic N. Weed control also appears to have altered the soil nutrients via changes in soil microbes and altered net N mineralization via changes in soil microbial biomass and activity. These results indicate that long-term weed control using herbicides reduces soil fertility through reducing organic C inputs, nutrient retention and soil microbes. Together, these findings highlight the need for alternative practices such as winter legume cover cropping that maintain and/or enhance organic inputs to sustain the soil fertility. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. From salmon to shad: Shifting sources of marine-derived nutrients in the Columbia River Basin

    Science.gov (United States)

    Haskell, Craig A.

    2018-01-01

    Like Pacific salmon (Oncorhynchus spp.), nonnative American shad (Alosa sapidissima) have the potential to convey large quantities of nutrients between the Pacific Ocean and freshwater spawning areas in the Columbia River Basin (CRB). American shad are now the most numerous anadromous fish in the CRB, yet the magnitude of the resulting nutrient flux owing to the shift from salmon to shad is unknown. Nutrient flux models revealed that American shad conveyed over 15,000 kg of nitrogen (N) and 3,000 kg of phosphorus (P) annually to John Day Reservoir, the largest mainstem reservoir in the lower Columbia River. Shad were net importers of N, with juveniles and postspawners exporting just 31% of the N imported by adults. Shad were usually net importers of P, with juveniles and postspawners exporting 46% of the P imported by adults on average. American shad contributed <0.2% of the total annual P load into John Day Reservoir, but during June when most adult shad are migrating into John Day Reservoir, they contributed as much as 2.0% of the P load. Nutrient inputs by American shad were similar to current but far less than historical inputs of Pacific salmon owing to their smaller size. Given the relatively high background P levels and low retention times in lower Columbia River reservoirs, it is unlikely that shad marine-derived nutrients affect nutrient balances or food web productivity through autotrophic pathways. However, a better understanding of shad spawning aggregations in the CRB is needed.

  14. Microbial enzyme activity, nutrient uptake and nutrient limitation in forested streams

    Science.gov (United States)

    Brian H. Hill; Frank H. McCormick; Bret C. Harvey; Sherri L. Johnson; Melvin L. Warren; Colleen M. Elonen

    2010-01-01

    The flow of organic matter and nutrients from catchments into the streams draining them and the biogeochemical transformations of organic matter and nutrients along flow paths are fundamental processes instreams (Hynes,1975; Fisher, Sponseller & Heffernan, 2004). Microbial biofilms are often the primary interface for organic matter and nutrient uptake and...

  15. A comparative assessment of nutrients and anti-nutrients contents of ...

    African Journals Online (AJOL)

    There is limited information on nutrients composition of Nigerian foods. As a result, nutrients intake from Nigerian foods is in most cases estimated using foreign food composition tables. This research determined and compared proximate composition, minerals and anti-nutrients in pre- boiled fried New and old White Yam ...

  16. Content of some anti-nutrients and nutrients in some new plant ...

    African Journals Online (AJOL)

    Eight edible plant foods have been analyzed in order to detect differences in nutritional quality, considering the balance between nutrients and anti-nutrient compounds present in each. The most important nutrients studied in this paper were: water, starch, free sugars, such as glucose, fructose and sucrose.

  17. Nutrient management of blueberry – Assessing plant nutrient needs and designing good fertilizer programs

    Science.gov (United States)

    In this article and presentation, we will address recommended soil nutrient levels for making pre-planting decisions, starting rates of key nutrients to apply, how to assess plant nutrient status to modify fertilizer programs, timing and source of fertilizer to apply, and fertigation. Key questions ...

  18. Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea.

    Science.gov (United States)

    Rodellas, Valentí; Garcia-Orellana, Jordi; Masqué, Pere; Feldman, Mor; Weinstein, Yishai

    2015-03-31

    The Mediterranean Sea (MS) is a semienclosed basin that is considered one of the most oligotrophic seas in the world. In such an environment, inputs of allochthonous nutrients and micronutrients play an important role in sustaining primary productivity. Atmospheric deposition and riverine runoff have been traditionally considered the main external sources of nutrients to the MS, whereas the role of submarine groundwater discharge (SGD) has been largely ignored. However, given the large Mediterranean shore length relative to its surface area, SGD may be a major conveyor of dissolved compounds to the MS. Here, we used a (228)Ra mass balance to demonstrate that the total SGD contributes up to (0.3-4.8)⋅10(12) m(3) ⋅ y(-1) to the MS, which appears to be equal or larger by a factor of 16 to the riverine discharge. SGD is also a major source of dissolved inorganic nutrients to the MS, with median annual fluxes of 190⋅10(9), 0.7⋅10(9), and 110⋅10(9) mol for nitrogen, phosphorous, and silica, respectively, which are comparable to riverine and atmospheric inputs. This corroborates the profound implications that SGD may have for the biogeochemical cycles of the MS. Inputs of other dissolved compounds (e.g., iron, carbon) via SGD could also be significant and should be investigated.

  19. Modeling spring-summer phytoplankton bloom in Lake Michigan with and without riverine nutrient loading

    Science.gov (United States)

    Luo, Lin; Wang, Jia; Hunter, Timothy; Wang, Dongxiao; Vanderploeg, Henry A.

    2017-11-01

    There were two phytoplankton blooms captured by remote sensing in Lake Michigan in 1998, one from March to May, and one during June. In this paper, those phytoplankton blooms were simulated by a coupled physical-biological model, driven by observed meteorological forcing in 1998. The model reasonably reproduced the lake currents. The biological model results, with and without riverine nutrient loading, were compared with the remote sensing data. A 3-month-long donut-like phytoplankton bloom that appeared in southern Lake Michigan was reasonably well simulated only when riverine input was included, indicating the importance of riverine nutrient input for supporting the growth of phytoplankton in Lake Michigan. The model with riverine input also captured a second event-driven phytoplankton bloom during June with weaker magnitude that occurred in mid-south Lake Michigan, which lasted for about 20 days. The major reason for the weaker bloom in June was that vertical mixing in the hydrodynamic model was too weak (leading to a mixed-layer depth of 20 m) to bring the bottom nutrient-rich water up to the epilimnion. High chlorophyll concentration that persisted in Green Bay for almost a year was simulated with less intensity.

  20. Do rivermouths alter nutrient and seston delivery to the nearshore?

    Science.gov (United States)

    Larson, James H.; Frost, Paul C.; Vallazza, Jon M.; Nelson, John; Richardson, William B.

    2016-01-01

    Tributary inputs to lakes and seas are often measured at riverine gages, upstream of lentic influence. Between these riverine gages and the nearshore zones of large waterbodies lie rivermouths, which may retain, transform and contribute materials to the nearshore zone. However, the magnitude and timing of these rivermouth effects have rarely been measured.During the summer of 2011, 23 tributary systems of the Laurentian Great Lakes were sampled from river to nearshore for dissolved and particulate carbon (C), nitrogen (N) and phosphorus (P) concentrations, as well as bulk seston and chlorophyll a concentrations. Three locations per system were sampled: in the upstream river, in the nearshore zone and at the outflow from the rivermouth to the lake. Using stable oxygen isotopes, a water-mixing model was developed to estimate the nutrient concentration that would occur at the rivermouth if mixing was strictly conservative (i.e. if no processing occurred within the rivermouth). Deviations between these conservative mixing estimates and measured nutrient concentrations were identified as rivermouth effects on nutrient concentrations.Rivermouths had higher concentration of C and P than nearshore areas and more chlorophyll athan upstream river waters. Compared to the conservative mixing model, rivermouths as a class appeared to be summer-time sources of N, P and chlorophyll a. Substantial among rivermouth variation occurred both in the effect size and direction for all constituents.Using principal component analysis, two groups of rivermouths were identified: rivermouths that had a large effect on most constituents and those that had very little effect on any of the measured constituents. ‘High-effect’ rivermouths had more abundant upstream croplands, which were presumably the sources of inorganic nutrients. Cross-validated models built using characteristics of the rivermouth were not good predictors of variation in rivermouth effects on most constituents

  1. Historical changes in organic matter input to the muddy sediments along the Zhejiang-Fujian Coast, China over the past 160 years

    Science.gov (United States)

    Chen, Li-lei; Liu, Jian; Xing, Lei; Krauss, Ken W.; Wang, Jia-sheng; Xu, Gang; Li, Li

    2017-01-01

    The burial of sedimentary organic matter (SOM) in the large river-influenced estuarine-coastal regions is affected by hydrodynamic sorting, diagenesis and human activities. Typically, the inner shelf region of the East China Sea is a major carbon sink of the Yangtze River-derived fine-grained sediments. Most of the previous work concentrated on the studies of surface sediments or used a single-proxy in this region. In this study, two cores from the Zhejiang-Fujian Coast were analyzed using bulk (TOC, TN and δ13CTOC) and molecular biomarker (n-alkane, brassicasterol, dinosterol and glycerol dialkyl glycerol tetraether lipids) techniques to clarify the sources, spatiotemporal distribution and fate of SOM in the Yangtze River Estuary and adjacent shelf. Results from this study indicated that the effects of diagenesis and diffusion on different sedimentary biomarkers resulted in overestimation of the relative contribution of terrestrial organic matter (%OMterr), compared with those based on δ13CTOC. The amounts of terrestrial plant organic matter (OMplant) and%OMterr in sediments decreased offshore. In contrast, the amounts of marine organic matter (OMmarine) increased offshore, but closer to the Yangtze River mouth, the amounts of soil organic matter (OMsoil) increased. Moreover, the amounts of TOC, OMplant and OMmarine biomarkers increased, but OMsoil and%OMterrdecreased over time in recent decades. Our study suggests that spatial organic matter distribution patterns in marine shelf sediments were controlled primarily by hydrodynamic sorting and nutrient concentrations, and temporally diverse patterns were controlled predominantly by anthropogenic influence (e.g., dam construction and soil conservation, reclamation and agricultural plantations, anthropogenic nutrient input, dust storms, eutrophication, etc) and climate events (e.g., interdecadal climatic jump and heavy rain events) in the geological period.

