WorldWideScience

Sample records for single mutation promotes

  1. Hereditary Persistence of Fetal Hemoglobin Caused by Single Nucleotide Promoter Mutations in Sickle Cell Trait and Hb SC Disease.

    Science.gov (United States)

    Akinbami, Anthony O; Campbell, Andrew D; Han, Zeqiu J; Luo, Hong-Yuan; Chui, David H K; Steinberg, Martin H

    2016-01-01

    Hereditary persistence of fetal hemoglobin (HPFH) can be caused by point mutations in the γ-globin gene promoters. We report three rare cases: a child compound heterozygous for Hb S (HBB: c.20A > T) and HPFH with a novel point mutation in the (A)γ-globin gene promoter who had 42.0% Hb S, 17.0% Hb A and 38.0% Hb F; a man with Hb SC (HBB: c.19G > A) disease and a point mutation in the (G)γ-globin gene promoter who had 54.0% Hb S, 18.0% Hb C and 25.0% Hb F; a child heterozygous for Hb S and HPFH due to mutations in both the (A)γ- and (G)γ-globin gene promoters in cis [(G)γ(A)γ(β(+)) HPFH], with 67.0% Hb A, 6.5% Hb S and 25.0% Hb F.

  2. p53 mutations promote proteasomal activity.

    Science.gov (United States)

    Oren, Moshe; Kotler, Eran

    2016-07-27

    p53 mutations occur very frequently in human cancer. Besides abrogating the tumour suppressive functions of wild-type p53, many of those mutations also acquire oncogenic gain-of-function activities. Augmentation of proteasome activity is now reported as a common gain-of-function mechanism shared by different p53 mutants, which promotes cancer resistance to proteasome inhibitors.

  3. TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma

    NARCIS (Netherlands)

    M. Remke (Marc); E.A. Ramaswamy; M. Peacock (Munro); D.J.H. Shih (David J.); C. Koelsche (Christian); P.A. Northcott (Paul A.); N. Hill (Nadia); S. Cavalli (Silvia); M. Kool (Marcel); X. Wang (Xin); S. Mack (Stephen); M. Barszczyk (Mark); A.S. Morrissy (A. Sorana); X. Wu (Xiaochong); S. Agnihotri (Sameer); P. Luu (Phan); D. Jones (David); L. Garzia (Livia); A.M. Dubuc (Adrian); N. Zhukova (Nataliya); R. Vanner (Robert); J.M. Kros (Johan); P.J. French (Pim); E.G. van Meir (Erwin); R. Vibhakar (Rajeev); K. Zitterbart (Karel); J.A. Chan (Jennifer); L. Bognár (László); A. Klekner (Almos); B. Lach (Boleslaw); S. Jung (Shin); F. Saad (Fred); L.M. Liau (Linda); S. Albrecht (Steffen); M. Zollo (Maurizio); M.K. Cooper (Michael); R.C. Thompson (Reid); O. Delattre (Olivier); F. Bourdeaut (Franck); F.F. Doz (François); M. Garami (Miklós); P. Hauser (Peter); C.G. Carlotti (Carlos); T.E. Van Meter (Timothy); L. Massimi (Luca); D. Fults (Daniel); L.W. Pomeroy (Laura); T. Kumabe (Toshiro); Y.S. Ra (Young Shin); J.R. Leonard (Jeffrey); S.K. Elbabaa (Samer); J. Mora (Jaume); J.B. Rubin (Joshua); Y.-J. Cho (Yoon-Jae); R.E. McLendon (Roger); D.D. Bigner (Darell); C.G. Eberhart (Charles); M. Fouladi (Maryam); R.J. Wechsler-Reya (Robert); R. Faria (Rui); S.E. Croul (Sidney); A. Huang (Anding); E. Bouffet (Eric); C.E. Hawkins (Cynthia); M. Dirks (Maaike); W.A. Weiss (William); U. Schüller (Ulrich); A. Pollack (Aaron); P. Rutkowski (Piotr); D. Meyronet (David); A. Jouvet (Anne); M. Fèvre-Montange (Michelle); N. Jabado (Nada); M. Perek-Polnik (Marta); W.A. Grajkowska (Wieslawa); S.-K. Kim (Seung-Ki); J.T. Rutka (James); E. Malkin (Elissa); U. Tabori (Uri); S.M. Pfister (Stefan); A. Korshunov (Andrey); A. von Deimling (Andreas); M.D. Taylor (Michael)

    2013-01-01

    textabstractTelomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought

  4. Telomerase reverse transcriptase promoter mutations in bladder cancer

    DEFF Research Database (Denmark)

    Allory, Yves; Beukers, Willemien; Sagrera, Ana

    2014-01-01

    for detection of recurrences in urine in patients with urothelial bladder cancer (UBC). DESIGN, SETTING, AND PARTICIPANTS: A set of 111 UBCs of different stages was used to assess TERT promoter mutations by Sanger sequencing and TERT messenger RNA (mRNA) expression by reverse transcription...... surveillance after diagnosis of non-muscle-invasive UBC (n=194), was tested using a SNaPshot assay. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Association of mutation status with age, sex, tobacco, stage, grade, fibroblast growth factor receptor 3 (FGFR3) mutation, progression-free survival, disease...... frequent among FGFR3 mutant tumors (p=0.0002). There was no association between TERT mutations and mRNA expression (p=0.3). Mutations were not associated with clinical outcome. In urine, TERT mutations had 90% specificity in subjects with hematuria but no bladder tumor, and 73% in recurrence-free UBC...

  5. Germline TERT promoter mutations are rare in familial melanoma

    DEFF Research Database (Denmark)

    Harland, Mark; Petljak, Mia; Robles-Espinoza, Carla Daniela

    2016-01-01

    Germline CDKN2A mutations occur in 40 % of 3-or-more case melanoma families while mutations of CDK4, BAP1, and genes involved in telomere function (ACD, TERF2IP, POT1), have also been implicated in melanomagenesis. Mutation of the promoter of the telomerase reverse transcriptase (TERT) gene (c.-57...... T>G variant) has been reported in one family. We tested for the TERT promoter variant in 675 multicase families wild-type for the known high penetrance familial melanoma genes, 1863 UK population-based melanoma cases and 529 controls. Germline lymphocyte telomere length was estimated in carriers....... The c.-57 T>G TERT promoter variant was identified in one 7-case family with multiple primaries and early age of onset (earliest, 15 years) but not among population cases or controls. One family member had multiple primary melanomas, basal cell carcinomas and a bladder tumour. The blood leukocyte...

  6. Mutation dynamics and fitness effects followed in single cells.

    Science.gov (United States)

    Robert, Lydia; Ollion, Jean; Robert, Jerome; Song, Xiaohu; Matic, Ivan; Elez, Marina

    2018-03-16

    Mutations have been investigated for more than a century but remain difficult to observe directly in single cells, which limits the characterization of their dynamics and fitness effects. By combining microfluidics, time-lapse imaging, and a fluorescent tag of the mismatch repair system in Escherichia coli , we visualized the emergence of mutations in single cells, revealing Poissonian dynamics. Concomitantly, we tracked the growth and life span of single cells, accumulating ~20,000 mutations genome-wide over hundreds of generations. This analysis revealed that 1% of mutations were lethal; nonlethal mutations displayed a heavy-tailed distribution of fitness effects and were dominated by quasi-neutral mutations with an average cost of 0.3%. Our approach has enabled the investigation of single-cell individuality in mutation rate, mutation fitness costs, and mutation interactions. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Multiple Hotspot Mutations Scanning by Single Droplet Digital PCR.

    Science.gov (United States)

    Decraene, Charles; Silveira, Amanda B; Bidard, François-Clément; Vallée, Audrey; Michel, Marc; Melaabi, Samia; Vincent-Salomon, Anne; Saliou, Adrien; Houy, Alexandre; Milder, Maud; Lantz, Olivier; Ychou, Marc; Denis, Marc G; Pierga, Jean-Yves; Stern, Marc-Henri; Proudhon, Charlotte

    2018-02-01

    Progress in the liquid biopsy field, combined with the development of droplet digital PCR (ddPCR), has enabled noninvasive monitoring of mutations with high detection accuracy. However, current assays detect a restricted number of mutations per reaction. ddPCR is a recognized method for detecting alterations previously characterized in tumor tissues, but its use as a discovery tool when the mutation is unknown a priori remains limited. We established 2 ddPCR assays detecting all genomic alterations within KRAS exon 2 and EGFR exon 19 mutation hotspots, which are of clinical importance in colorectal and lung cancer, with use of a unique pair of TaqMan ® oligoprobes. The KRAS assay scanned for the 7 most common mutations in codons 12/13 but also all other mutations found in that region. The EGFR assay screened for all in-frame deletions of exon 19, which are frequent EGFR-activating events. The KRAS and EGFR assays were highly specific and both reached a limit of detection of <0.1% in mutant allele frequency. We further validated their performance on multiple plasma and formalin-fixed and paraffin-embedded tumor samples harboring a panel of different KRAS or EGFR mutations. This method presents the advantage of detecting a higher number of mutations with single-reaction ddPCRs while consuming a minimum of patient sample. This is particularly useful in the context of liquid biopsy because the amount of circulating tumor DNA is often low. This method should be useful as a discovery tool when the tumor tissue is unavailable or to monitor disease during therapy. © 2017 American Association for Clinical Chemistry.

  8. Senataxin Mutation Reveals How R-Loops Promote Transcription by Blocking DNA Methylation at Gene Promoters.

    Science.gov (United States)

    Grunseich, Christopher; Wang, Isabel X; Watts, Jason A; Burdick, Joshua T; Guber, Robert D; Zhu, Zhengwei; Bruzel, Alan; Lanman, Tyler; Chen, Kelian; Schindler, Alice B; Edwards, Nancy; Ray-Chaudhury, Abhik; Yao, Jianhua; Lehky, Tanya; Piszczek, Grzegorz; Crain, Barbara; Fischbeck, Kenneth H; Cheung, Vivian G

    2018-02-01

    R-loops are three-stranded nucleic acid structures found abundantly and yet often viewed as by-products of transcription. Studying cells from patients with a motor neuron disease (amyotrophic lateral sclerosis 4 [ALS4]) caused by a mutation in senataxin, we uncovered how R-loops promote transcription. In ALS4 patients, the senataxin mutation depletes R-loops with a consequent effect on gene expression. With fewer R-loops in ALS4 cells, the expression of BAMBI, a negative regulator of transforming growth factor β (TGF-β), is reduced; that then leads to the activation of the TGF-β pathway. We uncovered that genome-wide R-loops influence promoter methylation of over 1,200 human genes. DNA methyl-transferase 1 favors binding to double-stranded DNA over R-loops. Thus, in forming R-loops, nascent RNA blocks DNA methylation and promotes further transcription. Hence, our results show that nucleic acid structures, in addition to sequences, influence the binding and activity of regulatory proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Identifying EGFR-Expressed Cells and Detecting EGFR Multi-Mutations at Single-Cell Level by Microfluidic Chip

    Science.gov (United States)

    Li, Ren; Zhou, Mingxing; Li, Jine; Wang, Zihua; Zhang, Weikai; Yue, Chunyan; Ma, Yan; Peng, Hailin; Wei, Zewen; Hu, Zhiyuan

    2018-03-01

    EGFR mutations companion diagnostics have been proved to be crucial for the efficacy of tyrosine kinase inhibitor targeted cancer therapies. To uncover multiple mutations occurred in minority of EGFR-mutated cells, which may be covered by the noises from majority of un-mutated cells, is currently becoming an urgent clinical requirement. Here we present the validation of a microfluidic-chip-based method for detecting EGFR multi-mutations at single-cell level. By trapping and immunofluorescently imaging single cells in specifically designed silicon microwells, the EGFR-expressed cells were easily identified. By in situ lysing single cells, the cell lysates of EGFR-expressed cells were retrieved without cross-contamination. Benefited from excluding the noise from cells without EGFR expression, the simple and cost-effective Sanger's sequencing, but not the expensive deep sequencing of the whole cell population, was used to discover multi-mutations. We verified the new method with precisely discovering three most important EGFR drug-related mutations from a sample in which EGFR-mutated cells only account for a small percentage of whole cell population. The microfluidic chip is capable of discovering not only the existence of specific EGFR multi-mutations, but also other valuable single-cell-level information: on which specific cells the mutations occurred, or whether different mutations coexist on the same cells. This microfluidic chip constitutes a promising method to promote simple and cost-effective Sanger's sequencing to be a routine test before performing targeted cancer therapy.[Figure not available: see fulltext.

  10. Single base pair mutation analysis by PNA directed PCR clamping

    DEFF Research Database (Denmark)

    Ørum, H.; Nielsen, P.E.; Egholm, M.

    1993-01-01

    A novel method that allows direct analysis of single base mutation by the polymerase chain reaction (PCR) is described. The method utilizes the finding that PNAs (peptide nucleic acids) recognize and bind to their complementary nucleic acid sequences with higher thermal stability and specificity...... allows selective amplification/suppression of target sequences that differ by only one base pair. Finally we show that PNAs can be designed in such a way that blockage can be accomplished when the PNA target sequence is located between the PCR primers....

  11. Mutational analysis of the promoter and the coding region of the 5-HT1A gene

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, J.; Noethen, M.M.; Shimron-Abarbanell, D. [Univ. of Bonn (Germany)] [and others

    1994-09-01

    Disturbances of serotonergic pathways have been implicated in many neuropsychiatric disorders. Serotonin (5HT) receptors can be subdivided into at least three major families (5HT1, 5HT2, and 5HT3). Five human 5HT1 receptor subtypes have been cloned, namely 1A, 1D{alpha}, 1D{beta}, 1E, and 1F. Of these, the 5HT1A receptor is the best characterized subtype. In the present study we sought to identify genetic variation in the 5HT1A receptor gene which through alteration of protein function or level of expression might contribute to the genetics of neuropsychiatric diseases. The coding region and the 5{prime} promoter region of the 5HT1A gene from 159 unrelated subjects (45 schizophrenic, 46 bipolar affective, and 43 patients with Tourette`s syndrome, as well as 25 controls) were analyzed using SSCA. SSCA revealed the presence of two mutations both located in the coding region of the 5HT1A receptor gene. The first mutation is a rare silent C{r_arrow}T substitution at nucleotide position 549. The second mutation is characterized by a base pair substitution (A{r_arrow}G) at the first position of codon 28 and results in an amino acid exchange (Ile{r_arrow}Val). Since Val28 was found only in a single schizophrenic patient and in none of the other patients or controls, we decided to extend our samples and to use a restriction assay for screening a further 74 schizophrenic, 95 bipolar affective, and 49 patients with Tourette`s syndrome, as well as 185 controls, for the presence of the mutation. In total, the mutation was found in 2 schizophrenic patients, in 3 bipolars, in 1 Tourette patient, and in 5 controls. To our knowledge the Ile-28-Val substitution reported here is the first natural occuring molecular variant which has been identified for a serotonin receptor so far.

  12. Volatility of Mutator Phenotypes at Single Cell Resolution.

    Directory of Open Access Journals (Sweden)

    Scott R Kennedy

    2015-04-01

    Full Text Available Mutator phenotypes accelerate the evolutionary process of neoplastic transformation. Historically, the measurement of mutation rates has relied on scoring the occurrence of rare mutations in target genes in large populations of cells. Averaging mutation rates over large cell populations assumes that new mutations arise at a constant rate during each cell division. If the mutation rate is not constant, an expanding mutator population may contain subclones with widely divergent rates of evolution. Here, we report mutation rate measurements of individual cell divisions of mutator yeast deficient in DNA polymerase ε proofreading and base-base mismatch repair. Our data are best fit by a model in which cells can assume one of two distinct mutator states, with mutation rates that differ by an order of magnitude. In error-prone cell divisions, mutations occurred on the same chromosome more frequently than expected by chance, often in DNA with similar predicted replication timing, consistent with a spatiotemporal dimension to the hypermutator state. Mapping of mutations onto predicted replicons revealed that mutations were enriched in the first half of the replicon as well as near termination zones. Taken together, our findings show that individual genome replication events exhibit an unexpected volatility that may deepen our understanding of the evolution of mutator-driven malignancies.

  13. Biological significance of TERT promoter mutation in papillary urothelial neoplasm of low malignant potential.

    Science.gov (United States)

    Wang, Chung-Chieh; Huang, Chao-Yuan; Jhuang, Yu-Lin; Chen, Chih-Chi; Jeng, Yung-Ming

    2018-04-01

    Mutations in FGFR3 and the promoter region of the telomerase reverse transcriptase (TERT) gene have been found frequently in urothelial carcinoma of the urinary bladder. However, related data for papillary urothelial neoplasm of low malignant potential (PUNLMP) are limited. In this study, we investigated the mutation status of the TERT promoter, FGFR3 and HRAS in low-grade papillary urothelial neoplasms and evaluated their prognostic significance. The cases included in this study comprised 21 inverted papillomas, 30 PUNLMPs and 34 low-grade non-invasive papillary urothelial carcinomas (NIPUCs). TERT promoter mutations were observed in 10 (33%) PUNLMPs and 17 (50%) low-grade NIPUCs, but not in any inverted papilloma. FGFR3 mutations were observed more frequently in PUNLMP and low-grade NIPUC than in inverted papillomas (P = 0.009), whereas the opposite trend was noted for HRAS mutations (P low-grade NIPUC (P = 0.530). Notably, PUNLMP cases with TERT promoter mutations had a similar recurrence rate to that in low-grade NIPUC cases (P = 0.487). Our results suggest that the status of the TERT promoter mutation may serve as a biomarker of prognostic stratification in patients with PUNLMP. © 2017 John Wiley & Sons Ltd.

  14. Telomerase reverse transcriptase promoter mutations in glandular lesions of the urinary bladder.

    Science.gov (United States)

    Vail, Eric; Zheng, Xiaoyong; Zhou, Ming; Yang, Ximing; Fallon, John T; Epstein, Jonathan I; Zhong, Minghao

    2015-10-01

    Glandular lesions of the urinary bladder include a broad spectrum of entities ranging from completely benign to primary and secondary malignancies. The accurate diagnosis of these lesions is both important and challenging. Recently, studies suggest that telomerase reverse transcriptase (TERT) promoter mutations could be a biomarker for urothelial carcinoma (UC). We hypothesized that these mutations can distinguish UC with glandular differentiation from nephrogenic adenoma, primary adenocarcinoma of the urinary bladder (PAUB), or secondary malignancies. Twenty-five cases of benign glandular lesions (including nephrogenic adenoma); 29 cases of UC with glandular differentiation; 10 cases of PAUB; and 10 cases each of metastatic colon cancer, prostatic carcinoma, and carcinoma from Mullerian origin were collected. Slides were reviewed and selected to make sure the lesion was at least 10% to 20% of all tissue. Macrodissection was performed in some of cases, and genomic DNA was extracted from the tissue. Telomerase reverse transcriptase promoter mutations were determined by standard polymerase chain reaction sequencing. Twenty-one cases (72%) of UC with glandular differentiation were positive for TERT promoter mutations. However, none of the remaining cases (total 65 cases of benign lesions, PAUB, and metastatic carcinomas) was positive for TERT promoter mutation. Telomerase reverse transcriptase promoter mutations were highly associated with UC including UC with glandular differentiation but not other glandular lesions of bladder. Therefore, in conjunction with morphologic features, Immunohistochemistry stain profile, and clinical information, TERT promoter mutations could distinguish UC with glandular differentiation from other bladder glandular lesions. In addition, lack of TERT promoter mutations in primary adenocarcinoma of bladder suggests that this entity may have different origin or carcinogenesis from those of UC. Published by Elsevier Inc.

  15. TERT promoter mutations and long telomere length predict poor survival and radiotherapy resistance in gliomas.

    Science.gov (United States)

    Gao, Ke; Li, Gang; Qu, Yiping; Wang, Maode; Cui, Bo; Ji, Meiju; Shi, Bingyin; Hou, Peng

    2016-02-23

    Increasing evidences have implicated somatic gain-of-function mutations at the telomerase reverse transcriptase (TERT) promoter as one of the major mechanisms that promote transcriptional activation of TERT and subsequently maintain telomere length in human cancers including glioma. To investigate the prognostic value of these mutations and telomere length, individually and their coexistence, in gliomas, we analyzed two somatic mutations C228T and C250T in the TERT promoter, relative telomere length (RTL), IDH1 mutation and MGMT methylation in 389 glioma patients, and explored their associations with patient characteristics and clinical outcomes. Our data showed that C228T and C250T mutations were found in 17.0% (66 of 389) and 11.8% (46 of 389) of gliomas, respectively, and these two mutations were mutually exclusive in this cancer. Moreover, they were significantly associated with WHO grade. We also found that the RTL was significant longer in gliomas than in meningiomas and normal brain tissues (Median, 0.89 vs. 0.44 and 0.50; P radiotherapy. Collectively, TERT promoter mutations and long RTL are not only prognostic factors for poor clinical outcomes, but also the predictors of radiotherapy resistance in gliomas.

  16. TERT promoter hot spot mutations are frequent in Indian cervical and oral squamous cell carcinomas.

    Science.gov (United States)

    Vinothkumar, Vilvanathan; Arunkumar, Ganesan; Revathidevi, Sundaramoorthy; Arun, Kanagaraj; Manikandan, Mayakannan; Rao, Arunagiri Kuha Deva Magendhra; Rajkumar, Kottayasamy Seenivasagam; Ajay, Chandrasekar; Rajaraman, Ramamurthy; Ramani, Rajendren; Murugan, Avaniyapuram Kannan; Munirajan, Arasambattu Kannan

    2016-06-01

    Squamous cell carcinoma (SCC) of the uterine cervix and oral cavity are most common cancers in India. Telomerase reverse transcriptase (TERT) overexpression is one of the hallmarks for cancer, and activation through promoter mutation C228T and C250T has been reported in variety of tumors and often shown to be associated with aggressive tumors. In the present study, we analyzed these two hot spot mutations in 181 primary tumors of the uterine cervix and oral cavity by direct DNA sequencing and correlated with patient's clinicopathological characteristics. We found relatively high frequency of TERT hot spot mutations in both cervical [21.4 % (30/140)] and oral [31.7 % (13/41)] squamous cell carcinomas. In cervical cancer, TERT promoter mutations were more prevalent (25 %) in human papilloma virus (HPV)-negative cases compared to HPV-positive cases (20.6 %), and both TERT promoter mutation and HPV infection were more commonly observed in advanced stage tumors (77 %). Similarly, the poor and moderately differentiated tumors of the uterine cervix had both the TERT hot spot mutations and HPV (16 and 18) at higher frequency (95.7 %). Interestingly, we observed eight homozygous mutations (six 228TT and two 250TT) only in cervical tumors, and all of them were found to be positive for high-risk HPV. To the best of our knowledge, this is the first study from India reporting high prevalence of TERT promoter mutations in primary tumors of the uterine cervix and oral cavity. Our results suggest that TERT reactivation through promoter mutation either alone or in association with the HPV oncogenes (E6 and E7) could play an important role in the carcinogenesis of cervical and oral cancers.

  17. Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment.

    Science.gov (United States)

    Gomez, James E; Kaufmann-Malaga, Benjamin B; Wivagg, Carl N; Kim, Peter B; Silvis, Melanie R; Renedo, Nikolai; Ioerger, Thomas R; Ahmad, Rushdy; Livny, Jonathan; Fishbein, Skye; Sacchettini, James C; Carr, Steven A; Hung, Deborah T

    2017-02-21

    Antibiotic resistance arising via chromosomal mutations is typically specific to a particular antibiotic or class of antibiotics. We have identified mutations in genes encoding ribosomal components in Mycobacterium smegmatis that confer resistance to several structurally and mechanistically unrelated classes of antibiotics and enhance survival following heat shock and membrane stress. These mutations affect ribosome assembly and cause large-scale transcriptomic and proteomic changes, including the downregulation of the catalase KatG, an activating enzyme required for isoniazid sensitivity, and upregulation of WhiB7, a transcription factor involved in innate antibiotic resistance. Importantly, while these ribosomal mutations have a fitness cost in antibiotic-free medium, in a multidrug environment they promote the evolution of high-level, target-based resistance. Further, suppressor mutations can then be easily acquired to restore wild-type growth. Thus, ribosomal mutations can serve as stepping-stones in an evolutionary path leading to the emergence of high-level, multidrug resistance.

  18. Endometrial tumour BRAF mutations and MLH1 promoter methylation as predictors of germline mismatch repair gene mutation status: a literature review.

    Science.gov (United States)

    Metcalf, Alexander M; Spurdle, Amanda B

    2014-03-01

    Colorectal cancer (CRC) that displays high microsatellite instability (MSI-H) can be caused by either germline mutations in mismatch repair (MMR) genes, or non-inherited transcriptional silencing of the MLH1 promoter. A correlation between MLH1 promoter methylation, specifically the 'C' region, and BRAF V600E status has been reported in CRC studies. Germline MMR mutations also greatly increase risk of endometrial cancer (EC), but no systematic review has been undertaken to determine if these tumour markers may be useful predictors of MMR mutation status in EC patients. Endometrial cancer cohorts meeting review inclusion criteria encompassed 2675 tumours from 20 studies for BRAF V600E, and 447 tumours from 11 studies for MLH1 methylation testing. BRAF V600E mutations were reported in 4/2675 (0.1%) endometrial tumours of unknown MMR mutation status, and there were 7/823 (0.9%) total sequence variants in exon 11 and 27/1012 (2.7%) in exon 15. Promoter MLH1 methylation was not observed in tumours from 32 MLH1 mutation carriers, or for 13 MSH2 or MSH6 mutation carriers. MMR mutation-negative individuals with tumour MLH1 and PMS2 IHC loss displayed MLH1 methylation in 48/51 (94%) of tumours. We have also detailed specific examples that show the importance of MLH1 promoter region, assay design, and quantification of methylation. This review shows that BRAF mutations occurs so infrequently in endometrial tumours they can be discounted as a useful marker for predicting MMR-negative mutation status, and further studies of endometrial cohorts with known MMR mutation status are necessary to quantify the utility of tumour MLH1 promoter methylation as a marker of negative germline MMR mutation status in EC patients.

  19. MDM2 SNP309 promoter polymorphism and p53 mutations in urinary bladder carcinoma stage T1

    Directory of Open Access Journals (Sweden)

    Olsson Hans

    2013-01-01

    Full Text Available Abstract Background Urinary bladder carcinoma stage T1 is an unpredictable disease that in some cases has a good prognosis with only local or no recurrence, but in others can appear as a more aggressive tumor with progression to more advanced stages. The aim here was to investigate stage T1 tumors regarding MDM2 promoter SNP309 polymorphism, mutations in the p53 gene, and expression of p53 and p16 measured by immunohistochemistry, and subsequently relate these changes to tumor recurrence and progression. We examined a cohort of patients with primary stage T1 urothelial carcinoma of the bladder and their tumors. Methods After re-evaluation of the original slides and exclusions, the study population comprised 141 patients, all with primary stage T1 urothelial carcinoma of the bladder. The hospital records were screened for clinical parameters and information concerning presence of histologically proven recurrence and progression. The paraffin-embedded tumor material was evaluated by immunohistochemistry. Any mutations found in the p53 gene were studied by single-strand conformation analysis and Sanger sequencing. The MDM2 SNP309 polymorphism was investigated by pyrosequencing. Multivariate analyses concerning association with prognosis were performed, and Kaplan-Meier analysis was conducted for a combination of changes and time to progression. Results Of the 141 patients, 82 had at least one MDM2 SNP309 G allele, and 53 had a mutation in the p53 gene, but neither of those anomalies was associated with a worse prognosis. A mutation in the p53 gene was associated with immunohistochemically visualized p53 protein expression at a cut-off value of 50%. In the group with p53 mutation Kaplan-Meier analysis showed higher rate of progression and shorter time to progression in patients with immunohistochemically abnormal p16 expression compared to them with normal p16 expression (p = 0.038. Conclusions MDM2 SNP309 promoter polymorphism and mutations in

  20. BRAF mutation-specific promoter methylation of FOX genes in colorectal cancer

    NARCIS (Netherlands)

    E.H.J. van Roon (Eddy); A. Boot (Arnoud); A.A. Dihal (Ashwin); R.F. Ernst (Robert); T. van Wezel (Tom); H. Morreau (Hans); J.M. Boer (Judith)

    2013-01-01

    textabstractBackground: Cancer-specific hypermethylation of (promoter) CpG islands is common during the tumorigenesis of colon cancer. Although associations between certain genetic aberrations, such as BRAF mutation and microsatellite instability, and the CpG island methylator phenotype (CIMP), have

  1. The effect of mutations in the AmpC promoter region on β-lactam ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... between the -10 and -35 boxes affects the resistance of bacteria to β-lactam antibiotics. .... The chromosomal cephalosporinase gene, ampC, of E. .... mutation in the ampC promoter increasing resistance to β-lactams in.

  2. Mild and severe muscular dystrophy caused by a single {gamma}-sarcoglycan mutation

    Energy Technology Data Exchange (ETDEWEB)

    McNally, E.M.; Boennemann, C.G.; Lidov, H.G.W. [Brigham and Women`s Hospital, Boston, MA (United States)] [and others

    1996-11-01

    Autosomal recessive muscular dystrophy is genetically heterogeneous. One form of this disorder, limb-girdle muscular dystrophy type 2C (LGMD 2C), is prevalent in northern Africa and has been shown to be associated with a single mutation in the gene encoding the dystrophin-associated protein {gamma}-sarcoglycan. The previous mutation analysis of {gamma}-sarcoglycan required the availability of muscle biopsies. To establish a mutation assay for genomic DNA, the intron-exon structure of the {gamma}-sarcoglycan gene was determined, and primers were designed to amplify each of the exons encoding {gamma}-sarcoglycan. We studied a group of Brazilian muscular dystrophy patients for mutations in the {gamma}-sarcoglycan gene. These patients were selected on the basis of autosomal inheritance and/or the presence of normal dystrophin and/or deficiency of {alpha}-sarcoglycan immunostaining. Four of 19 patients surveyed had a single, homozygous mutation in the {gamma}-sarcoglycan gene. The mutation identified in these patients, all of African-Brazilian descent, is identical to that seen in the North African population, suggesting that even patients of remote African descent may carry this mutation. The phenotype in these patients varied considerably. Of four families with an identical mutation, three have a severe Duchenne-like muscular dystrophy. However, one family has much milder symptoms, suggesting that other loci may be present that modify the severity of the clinical course resulting from {gamma}-sarcoglycan gene mutations. 19 refs., 5 figs., 3 tabs.

  3. Electrical signatures of single-stranded DNA with single base mutations in a nanopore capacitor

    International Nuclear Information System (INIS)

    Gracheva, Maria E; Aksimentiev, Aleksei; Leburton, Jean-Pierre

    2006-01-01

    In this paper, we evaluate the magnitude of the electrical signals produced by DNA translocation through a 1 nm diameter nanopore in a capacitor membrane with a numerical multi-scale approach, and assess the possibility of resolving individual nucleotides as well as their types in the absence of conformational disorder. We show that the maximum recorded voltage caused by the DNA translocation is about 35 mV, while the maximum voltage signal due to the DNA backbone is about 30 mV, and the maximum voltage of a DNA base is about 8 mV. Signals from individual nucleotides can be identified in the recorded voltage traces, suggesting a 1 nm diameter pore in a capacitor can be used to accurately count the number of nucleotides in a DNA strand. Furthermore, we study the effect of a single base substitution on the voltage trace, and calculate the differences among the voltage traces due to a single base mutation for the sequences C 3 AC 7 , C 3 CC 7 , C 3 GC 7 and C 3 TC 7 . The calculated voltage differences are in the 5-10 mV range. The calculated maximum voltage caused by the translocation of individual bases varies from 2 to 9 mV, which is experimentally detectable

  4. Frequent beneficial mutations during single-colony serial transfer of Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Kathleen E Stevens

    2011-08-01

    Full Text Available The appearance of new mutations within a population provides the raw material for evolution. The consistent decline in fitness observed in classical mutation accumulation studies has provided support for the long-held view that deleterious mutations are more common than beneficial mutations. Here we present results of a study using a mutation accumulation design with the bacterium Streptococcus pneumoniae in which the fitness of the derived populations increased. This rise in fitness was associated specifically with adaptation to survival during brief stationary phase periods between single-colony population bottlenecks. To understand better the population dynamics behind this unanticipated adaptation, we developed a maximum likelihood model describing the processes of mutation and stationary-phase selection in the context of frequent population bottlenecks. Using this model, we estimate that the rate of beneficial mutations may be as high as 4.8×10(-4 events per genome for each time interval corresponding to the pneumococcal generation time. This rate is several orders of magnitude higher than earlier estimates of beneficial mutation rates in bacteria but supports recent results obtained through the propagation of small populations of Escherichia coli. Our findings indicate that beneficial mutations may be relatively frequent in bacteria and suggest that in S. pneumoniae, which develops natural competence for transformation, a steady supply of such mutations may be available for sampling by recombination.

  5. Effect of tumor promoters on ultraviolet light-induced mutation and mitotic recombination in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kunz, B.A.; Hannan, M.A.; Haynes, R.H.

    1980-01-01

    Recently, it has been suggested that mitotic recombination is involved in tumor promotion. On this basis, one might expect tumor promoters to be recombinagenic. D7 is a diploid strain of yeast in which both mutation and mitotic recombination can be measured. We have used this strain to assay the known tumor promoters, iodacetate, anthralin, and 12-0-tetradecanoylphorbol-13-acetate, and the cocarcinogen, catechol, for mutagenicity, recombinagenicity, and the ability to enhance ultraviolet light (UV)-induced genetic events. In the absence of preirradiation with UV, iodoacetate was found to be recombinagenic whereas catechol was mutagenic; however, in both cases, the effects were small. Iodoacetate, anthralin, and catechol potentiated UV-induced mitotic crossing-over, aberrant colony formation, and mutation, while catechol also increased UV-induced gene conversion. We were unable to detect any mutagenic or recombinagenic effect of 12-0-tetradecanoyl-phorbol-13-acetate in either whole cells or spheroplasts. Our results do not indicate any consistent correlation between tumor-promoting activity and the ability of an agent to induce mitotic recombination in yeast. However, the ability to potentiate UV-induced mutation and mitotic recombination may reflect the cocarcinogenic activity of certain promoters

  6. The frequency of CCR5 promoter polymorphisms and CCR5 32 mutation in Iranian populations

    Directory of Open Access Journals (Sweden)

    Mohammad Zare-Bidaki

    2015-04-01

    Full Text Available Evidence showed that chemokines serve as pro-migratory factors for immune cells. CCL3, CCL4 and CCL5, as the main CC  chemokines subfamily members, activate immune cells through binding to CC chemokine receptor 5 or CCR5. Macrophages, NK cells and T lymphocytes express CCR5 and thus, affected CCR5 expression or functions could be associated with altered immune responses. Deletion of 32 base pairs (D 32 in the exon 1 of the CCR5 gene, which is known as CCR5 D 32 mutation causes down regulation and malfunction of the molecule. Furthermore, it has been evidenced that three polymorphisms in the promoter region of CCR5 modulate its expression. Altered CCR5 expression in microbial infection and immune related diseases have been reported by several researchers but the role of CCR5 promoter polymorphisms and CCR5 D 32 mutation in Iranian patients suffering from these diseases are controversial. Due to the fact that Iranian people have different genetic backgrounds compared to other ethnics, hence, CCR5 promoter polymorphisms and CCR5 D 32 mutation association with the diseases may be different in Iranian patients. Therefore, this review addresses the most recent information regarding the prevalence as well as association of the mutation and polymorphisms in Iranian patients with microbial infection and immune related diseases as along with normal population.

  7. A Mutator Phenotype Promoting the Emergence of Spontaneous Oxidative Stress-Resistant Mutants in Campylobacter jejuni.

    Science.gov (United States)

    Dai, Lei; Sahin, Orhan; Tang, Yizhi; Zhang, Qijing

    2017-12-15

    Campylobacter jejuni is a leading cause of foodborne illnesses worldwide. As a microaerophilic organism, C. jejuni must be able to defend against oxidative stress encountered both in the host and in the environment. How Campylobacter utilizes a mutation-based mechanism for adaptation to oxidative stress is still unknown. Here we present a previously undescribed phenotypic and genetic mechanism that promotes the emergence of oxidative stress-resistant mutants. Specifically, we showed that a naturally occurring mutator phenotype, resulting from a loss of function mutation in the DNA repair enzyme MutY, increased oxidative stress resistance (OX R ) in C. jejuni We further demonstrated that MutY malfunction did not directly contribute to the OX R phenotype but increased the spontaneous mutation rate in the peroxide regulator gene perR , which functions as a repressor for multiple genes involved in oxidative stress resistance. Mutations in PerR resulted in loss of its DNA binding function and derepression of PerR-controlled oxidative stress defense genes, thereby conferring an OX R phenotype and facilitating Campylobacter survival under oxidative stress. These findings reveal a new mechanism that promotes the emergence of spontaneous OX R mutants in bacterial organisms. IMPORTANCE Although a mutator phenotype has been shown to promote antibiotic resistance in many bacterial species, little is known about its contribution to the emergence of OX R mutants. This work describes the link between a mutator phenotype and the enhanced emergence of OX R mutants as well as its underlying mechanism involving DNA repair and mutations in PerR. Since DNA repair systems and PerR are well conserved in many bacterial species, especially in Gram positives, the same mechanism may operate in multiple bacterial species. Additionally, we developed a novel method that allows for rapid quantification of spontaneous OX R mutants in a bacterial population. This method represents a technical

  8. Intramolecular electron transfer in single-site-mutated azurins

    DEFF Research Database (Denmark)

    Farver, O; Skov, L K; Pascher, T

    1993-01-01

    . Natl. Acad. Sci. U.S.A. 86, 6968-6972]. The RSSR- radical produced in the above reaction was reoxidized in a slower intramolecular electron-transfer process (30-70 s-1 at 298 K) concomitant with a further reduction of the Cu(II) ion. The temperature dependence of the latter rates was determined......, lambda = 135 kJ mol-1 for the reorganization energy was derived. When Trp48, situated midway between the donor and the acceptor, was replaced by Leu or Met, only a small change in the rate of intramolecular electron transfer was observed, indicating that the aromatic residue in this position...... is apparently only marginally involved in electron transfer in wild-type azurin. Pathway calculations also suggest that a longer, through-backbone path is more efficient than the shorter one involving Trp48. The former pathway yields an exponential decay factor, beta, of 6.6 nm-1. Another mutation, raising...

  9. A single nucleotide mutation in Nppc is associated with a long bone abnormality in lbab mice

    Directory of Open Access Journals (Sweden)

    Roe Bruce A

    2007-04-01

    Full Text Available Abstract Background The long bone abnormality (lbab mouse is a new autosomal recessive mutant characterized by overall smaller body size with proportionate dwarfing of all organs and shorter long bones. Previous linkage analysis has located the lbab mutation on chromosome 1 between the markers D1Mit9 and D1Mit488. Results A genome-based positional approach was used to identify a mutation associated with lbab disease. A total of 122 genes and expressed sequence tags at the lbab region were screened for possible mutation by using genomic DNA from lbabl/lbab, lbab/+, and +/+ B6 mice and high throughput temperature gradient capillary electrophoresis. A sequence difference was identified in one of the amplicons of gene Nppc between lbab/lbab and +/+ mice. One-step reverse transcriptase polymerase chain reaction was performed to validate the difference of Nppc in different types of mice at the mRNA level. The mutation of Nppc was unique in lbab/lbab mice among multiple mouse inbred strains. The mutation of Nppc is co-segregated with lbab disease in 200 progenies produced from heterozygous lbab/+ parents. Conclusion A single nucleotide mutation of Nppc is associated with dwarfism in lbab/lbab mice. Current genome information and technology allow us to efficiently identify single nucleotide mutations from roughly mapped disease loci. The lbab mouse is a useful model for hereditary human achondroplasia.

  10. A single nucleotide mutation in Nppc is associated with a long bone abnormality in lbab mice.

    Science.gov (United States)

    Jiao, Yan; Yan, Jian; Jiao, Feng; Yang, Hongbin; Donahue, Leah Rae; Li, Xinmin; Roe, Bruce A; Stuart, John; Gu, Weikuan

    2007-04-17

    The long bone abnormality (lbab) mouse is a new autosomal recessive mutant characterized by overall smaller body size with proportionate dwarfing of all organs and shorter long bones. Previous linkage analysis has located the lbab mutation on chromosome 1 between the markers D1Mit9 and D1Mit488. A genome-based positional approach was used to identify a mutation associated with lbab disease. A total of 122 genes and expressed sequence tags at the lbab region were screened for possible mutation by using genomic DNA from lbabl/lbab, lbab/+, and +/+ B6 mice and high throughput temperature gradient capillary electrophoresis. A sequence difference was identified in one of the amplicons of gene Nppc between lbab/lbab and +/+ mice. One-step reverse transcriptase polymerase chain reaction was performed to validate the difference of Nppc in different types of mice at the mRNA level. The mutation of Nppc was unique in lbab/lbab mice among multiple mouse inbred strains. The mutation of Nppc is co-segregated with lbab disease in 200 progenies produced from heterozygous lbab/+ parents. A single nucleotide mutation of Nppc is associated with dwarfism in lbab/lbab mice. Current genome information and technology allow us to efficiently identify single nucleotide mutations from roughly mapped disease loci. The lbab mouse is a useful model for hereditary human achondroplasia.

  11. K-Ras and β-catenin mutations cooperate with Fgfr3 mutations in mice to promote tumorigenesis in the skin and lung, but not in the bladder

    Directory of Open Access Journals (Sweden)

    Imran Ahmad

    2011-07-01

    The human fibroblast growth factor receptor 3 (FGFR3 gene is frequently mutated in superficial urothelial cell carcinoma (UCC. To test the functional significance of FGFR3 activating mutations as a ‘driver’ of UCC, we targeted the expression of mutated Fgfr3 to the murine urothelium using Cre-loxP recombination driven by the uroplakin II promoter. The introduction of the Fgfr3 mutations resulted in no obvious effect on tumorigenesis up to 18 months of age. Furthermore, even when the Fgfr3 mutations were introduced together with K-Ras or β-catenin (Ctnnb1 activating mutations, no urothelial dysplasia or UCC was observed. Interestingly, however, owing to a sporadic ectopic Cre recombinase expression in the skin and lung of these mice, Fgfr3 mutation caused papilloma and promoted lung tumorigenesis in cooperation with K-Ras and β-catenin activation, respectively. These results indicate that activation of FGFR3 can cooperate with other mutations to drive tumorigenesis in a context-dependent manner, and support the hypothesis that activation of FGFR3 signaling contributes to human cancer.

  12. Systematic screening for mutations in the promoter and the coding region of the 5-HT{sub 1A} gene

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, J.; Shimron-Abarbanell, D.; Cichon, S. [Univ. of Bonn (Germany)] [and others

    1995-10-09

    In the present study we sought to identify genetic variation in the 5-HT{sub 1A} receptor gene which through alteration of protein function or level of expression might contribute to the genetic predisposition to neuropsychiatric diseases. Genomic DNA samples from 159 unrelated subjects (including 45 schizophrenic, 46 bipolar affective, and 43 patients with Tourette`s syndrome, as well as 25 healthy controls) were investigated by single-strand conformation analysis. Overlapping PCR (polymerase chain reaction) fragments covered the whole coding sequence as well as the 5{prime} untranslated region of the 5-HT{sub 1A} gene. The region upstream to the coding sequence we investigated contains a functional promoter. We found two rare nucleotide sequence variants. Both mutations are located in the coding region of the gene: a coding mutation (A{yields}G) in nucleotide position 82 which leads to an amino acid exchange (Ile{yields}Val) in position 28 of the receptor protein and a silent mutation (C{yields}T) in nucleotide position 549. The occurrence of the Ile-28-Val substitution was studied in an extended sample of patients (n = 352) and controls (n = 210) but was found in similar frequencies in all groups. Thus, this mutation is unlikely to play a significant role in the genetic predisposition to the diseases investigated. In conclusion, our study does not provide evidence that the 5-HT{sub 1A} gene plays either a major or a minor role in the genetic predisposition to schizophrenia, bipolar affective disorder, or Tourette`s syndrome. 29 refs., 4 figs., 1 tab.

  13. Frequency and spectrum of mutations induced by gamma irradiation in single, double and triple dwarf wheats

    International Nuclear Information System (INIS)

    Dhonukshe, B.L.

    1981-01-01

    Induced mutation studies were carried with three dwarf wheat varieties viz., ''Sonalika'', ''Chhoti Lerma'' and ''Hira'', considered to be single, double and trible dwarfs, respectively. Gamma-rays were used as a source of irradiation. Frequency of chlorophyll mutations were comparatively low and the spectrum was narrow. Chlorophyll mutations were altogether absent in the variety ''Sonalika''. A very wide spectrum of viable mutations affecting stem, leaf, ear growth habit, maturity and fertility characteristics was observed in the M 2 . The cumulative frequency of all the mutants together was quite high, which varied with the varieties. There were varietal differences in the composition and width of the spectrum induced by gamma-rays. The dwarf mutants having desirable leaf and spike characters were isolated in all the three varieties. (author)

  14. AIP mutations in Brazilian patients with sporadic pituitary adenomas: a single-center evaluation

    Science.gov (United States)

    Kasuki, Leandro; de Azeredo Lima, Carlos Henrique; Ogino, Liana; Camacho, Aline H S; Chimelli, Leila; Korbonits, Márta

    2017-01-01

    Aryl hydrocarbon receptor-interacting protein (AIP) gene mutations (AIPmut) are the most frequent germline mutations found in apparently sporadic pituitary adenomas (SPA). Our aim was to evaluate the frequency of AIPmut among young Brazilian patients with SPA. We performed an observational cohort study between 2013 and 2016 in a single referral center. AIPmut screening was carried out in 132 SPA patients with macroadenomas diagnosed up to 40 years or in adenomas of any size diagnosed until 18 years of age. Twelve tumor samples were also analyzed. Leukocyte DNA and tumor tissue DNA were sequenced for the entire AIP-coding region for evaluation of mutations. Eleven (8.3%) of the 132 patients had AIPmut, comprising 9/74 (12%) somatotropinomas, 1/38 (2.6%) prolactinoma, 1/10 (10%) corticotropinoma and no non-functioning adenomas. In pediatric patients (≤18 years), AIPmut frequency was 13.3% (2/15). Out of the 5 patients with gigantism, two had AIPmut, both truncating mutations. The Y268* mutation was described in Brazilian patients and the K273Rfs*30 mutation is a novel mutation in our patient. No somatic AIP mutations were found in the 12 tumor samples. A tumor sample from an acromegaly patient harboring the A299V AIPmut showed loss of heterozygosity. In conclusion, AIPmut frequency in SPA Brazilian patients is similar to other populations. Our study identified two mutations exclusively found in Brazilians and also shows, for the first time, loss of heterozygosity in tumor DNA from an acromegaly patient harboring the A299V AIPmut. Our findings corroborate previous observations that AIPmut screening should be performed in young patients with SPA. PMID:29074612

  15. Identification of five novel FBN1 mutations by non-radioactive single-strand conformation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.; Qian, C.; Comeau, K.; Francke, U. [Stanford Univ. Medical Center, Stanford, CA (United States)

    1994-09-01

    Marfan syndrome (MFS), one of the most common genetic disorders of connective tissue, is characterized by variable manifestations in skeletal, cardiovascular and ocular systems. Mutations in the fibrillin gene on chromosome 15 (FBN1) have been shown to cause MFS. To examine the relationship between FBN1 gene mutations, fibrillin protein function and MFS phenotypes, we screened for alternations in the fibrillin coding sequence in fibroblast derived cDNA from MFS patients. To date, abnormally migrating bands in more than 20 unrelated MFS patients have been identified by using non-radioactive single-strand conformation analysis and silver staining. Five altered bands have been directly sequenced. Two missense mutations and three splice site mutations have been identified. Both missense mutations substitute another amino acid for a cysteine residue (C1402W and C1672R) in EGF-like motifs of the fibrillin polypeptide chain. The two splice site mutations are at nucleotide positions 6994+1 (G{yields}A), and 7205-2 (A{yields}G) and result in in-frame skipping of exon 56 and 58, respectively. Skipping of exon 56 occurs in 50% of mutant transcripts. Use of a cryptic splice site 51 bp upstream of the normal donor site results in half of the mutant transcripts containing part of exon 56. Both products contain in-frame deletions. Another splice site mutation, identified by exon screening from patient genomic DNA using intron primers, is at nucleotide position 2293+2 (T{yields}A), but the predicted exon skipping has not been detected at the RT-PCR level. This may be due to instability of the mutant transcript. Including the mutations reported here, a total of 8 out of 36 published FBN1 gene mutations involve exon skipping. It may be inferred that FBN1 exon skipping plays an important pathogenic role in MFS.

  16. AIP mutations in Brazilian patients with sporadic pituitary adenomas: a single-center evaluation

    Directory of Open Access Journals (Sweden)

    Paula Bruna Araujo

    2017-11-01

    Full Text Available Aryl hydrocarbon receptor-interacting protein (AIP gene mutations (AIPmut are the most frequent germline mutations found in apparently sporadic pituitary adenomas (SPA. Our aim was to evaluate the frequency of AIPmut among young Brazilian patients with SPA. We performed an observational cohort study between 2013 and 2016 in a single referral center. AIPmut screening was carried out in 132 SPA patients with macroadenomas diagnosed up to 40 years or in adenomas of any size diagnosed until 18 years of age. Twelve tumor samples were also analyzed. Leukocyte DNA and tumor tissue DNA were sequenced for the entire AIP-coding region for evaluation of mutations. Eleven (8.3% of the 132 patients had AIPmut, comprising 9/74 (12% somatotropinomas, 1/38 (2.6% prolactinoma, 1/10 (10% corticotropinoma and no non-functioning adenomas. In pediatric patients (≤18 years, AIPmut frequency was 13.3% (2/15. Out of the 5 patients with gigantism, two had AIPmut, both truncating mutations. The Y268* mutation was described in Brazilian patients and the K273Rfs*30 mutation is a novel mutation in our patient. No somatic AIP mutations were found in the 12 tumor samples. A tumor sample from an acromegaly patient harboring the A299V AIPmut showed loss of heterozygosity. In conclusion, AIPmut frequency in SPA Brazilian patients is similar to other populations. Our study identified two mutations exclusively found in Brazilians and also shows, for the first time, loss of heterozygosity in tumor DNA from an acromegaly patient harboring the A299V AIPmut. Our findings corroborate previous observations that AIPmut screening should be performed in young patients with SPA.

  17. Influence of the MDM2 single nucleotide polymorphism SNP309 on tumour development in BRCA1 mutation carriers

    Directory of Open Access Journals (Sweden)

    Johnson Peter W

    2006-03-01

    Full Text Available Abstract Background The MDM2 gene encodes a negative regulator of the p53 tumour suppressor protein. A single nucleotide polymorphism (SNP in the MDM2 promoter (a T to G exchange at nucleotide 309 has been reported to produce accelerated tumour formation in individuals with inherited p53 mutations. We have investigated the effect of the MDM2 SNP309 on clinical outcome in a cohort of patients with germline mutations of BRCA1. Methods Genomic DNA was obtained for 102 healthy controls and 116 patients with established pathogenic mutations of BRCA1 and Pyrosequencing technology™ was used to determine the genotype at the MDM2 SNP309 locus. Results The polymorphism was present in 52.9% of the controls (G/T in 37.3% and G/G in 15.6% and 58.6% of the BRCA1 mutation carriers (47.4% G/T and 11.2% G/G. Incidence of malignancy in female BRCA1 carriers was not significantly higher in SNP309 carriers than in wildtype (T/T individuals (72.7% vs. 75.6%, p = 1.00. Mean age of diagnosis of first breast cancer was 41.2 years in the SNP309 G/G genotype carriers, 38.6 years in those with the SNP309 G/T genotype and 39.0 years in wildtype subjects (p = 0.80. Conclusion We found no evidence that the MDM2 SNP309 accelerates tumour development in carriers of known pathogenic germline mutations of BRCA1.

  18. Association of telomerase reverse transcriptase promoter mutations with clinicopathological features and prognosis of thyroid cancer: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Su X

    2016-11-01

    Full Text Available Xingyun Su,1 Xiaoxia Jiang,1 Weibin Wang,1 Haiyong Wang,1 Xin Xu,2 Aihui Lin,1 Xiaodong Teng,3 Huiling Wu,4 Lisong Teng1 1Department of Surgical Oncology, 2Department of Medical Oncology, 3Department of Pathology, 4Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China Abstract: The clinicopathological and prognostic significance of telomerase reverse transcriptase (TERT promoter mutations have been widely investigated in thyroid cancer; however, the results are still discrepant. Systematic searches were performed in PubMed, Web of Science, Scopus, Ovid, and the Cochran Library databases for relevant articles prior to April 2016. Mutation rates were synthesized by R statistical software. The odds ratio or standardized mean difference with 95% confidence interval was pooled by Stata. A total of 22 studies with 4,907 cases were included in this meta-analysis. TERT promoter mutations tended to present in aggressive histological types including poorly differentiated thyroid cancer (33.37%, anaplastic thyroid cancer (38.69%, and tall-cell variant papillary thyroid cancer (30.23%. These promoter mutations were likely to exist in older patients and males and were well associated with larger tumor size, extrathyroidal extension, vascular invasion, lymph node metastasis, distant metastasis, advanced tumor stage, disease recurrence/persistence, and mortality. In addition, TERT promoter mutations (especially C228T tended to coexist with BRAFV600E mutation, which indicated more aggressive tumor behavior. Therefore, TERT promoter mutations may be promising biomarkers for early diagnosis, risk stratification, prognostic prediction, and management of thyroid cancer. Keywords: TERT promoter mutations, thyroid cancer, clinicopathological features, prognosis, BRAFV600E mutation

  19. Single Molecule Effects of Osteogenesis Imperfecta Mutations in Tropocollagen Protein Domains

    Science.gov (United States)

    2008-12-02

    Single molecule effects of osteogenesis imperfecta mutations in tropocollagen protein domains Alfonso Gautieri,1,2 Simone Vesentini,2 Alberto...2008 proteinscience.org Abstract: Osteogenesis imperfecta (OI) is a genetic disease characterized by fragile bones, skeletal deformities and, in severe...diagnosis and treatment, an effort referred to as materiomics. Keywords: steered molecular dynamics; osteogenesis imperfecta ; Young’s modulus; collagen

  20. Prefoldin Promotes Proteasomal Degradation of Cytosolic Proteins with Missense Mutations by Maintaining Substrate Solubility.

    Directory of Open Access Journals (Sweden)

    Sophie A Comyn

    2016-07-01

    Full Text Available Misfolded proteins challenge the ability of cells to maintain protein homeostasis and can accumulate into toxic protein aggregates. As a consequence, cells have adopted a number of protein quality control pathways to prevent protein aggregation, promote protein folding, and target terminally misfolded proteins for degradation. In this study, we employed a thermosensitive allele of the yeast Guk1 guanylate kinase as a model misfolded protein to investigate degradative protein quality control pathways. We performed a flow cytometry based screen to identify factors that promote proteasomal degradation of proteins misfolded as the result of missense mutations. In addition to the E3 ubiquitin ligase Ubr1, we identified the prefoldin chaperone subunit Gim3 as an important quality control factor. Whereas the absence of GIM3 did not impair proteasomal function or the ubiquitination of the model substrate, it led to the accumulation of the poorly soluble model substrate in cellular inclusions that was accompanied by delayed degradation. We found that Gim3 interacted with the Guk1 mutant allele and propose that prefoldin promotes the degradation of the unstable model substrate by maintaining the solubility of the misfolded protein. We also demonstrated that in addition to the Guk1 mutant, prefoldin can stabilize other misfolded cytosolic proteins containing missense mutations.

  1. Evidence that adaptation in Drosophila is not limited by mutation at single sites.

    Directory of Open Access Journals (Sweden)

    Talia Karasov

    2010-06-01

    Full Text Available Adaptation in eukaryotes is generally assumed to be mutation-limited because of small effective population sizes. This view is difficult to reconcile, however, with the observation that adaptation to anthropogenic changes, such as the introduction of pesticides, can occur very rapidly. Here we investigate adaptation at a key insecticide resistance locus (Ace in Drosophila melanogaster and show that multiple simple and complex resistance alleles evolved quickly and repeatedly within individual populations. Our results imply that the current effective population size of modern D. melanogaster populations is likely to be substantially larger (> or = 100-fold than commonly believed. This discrepancy arises because estimates of the effective population size are generally derived from levels of standing variation and thus reveal long-term population dynamics dominated by sharp--even if infrequent--bottlenecks. The short-term effective population sizes relevant for strong adaptation, on the other hand, might be much closer to census population sizes. Adaptation in Drosophila may therefore not be limited by waiting for mutations at single sites, and complex adaptive alleles can be generated quickly without fixation of intermediate states. Adaptive events should also commonly involve the simultaneous rise in frequency of independently generated adaptive mutations. These so-called soft sweeps have very distinct effects on the linked neutral polymorphisms compared to the standard hard sweeps in mutation-limited scenarios. Methods for the mapping of adaptive mutations or association mapping of evolutionarily relevant mutations may thus need to be reconsidered.

  2. Mutations in BALB mitochondrial DNA induce CCL20 up-regulation promoting tumorigenic phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Sligh, James [Department of Medicine—Dermatology Division, University of Arizona, Tucson, AZ 857 24 (United States); University of Arizona Cancer Center, Tucson, AZ 85724 (United States); Janda, Jaroslav [University of Arizona Cancer Center, Tucson, AZ 85724 (United States); Jandova, Jana, E-mail: jjandova@email.arizona.edu [Department of Medicine—Dermatology Division, University of Arizona, Tucson, AZ 857 24 (United States); University of Arizona Cancer Center, Tucson, AZ 85724 (United States)

    2014-11-15

    -κB activation inhibited CCL20 expression in mtBALB cybrids and decreased their migratory capabilities. Thus, acquired mtDNA mutations may promote tumorigenic phenotypes through up-regulation of chemokine CCL20.

  3. Targeted mutations induced by a single acetylaminofluorene DNA adduct in mammalian cells and bacteria

    International Nuclear Information System (INIS)

    Moryia, M.; Takeshita, M.; Johnson, F.; Peden, K.; Will, S.; Grollman, A.P.

    1988-01-01

    Mutagenic specificity of 2-acetylaminofluorene (AAF) has been established in mammalian cells and several strains of bacteria by using a shuttle plasmid vector containing a single N-(deoxyguanosin-8-yl)acetylaminofluorene (C8-dG-AAF) adduct. The nucleotide sequence of the gene conferring tetracycline resistance was modified by conservative codon replacement so as to accommodate the sequence d(CCTTCGCTAC) flanked by two restriction sites, Bsm I and Xho I. The corresponding synthetic oligodeoxynucleotide underwent reaction with 2-(N-acetoxy-N-acetylamino)-fluorene (AAAF), forming a single dG-AAF adduct. This modified oligodeoxynucleotide was hybridized to its complementary strand and ligated between the Bsm I and Xho I sites of the vector. Plasmids containing the C8-dG-AAF adduct were used to transfect simian virus 40-transformed simian kidney (COS-1) cells and to transform several AB strains of Escherichia coli. Colonies containing mutant plasmides were detected by hybridization to 32 P-labeled oligodeoxynucleotides. Presence of the single DNA adduct increased the mutation frequency by 8-fold in both COS cells and E. coli. Over 80% of mutations detected in both systems were targeted and represented G x C → C x G or G x C → T x A transversions or single nucleotide deletions. The authors conclude that modification of a deoxyguanosine residue with AAF preferentially induces mutations targeted at this site when a plasmid containing a single C8-dG-AAF adduct is introduced into mammalian cells or bacteria

  4. Detecting β-thalassaemia mutations from a single cell by PEP and RDB

    Institute of Scientific and Technical Information of China (English)

    YI Ping; LI Li; YAO Hong; ZHOU Yuan-guo; DENG Bing; CHEN Zhu-qin

    2006-01-01

    Objective:To evaluate the possibility of the technology involving PEP and RDB for detecting β-thalassaemia multipoint mutations from a single cell simultaneously. Methods: A set of allele specific oligonucleotide (ASO) probes used for detecting 8 familiar β-thalassaemia mutations (CD41-42, IVS- Ⅱ -654, CD17, TATA box nt-28, CD71-72, TATA box nt-29, CD26, IVS- Ⅰ -5) were immobilized on a strip of nylon membrane. The genome of a individual cell was amplified by primer extension preamplification (PEP) with the mixture of15-base random oligonucleotides. The aliquots from PEP were used to amplify the objective gene fractions of β-thalassaemia gene by nested or semi-nested PCR. The membrane was hybridized with the final amplified products and then treated with Streptavidin-HRP and color development.Results :Totally 30 lymphocytes were picked up from blood samples of 1 healthy female and 4 patients with known β-thalassaemia mutations respectively. Each single lymphocyte was lysed in the proteinase K buffer. The amplification efficacy was 94.0% and alle drop-out(ADO) rate was 8.0%. Revert dot blot (RDB) was applied to the final amplified products from the 5 participants. The results of diagnosis were the same to the expected, and their genotypes were N/N, CD17 (A→T)/N, IVS- Ⅱ -654(C→T)/CD17(A → T), CD41-42 (-CTTT)/N and TATA box nt-28 (A→G)/N, respectively. Conclusion: The technology involving PEP and RDB could detectmultiple β-thalassaemia mutations from a single cell simultaneously,and the research provides experimental evidences for the feasibility of applying PEP and DNA array technology to screening multiple genetic mutations from a single cell, and will be applied to preimplantation genetic diagnosis and non-invasive prenatal diagnosis for β-thalassaemia.

  5. Predictive and prognostic impact of TP53 mutations and MDM2 promoter genotype in primary breast cancer patients treated with epirubicin or paclitaxel.

    Directory of Open Access Journals (Sweden)

    Ranjan Chrisanthar

    Full Text Available BACKGROUND: TP53 mutations have been associated with resistance to anthracyclines but not to taxanes in breast cancer patients. The MDM2 promoter single nucleotide polymorphism (SNP T309G increases MDM2 activity and may reduce wild-type p53 protein activity. Here, we explored the predictive and prognostic value of TP53 and CHEK2 mutation status together with MDM2 SNP309 genotype in stage III breast cancer patients receiving paclitaxel or epirubicin monotherapy. EXPERIMENTAL DESIGN: Each patient was randomly assigned to treatment with epirubicin 90 mg/m(2 (n = 109 or paclitaxel 200 mg/m(2 (n = 114 every 3rd week as monotherapy for 4-6 cycles. Patients obtaining a suboptimal response on first-line treatment requiring further chemotherapy received the opposite regimen. Time from last patient inclusion to follow-up censoring was 69 months. Each patient had snap-frozen tumor tissue specimens collected prior to commencing chemotherapy. PRINCIPAL FINDINGS: While TP53 and CHEK2 mutations predicted resistance to epirubicin, MDM2 status did not. Neither TP53/CHEK2 mutations nor MDM2 status was associated with paclitaxel response. Remarkably, TP53 mutations (p = 0.007 but also MDM2 309TG/GG genotype status (p = 0.012 were associated with a poor disease-specific survival among patients having paclitaxel but not patients having epirubicin first-line. The effect of MDM2 status was observed among individuals harbouring wild-type TP53 (p = 0.039 but not among individuals with TP53 mutated tumors (p>0.5. CONCLUSION: TP53 and CHEK2 mutations were associated with lack of response to epirubicin monotherapy. In contrast, TP53 mutations and MDM2 309G allele status conferred poor disease-specific survival among patients treated with primary paclitaxel but not epirubicin monotherapy.

  6. Detection of HIV drug resistance mutations in pregnant women receiving single dose Nevirapine in south India

    Directory of Open Access Journals (Sweden)

    Mini S Jacob

    2011-01-01

    Full Text Available Background: Single dose of Nevirapine to prevent mother to child transmission of HIV is the commonest preventive regimen in resource-limited countries. Objectives: The objective of this study was to detect drug-resistant virus after single dose of Nevirapine (sdNVP provided to delivering HIV seropositive (HIV+ve women and to evaluate the time taken for its decay. Results: Of the 36 consenting HIV+ve pregnant women enrolled into the study, the mean hemoglobin and total lymphocyte counts were 10.8 g/dl and 1843 cells/mm 3 , respectively. Mean CD4 counts in 64% of women was 363 cells/mm 3 and mean viral load for 16/36 women was 28,143 copies/ml of plasma. Nevirapine-resistance mutations were detected in 28% of women at delivery; using OLA (Oligonucleotide Ligation Assay. K103N mutations were seen in 19.4% of women while the Y181C mutation was seen in 5%. Both the mutations were detected in 2.7% of women. Sequential blood samples collected at delivery, 7-10 days, 6 weeks, 4 months, 6 months and one year postpartum showed that 81% of K103N mutations and 66.7% of Y181C mutations were detected at 6 weeks postpartum . Wild-type virus had replaced the mutants by one year postpartum in all women except one. Conclusion : These observations are relevant for future treatment with antiretroviral therapy in these women for their HIV disease.

  7. TERT promoter mutation as an early genetic event activating telomerase in follicular thyroid adenoma (FTA) and atypical FTA.

    Science.gov (United States)

    Wang, Na; Liu, Tiantian; Sofiadis, Anastasios; Juhlin, C Christofer; Zedenius, Jan; Höög, Anders; Larsson, Catharina; Xu, Dawei

    2014-10-01

    The telomerase reverse transcriptase (TERT) promoter mutations C228T and C250T have been found in many malignancies, including in thyroid carcinomas. However, it is unclear how early these mutations occur in thyroid tumorigenesis. The study included primary tumors from 58 patients initially diagnosed with follicular thyroid adenoma (FTA), a benign entity, 18 with atypical FTA (AFTA) having an uncertain malignant potential, and 52 with follicular thyroid carcinoma (FTC). Sanger sequencing was used to investigate the mutational status of the TERT promoter. Telomere length and TERT messenger RNA (mRNA) expression were determined using quantitative polymerase chain reaction (PCR). Telomerase activity was assessed using a Telomerase PCR enzyme-linked immunosorbent assay kit. The C228T mutation was identified in 1 of 58 FTA (2%) and 3 of 18 AFTA (17%) samples. These 4 tumors all expressed TERT mRNA and telomerase activity, whereas the majority of C228T-negative adenomas lacked TERT expression (C228T versus wild-type, P = .008). The C228T mutation was associated with NRAS gene mutations (P = .016). The patient with C228T-mutated FTA later developed a scar recurrence and died of FTC, whereas none of the remaining 57 patients with FTA had recurrence. No recurrence occurred in 3 patients with AFTA who carried C228T during the follow-up period (36-285 months). Nine of the 52 FTCs (17%) exhibited the TERT mutation (8 of 9 C228T and 1 of 9 C250T), and the presence of the mutation was associated with shorter patient survival. TERT promoter mutations may occur as an early genetic event in thyroid follicular tumors that have not developed malignant features on routine histopathological workup. © 2014 American Cancer Society.

  8. Structure Based Thermostability Prediction Models for Protein Single Point Mutations with Machine Learning Tools.

    Directory of Open Access Journals (Sweden)

    Lei Jia

    Full Text Available Thermostability issue of protein point mutations is a common occurrence in protein engineering. An application which predicts the thermostability of mutants can be helpful for guiding decision making process in protein design via mutagenesis. An in silico point mutation scanning method is frequently used to find "hot spots" in proteins for focused mutagenesis. ProTherm (http://gibk26.bio.kyutech.ac.jp/jouhou/Protherm/protherm.html is a public database that consists of thousands of protein mutants' experimentally measured thermostability. Two data sets based on two differently measured thermostability properties of protein single point mutations, namely the unfolding free energy change (ddG and melting temperature change (dTm were obtained from this database. Folding free energy change calculation from Rosetta, structural information of the point mutations as well as amino acid physical properties were obtained for building thermostability prediction models with informatics modeling tools. Five supervised machine learning methods (support vector machine, random forests, artificial neural network, naïve Bayes classifier, K nearest neighbor and partial least squares regression are used for building the prediction models. Binary and ternary classifications as well as regression models were built and evaluated. Data set redundancy and balancing, the reverse mutations technique, feature selection, and comparison to other published methods were discussed. Rosetta calculated folding free energy change ranked as the most influential features in all prediction models. Other descriptors also made significant contributions to increasing the accuracy of the prediction models.

  9. Distinct profiles of TERT promoter mutations and telomerase expression in head and neck cancer and cervical carcinoma.

    Science.gov (United States)

    Annunziata, Clorinda; Pezzuto, Francesca; Greggi, Stefano; Ionna, Franco; Losito, Simona; Botti, Gerardo; Buonaguro, Luigi; Buonaguro, Franco M; Tornesello, Maria Lina

    2018-03-31

    Two recurrent mutations (-124 G > A and -146 G > A) in the core promoter region of the human telomerase reverse transcriptase (TERT) gene create consensus binding sites for ETS transcription factors and cause increased TERT expression in several tumour types. We analyzed TERT promoter mutations and TERT mRNA levels in head and neck cancer, cervical carcinoma and cervical intraepithelial neoplasia (CIN) as well as in C-4I, CaSki, HeLa and SiHa cervical cell lines. Nucleotide sequence analysis of TERT promoter region showed that 33.3% of oral squamous cell carcinoma (SCC) and 16.8% of cervical SCC harboured mutually exclusive G to A transitions at nucleotide position -124 or -146. TERT promoter was mutated at nucleotide -146 (G > A) in SiHa cell line. Other nucleotide changes creating in some cases putative ETS binding sites were more frequent in oral SCC (26.7%) than in cervical carcinoma (4.8%). The frequency of mutations was independent of human papillomavirus (HPV) tumour status in both cervical and oral cancer. Expression of TERT gene was significantly higher in TERT promoter mutated (-124G > A or -146G > A) cervical SCC compared to not mutated SCC irrespective of HPV16 E6 and E7 levels. Such hot spot changes were not detected in oropharyngeal SCC, cervical adenocarcinoma and CIN lesions. Our results suggest that TERT promoter mutations play a relevant role in oral SCC as well as in cervical SCC, besides the already known effect of HPV16 E6 protein on TERT expression. © 2018 UICC.

  10. Identification of a single-nucleotide insertion in the promoter region affecting the sodC promoter activity in Brucella neotomae.

    Directory of Open Access Journals (Sweden)

    Dina A Moustafa

    Full Text Available Brucella neotomae is not known to be associated with clinical disease in any host species. Previous research suggested that B. neotomae might not express detectable levels of Cu/Zn superoxide dismutase (SOD, a periplasmic enzyme known to be involved in protecting Brucella from oxidative bactericidal effects of host phagocytes. This study was undertaken to investigate the genetic basis for the disparity in SOD expression in B. neotomae. Our Western blot and SOD enzyme assay analyses indicated that B. neotomae does express SOD, but at a substantially reduced level. Nucleotide sequence analysis of region upstream to the sodC gene identified a single-nucleotide insertion in the potential promoter region. The same single-nucleotide insertion was also detected in the sodC promoter of B. suis strain Thomsen, belonging to biovar 2 in which SOD expression was undetectable previously. Examination of the sodC promoter activities using translational fusion constructs with E. coli β-galactosidase demonstrated that the B. neotomae and B. suis biovar 2 promoters were very weak in driving gene expression. Site-directed mutation studies indicated that the insertion of A in the B. neotomae sodC promoter reduced the promoter activity. Increasing the level of SOD expression in B. neotomae through complementation with B. abortus sodC gene did not alter the bacterial survival in J774A.1 macrophage-like cells and in tissues of BALB/c and C57BL/6 mice. These results for the first time demonstrate the occurrence of a single-nucleotide polymorphism affecting promoter function and gene expression in Brucella.

  11. Conditions and consequences of a BRCA mutation in young, single women of childbearing age.

    Science.gov (United States)

    Hamilton, Rebekah; Hurley, Karen E

    2010-09-01

    To explore the experiences of young, single women who are at increased risk for hereditary breast and ovarian cancer (HBOC) because of a BRCA mutation. Qualitative. Seven states and Canada. 11 single women aged 18-35 years who tested positive for a BRCA mutation. Grounded theory with in-depth individual interviews conducted via e-mail or telephone. Analysis resulted in three conditions and three consequences. Conditions were dating or not dating, time in a relationship, and physical impact of surgery or breast cancer treatment. Consequences were explaining their choices, experiencing a sense of urgency, and experiencing a sense of loss. Young women who are at risk for HBOC face a complex array of decisions after finding out that they carry a BRCA mutation. Being single and childless adds to this complexity. Nurses can listen to young women with HBOC risk, help them clarify their fears and understanding of their risk, and provide nonthreatening support that goes beyond simply providing more information and includes a nonjudgmental understanding of the young women's experience.

  12. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumor types are associated with increased TERT expression and telomerase activation

    Science.gov (United States)

    Huang, Dong-Sheng; Wang, Zhaohui; He, Xu-Jun; Diplas, Bill H.; Yang, Rui; Killela, Patrick J.; Liang, Junbo; Meng, Qun; Ye, Zai-Yuan; Wang, Wei; Jiang, Xiao-Ting; Xu, Li; He, Xiang-Lei; Zhao, Zhong-Sheng; Xu, Wen-Juan; Wang, Hui-Ju; Ma, Ying-Yu; Xia, Ying-Jie; Li, Li; Zhang, Ru-Xuan; Jin, Tao; Zhao, Zhong-Kuo; Xu, Ji; Yu, Sheng; Wu, Fang; Wang, Si-Zhen; Jiao, Yu-Chen; Yan, Hai; Tao, Hou-Quan

    2015-01-01

    Background Several somatic mutation hotspots were recently identified in the TERT promoter region in human cancers. Large scale studies of these mutations in multiple tumor types are limited, in particular in Asian populations. This study aimed to: analyze TERT promoter mutations in multiple tumor types in a large Chinese patient cohort, investigate novel tumor types and assess the functional significance of the mutations. Methods TERT promoter mutation status was assessed by Sanger sequencing for 13 different tumor types and 799 tumor tissues from Chinese cancer patients. Thymic epithelial tumors, gastrointestinal leiomyoma, and gastric schwannoma were included, for which the TERT promoter has not been previously sequenced. Functional studies included TERT expression by RT-qPCR, telomerase activity by the TRAP assay, and promoter activity by the luciferase reporter assay. Results TERT promoter mutations were highly frequent in glioblastoma (83.9%), urothelial carcinoma (64.5%), oligodendroglioma (70.0%), medulloblastoma (33.3%), and hepatocellular carcinoma (31.4%). C228T and C250T were the most common mutations. In urothelial carcinoma, several novel rare mutations were identified. TERT promoter mutations were absent in GIST, thymic epithelial tumors, gastrointestinal leiomyoma, gastric schwannoma, cholangiocarcinoma, gastric and pancreatic cancer. TERT promoter mutations highly correlated with upregulated TERT mRNA expression and telomerase activity in adult gliomas. These mutations differentially enhanced the transcriptional activity of the TERT core promoter. Conclusions TERT promoter mutations are frequent in multiple tumor types and have similar distributions in Chinese cancer patients. The functional significance of these mutations reflect the importance to telomere maintenance and hence tumorigenesis, making them potential therapeutic targets. PMID:25843513

  13. A single mutation in the envelope protein modulates flavivirus antigenicity, stability, and pathogenesis.

    Directory of Open Access Journals (Sweden)

    Leslie Goo

    2017-02-01

    Full Text Available The structural flexibility or 'breathing' of the envelope (E protein of flaviviruses allows virions to sample an ensemble of conformations at equilibrium. The molecular basis and functional consequences of virus conformational dynamics are poorly understood. Here, we identified a single mutation at residue 198 (T198F of the West Nile virus (WNV E protein domain I-II hinge that regulates virus breathing. The T198F mutation resulted in a ~70-fold increase in sensitivity to neutralization by a monoclonal antibody targeting a cryptic epitope in the fusion loop. Increased exposure of this otherwise poorly accessible fusion loop epitope was accompanied by reduced virus stability in solution at physiological temperatures. Introduction of a mutation at the analogous residue of dengue virus (DENV, but not Zika virus (ZIKV, E protein also increased accessibility of the cryptic fusion loop epitope and decreased virus stability in solution, suggesting that this residue modulates the structural ensembles sampled by distinct flaviviruses at equilibrium in a context dependent manner. Although the T198F mutation did not substantially impair WNV growth kinetics in vitro, studies in mice revealed attenuation of WNV T198F infection. Overall, our study provides insight into the molecular basis and the in vitro and in vivo consequences of flavivirus breathing.

  14. Single genome retrieval of context-dependent variability in mutation rates for human germline.

    Science.gov (United States)

    Sahakyan, Aleksandr B; Balasubramanian, Shankar

    2017-01-13

    Accurate knowledge of the core components of substitution rates is of vital importance to understand genome evolution and dynamics. By performing a single-genome and direct analysis of 39,894 retrotransposon remnants, we reveal sequence context-dependent germline nucleotide substitution rates for the human genome. The rates are characterised through rate constants in a time-domain, and are made available through a dedicated program (Trek) and a stand-alone database. Due to the nature of the method design and the imposed stringency criteria, we expect our rate constants to be good estimates for the rates of spontaneous mutations. Benefiting from such data, we study the short-range nucleotide (up to 7-mer) organisation and the germline basal substitution propensity (BSP) profile of the human genome; characterise novel, CpG-independent, substitution prone and resistant motifs; confirm a decreased tendency of moieties with low BSP to undergo somatic mutations in a number of cancer types; and, produce a Trek-based estimate of the overall mutation rate in human. The extended set of rate constants we report may enrich our resources and help advance our understanding of genome dynamics and evolution, with possible implications for the role of spontaneous mutations in the emergence of pathological genotypes and neutral evolution of proteomes.

  15. Nonsense and missense mutation of mitochondrial ND6 gene promotes cell migration and invasion in human lung adenocarcinoma

    International Nuclear Information System (INIS)

    Yuan, Yang; Wang, Weixing; Li, Huizhong; Yu, Yongwei; Tao, Jin; Huang, Shengdong; Zeng, Zhiyong

    2015-01-01

    Previous study showed that mitochondrial ND6 (mitND6) gene missense mutation resulted in NADH dehydrogenase deficiency and was associated with tumor metastasis in several mouse tumor cell lines. In the present study, we investigated the possible role of mitND6 gene nonsense and missense mutations in the metastasis of human lung adenocarcinoma. The presence of mitND6 gene mutations was screened by DNA sequencing of tumor tissues from 87 primary lung adenocarcinoma patients and the correlation of the mutations with the clinical features was analyzed. In addition, we constructed cytoplasmic hybrid cells with denucleared primary lung adenocarcinoma cell as the mitochondria donor and mitochondria depleted lung adenocarcinoma A549 cell as the nuclear donor. Using these cells, we studied the effects of mitND6 gene nonsense and missense mutations on cell migration and invasion through wounding healing and matrigel-coated transwell assay. The effects of mitND6 gene mutations on NADH dehydrogenase activity and ROS production were analyzed by spectrophotometry and flow cytometry. mitND6 gene nonsense and missense mutations were detected in 11 of 87 lung adenocarcinoma specimens and was correlated with the clinical features including age, pathological grade, tumor stage, lymph node metastasis and survival rate. Moreover, A549 cell containing mitND6 gene nonsense and missense mutation exhibited significantly lower activity of NADH dehydrogenase, higher level of ROS, higher capacity of cell migration and invasion, and higher pAKT and pERK1/ERK2 expression level than cells with the wild type mitND6 gene. In addition, NADH dehydrogenase inhibitor rotenone was found to significantly promote the migration and invasion of A549 cells. Our data suggest that mitND6 gene nonsense and missense mutation might promote cell migration and invasion in lung adenocarcinoma, probably by NADH dehydrogenase deficiency induced over-production of ROS

  16. Screening for mutations in human alpha-globin genes by nonradioactive single-strand conformation polymorphism

    Directory of Open Access Journals (Sweden)

    Jorge S.B.

    2003-01-01

    Full Text Available Point mutations and small insertions or deletions in the human alpha-globin genes may produce alpha-chain structural variants and alpha-thalassemia. Mutations can be detected either by direct DNA sequencing or by screening methods, which select the mutated exon for sequencing. Although small (about 1 kb, 3 exons and 2 introns, the alpha-globin genes are duplicate (alpha2 and alpha1 and highy G-C rich, which makes them difficult to denature, reducing sequencing efficiency and causing frequent artifacts. We modified some conditions for PCR and electrophoresis in order to detect mutations in these genes employing nonradioactive single-strand conformation polymorphism (SSCP. Primers previously described by other authors for radioactive SSCP and phast-SSCP plus denaturing gradient gel electrophoresis were here combined and the resultant fragments (6 new besides 6 original per alpha-gene submitted to silver staining SSCP. Nine structural and one thalassemic mutations were tested, under different conditions including two electrophoretic apparatus (PhastSystem(TM and GenePhor(TM, Amersham Biosciences, different polyacrylamide gel concentrations, run temperatures and denaturing agents, and entire and restriction enzyme cut fragments. One hundred percent of sensitivity was achieved with four of the new fragments formed, using the PhastSystem(TM and 20% gels at 15ºC, without the need of restriction enzymes. This nonradioactive PCR-SSCP approach showed to be simple, rapid and sensitive, reducing the costs involved in frequent sequencing repetitions and increasing the reliability of the results. It can be especially useful for laboratories which do not have an automated sequencer.

  17. Key tumor suppressor genes inactivated by "greater promoter" methylation and somatic mutations in head and neck cancer

    NARCIS (Netherlands)

    Guerrero-Preston, Rafael; Michailidi, Christina; Marchionni, Luigi; Pickering, Curtis R.; Frederick, Mitchell J.; Myers, Jeffrey N.; Yegnasubramanian, Srinivasan; Hadar, Tal; Noordhuis, Maartje G.; Zizkova, Veronika; Fertig, Elana; Agrawal, Nishant; Westra, William; Koch, Wayne; Califano, Joseph; Velculescu, Victor E.; Sidransky, David

    Tumor suppressor genes (TSGs) are commonly inactivated by somatic mutation and/or promoter methylation; yet, recent high-throughput genomic studies have not identified key TSGs inactivated by both mechanisms. We pursued an integrated molecular analysis based on methylation binding domain sequencing

  18. An engineered tale-transcription factor rescues transcription of factor VII impaired by promoter mutations and enhances its endogenous expression in hepatocytes.

    Science.gov (United States)

    Barbon, Elena; Pignani, Silvia; Branchini, Alessio; Bernardi, Francesco; Pinotti, Mirko; Bovolenta, Matteo

    2016-06-24

    Tailored approaches to restore defective transcription responsible for severe diseases have been poorly explored. We tested transcription activator-like effectors fused to an activation domain (TALE-TFs) in a coagulation factor VII (FVII) deficiency model. In this model, the deficiency is caused by the -94C > G or -61T > G mutation, which abrogate the binding of Sp1 or HNF-4 transcription factors. Reporter assays in hepatoma HepG2 cells naturally expressing FVII identified a single TALE-TF (TF4) that, by targeting the region between mutations, specifically trans-activated both the variant (>100-fold) and wild-type (20-40-fold) F7 promoters. Importantly, in the genomic context of transfected HepG2 and transduced primary hepatocytes, TF4 increased F7 mRNA and protein levels (2- to 3-fold) without detectable off-target effects, even for the homologous F10 gene. The ectopic F7 expression in renal HEK293 cells was modestly affected by TF4 or by TALE-TF combinations. These results provide experimental evidence for TALE-TFs as gene-specific tools useful to counteract disease-causing promoter mutations.

  19. Variable myopathic presentation in a single family with novel skeletal RYR1 mutation.

    Directory of Open Access Journals (Sweden)

    Ruben Attali

    Full Text Available We describe an autosomal recessive heterogeneous congenital myopathy in a large consanguineous family. The disease is characterized by variable severity, progressive course in 3 of 4 patients, myopathic face without ophthalmoplegia and proximal muscle weakness. Absence of cores was noted in all patients. Genome wide linkage analysis revealed a single locus on chromosome 19q13 with Zmax = 3.86 at θ = 0.0 and homozygosity of the polymorphic markers at this locus in patients. Direct sequencing of the main candidate gene within the candidate region, RYR1, was performed. A novel homozygous A to G nucleotide substitution (p.Y3016C within exon 60 of the RYR1 gene was found in patients. ARMS PCR was used to screen for the mutation in all available family members and in an additional 150 healthy individuals. This procedure confirmed sequence analysis and did not reveal the A to G mutation (p.Y3016C in 300 chromosomes from healthy individuals. Functional analysis on EBV immortalized cell lines showed no effect of the mutation on RyR1 pharmacological activation or the content of intracellular Ca(2+ stores. Western blot analysis demonstrated a significant reduction of the RyR1 protein in the patient's muscle concomitant with a reduction of the DHPRα1.1 protein. This novel mutation resulting in RyR1 protein decrease causes heterogeneous clinical presentation, including slow progression course and absence of centrally localized cores on muscle biopsy. We suggest that RYR1 related myopathy should be considered in a wide variety of clinical and pathological presentation in childhood myopathies.