  2. Water-quality assessment of the Albermarle-Pamlico drainage basin, North Carolina and Virginia; a summary of selected trace element, nutrient, and pesticide data for bed sediments, 1969-90

    Science.gov (United States)

    Skrobialowski, S.C.

    1996-01-01

    Spatial distributions of metals and trace elements, nutrients, and pesticides and polychiorinated biphenyls (PCB's) in bed sediment were characterized using data collected from 1969 through 1990 and stored in the U.S. Geological Survey's National Water Data Storage and Retrieval (WATSTORE) system and the U.S. Environmental Protection Agency's Storage and Retrieval (STORET) system databases. Bed-sediment data from WATSTORE and STORET were combined to form a single database of 1,049 records representing 301 sites. Data were examined for concentrations of 16 metals and trace elements, 4 nutrients, 10 pesticides, and PCB's. Maximum bed-sediment concentrations were evaluated relative to sediment-quality guidelines developed by the National Oceanic and Atmospheric Administration, the Ontario Ministry of Environment and Energy, and the Virginia Department of Environmental Quality. Sites were not selected randomly; therefore, results should not be interpreted as representing average conditions. Many sites were located in or around lakes and reservoirs, urban areas, and areas where special investigations were conducted. Lakes and reservoirs function as effective sediment traps, and elevated concentrations of some constituents occurred at these sites. High concentrations of many metals and trace elements also occurred near urban areas where streams receive runoff or inputs from industrial, residential, and municipal activities. Elevated nutrient concentrations occurred near lakes, reservoirs, and the mouths of major rivers. The highest concentrations of arsenic, beryllium, chromium, iron. mercury, nickel, and selenium occurred in the Roanoke River Basin and may be a result of geologic formations or accumulations of bed sediment in lakes and reservoirs. The highest concentrations of cadmium, lead, and thallium were detected in the Chowan River Basin; copper and zinc were reported highest in the Neuse River Basin. Total phosphorus and total ammonia plus organic nitrogen

  3. Stakeholder co-development of farm level nutrient management software

    Science.gov (United States)

    Buckley, Cathal; Mechan, Sarah; Macken-Walsh, Aine; Heanue, Kevin

    2013-04-01

    Over the last number of decades intensification in the use nitrogen (N) and phosphorus (P) in agricultural production has lead to excessive accumulations of these nutrients in soils, groundwaters and surface water bodies (Sutton et al., 2011). According to the European Environment Agency (2012) despite some progress diffuse pollution from agriculture is still significant in more than 40% of Europe's water bodies in rivers and coastal waters, and in one third of the water bodies in lakes and transitional waters. Recently it was estimated that approximately 29% of monitored river channel length is polluted to some degree across the Republic of Ireland. Agricultural sources were suspected in 47 per cent of cases (EPA, 2012). Farm level management practices to reduce nutrient transfers from agricultural land to watercourses can be divided into source reduction and source interception approaches (Ribaudo et al., 2001). Source interception approaches involve capturing nutrients post mobilisation through policy instruments such as riparian buffer zones or wetlands. Conversely, the source reduction approach is preventative in nature and promotes strict management of nutrient at farm and field level to reduce risk of mobilisation in the first instance. This has the potential to deliver a double dividend of reduced nutrient loss to the wider ecosystem while maximising economic return to agricultural production at the field and farm levels. Adoption and use of nutrient management plans among farmers is far from the norm. This research engages key farmer and extension stakeholders to explore how current nutrient management planning software and outputs should be developed to make it more user friendly and usable in a practical way. An open innovation technology co-development approach was adopted to investigate what is demanded by the end users - farm advisors and farmers. Open innovation is a knowledge management strategy that uses the input of stakeholders to improve

  4. Nutrient Limitation of Microbial Mediated Decomposition and Arctic Soil Chronology

    Science.gov (United States)

    Melle, C. J.; Darrouzet-Nardi, A.; Wallenstein, M. D.

    2012-12-01

    Soils of northern permafrost regions currently contain twice as much carbon as the entire Earth's atmosphere. Traditionally, environmental constraints have limited microbial activity resulting in restricted decomposition of soil organic matter in these systems and accumulation of massive amounts of soil organic carbon (SOC), however climate change is reducing the constraints of decomposition in arctic permafrost regions. Carbon cycling in nutrient poor, arctic ecosystems is tightly coupled to other biogeochemical cycles. Several studies have suggested strong nitrogen limitations of primary productivity and potentially warm-season microbial activity in these nutrient deficient soils. Nitrogen is required for microbial extracellular enzyme production which drives the decomposition of soil organic matter (SOM). Nitrogen limited arctic soils may also experience limitation via labile carbon availability despite the SOM rich environment due to low extracellular enzyme production. Few studies have directly addressed nutrient induced microbial limitation in SOC rich arctic tundra soils, and even less is known about the potential for nutrient co-limitation. Additionally, through the process of becoming deglaciated, sites within close proximity to one another may have experienced drastic differences in their effective soil ages due to the varied length of their active histories. Many soil properties and nutrient deficiencies are directly related to soil age, however this chronology has not previously been a focus of research on nutrient limitation of arctic soil microbial activity. Understanding of nutrient limitations, as well as potential co-limitation, on arctic soil microbial activity has important implications for carbon cycling and the ultimate fate of the current arctic SOC reservoir. Analyses of nutrient limitation on soils of a single site are not adequate for fully understanding the controls on soil microbial activity across a vast land mass with large variation in

  5. Extreme inputs/outputs for multiple input multiple output linear systems.

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, David Ora

    2005-09-01

    A linear structure is excited at multiple points with a stationary normal random process. The response of the structure is measured at multiple outputs. If the auto spectral densities of the inputs are specified, the phase relationships between the inputs are derived that will minimize or maximize the trace of the auto spectral density matrix of the outputs. If the autospectral densities of the outputs are specified, the phase relationships between the outputs that will minimize or maximize the trace of the input auto spectral density matrix are derived. It is shown that other phase relationships and ordinary coherence less than one will result in a trace intermediate between these extremes. Least favorable response and some classes of critical response are special cases of the development. It is shown that the derivation for stationary random waveforms can also be applied to nonstationary random, transients, and deterministic waveforms.

  6. Metal and nutrient dynamics on an aged intensive green roof.

    Science.gov (United States)

    Speak, A F; Rothwell, J J; Lindley, S J; Smith, C L

    2014-01-01

    Runoff and rainfall quality was compared between an aged intensive green roof and an adjacent conventional roof surface. Nutrient concentrations in the runoff were generally below Environmental Quality Standard (EQS) values and the green roof exhibited NO3(-) retention. Cu, Pb and Zn concentrations were in excess of EQS values for the protection of surface water. Green roof runoff was also significantly higher in Fe and Pb than on the bare roof and in rainfall. Input-output fluxes revealed the green roof to be a potential source of Pb. High concentrations of Pb within the green roof soil and bare roof dusts provide a potential source of Pb in runoff. The origin of the Pb is likely from historic urban atmospheric deposition. Aged green roofs may therefore act as a source of legacy metal pollution. This needs to be considered when constructing green roofs with the aim of improving pollution remediation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Quantifying stream nutrient uptake from ambient to saturation with instantaneous tracer additions

    Science.gov (United States)

    Covino, T. P.; McGlynn, B. L.; McNamara, R.

    2009-12-01

    Stream nutrient tracer additions and spiraling metrics are frequently used to quantify stream ecosystem behavior. However, standard approaches limit our understanding of aquatic biogeochemistry. Specifically, the relationship between in-stream nutrient concentration and stream nutrient spiraling has not been characterized. The standard constant rate (steady-state) approach to stream spiraling parameter estimation, either through elevating nutrient concentration or adding isotopically labeled tracers (e.g. 15N), provides little information regarding the stream kinetic curve that represents the uptake-concentration relationship analogous to the Michaelis-Menten curve. These standard approaches provide single or a few data points and often focus on estimating ambient uptake under the conditions at the time of the experiment. Here we outline and demonstrate a new method using instantaneous nutrient additions and dynamic analyses of breakthrough curve (BTC) data to characterize the full relationship between spiraling metrics and nutrient concentration. We compare the results from these dynamic analyses to BTC-integrated, and standard steady-state approaches. Our results indicate good agreement between these three approaches but we highlight the advantages of our dynamic method. Specifically, our new dynamic method provides a cost-effective and efficient approach to: 1) characterize full concentration-spiraling metric curves; 2) estimate ambient spiraling metrics; 3) estimate Michaelis-Menten parameters maximum uptake (Umax) and the half-saturation constant (Km) from developed uptake-concentration kinetic curves, and; 4) measure dynamic nutrient spiraling in larger rivers where steady-state approaches are impractical.

  8. LITTERFALL AND NUTRIENT RETURNS IN ISOLATED STANDS ...

    African Journals Online (AJOL)

    Dr Osondu

    area has implications in returning nutrient elements to the soils of the rainforest ecosystem. Keywords: Litterfall, Nutrient returns, Seasonal variation, Southern Nigeria, Terminalia catappa, Tropical rainforest. Introduction. In the tropical rainforests, plants and soils are in equilibrium involving an almost closed cycling.