  20. Comprehensive detection of diverse exon 19 deletion mutations of EGFR in lung Cancer by a single probe set.

    Science.gov (United States)

    Bae, Jin Ho; Jo, Seong-Min; Kim, Hak-Sung

    2015-12-15

    Detection of exon 19 deletion mutation of EGFR, one of the most frequently occurring mutations in lung cancer, provides the crucial information for diagnosis and treatment guideline in non-small-cell lung cancer (NSCLC). Here, we demonstrate a simple and efficient method to detect various exon 19 deletion mutations of EGFR using a single probe set comprising of an oligo-quencher (oligo-Q) and a molecular beacon (MB). While the MB hybridizes to both the wild and mutant target DNA, the oligo-Q only binds to the wild target DNA, leading to a fluorescent signal in case of deletion mutation. This enables the comprehensive detection of the diverse exon 19 deletion mutations using a single probe set. We demonstrated the utility and efficiency of the approach by detecting the frequent exon 19 deletion mutations of EGFR through a real-time PCR and in situ fluorescence imaging. Our approach enabled the detection of genomic DNA as low as 0.02 ng, showing a detection limit of 2% in a heterogeneous DNA mixture, and could be used for detecting mutations in a single cell level. The present MB and oligo-Q dual probe system can be used for diagnosis and treatment guideline in NSCLC. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns.

    Science.gov (United States)

    Enge, Martin; Arda, H Efsun; Mignardi, Marco; Beausang, John; Bottino, Rita; Kim, Seung K; Quake, Stephen R

    2017-10-05

    As organisms age, cells accumulate genetic and epigenetic errors that eventually lead to impaired organ function or catastrophic transformation such as cancer. Because aging reflects a stochastic process of increasing disorder, cells in an organ will be individually affected in different ways, thus rendering bulk analyses of postmitotic adult cells difficult to interpret. Here, we directly measure the effects of aging in human tissue by performing single-cell transcriptome analysis of 2,544 human pancreas cells from eight donors spanning six decades of life. We find that islet endocrine cells from older donors display increased levels of transcriptional noise and potential fate drift. By determining the mutational history of individual cells, we uncover a novel mutational signature in healthy aging endocrine cells. Our results demonstrate the feasibility of using single-cell RNA sequencing (RNA-seq) data from primary cells to derive insights into genetic and transcriptional processes that operate on aging human tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Single nucleotide polymorphism array lesions, TET2, DNMT3A, ASXL1 and CBL mutations are present in systemic mastocytosis.

    Directory of Open Access Journals (Sweden)

    Fabiola Traina

    Full Text Available We hypothesized that analysis of single nucleotide polymorphism arrays (SNP-A and new molecular defects may provide new insight in the pathogenesis of systemic mastocytosis (SM. SNP-A karyotyping was applied to identify recurrent areas of loss of heterozygosity and bidirectional sequencing was performed to evaluate the mutational status of TET2, DNMT3A, ASXL1, EZH2, IDH1/IDH2 and the CBL gene family. Overall survival (OS was analyzed using the Kaplan-Meier method. We studied a total of 26 patients with SM. In 67% of SM patients, SNP-A karyotyping showed new chromosomal abnormalities including uniparental disomy of 4q and 2p spanning TET2/KIT and DNMT3A. Mutations in TET2, DNMT3A, ASXL1 and CBL were found in 23%, 12%, 12%, and 4% of SM patients, respectively. No mutations were observed in EZH2 and IDH1/IDH2. Significant differences in OS were observed for SM mutated patients grouped based on the presence of combined TET2/DNMT3A/ASXL1 mutations independent of KIT (P = 0.04 and sole TET2 mutations (P<0.001. In conclusion, TET2, DNMT3A and ASXL1 mutations are also present in mastocytosis and these mutations may affect prognosis, as demonstrated by worse OS in mutated patients.

  3. Clinical and mutation analysis of 51 probands with anophthalmia and/or severe microphthalmia from a single center

    Science.gov (United States)

    Gerth-Kahlert, Christina; Williamson, Kathleen; Ansari, Morad; Rainger, Jacqueline K; Hingst, Volker; Zimmermann, Theodor; Tech, Stefani; Guthoff, Rudolf F; van Heyningen, Veronica; FitzPatrick, David R

    2013-01-01

    Clinical evaluation and mutation analysis was performed in 51 consecutive probands with severe eye malformations – anophthalmia and/or severe microphthalmia – seen in a single specialist ophthalmology center. The mutation analysis consisted of bidirectional sequencing of the coding regions of SOX2, OTX2, PAX6 (paired domain), STRA6, BMP4, SMOC1, FOXE3, and RAX, and genome-wide array-based copy number assessment. Fifteen (29.4%) of the 51 probands had likely causative mutations affecting SOX2 (9/51), OTX2 (5/51), and STRA6 (1/51). Of the cases with bilateral anophthalmia, 9/12 (75%) were found to be mutation positive. Three of these mutations were large genomic deletions encompassing SOX2 (one case) or OTX2 (two cases). Familial inheritance of three intragenic, plausibly pathogenic, and heterozygous mutations was observed. An unaffected carrier parent of an affected child with an identified OTX2 mutation confirmed the previously reported nonpenetrance for this disorder. Two families with SOX2 mutations demonstrated a parent and child both with significant but highly variable eye malformations. Heterozygous loss-of-function mutations in SOX2 and OTX2 are the most common genetic pathology associated with severe eye malformations and bi-allelic loss-of-function in STRA6 is confirmed as an emerging cause of nonsyndromal eye malformations. PMID:24498598

  4. Single-stranded nucleic acids promote SAMHD1 complex formation.

    Science.gov (United States)

    Tüngler, Victoria; Staroske, Wolfgang; Kind, Barbara; Dobrick, Manuela; Kretschmer, Stefanie; Schmidt, Franziska; Krug, Claudia; Lorenz, Mike; Chara, Osvaldo; Schwille, Petra; Lee-Kirsch, Min Ae

    2013-06-01

    SAM domain and HD domain-containing protein 1 (SAMHD1) is a dGTP-dependent triphosphohydrolase that degrades deoxyribonucleoside triphosphates (dNTPs) thereby limiting the intracellular dNTP pool. Mutations in SAMHD1 cause Aicardi-Goutières syndrome (AGS), an inflammatory encephalopathy that mimics congenital viral infection and that phenotypically overlaps with the autoimmune disease systemic lupus erythematosus. Both disorders are characterized by activation of the antiviral cytokine interferon-α initiated by immune recognition of self nucleic acids. Here we provide first direct evidence that SAMHD1 associates with endogenous nucleic acids in situ. Using fluorescence cross-correlation spectroscopy, we demonstrate that SAMHD1 specifically interacts with ssRNA and ssDNA and establish that nucleic acid-binding and formation of SAMHD1 complexes are mutually dependent. Interaction with nucleic acids and complex formation do not require the SAM domain, but are dependent on the HD domain and the C-terminal region of SAMHD1. We finally demonstrate that mutations associated with AGS exhibit both impaired nucleic acid-binding and complex formation implicating that interaction with nucleic acids is an integral aspect of SAMHD1 function.

  5. Mutational studies reveal a complex set of positive and negative control elements within the chicken vitellogenin II promoter.

    Science.gov (United States)

    Seal, S N; Davis, D L; Burch, J B

    1991-05-01

    The endogenous chicken vitellogenin II (VTGII) gene is transcribed exclusively in hepatocytes in response to estrogen. We previously identified two estrogen response elements (EREs) upstream of this gene. We now present an analysis of the VTGII promoter activated by these EREs in response to estrogen. Chimeric VTGII-CAT genes were cotransfected into LMH chicken hepatoma cells along with an estrogen receptor expression vector, and transient CAT expression was assayed after culturing the cells in the absence or presence of estrogen. An analysis of constructs bearing deletions downstream of the more proximal ERE indicated that promoter elements relevant to transcription in LMH cells extend to between -113 and -96. The relative importance of sequences within the VTGII promoter was examined by using 10 contiguous linker scanner mutations spanning the region from -117 to -24. Although most of these mutations compromised VTGII promoter function, one dramatically increased expression in LMH cells and also rendered the VTGII promoter capable of being activated by cis-linked EREs in fibroblasts cotransfected with an estrogen receptor expression vector. Gel retardation and DNase I footprinting assays revealed four factor-binding sites within this promoter. We demonstrate that three of these sites bind C/EBP, SP1, and USF (or related factors), respectively; the fourth site binds a factor that we denote TF-V beta. The biological relevance of these findings is suggested by the fact that three of these binding sites map to sites previously shown to be occupied in vivo in response to estrogen.

  6. The effect of driving force on intramolecular electron transfer in proteins. Studies on single-site mutated azurins

    DEFF Research Database (Denmark)

    Farver, O; Skov, L K; van de Kamp, M

    1992-01-01

    -6972]. To further investigate the nature of this long-range electron transfer (LRET) proceeding within the protein matrix, we have now investigated it in two azurins where amino acids have been substituted by single-site mutation of the wild-type Pseudomonas aeruginosa azurin. In one mutated protein, a methionine...... the reorganization energy, lambda and electronic coupling factor, beta. The calculated values fit very well with a through-bond LRET mechanism....

  7. A single-copy galK promoter cloning vector suitable for cloning strong promoters

    DEFF Research Database (Denmark)

    Dandanell, Gert; Court, Donald L.; Hammer, Karin

    1986-01-01

    We report the construction of lambda galK promoter cloning vectors for cloning and characterization of strong promoters. This phage, which contains a unique HindIII cloning site, was applied to the cloning and analysis of transcription initiations of the regulatory region of the deo-operon of...

  8. Rationally designed turn promoting mutation in the amyloid-β peptide sequence stabilizes oligomers in solution.

    Directory of Open Access Journals (Sweden)

    Jayakumar Rajadas

    Full Text Available Enhanced production of a 42-residue beta amyloid peptide (Aβ(42 in affected parts of the brain has been suggested to be the main causative factor for the development of Alzheimer's Disease (AD. The severity of the disease depends not only on the amount of the peptide but also its conformational transition leading to the formation of oligomeric amyloid-derived diffusible ligands (ADDLs in the brain of AD patients. Despite being significant to the understanding of AD mechanism, no atomic-resolution structures are available for these species due to the evanescent nature of ADDLs that hinders most structural biophysical investigations. Based on our molecular modeling and computational studies, we have designed Met35Nle and G37p mutations in the Aβ(42 peptide (Aβ(42Nle35p37 that appear to organize Aβ(42 into stable oligomers. 2D NMR on the Aβ(42Nle35p37 peptide revealed the occurrence of two β-turns in the V24-N27 and V36-V39 stretches that could be the possible cause for the oligomer stability. We did not observe corresponding NOEs for the V24-N27 turn in the Aβ(21-43Nle35p37 fragment suggesting the need for the longer length amyloid peptide to form the stable oligomer promoting conformation. Because of the presence of two turns in the mutant peptide which were absent in solid state NMR structures for the fibrils, we propose, fibril formation might be hindered. The biophysical information obtained in this work could aid in the development of structural models for toxic oligomer formation that could facilitate the development of therapeutic approaches to AD.

  9. Oncogenic IDH1 Mutations Promote Enhanced Proline Synthesis through PYCR1 to Support the Maintenance of Mitochondrial Redox Homeostasis

    Directory of Open Access Journals (Sweden)

    Kate E.R. Hollinshead

    2018-03-01

    Full Text Available Summary: Since the discovery of mutations in isocitrate dehydrogenase 1 (IDH1 in gliomas and other tumors, significant efforts have been made to gain a deeper understanding of the consequences of this oncogenic mutation. One aspect of the neomorphic function of the IDH1 R132H enzyme that has received less attention is the perturbation of cellular redox homeostasis. Here, we describe a biosynthetic pathway exhibited by cells expressing mutant IDH1. By virtue of a change in cellular redox homeostasis, IDH1-mutated cells synthesize excess glutamine-derived proline through enhanced activity of pyrroline 5-carboxylate reductase 1 (PYCR1, coupled to NADH oxidation. Enhanced proline biosynthesis partially uncouples the electron transport chain from tricarboxylic acid (TCA cycle activity through the maintenance of a lower NADH/NAD+ ratio and subsequent reduction in oxygen consumption. Thus, we have uncovered a mechanism by which tumor cell survival may be promoted in conditions associated with perturbed redox homeostasis, as occurs in IDH1-mutated glioma. : Hollinshead et al. demonstrate a role for PYCR1 in control of mitochondrial redox homeostasis. Expression of IDH1 R132H mutation leads to increased NADH-coupled proline biosynthesis, mediated by PYCR1. The resulting metabolic phenotype partially uncouples mitochondrial NADH oxidation from respiration, representing an oxygen-sparing metabolic phenotype. Keywords: glioma, IDH1, redox, metabolism, proline

  10. A mutation in a functional Sp1 binding site of the telomerase RNA gene (hTERC promoter in a patient with Paroxysmal Nocturnal Haemoglobinuria

    Directory of Open Access Journals (Sweden)

    Mason Philip J

    2004-06-01

    Full Text Available Abstract Background Mutations in the gene coding for the RNA component of telomerase, hTERC, have been found in autosomal dominant dyskeratosis congenita (DC and aplastic anemia. Paroxysmal nocturnal hemoglobinuria (PNH is a clonal blood disorder associated with aplastic anemia and characterized by the presence of one or more clones of blood cells lacking glycosylphosphatidylinositol (GPI anchored proteins due to a somatic mutation in the PIGA gene. Methods We searched for mutations in DNA extracted from PNH patients by amplification of the hTERC gene and denaturing high performance liquid chromatography (dHPLC. After a mutation was found in a potential transcription factor binding site in one patient electrophoretic mobility shift assays were used to detect binding of transcription factors to that site. The effect of the mutation on the function of the promoter was tested by transient transfection constructs in which the promoter is used to drive a reporter gene. Results Here we report the finding of a novel promoter mutation (-99C->G in the hTERC gene in a patient with PNH. The mutation disrupts an Sp1 binding site and destroys its ability to bind Sp1. Transient transfection assays show that mutations in this hTERC site including C-99G cause either up- or down-regulation of promoter activity and suggest that the site regulates core promoter activity in a context dependent manner in cancer cells. Conclusions These data are the first report of an hTERC promoter mutation from a patient sample which can modulate core promoter activity in vitro, raising the possibility that the mutation may affect the transcription of the gene in hematopoietic stem cells in vivo, and that dysregulation of telomerase may play a role in the development of bone marrow failure and the evolution of PNH clones.

  11. Rapid detection of single nucleotide mutation in p53 gene based on ...

    Indian Academy of Sciences (India)

    mutation.27 Nevertheless, more than 50% of all human tumors contain p53 mutation; ... gene mutation detection in various fields of biology and medicine persuaded us to find ..... Yola M L, Eren T and Atar N 2014 Electrochim. Acta. 125 38. 26.

  12. Mutation of NRAS but not KRAS significantly reduces myeloma sensitivity to single-agent bortezomib therapy

    NARCIS (Netherlands)

    G. Mulligan (George); D.I. Lichter (David); A.D. Bacco (Alessandra Di); S.J. Blakemore (Stephen); A. Berger (Allison); E. Koenig (Erik); H. Bernard (Hugues); W.L. Trepicchio (William); B. Li (Bin); R. Neuwirth (Rachel); N. Chattopadhyay (Nibedita); J.B. Bolen (Joseph); A.J. Dorner (Andrew); H. van de Velde (Helgi); D. Ricci (Deborah); S. Jagannath (Sundar); J.R. Berenson (James); P.G. Richardson (Paul Gerard); E.A. Stadtmauer (Edward); R.Z. Orlowski (Robert); S. Lonial (Sagar); K.C. Anderson (Kenneth); P. Sonneveld (Pieter); J.F. San Miguel (Jesús Fernando); D.-L. Esseltine (Dixie-Lee); M. Schu (Matthew)

    2014-01-01

    textabstractVarious translocations and mutations have been identified in myeloma, and certain aberrations, such as t(4;14) and del17, are linked with disease prognosis. To investigate mutational prevalence in myeloma and associations between mutations and patient outcomes, we tested a panel of 41

  13. A Biofunctional Molecular Beacon for Detecting Single Base Mutations in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Haiyan Dong

    2016-01-01

    Full Text Available The development of a convenient and sensitive biosensing system to detect specific DNA sequences is an important issue in the field of genetic disease therapy. As a classic DNA detection technique, molecular beacon (MB is often used in the biosensing system. However, it has intrinsic drawbacks, including high assay cost, complicated chemical modification, and operational complexity. In this study, we developed a simple and cost-effective label-free multifunctional MB (LMMB by integrating elements of polymerization primer, template, target recognition, and G-quadruplex into one entity to detect target DNA. The core technique was accomplished by introducing a G-hairpin that features fragments of both G-quadruplex and target DNA recognition in the G-hairpin stem. Hybridization between LMMB and target DNA triggered conformational change between the G-hairpin and the common C-hairpin, resulting in significant SYBR-green signal amplification. The hybridization continues to the isothermal circular strand-displacement polymerization and accumulation of the double-stranded fragments, causing the uninterrupted extension of the LMMB without a need of chemical modification and other assistant DNA sequences. The novel and programmable LMMB could detect target DNA with sensitivity at 250 pmol/l with a linear range from 2 to 100 nmol/l and the relative standard deviation of 7.98%. The LMMB could sense a single base mutation from the normal DNA, and polymerase chain reaction (PCR amplicons of the mutant-type cell line from the wild-type one. The total time required for preparation and assaying was only 25 minutes. Apparently, the LMMB shows great potential for detecting DNA and its mutations in biosamples, and therefore it opens up a new prospect for genetic disease therapy.

  14. A novel -192c/g mutation in the proximal P2 promoter of the hepatocyte nuclear factor-4 alpha gene (HNF4A) associates with late-onset diabetes

    DEFF Research Database (Denmark)

    Ek, Jakob; Hansen, Sara P; Lajer, Maria

    2006-01-01

    Recently, it has been shown that mutations in the P2 promoter of the hepatocyte nuclear factor (HNF)-4 alpha gene (HNF4A) cause maturity-onset diabetes of the young (MODY), while single nucleotide polymorphisms in this locus are associated with type 2 diabetes. In this study, we examined 1,189 bp...... of the P2 promoter and the associated exon 1D of HNF4A for variations associated with diabetes in 114 patients with type 2 diabetes, 72 MODYX probands, and 85 women with previous gestational diabetes mellitus. A -192c/g mutation was found in five patients. We screened 1,587 diabetic subjects and 4......,812 glucose-tolerant subjects for the -192c/g mutation and identified 5 diabetic and 1 glucose-tolerant mutation carriers (P=0.004). Examination of the families showed that carriers of the -192c/g mutation had a significantly impaired glucose-stimulated insulin release and lower levels of serum total...

  15. Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos

    Science.gov (United States)

    Tu, Zhuchi; Yang, Weili; Yan, Sen; Yin, An; Gao, Jinquan; Liu, Xudong; Zheng, Yinghui; Zheng, Jiezhao; Li, Zhujun; Yang, Su; Li, Shihua; Guo, Xiangyu; Li, Xiao-Jiang

    2017-01-01

    CRISPR-Cas9 is a powerful new tool for genome editing, but this technique creates mosaic mutations that affect the efficiency and precision of its ability to edit the genome. Reducing mosaic mutations is particularly important for gene therapy and precision genome editing. Although the mechanisms underlying the CRSIPR/Cas9-mediated mosaic mutations remain elusive, the prolonged expression and activity of Cas9 in embryos could contribute to mosaicism in DNA mutations. Here we report that tagging Cas9 with ubiquitin-proteasomal degradation signals can facilitate the degradation of Cas9 in non-human primate embryos. Using embryo-splitting approach, we found that shortening the half-life of Cas9 in fertilized zygotes reduces mosaic mutations and increases its ability to modify genomes in non-human primate embryos. Also, injection of modified Cas9 in one-cell embryos leads to live monkeys with the targeted gene modifications. Our findings suggest that modifying Cas9 activity can be an effective strategy to enhance precision genome editing. PMID:28155910

  16. Detection of MPLW515L/K mutations and determination of allele frequencies with a single-tube PCR assay.

    Science.gov (United States)

    Takei, Hiraku; Morishita, Soji; Araki, Marito; Edahiro, Yoko; Sunami, Yoshitaka; Hironaka, Yumi; Noda, Naohiro; Sekiguchi, Yuji; Tsuneda, Satoshi; Ohsaka, Akimichi; Komatsu, Norio

    2014-01-01

    A gain-of-function mutation in the myeloproliferative leukemia virus (MPL) gene, which encodes the thrombopoietin receptor, has been identified in patients with essential thrombocythemia and primary myelofibrosis, subgroups of classic myeloproliferative neoplasms (MPNs). The presence of MPL gene mutations is a critical diagnostic criterion for these diseases. Here, we developed a rapid, simple, and cost-effective method of detecting two major MPL mutations, MPLW515L/K, in a single PCR assay; we termed this method DARMS (dual amplification refractory mutation system)-PCR. DARMS-PCR is designed to produce three different PCR products corresponding to MPLW515L, MPLW515K, and all MPL alleles. The amplicons are later detected and quantified using a capillary sequencer to determine the relative frequencies of the mutant and wild-type alleles. Applying DARMS-PCR to human specimens, we successfully identified MPL mutations in MPN patients, with the exception of patients bearing mutant allele frequencies below the detection limit (5%) of this method. The MPL mutant allele frequencies determined using DARMS-PCR correlated strongly with the values determined using deep sequencing. Thus, we demonstrated the potential of DARMS-PCR to detect MPL mutations and determine the allele frequencies in a timely and cost-effective manner.

  17. Detection of MPLW515L/K mutations and determination of allele frequencies with a single-tube PCR assay.

    Directory of Open Access Journals (Sweden)

    Hiraku Takei

    Full Text Available A gain-of-function mutation in the myeloproliferative leukemia virus (MPL gene, which encodes the thrombopoietin receptor, has been identified in patients with essential thrombocythemia and primary myelofibrosis, subgroups of classic myeloproliferative neoplasms (MPNs. The presence of MPL gene mutations is a critical diagnostic criterion for these diseases. Here, we developed a rapid, simple, and cost-effective method of detecting two major MPL mutations, MPLW515L/K, in a single PCR assay; we termed this method DARMS (dual amplification refractory mutation system-PCR. DARMS-PCR is designed to produce three different PCR products corresponding to MPLW515L, MPLW515K, and all MPL alleles. The amplicons are later detected and quantified using a capillary sequencer to determine the relative frequencies of the mutant and wild-type alleles. Applying DARMS-PCR to human specimens, we successfully identified MPL mutations in MPN patients, with the exception of patients bearing mutant allele frequencies below the detection limit (5% of this method. The MPL mutant allele frequencies determined using DARMS-PCR correlated strongly with the values determined using deep sequencing. Thus, we demonstrated the potential of DARMS-PCR to detect MPL mutations and determine the allele frequencies in a timely and cost-effective manner.

  18. A Single Missense Mutation in 77% of Prostate Cancer Bone Metastases: Novel Opportunity for Genetic Biomarker and Novel Therapeutic Mitochondrial Target

    Science.gov (United States)

    2017-10-01

    goal of this application is to identify targets for the treatment of androgen receptor null castration-resistant prostate cancer in in vitro and pre...AWARD NUMBER: W81XWH-16-1-0584 TITLE : A Single Missense Mutation in 77% of Prostate Cancer Bone Metastases: Novel Opportunity for Genetic...Missense Mutation in 77% of Prostate Cancer Bone Metastases: 5a. CONTRACT NUMBER A Single Missense Mutation in 77% of Prostate Cancer Bone Metastases

  19. Design of thermostable rhamnogalacturonan lyase mutants from Bacillus licheniformis by combination of targeted single point mutations

    DEFF Research Database (Denmark)

    da Silva, Ines Isabel Cardoso Rodrigues; Jers, Carsten; Otten, Harm

    2014-01-01

    Rhamnogalacturonan I lyases (RGI lyases) (EC 4.2.2.-) catalyze cleavage of α-1,4 bonds between rhamnose and galacturonic acid in the backbone of pectins by β-elimination. In the present study, targeted improvement of the thermostability of a PL family 11 RGI lyase from Bacillus licheniformis (DSM......, were obtained due to additive stabilizing effects of single amino acid mutations (E434L, G55V, and G326E) compared to the wild type. The crystal structure of the B. licheniformis wild-type RGI lyase was also determined; the structural analysis corroborated that especially mutation of charged amino...

  20. Absence of mutation at the 5'-upstream promoter region of the TPM4 gene from cardiac mutant axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Denz, Christopher R; Zhang, Chi; Jia, Pingping; Du, Jianfeng; Huang, Xupei; Dube, Syamalima; Thomas, Anish; Poiesz, Bernard J; Dube, Dipak K

    2011-09-01

    Tropomyosins are a family of actin-binding proteins that show cell-specific diversity by a combination of multiple genes and alternative RNA splicing. Of the 4 different tropomyosin genes, TPM4 plays a pivotal role in myofibrillogenesis as well as cardiac contractility in amphibians. In this study, we amplified and sequenced the upstream regulatory region of the TPM4 gene from both normal and mutant axolotl hearts. To identify the cis-elements that are essential for the expression of the TPM4, we created various deletion mutants of the TPM4 promoter DNA, inserted the deleted segments into PGL3 vector, and performed promoter-reporter assay using luciferase as the reporter gene. Comparison of sequences of the promoter region of the TPM4 gene from normal and mutant axolotl revealed no mutations in the promoter sequence of the mutant TPM4 gene. CArG box elements that are generally involved in controlling the expression of several other muscle-specific gene promoters were not found in the upstream regulatory region of the TPM4 gene. In deletion experiments, loss of activity of the reporter gene was noted upon deletion which was then restored upon further deletion suggesting the presence of both positive and negative cis-elements in the upstream regulatory region of the TPM4 gene. We believe that this is the first axolotl promoter that has ever been cloned and studied with clear evidence that it functions in mammalian cell lines. Although striated muscle-specific cis-acting elements are absent from the promoter region of TPM4 gene, our results suggest the presence of positive and negative cis-elements in the promoter region, which in conjunction with positive and negative trans-elements may be involved in regulating the expression of TPM4 gene in a tissue-specific manner.

  1. Analysis of clustered point mutations in the human ribosomal RNA gene promoter by transient expression in vivo

    International Nuclear Information System (INIS)

    Jones, M.H.; Learned, R.M.; Tjian, R.

    1988-01-01

    The authors have mapped the cis regulatory elements required in vivo for initiation at the human rRNA promoter by RNA polymerase I. Transient expression in COS-7 cells was used to evaluate the transcription phenotype of clustered base substitution mutations in the human rRNA promoter. The promoter consists of two major elements: a large upstream region, composed of several domains, that lies between nucleotides -234 and -107 relative to the transcription initiation site and affects transcription up to 100-fold and a core element that lies between nucleotides -45 and +20 and affects transcription up to 1000-fold. The upstream regions is able to retain partial function when positioned within 100-160 nucleotides of the transcription initiation site, but it cannot stimulate transcription from distances of ≥ 600 nucleotides. In addition, they demonstrate, using mouse-human hybrid rRNA promoters, that the sequences responsible for human species-specific transcription in vivo appear to reside in both the core and upstream elements, and sequences from the mouse rRNA promoter cannot be substituted for them

  2. Tuning of the Lethal Response to Multiple Stressors with a Single-Site Mutation during Clinical Infection by Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Krishan Kumar

    2017-10-01

    Full Text Available The agr system of Staphylococcus aureus promotes invasion of host tissues, and as expected, agents that block agr quorum sensing have anti-infective properties. Paradoxically, agr-defective mutants are frequently recovered from patients, especially those persistently infected with S. aureus. We found that an agr deficiency increased survival of cultured bacteria during severe stress, such as treatment with gentamicin, ciprofloxacin, heat, or low pH. With daptomycin, deletion of agr decreased survival. Therefore, agr activity can be either detrimental or protective, depending on the type of lethal stress. Deletion of agr had no effect on the ability of the antimicrobials to block bacterial growth, indicating that agr effects are limited to lethal action. Thus, the effect of an agr deletion is on bacterial tolerance, not resistance. For gentamicin and daptomycin, activity can be altered by agr-regulated secreted factors. For ciprofloxacin, a detrimental function was downregulation of glutathione peroxidase (bsaA, an enzyme responsible for defense against oxidative stress. Deficiencies in agr and bsaA were epistatic for survival, consistent with agr having a destructive role mediated by reactive oxygen species. Enhanced susceptibility to lethal stress by wild-type agr, particularly antimicrobial stress, helps explain why inactivating mutations in S. aureus agr commonly occur in hospitalized patients during infection. Moreover, the agr quorum-sensing system of S. aureus provides a clinically relevant example in which a single-step change in the response to severe stress alters the evolutionary path of a pathogen during infection.

  3. Mutational analysis of the UCP2 core promoter and relationships of variants with obesity

    DEFF Research Database (Denmark)

    Dalgaard, Louise T; Andersen, Gitte; Larsen, Lesli H

    2003-01-01

    To identify polymorphisms in the human uncoupling protein 2 gene (UCP2) promoter and to investigate whether these were associated with obesity or weight gain.......To identify polymorphisms in the human uncoupling protein 2 gene (UCP2) promoter and to investigate whether these were associated with obesity or weight gain....

  4. TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism.

    Science.gov (United States)

    Harley, Margaret E; Murina, Olga; Leitch, Andrea; Higgs, Martin R; Bicknell, Louise S; Yigit, Gökhan; Blackford, Andrew N; Zlatanou, Anastasia; Mackenzie, Karen J; Reddy, Kaalak; Halachev, Mihail; McGlasson, Sarah; Reijns, Martin A M; Fluteau, Adeline; Martin, Carol-Anne; Sabbioneda, Simone; Elcioglu, Nursel H; Altmüller, Janine; Thiele, Holger; Greenhalgh, Lynn; Chessa, Luciana; Maghnie, Mohamad; Salim, Mahmoud; Bober, Michael B; Nürnberg, Peter; Jackson, Stephen P; Hurles, Matthew E; Wollnik, Bernd; Stewart, Grant S; Jackson, Andrew P

    2016-01-01

    DNA lesions encountered by replicative polymerases threaten genome stability and cell cycle progression. Here we report the identification of mutations in TRAIP, encoding an E3 RING ubiquitin ligase, in patients with microcephalic primordial dwarfism. We establish that TRAIP relocalizes to sites of DNA damage, where it is required for optimal phosphorylation of H2AX and RPA2 during S-phase in response to ultraviolet (UV) irradiation, as well as fork progression through UV-induced DNA lesions. TRAIP is necessary for efficient cell cycle progression and mutations in TRAIP therefore limit cellular proliferation, providing a potential mechanism for microcephaly and dwarfism phenotypes. Human genetics thus identifies TRAIP as a component of the DNA damage response to replication-blocking DNA lesions.

  5. A single splice site mutation in human-specific ARHGAP11B causes basal progenitor amplification

    Science.gov (United States)

    Florio, Marta; Namba, Takashi; Pääbo, Svante; Hiller, Michael; Huttner, Wieland B.

    2016-01-01

    The gene ARHGAP11B promotes basal progenitor amplification and is implicated in neocortex expansion. It arose on the human evolutionary lineage by partial duplication of ARHGAP11A, which encodes a Rho guanosine triphosphatase–activating protein (RhoGAP). However, a lack of 55 nucleotides in ARHGAP11B mRNA leads to loss of RhoGAP activity by GAP domain truncation and addition of a human-specific carboxy-terminal amino acid sequence. We show that these 55 nucleotides are deleted by mRNA splicing due to a single C→G substitution that creates a novel splice donor site. We reconstructed an ancestral ARHGAP11B complementary DNA without this substitution. Ancestral ARHGAP11B exhibits RhoGAP activity but has no ability to increase basal progenitors during neocortex development. Hence, a single nucleotide substitution underlies the specific properties of ARHGAP11B that likely contributed to the evolutionary expansion of the human neocortex. PMID:27957544

  6. Tuning and Switching Enantioselectivity of Asymmetric Carboligation in an Enzyme through Mutational Analysis of a Single Hot Spot.

    Science.gov (United States)

    Wechsler, Cindy; Meyer, Danilo; Loschonsky, Sabrina; Funk, Lisa-Marie; Neumann, Piotr; Ficner, Ralf; Brodhun, Florian; Müller, Michael; Tittmann, Kai

    2015-12-01

    Enantioselective bond making and breaking is a hallmark of enzyme action, yet switching the enantioselectivity of the reaction is a difficult undertaking, and typically requires extensive screening of mutant libraries and multiple mutations. Here, we demonstrate that mutational diversification of a single catalytic hot spot in the enzyme pyruvate decarboxylase gives access to both enantiomers of acyloins acetoin and phenylacetylcarbinol, important pharmaceutical precursors, in the case of acetoin even starting from the unselective wild-type protein. Protein crystallography was used to rationalize these findings and to propose a mechanistic model of how enantioselectivity is controlled. In a broader context, our studies highlight the efficiency of mechanism-inspired and structure-guided rational protein design for enhancing and switching enantioselectivity of enzymatic reactions, by systematically exploring the biocatalytic potential of a single hot spot. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. PrP P102L and Nearby Lysine Mutations Promote Spontaneous In Vitro Formation of Transmissible Prions.

    Science.gov (United States)

    Kraus, Allison; Raymond, Gregory J; Race, Brent; Campbell, Katrina J; Hughson, Andrew G; Anson, Kelsie J; Raymond, Lynne D; Caughey, Byron

    2017-11-01

    Accumulation of fibrillar protein aggregates is a hallmark of many diseases. While numerous proteins form fibrils by prion-like seeded polymerization in vitro , only some are transmissible and pathogenic in vivo To probe the structural features that confer transmissibility to prion protein (PrP) fibrils, we have analyzed synthetic PrP amyloids with or without the human prion disease-associated P102L mutation. The formation of infectious prions from PrP molecules in vitro has required cofactors and/or unphysiological denaturing conditions. Here, we demonstrate that, under physiologically compatible conditions without cofactors, the P102L mutation in recombinant hamster PrP promoted prion formation when seeded by minute amounts of scrapie prions in vitro Surprisingly, combination of the P102L mutation with charge-neutralizing substitutions of four nearby lysines promoted spontaneous prion formation. When inoculated into hamsters, both of these types of synthetic prions initiated substantial accumulation of prion seeding activity and protease-resistant PrP without transmissible spongiform encephalopathy (TSE) clinical signs or notable glial activation. Our evidence suggests that PrP's centrally located proline and lysine residues act as conformational switches in the in vitro formation of transmissible PrP amyloids. IMPORTANCE Many diseases involve the damaging accumulation of specific misfolded proteins in thread-like aggregates. These threads (fibrils) are capable of growing on the ends by seeding the refolding and incorporation of the normal form of the given protein. In many cases such aggregates can be infectious and propagate like prions when transmitted from one individual host to another. Some transmitted aggregates can cause fatal disease, as with human iatrogenic prion diseases, while other aggregates appear to be relatively innocuous. The factors that distinguish infectious and pathogenic protein aggregates from more innocuous ones are poorly understood

  8. Single-step generation of gene knockout-rescue system in pluripotent stem cells by promoter insertion with CRISPR/Cas9.

    Science.gov (United States)

    Matsunaga, Taichi; Yamashita, Jun K

    2014-02-07

    Specific gene knockout and rescue experiments are powerful tools in developmental and stem cell biology. Nevertheless, the experiments require multiple steps of molecular manipulation for gene knockout and subsequent rescue procedures. Here we report an efficient and single step strategy to generate gene knockout-rescue system in pluripotent stem cells by promoter insertion with CRISPR/Cas9 genome editing technology. We inserted a tetracycline-regulated inducible gene promoter (tet-OFF/TRE-CMV) upstream of the endogenous promoter region of vascular endothelial growth factor receptor 2 (VEGFR2/Flk1) gene, an essential gene for endothelial cell (EC) differentiation, in mouse embryonic stem cells (ESCs) with homologous recombination. Both homo- and hetero-inserted clones were efficiently obtained through a simple selection with a drug-resistant gene. The insertion of TRE-CMV promoter disrupted endogenous Flk1 expression, resulting in null mutation in homo-inserted clones. When the inserted TRE-CMV promoter was activated with doxycycline (Dox) depletion, Flk1 expression was sufficiently recovered from the downstream genomic Flk1 gene. Whereas EC differentiation was almost completely perturbed in homo-inserted clones, Flk1 rescue with TRE-CMV promoter activation restored EC appearance, indicating that phenotypic changes in EC differentiation can be successfully reproduced with this knockout-rescue system. Thus, this promoter insertion strategy with CRISPR/Cas9 would be a novel attractive method for knockout-rescue experiments. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. ALDH2(E487K) mutation increases protein turnover and promotes murine hepatocarcinogenesis.

    Science.gov (United States)

    Jin, Shengfang; Chen, Jiang; Chen, Lizao; Histen, Gavin; Lin, Zhizhong; Gross, Stefan; Hixon, Jeffrey; Chen, Yue; Kung, Charles; Chen, Yiwei; Fu, Yufei; Lu, Yuxuan; Lin, Hui; Cai, Xiujun; Yang, Hua; Cairns, Rob A; Dorsch, Marion; Su, Shinsan M; Biller, Scott; Mak, Tak W; Cang, Yong

    2015-07-21

    Mitochondrial aldehyde dehydrogenase 2 (ALDH2) in the liver removes toxic aldehydes including acetaldehyde, an intermediate of ethanol metabolism. Nearly 40% of East Asians inherit an inactive ALDH2*2 variant, which has a lysine-for-glutamate substitution at position 487 (E487K), and show a characteristic alcohol flush reaction after drinking and a higher risk for gastrointestinal cancers. Here we report the characterization of knockin mice in which the ALDH2(E487K) mutation is inserted into the endogenous murine Aldh2 locus. These mutants recapitulate essentially all human phenotypes including impaired clearance of acetaldehyde, increased sensitivity to acute or chronic alcohol-induced toxicity, and reduced ALDH2 expression due to a dominant-negative effect of the mutation. When treated with a chemical carcinogen, these mutants exhibit increased DNA damage response in hepatocytes, pronounced liver injury, and accelerated development of hepatocellular carcinoma (HCC). Importantly, ALDH2 protein levels are also significantly lower in patient HCC than in peritumor or normal liver tissues. Our results reveal that ALDH2 functions as a tumor suppressor by maintaining genomic stability in the liver, and the common human ALDH2 variant would present a significant risk factor for hepatocarcinogenesis. Our study suggests that the ALDH2*2 allele-alcohol interaction may be an even greater human public health hazard than previously appreciated.

  10. H2A/K pseudogene mutation may promote cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jisheng; Jing, Ruirui; Lv, Xin; Wang, Xiaoyue; Li, Junqiang; Li, Lin; Li, Cuiling; Wang, Daoguang; Bi, Baibing; Chen, Xinjun [Cancer Research Center, Shandong University School of Medicine, Jinan 250012 (China); Yang, Jing-Hua, E-mail: sdu_crc_group1@126.com [Cancer Research Center, Shandong University School of Medicine, Jinan 250012 (China); Department of Surgery, VA Boston Healthcare System, Boston University School of Medicine, Boston 510660, MA (United States)

    2016-05-15

    Highlights: • The mutant H2A/K pseudogene is active. • The mutant H2A/K pseudogene can promote cell proliferation. - Abstract: Little attention has been paid to the histone H2A/K pseudogene. Results from our laboratory showed that 7 of 10 kidney cancer patients carried a mutant H2A/K pseudogene; therefore, we were interested in determining the relationship between mutant H2A/K and cell proliferation. We used shotgun and label-free proteomics methods to study whether mutant H2A/K lncRNAs affected cell proliferation. Quantitative proteomic analysis indicated that the expression of mutant H2A/K lncRNAs resulted in the upregulation of many oncogenes, which promoted cell proliferation. Further interaction analyses revealed that a proliferating cell nuclear antigen (PCNA)-protein interaction network, with PCNA in the center, contributes to cell proliferation in cells expressing the mutant H2A/K lncRNAs. Western blotting confirmed the critical upregulation of PCNA by mutant H2A/K lncRNA expression. Finally, the promotion of cell proliferation by mutant H2A/K lncRNAs (C290T, C228A and A45G) was confirmed using cell proliferation assays. Although we did not determine the exact mechanism by which the oncogenes were upregulated by the mutant H2A/K lncRNAs, we confirmed that the mutant H2A/K lncRNAs promoted cell proliferation by upregulating PCNA and other oncogenes. The hypothesis that cell proliferation is promoted by the mutant H2A/K lncRNAs was supported by the protein expression and cell proliferation assay results. Therefore, mutant H2A/K lncRNAs may be a new factor in renal carcinogenesis.

  11. Lack of robustness of life extension associated with several single-gene P element mutations in Drosophila melanogaster.

    Science.gov (United States)

    Mockett, Robin J; Nobles, Amber C

    2013-10-01

    The hypothesis tested in this study was that single-gene mutations found previously to extend the life span of Drosophila melanogaster could do so consistently in both long-lived y w and standard w (1118) genetic backgrounds. GAL4 drivers were used to express upstream activation sequence (UAS)-responder transgenes globally or in the nervous system. Transgenes associated with oxidative damage prevention (UAS-hSOD1 and UAS-GCLc) or removal (EP-UAS-Atg8a and UAS-dTOR (FRB) ) failed to increase mean life spans in any expression pattern in either genetic background. Flies containing a UAS-EGFP-bMSRA (C) transgene associated with protein repair were found not to exhibit life extension or detectable enhanced green fluorescent protein (EGFP) activity. The presence of UAS-responder transgenes was confirmed by PCR amplification and sequencing at the 5' and 3' end of each insertion. These results cast doubt on the robustness of life extension in flies carrying single-gene mutations and suggest that the effects of all such mutations should be tested independently in multiple genetic backgrounds and laboratory environments.

  12. Mutation-Specific Mechanisms of Hyperactivation of Noonan Syndrome SOS Molecules Detected with Single-molecule Imaging in Living Cells.

    Science.gov (United States)

    Nakamura, Yuki; Umeki, Nobuhisa; Abe, Mitsuhiro; Sako, Yasushi

    2017-10-26

    Noonan syndrome (NS) is a congenital hereditary disorder associated with developmental and cardiac defects. Some patients with NS carry mutations in SOS, a guanine nucleotide exchange factor (GEF) for the small GTPase RAS. NS mutations have been identified not only in the GEF domain, but also in various domains of SOS, suggesting that multiple mechanisms disrupt SOS function. In this study, we examined three NS mutations in different domains of SOS to clarify the abnormality in its translocation to the plasma membrane, where SOS activates RAS. The association and dissociation kinetics between SOS tagged with a fluorescent protein and the living cell surface were observed in single molecules. All three mutants showed increased affinity for the plasma membrane, inducing excessive RAS signalling. However, the mechanisms by which their affinity was increased were specific to each mutant. Conformational disorder in the resting state, increased probability of a conformational change on the plasma membrane, and an increased association rate constant with the membrane receptor are the suggested mechanisms. These different properties cause the specific phenotypes of the mutants, which should be rescuable with different therapeutic strategies. Therefore, single-molecule kinetic analyses of living cells are useful for the pathological analysis of genetic diseases.

  13. MLH1-deficient Colorectal Carcinoma With Wild-type BRAF and MLH1 Promoter Hypermethylation Harbor KRAS Mutations and Arise From Conventional Adenomas.

    Science.gov (United States)

    Farchoukh, Lama; Kuan, Shih-Fan; Dudley, Beth; Brand, Randall; Nikiforova, Marina; Pai, Reetesh K

    2016-10-01

    Between 10% and 15% of colorectal carcinomas demonstrate sporadic DNA mismatch-repair protein deficiency as a result of MLH1 promoter methylation and are thought to arise from sessile serrated adenomas, termed the serrated neoplasia pathway. Although the presence of the BRAF V600E mutation is indicative of a sporadic cancer, up to 30% to 50% of colorectal carcinomas with MLH1 promoter hypermethylation will lack a BRAF mutation. We report the clinicopathologic and molecular features of MLH1-deficient colorectal carcinoma with wild-type BRAF and MLH1 promoter hypermethylation (referred to as MLH1-hypermethylated BRAF wild-type colorectal carcinoma, n=36) in comparison with MLH1-deficient BRAF-mutated colorectal carcinoma (n=113) and Lynch syndrome-associated colorectal carcinoma (n=36). KRAS mutations were identified in 31% of MLH1-hypermethylated BRAF wild-type colorectal carcinomas compared with 0% of MLH1-deficient BRAF-mutated colorectal carcinomas and 37% of Lynch syndrome-associated colorectal carcinomas. When a precursor polyp was identified, MLH1-hypermethylated BRAF wild-type colorectal carcinomas arose from precursor polyps resembling conventional tubular/tubulovillous adenomas in contrast to MLH1-deficient BRAF-mutated colorectal carcinomas, which arose from precursor sessile serrated adenomas (PMLH1-hypermethylated BRAF wild-type colorectal carcinoma and MLH1-deficient BRAF-mutated colorectal carcinoma had a predilection for the right colon compared with Lynch syndrome-associated colorectal carcinoma (86% vs. 92% vs. 49%, P0.05). In conclusion, our results indicate that MLH1-hypermethylated BRAF wild-type colorectal carcinomas can harbor KRAS mutations and arise from precursor polyps resembling conventional tubular/tubulovillous adenomas.

  14. Chemical inducible promoter used to obtain transgenic plants with a silent marker and organisms and cells and methods of using same for screening for mutations

    Science.gov (United States)

    Zuo, Jianru [New York, NY; Chua, Nam-Hai [Scarsdale, NY

    2007-06-12

    Disclosed is a chemically inducible promoter for transforming plants or plant cells with genes which are regulatable by adding the plants or cells to a medium containing an inducer or by removing them from such medium. The promoter is inducible by a glucocorticoid, estrogen or inducer not endogenous to plants. Such promoters may be used with any plant genes that can promote shoot regeneration and development to induce shoot formation in the presence of a glucocorticoid, estrogen or inducer. The promoter may be used with antibiotic or herbicide resistance genes or other genes which are regulatable by the presence or absence of a given inducer. Also presented are organisms or cells comprising a gene wherein the natural promoter of the gene is disrupted and the gene is placed under the control of a transgenic inducible promoter. These organisms and cells and their progeny are useful for screening for conditional gain of function and loss of function mutations.

  15. Method of Promoting Single Crystal Growth During Melt Growth of Semiconductors

    Science.gov (United States)

    Su, Ching-Hua (Inventor)

    2013-01-01

    The method of the invention promotes single crystal growth during fabrication of melt growth semiconductors. A growth ampoule and its tip have a semiconductor source material placed therein. The growth ampoule is placed in a first thermal environment that raises the temperature of the semiconductor source material to its liquidus temperature. The growth ampoule is then transitioned to a second thermal environment that causes the semiconductor source material in the growth ampoule's tip to attain a temperature that is below the semiconductor source material's solidus temperature. The growth ampoule so-transitioned is then mechanically perturbed to induce single crystal growth at the growth ampoule's tip.

  16. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation

    KAUST Repository

    Wang, Liang

    2018-04-04

    Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydrogenation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn-TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various reducible groups. The high activity and selectivity of these catalysts result from the creation of oxygen vacancies on the TiO2 surface by single-site Sn, which leads to efficient, selective activation of the nitro group coupled with a reaction involving hydrogen atoms activated on metal nanoparticles.

  17. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation

    KAUST Repository

    Wang, Liang; Guan, Erjia; Zhang, Jian; Yang, Junhao; Zhu, Yihan; Han, Yu; Yang, Ming; Cen, Cheng; Fu, Gang; Gates, Bruce C.; Xiao, Feng-Shou

    2018-01-01

    Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydrogenation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn-TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various reducible groups. The high activity and selectivity of these catalysts result from the creation of oxygen vacancies on the TiO2 surface by single-site Sn, which leads to efficient, selective activation of the nitro group coupled with a reaction involving hydrogen atoms activated on metal nanoparticles.

  18. High-quality Thermodynamic Data on the Stability Changes of Proteins Upon Single-site Mutations

    Energy Technology Data Exchange (ETDEWEB)

    Pucci, Fabrizio, E-mail: fapucci@ulb.ac.be; Bourgeas, Raphaël, E-mail: rbourgeas@ulb.ac.be; Rooman, Marianne, E-mail: mrooman@ulb.ac.be [Department of BioModeling, BioInformatics and BioProcesses, Université Libre de Bruxelles, CP 165/61, Roosevelt Avenue 50, 1050 Brussels, Belgium and Interuniversity Institute of Bioinformatics in Brussels, CP 263, Triumph Bld, 1050 Brussels (Belgium)

    2016-06-15

    We have set up and manually curated a dataset containing experimental information on the impact of amino acid substitutions in a protein on its thermal stability. It consists of a repository of experimentally measured melting temperatures (T{sub m}) and their changes upon point mutations (ΔT{sub m}) for proteins having a well-resolved x-ray structure. This high-quality dataset is designed for being used for the training or benchmarking of in silico thermal stability prediction methods. It also reports other experimentally measured thermodynamic quantities when available, i.e., the folding enthalpy (ΔH) and heat capacity (ΔC{sub P}) of the wild type proteins and their changes upon mutations (ΔΔH and ΔΔC{sub P}), as well as the change in folding free energy (ΔΔG) at a reference temperature. These data are analyzed in view of improving our insights into the correlation between thermal and thermodynamic stabilities, the asymmetry between the number of stabilizing and destabilizing mutations, and the difference in stabilization potential of thermostable versus mesostable proteins.

  19. Ataxia-telangiectasia mutated (ATM) silencing promotes neuroblastoma progression through a MYCN independent mechanism

    Science.gov (United States)

    Mandriota, Stefano J.; Valentijn, Linda J.; Lesne, Laurence; Betts, David R.; Marino, Denis; Boudal-Khoshbeen, Mary; London, Wendy B.; Rougemont, Anne-Laure; Attiyeh, Edward F.; Maris, John M.; Hogarty, Michael D.; Koster, Jan; Molenaar, Jan J.; Versteeg, Rogier

    2015-01-01

    Neuroblastoma, a childhood cancer with highly heterogeneous biology and clinical behavior, is characterized by genomic aberrations including amplification of MYCN. Hemizygous deletion of chromosome 11q is a well-established, independent marker of poor prognosis. While 11q22-q23 is the most frequently deleted region, the neuroblastoma tumor suppressor in this region remains to be identified. Chromosome bands 11q22-q23 contain ATM, a cell cycle checkpoint kinase and tumor suppressor playing a pivotal role in the DNA damage response. Here, we report that haploinsufficiency of ATM in neuroblastoma correlates with lower ATM expression, event-free survival, and overall survival. ATM loss occurs in high stage neuroblastoma without MYCN amplification. In SK-N-SH, CLB-Ga and GI-ME-N human neuroblastoma cells, stable ATM silencing promotes neuroblastoma progression in soft agar assays, and in subcutaneous xenografts in nude mice. This effect is dependent on the extent of ATM silencing and does not appear to involve MYCN. Our findings identify ATM as a potential haploinsufficient neuroblastoma tumor suppressor, whose inactivation mirrors the increased aggressiveness associated with 11q deletion in neuroblastoma. PMID:26053094

  20. Single-Point Mutation with a Rotamer Library Toolkit: Toward Protein Engineering.

    Science.gov (United States)

    Pottel, Joshua; Moitessier, Nicolas

    2015-12-28

    Protein engineers have long been hard at work to harness biocatalysts as a natural source of regio-, stereo-, and chemoselectivity in order to carry out chemistry (reactions and/or substrates) not previously achieved with these enzymes. The extreme labor demands and exponential number of mutation combinations have induced computational advances in this domain. The first step in our virtual approach is to predict the correct conformations upon mutation of residues (i.e., rebuilding side chains). For this purpose, we opted for a combination of molecular mechanics and statistical data. In this work, we have developed automated computational tools to extract protein structural information and created conformational libraries for each amino acid dependent on a variable number of parameters (e.g., resolution, flexibility, secondary structure). We have also developed the necessary tool to apply the mutation and optimize the conformation accordingly. For side-chain conformation prediction, we obtained overall average root-mean-square deviations (RMSDs) of 0.91 and 1.01 Å for the 18 flexible natural amino acids within two distinct sets of over 3000 and 1500 side-chain residues, respectively. The commonly used dihedral angle differences were also evaluated and performed worse than the state of the art. These two metrics are also compared. Furthermore, we generated a family-specific library for kinases that produced an average 2% lower RMSD upon side-chain reconstruction and a residue-specific library that yielded a 17% improvement. Ultimately, since our protein engineering outlook involves using our docking software, Fitted/Impacts, we applied our mutation protocol to a benchmarked data set for self- and cross-docking. Our side-chain reconstruction does not hinder our docking software, demonstrating differences in pose prediction accuracy of approximately 2% (RMSD cutoff metric) for a set of over 200 protein/ligand structures. Similarly, when docking to a set of over 100

  1. Two co-existing germline mutations P53 V157D and PMS2 R20Q promote tumorigenesis in a familial cancer syndrome.

    Science.gov (United States)

    Wang, Zuoyun; Sun, Yihua; Gao, Bin; Lu, Yi; Fang, Rong; Gao, Yijun; Xiao, Tian; Liu, Xin-Yuan; Pao, William; Zhao, Yun; Chen, Haiquan; Ji, Hongbin

    2014-01-01

    Germline mutations are responsible for familial cancer syndromes which account for approximately 5-10% of all types of cancers. These mutations mainly occur at tumor suppressor genes or genome stability genes, such as DNA repair genes. Here we have identified a cancer predisposition family, in which eight members were inflicted with a wide spectrum of cancer including one diagnosed with lung cancer at 22years old. Sequencing analysis of tumor samples as well as histologically normal specimens identified two germline mutations co-existing in the familial cancer syndrome, the mutation of tumor suppressor gene P53 V157D and mismatch repair gene PMS2 R20Q. We further demonstrate that P53 V157D and/or PMS2 R20Q mutant promotes lung cancer cell proliferation. These two mutants are capable of promoting colony formation in soft agar as well as tumor formation in transgenic drosophila system. Collectively, these data have uncovered the important role of co-existing germline P53 and PMS2 mutations in the familial cancer syndrome development. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. KRAS mutations and CDKN2A promoter methylation show an interactive adverse effect on survival and predict recurrence of rectal cancer.

    Science.gov (United States)

    Kohonen-Corish, Maija R J; Tseung, Jason; Chan, Charles; Currey, Nicola; Dent, Owen F; Clarke, Stephen; Bokey, Les; Chapuis, Pierre H

    2014-06-15

    Colonic and rectal cancers differ in their clinicopathologic features and treatment strategies. Molecular markers such as gene methylation, microsatellite instability and KRAS mutations, are becoming increasingly important in guiding treatment decisions in colorectal cancer. However, their association with clinicopathologic variables and utility in the management of rectal cancer is still poorly understood. We analyzed CDKN2A gene methylation, CpG island methylator phenotype (CIMP), microsatellite instability and KRAS/BRAF mutations in a cohort of 381 rectal cancers with extensive clinical follow-up data. BRAF mutations (2%), CIMP-high (4%) and microsatellite instability-high (2%) were rare, whereas KRAS mutations (39%), CDKN2A methylation (20%) and CIMP-low (25%) were more common. Only CDKN2A methylation and KRAS mutations showed an association with poor overall survival but these did not remain significant when analyzed with other clinicopathologic factors. In contrast, this prognostic effect was strengthened by the joint presence of CDKN2A methylation and KRAS mutations, which independently predicted recurrence of cancer and was associated with poor overall and cancer-specific survival. This study has identified a subgroup of more aggressive rectal cancers that may arise through the KRAS-p16 pathway. It has been previously shown that an interaction of p16 deficiency and oncogenic KRAS promotes carcinogenesis in the mouse and is characterized by loss of oncogene-induced senescence. These findings may provide avenues for the discovery of new treatments in rectal cancer. © 2013 UICC.

  3. A novel ATM-dependent checkpoint defect distinct from loss of function mutation promotes genomic instability in melanoma.

    Science.gov (United States)

    Spoerri, Loredana; Brooks, Kelly; Chia, KeeMing; Grossman, Gavriel; Ellis, Jonathan J; Dahmer-Heath, Mareike; Škalamera, Dubravka; Pavey, Sandra; Burmeister, Bryan; Gabrielli, Brian

    2016-05-01

    Melanomas have high levels of genomic instability that can contribute to poor disease prognosis. Here, we report a novel defect of the ATM-dependent cell cycle checkpoint in melanoma cell lines that promotes genomic instability. In defective cells, ATM signalling to CHK2 is intact, but the cells are unable to maintain the cell cycle arrest due to elevated PLK1 driving recovery from the arrest. Reducing PLK1 activity recovered the ATM-dependent checkpoint arrest, and over-expressing PLK1 was sufficient to overcome the checkpoint arrest and increase genomic instability. Loss of the ATM-dependent checkpoint did not affect sensitivity to ionizing radiation demonstrating that this defect is distinct from ATM loss of function mutations. The checkpoint defective melanoma cell lines over-express PLK1, and a significant proportion of melanomas have high levels of PLK1 over-expression suggesting this defect is a common feature of melanomas. The inability of ATM to impose a cell cycle arrest in response to DNA damage increases genomic instability. This work also suggests that the ATM-dependent checkpoint arrest is likely to be defective in a higher proportion of cancers than previously expected. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Mechanism of DNA–binding loss upon single-point mutation in p53

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    loss in protein−DNA binding affinity and specificity upon single point ..... we computed the root–mean–square–deviations (RMSDs) of each residue's ...... Petsko G and Ringe D 1984 Fluctuations in protein structure from. X-ray diffraction; Annu.

  5. Four Gaucher disease type II patients with three novel mutations: a single centre experience from Turkey.

    Science.gov (United States)

    Bulut, Fatma Derya; Kör, Deniz; Şeker-Yılmaz, Berna; Hergüner, Özlem; Ceylaner, Serdar; Özkınay, Ferda; Kılavuz, Sebile; Önenli-Mungan, Neslihan

    2018-04-14

    Gaucher disease is the most common lysosomal storage disorder due to glucosylceramidase enzyme deficiency. There are three subtypes of the disease. Neurological involvement accompanies visceral and haematological findings only in type II and type III Gaucher patients. Type II is the acute progressive neuronopathic form which is the most severe and rare subtype. Clinical findings are recognized prenatally or in the first months of life and followed by death within the first two years of age. Among our 81 Gaucher patients, we identified 4 (4,9%) type II patients in our metabolic centre. This rate is significantly higher than the rate reported in the literature (Gaucher patients with three novel mutations and one perinatal lethal form with generalized ichthyosis which is a very rare disorder. Additionally, we would like to highlight the phenotypic heterogeneity not only between the subtypes, also even in the same type.

  6. Novel inborn error of folate metabolism: identification by exome capture and sequencing of mutations in the MTHFD1 gene in a single proband.

    Science.gov (United States)

    Watkins, David; Schwartzentruber, Jeremy A; Ganesh, Jaya; Orange, Jordan S; Kaplan, Bernard S; Nunez, Laura Dempsey; Majewski, Jacek; Rosenblatt, David S

    2011-09-01

    An infant was investigated because of megaloblastic anaemia, atypical hemolytic uraemic syndrome, severe combined immune deficiency, elevated blood levels of homocysteine and methylmalonic acid, and a selective decreased synthesis of methylcobalamin in cultured fibroblasts. Exome sequencing was performed on patient genomic DNA. Two mutations were identified in the MTHFD1 gene, which encodes a protein that catalyses three reactions involved in cellular folate metabolism. This protein is essential for the generation of formyltetrahydrofolate and methylenetetrahydrofolate and important for nucleotide and homocysteine metabolism. One mutation (c.727+1G>A) affects the splice acceptor site of intron 8. The second mutation, c.517C>T (p.R173C), changes a critical arginine residue in the NADP-binding site of the protein. Mutations affecting this arginine have previously been shown to affect enzyme activity. Both parents carry a single mutation and an unaffected sibling carries neither mutation. The combination of two mutations in the MTHFRD1 gene, predicted to have severe consequences, in the patient and their absence in the unaffected sibling, supports causality. This patient represents the first case of an inborn error of folate metabolism affecting the trifunctional MTHFD1 protein. This report reinforces the power of exome capture and sequencing for the discovery of novel genes, even when only a single proband is available for study.

  7. RADX interacts with single-stranded DNA to promote replication fork stability

    DEFF Research Database (Denmark)

    Schubert, Lisa; Ho, Teresa; Hoffmann, Saskia

    2017-01-01

    Single-stranded DNA (ssDNA) regions form as an intermediate in many DNA-associated transactions. Multiple cellular proteins interact with ssDNA via the oligonucleotide/oligosaccharide-binding (OB) fold domain. The heterotrimeric, multi-OB fold domain-containing Replication Protein A (RPA) complex...... ssDNA-binding activities is critical for avoiding these defects. Our findings establish RADX as an important component of cellular pathways that promote DNA replication integrity under basal and stressful conditions by means of multiple ssDNA-binding proteins....

  8. Single mutation confers vanadate resistance to the plasma membrane H+-ATPase from the yeast Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Ulaszewski, S.; Van Herck, J.C.; Dufour, J.P.; Kulpa, J.; Nieuwenhuis, B.; Goffeau, A.

    1987-01-01

    A single-gene nuclear mutant has been selected from the yeast Schizosaccharomyces pombe for growth resistance to Dio-9, a plasma membrane H+-ATPase inhibitor. From this mutant, called pma1, an ATPase activity has been purified. It contains a Mr = 100,000 major polypeptide which is phosphorylated by [gamma- 32 P] ATP. Proton pumping is not impaired since the isolated mutant ATPase is able, in reconstituted proteoliposomes, to quench the fluorescence of the delta pH probe 9-amino-6-chloro-2-methoxy acridine. The isolated mutant ATPase is sensitive to Dio-9 as well as to seven other plasma membrane H+-ATPase inhibitors. The mutant H+-ATPase activity tested in vitro is, however, insensitive to vanadate. Its Km for MgATP is modified and its ATPase specific activity is decreased. The pma1 mutation decreases the rate of extracellular acidification induced by glucose when cells are incubated at pH 4.5 under nongrowing conditions. During growth, the intracellular mutant pH is more acid than the wild type one. The derepression by ammonia starvation of methionine transport is decreased in the mutant. The growth rate of pma1 mutants is reduced in minimal medium compared to rich medium, especially when combined to an auxotrophic mutation. It is concluded that the H+-ATPase activity from yeast plasma membranes controls the intracellular pH as well as the derepression of amino acid, purine, and pyrimidine uptakes. The pma1 mutation modifies several transport properties of the cells including those responsible for the uptake of Dio-9 and other inhibitors

  9. Promoter methylation of RASSF1A and DAPK and mutations of K-ras, p53, and EGFR in lung tumors from smokers and never-smokers

    International Nuclear Information System (INIS)

    Liu, Yang; Gao, Weimin; Siegfried, Jill M; Weissfeld, Joel L; Luketich, James D; Keohavong, Phouthone

    2007-01-01

    Epidemiological studies indicate that some characteristics of lung cancer among never-smokers significantly differ from those of smokers. Aberrant promoter methylation and mutations in some oncogenes and tumor suppressor genes are frequent in lung tumors from smokers but rare in those from never-smokers. In this study, we analyzed promoter methylation in the ras-association domain isoform A (RASSF1A) and the death-associated protein kinase (DAPK) genes in lung tumors from patients with primarily non-small cell lung cancer (NSCLC) from the Western Pennsylvania region. We compare the results with the smoking status of the patients and the mutation status of the K-ras, p53, and EGFR genes determined previously on these same lung tumors. Promoter methylation of the RASSF1A and DAPK genes was analyzed by using a modified two-stage methylation-specific PCR. Data on mutations of K-ras, p53, and EGFR were obtained from our previous studies. The RASSF1A gene promoter methylation was found in tumors from 46.7% (57/122) of the patients and was not significantly different between smokers and never-smokers, but was associated significantly in multiple variable analysis with tumor histology (p = 0.031) and marginally with tumor stage (p = 0.063). The DAPK gene promoter methylation frequency in these tumors was 32.8% (40/122) and did not differ according to the patients' smoking status, tumor histology, or tumor stage. Multivariate analysis adjusted for age, gender, smoking status, tumor histology and stage showed that the frequency of promoter methylation of the RASSF1A or DAPK genes did not correlate with the frequency of mutations of the K-ras, p53, and EGFR gene. Our results showed that RASSF1A and DAPK genes' promoter methylation occurred frequently in lung tumors, although the prevalence of this alteration in these genes was not associated with the smoking status of the patients or the occurrence of mutations in the K-ras, p53 and EGFR genes, suggesting each of

  10. Heterozygous Null Bone Morphogenetic Protein Receptor Type 2 Mutations Promote SRC Kinase-dependent Caveolar Trafficking Defects and Endothelial Dysfunction in Pulmonary Arterial Hypertension*

    Science.gov (United States)

    Prewitt, Allison R.; Ghose, Sampa; Frump, Andrea L.; Datta, Arumima; Austin, Eric D.; Kenworthy, Anne K.; de Caestecker, Mark P.

    2015-01-01

    Hereditary pulmonary arterial hypertension (HPAH) is a rare, fatal disease of the pulmonary vasculature. The majority of HPAH patients inherit mutations in the bone morphogenetic protein type 2 receptor gene (BMPR2), but how these promote pulmonary vascular disease is unclear. HPAH patients have features of pulmonary endothelial cell (PEC) dysfunction including increased vascular permeability and perivascular inflammation associated with decreased PEC barrier function. Recently, frameshift mutations in the caveolar structural protein gene Caveolin-1 (CAV-1) were identified in two patients with non-BMPR2-associated HPAH. Because caveolae regulate endothelial function and vascular permeability, we hypothesized that defects in caveolar function might be a common mechanism by which BMPR2 mutations promote pulmonary vascular disease. To explore this, we isolated PECs from mice carrying heterozygous null Bmpr2 mutations (Bmpr2+/−) similar to those found in the majority of HPAH patients. We show that Bmpr2+/− PECs have increased numbers and intracellular localization of caveolae and caveolar structural proteins CAV-1 and Cavin-1 and that these defects are reversed after blocking endocytosis with dynasore. SRC kinase is also constitutively activated in Bmpr2+/− PECs, and localization of CAV-1 to the plasma membrane is restored after treating Bmpr2+/− PECs with the SRC kinase inhibitor 3-(4-chlorophenyl)-1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP2). Late outgrowth endothelial progenitor cells isolated from HPAH patients show similar increased activation of SRC kinase. Moreover, Bmpr2+/− PECs have impaired endothelial barrier function, and barrier function is restored after treatment with PP2. These data suggest that heterozygous null BMPR2 mutations promote SRC-dependent caveolar trafficking defects in PECs and that this may contribute to pulmonary endothelial barrier dysfunction in HPAH patients. PMID:25411245

  11. Phenylketonuria in The Netherlands : 93% of the mutations are detected by single-strand conformation analysis

    NARCIS (Netherlands)

    vanderSijsBos, CJM; Diepstraten, CM; Juyn, JA; Plaisier, M; Giltay, JC; vanSpronsen, FJ; Smit, GPA; Berger, R; Smeitink, JAM; PollThe, BT; vanAmstel, JKP

    1996-01-01

    Single-strand conformational analysis was used to screen for genetic defects in all thirteen exons of the phenylalanine hydroxylase gene (PAH) in phenylketonuria and hyperphenylalaninemia patients in the Netherlands. Exons that showed a bandshift were sequenced directly, In this way, we were able to

  12. Dedicator of cytokinesis 8 mutation related combined immune deficiency: A single centre experience from India

    Directory of Open Access Journals (Sweden)

    Dhwanee Thakkar

    2017-10-01

    Full Text Available The Dedicator of cytokinesis 8 (DOCK8 related combined immune deficiency is a recently discovered entity which differs from the classic STAT3 associated autosomal dominant hyper-IgE syndrome with respect to the genetic origin and the clinical manifestations. It is characterised by increased risk of autoimmunity, malignancy and neurological complications in addition to increased risk of recurrent cutaneous, sinopulmonary and gastrointestinal infections. We report a series 11 children from three families suffering from DOCK8 related combined immunodeficiency. Out of 11 children only 5 were alive at diagnosis and rest 6 were siblings who had died of similar complaints. Among the 5 children only one underwent allogeneic haploidentical stem cell transplant (SCT from his mother but died before engraftment due to infection. Other 4 are alive without SCT but have multiple co-morbidities. A constellation of cutaneous lesions, recurrent sinopulmonary & gastro intestinal infections and allergic manifestations in a child who may have a similar family history should arouse a suspicion of combined immunodeficiency associated with DOCK8 mutation. Early diagnosis in such children can expedite the appropriate management with SCT. Keywords: Combined immunodeficiency, DOCK8, Children

  13. A single amino acid mutation in SNAP-25 induces anxiety-related behavior in mouse.

    Directory of Open Access Journals (Sweden)

    Masakazu Kataoka

    Full Text Available Synaptosomal-associated protein of 25 kDa (SNAP-25 is a presynaptic protein essential for neurotransmitter release. Previously, we demonstrate that protein kinase C (PKC phosphorylates Ser(187 of SNAP-25, and enhances neurotransmitter release by recruiting secretory vesicles near to the plasma membrane. As PKC is abundant in the brain and SNAP-25 is essential for synaptic transmission, SNAP-25 phosphorylation is likely to play a crucial role in the central nervous system. We therefore generated a mutant mouse, substituting Ser(187 of SNAP-25 with Ala using "knock-in" technology. The most striking effect of the mutation was observed in their behavior. The homozygous mutant mice froze readily in response to environmental change, and showed strong anxiety-related behavior in general activity and light and dark preference tests. In addition, the mutant mice sometimes exhibited spontaneously occurring convulsive seizures. Microdialysis measurements revealed that serotonin and dopamine release were markedly reduced in amygdala. These results clearly indicate that PKC-dependent SNAP-25 phosphorylation plays a critical role in the regulation of emotional behavior as well as the suppression of epileptic seizures, and the lack of enhancement of monoamine release is one of the possible mechanisms underlying these defects.

  14. The hepcidin gene promoter nc.-1010C > T; -582A > G haplotype modulates serum ferritin in individuals carrying the common H63D mutation in HFE gene.

    Science.gov (United States)

    Silva, Bruno; Pita, Lina; Gomes, Susana; Gonçalves, João; Faustino, Paula

    2014-12-01

    Hereditary hemochromatosis is an autosomal recessive disorder characterized by severe iron overload. It is usually associated with homozygosity for the HFE gene mutation c.845G > A; p.C282Y. However, in some cases, another HFE mutation (c.187C > G; p.H63D) seems to be associated with the disease. Its penetrance is very low, suggesting the possibility of other iron genetic modulators being involved. In this work, we have screened for HAMP promoter polymorphisms in 409 individuals presenting normal or increased serum ferritin levels together with normal or H63D-mutated HFE genotypes. Our results show that the hepcidin gene promoter TG haplotype, originated by linkage of the nc.-1010C > T and nc.-582A > G polymorphisms, is more frequent in the HFE_H63D individuals presenting serum ferritin levels higher than 300 μg/L than in those presenting the HFE_H63D mutation but with normal serum ferritin levels or in the normal control group.Moreover, it was observed that the TG haplotype was associated to increased serum ferritin levels in the overall pool of HFE_H63D individuals. Thus, our data suggest that screening for these polymorphisms could be of interest in order to explain the phenotype. However, this genetic condition seems to have no clinical significance.

  15. A nonadaptive origin of a beneficial trait: in silico selection for free energy of folding leads to the neutral emergence of mutational robustness in single domain proteins.

    Science.gov (United States)

    Pagan, Rafael F; Massey, Steven E

    2014-02-01

    Proteins are regarded as being robust to the deleterious effects of mutations. Here, the neutral emergence of mutational robustness in a population of single domain proteins is explored using computer simulations. A pairwise contact model was used to calculate the ΔG of folding (ΔG folding) using the three dimensional protein structure of leech eglin C. A random amino acid sequence with low mutational robustness, defined as the average ΔΔG resulting from a point mutation (ΔΔG average), was threaded onto the structure. A population of 1,000 threaded sequences was evolved under selection for stability, using an upper and lower energy threshold. Under these conditions, mutational robustness increased over time in the most common sequence in the population. In contrast, when the wild type sequence was used it did not show an increase in robustness. This implies that the emergence of mutational robustness is sequence specific and that wild type sequences may be close to maximal robustness. In addition, an inverse relationship between ∆∆G average and protein stability is shown, resulting partly from a larger average effect of point mutations in more stable proteins. The emergence of mutational robustness was also observed in the Escherichia coli colE1 Rop and human CD59 proteins, implying that the property may be common in single domain proteins under certain simulation conditions. The results indicate that at least a portion of mutational robustness in small globular proteins might have arisen by a process of neutral emergence, and could be an example of a beneficial trait that has not been directly selected for, termed a "pseudaptation."

  16. Advantages of a single-cycle production assay to study cell culture-adaptive mutations of hepatitis C virus

    DEFF Research Database (Denmark)

    Russell, Rodney S; Meunier, Jean-Christophe; Takikawa, Shingo

    2008-01-01

    mutations that were selected during serial passage in Huh-7.5 cells were studied. Recombinant genomes containing all five mutations produced 3-4 logs more infectious virions than did wild type. Neither a coding mutation in NS5A nor a silent mutation in E2 was adaptive, whereas coding mutations in E2, p7......The JFH1 strain of hepatitis C virus (HCV) is unique among HCV isolates, in that the wild-type virus can traverse the entire replication cycle in cultured cells. However, without adaptive mutations, only low levels of infectious virus are produced. In the present study, the effects of five...

  17. DNA detection and single nucleotide mutation identification using SERS for molecular diagnostics and global health

    Science.gov (United States)

    Ngo, Hoan T.; Gandra, Naveen; Fales, Andrew M.; Taylor, Steve M.; Vo-Dinh, Tuan

    2017-02-01

    Nucleic acid-based molecular diagnostics at the point-of-care (POC) and in resource-limited settings is still a challenge. We present a sensitive yet simple DNA detection method with single nucleotide polymorphism (SNP) identification capability. The detection scheme involves sandwich hybridization of magnetic beads conjugated with capture probes, target sequences, and ultrabright surface-enhanced Raman Scattering (SERS) nanorattles conjugated with reporter probes. Upon hybridization, the sandwich probes are concentrated at the detection focus controlled by a magnetic system for SERS measurements. The ultrabright SERS nanorattles, consisting of a core and a shell with resonance Raman reporters loaded in the gap space between the core and the shell, serve as SERS tags for ultrasensitive signal detection. Specific DNA sequences of the malaria parasite Plasmodium falciparum and dengue virus 1 (DENV1) were used as the model marker system. Detection limit of approximately 100 attomoles was achieved. Single nucleotide polymorphism (SNP) discrimination of wild type malaria DNA and mutant malaria DNA, which confers resistance to artemisinin drugs, was also demonstrated. The results demonstrate the molecular diagnostic potential of the nanorattle-based method to both detect and genotype infectious pathogens. The method's simplicity makes it a suitable candidate for molecular diagnosis at the POC and in resource-limited settings.

  18. TALEN-mediated single-base-pair editing identification of an intergenic mutation upstream of BUB1B as causative of PCS (MVA) syndrome

    Science.gov (United States)

    Ochiai, Hiroshi; Miyamoto, Tatsuo; Kanai, Akinori; Hosoba, Kosuke; Sakuma, Tetsushi; Kudo, Yoshiki; Asami, Keiko; Ogawa, Atsushi; Watanabe, Akihiro; Kajii, Tadashi; Yamamoto, Takashi; Matsuura, Shinya

    2014-01-01

    Cancer-prone syndrome of premature chromatid separation with mosaic variegated aneuploidy [PCS (MVA) syndrome] is a rare autosomal recessive disorder characterized by constitutional aneuploidy and a high risk of childhood cancer. We previously reported monoallelic mutations in the BUB1B gene (encoding BUBR1) in seven Japanese families with the syndrome. No second mutation was found in the opposite allele of any of the families studied, although a conserved BUB1B haplotype and a decreased transcript were identified. To clarify the molecular pathology of the second allele, we extended our mutational search to a candidate region surrounding BUB1B. A unique single nucleotide substitution, G > A at ss802470619, was identified in an intergenic region 44 kb upstream of a BUB1B transcription start site, which cosegregated with the disorder. To examine whether this is the causal mutation, we designed a transcription activator-like effector nuclease–mediated two-step single-base pair editing strategy and biallelically introduced this substitution into cultured human cells. The cell clones showed reduced BUB1B transcripts, increased PCS frequency, and MVA, which are the hallmarks of the syndrome. We also encountered a case of a Japanese infant with PCS (MVA) syndrome carrying a homozygous single nucleotide substitution at ss802470619. These results suggested that the nucleotide substitution identified was the causal mutation of PCS (MVA) syndrome. PMID:24344301

  19. The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit.

    Science.gov (United States)

    Gao, Meiling; Hu, Liangliang; Li, Yuhong; Weng, Yiqun

    2016-10-01

    The cucumber chlorophyll-deficient golden leaf mutation is due to a single nucleotide substitution in the CsChlI gene for magnesium chelatase I subunit which plays important roles in the chlorophyll biosynthesis pathway. The Mg-chelatase catalyzes the insertion of Mg(2+) into the protoporphyrin IX in the chlorophyll biosynthesis pathway, which is a protein complex encompassing three subunits CHLI, CHLD, and CHLH. Chlorophyll-deficient mutations in genes encoding the three subunits have played important roles in understanding the structure, function and regulation of this important enzyme. In an EMS mutagenesis population, we identified a chlorophyll-deficient mutant C528 with golden leaf color throughout its development which was viable and able to set fruits and seeds. Segregation analysis in multiple populations indicated that this leaf color mutation was recessively inherited and the green color showed complete dominance over golden color. Map-based cloning identified CsChlI as the candidate gene for this mutation which encoded the CHLI subunit of cucumber Mg-chelatase. The 1757-bp CsChlI gene had three exons and a single nucleotide change (G to A) in its third exon resulted in an amino acid substitution (G269R) and the golden leaf color in C528. This mutation occurred in the highly conserved nucleotide-binding domain of the CHLI protein in which chlorophyll-deficient mutations have been frequently identified. The mutant phenotype, CsChlI expression pattern and the mutated residue in the CHLI protein suggested the mutant allele in C528 is unique among mutations identified so far in different species. This golden leaf mutant not only has its potential in cucumber breeding, but also provides a useful tool in understanding the CHLI function and its regulation in the chlorophyll biosynthesis pathway as well as chloroplast development.

  20. A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors

    Energy Technology Data Exchange (ETDEWEB)

    de Vries, Robert P.; Tzarum, Netanel; Peng, Wenjie; Thompson, Andrew J.; Ambepitiya Wickramasinghe, Iresha N.; de la Pena, Alba T. Torrents; van Breemen, Marielle J.; Bouwman, Kim M.; Zhu, Xueyong; McBride, Ryan; Yu, Wenli; Sanders, Rogier W.; Verheije, Monique H.; Wilson, Ian A.; Paulson, James C.

    2017-07-10

    In June 2013, the first case of human infection with an avian H6N1 virus was reported in a Taiwanese woman. Although this was a single non-fatal case, the virus continues to circulate in Taiwanese poultry. As with any emerging avian virus that infects humans, there is concern that acquisition of human-type receptor specificity could enable transmission in the human population. Despite mutations in the receptor-binding pocket of the human H6N1 isolate, it has retained avian-type (NeuAcα2-3Gal) receptor specificity. However, we show here that a single nucleotide substitution, resulting in a change from Gly to Asp at position 225 (G225D), completely switches specificity to human-type (NeuAcα2-6Gal) receptors. Significantly, G225D H6 loses binding to chicken trachea epithelium and is now able to bind to human tracheal tissue. Structural analysis reveals that Asp225 directly interacts with the penultimate Gal of the human-type receptor, stabilizing human receptor binding.

  1. PB2 mutations D701N and S714R promote adaptation of an influenza H5N1 virus to a mammalian host.

    Science.gov (United States)

    Czudai-Matwich, Volker; Otte, Anna; Matrosovich, Mikhail; Gabriel, Gülsah; Klenk, Hans-Dieter

    2014-08-01

    Mutation D701N in the PB2 protein is known to play a prominent role in the adaptation of avian influenza A viruses to mammalian hosts. In contrast, little is known about the nearby mutations S714I and S714R, which have been observed in some avian influenza viruses highly pathogenic for mammals. We have generated recombinant H5N1 viruses with PB2 displaying the avian signature 701D or the mammalian signature 701N and serine, isoleucine, and arginine at position 714 and compared them for polymerase activity and virus growth in avian and mammalian cells, as well as for pathogenicity in mice. Mutation D701N led to an increase in polymerase activity and replication efficiency in mammalian cells and in mouse pathogenicity, and this increase was significantly enhanced when mutation D701N was combined with mutation S714R. Stimulation by mutation S714I was less distinct. These observations indicate that PB2 mutation S714R, in combination with the mammalian signature at position 701, has the potential to promote the adaptation of an H5N1 virus to a mammalian host. Influenza A/H5N1 viruses are avian pathogens that have pandemic potential, since they are spread over large parts of Asia, Africa, and Europe and are occasionally transmitted to humans. It is therefore of high scientific interest to understand the mechanisms that determine the host specificity and pathogenicity of these viruses. It is well known that the PB2 subunit of the viral polymerase is an important host range determinant and that PB2 mutation D701N plays an important role in virus adaptation to mammalian cells. In the present study, we show that mutation S714R is also involved in adaptation and that it cooperates with D701N in exposing a nuclear localization signal that mediates importin-α binding and entry of PB2 into the nucleus, where virus replication and transcription take place. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. CHASM and SNVBox: toolkit for detecting biologically important single nucleotide mutations in cancer.

    Science.gov (United States)

    Wong, Wing Chung; Kim, Dewey; Carter, Hannah; Diekhans, Mark; Ryan, Michael C; Karchin, Rachel

    2011-08-01

    Thousands of cancer exomes are currently being sequenced, yielding millions of non-synonymous single nucleotide variants (SNVs) of possible relevance to disease etiology. Here, we provide a software toolkit to prioritize SNVs based on their predicted contribution to tumorigenesis. It includes a database of precomputed, predictive features covering all positions in the annotated human exome and can be used either stand-alone or as part of a larger variant discovery pipeline. MySQL database, source code and binaries freely available for academic/government use at http://wiki.chasmsoftware.org, Source in Python and C++. Requires 32 or 64-bit Linux system (tested on Fedora Core 8,10,11 and Ubuntu 10), 2.5*≤ Python 5.0, 60 GB available hard disk space (50 MB for software and data files, 40 GB for MySQL database dump when uncompressed), 2 GB of RAM.

  3. Grafting of a Single Donor Myofibre Promotes Hypertrophy in Dystrophic Mouse Muscle

    Science.gov (United States)

    Boldrin, Luisa; Morgan, Jennifer E.

    2013-01-01

    Skeletal muscle has a remarkable capability of regeneration following injury. Satellite cells, the principal muscle stem cells, are responsible for this process. However, this regenerative capacity is reduced in muscular dystrophies or in old age: in both these situations, there is a net loss of muscle fibres. Promoting skeletal muscle muscle hypertrophy could therefore have potential applications for treating muscular dystrophies or sarcopenia. Here, we observed that muscles of dystrophic mdx nude host mice that had been acutely injured by myotoxin and grafted with a single myofibre derived from a normal donor mouse exhibited increased muscle area. Transplantation experiments revealed that the hypertrophic effect is mediated by the grafted fibre and does not require either an imposed injury to the host muscle, or the contribution of donor cells to the host muscle. These results suggest the presence of a crucial cross-talk between the donor fibre and the host muscle environment. PMID:23349935

  4. Failure of single electron descriptions of molecular orbital collision processes. [Electron promotion mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Elston, S.B.

    1978-01-01

    Inner-shell excitation occurring in low and moderate (keV range) energy collisions between light atomic and ionic systems is frequently describable in terms of molecular promotion mechanisms, which were extensively explored both theoretically and experimentally. The bulk of such studies have concentrated on processes understandable through the use of single- and independent-electron models. Nonetheless, it is possible to find cases of inner-shell excitation in relatively simple collision systems which involve nearly simultaneous multiple-electron transitions and transitions induced by inherently two-electron interactions. Evidence for these many- and nonindependent-electron phenomena in inner-shell excitation processes and the importance of considering such effects in the interpretation of collisionally induced excitation spectra is discussed. 13 references.

  5. Accurate prediction of the functional significance of single nucleotide polymorphisms and mutations in the ABCA1 gene.