  9. Water Quality Protection from Nutrient Pollution: Case ...

    Science.gov (United States)

    Water bodies and coastal areas around the world are threatened by increases in upstream sediment and nutrient loads, which influence drinking water sources, aquatic species, and other ecologic functions and services of streams, lakes, and coastal water bodies. For example, increased nutrient fluxes from the Mississippi River Basin have been linked to increased occurrences of seasonal hypoxia in northern Gulf of Mexico. Lake Erie is another example where in the summer of 2014 nutrients, nutrients, particularly phosphorus, washed from fertilized farms, cattle feedlots, and leaky septic systems; caused a severe algae bloom, much of it poisonous; and resulted in the loss of drinking water for a half-million residents. Our current management strategies for point and non-point source nutrient loadings need to be improved to protect and meet the expected increased future demands of water for consumption, recreation, and ecological integrity. This presentation introduces management practices being implemented and their effectiveness in reducing nutrient loss from agricultural fields, a case analysis of nutrient pollution of the Grand Lake St. Marys and possible remedies, and ongoing work on watershed modeling to improve our understanding on nutrient loss and water quality. Presented at the 3rd International Conference on Water Resource and Environment.

  10. Trichoderma -mediated enhancement of nutrient uptake and ...

    African Journals Online (AJOL)

    Trichoderma harzianum is a naturally occurring filamentous fungus which solubilizes mineral nutrients and inorganic fertilizers, increasing availability and uptake of nutrients to the plant. Rhizoctonia solani is a major problem for seedlings, causing damping-off and in mature plants causing foot and root rot in the tomato crop, ...

  11. Impacts of nutrient reduction on coastal communities

    NARCIS (Netherlands)

    Philippart, C.J.M.; Beukema, J.J.; Cadée, G.C.; Dekker, R.; Goedhart, P.W.; van Iperen, J.M.; Leopold, M.F.; Herman, P.M.J.

    2007-01-01

    Eutrophication due to high anthropogenic nutrient loading has greatly impacted ecological processes in marine coastal waters and, therefore, much effort has been put into reducing nitrogen and phosphorus discharges into European and North-American waters. Nutrient enrichment usually resulted in

  12. SSMILes: Measuring the Nutrient Tolerance of Algae.

    Science.gov (United States)

    Hedgepeth, David J.

    1995-01-01

    Presents an activity integrating mathematics and science intended to introduce students to the use of metric measurement of mass as a way to increase the meaningfulness of observations about variables in life sciences. Involves measuring the nutrient tolerance of algae. Contains a reproducible algae nutrient graph. (Author/MKR)

  13. Nutrient Dynamics and Litter Decomposition in Leucaena ...

    African Journals Online (AJOL)

    Nutrient contents and rate of litter decomposition were investigated in Leucaena leucocephala plantation in the University of Agriculture, Abeokuta, Ogun State, Nigeria. Litter bag technique was used to study the pattern and rate of litter decomposition and nutrient release of Leucaena leucocephala. Fifty grams of oven-dried ...

  14. Nutrient Content of Lettuce and its Improvement

    Science.gov (United States)

    Lettuce is a popular leafy vegetable and plays an important role in American diet and nutrition. Crisphead lettuce has much lower nutrient content than leaf and romaine types. As the synthesis or absorption of many nutrients is light dependent, the lower nutritional value of crisphead lettuce is due...

  15. Nutrient contributions by benthal sludge deposits.

    Science.gov (United States)

    Bhargava, Devendra S; Shrihari, S

    2009-10-01

    Settled solids from effluents discharged into a river system, undergoing decomposition at the river bottom, form an appreciable internal nutrient source for the biological activities in the river system. During the stabilization of benthal deposits, a variety of nutrients are released into the overlying waters. The exchange between sediment and overlying waters is a major component of the nitrogen and phosphorous cycles in the natural waters. The releases of such nutrients is a surface phenomenon, regulated by the conditions of benthal sludge layers, flow rate of overlying waters, etc. The rate of ammonia nitrogen release manifested an optimum low value when benthal sludge depth was 0.2 m, but was not influenced by the flow rate of overlying water and h/d ratios. The rate of phosphate release from benthal sludge was independent of depth of benthal sludge, flow rate and h/d ratios. The nutrients in the benthal sludge layers were increasing with time, and were concentrated at a layer 10 cm below the top surface. The nutrients release (percent of nutrient remaining in top benthal sludge layers) decreased with time and became almost constant after about 40 days. The nutrients release under continuously accumulating conditions of benthal sludge and the effects of frequency of addition have been discussed in this paper. The nutrients release was less when the frequency of addition was less.

  16. Nutrient enrichment reduces constraints on material flows in a detritus-based food web.

    Science.gov (United States)

    Cross, Wyatt F; Wallace, J Bruce; Rosemond, Amy D

    2007-10-01

    Most aquatic and terrestrial ecosystems are experiencing increased nutrient availability, which is affecting their structure and function. By altering community composition and productivity of consumers, enrichment can indirectly cause changes in the pathways and magnitude of material flows in food webs. These changes, in turn, have major consequences for material storage and cycling in the ecosystem. Understanding mechanisms and predicting consequences of nutrient-induced changes in material flows requires a quantitative food web approach that combines information on consumer energetics and consumer-resource stoichiometry. We examined effects of a whole-system experimental nutrient enrichment on the trophic basis of production and the magnitude and pathways of carbon (C), nitrogen (N), and phosphorus (P) flows in a detritus-based stream food web. We compared the response of the treated stream to an adjacent reference stream throughout the study. Dietary composition and elemental flows varied considerably among invertebrate functional feeding groups. During nutrient enrichment, increased flows of leaf litter and amorphous detritus to shredders and gatherers accounted for most of the altered flows of C from basal resources to consumers. Nutrient enrichment had little effect on patterns of material flows but had large positive effects on the magnitude of C, N, and P flows to consumers (mean increase of 97% for all elements). Nutrient-specific food webs revealed similar flows of N and P to multiple functional groups despite an order of magnitude difference among groups in consumption of C. Secondary production was more strongly related to consumption of nutrients than C, and increased material flows were positively related to the degree of consumer-resource C:P and C:N imbalances. Nutrient enrichment resulted in an increased proportion of detrital C inputs consumed by primary consumers (from -15% to 35%) and a decreased proportion of invertebrate prey consumed by

  17. Upward nitrate transport by phytoplankton in oceanic waters: balancing nutrient budgets in oligotrophic seas

    Directory of Open Access Journals (Sweden)

    Tracy A. Villareal

    2014-03-01

    Full Text Available In oceanic subtropical gyres, primary producers are numerically dominated by small (1–5 µm diameter pro- and eukaryotic cells that primarily utilize recycled nutrients produced by rapid grazing turnover in a highly efficient microbial loop. Continuous losses of nitrogen (N to depth by sinking, either as single cells, aggregates or fecal pellets, are balanced by both nitrate inputs at the base of the euphotic zone and N2-fixation. This input of new N to balance export losses (the biological pump is a fundamental aspect of N cycling and central to understanding carbon fluxes in the ocean. In the Pacific Ocean, detailed N budgets at the time-series station HOT require upward transport of nitrate from the nutricline (80–100 m into the surface layer (∼0–40 m to balance productivity and export needs. However, concentration gradients are negligible and cannot support the fluxes. Physical processes can inject nitrate into the base of the euphotic zone, but the mechanisms for transporting this nitrate into the surface layer across many 10s of m in highly stratified systems are unknown. In these seas, vertical migration by the very largest (102–103 µm diameter phytoplankton is common as a survival strategy to obtain N from sub-euphotic zone depths. This vertical migration is driven by buoyancy changes rather than by flagellated movement and can provide upward N transport as nitrate (mM concentrations in the cells. However, the contribution of vertical migration to nitrate transport has been difficult to quantify over the required basin scales. In this study, we use towed optical systems and isotopic tracers to show that migrating diatom (Rhizosolenia mats are widespread in the N. Pacific Ocean from 140°W to 175°E and together with other migrating phytoplankton (Ethmodiscus, Halosphaera, Pyrocystis, and solitary Rhizosolenia can mediate time-averaged transport of N (235 µmol N m-2 d-1 equivalent to eddy nitrate injections (242 µmol NO3− m

  18. High-performance parallel input device

    Science.gov (United States)

    Daniel, R. W.; Fischer, Patrick J.; Hunter, B.

    1993-12-01

    Research into force reflecting remote manipulation has recently started to move away from common error systems towards explicit force control. In order to maximize the benefit provided by explicit force reflection the designer has to take into account the asymmetry of the bandwidths of the forward and reflecting loops. This paper reports on a high performance system designed and built at Oxford University and Harwell Laboratories and on the preliminary results achieved when performing simple force reflecting tasks. The input device is based on a modified Stewart Platform, which offers the potential of very high bandwidth force reflection, well above the normal 2 - 10 Hz range achieved with common error systems. The slave is a nuclear hardened Puma industrial robot, offering a low cost, reliable solution to remote manipulation tasks.

  19. Improved input-legitimacy and efficient policies?

    DEFF Research Database (Denmark)

    Agger, Annika

    a proliferation of attempts to create both more efficient as well as flexible public services. Theories of innovation haw inspired efforts to close the gap between high public expecta-tions and limited public resources. The fact that the innovation agenda is to a large extent inspired by theories and models from......-ours. Empirically, the paper draws on a case study of collaborative policy innovation in a Danish municipality. We have studied a local task force set up to develop a municipal policy for “Citizen – and stakeholder participation”. The members of the taskforce were the local mayor, the city manager, 6 citizens, 6...... local politicians and 2 administrators. The taskforce have experimented with new forms of conversations and facilitated dialogues and in new ways of getting inputs from a broad variety of stakeholders. Moreover, a theatre workshop and an innovation camp have been held as part of the project...

  20. Auto Draw from Excel Input Files

    Science.gov (United States)

    Strauss, Karl F.; Goullioud, Renaud; Cox, Brian; Grimes, James M.

    2011-01-01

    The design process often involves the use of Excel files during project development. To facilitate communications of the information in the Excel files, drawings are often generated. During the design process, the Excel files are updated often to reflect new input. The problem is that the drawings often lag the updates, often leading to confusion of the current state of the design. The use of this program allows visualization of complex data in a format that is more easily understandable than pages of numbers. Because the graphical output can be updated automatically, the manual labor of diagram drawing can be eliminated. The more frequent update of system diagrams can reduce confusion and reduce errors and is likely to uncover symmetric problems earlier in the design cycle, thus reducing rework and redesign.

  1. Optimizing microwave photodetection: input-output theory

    Science.gov (United States)

    Schöndorf, M.; Govia, L. C. G.; Vavilov, M. G.; McDermott, R.; Wilhelm, F. K.

    2018-04-01

    High fidelity microwave photon counting is an important tool for various areas from background radiation analysis in astronomy to the implementation of circuit quantum electrodynamic architectures for the realization of a scalable quantum information processor. In this work we describe a microwave photon counter coupled to a semi-infinite transmission line. We employ input-output theory to examine a continuously driven transmission line as well as traveling photon wave packets. Using analytic and numerical methods, we calculate the conditions on the system parameters necessary to optimize measurement and achieve high detection efficiency. With this we can derive a general matching condition depending on the different system rates, under which the measurement process is optimal.

  2. Delayed-Input Wide Area Power System Stabilizer for Mode Selective Damping of Electromechanical Oscillations

    Directory of Open Access Journals (Sweden)

    Ashfaque Ahmed Hashmani

    2011-04-01

    Full Text Available A long time delay due to the transmission and processing of remote signal may degrade stability of power system. This paper discusses the design of H? -based local decentralized delayed-input PSS (Power System Stabilizer controllers for a separate better damping of inter-area modes. The controllers use selected suitable remote signals from whole system as supplementary inputs. The local and remote input signals, used by the controller, are the ones in which the assigned single inter-area mode is most observable. The controller is located at a generator which is most effective in controlling the assigned mode. The controller, designed for a particular single interarea mode, also works mainly in the natural frequency of the assigned mode. Pade approximation approach is used to model time delay. The time delay model is then merged into delay-free power system model to obtain the delayed-input power system model. The controllers are then redesigned for the delayed-input system.

  3. The effectiveness of aided augmented input techniques for persons with developmental disabilities: a systematic review.

    Science.gov (United States)

    Allen, Anna A; Schlosser, Ralf W; Brock, Kristofer L; Shane, Howard C

    2017-09-01

    When working with individuals with little or no functional speech, clinicians often recommend that communication partners use the client's augmentative and alternative communication (AAC) device when speaking to the client. This is broadly known as "augmented input" and is thought to enhance the client's learning of language form and content. The purpose of this systematic review was to determine the effects of augmented input on communication outcomes in persons with developmental disabilities and persons with childhood apraxia of speech who use aided AAC. Nineteen studies met the inclusion criteria. Each included study was reviewed in terms of participant characteristics, terminology used, symbol format, augmented input characteristics, outcomes measured, effectiveness, and study quality. Results indicate that augmented input can improve single-word vocabulary skills and expression of multi-symbol utterances; however, comprehension beyond the single word level has not been explored. Additionally, it is difficult to form conclusions about the effect of augmented input on specific diagnostic populations. Directions for future research are posited.

  4. Distribution Development for STORM Ingestion Input Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Fulton, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    The Sandia-developed Transport of Radioactive Materials (STORM) code suite is used as part of the Radioisotope Power System Launch Safety (RPSLS) program to perform statistical modeling of the consequences due to release of radioactive material given a launch accident. As part of this modeling, STORM samples input parameters from probability distributions with some parameters treated as constants. This report described the work done to convert four of these constant inputs (Consumption Rate, Average Crop Yield, Cropland to Landuse Database Ratio, and Crop Uptake Factor) to sampled values. Consumption rate changed from a constant value of 557.68 kg / yr to a normal distribution with a mean of 102.96 kg / yr and a standard deviation of 2.65 kg / yr. Meanwhile, Average Crop Yield changed from a constant value of 3.783 kg edible / m 2 to a normal distribution with a mean of 3.23 kg edible / m 2 and a standard deviation of 0.442 kg edible / m 2 . The Cropland to Landuse Database ratio changed from a constant value of 0.0996 (9.96%) to a normal distribution with a mean value of 0.0312 (3.12%) and a standard deviation of 0.00292 (0.29%). Finally the crop uptake factor changed from a constant value of 6.37e-4 (Bq crop /kg)/(Bq soil /kg) to a lognormal distribution with a geometric mean value of 3.38e-4 (Bq crop /kg)/(Bq soil /kg) and a standard deviation value of 3.33 (Bq crop /kg)/(Bq soil /kg)

  5. Fertilization effects on biomass production, nutrient leaching and budgets in four stand development stages of short rotation forest poplar

    DEFF Research Database (Denmark)

    Georgiadis, Petros; Nielsen, Anders Tærø; Stupak, Inge

    2017-01-01

    Abstract Dedicated energy poplar plantations have a high biomass production potential in temperate regions, which may be further increased by improved management practices. The aim of this study was to investigate the effects of fertilization on short rotation forest poplar established on former...... arable land. We examined the effects on biomass production, net nutrient uptake in stems and branches, nutrient leaching fluxes and changes to the nutrient budgets calculated as inputs minus outputs. An experiment was carried out in four stands of different development stages, the establishment (EST...... leaching based on water fluxes modelled with CoupModel and soil solution analyses and calculated the nutrient budgets. Fertilization effects depended on the stage of stand development, but were inconsistent in time. The biomass production increased in EST in the first year after fertilization and in PT...

  6. Modal Parameter Identification from Responses of General Unknown Random Inputs

    DEFF Research Database (Denmark)

    Ibrahim, S. R.; Asmussen, J. C.; Brincker, Rune

    1996-01-01

    Modal parameter identification from ambient responses due to a general unknown random inputs is investigated. Existing identification techniques which are based on assumptions of white noise and or stationary random inputs are utilized even though the inputs conditions are not satisfied....... This is accomplished via adding. In cascade. A force cascade conversion to the structures system under consideration. The input to the force conversion system is white noise and the output of which is the actual force(s) applied to the structure. The white noise input(s) and the structures responses are then used...

  7. Noninvasive analysis of metabolic changes following nutrient input into diverse fish species, as investigated by metabolic and microbial profiling approaches

    Directory of Open Access Journals (Sweden)

    Taiga Asakura

    2014-10-01

    Full Text Available An NMR-based metabolomic approach in aquatic ecosystems is valuable for studying the environmental effects of pharmaceuticals and other chemicals on fish. This technique has also contributed to new information in numerous research areas, such as basic physiology and development, disease, and water pollution. We evaluated the microbial diversity in various fish species collected from Japan’s coastal waters using next-generation sequencing, followed by evaluation of the effects of feed type on co-metabolic modulations in fish-microbial symbiotic ecosystems in laboratory-scale experiments. Intestinal bacteria of fish in their natural environment were characterized (using 16S rRNA genes for trophic level using pyrosequencing and noninvasive sampling procedures developed to study the metabolism of intestinal symbiotic ecosystems in fish reared in their environment. Metabolites in feces were compared, and intestinal contents and feed were annotated based on HSQC and TOCSY using SpinAssign and network analysis. Feces were characterized by species and varied greatly depending on the feeding types. In addition, feces samples demonstrated a response to changes in the time series of feeding. The potential of this approach as a non-invasive inspection technique in aquaculture is suggested.

  8. Inputs of nutrients and fecal bacteria to freshwaters from irrigated agriculture: case studies in Australia and New Zealand.

    Science.gov (United States)

    Wilcock, Robert J; Nash, David; Schmidt, Jochen; Larned, Scott T; Rivers, Mark R; Feehan, Pat

    2011-07-01

    Increasing demand for global food production is leading to greater use of irrigation to supplement rainfall and enable more intensive use of land. Minimizing adverse impacts of this intensification on surface water and groundwater resources is of critical importance for the achievement of sustainable land use. In this paper we examine the linkages between irrigation runoff and resulting changes in quality of receiving surface waters and groundwaters in Australia and New Zealand. Case studies are used to illustrate impacts under different irrigation techniques (notably flood and sprinkler systems) and land uses, particularly where irrigation has led to intensification of land use. For flood irrigation, changes in surface water contaminant concentrations are directly influenced by the amount of runoff, and the intensity and kind of land use. Mitigation for flood irrigation is best achieved by optimizing irrigation efficiency. For sprinkler irrigation, leaching to groundwater is the main transport path for contaminants, notably nitrate. Mitigation measures for sprinkler irrigation should take into account irrigation efficiency and the proximity of intensive land uses to sensitive waters. Relating contaminant concentrations in receiving groundwaters to their dominant causes is often complicated by uncertainty about the subsurface flow paths and the possible pollutant sources, viz. drainage from irrigated land. This highlights the need for identification of the patterns and dynamics of surface and subsurface waters to identify such sources of contaminants and minimize their impacts on the receiving environments.