    Directory of Open Access Journals (Sweden)

    Liam R Brunham

    2005-12-01

    Full Text Available The human genome contains an estimated 100,000 to 300,000 DNA variants that alter an amino acid in an encoded protein. However, our ability to predict which of these variants are functionally significant is limited. We used a bioinformatics approach to define the functional significance of genetic variation in the ABCA1 gene, a cholesterol transporter crucial for the metabolism of high density lipoprotein cholesterol. To predict the functional consequence of each coding single nucleotide polymorphism and mutation in this gene, we calculated a substitution position-specific evolutionary conservation score for each variant, which considers site-specific variation among evolutionarily related proteins. To test the bioinformatics predictions experimentally, we evaluated the biochemical consequence of these sequence variants by examining the ability of cell lines stably transfected with the ABCA1 alleles to elicit cholesterol efflux. Our bioinformatics approach correctly predicted the functional impact of greater than 94% of the naturally occurring variants we assessed. The bioinformatics predictions were significantly correlated with the degree of functional impairment of ABCA1 mutations (r2 = 0.62, p = 0.0008. These results have allowed us to define the impact of genetic variation on ABCA1 function and to suggest that the in silico evolutionary approach we used may be a useful tool in general for predicting the effects of DNA variation on gene function. In addition, our data suggest that considering patterns of positive selection, along with patterns of negative selection such as evolutionary conservation, may improve our ability to predict the functional effects of amino acid variation.

  6. Kras gene mutation and RASSF1A, FHIT and MGMT gene promoter hypermethylation: indicators of tumor staging and metastasis in adenocarcinomatous sporadic colorectal cancer in Indian population.

    Directory of Open Access Journals (Sweden)

    Rupal Sinha

    Full Text Available Colorectal cancer (CRC development involves underlying modifications at genetic/epigenetic level. This study evaluated the role of Kras gene mutation and RASSF1A, FHIT and MGMT gene promoter hypermethylation together/independently in sporadic CRC in Indian population and correlation with clinicopathological variables of the disease.One hundred and twenty four consecutive surgically resected tissues (62 tumor and equal number of normal adjacent controls of primary sporadic CRC were included and patient details including demographic characteristics, lifestyle/food or drinking habits, clinical and histopathological profiles were recorded. Polymerase chain reaction - Restriction fragment length polymorphism and direct sequencing for Kras gene mutation and Methylation Specific-PCR for RASSF1A, FHIT and MGMT genes was performed.Kras gene mutation at codon 12 & 13 and methylated RASSF1A, FHIT and MGMT gene was observed in 47%, 19%, 47%, 37% and 47% cases, respectively. Alcohol intake and smoking were significantly associated with presence of Kras mutation (codon 12 and MGMT methylation (p-value <0.049. Tumor stage and metastasis correlated with presence of mutant Kras codon 12 (p-values 0.018, 0.044 and methylated RASSF1A (p-values 0.034, 0.044, FHIT (p-values 0.001, 0.047 and MGMT (p-values 0.018, 0.044 genes. Combinatorial effect of gene mutation/methylation was also observed (p-value <0.025. Overall, tumor stage 3, moderately differentiated tumors, presence of lymphatic invasion and absence of metastasis was more frequently observed in tumors with mutated Kras and/or methylated RASSF1A, FHIT and MGMT genes.Synergistic interrelationship between these genes in sporadic CRC may be used as diagnostic/prognostic markers in assessing the overall pathological status of CRC.

  7. HIV-1 Promoter Single Nucleotide Polymorphisms Are Associated with Clinical Disease Severity.

    Directory of Open Access Journals (Sweden)

    Michael R Nonnemacher

    Full Text Available The large majority of human immunodeficiency virus type 1 (HIV-1 markers of disease progression/severity previously identified have been associated with alterations in host genetic and immune responses, with few studies focused on viral genetic markers correlate with changes in disease severity. This study presents a cross-sectional/longitudinal study of HIV-1 single nucleotide polymorphisms (SNPs contained within the viral promoter or long terminal repeat (LTR in patients within the Drexel Medicine CNS AIDS Research and Eradication Study (CARES Cohort. HIV-1 LTR SNPs were found to associate with the classical clinical disease parameters CD4+ T-cell count and log viral load. They were found in both defined and undefined transcription factor binding sites of the LTR. A novel SNP identified at position 108 in a known COUP (chicken ovalbumin upstream promoter/AP1 transcription factor binding site was significantly correlated with binding phenotypes that are potentially the underlying cause of the associated clinical outcome (increase in viral load and decrease in CD4+ T-cell count.

  8. Determination of single-nucleotide polymorphism in the proximal promoter region of apolipoprotein M gene in coronary artery diseases

    Directory of Open Access Journals (Sweden)

    Lu Zheng

    2009-09-01

    Full Text Available Lu Zheng1, Guanghua Luo1, Xiaoying Zhang1, Jun Zhang1, Jiang Zhu1, Jiang Wei1, Qinfeng Mu1, Lujun Chen1, Peter Nilsson-Ehle2, Ning Xu21Comprehensive Laboratory, The Third Affiliated Hospital, Suzhou University, Changzhou China; 2Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, SwedenObjective: It has been reported that single-nucleotide polymorphism (SNP in the proximal promoter region of apolipoprotein M (apoM gene may confer the risk in the development of type 2 diabetes (T2D and coronary artery disease (CAD in the Han Chinese. However, in a recent study demonstrated that plasma apoM level did not correlated to the coronary heart disease. In the present studies, we investigated the SNP T-778C of apoM gene in CAD patients and controls in the Han Chinese population. Moreover we examined whether serum apoM levels could be influenced by this promoter mutation.Material and methods: One hundred twenty-six CAD patients and 118 non-CAD patients were subjected in the present study. All patients were confirmed by the angiography. The genotyping of polymorphisms T-778C in apoM promoter was determined by real-time polymerase chain reaction. Serum apoM levels were semi-quantitatively determined by the dot-blotting analysis. Results: Distribution of apoM T-778C genotype in non-CAD patients was as following: 84.7% were T/T, 15.3% were T/C and 0.0% was C/C. T allele frequencies were 92.4% and C allele, 7.6%. In the CAD patients, 99 patients (78.6% had the T/T genotype, 25 patients (19.8% with T/C genotype and 2 patients (1.6% with C/C genotype. The allele frequency was 88.5% for the T allele and 11.5% for the C allele. There was no statistical significant difference of serum apoM levels found in these three genotypes.Conclusions: There was no significant difference in allele or genotype frequencies between CAD patients and non-CAD patients. Binary logistic regression analysis with adjustments for age

  9. HER family kinase domain mutations promote tumor progression and can predict response to treatment in human breast cancer

    KAUST Repository

    Boulbes, Delphine R.

    2014-11-11

    Resistance to HER2-targeted therapies remains a major obstacle in the treatment of HER2-overexpressing breast cancer. Understanding the molecular pathways that contribute to the development of drug resistance is needed to improve the clinical utility of novel agents, and to predict the success of targeted personalized therapy based on tumor-specific mutations. Little is known about the clinical significance of HER family mutations in breast cancer. Because mutations within HER1/EGFR are predictive of response to tyrosine kinase inhibitors (TKI) in lung cancer, we investigated whether mutations in HER family kinase domains are predictive of response to targeted therapy in HER2-overexpressing breast cancer. We sequenced the HER family kinase domains from 76 HER2-overexpressing invasive carcinomas and identified 12 missense variants. Patients whose tumors carried any of these mutations did not respond to HER2 directed therapy in the metastatic setting. We developed mutant cell lines and used structural analyses to determine whether changes in protein conformation could explain the lack of response to therapy. We also functionally studied all HER2 mutants and showed that they conferred an aggressive phenotype and altered effects of the TKI lapatinib. Our data demonstrate that mutations in the finely tuned HER kinase domains play a critical function in breast cancer progression and may serve as prognostic and predictive markers.

  10. HER family kinase domain mutations promote tumor progression and can predict response to treatment in human breast cancer

    KAUST Repository

    Boulbes, Delphine R.; Arold, Stefan T.; Chauhan, Gaurav B.; Blachno, Korina V.; Deng, Nanfu; Chang, Wei-Chao; Jin, Quanri; Huang, Tzu-Hsuan; Hsu, Jung-Mao; Brady, Samuel W.; Bartholomeusz, Chandra; Ladbury, John E.; Stone, Steve; Yu, Dihua; Hung, Mien-Chie; Esteva, Francisco J.

    2014-01-01

    Resistance to HER2-targeted therapies remains a major obstacle in the treatment of HER2-overexpressing breast cancer. Understanding the molecular pathways that contribute to the development of drug resistance is needed to improve the clinical utility of novel agents, and to predict the success of targeted personalized therapy based on tumor-specific mutations. Little is known about the clinical significance of HER family mutations in breast cancer. Because mutations within HER1/EGFR are predictive of response to tyrosine kinase inhibitors (TKI) in lung cancer, we investigated whether mutations in HER family kinase domains are predictive of response to targeted therapy in HER2-overexpressing breast cancer. We sequenced the HER family kinase domains from 76 HER2-overexpressing invasive carcinomas and identified 12 missense variants. Patients whose tumors carried any of these mutations did not respond to HER2 directed therapy in the metastatic setting. We developed mutant cell lines and used structural analyses to determine whether changes in protein conformation could explain the lack of response to therapy. We also functionally studied all HER2 mutants and showed that they conferred an aggressive phenotype and altered effects of the TKI lapatinib. Our data demonstrate that mutations in the finely tuned HER kinase domains play a critical function in breast cancer progression and may serve as prognostic and predictive markers.

  11. Lynch syndrome-associated endometrial carcinoma with MLH1 germline mutation and MLH1 promoter hypermethylation: a case report and literature review.

    Science.gov (United States)

    Yokoyama, Takanori; Takehara, Kazuhiro; Sugimoto, Nao; Kaneko, Keika; Fujimoto, Etsuko; Okazawa-Sakai, Mika; Okame, Shinichi; Shiroyama, Yuko; Yokoyama, Takashi; Teramoto, Norihiro; Ohsumi, Shozo; Saito, Shinya; Imai, Kazuho; Sugano, Kokichi

    2018-05-21

    Lynch syndrome is an autosomal dominant inherited disease caused by germline mutations in mismatch repair genes. Analysis for microsatellite instability (MSI) and immunohistochemistry (IHC) of protein expressions of disease-associated genes is used to screen for Lynch syndrome in endometrial cancer patients. When losses of both MLH1 and PMS2 proteins are observed by IHC, MLH1 promoter methylation analysis is conducted to distinguish Lynch syndrome-associated endometrial cancer from sporadic cancer. Here we report a woman who developed endometrial cancer at the age of 49 years. She had a family history of colorectal cancer (first-degree relative aged 52 years) and stomach cancer (second-degree relative with the age of onset unknown). No other family history was present, and she failed to meet the Amsterdam II criteria for the diagnosis of Lynch syndrome. Losses of MLH1 and PMS2, but not MSH2 and MSH6, proteins were observed by IHC in endometrial cancer tissues. Because MLH1 promoter hypermethylation was detected in endometrial cancer tissue samples, the epigenetic silencing of MLH1 was suspected as the cause of the protein loss. However, because of the early onset of endometrial cancer and the positive family history, a diagnosis of Lynch syndrome was also suspected. Therefore, we provided her with genetic counseling. After obtaining her consent, MLH1 promoter methylation testing and genetic testing of peripheral blood were performed. MLH1 promoter methylation was not observed in peripheral blood. However, genetic testing revealed a large deletion of exon 5 in MLH1; thus, we diagnosed the presence of Lynch syndrome. Both MLH1 germline mutation and MLH1 promoter hypermethylation may be observed in endometrial cancer. Therefore, even if MLH1 promoter hypermethylation is detected, a diagnosis of Lynch syndrome cannot be excluded.

  12. HER2 mutated breast cancer responds to treatment with single agent neratinib, a second generation HER2/EGFR tyrosine kinase inhibitor

    Science.gov (United States)

    Ben–Baruch, Noa Efrat; Bose, Ron; Kavuri, Shyam M.; Ma, Cynthia X.; Ellis, Matthew J.

    2015-01-01

    Activating mutations in the HER2 tyrosine kinase have been identified in human breast cancers that lack HER2 gene amplification. These patients are not candidates for HER2 targeted drugs under current standards of care, but preclinical data strongly suggest that these patients will benefit from anti-HER2 drugs. In this case report, we describe a young woman with metastatic breast cancer whose tumor was found to carry a HER2 L755S mutation, which is in the kinase domain of HER2. Treatment with the second generation HER2/EGFR tyrosine kinase inhibitor, neratinib, resulted in partial response and dramatic improvement in the patient’s function status. This partial response lasted 11 months and when the patient’s cancer progressed, she was treated with neratinib plus capecitabine and her cancer again responded. This second response parallels the benefit seen with continuing trastuzumab in HER2 amplified breast cancer after disease progression. This case is the first report, to our knowledge, of successful single agent treatment of HER2 mutated breast cancer. Two clinical trials of neratinib for HER2 mutated, metastatic breast cancer are currently enrolling patients. Further, data from The Cancer Genome Atlas project have identified HER2 mutations in a wide range of solid tumors, including bladder, colorectal, and non-small cell lung cancer, suggesting that clinical trials of neratinib or neratinib-based combinations for HER2 mutated solid tumors is warranted. PMID:26358790

  13. HER2-Mutated Breast Cancer Responds to Treatment With Single-Agent Neratinib, a Second-Generation HER2/EGFR Tyrosine Kinase Inhibitor.

    Science.gov (United States)

    Ben-Baruch, Noa Efrat; Bose, Ron; Kavuri, Shyam M; Ma, Cynthia X; Ellis, Matthew J

    2015-09-01

    Activating mutations in the HER2 tyrosine kinase have been identified in human breast cancers that lack HER2 gene amplification. These patients are not candidates for HER2-targeted drugs under current standards of care, but preclinical data strongly suggest that these patients will benefit from anti-HER2 drugs. This case report describes a young woman with metastatic breast cancer whose tumor was found to carry a HER2 L755S mutation, which is in the kinase domain of HER2. Treatment with the second-generation HER2/EGFR tyrosine kinase inhibitor neratinib resulted in partial response and dramatic improvement in the patient's functional status. This partial response lasted 11 months, and when the patient's cancer progressed, she was treated with neratinib plus capecitabine and her cancer again responded. This second response parallels the benefit seen with continuing trastuzumab in HER2-amplified breast cancer after disease progression. This case represents the first report, to our knowledge, of successful single-agent treatment of HER2-mutated breast cancer. Two clinical trials of neratinib for HER2-mutated metastatic breast cancer are currently enrolling patients. Further, data from The Cancer Genome Atlas project have identified HER2 mutations in a wide range of solid tumors, including bladder, colorectal, and non-small cell lung cancers, suggesting that clinical trials of neratinib or neratinib-based combinations for HER2-mutated solid tumors is warranted. Copyright © 2015 by the National Comprehensive Cancer Network.

  14. Combining Single Strand Oligodeoxynucleotides and CRISPR/Cas9 to Correct Gene Mutations in β-Thalassemia-induced Pluripotent Stem Cells.

    Science.gov (United States)

    Niu, Xiaohua; He, Wenyin; Song, Bing; Ou, Zhanhui; Fan, Di; Chen, Yuchang; Fan, Yong; Sun, Xiaofang

    2016-08-05

    β-Thalassemia (β-Thal) is one of the most common genetic diseases in the world. The generation of patient-specific β-Thal-induced pluripotent stem cells (iPSCs), correction of the disease-causing mutations in those cells, and then differentiation into hematopoietic stem cells offers a new therapeutic strategy for this disease. Here, we designed a CRISPR/Cas9 to specifically target the Homo sapiens hemoglobin β (HBB) gene CD41/42(-CTTT) mutation. We demonstrated that the combination of single strand oligodeoxynucleotides with CRISPR/Cas9 was capable of correcting the HBB gene CD41/42 mutation in β-Thal iPSCs. After applying a correction-specific PCR assay to purify the corrected clones followed by sequencing to confirm mutation correction, we verified that the purified clones retained full pluripotency and exhibited normal karyotyping. Additionally, whole-exome sequencing showed that the mutation load to the exomes was minimal after CRISPR/Cas9 targeting. Furthermore, the corrected iPSCs were selected for erythroblast differentiation and restored the expression of HBB protein compared with the parental iPSCs. This method provides an efficient and safe strategy to correct the HBB gene mutation in β-Thal iPSCs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Promoter binding, initiation, and elongation by bacteriophage T7 RNA polymerase. A single-molecule view of the transcription cycle.

    Science.gov (United States)

    Skinner, Gary M; Baumann, Christoph G; Quinn, Diana M; Molloy, Justin E; Hoggett, James G

    2004-01-30

    A single-molecule transcription assay has been developed that allows, for the first time, the direct observation of promoter binding, initiation, and elongation by a single RNA polymerase (RNAP) molecule in real-time. To promote DNA binding and transcription initiation, a DNA molecule tethered between two optically trapped beads was held near a third immobile surface bead sparsely coated with RNAP. By driving the optical trap holding the upstream bead with a triangular oscillation while measuring the position of both trapped beads, we observed the onset of promoter binding, promoter escape (productive initiation), and processive elongation by individual RNAP molecules. After DNA template release, transcription re-initiation on the same DNA template is possible; thus, multiple enzymatic turnovers by an individual RNAP molecule can be observed. Using bacteriophage T7 RNAP, a commonly used RNAP paradigm, we observed the association and dissociation (k(off)= 2.9 s(-1)) of T7 RNAP and promoter DNA, the transition to the elongation mode (k(for) = 0.36 s(-1)), and the processive synthesis (k(pol) = 43 nt s(-1)) and release of a gene-length RNA transcript ( approximately 1200 nt). The transition from initiation to elongation is much longer than the mean lifetime of the binary T7 RNAP-promoter DNA complex (k(off) > k(for)), identifying a rate-limiting step between promoter DNA binding and promoter escape.

  16. Arsenic trioxide promotes mitochondrial DNA mutation and cell apoptosis in primary APL cells and NB4 cell line.

    Science.gov (United States)

    Meng, Ran; Zhou, Jin; Sui, Meng; Li, ZhiYong; Feng, GuoSheng; Yang, BaoFeng

    2010-01-01

    This study aimed to investigate the effects of arsenic trioxide (As(2)O(3)) on the mitochondrial DNA (mtDNA) of acute promyelocytic leukemia (APL) cells. The NB4 cell line was treated with 2.0 micromol/L As(2)O(3) in vitro, and the primary APL cells were treated with 2.0 micromol/L As(2)O(3) in vitro and 0.16 mg kg(-1) d(-1) As(2)O(3) in vivo. The mitochondrial DNA of all the cells above was amplified by PCR, directly sequenced and analyzed by Sequence Navigatore and Factura software. The apoptosis rates were assayed by flow cytometry. Mitochondrial DNA mutation in the D-loop region was found in NB4 and APL cells before As(2)O(3) use, but the mutation spots were remarkably increased after As(2)O(3) treatment, which was positively correlated to the rates of cellular apoptosis, the correlation coefficient: r (NB4-As2O3)=0.973818, and r (APL-As2O3)=0.934703. The mutation types include transition, transversion, codon insertion or deletion, and the mutation spots in all samples were not constant and regular. It is revealed that As(2)O(3) aggravates mtDNA mutation in the D-loop region of acute promyelocytic leukemia cells both in vitro and in vivo. Mitochondrial DNA might be one of the targets of As(2)O(3) in APL treatment.

  17. Genetic diagnosis of Duchenne and Becker muscular dystrophy using next-generation sequencing technology: comprehensive mutational search in a single platform.

    Science.gov (United States)

    Lim, Byung Chan; Lee, Seungbok; Shin, Jong-Yeon; Kim, Jong-Il; Hwang, Hee; Kim, Ki Joong; Hwang, Yong Seung; Seo, Jeong-Sun; Chae, Jong Hee

    2011-11-01

    Duchenne muscular dystrophy or Becker muscular dystrophy might be a suitable candidate disease for application of next-generation sequencing in the genetic diagnosis because the complex mutational spectrum and the large size of the dystrophin gene require two or more analytical methods and have a high cost. The authors tested whether large deletions/duplications or small mutations, such as point mutations or short insertions/deletions of the dystrophin gene, could be predicted accurately in a single platform using next-generation sequencing technology. A custom solution-based target enrichment kit was designed to capture whole genomic regions of the dystrophin gene and other muscular-dystrophy-related genes. A multiplexing strategy, wherein four differently bar-coded samples were captured and sequenced together in a single lane of the Illumina Genome Analyser, was applied. The study subjects were 25 16 with deficient dystrophin expression without a large deletion/duplication and 9 with a known large deletion/duplication. Nearly 100% of the exonic region of the dystrophin gene was covered by at least eight reads with a mean read depth of 107. Pathogenic small mutations were identified in 15 of the 16 patients without a large deletion/duplication. Using these 16 patients as the standard, the authors' method accurately predicted the deleted or duplicated exons in the 9 patients with known mutations. Inclusion of non-coding regions and paired-end sequence analysis enabled accurate identification by increasing the read depth and providing information about the breakpoint junction. The current method has an advantage for the genetic diagnosis of Duchenne muscular dystrophy and Becker muscular dystrophy wherein a comprehensive mutational search may be feasible using a single platform.

  18. Loss of mutL homolog-1 (MLH1) expression promotes acquisition of oncogenic and inhibitor-resistant point mutations in tyrosine kinases.

    Science.gov (United States)

    Springuel, Lorraine; Losdyck, Elisabeth; Saussoy, Pascale; Turcq, Béatrice; Mahon, François-Xavier; Knoops, Laurent; Renauld, Jean-Christophe

    2016-12-01

    Genomic instability drives cancer progression by promoting genetic abnormalities that allow for the multi-step clonal selection of cells with growth advantages. We previously reported that the IL-9-dependent TS1 cell line sequentially acquired activating substitutions in JAK1 and JAK3 upon successive selections for growth factor independent and JAK inhibitor-resistant cells, suggestive of a defect in mutation avoidance mechanisms. In the first part of this paper, we discovered that the gene encoding mutL homolog-1 (MLH1), a key component of the DNA mismatch repair system, is silenced by promoter methylation in TS1 cells. By means of stable ectopic expression and RNA interference methods, we showed that the high frequencies of growth factor-independent and inhibitor-resistant cells with activating JAK mutations can be attributed to the absence of MLH1 expression. In the second part of this paper, we confirm the clinical relevance of our findings by showing that chronic myeloid leukemia relapses upon ABL-targeted therapy correlated with a lower expression of MLH1 messenger RNA. Interestingly, the mutational profile observed in our TS1 model, characterized by a strong predominance of T:A>C:G transitions, was identical to the one described in the literature for primitive cells derived from chronic myeloid leukemia patients. Taken together, our observations demonstrate for the first time a causal relationship between MLH1-deficiency and incidence of oncogenic point mutations in tyrosine kinases driving cell transformation and acquired resistance to kinase-targeted cancer therapies.

  19. Loss of metal ions, disulfide reduction and mutations related to familial ALS promote formation of amyloid-like aggregates from superoxide dismutase.

    Directory of Open Access Journals (Sweden)

    Zeynep A Oztug Durer

    Full Text Available Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1 are one of the causes of familial amyotrophic lateral sclerosis (FALS. Fibrillar inclusions containing SOD1 and SOD1 inclusions that bind the amyloid-specific dye thioflavin S have been found in neurons of transgenic mice expressing mutant SOD1. Therefore, the formation of amyloid fibrils from human SOD1 was investigated. When agitated at acidic pH in the presence of low concentrations of guanidine or acetonitrile, metalated SOD1 formed fibrillar material which bound both thioflavin T and Congo red and had circular dichroism and infrared spectra characteristic of amyloid. While metalated SOD1 did not form amyloid-like aggregates at neutral pH, either removing metals from SOD1 with its intramolecular disulfide bond intact or reducing the intramolecular disulfide bond of metalated SOD1 was sufficient to promote formation of these aggregates. SOD1 formed amyloid-like aggregates both with and without intermolecular disulfide bonds, depending on the incubation conditions, and a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1 formed amyloid-like aggregates at neutral pH under reducing conditions. ALS mutations enhanced the ability of disulfide-reduced SOD1 to form amyloid-like aggregates, and apo-AS-SOD1 formed amyloid-like aggregates at pH 7 only when an ALS mutation was also present. These results indicate that some mutations related to ALS promote formation of amyloid-like aggregates by facilitating the loss of metals and/or by making the intramolecular disulfide bond more susceptible to reduction, thus allowing the conversion of SOD1 to a form that aggregates to form resembling amyloid. Furthermore, the occurrence of amyloid-like aggregates per se does not depend on forming intermolecular disulfide bonds, and multiple forms of such aggregates can be produced from SOD1.

  20. A single amino acid mutation in Spo0A results in sporulation deficiency of Paenibacillus polymyxa SC2.

    Science.gov (United States)

    Hou, Xiaoyang; Yu, Xiaoning; Du, Binghai; Liu, Kai; Yao, Liangtong; Zhang, Sicheng; Selin, C; Fernando, W G D; Wang, Chengqiang; Ding, Yanqin

    2016-01-01

    Sporulating bacteria such as Bacillus subtilis and Paenibacillus polymyxa exhibit sporulation deficiencies during their lifetime in a laboratory environment. In this study, spontaneous mutants SC2-M1 and SC2-M2, of P. polymyxa SC2 lost the ability to form endospores. A global genetic and transcriptomic analysis of wild-type SC2 and spontaneous mutants was carried out. Genome resequencing analysis revealed 14 variants in the genome of SC2-M1, including three insertions and deletions (indels), 10 single nucleotide variations (SNVs) and one intrachromosomal translocation (ITX). There were nine variants in the genome of SC2-M2, including two indels and seven SNVs. Transcriptomic analysis revealed that 266 and 272 genes showed significant differences in expression in SC2-M1 and SC2-M2, respectively, compared with the wild-type SC2. Besides sporulation-related genes, genes related to exopolysaccharide biosynthesis (eps), antibiotic (fusaricidin) synthesis, motility (flgB) and other functions were also affected in these mutants. In SC2-M2, reversion of spo0A resulted in the complete recovery of sporulation. This is the first global analysis of mutations related to sporulation deficiency in P. polymyxa. Our results demonstrate that a SNV within spo0A caused the sporulation deficiency of SC2-M2 and provide strong evidence that an arginine residue at position 211 is essential for the function of Spo0A. Copyright © 2016 The Author(s). Published by Elsevier Masson SAS.. All rights reserved.

  1. A Single Recessive Mutated Gene (Sd237-1) Controlling Semi-Dwarf Plant Stature of Rice

    International Nuclear Information System (INIS)

    Sobrizal

    2009-01-01

    Dwarfism is a valuable trait in crop breeding, because it increases lodging resistance and decreases damages due to wind and rain. During the course of this study, a semi-dwarf mutant was successfully induced through 200 Gy gamma ray irradiated KI 237 seeds. KI 237 is a pure line with high yield potency, developed through an Indica-Japonica cross of IR36 / Koshihikari. The selected semi-dwarf plant reached 60 - 62 % of plant height of original plant KI 237 at the mature stage. The length of inter nodes, panicle, and seed were also compared between these two plants. The retardation of the 1 st (uppermost) inter nodes was 24 %, moreover, the retardation of panicle and seed length were only 10 % and 2 %, respectively. The elongation pattern of the inter nodes in this mutant was almost the same as sd1 (Dee-geo-woo-gen), the original parent of the first release modern rice variety, but their performances were different. Based on the segregation analysis in M 2 and M 3 generation it was concluded that this mutant was controlled by a single recessive mutated gene. This gene was designated as sd 237-1 . This mutant should be useful as a genetic resource for the improvement of KI 237 line through back-cross breeding as well as be developed further in breeding program directly to be a new high yielding mutant variety. (author)

  2. Role of single-point mutations and deletions on transition temperatures in ideal proteinogenic heteropolymer chains in the gas phase.

    Science.gov (United States)

    Olivares-Quiroz, L

    2016-07-01

    A coarse-grained statistical mechanics-based model for ideal heteropolymer proteinogenic chains of non-interacting residues is presented in terms of the size K of the chain and the set of helical propensities [Formula: see text] associated with each residue j along the chain. For this model, we provide an algorithm to compute the degeneracy tensor [Formula: see text] associated with energy level [Formula: see text] where [Formula: see text] is the number of residues with a native contact in a given conformation. From these results, we calculate the equilibrium partition function [Formula: see text] and characteristic temperature [Formula: see text] at which a transition from a low to a high entropy states is observed. The formalism is applied to analyze the effect on characteristic temperatures [Formula: see text] of single-point mutations and deletions of specific amino acids [Formula: see text] along the chain. Two probe systems are considered. First, we address the case of a random heteropolymer of size K and given helical propensities [Formula: see text] on a conformational phase space. Second, we focus our attention to a particular set of neuropentapeptides, [Met-5] and [Leu-5] enkephalins whose thermodynamic stability is a key feature on their coupling to [Formula: see text] and [Formula: see text] receptors and the triggering of biochemical responses.

  3. Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain

    KAUST Repository

    Coluccio, M. L.

    2015-09-04

    Control of the architecture and electromagnetic behavior of nanostructures offers the possibility of designing and fabricating sensors that, owing to their intrinsic behavior, provide solutions to new problems in various fields. We show detection of peptides in multicomponent mixtures derived from human samples for early diagnosis of breast cancer. The architecture of sensors is based on a matrix array where pixels constitute a plasmonic device showing a strong electric field enhancement localized in an area of a few square nanometers. The method allows detection of single point mutations in peptides composing the BRCA1 protein. The sensitivity demonstrated falls in the picomolar (10−12 M) range. The success of this approach is a result of accurate design and fabrication control. The residual roughness introduced by fabrication was taken into account in optical modeling and was a further contributing factor in plasmon localization, increasing the sensitivity and selectivity of the sensors. This methodology developed for breast cancer detection can be considered a general strategy that is applicable to various pathologies and other chemical analytical cases where complex mixtures have to be resolved in their constitutive components.

  4. Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain

    KAUST Repository

    Coluccio, M. L.; Gentile, F.; Das, Gobind; Nicastri, A.; Perri, A. M.; Candeloro, P.; Perozziello, G.; Proietti Zaccaria, R.; Gongora, J. S. Totero; Alrasheed, Salma; Fratalocchi, Andrea; Limongi, Tania; Cuda, G.; Di Fabrizio, Enzo M.

    2015-01-01

    Control of the architecture and electromagnetic behavior of nanostructures offers the possibility of designing and fabricating sensors that, owing to their intrinsic behavior, provide solutions to new problems in various fields. We show detection of peptides in multicomponent mixtures derived from human samples for early diagnosis of breast cancer. The architecture of sensors is based on a matrix array where pixels constitute a plasmonic device showing a strong electric field enhancement localized in an area of a few square nanometers. The method allows detection of single point mutations in peptides composing the BRCA1 protein. The sensitivity demonstrated falls in the picomolar (10−12 M) range. The success of this approach is a result of accurate design and fabrication control. The residual roughness introduced by fabrication was taken into account in optical modeling and was a further contributing factor in plasmon localization, increasing the sensitivity and selectivity of the sensors. This methodology developed for breast cancer detection can be considered a general strategy that is applicable to various pathologies and other chemical analytical cases where complex mixtures have to be resolved in their constitutive components.

  5. Genetic and Epigenetic Tumor Suppressor Gene Silencing are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Non small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Marsit, C. J.; Kelsey, K. T.; Houseman, E. A.; Kelsey, K. T.; Houseman, E. A.; Nelson, H. H.

    2008-01-01

    Both genetic and epigenetic alterations characterize human non small cell lung cancer (NSCLC), but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hyper methylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hyper methylation of 17 tumor suppressor genes, as a marker of epigenetic alteration propensity, and deletion events at the 3p21 region, as a marker of genetic alteration. To model the complex biology between these somatic alterations, we utilized an item response theory model. We demonstrated that tumors exhibiting LOH at greater than 30% of informative alleles in the 3p21 region have a significantly reduced propensity for hyper methylation. At the same time, tumors with activating KRAS mutations showed a significantly increased propensity for hyper methylation of the loci examined, a result similar to what has been observed in colon cancer. These data suggest that NSCLCs have distinct epigenetic or genetic alteration phenotypes acting upon tumor suppressor genes and that mutation of oncogenic growth promoting genes, such as KRAS, is associated with the epigenetic phenotype.

  6. Genetic and Epigenetic Tumor Suppressor Gene Silencing Are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Carmen J. Marsit

    2008-01-01

    Full Text Available Both genetic and epigenetic alterations characterize human nonsmall cell lung cancer (NSCLC, but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hypermethylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hypermethylation of 17 tumor suppressor genes, as a marker of epigenetic alteration propensity, and deletion events at the 3p21 region, as a marker of genetic alteration. To model the complex biology between these somatic alterations, we utilized an item response theory model. We demonstrated that tumors exhibiting LOH at greater than 30% of informative alleles in the 3p21 region have a significantly reduced propensity for hypermethylation. At the same time, tumors with activating KRAS mutations showed a significantly increased propensity for hypermethylation of the loci examined, a result similar to what has been observed in colon cancer. These data suggest that NSCLCs have distinct epigenetic or genetic alteration phenotypes acting upon tumor suppressor genes and that mutation of oncogenic growth promoting genes, such as KRAS, is associated with the epigenetic phenotype.

  7. A Single Amino Acid Substitution in an ORANGE Protein Promotes Carotenoid Overaccumulation in Arabidopsis1[OPEN

    Science.gov (United States)

    Yuan, Hui; Owsiany, Katherine; Sheeja, T.E.; Zhou, Xiangjun; Rodriguez, Caroline; Li, Yongxi; Welsch, Ralf; Chayut, Noam; Yang, Yong; Thannhauser, Theodore W.; Parthasarathy, Mandayam V.; Xu, Qiang; Deng, Xiuxin; Fei, Zhangjun; Schaffer, Ari; Katzir, Nurit; Burger, Joseph; Tadmor, Yaakov; Li, Li

    2015-01-01

    Carotenoids are crucial for plant growth and human health. The finding of ORANGE (OR) protein as a pivotal regulator of carotenogenesis offers a unique opportunity to comprehensively understand the regulatory mechanisms of carotenoid accumulation and develop crops with enhanced nutritional quality. Here, we demonstrated that alteration of a single amino acid in a wild-type OR greatly enhanced its ability to promote carotenoid accumulation. Whereas overexpression of OR from Arabidopsis (Arabidopsis thaliana; AtOR) or from the agronomically important crop sorghum (Sorghum bicolor; SbOR) increased carotenoid levels up to 2-fold, expression of AtORHis (R90H) or SbORHis (R104H) variants dramatically enhanced carotenoid accumulation by up to 7-fold in the Arabidopsis calli. Moreover, we found that AtORAla (R90A) functioned similarly to AtORHis to promote carotenoid overproduction. Neither AtOR nor AtORHis greatly affected carotenogenic gene expression. AtORHis exhibited similar interactions with phytoene synthase (PSY) as AtOR in posttranscriptionally regulating PSY protein abundance. AtORHis triggered biogenesis of membranous chromoplasts in the Arabidopsis calli, which shared structures similar to chromoplasts found in the curd of the orange cauliflower (Brassica oleracea) mutant. By contrast, AtOR did not cause plastid-type changes in comparison with the controls, but produced plastids containing larger and electron-dense plastoglobuli. The unique ability of AtORHis in mediating chromoplast biogenesis is responsible for its induced carotenoid overproduction. Our study demonstrates ORHis/Ala as powerful tools for carotenoid enrichment in plants, and provides insights into the mechanisms underlying ORHis-regulated carotenoid accumulation. PMID:26224804

  8. Splice junction mutation in some Ashkenazi Jews with Tay-Sachs disease: Evidence against a single defect within this ethnic group

    Energy Technology Data Exchange (ETDEWEB)

    Myerowitz, R. (National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, MD (USA))

    1988-06-01

    Tay-Sachs disease is an inherited disorder in which the {alpha} chain of the lysosomal enzyme {beta}-N-acetylhexosaminidase A bears the mutation. Ashkenazi Jews are found to be carriers for a severe type of Tay-Sachs disease, the classic form, 10 times more frequently than the general population. Ashkenazi Jewish patients with classic Tay-Sachs disease have appeared to be clinically and biochemically identical, and the usual assumption has been that they harbor the same {alpha}-chain mutation. The author has isolated the {alpha}-chain gene from an Ashkenazi Jewish patient, GM2968, with classic Tay-Sachs disease and compared its nucleotide sequences with that of the normal {alpha}-chain gene in the promoter region, exon and splice junction regions, and polyadenylylation signal area. Only one difference was observed between these sequences. The alteration is presumed to be functionally significant and to result in aberrant mRNA splicing. Utilizing the polymerase chain reaction to amplify the region encompassing the mutation, the author developed an assay to screen patients and heterozygote carriers for this mutation. Surprisingly, in each of two Ashkenazi patients, only one {alpha}-chain allele harbored the splice junction mutation. Only one parent of each of these patients was positive for the defect. Another Ashkenazi patient did not bear this mutation at all nor did either of the subject's parents. The data are consistent with the presence of more than one mutation underlying the classic form of Tay-Sachs disease in the Ashkenazi Jewish population.

  9. Splice junction mutation in some Ashkenazi Jews with Tay-Sachs disease: Evidence against a single defect within this ethnic group

    International Nuclear Information System (INIS)

    Myerowitz, R.

    1988-01-01

    Tay-Sachs disease is an inherited disorder in which the α chain of the lysosomal enzyme β-N-acetylhexosaminidase A bears the mutation. Ashkenazi Jews are found to be carriers for a severe type of Tay-Sachs disease, the classic form, 10 times more frequently than the general population. Ashkenazi Jewish patients with classic Tay-Sachs disease have appeared to be clinically and biochemically identical, and the usual assumption has been that they harbor the same α-chain mutation. The author has isolated the α-chain gene from an Ashkenazi Jewish patient, GM2968, with classic Tay-Sachs disease and compared its nucleotide sequences with that of the normal α-chain gene in the promoter region, exon and splice junction regions, and polyadenylylation signal area. Only one difference was observed between these sequences. The alteration is presumed to be functionally significant and to result in aberrant mRNA splicing. Utilizing the polymerase chain reaction to amplify the region encompassing the mutation, the author developed an assay to screen patients and heterozygote carriers for this mutation. Surprisingly, in each of two Ashkenazi patients, only one α-chain allele harbored the splice junction mutation. Only one parent of each of these patients was positive for the defect. Another Ashkenazi patient did not bear this mutation at all nor did either of the subject's parents. The data are consistent with the presence of more than one mutation underlying the classic form of Tay-Sachs disease in the Ashkenazi Jewish population

  10. Extensive overproduction of the AdhE protein by rng mutations depends on mutations in the cra gene or in the Cra-box of the adhE promoter.

    Science.gov (United States)

    Kaga, Naoko; Umitsuki, Genryou; Clark, David P; Nagai, Kazuo; Wachi, Masaaki

    2002-07-05

    Escherichia coli RNase G encoded by the rng gene is involved in degradation of adhE mRNA. Overproduction of the AdhE protein by rng mutants was found to depend on the genetic background of strains derived from DC272 (adhC81) or MC1061. We found that DC272 carried a point mutation in the Cra-binding site of the adhE promoter. The Cra protein encoded by the cra gene is known to act as a repressor of adhE. P1-phage-mediated transduction and lacZ fusion analysis with the mutant adhE promoter confirmed that this mutation is responsible for overproduction. On the other hand, Southern hybridization revealed that MC1061 had a 0.85-kb deletion of the cra gene. Overproduction of AdhE in the MC1061 background was reversed to the wild-type levels by introduction of a plasmid carrying the cra(+) gene. These results indicated that expression of the adhE gene was regulated transcriptionally by Cra and posttranscriptionally by RNase G. (c) 2002 Elsevier Science (USA).

  11. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    OpenAIRE

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A

    1997-01-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, delet...

  12. Core promoter mutations 3 years after anti-hepatitis B e seroconversion in patients with chronic hepatitis B or hepatitis B and C infection and cancer remission.

    Science.gov (United States)

    Zampino, Rosa; Marrone, Aldo; Karayiannis, Peter; Cirillo, Grazia; del Giudice, Emanuele Miraglia; Rania, Giovanni; Utili, Riccardo; Ruggiero, Giuseppe

    2002-09-01

    In this study, we aimed to evaluate the persistence of hepatitis B virus (HBV) DNA and the role of HBV core promoter and precore region mutations in 28 young cancer survivor patients with HBV or HBV and hepatitis C virus (HCV) infections, and persistently normal ALT levels, after spontaneous or interferon (IFN)-induced anti-hepatitis B e (HBe) seroconversion. Sera from 15 patients with HBV and 13 with dual HBV-HCV infection were analyzed for the presence of HBV-DNA and HCV-RNA by polymerase chain reaction 3 yr after anti-HBe seroconversion. A total of 21 patients had seroconverted spontaneously and seven did so after IFN treatment. The core promoter and the precore regions were amplified sequenced directly. Among patients with HBV infection, HBV-DNA was detected in five of nine (55%) with spontaneous anti-HBe and in all six treated patients (p = 0.092). In the coinfected patients, four had cleared both HBV-DNA and HCV-RNA, five were HBV-DNA negative/HCV-RNA positive and four had the reverse viral pattern. Among the 15 patients with persistence of HBV-DNA, a 7-base pair nucleotide deletion in the core promoter (1757-1763) was present in seven of 10 patients with spontaneous and in one of five patients with IFN-induced seroconversion (p = 0.033). The G1896A precore stop codon mutation was never observed. HBV-DNA levels were significantly lower in patients with the core promoter deletion (p = 0.011). The 7-base pair deletion generated a truncated X protein at amino-acid position 132. A core promoter deletion after anti-HBe seroconversion was associated with low HBV-DNA levels, probably because of downregulation of pregenomic RNA production and truncation of the X protein. HBV-DNA persistence was a frequent event, even in the absence of active liver disease.

  13. Critical Role of a Single Position in the −35 Element for Promoter Recognition by Mycobacterium tuberculosis SigE and SigH▿

    OpenAIRE

    Song, Taeksun; Song, Seung-Eun; Raman, Sahadevan; Anaya, Mauricio; Husson, Robert N.

    2008-01-01

    Mycobacterial SigE and SigH both initiate transcription from the sigB promoter, suggesting that they recognize similar sequences. Through mutational and primer extension analyses, we determined that SigE and SigH recognize nearly identical promoters, with differences at the 3′ end of the −35 element distinguishing between SigE- and SigH-dependent promoters.

  14. Mutation of the SHP-2 binding site in growth hormone (GH) receptor prolongs GH-promoted tyrosyl phosphorylation of GH receptor, JAK2, and STAT5B

    DEFF Research Database (Denmark)

    Stofega, M R; Herrington, J; Billestrup, Nils

    2000-01-01

    phosphorylation. Consistent with the effects on STAT5B phosphorylation, tyrosine-to-phenylalanine mutation of tyrosine 595 prolongs the duration of tyrosyl phosphorylation of GHR and JAK2. These data suggest that tyrosine 595 is a major site of interaction of GHR with SHP-2, and that GHR-bound SHP-2 negatively......Binding of GH to GH receptor (GHR) rapidly and transiently activates multiple signal transduction pathways that contribute to the growth-promoting and metabolic effects of GH. While the events that initiate GH signal transduction, such as activation of the Janus tyrosine kinase JAK2, are beginning...

  15. PmrB Mutations Promote Polymyxin Resistance of Pseudomonas aeruginosa Isolated from Colistin-Treated Cystic Fibrosis Patients

    DEFF Research Database (Denmark)

    Moskowitz, Samuel M; Brannon, Mark K; Dasgupta, Nandini

    2012-01-01

    Pseudomonas aeruginosa can develop resistance to polymyxin and other cationic antimicrobial peptides. Previous work has shown that mutations in the PmrAB and PhoPQ regulatory systems can confer low to moderate levels of colistin (polymyxin E) resistance in laboratory strains and clinical isolates...

  16. Cortical atrophy and hypofibrinogenemia due to FGG and TBCD mutations in a single family: a case report.

    Science.gov (United States)

    Stephen, Joshi; Nampoothiri, Sheela; Vinayan, K P; Yesodharan, Dhanya; Remesh, Preetha; Gahl, William A; Malicdan, May Christine V

    2018-05-16

    Blended phenotypes or co-occurrence of independent phenotypically distinct conditions are extremely rare and are due to coincidence of multiple pathogenic mutations, especially due to consanguinity. Hereditary fibrinogen deficiencies result from mutations in the genes FGA, FGB, and FGG, encoding the three different polypeptide chains that comprise fibrinogen. Neurodevelopmental abnormalities have not been associated with fibrinogen deficiencies. In this study, we report an unusual patient with a combination of two independently inherited genetic conditions; fibrinogen deficiency and early onset cortical atrophy. The study describes a male child from consanguineous family presented with hypofibrinogenemia, diffuse cortical atrophy, microcephaly, hypertonia and axonal motor neuropathy. Through a combination of homozygosity mapping and exome sequencing, we identified bi-allelic pathogenic mutations in two genes: a homozygous novel truncating mutation in FGG (c.554del; p.Lys185Argfs*14) and a homozygous missense mutation in TBCD (c.1423G > A;p.Ala475Thr). Loss of function mutations in FGG have been associated with fibrinogen deficiency, while the c.1423G > A mutation in TBCD causes a novel syndrome of neurodegeneration and early onset encephalopathy. Our study highlights the importance of homozygosity mapping and exome sequencing in molecular prenatal diagnosis, especially when multiple gene mutations are responsible for the phenotype.

  17. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yunjun [The Military General Hospital of Beijing PLA, Affiliated Bayi Brain Hospital (China); Zhang, Jinqian, E-mail: jingwanghou@yahoo.com.cn [Capital Medical University, Institute of Infectious Diseases, Beijing Ditan Hospital (China); Zhao, Ming [Peking University, Department of Chemical Biology, School of Pharmaceutical Sciences (China); Shi, Zujin [Peking University, Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering (China); Chen, Xin; He, Xihui; Han, Nanyin, E-mail: jingwanghou@sina.com [Peking University, Department of Chemical Biology, School of Pharmaceutical Sciences (China); Xu, Ruxiang, E-mail: everbright999@163.com [The Military General Hospital of Beijing PLA, Affiliated Bayi Brain Hospital (China)

    2013-08-15

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma.

  18. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    Science.gov (United States)

    Li, Yunjun; Zhang, Jinqian; Zhao, Ming; Shi, Zujin; Chen, Xin; He, Xihui; Han, Nanyin; Xu, Ruxiang

    2013-08-01

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma.

  19. Effects of a tumor promoter and an anti-promoter on spontaneous and UV-induced 6-thioguanine-resistant mutations and sister-chromatid exchanges in V79 Chinese hamster cells

    International Nuclear Information System (INIS)

    Fujiwara, Y.; Kano, Y.; Tatsumi, M.; Paul, P.

    1980-01-01

    The effects of a tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) and/or an anti-promoter antipain (protease inhibitor) on spontaneous and ultraviolet-induced sister-chromatid exchanges (SCEs) and 6-thioguanine-resistant (6TGsup(r)) recessive mutations were examined in V79 Chinese hamster cells in culture. TPA and/or antipain neither significantly altered base-line and UV-induced immediate SCE frequencies, nor decreased the level of delayed SCEs which persisted 6-7 days after irradiation. TPA and/or antipain appeared to enhance the recovery of UV-induced 6TGsup(r) colonies at the plateau expression phase despite non-mutagenicity by themselves and unaltered metabolic cooperation. Thus, the results conceivably imply that the 6TGsup(r)-recessive mutation expression, but not fixation, can be modulated at the cell level by TPA and/or antipain. Our results, together with the recent results of Loveday and Latt, may argue against the notion that TPA enhances the antipain-suppressible SCEs as an index of mitotic recombination in relevance with a tumor-promotion mechanism. (orig.)

  20. Mutations of Profilin-1 Associated with Amyotrophic Lateral Sclerosis Promote Aggregation Due to Structural Changes of Its Native State.

    Science.gov (United States)

    Del Poggetto, Edoardo; Bemporad, Francesco; Tatini, Francesca; Chiti, Fabrizio

    2015-11-20

    The PFN1 gene, coding for profilin-1, has recently been associated with familial amyotrophic lateral sclerosis (fALS), as three mutations, namely C71G, M114T, and G118V, have been found in patients with familial forms of the disease and another, E117G, has been proposed to be a moderate risk factor for disease onset. In this work, we have purified the four profilin-1 variants along with the wild-type protein. The resulting aggregates appear to be fibrillar, to have a weak binding to ThT, and to possess a significant amount of intermolecular β-sheet structure. Using ThT fluorescence assays, far-UV circular dichroism, and dynamic light scattering, we found that all four variants have an aggregation propensity higher than that of the wild-type counterpart. In particular, the C71G mutation was found to induce the most dramatic change in aggregation, followed by the G118V and M114T substitutions and then the E117G mutation. Such a propensity was found not to strictly correlate with the conformational stability in this group of profilin-1 variants, determined using both urea-induced denaturation at equilibrium and folding/unfolding kinetics. However, it correlated with structural changes of the folded states, as monitored with far-UV circular dichroism, intrinsic fluorescence spectroscopy, ANS binding, acrylamide quenching, and dynamic light scattering. Overall, the results suggest that all four mutations increase the tendency of profilin-1 to aggregate and that such aggregation behavior is largely determined by the mutation-induced structural changes occurring in the folded state of the protein.

  1. Frequency of Antiretroviral Resistance Mutations among Infants Exposed to Single-Dose Nevirapine and Short Course Maternal Antiretroviral Regimens: ACTG A5207.

    Science.gov (United States)

    Hitti, Jane; Halvas, Elias K; Zheng, Lu; Panousis, Constantinos G; Kabanda, Joseph; Taulo, Frank; Kumarasamy, Nagalingeswaran; Pape, Jean William; Lalloo, Umesh; Sprenger, Heather; Klingman, Karin L; Chan, Ellen S; McMahon, Deborah; Mellors, John W

    2014-11-01

    Intrapartum single-dose nevirapine (sdNVP) reduces HIV-1 perinatal transmission but selects NVP resistance among mothers and infants. We evaluated the frequency of antiretroviral resistance among infants with intrauterine HIV-1 infection exposed to sdNVP and maternal antenatal or breastfeeding antiretroviral therapy. This analysis included 429 infants from sub-Saharan Africa, India and Haiti whose 422 mothers received sdNVP plus maternal study treatment. At entry mothers had CD4>250/μL and were ART-naïve except for antenatal ZDV per local standard of care. Maternal study treatment started intrapartum and included ZDV/3TC, TDF/FTC or LPV/r for 7 or 21 days in a randomized factorial design. Infants received sdNVP study treatment and ZDV if local standard of care. Infant HIV RNA or DNA PCR and samples for genotype were obtained at birth and weeks 2, 4 and 12; infants who ever breast-fed were also tested at weeks 16, 24, 48 and 96. Samples from HIV-1-infected infants were tested for drug resistance by population genotype (ViroSeq). NVP or NRTI resistance mutations were assessed using the IAS-USA mutation list. Perinatal HIV-1 transmission occurred in 17 (4.0%) infants including 12 intrauterine infections. Resistance mutations were detected among 5 (42%) intrauterine-infected infants; of these, 3 had mutations conferring resistance to NVP alone, 1 had resistance to NRTI alone, and 1 had dual-class resistance mutations. Among the 2 infants with NRTI mutations, one (K70R) was likely maternally transmitted and one (K65R) occurred in the context of breastfeeding exposure to maternal antiretroviral therapy. Infants with intrauterine HIV infection are at risk of acquiring resistance mutations from exposure to maternal antiretroviral medications intrapartum and/or during breastfeeding. New approaches are needed to lower the risk of antiretroviral resistance in these infants.

  2. A Dual Phenotype of Periventricular Nodular Heterotopia and Frontometaphyseal Dysplasia in One Patient Caused by a Single FLNA Mutation Leading to Two Functionally Different Aberrant Transcripts

    Science.gov (United States)

    Zenker, Martin; Rauch, Anita; Winterpacht, Andreas; Tagariello, Andreas; Kraus, Cornelia; Rupprecht, Thomas; Sticht, Heinrich; Reis, André

    2004-01-01

    Two disorders, periventricular nodular heterotopia (PVNH) and a group of skeletal dysplasias belonging to the oto-palato-digital (OPD) spectrum, are caused by FLNA mutations. They are considered mutually exclusive because of the different presumed effects of the respective FLNA gene mutations, leading to loss of function (PVNH) and gain of function (OPD), respectively. We describe here the first patient manifesting PVNH in combination with frontometaphyseal dysplasia, a skeletal dysplasia of the OPD-spectrum. A novel de novo mutation, 7315C→A in exon 45 of the FLNA gene, was identified. It leads to two aberrant transcripts, one full-length transcript with the point mutation causing a substitution of a highly conserved leucine residue (L2439M) and a second shortened transcript lacking 21 bp due to the creation of an ectopic splice donor site in exon 45. We propose that the dual phenotype is caused by two functionally different, aberrant filamin A proteins and therefore represents an exceptional model case of allelic gain-of-function and loss-of-function phenotypes due to a single mutational event. PMID:14988809

  3. GCK-MODY diabetes as a protein misfolding disease: the mutation R275C promotes protein misfolding, self-association and cellular degradation.

    Science.gov (United States)

    Negahdar, Maria; Aukrust, Ingvild; Molnes, Janne; Solheim, Marie H; Johansson, Bente B; Sagen, Jørn V; Dahl-Jørgensen, Knut; Kulkarni, Rohit N; Søvik, Oddmund; Flatmark, Torgeir; Njølstad, Pål R; Bjørkhaug, Lise

    2014-01-25

    GCK-MODY, dominantly inherited mild hyperglycemia, is associated with more than 600 mutations in the glucokinase gene. Different molecular mechanisms have been shown to explain GCK-MODY. Here, we report a Pakistani family harboring the glucokinase mutation c.823C>T (p.R275C). The recombinant and in cellulo expressed mutant pancreatic enzyme revealed slightly increased enzyme activity (kcat) and normal affinity for α-D-glucose, and resistance to limited proteolysis by trypsin comparable with wild-type. When stably expressed in HEK293 cells and MIN6 β-cells (at different levels), the mutant protein appeared misfolded and unstable with a propensity to form dimers and aggregates. Its degradation rate was increased, involving the lysosomal and proteasomal quality control systems. On mutation, a hydrogen bond between the R275 side-chain and the carbonyl oxygen of D267 is broken, destabilizing the F260-L271 loop structure and the protein. This promotes the formation of dimers/aggregates and suggests that an increased cellular degradation is the molecular mechanism by which R275C causes GCK-MODY. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. A Novel KCNJ2 Mutation Identified in an Autistic Proband Affects the Single Channel Properties of Kir2.1

    Directory of Open Access Journals (Sweden)

    Anna Binda

    2018-03-01

    Full Text Available Inwardly rectifying potassium channels (Kir have been historically associated to several cardiovascular disorders. In particular, loss-of-function mutations in the Kir2.1 channel have been reported in cases affected by Andersen-Tawil syndrome while gain-of-function mutations in the same channel cause the short QT3 syndrome. Recently, a missense mutation in Kir2.1, as well as mutations in the Kir4.1, were reported to be involved in autism spectrum disorders (ASDs suggesting a role of potassium channels in these diseases and introducing the idea of the existence of K+ channel ASDs. Here, we report the identification in an Italian affected family of a novel missense mutation (p.Phe58Ser in the KCNJ2 gene detected in heterozygosity in a proband affected by autism and borderline for short QT syndrome type 3. The mutation is located in the N-terminal region of the gene coding for the Kir2.1 channel and in particular in a very conserved domain. In vitro assays demonstrated that this mutation results in an increase of the channel conductance and in its open probability. This gain-of-function of the protein is consistent with the autistic phenotype, which is normally associated to an altered neuronal excitability.

  5. Promoting Positive Behavior Using the Good Behavior Game: A Meta-Analysis of Single-Case Research

    Science.gov (United States)

    Bowman-Perrott, Lisa; Burke, Mack D.; Zaini, Samar; Zhang, Nan; Vannest, Kimberly

    2016-01-01

    The Good Behavior Game (GBG) is a classroom management strategy that uses an interdependent group-oriented contingency to promote prosocial behavior and decrease problem behavior. This meta-analysis synthesized single-case research (SCR) on the GBG across 21 studies, representing 1,580 students in pre-kindergarten through Grade 12. The TauU effect…

  6. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    Science.gov (United States)

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A; Rubin, P; Kemp, J; Israel, E; Busse, W; Ledford, D; Murray, J J; Segal, A; Tinkleman, D; Drazen, J M

    1997-03-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, deletion of two, or addition of one zinc finger (Sp1/Egr-1) binding sites in the region 176 to 147 bp upstream from the ATG translation start site where there are normally 5 Sp1 binding motifs in tandem. Reporter gene activity directed by any of the mutant forms of the transcription factor binding region was significantly (P < 0.05) less effective than the activity driven by the wild type transcription factor binding region. Electrophoretic mobility shift assays (EMSAs) demonstrated the capacity of wild type and mutant transcription factor binding regions to bind nuclear extracts from human umbilical vein endothelial cells (HUVECs). These data are consistent with a family of mutations in the 5-LO gene that can modify reporter gene transcription possibly through differences in Sp1 and Egr-1 transactivation.

  7. Y682 mutation of amyloid precursor protein promotes endo-lysosomal dysfunction by disrupting APP-SorLA interaction

    Directory of Open Access Journals (Sweden)

    Luca Rosario La Rosa

    2015-04-01

    Full Text Available The intracellular transport and localization of amyloid precursor protein (APP are critical determinants of APP processing and β-amyloid peptide production, thus crucially important for the pathophysiology of Alzheimer’s disease (AD. Notably, the C-terminal Y682ENPTY687 domain of APP binds to specific adaptors controlling APP trafficking and sorting in neurons. Mutation on the Y682 residue to glycine (Y682G leads to altered APP sorting in hippocampal neurons that favors its accumulation in intracellular compartments and the release of soluble APPα. Such alterations induce premature aging and learning and cognitive deficits in APP Y682G mutant mice (APPYG/YG. Here, we report that Y682G mutation affects formation of the APP complex with sortilin-related receptor (SorLA, resulting in endo-lysosomal dysfunctions and neuronal degeneration. Moreover, disruption of the APP/SorLA complex changes the trafficking pathway of SorLA, with its consequent increase in secretion outside neurons. Mutations in the SorLA gene are a prognostic factor in AD, and increases in SorLA levels in cerebrospinal fluid are predictive of AD in humans. These results might open new possibilities in comprehending the role played by SorLA in its interaction with APP and in the progression of neuronal degeneration. In addition, they further underline the crucial role played by Y682 residue in controlling APP trafficking in neurons.

  8. Efficient molecular screening of Lynch syndrome by specific 3' promoter methylation of the MLH1 or BRAF mutation in colorectal cancer with high-frequency microsatellite instability.

    Science.gov (United States)

    Nakagawa, Hitoshi; Nagasaka, Takeshi; Cullings, Harry M; Notohara, Kenji; Hoshijima, Naoko; Young, Joanne; Lynch, Henry T; Tanaka, Noriaki; Matsubara, Nagahide

    2009-06-01

    It is sometimes difficult to diagnose Lynch syndrome by the simple but strict clinical criteria, or even by the definitive genetic testing for causative germline mutation of mismatch repair genes. Thus, some practical and efficient screening strategy to select highly possible Lynch syndrome patients is exceedingly desirable. We performed a comprehensive study to evaluate the methylation status of whole MLH1 promoter region by direct bisulfite sequencing of the entire MLH1 promoter regions on Lynch and non-Lynch colorectal cancers (CRCs). Then, we established a convenient assay to detect methylation in key CpG islands responsible for the silencing of MLH1 expression. We studied the methylation status of MLH1 as well as the CpG island methylator phenotype (CIMP) and immunohistochemical analysis of mismatch repair proteins on 16 cases of Lynch CRC and 19 cases of sporadic CRCs with high-frequency microsatellite instability (MSI-H). Sensitivity to detect Lynch syndrome by MLH1 (CCAAT) methylation was 88% and the specificity was 84%. Positive likelihood ratio (PLR) was 5.5 and negative likelihood ratio (NLR) was 0.15. Sensitivity by mutational analysis of BRAF was 100%, specificity was 84%, PLR was 6.3 and NLR was zero. By CIMP analysis; sensitivity was 88%, specificity was 79%, PLR was 4.2, and NLR was 0.16. BRAF mutation or MLH1 methylation analysis combined with MSI testing could be a good alternative to screen Lynch syndrome patients in a cost effective manner. Although the assay for CIMP status also showed acceptable sensitivity and specificity, it may not be practical because of its rather complicated assay.

  9. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis.

    Science.gov (United States)

    Esteller, M; Toyota, M; Sanchez-Cespedes, M; Capella, G; Peinado, M A; Watkins, D N; Issa, J P; Sidransky, D; Baylin, S B; Herman, J G

    2000-05-01

    O6-methylguanine DNA methyltransferase (MGMT) is a DNA repair protein that removes mutagenic and cytotoxic adducts from the O6 position of guanine. O6-methylguanine mispairs with thymine during replication, and if the adduct is not removed, this results in conversion from a guanine-cytosine pair to an adenine-thymine pair. In vitro assays show that MGMT expression avoids G to A mutations and MGMT transgenic mice are protected against G to A transitions at ras genes. We have recently demonstrated that the MGMT gene is silenced by promoter methylation in many human tumors, including colorectal carcinomas. To study the relevance of defective MGMT function by aberrant methylation in relation to the presence of K-ras mutations, we studied 244 colorectal tumor samples for MGMT promoter hypermethylation and K-ras mutational status. Our results show a clear association between the inactivation of MGMT by promoter hypermethylation and the appearance of G to A mutations at K-ras: 71% (36 of 51) of the tumors displaying this particular type of mutation had abnormal MGMT methylation, whereas only 32% (12 of 37) of those with other K-ras mutations not involving G to A transitions and 35% (55 of 156) of the tumors without K-ras mutations demonstrated MGMT methylation (P = 0.002). In addition, MGMT loss associated with hypermethylation was observed in the small adenomas, including those that do not yet contain K-ras mutations. Hypermethylation of other genes such as p16INK4a and p14ARF was not associated with either MGMT hypermethylation or K-ras mutation. Our data suggest that epigenetic silencing of MGMT by promoter hypermethylation may lead to a particular genetic change in human cancer, specifically G to A transitions in the K-ras oncogene.

  10. Promoter hypermethylation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase is associated with the presence of G:C to A:T transition mutations in p53 in human colorectal tumorigenesis.

    Science.gov (United States)

    Esteller, M; Risques, R A; Toyota, M; Capella, G; Moreno, V; Peinado, M A; Baylin, S B; Herman, J G

    2001-06-15

    Defects in DNA repair may be responsible for the genesis of mutations in key genes in cancer cells. The tumor suppressor gene p53 is commonly mutated in human cancer by missense point mutations, most of them G:C to A:T transitions. A recognized cause for this type of change is spontaneous deamination of the methylcytosine. However, the persistence of a premutagenic O(6)-methylguanine can also be invoked. This last lesion is removed in the normal cell by the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT). In many tumor types, epigenetic silencing of MGMT by promoter hypermethylation has been demonstrated and linked to the appearance of G to A mutations in the K-ras oncogene in colorectal tumors. To study the relevance of defective MGMT function by aberrant methylation in relation to the presence of p53 mutations, we studied 314 colorectal tumors for MGMT promoter hypermethylation and p53 mutational spectrum. Inactivation of MGMT by aberrant methylation was associated with the appearance of G:C to A:T transition mutations at p53 (Fischer's exact test, two-tailed; P = 0.01). Overall, MGMT methylated tumors displayed p53 transition mutations in 43 of 126 (34%) cases, whereas MGMT unmethylated tumors only showed G:C to A:T changes in 37 of 188 (19%) tumors. A more striking association was found in G:C to A:T transitions in non-CpG dinucleotides; 71% (12 of 17) of the total non-CpG transition mutations in p53 were observed in MGMT aberrantly methylated tumors (Fischer's exact test, two-tailed; P = 0.008). Our data suggest that epigenetic silencing of MGMT by promoter hypermethylation may lead to G:C to A:T transition mutations in p53.

  11. Mms Sensitivity of All Amino Acid-Requiring Mutants in Aspergillus and Its Suppression by Mutations in a Single Gene

    OpenAIRE

    Käfer, Etta

    1987-01-01

    All available amino acid-requiring mutants of Aspergillus nidulans were found to be hypersensitive to MMS (methyl methanesulfonate) to various degrees. On MMS media, secondary mutations could be selected which suppress this MMS sensitivity but do not affect the requirement. Many such mutations were analyzed and found to be alleles of one gene, smsA (= suppressor of MMS sensitivity), which mapped distal on the right arm of chromosome V. This gene is more likely to be involved in general regula...

  12. Mutation Scanning in a Single and a Stacked Genetically Modified (GM) Event by Real-Time PCR and High Resolution Melting (HRM) Analysis

    Science.gov (United States)

    Ben Ali, Sina-Elisabeth; Madi, Zita Erika; Hochegger, Rupert; Quist, David; Prewein, Bernhard; Haslberger, Alexander G.; Brandes, Christian

    2014-01-01

    Genetic mutations must be avoided during the production and use of seeds. In the European Union (EU), Directive 2001/18/EC requires any DNA construct introduced via transformation to be stable. Establishing genetic stability is critical for the approval of genetically modified organisms (GMOs). In this study, genetic stability of two GMOs was examined using high resolution melting (HRM) analysis and real-time polymerase chain reaction (PCR) employing Scorpion primers for amplification. The genetic variability of the transgenic insert and that of the flanking regions in a single oilseed rape variety (GT73) and a stacked maize (MON88017 × MON810) was studied. The GT73 and the 5' region of MON810 showed no instabilities in the examined regions. However; two out of 100 analyzed samples carried a heterozygous point mutation in the 3' region of MON810 in the stacked variety. These results were verified by direct sequencing of the amplified PCR products as well as by sequencing of cloned PCR fragments. The occurrence of the mutation suggests that the 5' region is more suitable than the 3' region for the quantification of MON810. The identification of the single nucleotide polymorphism (SNP) in a stacked event is in contrast to the results of earlier studies of the same MON810 region in a single event where no DNA polymorphism was found. PMID:25365178

  13. HFE gene mutation and iron overload in Egyptian pediatric acute lymphoblastic leukemia survivors: a single-center study.

    Science.gov (United States)

    El-Rashedi, Farida H; El-Hawy, Mahmoud A; El-Hefnawy, Sally M; Mohammed, Mona M

    2017-08-01

    Hereditary hemochromatosis gene (HFE) mutations have a role in iron overload in pediatric acute lymphoblastic leukemia (ALL) survivors. We aimed to evaluate the genotype frequency and allelic distribution of the two HFE gene mutations (C282Y and H63D) in a sample of Egyptian pediatric ALL survivors and to detect the impact of these two mutations on their iron profile. This study was performed on 35 ALL survivors during their follow-up visits to the Hematology and Oncology Unit, Pediatric Department, Menoufia University Hospitals. Thirty-five healthy children of matched age and sex were chosen as controls. After completing treatment course, ALL survivors were screened for the prevalence of these two mutations by polymerase chain reaction-restriction fragment length polymorphism. Serum ferritin levels were measured by an enzyme-linked immunosorbent assay technique (ELISA). C282Y mutation cannot be detected in any of the 35 survivors or the 35 controls. The H63D heterozygous state (CG) was detected in 28.6% of the survivors group and in 20% of controls, while the H63D homozygous (GG) state was detected in 17.1% of survivors. No compound heterozygosity (C282Y/H63D) was detected at both groups with high G allele frequency (31.4%) in survivors more than controls (10%). There were significant higher levels of iron parameters in homozygote survivors than heterozygotes and the controls. H63D mutation aggravates the iron overload status in pediatric ALL survivors.

  14. A single polymerase (L) mutation in avian metapneumovirus increased virulence and partially maintained virus viability at an elevated temperature.

    Science.gov (United States)

    Brown, Paul A; Lupini, Caterina; Catelli, Elena; Clubbe, Jayne; Ricchizzi, Enrico; Naylor, Clive J

    2011-02-01

    Previously, a virulent avian metapneumovirus, farm isolate Italy 309/04, was shown to have been derived from a live vaccine. Virulence due to the five nucleotide mutations associated with the reversion to virulence was investigated by their addition to the genome of the vaccine strain using reverse genetics. Virulence of these recombinant viruses was determined by infection of 1-day-old turkeys. Disease levels resulting from the combined two matrix mutations was indistinguishable from that produced by the recombinant vaccine, whereas the combined three L gene mutations increased disease to a level (P<0.0001) that was indistinguishable from that caused by the revertant Italy 309/04 virus. Testing of the L mutations individually showed that two mutations did not increase virulence, while the third mutation, corresponding to an asparagine to aspartic acid substitution, produced virulence indistinguishable from that caused by Italy 309/04. In contrast to the vaccine, the virulent mutant also showed increased viability at temperatures typical of turkey core tissues. The notion that increased viral virulence resulted from enhanced ability to replicate in tissues away from the cool respiratory tract, cannot be discounted.

  15. Positive signature-tagged mutagenesis in Pseudomonas aeruginosa: tracking patho-adaptive mutations promoting airways chronic infection.

    Directory of Open Access Journals (Sweden)

    Irene Bianconi

    2011-02-01

    Full Text Available The opportunistic pathogen Pseudomonas aeruginosa can establish life-long chronic infections in the airways of cystic fibrosis (CF patients. Persistent lifestyle is established with P. aeruginosa patho-adaptive variants, which are clonal with the initially-acquired strains. Several reports indicated that P. aeruginosa adapts by loss-of-function mutations which enhance fitness in CF airways and sustain its clonal expansion during chronic infection. To validate this model of P. aeruginosa adaptation to CF airways and to identify novel genes involved in this microevolution, we designed a novel approach of positive-selection screening by PCR-based signature-tagged mutagenesis (Pos-STM in a murine model of chronic airways infection. A systematic positive-selection scheme using sequential rounds of in vivo screenings for bacterial maintenance, as opposed to elimination, generated a list of genes whose inactivation increased the colonization and persistence in chronic airways infection. The phenotypes associated to these Pos-STM mutations reflect alterations in diverse aspects of P. aeruginosa biology which include lack of swimming and twitching motility, lack of production of the virulence factors such as pyocyanin, biofilm formation, and metabolic functions. In addition, Pos-STM mutants showed altered invasion and stimulation of immune response when tested in human respiratory epithelial cells, indicating that P. aeruginosa is prone to revise the interaction with its host during persistent lifestyle. Finally, sequence analysis of Pos-STM genes in longitudinally P. aeruginosa isolates from CF patients identified signs of patho-adaptive mutations within the genome. This novel Pos-STM approach identified bacterial functions that can have important clinical implications for the persistent lifestyle and disease progression of the airway chronic infection.

  16. Novel point mutations and mutational complexes in the enhancer II, core promoter and precore regions of hepatitis B virus genotype D1 associated with hepatocellular carcinoma in Saudi Arabia.

    Science.gov (United States)

    Khan, Anis; Al Balwi, Mohammed A; Tanaka, Yasuhito; Hajeer, Ali; Sanai, Faisal M; Al Abdulkarim, Ibrahim; Al Ayyar, Latifah; Badri, Motasim; Saudi, Dib; Tamimi, Waleed; Mizokami, Masashi; Al Knawy, Bandar

    2013-12-15

    In this study, a cohort of 182 patients [55 hepatocellular carcinoma (HCC) and 127 non-HCC] infected with hepatitis B virus (HBV) in Saudi Arabia was investigated to study the relationship between sequence variation in the enhancer II (EnhII), basal core promoter (BCP) and precore regions of HBV genotype D (HBV/D) and the risk of HCC. HBV genotypes were determined by sequencing analysis and/or enzyme-linked immunosorbent assay. Variations in the EnhII, BCP and precore regions were compared between 107 non-HCC and 45 HCC patients infected with HBV/D, followed by age-matched analysis of 40 cases versus equal number of controls. Age and male gender were significantly associated with HCC (p = 0.0001 and p = 0.03, respectively). Serological markers such as aspartate aminotransferase, albumin and anti-HBe were significantly associated with HCC (p = 0.0001 for all), whereas HBeAg positivity was associated with non-HCC (p = 0.0001). The most prevalent HBV genotype was HBV/D (94%), followed by HBV/E (4%), HBV/A (1.6%) and HBV/C (0.5%). For HBV/D1, genomic mutations associated with HCC were T1673/G1679, G1727, C1741, C1761, A1757/T1764/G1766, T1773, T1773/G1775 and C1909. Age- and gender-adjusted stepwise logistic regression analysis indicated that mutations G1727 [odds ratio (OR) = 18.3; 95% confidence interval (CI) = 2.8-118.4; p = 0.002], A1757/T1764/G1766 (OR = 4.7; 95% CI = 1.3-17.2; p = 0.01) and T1773 (OR = 14.06; 95% CI = 2.3-84.8; p = 0.004) are independent predictors of HCC development. These results implicate novel individual and combination patterns of mutations in the X/precore region of HBV/D1 as predictors of HCC. Risk stratification based on these mutation complexes would be useful in determining high-risk patients and improving diagnostic and treatment strategies for HBV/D1. Copyright © 2013 UICC.

  17. Toehold-mediated strand displacement reaction triggered isothermal DNA amplification for highly sensitive and selective fluorescent detection of single-base mutation.

    Science.gov (United States)

    Zhu, Jing; Ding, Yongshun; Liu, Xingti; Wang, Lei; Jiang, Wei

    2014-09-15

    Highly sensitive and selective detection strategy for single-base mutations is essential for risk assessment of malignancy and disease prognosis. In this work, a fluorescent detection method for single-base mutation was proposed based on high selectivity of toehold-mediated strand displacement reaction (TSDR) and powerful signal amplification capability of isothermal DNA amplification. A discrimination probe was specially designed with a stem-loop structure and an overhanging toehold domain. Hybridization between the toehold domain and the perfect matched target initiated the TSDR along with the unfolding of the discrimination probe. Subsequently, the target sequence acted as a primer to initiate the polymerization and nicking reactions, which released a great abundant of short sequences. Finally, the released strands were annealed with the reporter probe, launching another polymerization and nicking reaction to produce lots of G-quadruplex DNA, which could bind the N-methyl mesoporphyrin IX to yield an enhanced fluorescence response. However, when there was even a single base mismatch in the target DNA, the TSDR was suppressed and so subsequent isothermal DNA amplification and fluorescence response process could not occur. The proposed approach has been successfully implemented for the identification of the single-base mutant sequences in the human KRAS gene with a detection limit of 1.8 pM. Furthermore, a recovery of 90% was obtained when detecting the target sequence in spiked HeLa cells lysate, demonstrating the feasibility of this detection strategy for single-base mutations in biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Codon 61 mutations in the c-Harvey-ras gene in mouse skin tumors induced by 7,12-dimethylbenz[a]anthracene plus okadaic acid class tumor promoters.

    Science.gov (United States)

    Fujiki, H; Suganuma, M; Yoshizawa, S; Kanazawa, H; Sugimura, T; Manam, S; Kahn, S M; Jiang, W; Hoshina, S; Weinstein, I B

    1989-01-01

    Three okadaic acid class tumor promoters, okadaic acid, dinophysistoxin-1, and calyculin A, have potent tumor-promoting activity in two-stage carcinogenesis experiments on mouse skin. DNA isolated from tumors induced by 7,12-dimethylbenz[a]anthracene (DMBA) and each of these tumor promoters revealed the same mutation at the second nucleotide of codon 61 (CAA----CTA) in the c-Ha-ras gene, determined by the polymerase chain reaction procedure and DNA sequencing. Three potent 12-O-tetradecanoylphorbol-13-acetate (TPA)-type tumor promoters, TPA, teleocidin, and aplysiatoxin, showed the same effects. These results provide strong evidence that this mutation in the c-Ha-ras gene is due to a direct effect of DMBA rather than a selective effect of specific tumor promoters.

  19. A single point-mutation within the melanophilin gene causes the lavender plumage colour dilution phenotype in the chicken

    Directory of Open Access Journals (Sweden)

    Tixier-Boichard Michèle

    2008-01-01

    Full Text Available Abstract Background The lavender phenotype in the chicken causes the dilution of both black (eumelanin and red/brown (phaeomelanin pigments. Defects in three genes involved in intracellular melanosomal transport, previously described in mammals, give rise to similar diluted pigmentation phenotypes as those seen in lavender chickens. Results We have used a candidate-gene approach based on an expectation of homology with mammals to isolate a gene involved in pigmentation in chicken. Comparative sequence analysis of candidate genes in the chicken identified a strong association between a mutation in the MLPH gene and the diluted pigmentation phenotype. This mutation results in the amino acid change R35W, at a site also associated with similar phenotypes in mice, humans and cats. Conclusion This is the first time that an avian species with a mutation in the MLPH gene has been reported.

  20. Introduction of a point mutation into an HLA class I single-chain trimer induces enhancement of CTL priming and antitumor immunity

    Directory of Open Access Journals (Sweden)

    Masanori Matsui

    2014-01-01

    Full Text Available We previously discovered one particular HLA-A*02:01 mutant that enhanced peptide-specific cytotoxic T lymphocyte (CTL recognition in vitro compared to wild-type HLA-A*02:01. This mutant contains a single amino acid substitution from histidine to leucine at position 74 (H74L that is located in the peptide-binding groove. To investigate the effect of the H74L mutation on the in vivo CTL priming, we took advantage of the technology of the HLA class I single-chain trimer (SCT in which three components involving a peptide, β2 microglobulin and the HLA class I heavy chain are joined together via flexible linkers. We generated recombinant adenovirus expressing SCT comprised influenza A matrix protein (FMP-derived peptide, β2 microglobulin and the H74L heavy chain. HLA-A*02:01 transgenic mice were immunized with the adenovirus, and the induction of peptide-specific CTLs and antitumor immunity was investigated. It was clearly shown that the H74L mutation enabled the HLA-A*02:01 SCT molecule to dramatically enhance both in vivo priming of FMP-specific CTLs and protection against a lethal challenge of tumor cells expressing FMP. These data present the first evidence that a simple point mutation in the HLA class I heavy chain of SCT is beneficial for improving CTL-based immunotherapy and prophylaxis to control tumors.

  1. MMS sensitivity of all amino acid-requiring mutants in aspergillus and its suppression by mutations in a single gene.

    Science.gov (United States)

    Käfer, E

    1987-04-01

    All available amino acid-requiring mutants of Aspergillus nidulans were found to be hypersensitive to MMS (methyl methanesulfonate) to various degrees. On MMS media, secondary mutations could be selected which suppress this MMS sensitivity but do not affect the requirement. Many such mutations were analyzed and found to be alleles of one gene, smsA (= suppressor of MMS sensitivity), which mapped distal on the right arm of chromosome V. This gene is more likely to be involved in general regulation of amino acid biosynthesis than MMS uptake, since a variety of pathway interactions were clearly modified by smsA suppressors in the absence of MMS.

  2. Dramatic Response with Single-Agent Ibrutinib in Multiply Relapsed Marginal Zone Lymphoma with MYD88L265P Mutation

    Directory of Open Access Journals (Sweden)

    Ryan C. Lynch

    2017-09-01

    Full Text Available The B-cell receptor signaling pathway is important in the lymphomagenesis of many lymphomas, including marginal zone lymphoma (MZL. Herein we describe a case of extranodal MZL refractory to multiple lines of therapy. The presence of an IgM paraprotein prompted further evaluation, and the patient was found to have an MYD88L265P mutation. Treatment with ibrutinib led to a dramatic response with prompt resolution of symptoms and significant improvement in measurable sites of disease. The excellent response to ibrutinib in our patient with MYD88L265P-mutated refractory MZL supports a biological rationale for its use.

  3. Reduction of spontaneous somatic mutation frequency by a low-dose X irradiation of Drosophila larvae and possible involvement of DNA single-strand damage repair.

    Science.gov (United States)

    Koana, Takao; Takahashi, Takashi; Tsujimura, Hidenobu

    2012-03-01

    The third instar larvae of Drosophila were irradiated with X rays, and the somatic mutation frequency in their wings was measured after their eclosion. In the flies with normal DNA repair and apoptosis functions, 0.2 Gy irradiation at 0.05 Gy/min reduced the frequency of the so-called small spot (mutant cell clone with reduced reproductive activity) compared with that in the sham-irradiated flies. When apoptosis was suppressed using the baculovirus p35 gene, the small spot frequency increased four times in the sham-irradiated control group, but the reduction by the 0.2-Gy irradiation was still evident. In a non-homologous end joining-deficient mutant, the small spot frequency was also reduced by 0.2 Gy radiation. In a mutant deficient in single-strand break repair, no reduction in the small spot frequency by 0.2 Gy radiation was observed, and the small spot frequency increased with the radiation dose. Large spot (mutant cell clone with normal reproductive activity) frequency was not affected by suppression of apoptosis and increased monotonically with radiation dose in wild-type larvae and in mutants for single- or double-strand break repair. It is hypothesized that some of the small spots resulted from single-strand damage and, in wild-type larvae, 0.2 Gy radiation activated the normal single-strand break repair gene, which reduced the background somatic mutation frequency.

  4. Single-Molecule Kinetics Reveal Cation-Promoted DNA Duplex Formation Through Ordering of Single-Stranded Helices

    Science.gov (United States)

    Dupuis, Nicholas F.; Holmstrom, Erik D.; Nesbitt, David J.

    2013-01-01

    In this work, the kinetics of short, fully complementary oligonucleotides are investigated at the single-molecule level. Constructs 6–9 bp in length exhibit single exponential kinetics over 2 orders of magnitude time for both forward (kon, association) and reverse (koff, dissociation) processes. Bimolecular rate constants for association are weakly sensitive to the number of basepairs in the duplex, with a 2.5-fold increase between 9 bp (k′on = 2.1(1) × 106 M−1 s−1) and 6 bp (k′on = 5.0(1) × 106 M−1 s−1) sequences. In sharp contrast, however, dissociation rate constants prove to be exponentially sensitive to sequence length, varying by nearly 600-fold over the same 9 bp (koff = 0.024 s−1) to 6 bp (koff = 14 s−1) range. The 8 bp sequence is explored in more detail, and the NaCl dependence of kon and koff is measured. Interestingly, konincreases by >40-fold (kon = 0.10(1) s−1 to 4.0(4) s−1 between [NaCl] = 25 mM and 1 M), whereas in contrast, koffdecreases by fourfold (0.72(3) s−1 to 0.17(7) s−1) over the same range of conditions. Thus, the equilibrium constant (Keq) increases by ≈160, largely due to changes in the association rate, kon. Finally, temperature-dependent measurements reveal that increased [NaCl] reduces the overall exothermicity (ΔΔH° > 0) of duplex formation, albeit by an amount smaller than the reduction in entropic penalty (−TΔΔS° duplex formation. PMID:23931323

  5. Homozygosity for a single base-pair mutation in the oocyte-specific GDF9 gene results in sterility in Thoka sheep

    DEFF Research Database (Denmark)

    Nicel, Linda; Bishop, Stephen; Pong-Wong, Richardo

    2009-01-01

    and infertility in homozygotes. Analysis of homozygote ovarian morphology and a number of genes normally activated in growing follicles showed that GDF9 was not involved in oocyte activation, but in subsequent development of the follicle. This study highlights the importance of oocyte factors in regulating...... ovulation rate, although in some cases homozygous ewes are infertile. In the present study we present a detailed characterisation of a novel mutation in growth differentiation factor 9 (GDF9), found in Icelandic Thoka sheep. This mutation is a single base change (A1279C) resulting in a non-conservative...... fertility and provides new information for structural analysis and investigation of the potentially important sites of dimerization or translational modifications required to produce biologically active GDF9. It also provides the basis for the utilisation of these animals to enhance sheep production...

  6. A multiplex single nucleotide polymorphism typing assay for detecting mutations that result in decreased fluoroquinolone susceptibility in Salmonella enterica serovars Typhi and Paratyphi A.