  9. Nutrient-sensing hypothalamic TXNIP links nutrient excess to energy imbalance in mice.

    Science.gov (United States)

    Blouet, Clémence; Schwartz, Gary J

    2011-04-20

    Nutrient excess in obesity and diabetes is emerging as a common putative cause for multiple deleterious effects across diverse cell types, responsible for a variety of metabolic dysfunctions. The hypothalamus is acknowledged as an important regulator of whole-body energy homeostasis, through both detection of nutrient availability and coordination of effectors that determine nutrient intake and utilization, thus preventing cellular and whole-body nutrient excess. However, the mechanisms underlying hypothalamic nutrient detection and its impact on peripheral nutrient utilization remain poorly understood. Recent data suggest a role for thioredoxin-interacting protein (TXNIP) as a molecular nutrient sensor important in the regulation of energy metabolism, but the role of hypothalamic TXNIP in the regulation of energy balance has not been evaluated. Here we show in mice that TXNIP is expressed in nutrient-sensing neurons of the mediobasal hypothalamus, responds to hormonal and nutrient signals, and regulates adipose tissue metabolism, fuel partitioning, and glucose homeostasis. Hypothalamic expression of TXNIP is induced by acute nutrient excess and in mouse models of obesity and diabetes, and downregulation of mediobasal hypothalamic TXNIP expression prevents diet-induced obesity and insulin resistance. Thus, mediobasal hypothalamic TXNIP plays a critical role in nutrient sensing and the regulation of fuel utilization.

  10. Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope

    Directory of Open Access Journals (Sweden)

    Cheng-Yang Chang

    2017-10-01

    Full Text Available Conventional gyroscopes are equipped with a single-axis control input, limiting their performance. Although researchers have proposed control algorithms with dual-axis control inputs to improve gyroscope performance, most have verified the control algorithms through numerical simulations because they lacked practical devices with dual-axis control inputs. The aim of this study was to design a piezoelectric gyroscope equipped with a dual-axis control input so that researchers may experimentally verify those control algorithms in future. Designing a piezoelectric gyroscope with a dual-axis control input is more difficult than designing a conventional gyroscope because the control input must be effective over a broad frequency range to compensate for imperfections, and the multiple mode shapes in flexural deformations complicate the relation between flexural deformation and the proof mass position. This study solved these problems by using a lead zirconate titanate (PZT material, introducing additional electrodes for shielding, developing an optimal electrode pattern, and performing calibrations of undesired couplings. The results indicated that the fabricated device could be operated at 5.5±1 kHz to perform dual-axis actuations and position measurements. The calibration of the fabricated device was completed by system identifications of a new dynamic model including gyroscopic motions, electromechanical coupling, mechanical coupling, electrostatic coupling, and capacitive output impedance. Finally, without the assistance of control algorithms, the “open loop sensitivity” of the fabricated gyroscope was 1.82 μV/deg/s with a nonlinearity of 9.5% full-scale output. This sensitivity is comparable with those of other PZT gyroscopes with single-axis control inputs.

  11. Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope.

    Science.gov (United States)

    Chang, Cheng-Yang; Chen, Tsung-Lin

    2017-10-31

    Conventional gyroscopes are equipped with a single-axis control input, limiting their performance. Although researchers have proposed control algorithms with dual-axis control inputs to improve gyroscope performance, most have verified the control algorithms through numerical simulations because they lacked practical devices with dual-axis control inputs. The aim of this study was to design a piezoelectric gyroscope equipped with a dual-axis control input so that researchers may experimentally verify those control algorithms in future. Designing a piezoelectric gyroscope with a dual-axis control input is more difficult than designing a conventional gyroscope because the control input must be effective over a broad frequency range to compensate for imperfections, and the multiple mode shapes in flexural deformations complicate the relation between flexural deformation and the proof mass position. This study solved these problems by using a lead zirconate titanate (PZT) material, introducing additional electrodes for shielding, developing an optimal electrode pattern, and performing calibrations of undesired couplings. The results indicated that the fabricated device could be operated at 5.5±1 kHz to perform dual-axis actuations and position measurements. The calibration of the fabricated device was completed by system identifications of a new dynamic model including gyroscopic motions, electromechanical coupling, mechanical coupling, electrostatic coupling, and capacitive output impedance. Finally, without the assistance of control algorithms, the "open loop sensitivity" of the fabricated gyroscope was 1.82 μV/deg/s with a nonlinearity of 9.5% full-scale output. This sensitivity is comparable with those of other PZT gyroscopes with single-axis control inputs.

  12. Image inputs in Structure-from-Motion Photogrammetry: optimising image greyscaling

    Science.gov (United States)

    O'Connor, James; Smith, Mike J.; James, Mike R.

    2016-04-01

    Structure-from-motion (SfM) photogrammetry is an emerging technology receiving much attention within the geoscience community due to its ease of use and the lack of prior information required to build topographic models from images. However, little consideration is given to image inputs considering image sharpness and contrast both have an effect on the quality of photogrammetric outputs. This task is made more challenging across natural image sequences due to the presence of low-contrast surfaces which are often at oblique angles to input images. As most feature detectors operate on a single image channel, monochrome inputs can be pre-processed for input into SfM workflows and relative accuracy measured. In this contribution we process two sets of imagery from both a real world, close range scenario (Constitution Hill, Aberystwyth) and a controlled dataset in laboratory conditions simulating a UAV flight with convergent viewing geometry. With each, we generate greyscale subsets comprised of weighted combinations of the spectral bands of the input images prior to executing SfM workflows. Output point clouds are measured against high-accuracy terrestrial laser scans in order to assess residual error and compare output solutions. When compared with untreated image inputs into a commonly used commercial package (Agisoft Photoscan Pro) we show minor improvements in the accuracy of photogrammetrically derived products.

  13. Impact of simulated atmospheric nitrogen deposition on nutrient cycling and carbon sink via mycorrhizal fungi in two nutrient-poor peatlands

    Science.gov (United States)

    Larmola, Tuula; Kiheri, Heikki; Bubier, Jill L.; van Dijk, Netty; Dise, Nancy; Fritze, Hannu; Hobbie, Erik A.; Juutinen, Sari; Laiho, Raija; Moore, Tim R.; Pennanen, Taina

    2017-04-01

    Peatlands store one third of the global soil carbon (C) pool. Long-term fertilization experiments in nutrient-poor peatlands showed that simulated atmospheric nitrogen (N) deposition does not enhance ecosystem C uptake but reduces C sink potential. Recent studies have shown that a significant proportion of C input to soil in low-fertility forests entered the soil through mycorrhizal fungi, rather than as plant litter. Is atmospheric N deposition diminishing peatland C sink potential due to the suppression of ericoid mycorrhizal fungi? We studied how nutrient addition influences plant biomass allocation and the extent to which plants rely on mycorrhizal N uptake at two of the longest-running nutrient addition experiments on peatlands, Whim Bog, United Kingdom, and Mer Bleue Bog, Canada. We determined the peak growing season aboveground biomass production and coverage of vascular plants using the point intercept method. We also analyzed isotopic δ15N patterns and nutrient contents in leaves of dominant ericoid mycorrhizal shrubs as well as the non-mycorrhizal sedge Eriophorum vaginatum under different nutrient addition treatments. The treatments receive an additional load of 1.6-6.4 N g m-2 y-1 either as ammonium (NH4) nitrate (NO3) or NH4NO3 and with or without phosphorus (P) and potassium (K), alongside unfertilized controls. After 11-16 years of nutrient addition, the vegetation structure had changed remarkably. Ten of the eleven nutrient addition treatments showed an increase of up to 60% in total vascular plant abundance. Only three (NH4Cl, NH4ClPK, NaNO3PK) of the nutrient addition treatments showed a concurrent decrease of down to 50% in the relative proportion of ericoid mycorrhizal shrubs to total vascular plant abundance. The response to nutrient load may be explained by the water table depth, the form of N added and whether N was added with PK. Shrubs were strong competitors at the dry Mer Bleue bog while sedges gained in abundance at the wetter Whim bog

  14. How Much Input Is Enough? Correlating Comprehension and Child Language Input in an Endangered Language

    Science.gov (United States)

    Meakins, Felicity; Wigglesworth, Gillian

    2013-01-01

    In situations of language endangerment, the ability to understand a language tends to persevere longer than the ability to speak it. As a result, the possibility of language revival remains high even when few speakers remain. Nonetheless, this potential requires that those with high levels of comprehension received sufficient input as children for…

  15. Effect of input compression and input frequency response on music perception in cochlear implant users.

    Science.gov (United States)

    Halliwell, Emily R; Jones, Linor L; Fraser, Matthew; Lockley, Morag; Hill-Feltham, Penelope; McKay, Colette M

    2015-06-01

    A study was conducted to determine whether modifications to input compression and input frequency response characteristics can improve music-listening satisfaction in cochlear implant users. Experiment 1 compared three pre-processed versions of music and speech stimuli in a laboratory setting: original, compressed, and flattened frequency response. Music excerpts comprised three music genres (classical, country, and jazz), and a running speech excerpt was compared. Experiment 2 implemented a flattened input frequency response in the speech processor program. In a take-home trial, participants compared unaltered and flattened frequency responses. Ten and twelve adult Nucleus Freedom cochlear implant users participated in Experiments 1 and 2, respectively. Experiment 1 revealed a significant preference for music stimuli with a flattened frequency response compared to both original and compressed stimuli, whereas there was a significant preference for the original (rising) frequency response for speech stimuli. Experiment 2 revealed no significant mean preference for the flattened frequency response, with 9 of 11 subjects preferring the rising frequency response. Input compression did not alter music enjoyment. Comparison of the two experiments indicated that individual frequency response preferences may depend on the genre or familiarity, and particularly whether the music contained lyrics.

  16. Robust input design for nonlinear dynamic modeling of AUV.

    Science.gov (United States)

    Nouri, Nowrouz Mohammad; Valadi, Mehrdad

    2017-09-01

    Input design has a dominant role in developing the dynamic model of autonomous underwater vehicles (AUVs) through system identification. Optimal input design is the process of generating informative inputs that can be used to generate the good quality dynamic model of AUVs. In a problem with optimal input design, the desired input signal depends on the unknown system which is intended to be identified. In this paper, the input design approach which is robust to uncertainties in model parameters is used. The Bayesian robust design strategy is applied to design input signals for dynamic modeling of AUVs. The employed approach can design multiple inputs and apply constraints on an AUV system's inputs and outputs. Particle swarm optimization (PSO) is employed to solve the constraint robust optimization problem. The presented algorithm is used for designing the input signals for an AUV, and the estimate obtained by robust input design is compared with that of the optimal input design. According to the results, proposed input design can satisfy both robustness of constraints and optimality. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Do microorganism stoichiometric alterations affect carbon sequestration in paddy soil subjected to phosphorus input?

    Science.gov (United States)

    Zhang, ZhiJian; Li, HongYi; Hu, Jiao; Li, Xia; He, Qiang; Tian, GuangMing; Wang, Hang; Wang, ShunYao; Wang, Bei

    2015-04-01

    Ecological stoichiometry provides a powerful tool for integrating microbial biomass stoichiometry with ecosystem processes, opening far-reaching possibilities for linking microbial dynamics to soil carbon (C) metabolism in response to agricultural nutrient management. Despite its importance to crop yield, the role of phosphorus (P) with respect to ecological stoichiometry and soil C sequestration in paddy fields remains poorly understood, which limits our ability to predict nutrient-related soil C cycling. Here, we collected soil samples from a paddy field experiment after seven years of superphosphate application along a gradient of 0, 30, 60, and 90 (P-0 through P-90, respectively) kg.ha-1.yr-1 in order to evaluate the role of exogenous P on soil C sequestration through regulating microbial stoichiometry. P fertilization increased soil total organic C and labile organic C by 1-14% and 4-96%, respectively, while rice yield is a function of the activities of soil β-1,4-glucosidase (BG), acid phosphatase (AP), and the level of available soil P through a stepwise linear regression model. P input induced C limitation, as reflected by decreases in the ratios of C:P in soil and microbial biomass. An eco-enzymatic ratio indicating microbial investment in C vs. P acquisition, i.e., ln(BG): ln(AP), changed the ecological function of microbial C acquisition, and was stoichiometrically related to P input. This mechanism drove a shift in soil resource availability by increasing bacterial community richness and diversity, and stimulated soil C sequestration in the paddy field by enhancing C-degradation-related bacteria for the breakdown of plant-derived carbon sources. Therefore, the decline in the C:P stoichiometric ratio of soil microorganism biomass under P input was beneficial for soil C sequestration, which offered a "win-win" relationship for the maximum balance point between C sequestration and P availability for rice production in the face of climate change.

  18. Persistence of rock-derived nutrients in the wet tropical forests of La Selva, Costa Rica.

    Science.gov (United States)

    Porder, Stephen; Clark, Deborah A; Vitousek, Peter M

    2006-03-01

    We used strontium isotopes and analysis of foliar and soil nutrients to test whether erosion can rejuvenate the supply of rock-derived nutrients in the lowland tropical rain forest of La Selva, Costa Rica. We expected that these nutrients would be depleted from soils on stable surfaces, a result of over one million years of weathering in situ. In fact, trees and palms in all landscape positions derive a relatively high percentage (> or =40%) of their strontium from bedrock, rather than atmospheric, sources. The fraction that is rock-derived increases on slopes, but with no detectable effect on plant macronutrient concentrations. These results differ from those in a similar ecosystem on Kauai, Hawaii, where plants on uneroded surfaces derive almost all of their foliar Sr from atmospheric, rather than bedrock, sources. The results from La Selva challenge the assumption that tropical Oxisols in general have low nutrient inputs from bedrock, and support the hypothesis that erosion can increase the supply of these nutrients in lower landscape positions.

  19. Using a Backpropagation Artificial Neural Network to Predict Nutrient Removal in Tidal Flow Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-01-01

    Full Text Available Nutrient removal in tidal flow constructed wetlands (TF-CW is a complex series of nonlinear multi-parameter interactions. We simulated three tidal flow systems and a continuous vertical flow system filled with synthetic wastewater and compared the influent and effluent concentrations to examine (1 nutrient removal in artificial TF-CWs, and (2 the ability of a backpropagation (BP artificial neural network to predict nutrient removal. The nutrient removal rates were higher under tidal flow when the idle/reaction time was two, and reached 90 ± 3%, 99 ± 1%, and 58 ± 13% for total nitrogen (TN, ammonium nitrogen (NH4+-N, and total phosphorus (TP, respectively. The main influences on nutrient removal for each scenario were identified by redundancy analysis and were input into the model to train and verify the pollutant effluent concentrations. Comparison of the actual and model-predicted effluent concentrations showed that the model predictions were good. The predicted and actual values were correlated and the margin of error was small. The BP neural network fitted best to TP, with an R2 of 0.90. The R2 values of TN, NH4+-N, and nitrate nitrogen (NO3−-N were 0.67, 0.73, and 0.69, respectively.

  20. Benthic Nutrient Fluxes from Mangrove Sediments of an Anthropogenically Impacted Estuary in Southern China

    Directory of Open Access Journals (Sweden)

    David Kaiser

    2015-06-01

    Full Text Available Mangroves serve as either sinks or sources for inorganic and organic nutrients and can mitigate anthropogenic nutrient pollution, control the production in adjacent systems, and prevent eutrophication. To better understand the nutrient dynamics in a subtropical mangrove, we employed a three-way approach in the Nanliu River Estuary, southern China: Pore water profiles and sediment incubations revealed benthic early diagenesis as well as sediment–water exchange of dissolved nutrients and oxygen, while tidal sampling of estuarine and mangrove water identified source and sink functions of the entire mangrove forest. Fluxes of oxygen during incubations were always directed into the sediment, indicating heterotrophy of the system. There was a net uptake of dissolved inorganic nitrogen, mainly caused by nitrate influx, while ammonium and nitrite showed variable flux direction. Despite high pore water concentrations, phosphate and silica showed net uptake. Fluxes of dissolved organic carbon were generally low except for high efflux in the dark following a storm event. Due to the combination of small forest area and strong anthropogenic nutrient input, the net sink function for dissolved nitrogen and phosphorus provides no significant buffer against the eutrophication of coastal waters.

  1. Relating management practices and nutrient export in agricultural watersheds of the United States

    Science.gov (United States)

    Sprague, Lori A.; Gronberg, Jo Ann M.

    2012-01-01

    Relations between riverine export (load) of total nitrogen (N) and total phosphorus (P) from 133 large agricultural watersheds in the United States and factors affecting nutrient transport were evaluated using empirical regression models. After controlling for anthropogenic inputs and other landscape factors affecting nutrient transport-such as runoff, precipitation, slope, number of reservoirs, irrigated area, and area with subsurface tile drains-the relations between export and the area in the Conservation Reserve Program (CRP) (N) and conservation tillage (P) were positive. Additional interaction terms indicated that the relations between export and the area in conservation tillage (N) and the CRP (P) progressed from being clearly positive when soil erodibility was low or moderate, to being close to zero when soil erodibility was higher, to possibly being slightly negative only at the 90th to 95th percentile of soil erodibility values. Possible explanations for the increase in nutrient export with increased area in management practices include greater transport of soluble nutrients from areas in conservation tillage; lagged response of stream quality to implementation of management practices because of nitrogen transport in groundwater, time for vegetative cover to mature, and/or prior accumulation of P in soils; or limitations in the management practice and stream monitoring data sets. If lags are occurring, current nutrient export from agricultural watersheds may still be reflecting the influence of agricultural land-use practices that were in place before the implementation of these management practices.

  2. Seasonal Variation and Sources of Dissolved Nutrients in the Yellow River, China

    Directory of Open Access Journals (Sweden)

    Yao Gong

    2015-08-01

    Full Text Available The rapid growth of the economy in China has caused dramatic growth in the industrial and agricultural development in the Yellow River (YR watershed. The hydrology of the YR has changed dramatically due to the climate changes and water management practices, which have resulted in a great variation in the fluxes of riverine nutrients carried by the YR. To study these changes dissolved nutrients in the YR were measured monthly at Lijin station in the downstream region of the YR from 2002 to 2004. This study provides detailed information on the nutrient status for the relevant studies in the lower YR and the Bohai Sea. The YR was enriched in nitrate (average 314 μmol·L−1 with a lower concentration of dissolved silicate (average 131 μmol·L−1 and relatively low dissolved phosphate (average 0.35 μmol·L−1. Nutrient concentrations exhibited substantial seasonal and yearly variations. The annual fluxes of dissolved inorganic nitrogen, phosphate, and silicate in 2004 were 5.3, 2.5, and 4.2 times those in 2002, respectively, primarily due to the increase in river discharge. The relative contributions of nutrient inputs to nitrogen in the YR were: wastewater > fertilizer > atmospheric deposition > soil; while to phosphorus were: wastewater > fertilizer > soil > atmospheric deposition. The ratios of N, P and Si suggest that the YR at Lijin is strongly P-limited with respect to potential phytoplankton growth.

  3. Nuclear techniques in integrated plant nutrient, water and soil management. Proceedings

    International Nuclear Information System (INIS)

    2002-01-01

    The need to produce sufficient food of acceptable quality in the context of an ever-expanding human population has been recognized as a priority by several international conventions and agreements. Intensification, rather than expansion of agriculture into new areas, will be required if the goal of food security is to become a reality. Problems related to the sustainable production of food, fuel and fibre, both in low input and in high input agricultural systems, are now widely recognized. The overexploitation of the natural resource base has led to serious declines in soil fertility through loss of organic matter, nutrient mining, and soil erosion. The overuse of external inputs of water and manufactured fertilizers has resulted in salinization and pollution of ground and surface waters. Nuclear science has a crucial role to play in supporting research and development of sustainable farming systems. An FAO/IAEA International Symposium on Nuclear Techniques in Integrated Plant Nutrient, Water and Soil Management, held in Vienna from 16 to 20 October 2000, was attended by 117 participants representing forty-three countries and five organizations. The purpose was to provide an international forum for a comprehensive review of the state of the art and recent advances made in this specific field, as well as a basis for delineating further research and development needs. The participation of soil, crop and environmental scientists, as well as isotope specialists, ensured an exchange of information and views on recent advances in interdisciplinary and multidisciplinary approaches to addressing problems in sustainable land management. The symposium was organized around seven themes, each represented by a technical session introduced by a keynote speaker: Evaluation and management of natural and manufactured nutrient sources; Soil organic matter dynamics and nutrient cycling; Soil water management and conservation; Plant tolerance to environmental stress; Environmental and

  4. Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest.