    LENUS (Irish Health Repository)

    Song, Yajun

    2010-08-01

    OBJECTIVES: Decreased susceptibility to fluoroquinolones has become a major problem for the successful therapy of human infections caused by Salmonella enterica, especially the life-threatening typhoid and paratyphoid fevers. METHODS: By using Luminex xTAG beads, we developed a rapid, reliable and cost-effective multiplexed genotyping assay for simultaneously detecting 11 mutations in gyrA, gyrB and parE of S. enterica serovars Typhi and Paratyphi A that result in nalidixic acid resistance (Nal(R)) and\\/or decreased susceptibility to fluoroquinolones. RESULTS: This assay yielded unambiguous single nucleotide polymorphism calls on extracted DNA from 292 isolates of Salmonella Typhi (Nal(R) = 223 and Nal(S) = 69) and 106 isolates of Salmonella Paratyphi A (Nal(R) = 24 and Nal(S) = 82). All of the 247 Nal(R) Salmonella Typhi and Salmonella Paratyphi A isolates were found to harbour at least one of the target mutations, with GyrA Phe-83 as the most common one (143\\/223 for Salmonella Typhi and 18\\/24 for Salmonella Paratyphi A). We also identified three GyrB mutations in eight Nal(S) Salmonella Typhi isolates (six for GyrB Phe-464, one for GyrB Leu-465 and one for GyrB Asp-466), and mutations GyrB Phe-464 and GyrB Asp-466 seem to be related to the decreased ciprofloxacin susceptibility phenotype in Salmonella Typhi. This assay can also be used directly on boiled single colonies. CONCLUSIONS: The assay presented here would be useful for clinical and reference laboratories to rapidly screen quinolone-resistant isolates of Salmonella Typhi and Salmonella Paratyphi A, and decipher the underlying genetic changes for epidemiological purposes.

  7. A single disulfide bond disruption in the β3 integrin subunit promotes thiol/disulfide exchange, a molecular dynamics study.

    Directory of Open Access Journals (Sweden)

    Lihie Levin

    Full Text Available The integrins are a family of membrane receptors that attach a cell to its surrounding and play a crucial function in cell signaling. The combination of internal and external stimuli alters a folded non-active state of these proteins to an extended active configuration. The β3 subunit of the platelet αIIbβ3 integrin is made of well-structured domains rich in disulfide bonds. During the activation process some of the disulfides are re-shuffled by a mechanism requiring partial reduction of some of these bonds; any disruption in this mechanism can lead to inherent blood clotting diseases. In the present study we employed Molecular Dynamics simulations for tracing the sequence of structural fluctuations initiated by a single cysteine mutation in the β3 subunit of the receptor. These simulations showed that in-silico protein mutants exhibit major conformational deformations leading to possible disulfide exchange reactions. We suggest that any mutation that prevents Cys560 from reacting with one of the Cys(567-Cys(581 bonded pair, thus disrupting its ability to participate in a disulfide exchange reaction, will damage the activation mechanism of the integrin. This suggestion is in full agreement with previously published experiments. Furthermore, we suggest that rearrangement of disulfide bonds could be a part of a natural cascade of thiol/disulfide exchange reactions in the αIIbβ3 integrin, which are essential for the native activation process.

  8. Mutations that promote furin-independent growth of Semliki Forest virus affect p62-E1 interactions and membrane fusion

    International Nuclear Information System (INIS)

    Zhang Xinyong; Kielian, Margaret

    2004-01-01

    The enveloped alphavirus Semliki Forest virus (SFV) infects cells via a low pH-triggered membrane fusion reaction mediated by the E1 protein. E1's fusion activity is regulated by its heterodimeric interaction with a companion membrane protein E2. Mature E2 protein is generated by furin processing of the precursor p62. Processing destabilizes the heterodimer, allowing dissociation at acidic pH, E1 conformational changes, and membrane fusion. We used a furin-deficient cell line, FD11, to select for SFV mutants that show increased growth in the absence of p62 processing. We isolated and characterized 7 such pci mutants (p62 cleavage independent), which retained the parental furin cleavage site but showed significant increases in their ability to carry out membrane fusion in the p62 form. Sequence analysis of the pci mutants identified mutations primarily on the E2 protein, and suggested sites important in the interaction of p62 with E1 and the regulation of fusion

  9. Hearing impairment caused by mutations in two different genes responsible for nonsyndromic and syndromic hearing loss within a single family.

    Science.gov (United States)

    Niepokój, Katarzyna; Rygiel, Agnieszka M; Jurczak, Piotr; Kujko, Aleksandra A; Śniegórska, Dominika; Sawicka, Justyna; Grabarczyk, Alicja; Bal, Jerzy; Wertheim-Tysarowska, Katarzyna

    2018-02-01

    Usher syndrome is rare genetic disorder impairing two human senses, hearing and vision, with the characteristic late onset of vision loss. This syndrome is divided into three types. In all cases, the vision loss is postlingual, while loss of hearing is usually prelingual. The vestibular functions may also be disturbed in Usher type 1 and sometimes in type 3. Vestibular areflexia is helpful in making a proper diagnosis of the syndrome, but, often, the syndrome is misdiagnosed as a nonsyndromic hearing loss. Here, we present a Polish family with hearing loss, which was clinically classified as nonsyndromic. After excluding mutations in the DFNB1 locus, we implemented the next-generation sequencing method and revealed that hearing loss was syndromic and mutations in the USH2A gene indicate Usher syndrome. This research highlights the importance of molecular analysis in establishing a clinical diagnosis of congenital hearing loss.

  10. A Specific Mutation in the Promoter Region of the Silent cel Cluster Accounts for the Appearance of Lactose-Utilizing Lactococcus lactis MG1363

    Science.gov (United States)

    Solopova, Ana; Bachmann, Herwig; Teusink, Bas; Kok, Jan; Neves, Ana Rute

    2012-01-01

    The Lactococcus lactis laboratory strain MG1363 has been described to be unable to utilize lactose. However, in a rich medium supplemented with lactose as the sole carbon source, it starts to grow after prolonged incubation periods. Transcriptome analyses showed that L. lactis MG1363 Lac+ cells expressed celB, encoding a putative cellobiose-specific phosphotransferase system (PTS) IIC component, which is normally silent in MG1363 Lac− cells. Nucleotide sequence analysis of the cel cluster of a Lac+ isolate revealed a change from one of the guanines to adenine in the promoter region. We showed here that one particular mutation, taking place at increased frequency, accounts for the lactose-utilizing phenotype occurring in MG1363 cultures. The G-to-A transition creates a −10 element at an optimal distance from the −35 element. Thus, a fully active promoter is created, allowing transcription of the otherwise cryptic cluster. Nuclear magnetic resonance (NMR) spectroscopy results show that MG1363 Lac+ uses a novel pathway of lactose utilization. PMID:22660716

  11. Translesion DNA synthesis and mutation induced in a plasmid with a single adduct of the environmental contaminant 3-nitrobenzanthrone in SOS-induced Escherichia coli

    International Nuclear Information System (INIS)

    Kawanishi, M.; Kanno, T.; Yagi, T.; Enya-Takamura, T.; Fuchs, R.P.

    2003-01-01

    Full text: 3-Nitrobenzanthrone (NBA) is a powerfully mutagenic nitrated aromatic hydrocarbon found in diesel exhaust and in airborne particulate matters. NBA forms an unusual DNA adduct in vitro that has a C-C bond between the C-8 position of deoxyguanosine and the C-2 position of NBA. We previously found that this adduct is also present in the human cells treated with NBA, and induces mutations in supF shuttle vector system. In this study, we analyzed translesion DNA synthesis (TLS) over a single adduct in lacZ' gene in a plasmid in uvrAmutS Escherichia coli. The result showed that the adduct blocked DNA replication and an observed TLS frequency was 5.4% in non-SOS-induced E. coli. All progenies after the TLS had no mutation. On the other hand, TLS increased to 11.3%, and 4.8% of them had mostly G to T mutations in SOS-induced E. coli. These results suggest that this unusual adduct would be one of causes of lung cancer that is increasing in the urban areas polluted with diesel exhaust. It must be interesting to reveal which DNA polymerase is involved in this TLS

  12. Progressive adult primary glioblastoma in the medulla oblongata with an unmethylated MGMT promoter and without an IDH mutation.

    Science.gov (United States)

    Yoshikawa, Akifumi; Nakada, Mitsutoshi; Watanabe, Takuya; Hayashi, Yutaka; Sabit, Hemragul; Kato, Yukinari; Suzuki, Shioto; Ooi, Akishi; Sato, Hiroshi; Hamada, Jun-ichiro

    2013-07-01

    A 63-year-old woman presented with dizziness followed by gait disturbance and loss of appetite. Magnetic resonance image (MRI) showed that a lesion located in the medulla oblongata, appearing as hyperintense on T2-weighted image and with slight enhancement area, appeared in the ventral aspect of the mass on T1-weighted MR imaging with gadolinium. It was diagnosed as high-grade brain-stem glioma and the patient underwent chemoradiotherapy. However, she died 18 days after treatment, and autopsy was performed. The pathological diagnosis was glioblastoma (GBM) with unmethylated O-6-methylguanine-DNA methyltransferase promoter and wild isocitrate dehydrogenase 1 gene. We report an extremely short clinical course of adult GBM in medulla oblongata with genetic analysis and present a review of the literature.

  13. Cavity Pull Rod: Device to Promote Single Crystal Growth from the Melt

    Science.gov (United States)

    Goldsby, Jon (Inventor)

    2017-01-01

    A pull rod for use in producing a single crystal from a molten alloy is provided that includes an elongated rod having a first end and a second end, a first cavity defined at the first end and a second cavity defined at the first end and in communication with the first cavity. The first cavity receives the molten alloy and the second cavity vents a gas from the molten alloy to thereby template a single crystal when the pull rod is dipped into and extracted from the molten alloy.

  14. Induction of lacI- mutations in Escherichia coli cells after single and split-dose irradiation

    International Nuclear Information System (INIS)

    Kozubek, S.; Ryznar, L.

    1992-01-01

    In the lacI system of Escherichia coli, X-ray mutagenesis follows a linear-quadratic curve with suppression; the survival curve is exponential. Dose fractionation leads to nearly complete repair of premutational lesions during an incubation interval of 3.5 h. Repair starts with a delay of 1.5-2 h, suggesting the involvement of an inducible repair/mutation fixation system. The dose-dependence of mutagenesis is described by a simple model assuming two hits being required. A probable explanation might be that the premutagenic lesions consist of two closely spaced lesions on the opposite strands of the DNA molecule. (author)

  15. Effect of vitamin E on cytotoxicity, DNA single strand breaks, chromosomal aberrations, and mutation in Chinese hamster V-79 cells exposed to ultraviolet-B light

    International Nuclear Information System (INIS)

    Sugiyama, M.; Tsuzuki, K.; Matsumoto, K.; Ogura, R.

    1992-01-01

    The effect of pretreatment with vitamin E on cytotoxicity, DNA single strand breaks, and chromosomal aberrations as well as on mutation induced by ultraviolet-B light (UV-B) was investigated in Chinese hamster V-79 cells. Cellular pretreatment with non-toxic levels of 25 μM α-tocopherol succinate (vitamin E) for 24h prior to exposure resulted in a 10-fold increase in cellular levels of α-tocopherol. Using a colony-forming assay, this pretreatment decreased the cytotoxicity of UV-B light. However, alkaline elution assays demonstrated that pretreatment with vitamin E did not affect the number of DNA single strand breaks caused by UV-B light. UV-B exposure produced a dose-dependent induction of chromosomal aberrations and mutations at the HGPRT locus, and neither of these actions of UV-B was influenced by pretreatment with the vitamin. These results suggest that vitamin E protects cells from UV-B-induced cytotoxicity, possibly through its ability to scavenge free radicals. The genotoxicity induced by UV-B light may not correlate directly with the cytotoxic action of this wavelength region in sunlight. (author)

  16. A randomized controlled trial of single versus multiple health behavior change: promoting physical activity and nutrition among adolescents.

    Science.gov (United States)

    Prochaska, Judith J; Sallis, James F

    2004-05-01

    Targeting multiple behaviors for change may provide significant health benefits. This study compared interventions targeting physical activity and nutrition (PAN) concurrently versus physical activity (PA) alone. Adolescents (N=138) were randomized to the PAN or PA intervention or control condition (n=46 per group). Primary outcomes were change in PA accelerometer and 3-day dietary recording from baseline to 3-month follow-up. The PAN and PA interventions were efficacious in supporting boys' (pdecrement to PA promotion when a nutrition intervention was added, neither do they reveal any additional benefit. More studies comparing single versus multibehavioral interventions are needed. ((c) 2004 APA, all rights reserved)

  17. One-single physical exercise session after object recognition learning promotes memory persistence through hippocampal noradrenergic mechanisms.

    Science.gov (United States)

    da Silva de Vargas, Liane; Neves, Ben-Hur Souto das; Roehrs, Rafael; Izquierdo, Iván; Mello-Carpes, Pâmela

    2017-06-30

    Previously we showed the involvement of the hippocampal noradrenergic system in the consolidation and persistence of object recognition (OR) memory. Here we show that one-single physical exercise session performed immediately after learning promotes OR memory persistence and increases norepinephrine levels in the hippocampus. Additionally, effects of exercise on memory are avoided by an intra-hippocampal beta-adrenergic antagonist infusion. Taken together, these results suggest that exercise effects on memory can be related to noradrenergic mechanisms and acute physical exercise can be a non-pharmacological intervention to assist memory consolidation and persistence, with few or no side effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. One-by-one single-molecule detection of mutated nucleobases by monitoring tunneling current using a DNA tip.

    Science.gov (United States)

    Bui, Phuc Tan; Nishino, Tomoaki; Shiigi, Hiroshi; Nagaoka, Tsutomu

    2015-01-31

    A DNA molecule was utilized as a probe tip to achieve single-molecule genetic diagnoses. Hybridization of the probe and target DNAs resulted in electron tunneling along the emergent double-stranded DNA. Simple stationary monitoring of the tunneling current leads to single-molecule DNA detection and discovery of base mismatches and methylation.

  19. Mutator activity in Schizophyllum commune

    Energy Technology Data Exchange (ETDEWEB)

    Shneyour, Y.; Koltin, Y. (Tel Aviv Univ. (Israel). Dept. of Microbiology)

    1983-01-01

    A strain with an elevated level of spontaneous mutations and an especially high rate of reversion at a specific locus (pab/sup -/) was identified. The mutator trait is recessive. UV sensitivity and the absence of a UV-specific endonucleolytic activity were associated with the enhancement of the mutation rate in mutator strains. The endonuclease associated with the regulation of the mutation rate also acted on single-stranded DNA. The molecular weight of this enzyme is about 38,000 daltons.

  20. Single Mutations in the VP2 300 Loop Region of the Three-Fold Spike of the Carnivore Parvovirus Capsid Can Determine Host Range

    Science.gov (United States)

    Organtini, Lindsey J.; Zhang, Sheng; Hafenstein, Susan L.; Holmes, Edward C.

    2015-01-01

    ABSTRACT Sylvatic carnivores, such as raccoons, have recently been recognized as important hosts in the evolution of canine parvovirus (CPV), a pandemic pathogen of domestic dogs. Although viruses from raccoons do not efficiently bind the dog transferrin receptor (TfR) or infect dog cells, a single mutation changing an aspartic acid to a glycine at capsid (VP2) position 300 in the prototype raccoon CPV allows dog cell infection. Because VP2 position 300 exhibits extensive amino acid variation among the carnivore parvoviruses, we further investigated its role in determining host range by analyzing its diversity and evolution in nature and by creating a comprehensive set of VP2 position 300 mutants in infectious clones. Notably, some position 300 residues rendered CPV noninfectious for dog, but not cat or fox, cells. Changes of adjacent residues (residues 299 and 301) were also observed often after cell culture passage in different hosts, and some of the mutations mimicked changes seen in viruses recovered from natural infections of alternative hosts, suggesting that compensatory mutations were selected to accommodate the new residue at position 300. Analysis of the TfRs of carnivore hosts used in the experimental evolution studies demonstrated that their glycosylation patterns varied, including a glycan present only on the domestic dog TfR that dictates susceptibility to parvoviruses. Overall, there were significant differences in the abilities of viruses with alternative position 300 residues to bind TfRs and infect different carnivore hosts, demonstrating that the process of infection is highly host dependent and that VP2 position 300 is a key determinant of host range. IMPORTANCE Although the emergence and pandemic spread of canine parvovirus (CPV) are well documented, the carnivore hosts and evolutionary pathways involved in its emergence remain enigmatic. We recently demonstrated that a region in the capsid structure of CPV, centered around VP2 position 300

  1. Age-Related Hearing Impairment (ARHI) associated with GJB2 single mutation IVS1+1G>A in the Yakut population isolate in Eastern Siberia.

    Science.gov (United States)

    Barashkov, Nikolay A; Teryutin, Fedor M; Pshennikova, Vera G; Solovyev, Aisen V; Klarov, Leonid A; Solovyeva, Natalya A; Kozhevnikov, Andrei A; Vasilyeva, Lena M; Fedotova, Elvira E; Pak, Maria V; Lekhanova, Sargylana N; Zakharova, Elena V; Savvinova, Kyunney E; Gotovtsev, Nyurgun N; Rafailo, Adyum M; Luginov, Nikolay V; Alexeev, Anatoliy N; Posukh, Olga L; Dzhemileva, Lilya U; Khusnutdinova, Elza K; Fedorova, Sardana A

    2014-01-01

    Age-Related Hearing Impairment (ARHI) is one of the frequent sensory disorders registered in 50% of individuals over 80 years. ARHI is a multifactorial disorder due to environmental and poor-known genetic components. In this study, we present the data on age-related hearing impairment of 48 heterozygous carriers of mutation IVS1+1G>A (GJB2 gene) and 97 subjects with GJB2 genotype wt/wt in the Republic of Sakha/Yakutia (Eastern Siberia, Russia). This subarctic territory was found as the region with the most extensive accumulation of mutation IVS1+1G>A in the world as a result of founder effect in the unique Yakut population isolate. The GJB2 gene resequencing and detailed audiological analysis in the frequency range 0.25, 0.5, 1.0, 2.0, 4.0, 8.0 kHz were performed in all examined subjects that allowed to investigate genotype-phenotype correlations between the presence of single mutation IVS1+1G>A and hearing of subjects from examined groups. We revealed the linear correlation between increase of average hearing thresholds at speech frequencies (PTA0.5,1.0,2.0,4.0 kHz) and age of individuals with GJB2 genotype IVS1+1G>A/wt (rs = 0.499, p = 0.006860 for males and rs = 0.427, p = 0.000277 for females). Moreover, the average hearing thresholds on high frequency (8.0 kHz) in individuals with genotype IVS1+1G>A/wt (both sexes) were significantly worse than in individuals with genotype wt/wt (pA/wt was estimated to be ∼40 years (rs = 0.504, p = 0.003). These findings demonstrate that the single IVS1+1G>A mutation (GJB2) is associated with age-related hearing impairment (ARHI) of the IVS1+1G>A carriers in the Yakuts.

  2. Age-Related Hearing Impairment (ARHI associated with GJB2 single mutation IVS1+1G>A in the Yakut population isolate in Eastern Siberia.

    Directory of Open Access Journals (Sweden)

    Nikolay A Barashkov

    Full Text Available Age-Related Hearing Impairment (ARHI is one of the frequent sensory disorders registered in 50% of individuals over 80 years. ARHI is a multifactorial disorder due to environmental and poor-known genetic components. In this study, we present the data on age-related hearing impairment of 48 heterozygous carriers of mutation IVS1+1G>A (GJB2 gene and 97 subjects with GJB2 genotype wt/wt in the Republic of Sakha/Yakutia (Eastern Siberia, Russia. This subarctic territory was found as the region with the most extensive accumulation of mutation IVS1+1G>A in the world as a result of founder effect in the unique Yakut population isolate. The GJB2 gene resequencing and detailed audiological analysis in the frequency range 0.25, 0.5, 1.0, 2.0, 4.0, 8.0 kHz were performed in all examined subjects that allowed to investigate genotype-phenotype correlations between the presence of single mutation IVS1+1G>A and hearing of subjects from examined groups. We revealed the linear correlation between increase of average hearing thresholds at speech frequencies (PTA0.5,1.0,2.0,4.0 kHz and age of individuals with GJB2 genotype IVS1+1G>A/wt (rs = 0.499, p = 0.006860 for males and rs = 0.427, p = 0.000277 for females. Moreover, the average hearing thresholds on high frequency (8.0 kHz in individuals with genotype IVS1+1G>A/wt (both sexes were significantly worse than in individuals with genotype wt/wt (pA/wt was estimated to be ∼40 years (rs = 0.504, p = 0.003. These findings demonstrate that the single IVS1+1G>A mutation (GJB2 is associated with age-related hearing impairment (ARHI of the IVS1+1G>A carriers in the Yakuts.

  3. Influence of single and combination treatments of physical and chemical mutagen on chlorophyll mutations in Finger Millet

    International Nuclear Information System (INIS)

    Kumar, Binod; Mahto, Jaylal; Haider, Z.A.

    1993-01-01

    Gamma rays, ethyl methane sulfonate (EMS) and their combined treatments influenced differently in producing chlorophyll mutations. A good number of chlorophyll mutants with varied frequencies were recorded in M 2 generation. The frequency of chlorophyll mutants was higher at lower doses of gamma rays, EMS and their combination treatments. The most frequently observed mutant was Albino type. The other chlorophyll mutants isolated were Xantha, Viridis, Striata and Tigrina. The frequency of tigrina and striata was lowest in variety A-404 and Hr-374, respectively. The efficiency and effectiveness was high at the lower doses of mutagens in both the varieties. EMS (0.2%) was more effective than the corresponding lower dose of gamma rays for both the varieties. (author). 10 refs., 4 tabs

  4. A Single Nucleotide Polymorphism in the Bax Gene Promoter Affects Transcription and Influences Retinal Ganglion Cell Death

    Directory of Open Access Journals (Sweden)

    Sheila J Semaan

    2010-03-01

    Full Text Available Pro-apoptotic Bax is essential for RGC (retinal ganglion cell death. Gene dosage experiments in mice, yielding a single wild-type Bax allele, indicated that genetic background was able to influence the cell death phenotype. DBA/2J Bax+/− mice exhibited complete resistance to nerve damage after 2 weeks (similar to Bax −/− mice, but 129B6 Bax+/− mice exhibited significant cell loss (similar to wild-type mice. The different cell death phenotype was associated with the level of Bax expression, where 129B6 neurons had twice the level of endogenous Bax mRNA and protein as DBA/2J neurons. Sequence analysis of the Bax promoters between these strains revealed a single nucleotide polymorphism (T129B6 to CDBA/2J at position −515. A 1.5- to 2.5-fold increase in transcriptional activity was observed from the 129B6 promoter in transient transfection assays in a variety of cell types, including RGC5 cells derived from rat RGCs. Since this polymorphism occurred in a p53 half-site, we investigated the requirement of p53 for the differential transcriptional activity. Differential transcriptional activity from either 129B6 or DBA/2J Bax promoters were unaffected in p53−/− cells, and addition of exogenous p53 had no further effect on this difference, thus a role for p53 was excluded. Competitive electrophoretic mobility-shift assays identified two DNA-protein complexes that interacted with the polymorphic region. Those forming Complex 1 bound with higher affinity to the 129B6 polymorphic site, suggesting that these proteins probably comprised a transcriptional activator complex. These studies implicated quantitative expression of the Bax gene as playing a possible role in neuronal susceptibility to damaging stimuli.

  5. A Single Sphingomyelin Species Promotes Exosomal Release of Endoglin into the Maternal Circulation in Preeclampsia.

    Science.gov (United States)

    Ermini, Leonardo; Ausman, Jonathan; Melland-Smith, Megan; Yeganeh, Behzad; Rolfo, Alessandro; Litvack, Michael L; Todros, Tullia; Letarte, Michelle; Post, Martin; Caniggia, Isabella

    2017-09-22

    Preeclampsia (PE), an hypertensive disorder of pregnancy, exhibits increased circulating levels of a short form of the auxillary TGF-beta (TGFB) receptor endoglin (sENG). Until now, its release and functionality in PE remains poorly understood. Here we show that ENG selectively interacts with sphingomyelin(SM)-18:0 which promotes its clustering with metalloproteinase 14 (MMP14) in SM-18:0 enriched lipid rafts of the apical syncytial membranes from PE placenta where ENG is cleaved by MMP14 into sENG. The SM-18:0 enriched lipid rafts also contain type 1 and 2 TGFB receptors (TGFBR1 and TGFBR2), but not soluble fms-like tyrosine kinase 1 (sFLT1), another protein secreted in excess in the circulation of women with PE. The truncated ENG is then released into the maternal circulation via SM-18:0 enriched exosomes together with TGFBR1 and 2. Such an exosomal TGFB receptor complex could be functionally active and block the vascular effects of TGFB in the circulation of PE women.

  6. SAAFEC: Predicting the Effect of Single Point Mutations on Protein Folding Free Energy Using a Knowledge-Modified MM/PBSA Approach.

    Science.gov (United States)

    Getov, Ivan; Petukh, Marharyta; Alexov, Emil

    2016-04-07

    Folding free energy is an important biophysical characteristic of proteins that reflects the overall stability of the 3D structure of macromolecules. Changes in the amino acid sequence, naturally occurring or made in vitro, may affect the stability of the corresponding protein and thus could be associated with disease. Several approaches that predict the changes of the folding free energy caused by mutations have been proposed, but there is no method that is clearly superior to the others. The optimal goal is not only to accurately predict the folding free energy changes, but also to characterize the structural changes induced by mutations and the physical nature of the predicted folding free energy changes. Here we report a new method to predict the Single Amino Acid Folding free Energy Changes (SAAFEC) based on a knowledge-modified Molecular Mechanics Poisson-Boltzmann (MM/PBSA) approach. The method is comprised of two main components: a MM/PBSA component and a set of knowledge based terms delivered from a statistical study of the biophysical characteristics of proteins. The predictor utilizes a multiple linear regression model with weighted coefficients of various terms optimized against a set of experimental data. The aforementioned approach yields a correlation coefficient of 0.65 when benchmarked against 983 cases from 42 proteins in the ProTherm database. the webserver can be accessed via http://compbio.clemson.edu/SAAFEC/.

  7. Application of Single Strand Conformational Polymorphism (PCR-SSCP) in Identification of Some Beta-Globin Gene Mutations in A Group of Egyptian Beta-Thalassemia Patients and Carriers

    International Nuclear Information System (INIS)

    Somaya, E.T.; Soliman, M.D

    2010-01-01

    The present study investigated whether the single-strand conformational polymorphism (SSCP) method could be employed to identify (rather than simply detect) four of the most common beta-globin gene mutations in the Egyptian population: IVS-I-110, IVS-I-6, the IVS-I-1, and Codon 39. Using DNA from 90 beta-thalassemia patients and carriers, by PCR the appropriate 238-bp region of the human beta-globin gene was amplified, the reaction products (Single-stranded DNA) were analyzed by none denaturing polyacrylamide gel electrophoresis, and the bands visualized by silver staining. Single-stranded DNA (ssDNA) fragments showed reproducible pattern of bands that were characteristic of the mutations present. With the use of control samples containing six of the 10 possible combinations of the four beta-globin gene mutations under study, we were able to predict the mutations present in 23 out of 90 (26.4%) of the patients studied. These predictions were confirmed independently by the amplification refractory mutation system (ARMS) method. It is concluded that this non-radioactive PCR-SSCP method can be used to reliably identify mutations in beta-thalassemia patients, provided that suitable controls are available. However, usefulness of this method for determining the genotype of beta-thalassaemic individuals is obviously limited by the great number of controls required. Moreover, the ability to detect mutations by SSCP is in general lower compared to other methods, ARMS, DGGE or DHPLC, which are reported to detect 49.5% to 73% of the mutations present. The SSCP method is nevertheless much easier to employ than other methods and is especially successful for beta-thalassemia carriers. This method would thus be particularly useful for an initial screening of target groups (prenatal diagnosis)

  8. A point mutation in the DNA-binding domain of HPV-2 E2 protein increases its DNA-binding capacity and reverses its transcriptional regulatory activity on the viral early promoter

    Directory of Open Access Journals (Sweden)

    Gao Chen

    2012-02-01

    Full Text Available Abstract Background The human papillomavirus (HPV E2 protein is a multifunctional DNA-binding protein. The transcriptional activity of HPV E2 is mediated by binding to its specific binding sites in the upstream regulatory region of the HPV genomes. Previously we reported a HPV-2 variant from a verrucae vulgaris patient with huge extensive clustered cutaneous, which have five point mutations in its E2 ORF, L118S, S235P, Y287H, S293R and A338V. Under the control of HPV-2 LCR, co-expression of the mutated HPV E2 induced an increased activity on the viral early promoter. In the present study, a series of mammalian expression plasmids encoding E2 proteins with one to five amino acid (aa substitutions for these mutations were constructed and transfected into HeLa, C33A and SiHa cells. Results CAT expression assays indicated that the enhanced promoter activity was due to the co-expressions of the E2 constructs containing A338V mutation within the DNA-binding domain. Western blots analysis demonstrated that the transiently transfected E2 expressing plasmids, regardless of prototype or the A338V mutant, were continuously expressed in the cells. To study the effect of E2 mutations on its DNA-binding activity, a serial of recombinant E2 proteins with various lengths were expressed and purified. Electrophoresis mobility shift assays (EMSA showed that the binding affinity of E2 protein with A338V mutation to both an artificial probe with two E2 binding sites or HPV-2 and HPV-16 promoter-proximal LCR sequences were significantly stronger than that of the HPV-2 prototype E2. Furthermore, co-expression of the construct containing A338V mutant exhibited increased activities on heterologous HPV-16 early promoter P97 than that of prototype E2. Conclusions These results suggest that the mutation from Ala to Val at aa 338 is critical for E2 DNA-binding and its transcriptional regulation.

  9. Automatic feedback to promote safe walking and speech loudness control in persons with multiple disabilities: two single-case studies.

    Science.gov (United States)

    Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Green, Vanessa A; Alberti, Gloria; Boccasini, Adele; Smaldone, Angela; Oliva, Doretta; Bosco, Andrea

    2014-08-01

    Assessing automatic feedback technologies to promote safe travel and speech loudness control in two men with multiple disabilities, respectively. The men were involved in two single-case studies. In Study I, the technology involved a microprocessor, two photocells, and a verbal feedback device. The man received verbal alerting/feedback when the photocells spotted an obstacle in front of him. In Study II, the technology involved a sound-detecting unit connected to a throat and an airborne microphone, and to a vibration device. Vibration occurred when the man's speech loudness exceeded a preset level. The man included in Study I succeeded in using the automatic feedback in substitution of caregivers' alerting/feedback for safe travel. The man of Study II used the automatic feedback to successfully reduce his speech loudness. Automatic feedback can be highly effective in helping persons with multiple disabilities improve their travel and speech performance.

  10. A single cysteine post-translational oxidation suffices to compromise globular proteins kinetic stability and promote amyloid formation

    Directory of Open Access Journals (Sweden)

    Patrizia Marinelli

    2018-04-01

    Full Text Available Oxidatively modified forms of proteins accumulate during aging. Oxidized protein conformers might act as intermediates in the formation of amyloids in age-related disorders. However, it is not known whether this amyloidogenic conversion requires an extensive protein oxidative damage or it can be promoted just by a discrete, localized post-translational modification of certain residues. Here, we demonstrate that the irreversible oxidation of a single free Cys suffices to severely perturb the folding energy landscape of a stable globular protein, compromise its kinetic stability, and lead to the formation of amyloids under physiological conditions. Experiments and simulations converge to indicate that this specific oxidation-promoted protein aggregation requires only local unfolding. Indeed, a large scale analysis indicates that many cellular proteins are at risk of undergoing this kind of deleterious transition; explaining how oxidative stress can impact cell proteostasis and subsequently lead to the onset of pathological states. Keywords: Protein oxidation, Protein misfolding, Protein aggregation, Oxidative stress, Post-translational modification

  11. CO Reduction to CH3OSiMe3: Electrophile-Promoted Hydride Migration at a Single Fe Site.

    Science.gov (United States)

    Deegan, Meaghan M; Peters, Jonas C

    2017-02-22

    One of the major challenges associated with developing molecular Fischer-Tropsch catalysts is the design of systems that promote the formation of C-H bonds from H 2 and CO while also facilitating the release of the resulting CO-derived organic products. To this end, we describe the synthesis of reduced iron-hydride/carbonyl complexes that enable an electrophile-promoted hydride migration process, resulting in the reduction of coordinated CO to a siloxymethyl (L n Fe-CH 2 OSiMe 3 ) group. Intramolecular hydride-to-CO migrations are extremely rare, and to our knowledge the system described herein is the first example where such a process can be accessed from a thermally stable M(CO)(H) complex. Further addition of H 2 to L n Fe-CH 2 OSiMe 3 releases CH 3 OSiMe 3 , demonstrating net four-electron reduction of CO to CH 3 OSiMe 3 at a single Fe site.

  12. The BRCA1-Δ11q Alternative Splice Isoform Bypasses Germline Mutations and Promotes Therapeutic Resistance to PARP Inhibition and Cisplatin

    DEFF Research Database (Denmark)

    Wang, Yifan; Bernhardy, Andrea J; Cruz, Cristina

    2016-01-01

    Breast and ovarian cancer patients harboring BRCA1/2 germline mutations have clinically benefitted from therapy with PARP inhibitor (PARPi) or platinum compounds, but acquired resistance limits clinical impact. In this study, we investigated the impact of mutations on BRCA1 isoform expression and...

  13. Single-cell sequencing analysis characterizes common and cell-lineage-specific mutations in a muscle-invasive bladder cancer

    DEFF Research Database (Denmark)

    Li, Yingrui; Xu, Xun; Song, Luting

    2012-01-01

    sequencing of 66 individual tumor cells from a muscle-invasive bladder transitional cell carcinoma (TCC). Analyses of the somatic mutant allele frequency spectrum and clonal structure revealed that the tumor cells were derived from a single ancestral cell, but that subsequent evolution occurred, leading...... to two distinct tumor cell subpopulations. By analyzing recurrently mutant genes in an additional cohort of 99 TCC tumors, we identified genes that might play roles in the maintenance of the ancestral clone and in the muscle-invasive capability of subclones of this bladder cancer, respectively...

  14. [Clinical significance of JAK2、CALR and MPL gene mutations in 1 648 Philadelphia chromosome negative myeloproliferative neoplasms patients from a single center].

    Science.gov (United States)

    Li, M Y; Chao, H Y; Sun, A N; Qiu, H Y; Jin, Z M; Tang, X W; Han, Y; Fu, C C; Chen, S N; Wu, D P

    2017-04-14

    Objective: To explore the prevalences of JAK2, CALR and MPL gene mutations and the mutation types in patients with Philadelphia chromosome negative myeloproliferative neoplasms (MPNs) , and to compare their clinical characteristics of different mutation types with each other and mutation negative group. Methods: The mutations of JAK2 V617F, JAK2 gene at exon 12, CALR gene at exon 9 and MPL gene at exon 10 in 1 648 Ph negative MPNs patients were detected by direct sequencing. Results: ① The JAK2V617F mutation was found in 471 (92.7%) of 508 PV patients, 819 (78.1%) of 1 049 ET patients and 74 (81.3%) of 91 PMF patients respectively, with the total mutation rate as 82.8% (1 364/1 648) . The JAK2 exon12 mutation was found in 9 (1.7%) of 508 PV patients, none was found in ET or PMF patients, with the total mutation rate as 0.5% (9/1 648) . The CALR mutation was found in 132 (12.6%) of 1 049 ET patients and 11 (12.1%) of 91 PMF patients respectively, with the total mutation rate as 8.7% (143/1 648) ; the MPL mutation was found in 9 (0.9%) of 1 049 ET patients and 1 (1.1%) of 91 PMF patients respectively, with the total mutation rate as 0.6% (10/1 648) . The co-occurrence of any two types of driver gene mutations was not detected by direct sequencing. ②The median onset age of patients with JAK2V617F[61 (15-95) y] was significant higher than of with JAK2 exon12 mutation[49 (33-62) y] or without mutations[42 (3-78) y] ( P MPL mutation[59 (22-71) y] ( P >0.05) . Patients with JAK2V617F had higher white blood cell count and hemoglobin level ( P MPL mutation ( P =0.013) . The platelet count of patients with CALR mutation was significantly higher than of with JAK2V617F[966 (400-2 069) ×10(9)/L vs 800 (198-3 730) ×10(9)/L, P MPL gene mutation revealed normal karyotype. Conclusions: Driver gene mutations detection could ensure the diagnosis and prognosis judgment of MPN more reliable, different subtypes of MPNs had different profiles of driver gene mutations, the latter

  15. Family strengths, motivation, and resources as predictors of health promotion behavior in single-parent and two-parent families.

    Science.gov (United States)

    Ford-Gilboe, M

    1997-06-01

    The extent to which selected aspects of family health potential (strengths, motivation, and resources) predicted health work (health-related problem-solving and goal attainment behaviors) was examined in a Canadian sample of 138 female-headed single-parent families and two-parent families. The mother and one child (age 10-14) each completed mailed self-report instruments to assess the independent variables of family cohesion, family pride, mother's non-traditional sex role orientation, general self-efficacy, internal health locus of control, network support, community support, and family income, as well as the dependent variable, health work. With the effects of mothers' education held constant, the independent variables predicted 22 to 27% of the variance in health work in the total sample and each family type. Family cohesion was the most consistent predictor of health work, accounting for 8 to 13% of the variance. The findings challenge existing problem-oriented views of single-parent families by focusing on their potential to engage in health promotion behavior.

  16. Can a single session of motor imagery promote motor learning of locomotion in older adults? A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Nicholson VP

    2018-04-01

    Full Text Available Vaughan P Nicholson,1 Justin WL Keogh,2–4 Nancy L Low Choy1 1School of Physiotherapy, Australian Catholic University, Brisbane, QLD, Australia; 2Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia; 3Human Potential Centre, AUT University, Auckland, New Zealand; 4Cluster for Health Improvement, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia Purpose: To investigate the influence of a single session of locomotor-based motor imagery training on motor learning and physical performance. Patients and methods: Thirty independent adults aged >65 years took part in the randomized controlled trial. The study was conducted within an exercise science laboratory. Participants were randomly divided into three groups following baseline locomotor testing: motor imagery training, physical training, and control groups. The motor imagery training group completed 20 imagined repetitions of a locomotor task, the physical training group completed 20 physical repetitions of a locomotor task, and the control group spent 25 minutes playing mentally stimulating games on an iPad. Imagined and physical performance times were measured for each training repetition. Gait speed (preferred and fast, timed-up-and-go, gait variability and the time to complete an obstacle course were completed before and after the single training session. Results: Motor learning occurred in both the motor imagery training and physical training groups. Motor imagery training led to refinements in motor planning resulting in imagined movements better matching the physically performed movement at the end of training. Motor imagery and physical training also promoted improvements in some locomotion outcomes as demonstrated by medium to large effect size improvements after training for fast gait speed and timed-up-and-go. There were no training effects on gait variability. Conclusion: A single session

  17. [Safety Evaluation of Rare Sugar Syrup: Single-dose Oral Toxicity in Rats, Reverse Mutation Assay, Chromosome Aberration Assay, and Acute Non-Effect Level for Diarrhea of a Single Dose in Humans].

    Science.gov (United States)

    Yamada, Takako; Iida, Tetsuo; Takamine, Satoshi; Hayashi, Noriko; Okuma, Kazuhiro

    2015-01-01

    The safety of rare sugar syrup obtained from high-fructose corn syrup under slightly alkaline conditions was studied. Mutagenicity of rare sugar syrup was assessed by a reverse mutation assay using Salmonella typhimurium and Escherichia coli, and an in vitro chromosomal aberration assay using Chinese hamster lung cell line (CHL/IU). No mutagenicity of rare sugar syrup was detected under these experimental conditions. Oral administration of single dose (15,000 mg/kg) of rare sugar syrup to rats caused no abnormalities, suggesting no adverse effect of rare sugar syrup. In humans, the acute non-effect level of rare sugar syrup for causing diarrhea was estimated as 0.9 g/kg body weight as dry solid base in both males and females.

  18. Towards Better Precision Medicine: PacBio Single-Molecule Long Reads Resolve the Interpretation of HIV Drug Resistant Mutation Profiles at Explicit Quasispecies (Haplotype) Level.

    Science.gov (United States)

    Huang, Da Wei; Raley, Castle; Jiang, Min Kang; Zheng, Xin; Liang, Dun; Rehman, M Tauseef; Highbarger, Helene C; Jiao, Xiaoli; Sherman, Brad; Ma, Liang; Chen, Xiaofeng; Skelly, Thomas; Troyer, Jennifer; Stephens, Robert; Imamichi, Tomozumi; Pau, Alice; Lempicki, Richard A; Tran, Bao; Nissley, Dwight; Lane, H Clifford; Dewar, Robin L

    2016-01-01

    Development of HIV-1 drug resistance mutations (HDRMs) is one of the major reasons for the clinical failure of antiretroviral therapy. Treatment success rates can be improved by applying personalized anti-HIV regimens based on a patient's HDRM profile. However, the sensitivity and specificity of the HDRM profile is limited by the methods used for detection. Sanger-based sequencing technology has traditionally been used for determining HDRM profiles at the single nucleotide variant (SNV) level, but with a sensitivity of only ≥ 20% in the HIV population of a patient. Next Generation Sequencing (NGS) technologies offer greater detection sensitivity (~ 1%) and larger scope (hundreds of samples per run). However, NGS technologies produce reads that are too short to enable the detection of the physical linkages of individual SNVs across the haplotype of each HIV strain present. In this article, we demonstrate that the single-molecule long reads generated using the Third Generation Sequencer (TGS), PacBio RS II, along with the appropriate bioinformatics analysis method, can resolve the HDRM profile at a more advanced quasispecies level. The case studies on patients' HIV samples showed that the quasispecies view produced using the PacBio method offered greater detection sensitivity and was more comprehensive for understanding HDRM situations, which is complement to both Sanger and NGS technologies. In conclusion, the PacBio method, providing a promising new quasispecies level of HDRM profiling, may effect an important change in the field of HIV drug resistance research.

  19. A single mutation in the castor Δ9-18:0-desaturase changes reaction partitioning from desaturation to oxidase chemistry

    Science.gov (United States)

    Guy, Jodie E.; Abreu, Isabel A.; Moche, Martin; Lindqvist, Ylva; Whittle, Edward; Shanklin, John

    2006-01-01

    Sequence analysis of the diiron cluster-containing soluble desaturases suggests they are unrelated to other diiron enzymes; however, structural alignment of the core four-helix bundle of desaturases to other diiron enzymes reveals a conserved iron binding motif with similar spacing in all enzymes of this structural class, implying a common evolutionary ancestry. Detailed structural comparison of the castor desaturase with that of a peroxidase, rubrerythrin, shows remarkable conservation of both identity and geometry of residues surrounding the diiron center, with the exception of residue 199. Position 199 is occupied by a threonine in the castor desaturase, but the equivalent position in rubrerythrin contains a glutamic acid. We previously hypothesized that a carboxylate in this location facilitates oxidase chemistry in rubrerythrin by the close apposition of a residue capable of facilitating proton transfer to the activated oxygen (in a hydrophobic cavity adjacent to the diiron center based on the crystal structure of the oxygen-binding mimic azide). Here we report that desaturase mutant T199D binds substrate but its desaturase activity decreases by ≈2 × 103-fold. However, it shows a >31-fold increase in peroxide-dependent oxidase activity with respect to WT desaturase, as monitored by single-turnover stopped-flow spectrometry. A 2.65-Å crystal structure of T199D reveals active-site geometry remarkably similar to that of rubrerythrin, consistent with its enhanced function as an oxidase enzyme. That a single amino acid substitution can switch reactivity from desaturation to oxidation provides experimental support for the hypothesis that the desaturase evolved from an ancestral oxidase enzyme. PMID:17088542

  20. Postzygotic single-nucleotide mosaicisms contribute to the etiology of autism spectrum disorder and autistic traits and the origin of mutations.