    Science.gov (United States)

    Wurzburger, Nina; Wright, S Joseph

    2015-08-01

    Questions remain as to which soil nutrients limit primary production in tropical forests. Phosphorus (P) has long been considered the primary limiting element in lowland forests, but recent evidence demonstrates substantial heterogeneity in response to nutrient addition, highlighting a need to understand and diagnose nutrient limitation across diverse forests. Fine-root characteristics including their abundance, functional traits, and mycorrhizal symbionts can be highly responsive to changes in soil nutrients and may help to diagnose nutrient limitation. Here, we document the response of fine roots to long-term nitrogen (N), P, and potassium (K) fertilization in a lowland forest in Panama. Because this experiment has demonstrated that N and K together limit tree growth and P limits fine litter production, we hypothesized that fine roots would also respond to nutrient addition. Specifically we hypothesized that N, P, and K addition would reduce the biomass, diameter, tissue density, and mycorrhizal colonization of fine roots, and increase nutrient concentration in root tissue. Most morphological root traits responded to the single addition of K and the paired addition of N and P, with the greatest response to all three nutrients combined. The addition of N, P, and K together reduced fine-root biomass, length, and tissue density, and increased specific root length, whereas root diameter remained unchanged. Nitrogen addition did not alter root N concentration, but P and K addition increased root P and K concentration, respectively. Mycorrhizal colonization of fine roots declined with N, increased with P, and was unresponsive to K addition. Although plant species composition remains unchanged after 14 years of fertilization, fine-root characteristics responded to N, P, and K addition, providing some of the strongest stand-level responses in this experiment. Multiple soil nutrients regulate fine-root abundance, morphological and chemical traits, and their association

  5. Supplementary High-Input Impedance Voltage-Mode Universal Biquadratic Filter Using DVCCs

    Directory of Open Access Journals (Sweden)

    Jitendra Mohan

    2012-01-01

    Full Text Available To further extend the existing knowledge on voltage-mode universal biquadratic filter, in this paper, a new biquadratic filter circuit with single input and multiple outputs is proposed, employing three differential voltage current conveyors (DVCCs, three resistors, and two grounded capacitors. The proposed circuit realizes all the standard filter functions, that is, high-pass, band-pass, low-pass, notch, and all-pass filters simultaneously. The circuit enjoys the feature of high-input impedance, orthogonal control of resonance angular frequency (o, and quality factor (Q via grounded resistor and the use of grounded capacitors which is ideal for IC implementation.

  6. Generalized Nutrient Taxes Can Increase Consumer Welfare.

    Science.gov (United States)

    Bishai, David

    2015-11-01

    Certain nutrients can stimulate appetite making them fattening in a way that is not fully conveyed by the calorie content on the label. For rational eaters, this information gap could be corrected by more labeling. As an alternative, this paper proposes a set of positive and negative taxes on the fattening and slimming nutrients in food rather than on the food itself. There are conditions under which this tax plus subsidy system could increase welfare by stopping unwanted weight gain while leaving the final retail price of food unchanged. A nutrient tax system could improve welfare if fattening nutrients, net of their effect on weight, are inferior goods and the fiscal cost of administering the tax is sufficiently low. More data on the price elasticity of demand for nutrients as well as data on how specific nutrients affect satiety and how total calorie intake would be necessary before one could be sure a nutrient tax would work in practice. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Linking nutrient enrichment, sediment erodibility and biofilms

    Science.gov (United States)

    Conrad, B.; Mahon, R.; Sojka, S. L.

    2014-12-01

    Sediment movement in coastal lagoons affects nutrient flux and primary producer growth. Previous research has shown that sediment erodibility is affected by biofilm concentration and that growth of benthic organisms, which produce biofilm, is affected by nutrient enrichment. However, researchers have not examined possible links between nutrient addition and sediment erodibility. We manipulated nutrient levels in the water column of 16 microcosms filled with homogenized sediment from a shallow coastal lagoon and artificial seawater to determine the effects on biofilm growth, measured through chlorophyll a and colloidal carbohydrate concentrations. Erosion tests using a Gust microcosm were conducted to determine the relationship between sediment erodibility and biofilm concentration. Results show that carbohydrate levels decreased with increasing nutrient enrichment and were unrelated to chlorophyll concentrations and erodibility. The nutrient levels did not predictably affect the chlorophyll levels, with lower chlorophyll concentrations in the control and medium enrichment treatments than the low and high enrichment treatments. Controls on biofilm growth are still unclear and the assumed relationship between carbohydrates and erodibility may be invalid. Understanding how biofilms respond to nutrient enrichment and subsequent effects on sediment erodibility is essential for protecting and restoring shallow coastal systems.

  8. Evidence of chronic anthropogenic nutrient within coastal lagoon reefs adjacent to urban and tourism centers, Kenya: A stable isotope approach.

    Science.gov (United States)

    Mwaura, Jelvas; Umezawa, Yu; Nakamura, Takashi; Kamau, Joseph

    2017-06-30

    The source of anthropogenic nutrient and its spatial extent in three fringing reefs with differing human population gradients in Kenya were investigated using stable isotope approaches. Nutrient concentrations and nitrate-δ 15 N in seepage water indicated that population density and tourism contributed greatly to the extent of nutrient loading to adjacent reefs. Although water-column nutrient analyses did not show any significant difference among the reefs, higher δ 15 N and N contents in macrophytes showed terrestrial nutrients affected primary producers in onshore areas in Nyali and Bamburi reefs, but were mitigated by offshore water intrusion especially at Nyali. On the offshore reef flat, where the same species of macroalgae were not available, complementary use of δ 15 N in sedimentary organic matter suggested inputs of nutrients originated from the urban city of Mombasa. If population increases in the future, nutrient conditions in the shallower reef, Vipingo, may be dramatically degraded due to lower water exchange ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The effects of CO2 and nutrient fertilisation on the growth and temperature response of the mangrove Avicennia germinans.

    Science.gov (United States)

    Reef, Ruth; Slot, Martijn; Motro, Uzi; Motro, Michal; Motro, Yoav; Adame, Maria F; Garcia, Milton; Aranda, Jorge; Lovelock, Catherine E; Winter, Klaus

    2016-08-01

    In order to understand plant responses to both the widespread phenomenon of increased nutrient inputs to coastal zones and the concurrent rise in atmospheric CO2 concentrations, CO2-nutrient interactions need to be considered. In addition to its potential stimulating effect on photosynthesis and growth, elevated CO2 affects the temperature response of photosynthesis. The scarcity of experiments testing how elevated CO2 affects the temperature response of tropical trees hinders our ability to model future primary productivity. In a glasshouse study, we examined the effects of elevated CO2 (800 ppm) and nutrient availability on seedlings of the widespread mangrove Avicennia germinans. We assessed photosynthetic performance, the temperature response of photosynthesis, seedling growth and biomass allocation. We found large synergistic gains in both growth (42 %) and photosynthesis (115 %) when seedlings grown under elevated CO2 were supplied with elevated nutrient concentrations relative to their ambient growing conditions. Growth was significantly enhanced under elevated CO2 only under high-nutrient conditions, mainly in above-ground tissues. Under low-nutrient conditions and elevated CO2, root volume was more than double that of seedlings grown under ambient CO2 levels. Elevated CO2 significantly increased the temperature optimum for photosynthesis by ca. 4 °C. Rising CO2 concentrations are likely to have a significant positive effect on the growth rate of A. germinans over the next century, especially in areas where nutrient availability is high.

  10. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands.

    Science.gov (United States)

    Wolf, Kristin L; Noe, Gregory B; Ahn, Changwoo

    2013-07-01

    Greater connectivity to stream surface water may result in greater inputs of allochthonous nutrients that could stimulate internal nitrogen (N) and phosphorus (P) cycling in natural, restored, and created riparian wetlands. This study investigated the effects of hydrologic connectivity to stream water on soil nutrient fluxes in plots ( = 20) located among four created and two natural freshwater wetlands of varying hydrology in the Piedmont physiographic province of Virginia. Surface water was slightly deeper; hydrologic inputs of sediment, sediment-N, and ammonium were greater; and soil net ammonification, N mineralization, and N turnover were greater in plots with stream water classified as their primary water source compared with plots with precipitation or groundwater as their primary water source. Soil water-filled pore space, inputs of nitrate, and soil net nitrification, P mineralization, and denitrification enzyme activity (DEA) were similar among plots. Soil ammonification, N mineralization, and N turnover rates increased with the loading rate of ammonium to the soil surface. Phosphorus mineralization and ammonification also increased with sedimentation and sediment-N loading rate. Nitrification flux and DEA were positively associated in these wetlands. In conclusion, hydrologic connectivity to stream water increased allochthonous inputs that stimulated soil N and P cycling and that likely led to greater retention of sediment and nutrients in created and natural wetlands. Our findings suggest that wetland creation and restoration projects should be designed to allow connectivity with stream water if the goal is to optimize the function of water quality improvement in a watershed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Agronomic, nutritional and nutraceutical aspects of durum wheat (Triticum durum Desf. cultivars under low input agricultural management

    Directory of Open Access Journals (Sweden)

    Giovanni Dinelli

    2013-05-01

    Full Text Available Among cereals, durum wheat has a central role in the Italian diet and economy, where there is a historical tradition of pasta making. In the present study, we evaluated the nutrient and nutraceutical properties of 2 old and 6 modern durum wheat varieties grown under low input agricultural management. Considering the lack of available data on the adaptability of existing durum wheat varieties to the low input and organic sectors, the research aimed at providing a complete description of the investigated genotypes, considering the agronomic performance as well as the nutrient and phytochemical composition. The experimental trials were carried out at the same location (Bologna, Northern Italy for two consecutive growing seasons (2006/2007, 2007/2008. No clear distinction between old and modern varieties was observed in terms of grain yield (mean values ranging from 2.5 to 4.0 t/ha, highlighting that the divergence in productivity, normally found between dwarf and non-dwarf genotypes, is strongly reduced when they are cropped under low input management. All durum wheat varieties presented high protein levels and, in addition, provided remarkable amounts of phytochemicals such as dietary fibre, polyphenols, flavonoids and carotenoids. Some of the investigated genotypes, such as Senatore Cappelli, Solex, Svevo and Orobel, emerged with intriguing nutritional and phytochemical profiles, with the highest levels of dietary fibre and antioxidant compounds. The study provided the basis for further investigations into the adaptability of the durum wheat genotypes to low input management, for the selection of genotypes characterised by higher yield and valuable nutrient and nutraceutical quality.

  12. Grapevine leaf stripe disease symptoms (esca complex are reduced by a nutrients and seaweed mixture

    Directory of Open Access Journals (Sweden)

    Francesco CALZARANO

    2015-01-01

    Full Text Available Grapevine leaf stripe disease (GLSD seriously reduces the quality and quantity of grape production, and results in a shorter lifespan of vineyards. Recent research has shown that foliar applications of nutrients influence the development of GLSD foliar symptoms. Based on this knowledge the effect of foliar applications of a mixture of calcium chloride, magnesium nitrate and Fucales seaweed extract on the development of leaf symptoms was evaluated over a 3-year period from 2010 to 2012. Nine foliar applications of the full mixture and its individual mineral components, also in different combinations, were tested in three different vineyards, one of cv. Trebbiano d’Abruzzo and two of cv. Montepulciano d’Abruzzo in the Teramo province (Abruzzo, Italy. Treatments were applied every 10 days from the beginning of vegetative growth to pre-bunch closure. The final results were similar in all the three vineyards and in the three years leading to a significant reduction of symptom development in the vines treated with the full mixture, while lower effects were obtained by applying partial combinations or single components. Both quantity and quality of grapes from the treated vines increased, while no phytotoxic or other unwanted effects on grape growth were detected. Vines treated with the full mixture showed an increase in trans-resveratrol and flavonoids content, and a higher accumulation of calcium oxalate in crystal druses in the leaf mesophyll. These data can be a useful base to set up a control strategy against GLSD and give some input for better understanding the mechanisms involved in foliar symptom expression in GLSD.

  13. Radioactive inputs to the North Sea and the Channel

    International Nuclear Information System (INIS)

    1984-01-01

    The subject is covered in sections: introduction (radioactivity; radioisotopes; discharges from nuclear establishments); data sources (statutory requirements); sources of liquid radioactive waste (figure showing location of principal sources of radioactive discharges; tables listing principal discharges by activity and by nature of radioisotope); Central Electricity Generating Board nuclear power stations; research and industrial establishments; Ministy of Defence establishments; other UK inputs of radioactive waste; total inputs to the North Sea and the Channel (direct inputs; river inputs; adjacent sea areas); conclusions. (U.K.)

  14. Nutrients, phytoplankton, zooplankton, and macrobenthos

    Science.gov (United States)

    Rudstam, Lars G.; Holeck, Kristen T.; Watkins, James M.; Hotaling, Christopher; Lantry, Jana R.; Bowen, Kelly L.; Munawar, Mohi; Weidel, Brian C.; Barbiero, Richard; Luckey, Frederick J.; Dove, Alice; Johnson, Timothy B.; Biesinger, Zy

    2017-01-01

    Lower trophic levels support the prey fish on which most sport fish depend. Therefore, understanding the production potential of lower trophic levels is integral to the management of Lake Ontario’s fishery resources. Lower trophic-level productivity differs among offshore and nearshore waters. In the offshore, there is concern about the ability of the lake to support Alewife (Table 1) production due to a perceived decline in productivity of phytoplankton and zooplankton whereas, in the nearshore, there is a concern about excessive attached algal production (e.g., Cladophora) associated with higher nutrient concentrations—the oligotrophication of the offshore and the eutrophication of the nearshore (Mills et al. 2003; Holeck et al. 2008; Dove 2009; Koops et al. 2015; Stewart et al. 2016). Even though the collapse of the Alewife population in Lake Huron in 2003 (and the associated decline in the Chinook Salmon fishery) may have been precipitated by a cold winter (Dunlop and Riley 2013), Alewife had not returned to high abundances in Lake Huron as of 2014 (Roseman et al. 2015). Failure of the Alewife population to recover from collapse has been attributed to declines in lower trophic-level production (Barbiero et al. 2011; Bunnell et al. 2014; but see He et al. 2015). In Lake Michigan, concerns of a similar Alewife collapse led to a decrease in the number of Chinook Salmon stocked. If lower trophic-level production declines in Lake Ontario, a similar management action could be considered. On the other hand, in Lake Erie, which supplies most of the water in Lake Ontario, eutrophication is increasing and so are harmful algal blooms. Thus, there is also a concern that nutrient levels and algal blooms could increase in Lake Ontario, especially in the nearshore. Solutions to the two processes of concern—eutrophication in the nearshore and oligotrophication in the offshore—may be mutually exclusive. In either circumstance, fisheries management needs information on

  15. Waste treatment in physical input-output analysis

    NARCIS (Netherlands)

    Dietzenbacher, E

    2005-01-01

    When compared to monetary input-output tables (MIOTs), a distinctive feature of physical input-output tables (PIOTs) is that they include the generation of waste as part of a consistent accounting framework. As a consequence, however, physical input-output analysis thus requires that the treatment

  16. Distinctiveness and Bidirectional Effects in Input Enhancement for Vocabulary Learning

    Science.gov (United States)

    Barcroft, Joe

    2003-01-01

    This study examined input enhancement and second language (L2) vocabulary learning while exploring the role of "distinctiveness," the degree to which an item in the input diverges from the form in which other items in the input are presented, with regard to the nature and direction of the effects of enhancement. In this study,…

  17. Input Manipulation, Enhancement and Processing: Theoretical Views and Empirical Research

    Science.gov (United States)

    Benati, Alessandro

    2016-01-01

    Researchers in the field of instructed second language acquisition have been examining the issue of how learners interact with input by conducting research measuring particular kinds of instructional interventions (input-oriented and meaning-based). These interventions include such things as input flood, textual enhancement and processing…

  18. Comparison of linear microinstability calculations of varying input realism

    International Nuclear Information System (INIS)

    Rewoldt, G.; Kinsey, J.E.

    2004-01-01

    The effect of varying 'input realism' or varying completeness of the input data for linear microinstability calculations, in particular on the critical value of the ion temperature gradient for the ion temperature gradient mode, is investigated using gyrokinetic and gyrofluid approaches. The calculations show that varying input realism can have a substantial quantitative effect on the results

  19. Inputs and spatial distribution patterns of Cr in Jiaozhou Bay

    Science.gov (United States)

    Yang, Dongfang; Miao, Zhenqing; Huang, Xinmin; Wei, Linzhen; Feng, Ming

    2018-03-01

    Cr pollution in marine bays has been one of the critical environmental issues, and understanding the input and spatial distribution patterns is essential to pollution control. In according to the source strengths of the major pollution sources, the input patterns of pollutants to marine bay include slight, moderate and heavy, and the spatial distribution are corresponding to three block models respectively. This paper analyzed input patterns and distributions of Cr in Jiaozhou Bay, eastern China based on investigation on Cr in surface waters during 1979-1983. Results showed that the input strengths of Cr in Jiaozhou Bay could be classified as moderate input and slight input, and the input strengths were 32.32-112.30 μg L-1 and 4.17-19.76 μg L-1, respectively. The input patterns of Cr included two patterns of moderate input and slight input, and the horizontal distributions could be defined by means of Block Model 2 and Block Model 3, respectively. In case of moderate input pattern via overland runoff, Cr contents were decreasing from the estuaries to the bay mouth, and the distribution pattern was parallel. In case of moderate input pattern via marine current, Cr contents were decreasing from the bay mouth to the bay, and the distribution pattern was parallel to circular. The Block Models were able to reveal the transferring process of various pollutants, and were helpful to understand the distributions of pollutants in marine bay.

  20. Nutrient profiling of foods: creating a nutrient-rich food index.

    Science.gov (United States)

    Drewnowski, Adam; Fulgoni, Victor

    2008-01-01

    Nutrient profiling of foods, described as the science of ranking foods based on their nutrient content, is fast becoming the basis for regulating nutrition labels, health claims, and marketing and advertising to children. A number of nutrient profile models have now been developed by research scientists, regulatory agencies, and by the food industry. Whereas some of these models have focused on nutrients to limit, others have emphasized nutrients known to be beneficial to health, or some combination of both. Although nutrient profile models are often tailored to specific goals, the development process ought to follow the same science-driven rules. These include the selection of index nutrients and reference amounts, the development of an appropriate algorithm for calculating nutrient density, and the validation of the chosen nutrient profile model against healthy diets. It is extremely important that nutrient profiles be validated rather than merely compared to prevailing public opinion. Regulatory agencies should act only when they are satisfied that the scientific process has been followed, that the algorithms are transparent, and that the profile model has been validated with respect to objective measures of a healthy diet.