    Science.gov (United States)

    Dou, Yanmei; Yang, Xiaoxu; Li, Ziyi; Wang, Sheng; Zhang, Zheng; Ye, Adam Yongxin; Yan, Linlin; Yang, Changhong; Wu, Qixi; Li, Jiarui; Zhao, Boxun; Huang, August Yue; Wei, Liping

    2017-08-01

    The roles and characteristics of postzygotic single-nucleotide mosaicisms (pSNMs) in autism spectrum disorders (ASDs) remain unclear. In this study of the whole exomes of 2,361 families in the Simons Simplex Collection, we identified 1,248 putative pSNMs in children and 285 de novo SNPs in children with detectable parental mosaicism. Ultra-deep amplicon resequencing suggested a validation rate of 51%. Analyses of validated pSNMs revealed that missense/loss-of-function (LoF) pSNMs with a high mutant allele fraction (MAF≥ 0.2) contributed to ASD diagnoses (P = 0.022, odds ratio [OR] = 5.25), whereas missense/LoF pSNMs with a low MAF (MAF<0.2) contributed to autistic traits in male non-ASD siblings (P = 0.033). LoF pSNMs in parents were less likely to be transmitted to offspring than neutral pSNMs (P = 0.037), and missense/LoF pSNMs in parents with a low MAF were transmitted more to probands than to siblings (P = 0.016, OR = 1.45). We estimated that pSNMs in probands or de novo mutations inherited from parental pSNMs increased the risk of ASD by approximately 6%. Adding pSNMs into the transmission and de novo association test model revealed 13 new ASD risk genes. These results expand the existing repertoire of genes involved in ASD and shed new light on the contribution of genomic mosaicisms to ASD diagnoses and autistic traits. © 2017 The Authors. Human Mutation published by Wiley Periodicals, Inc.

  1. One small step for a yeast--microevolution within macrophages renders Candida glabrata hypervirulent due to a single point mutation.

    Directory of Open Access Journals (Sweden)

    Sascha Brunke

    2014-10-01

    Full Text Available Candida glabrata is one of the most common causes of candidemia, a life-threatening, systemic fungal infection, and is surpassed in frequency only by Candida albicans. Major factors contributing to the success of this opportunistic pathogen include its ability to readily acquire resistance to antifungals and to colonize and adapt to many different niches in the human body. Here we addressed the flexibility and adaptability of C. glabrata during interaction with macrophages with a serial passage approach. Continuous co-incubation of C. glabrata with a murine macrophage cell line for over six months resulted in a striking alteration in fungal morphology: The growth form changed from typical spherical yeasts to pseudohyphae-like structures - a phenotype which was stable over several generations without any selective pressure. Transmission electron microscopy and FACS analyses showed that the filamentous-like morphology was accompanied by changes in cell wall architecture. This altered growth form permitted faster escape from macrophages and increased damage of macrophages. In addition, the evolved strain (Evo showed transiently increased virulence in a systemic mouse infection model, which correlated with increased organ-specific fungal burden and inflammatory response (TNFα and IL-6 in the brain. Similarly, the Evo mutant significantly increased TNFα production in the brain on day 2, which is mirrored in macrophages confronted with the Evo mutant, but not with the parental wild type. Whole genome sequencing of the Evo strain, genetic analyses, targeted gene disruption and a reverse microevolution experiment revealed a single nucleotide exchange in the chitin synthase-encoding CHS2 gene as the sole basis for this phenotypic alteration. A targeted CHS2 mutant with the same SNP showed similar phenotypes as the Evo strain under all experimental conditions tested. These results indicate that microevolutionary processes in host-simulative conditions

  2. A single nucleotide polymorphism in the promoter of the LOXL1 gene and its relationship to pelvic organ prolapse and preterm premature rupture of membranes.

    Science.gov (United States)

    Ferrell, Georgia; Lu, Minyan; Stoddard, Paul; Sammel, Mary D; Romero, Roberto; Strauss, Jerome F; Matthews, Catherine A

    2009-05-01

    Pelvic organ prolapse and preterm premature rupture of membranes, the 2 conditions which have in common weakening of the tensile strength of tissues, are thought to be caused, in part, by abnormal extracellular matrix synthesis and/or catabolism. We identified a new single nucleotide polymorphism (NT_010194(LOXL1):g.45008784A>C) in the promoter of the LOXL1 gene, which is essential for elastin synthesis. Promoter studies showed that the minor "C'' allele had significantly greater activity than the major "A'' allele. Case-control studies examined the association of the alleles of this single nucleotide polymorphism with pelvic organ prolapse and preterm premature rupture of membranes. When comparing allele frequencies and genotypes in pelvic organ prolapse cases versus controls, no significant associations were found. A case-control study conducted in African American neonates also found no significant associations between the promoter alleles and preterm premature rupture of membranes. We conclude that a functional single nucleotide polymorphism exists in the promoter region of the LOXL1 gene. Association studies suggest that the promoter single nucleotide polymorphism does not contribute significantly to risk of pelvic organ prolapse or preterm premature rupture of membranes.

  3. Single point mutations distributed in 10 soluble and membrane regions of the Nicotiana plumbaginifolia plasma membrane PMA2 H+-ATPase activate the enzyme and modify the structure of the C-terminal region.

    Science.gov (United States)

    Morsomme, P; Dambly, S; Maudoux, O; Boutry, M

    1998-12-25

    The Nicotiana plumbaginifolia pma2 (plasma membrane H+-ATPase) gene is capable of functionally replacing the H+-ATPase genes of the yeast Saccharomyces cerevisiae, provided that the external pH is kept above 5.0. Single point mutations within the pma2 gene were previously identified that improved H+-ATPase activity and allowed yeast growth at pH 4.0. The aim of the present study was to identify most of the PMA2 positions, the mutation of which would lead to improved growth and to determine whether all these mutations result in similar enzymatic and structural modifications. We selected additional mutants in total 42 distinct point mutations localized in 30 codons. They were distributed in 10 soluble and membrane regions of the enzyme. Most mutant PMA2 H+-ATPases were characterized by a higher specific activity, lower inhibition by ADP, and lower stimulation by lysophosphatidylcholine than wild-type PMA2. The mutants thus seem to be constitutively activated. Partial tryptic digestion and immunodetection showed that the PMA2 mutants had a conformational change making the C-terminal region more accessible. These data therefore support the hypothesis that point mutations in various H+-ATPase parts displace the inhibitory C-terminal region, resulting in enzyme activation. The high density of mutations within the first half of the C-terminal region suggests that this part is involved in the interaction between the inhibitory C-terminal region and the rest of the enzyme.

  4. Role of heteroplasmic mutations in the mitochondrial genome and the ID4 gene promoter methylation region in the pathogenesis of chronic aplastic anemia in patients suffering from Kidney yin deficiency.

    Science.gov (United States)

    Cui, Xing; Wang, Jing-Yi; Liu, Kui; Cui, Si-Yuan; Zhang, Jie; Luo, Ya-Qin; Wang, Xin

    2016-06-01

    To analyze changes in gene amplification in the mitochondrial genome and in the ID4 gene promoter methylation region in patients with chronic aplastic anemia (CAA) suffering from Kidney (Shen) yin deficiency or Kidney yang deficiency. Bone marrow and oral epithelium samples were collected from CAA patients with Kidney yin deficiency or Kidney yang deficiency (20 cases). Bone marrow samples were collected from 20 healthy volunteers. The mitochondrial genome was amplified by polymerase chain reaction (PCR), and PCR products were used for sequencing and analysis. Higher mutational rates were observed in the ND1-2, ND4-6, and CYTB genes in CAA patients suffering from Kidney yin deficiency. Moreover, the ID4 gene was unmethylated in bone marrow samples from healthy individuals, but was methylated in some CAA patients suffering from Kidney yin deficiency (positive rate, 60%) and Kidney yang deficiency (positive rate, 55%). These data supported that gene mutations can alter the expression of respiratory chain enzyme complexes in CAA patients, resulting in energy metabolism impairment and promoting the physiological and pathological processes of hematopoietic failure. Functional impairment of the mitochondrial respiration chain induced by gene mutation may be an important reason for hematopoietic failure in patients with CAA. This change is closely related to maternal inheritance and Kidney yin deficiency. Finally, these data supported the assertion that it is easy to treat disease in patients suffering from yang deficiency and difficult to treat disease in patients suffering from yin deficiency.

  5. A Single Base Pair Mutation Encoding a Premature Stop Codon in the MIS type II receptor is Responsible for Canine Persistent Müllerian Duct Syndrome

    Science.gov (United States)

    Wu, Xiufeng; Wan, Shengqin; Pujar, Shashikant; Haskins, Mark E.; Schlafer, Donald H.; Lee, Mary M.; Meyers-Wallen, Vicki N.

    2008-01-01

    Müllerian Inhibiting Substance (MIS), a secreted glycoprotein in the Transforming Growth Factor-beta (TGF-beta) family of growth factors, mediates regression of the Müllerian ducts during embryonic sex differentiation in males. In Persistent Müllerian Duct Syndrome (PMDS), rather than undergoing involution, the Müllerian ducts persist in males, giving rise to the uterus, Fallopian tubes, and upper vagina. Genetic defects in MIS or its receptor (MISRII) have been identified in patients with PMDS. The phenotype in the canine model of PMDS derived from the miniature schnauzer breed is strikingly similar to that of human patients. In this model, PMDS is inherited as a sex-limited autosomal recessive trait. Previous studies indicated that a defect in the MIS receptor or its downstream signaling pathway was likely to be causative of the canine syndrome. In this study the canine PMDS phenotype and clinical sequelae are described in detail. Affected and unaffected members of this pedigree are genotyped, identifying a single base pair substitution in MISRII that introduces a stop codon in exon 3. The homozygous mutation terminates translation at 80 amino acids, eliminating much of the extracellular domain and the entire transmembrane and intracellular signaling domains. Findings in this model may enable insights to be garnered from correlation of detailed clinical descriptions with molecular defects, which are not otherwise possible in the human syndrome. PMID:18723470

  6. Safety, pharmacokinetics, and pharmacodynamics of TV-1380, a novel mutated butyrylcholinesterase treatment for cocaine addiction, after single and multiple intramuscular injections in healthy subjects.

    Science.gov (United States)

    Cohen-Barak, Orit; Wildeman, Jacqueline; van de Wetering, Jeroen; Hettinga, Judith; Schuilenga-Hut, Petra; Gross, Aviva; Clark, Shane; Bassan, Merav; Gilgun-Sherki, Yossi; Mendzelevski, Boaz; Spiegelstein, Ofer

    2015-05-01

    Human plasma butyrylcholinesterase (BChE) contributes to cocaine metabolism and has been considered for use in treating cocaine addiction and cocaine overdose. TV-1380 is a recombinant protein composed of the mature form of human serum albumin fused at its amino terminus to the carboxy-terminus of a truncated and mutated BChE. In preclinical studies, TV-1380 has been shown to rapidly eliminate cocaine in the plasma thus forestalling entry of cocaine into the brain and heart. Two randomized, blinded phase I studies were conducted to evaluate the safety, pharmacokinetics, and pharmacodynamics of TV-1380, following single and multiple administration in healthy subjects. TV-1380 was found to be safe and well tolerated with a long half-life (43-77 hours) and showed a dose-proportional increase in systemic exposure. Consistent with preclinical results, the ex vivo cocaine hydrolysis, TV-1380 activity clearly increased upon treatment in a dose-dependent manner. In addition, there was a direct relationship between ex vivo cocaine hydrolysis (kel ) and TV-1380 serum concentrations. There was no evidence that TV-1380 affected heart rate, the uncorrected QT interval, or the heart-rate-corrected QTcF interval. TV-1380, therefore, offers a safe once-weekly therapy to increase cocaine hydrolysis. © 2015 The Authors. The Journal of Clinical Pharmacology Published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.

  7. Single residue AAV capsid mutation improves transduction of photoreceptors in the Abca4-/- mouse and bipolar cells in the rd1 mouse and human retina ex vivo.

    Science.gov (United States)

    De Silva, Samantha R; Charbel Issa, Peter; Singh, Mandeep S; Lipinski, Daniel M; Barnea-Cramer, Alona O; Walker, Nathan J; Barnard, Alun R; Hankins, Mark W; MacLaren, Robert E

    2016-11-01

    Gene therapy using adeno-associated viral (AAV) vectors for the treatment of retinal degenerations has shown safety and efficacy in clinical trials. However, very high levels of vector expression may be necessary for the treatment of conditions such as Stargardt disease where a dual vector approach is potentially needed, or in optogenetic strategies for end-stage degeneration in order to achieve maximal light sensitivity. In this study, we assessed two vectors with single capsid mutations, rAAV2/2(Y444F) and rAAV2/8(Y733F) in their ability to transduce retina in the Abca4 -/- and rd1 mouse models of retinal degeneration. We noted significantly increased photoreceptor transduction using rAAV2/8(Y733F) in the Abca4 -/- mouse, in contrast to previous work where vectors tested in this model have shown low levels of photoreceptor transduction. Bipolar cell transduction was achieved following subretinal delivery of both vectors in the rd1 mouse, and via intravitreal delivery of rAAV2/2(Y444F). The successful use of rAAV2/8(Y733F) to target bipolar cells was further validated on human tissue using an ex vivo culture system of retinal explants. Capsid mutant AAV vectors transduce human retinal cells and may be particularly suited to treat retinal degenerations in which high levels of transgene expression are required.

  8. Single-strand conformation polymorphism (SSCP)-based mutation scanning approaches to fingerprint sequence variation in ribosomal DNA of ascaridoid nematodes.

    Science.gov (United States)

    Zhu, X Q; Gasser, R B

    1998-06-01

    In this study, we assessed single-strand conformation polymorphism (SSCP)-based approaches for their capacity to fingerprint sequence variation in ribosomal DNA (rDNA) of ascaridoid nematodes of veterinary and/or human health significance. The second internal transcribed spacer region (ITS-2) of rDNA was utilised as the target region because it is known to provide species-specific markers for this group of parasites. ITS-2 was amplified by PCR from genomic DNA derived from individual parasites and subjected to analysis. Direct SSCP analysis of amplicons from seven taxa (Toxocara vitulorum, Toxocara cati, Toxocara canis, Toxascaris leonina, Baylisascaris procyonis, Ascaris suum and Parascaris equorum) showed that the single-strand (ss) ITS-2 patterns produced allowed their unequivocal identification to species. While no variation in SSCP patterns was detected in the ITS-2 within four species for which multiple samples were available, the method allowed the direct display of four distinct sequence types of ITS-2 among individual worms of T. cati. Comparison of SSCP/sequencing with the methods of dideoxy fingerprinting (ddF) and restriction endonuclease fingerprinting (REF) revealed that also ddF allowed the definition of the four sequence types, whereas REF displayed three of four. The findings indicate the usefulness of the SSCP-based approaches for the identification of ascaridoid nematodes to species, the direct display of sequence variation in rDNA and the detection of population variation. The ability to fingerprint microheterogeneity in ITS-2 rDNA using such approaches also has implications for studying fundamental aspects relating to mutational change in rDNA.

  9. Extending Jak2V617F and MplW515 mutation analysis to single hematopoietic colonies and B and T lymphocytes.

    Science.gov (United States)

    Pardanani, Animesh; Lasho, Terra L; Finke, Christy; Mesa, Ruben A; Hogan, William J; Ketterling, Rhett P; Gilliland, Dwight Gary; Tefferi, Ayalew

    2007-09-01

    JAK2V617F and MPLW515L/K are myeloproliferative disorder (MPD)-associated mutations. We genotyped 552 individual hematopoietic colonies obtained by CD34+ cell culture from 16 affected patients (13 JAK2V617F and 3 MPLW515L/K) to determine (a) the proportion of colonies harboring a particular mutation in the presence or absence of cytokines, (b) the lineage distribution of endogenous colonies for each mutation, and (c) the differences (if any) in the pattern of mutation among the various MPDs, as established by genotyping of individual colonies. Genotyping analysis revealed cohabitation of mutation-negative and mutation-positive endogenous colonies in polycythemia vera as well as other MPDs. Culture of progenitor cells harboring MPLW515L/K yielded virtually no endogenous erythroid colonies in contrast to JAK2V617F-harboring progenitor cells. The mutation pattern (i.e., relative distribution of homozygous, heterozygous, or wild-type colonies) was not a distinguishing feature among the MPDs, and MPLW515 mutations were detected in B and/or T lymphocytes in all three patients tested. These observations suggest that clonal myelopoiesis antedates acquisition of JAK2V617F or MPLW515L/K mutations and that the latter is acquired in a lympho-myeloid progenitor cell.

  10. Loss of function mutations in PTPN6 promote STAT3 deregulation via JAK3 kinase in diffuse large B-cell lymphoma

    Science.gov (United States)

    Demosthenous, Christos; Han, Jing Jing; Hu, Guangzhen; Stenson, Mary; Gupta, Mamta

    2015-01-01

    PTPN6 (SHP1) is a tyrosine phosphatase that negatively controls the activity of multiple signaling pathways including STAT signaling, however role of mutated PTPN6 is not much known. Here we investigated whether PTPN6 might also be a potential target for diffuse large B cell lymphoma (DLBCL) and performed Sanger sequencing of the PTPN6 gene. We have identified missense mutations within PTPN6 (N225K and A550V) in 5% (2/38) of DLBCL tumors. Site directed mutagenesis was performed to mutate wild type (WT) PTPN6 and stable cell lines were generated by lentiviral transduction of PTPN6WT, PTPN6N225K and PTPN6A550V constructs, and effects of WT or mutated PTPN6 on STAT3 signaling were analyzed. WT PTPN6 dephosphorylated STAT3, but had no effect on STAT1, STAT5 or STAT6 phosphorylation. Both PTPN6 mutants were unable to inhibit constitutive, as well as cytokines induced STAT3 activation. Both PTPN6 mutants also demonstrated reduced tyrosine phosphatase activity and exhibited enhanced STAT3 transactivation activity. Intriguingly, a lack of direct binding between STAT3 and WT or mutated PTPN6 was observed. However, compared to WT PTPN6, cells expressing PTPN6 mutants exhibited increased binding between JAK3 and PTPN6 suggesting a more dynamic interaction of PTPN6 with upstream regulators of STAT3. Consistent with this notion, both the mutants demonstrated increased resistance to JAK3 inhibitor, WHIP-154 relative to WT PTPN6. Overall, this is the first study, which demonstrates that N225K and A550V PTPN6 mutations cause loss-of-function leading to JAK3 mediated deregulation of STAT3 pathway and uncovers a mechanism that tumor cells can use to control PTPN6 substrate specificity. PMID:26565811

  11. FLT3 and JAK2 Mutations in Acute Myeloid Leukemia Promote Interchromosomal Homologous Recombination and the Potential for Copy Neutral Loss of Heterozygosity.

    Science.gov (United States)

    Gaymes, Terry J; Mohamedali, Azim; Eiliazadeh, Anthony L; Darling, David; Mufti, Ghulam J

    2017-04-01

    Acquired copy neutral LOH (CN-LOH) is a frequent occurrence in myeloid malignancies and is often associated with resistance to standard therapeutic modalities and poor survival. Here, we show that constitutive signaling driven by mutated FLT3 and JAK2 confers interchromosomal homologous recombination (iHR), a precedent for CN-LOH. Using a targeted recombination assay, we determined significant iHR activity in internal tandem duplication FLT3 (FLT3-ITD) and JAK2V617F-mutated cells. Sister chromatid exchanges, a surrogate measure of iHR, was significantly elevated in primary FLT3-ITD normal karyotype acute myeloid leukemia (NK-AML) compared with wild-type FLT3 NK-AML. HR was harmonized to S phase of the cell cycle to repair broken chromatids and prevent iHR. Increased HR activity in G 0 arrested primary FLT3-ITD NK-AML in contrast to wild-type FLT3 NK-AML. Cells expressing mutated FLT3-ITD demonstrated a relative increase in mutation frequency as detected by thymidine kinase (TK) gene mutation assay. Moreover, resistance was associated with CN-LOH at the TK locus. Treatment of FLT3-ITD- and JAK2V617F-mutant cells with the antioxidant N -acetylcysteine diminished reactive oxygen species (ROS), restoring iHR and HR levels. Our findings show that mutated FLT3-ITD and JAK2 augment ROS production and HR, shifting the cellular milieu toward illegitimate recombination events such as iHR and CN-LOH. Therapeutic reduction of ROS may thus prevent leukemic progression and relapse in myeloid malignancies. Cancer Res; 77(7); 1697-708. ©2017 AACR . ©2017 American Association for Cancer Research.

  12. Downregulation but lack of promoter hypermethylation or somatic mutations of the potential tumor suppressor CXXC5 in MDS and AML with deletion 5q

    DEFF Research Database (Denmark)

    Treppendahl, Marianne Bach; Möllgård, L; Hellström-Lindberg, E

    2013-01-01

    During recent years mutations in epigenetic modulators have been identified in several human cancers, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS)[1]. CXXC5 has been found to be necessary for retinoic acid induced differentiation of myelocytic leukemia cells, identify......During recent years mutations in epigenetic modulators have been identified in several human cancers, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS)[1]. CXXC5 has been found to be necessary for retinoic acid induced differentiation of myelocytic leukemia cells...

  13. The ABCA4 2588G>C Stargardt mutation: single origin and increasing frequency from South-West to North-East Europe.

    NARCIS (Netherlands)

    Maugeri, A.; Flothmann, K.; Hemmrich, N.; Ingvast, S.; Jorge, P.; Paloma, E.; Patel, R.; Rozet, J.M.; Tammur, J.; Testa, F.; Balcells, S.; Bird, A.C.; Brunner, H.G.; Hoyng, C.B.; Metspalu, A.; Simonelli, F.; Allikmets, R.; Bhattacharya, S.S.; Urso, M. D'; Gonzalez-Duarte, R.; Kaplan, J.; Meerman, G.J. te; Santos, R.L.; Schwartz, M.; Camp, G. van; Wadelius, C.; Weber, B.; Cremers, F.P.M.

    2002-01-01

    Inherited retinal dystrophies represent the most important cause of vision impairment in adolescence, affecting approximately 1 out of 3000 individuals. Mutations of the photoreceptor-specific gene ABCA4 (ABCR) are a common cause of retinal dystrophy. A number of mutations have been repeatedly

  14. The ABCA4 2588G > C Stargardt mutation : Single origin and increasing frequency from South-West to North-East Europe

    NARCIS (Netherlands)

    Maugeri, A; Flothmann, K; Hemmrich, N; Ingvast, S; Jorge, P; Paloma, E; Patel, R; Rozet, JM; Tammur, J; Testa, F; Balcells, S; Bird, AC; Brunner, HG; Hoyng, CB; Metspalu, A; Simonelli, F; Allikmets, R; Bhattacharya, SS; D'Urso, M; Gonzalez-Duarte, R; Kaplan, J; Meerman, GJT; Santoss, R; Schwartz, M; Van Camp, G; Wadelius, C; Weber, BHF; Cremers, FPM

    Inherited retinal dystrophies represent the most important cause of vision impairment in adolescence, affecting approximately 1 out of 3000 individuals. Mutations of the photoreceptor-specific gene ABCA4 (ABCR) are a common cause of retinal dystrophy. A number of mutations have been repeatedly

  15. Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida.

    Science.gov (United States)

    Zhu, Dong; Bi, Qing-Fang; Xiang, Qian; Chen, Qing-Lin; Christie, Peter; Ke, Xin; Wu, Long-Hua; Zhu, Yong-Guan

    2018-04-01

    Although the roles of earthworms and soil collembolans in the transport of microplastics have been studied previously, the effects of the soil biota at different trophic levels and interspecific relationships remain poorly understood. Here, we examine three soil microarthropod species to explore their effects on the transport of microplastics. The selected Folsomia candida and Hypoaspis aculeifer are extensively used model organisms, and Damaeus exspinosus is a common and abundant indigenous species in China. A model food chain (prey-collembolan and predator-mite) was structured to test the role of the predator-prey relationship in the transport of microplastics. Commercial Polyvinyl chloride (PVC) particles (Diameter: 80-250 μm) were selected as the test microplastics, because large amounts of PVC have persisted and accumulated in the environment. Synchronized soil microarthropods were held in plates for seven days to determine the movement of microplastics. The 5000 microplastic particles were carefully placed in the center of each plate prior to the introduction of the animals. Our results clearly show that all three microarthropod species moved and dispersed the microplastics in the plates. The 0.54%, 1.8% and 4.6% of the added microplastic particles were moved by collembolan, predatory mite and oribatid mite, respectively. Soil microarthropods (microplastic particles up to 9 cm. The avoidance behavior was observed in the collembolans in respect of the microplastics. The predatory -prey relationship did promote the transport of microplastics in the plates, increasing transport by 40% compared with the effects of adding single species (P microplastics by soil microarthropods may influence the exposure of other soil biota to microplastics and change the physical properties of soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. PhoQ mutations promote lipid A modification and polymyxin resistance of Pseudomonas aeruginosa found in colistin-treated cystic fibrosis patients

    DEFF Research Database (Denmark)

    Miller, Amanda K; Brannon, Mark K; Stevens, Laurel

    2011-01-01

    Pseudomonas aeruginosa can develop resistance to polymyxin and other cationic antimicrobial peptides. Previous work has shown that mutations in the PmrAB and PhoPQ regulatory systems can confer low to moderate levels of polymyxin resistance (MICs of 8 - 64 mg/L) in laboratory and clinical strains...

  17. Mutations in the estrogen receptor alpha hormone binding domain promote stem cell phenotype through notch activation in breast cancer cell lines.

    Science.gov (United States)

    Gelsomino, L; Panza, S; Giordano, C; Barone, I; Gu, G; Spina, E; Catalano, S; Fuqua, S; Andò, S

    2018-04-24

    The detection of recurrent mutations affecting the hormone binding domain (HBD) of estrogen receptor alpha (ERα/ESR1) in endocrine therapy-resistant and metastatic breast cancers has prompted interest in functional characterization of these genetic alterations. Here, we explored the role of HBD-ESR1 mutations in influencing the behavior of breast cancer stem cells (BCSCs), using various BC cell lines stably expressing wild-type or mutant (Y537 N, Y537S, D538G) ERα. Compared to WT-ERα clones, mutant cells showed increased CD44 + /CD24 - ratio, mRNA levels of stemness genes, Mammosphere Forming Efficiency (MFE), Self-Renewal and migratory capabilities. Mutant clones exhibited high expression of NOTCH receptors/ligands/target genes and blockade of NOTCH signaling reduced MFE and migratory potential. Mutant BCSC activity was dependent on ERα phosphorylation at serine 118, since its inhibition decreased MFE and NOTCH4 activation only in mutant cells. Collectively, we demonstrate that the expression of HBD-ESR1 mutations may drive BC cells to acquire stem cell traits through ER/NOTCH4 interplay. We propose the early detection of HBD-ESR1 mutations as a challenge in precision medicine strategy, suggesting the development of tailored-approaches (i.e. NOTCH inhibitors) to prevent disease development and metastatic spread in BC mutant-positive patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Significance of Coexisting Mutations on Determination of the Degree of Isoniazid Resistance in Mycobacterium tuberculosis Strains.

    Science.gov (United States)

    Karunaratne, Galbokka Hewage Roshanthi Eranga; Wijesundera, Sandhya Sulochana; Vidanagama, Dhammika; Adikaram, Chamila Priyangani; Perera, Jennifer

    2018-04-23

    The emergence and spread of drug-resistant tuberculosis (TB) pose a threat to TB control in Sri Lanka. Isoniazid (INH) is a key element of the first-line anti-TB treatment regimen. Resistance to INH is mainly associated with point mutations in katG, inhA, and ahpC genes. The objective of this study was to determine mutations of these three genes in INH-resistant Mycobacterium tuberculosis (MTb) strains in Sri Lanka. Complete nucleotide sequence of the three genes was amplified by polymerase chain reaction and subjected to DNA sequencing. Point mutations in the katG gene were identified in 93% isolates, of which the majority (78.6%) were at codon 315. Mutations at codons 212 and 293 of the katG gene have not been reported previously. Novel mutations were recognized in the promoter region of the inhA gene (C deletion at -34), fabG1 gene (codon 27), and ahpC gene (codon 39). Single S315T mutation in the katG gene led to a high level of resistance, while a low level of resistance with high frequency (41%) was observed when katG codon 315 coexisted with the mutation at codon 463. Since most of the observed mutations of all three genes coexisted with the katG315 mutation, screening of katG315 mutations will be a useful marker for molecular detection of INH resistance of MTb in Sri Lanka.

  19. Recurrent LDL-receptor mutation causes familial ...

    African Journals Online (AJOL)

    1995-05-05

    May 5, 1995 ... 3. eaudet . New. Recurrent LDL-receptor mutation causes familial hypercholesterolaemia in ... amplification refractory mutation system (ARMS)" and single- strand conformation .... Location. Afrikaner. Mixed race. ApaLl.

  20. FOXP2 promotes the nuclear translocation of POT1, but FOXP2(R553H), mutation related to speech-language disorder, partially prevents it

    International Nuclear Information System (INIS)

    Tanabe, Yuko; Fujita, Eriko; Momoi, Takashi

    2011-01-01

    Highlights: → We isolated protection of telomeres 1 (POT1) as a FOXP2-associated protein by a yeast two-hybrid. → FOXP2 associated and co-localized with POT1 in the nuclei. → FOXP2(R553H) also co-localized with POT1 in both the cytoplasm and nuclei. → FOXP2(R553H) partially prevented the nuclear translocation of POT1. → FOXP2(R553H) mutation may be associated with the pathogenesis of speech-language disorder. -- Abstract: FOXP2 is a forkhead box-containing transcription factor with several recognizable sequence motifs. However, little is known about the FOXP2-associated proteins except for C-terminal binding protein (CtBP). In the present study, we attempted to isolate the FOXP2-associated protein with a yeast two-hybrid system using the C-terminal region, including the forkhead domain, as a bait probe, and identified protection of telomeres 1 (POT1) as a FOXP2-associated protein. Immunoprecipitation assay confirmed the association with FOXP2 and POT1. POT1 alone localized in the cytoplasm but co-localized with FOXP2 and the forkhead domain of FOXP2 in nuclei. However, both FOXP2 with mutated nuclear localization signals and (R553H) mutated forkhead, which is associated with speech-language disorder, prevented the nuclear translocation of POT1. These results suggest that FOXP2 is a binding partner for the nuclear translocation of POT1. As loss of POT1 function induces the cell arrest, the impaired nuclear translocation of POT1 in the developing neuronal cells may be associated with the pathogenesis of speech-language disorder with FOXP2(R553H) mutation.

  1. FOXP2 promotes the nuclear translocation of POT1, but FOXP2(R553H), mutation related to speech-language disorder, partially prevents it

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Yuko [Division of Development and Differentiation, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigasi, Kodaira 187-8511 (Japan); Fujita, Eriko [Division of Development and Differentiation, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigasi, Kodaira 187-8511 (Japan); Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498 (Japan); Momoi, Takashi, E-mail: momoi@iuhw.ac.jp [Division of Development and Differentiation, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigasi, Kodaira 187-8511 (Japan); Center for Medical Science, International University of Health and Welfare, 2600-1 Kitakanamaru, Otawara, Tochigi 324-8501 (Japan)

    2011-07-08

    Highlights: {yields} We isolated protection of telomeres 1 (POT1) as a FOXP2-associated protein by a yeast two-hybrid. {yields} FOXP2 associated and co-localized with POT1 in the nuclei. {yields} FOXP2(R553H) also co-localized with POT1 in both the cytoplasm and nuclei. {yields} FOXP2(R553H) partially prevented the nuclear translocation of POT1. {yields} FOXP2(R553H) mutation may be associated with the pathogenesis of speech-language disorder. -- Abstract: FOXP2 is a forkhead box-containing transcription factor with several recognizable sequence motifs. However, little is known about the FOXP2-associated proteins except for C-terminal binding protein (CtBP). In the present study, we attempted to isolate the FOXP2-associated protein with a yeast two-hybrid system using the C-terminal region, including the forkhead domain, as a bait probe, and identified protection of telomeres 1 (POT1) as a FOXP2-associated protein. Immunoprecipitation assay confirmed the association with FOXP2 and POT1. POT1 alone localized in the cytoplasm but co-localized with FOXP2 and the forkhead domain of FOXP2 in nuclei. However, both FOXP2 with mutated nuclear localization signals and (R553H) mutated forkhead, which is associated with speech-language disorder, prevented the nuclear translocation of POT1. These results suggest that FOXP2 is a binding partner for the nuclear translocation of POT1. As loss of POT1 function induces the cell arrest, the impaired nuclear translocation of POT1 in the developing neuronal cells may be associated with the pathogenesis of speech-language disorder with FOXP2(R553H) mutation.

  2. A single mutation in the 15S rRNA gene confers nonsense suppressor activity and interacts with mRF1 the release factor in yeast mitochondria

    Directory of Open Access Journals (Sweden)

    Ali Gargouri

    2015-08-01

    Full Text Available We have determined the nucleotide sequence of the mim3-1 mitochondrial ribosomal suppressor, acting on ochre mitochondrial mutations and one frameshift mutation in Saccharomyces cerevisiae. The 15s rRNA suppressor gene contains a G633 to C transversion. Yeast mitochondrial G633 corresponds to G517 of the E.coli 15S rRNA, which is occupied by an invariant G in all known small rRNA sequences. Interestingly, this mutation has occurred at the same position as the known MSU1 mitochondrial suppressor which changes G633 to A. The suppressor mutation lies in a highly conserved region of the rRNA, known in E.coli as the 530-loop, interacting with the S4, S5 and S12 ribosomal proteins. We also show an interesting interaction between the mitochondrial mim3-1 and the nuclear nam3-1 suppressors, both of which have the same action spectrum on mitochondrial mutations: nam3-1 abolishes the suppressor effect when present with mim3-1 in the same haploid cell. We discuss these results in the light of the nature of Nam3, identified by [1] as the yeast mitochondrial translation release factor. A hypothetical mechanism of suppression by "ribosome shifting" is also discussed in view of the nature of mutations suppressed and not suppressed.

  3. Deep Sequence Analysis of Non-Small Cell Lung Cancer: Integrated Analysis of Gene Expression, Alternative Splicing, and Single Nucleotide Variations in Lung Adenocarcinomas with and without Oncogenic KRAS Mutations

    International Nuclear Information System (INIS)

    Kalari, Krishna R.; Rossell, David; Necela, Brian M.; Asmann, Yan W.; Nair, Asha

    2012-01-01

    KRAS mutations are highly prevalent in non-small cell lung cancer (NSCLC), and tumors harboring these mutations tend to be aggressive and resistant to chemotherapy. We used next-generation sequencing technology to identify pathways that are specifically altered in lung tumors harboring a KRAS mutation. Paired-end RNA-sequencing of 15 primary lung adenocarcinoma tumors (8 harboring mutant KRAS and 7 with wild-type KRAS) were performed. Sequences were mapped to the human genome, and genomic features, including differentially expressed genes, alternate splicing isoforms and single nucleotide variants, were determined for tumors with and without KRAS mutation using a variety of computational methods. Network analysis was carried out on genes showing differential expression (374 genes), alternate splicing (259 genes), and SNV-related changes (65 genes) in NSCLC tumors harboring a KRAS mutation. Genes exhibiting two or more connections from the lung adenocarcinoma network were used to carry out integrated pathway analysis. The most significant signaling pathways identified through this analysis were the NFκB, ERK1/2, and AKT pathways. A 27 gene mutant KRAS-specific sub network was extracted based on gene–gene connections from the integrated network, and interrogated for druggable targets. Our results confirm previous evidence that mutant KRAS tumors exhibit activated NFκB, ERK1/2, and AKT pathways and may be preferentially sensitive to target therapeutics toward these pathways. In addition, our analysis indicates novel, previously unappreciated links between mutant KRAS and the TNFR and PPARγ signaling pathways, suggesting that targeted PPARγ antagonists and TNFR inhibitors may be useful therapeutic strategies for treatment of mutant KRAS lung tumors. Our study is the first to integrate genomic features from RNA-Seq data from NSCLC and to define a first draft genomic landscape model that is unique to tumors with oncogenic KRAS mutations.

  4. Single base mutation in the proα2(I) collagen gene that causes efficient splicing of RNA from exon 27 to exon 29 and synthesis of a shortened but in-frame proα2(I) chain

    International Nuclear Information System (INIS)

    Tromp, G.; Prockop, D.J.

    1988-01-01

    Previous observations demonstrated that a lethal variant of osteogenesis imperfecta had two altered alleles for proα2(I) chains of type I procollagen. One mutation produced a nonfunctioning allele in that there was synthesis of mRNA but no detectable synthesis of proα2(I) chains from the allele. The mutation in the other allele caused synthesis of shortened proα2(I) chains that lacked most or all of the 18 amino acids encoded by exon 28. Subclones of the proα2(I) gene were prepared from the proband's DNA and the DNA sequence was determined for a 582-base-pair (bp) region that extended from the last 30 bp of intervening sequence 26 to the first 26 bp of intervening sequence 29. Data from six independent subclones demonstrated that all had the same sequence as a previously isolated normal clone for the proα2(I) gene except that four subclones had a single base mutation at the 3' end of intervening sequence 27. The mutation was a substitution of guanine for adenine that changed the universal consensus sequence for the 3' splicing site of RNA from -AG- to -GG-. S1 nuclease experiments demonstrated that about half the proα2(I) mRNA in the proband's fibroblasts was abnormally spliced and that the major species of abnormal proα2(I) mRNA was completely spliced from the last codon of exon 27 to the first codon of exon 29. The mutation is apparently unique among RNA splicing mutations of mammalian systems in producing a shortened polypeptide chain that is in-frame in terms of coding sequences, that is used in the subunit assembly of a protein, and that contributes to a lethal phenotype

  5. Embryo genome profiling by single-cell sequencing for successful preimplantation genetic diagnosis in a family harboring COL4A1 c.1537G>A; p.G513S mutation

    Directory of Open Access Journals (Sweden)

    Nayana H Patel

    2016-01-01

    Full Text Available CONTEXT: Genetic profiling of embryos (also known as preimplantation genetic diagnosis before implantation has dramatically enhanced the success quotient of in vitro fertilization (IVF in recent times. The technology helps in avoiding selective pregnancy termination since the baby is likely to be free of the disease under consideration. AIM: Screening of embryos free from c.1537G>A; p.G513S mutation within the COL4A1 gene for which the father was known in before be in heterozygous condition. SUBJECTS AND METHODS: Processing of trophectoderm biopsies was done from twelve embryos for c.1537G>A; p.G513S mutation within the COL4A1 gene. DNA extracted from isolated cells were subjected to whole genome amplification using an isothermal amplification and strand displacement technology. Oligonucleotide primers bracketing the mutation were synthesized and used to amplify 162 base pairs (bp polymerase chain reaction amplicons originating from each embryo which were subsequently sequenced to detect the presence or absence of the single base polymorphism. RESULTS: Three out of 12 embryos interrogated in this study were found to be normal while 9 were found to harbor the mutation in heterozygous condition. Implantation of one of the normal embryos following by chorionic villus sampling at 11 th week of pregnancy indicated that the baby was free from c.1537G>A; p.G513S mutation within the COL4A1 gene. CONCLUSIONS: Single-cell sequencing is a helpful tool for preimplantation embryo profiling. This is the first report from India describing the birth of a normal child through IVF procedure where a potential pathogenic COL4A1 allele was avoided using this technology.

  6. Cyclosporine promotes the induction of thymic lymphomas in C57BL/6 mice initiated by a single dose of γ-radiation

    International Nuclear Information System (INIS)

    Yabu, Koji; Warty, V.S.; Gorelik, E.; Shinozuka, Hisashi

    1991-01-01

    We previously demonstrated that a single dose of γ-radiation (350 rads) was able to induce thymic lymphomas in C57BL mice when followed by promoting treatment with oral cyclosporine (CsA), a non-genotoxic immunosuppressant. We have now tested the efficacy of various doses of γ-radiation as an initiator of CsA promotion of the induction of thymic lymphomas in male C57BL mice. The effects of oral CsA on the splenic natural killer (NK) cell activity of non-irradiated and irradiated (400 rads, 1X) mice were tested by the standard 51 Cr release assays against YAC-1 cells. The cumulative incidence of thymic lymphomas induced by a single dose of γ-radiation at 100, 200, 400 and 600 rads were 10, 25, 63 and 75% respectively, after 42 weeks of CsA promotion. The splenic NK cell activity in non-irradiated mice given CsA for 4 weeks was twice as high as that in the control mice. CsA inhibited poly I:C-induced augmentation of the splenic NK cell activity. In mice given a single dose (400 rads) of γ-radiation and CsA for 4 weeks, a similar but reduced enhancement of the splenic NK cell activity as seen in non-irradiated mice was observed. These results indicate that the efficacy of CsA promotion in the induction of thymic lymphomas is dependent on the initiating doses of γ-radiation, and that CsA enhances host splenic NK cell activity during the early stage of tumor promotion. (author)

  7. Identification and functional analysis of three distinct mutations in the human galactose-1-phosphate uridyltransferase gene associated with galactosemia in a single family

    Energy Technology Data Exchange (ETDEWEB)

    Fridovich-Keil, J.L.; Langley, S.D.; Mazur, L.A.; Lennon, J.C.; Dembure, P.O.; Elsas, L.J. II [Emory Univ. School of Medicine, Atlanta, GA (United States)

    1995-03-01

    We have identified three mutations associated with transferase-deficiency galactosemia in a three-generation family including affected members in two generations and have modeled all three mutations in a yeast-expression system. A sequence of pedigree, biochemical, and molecular analyses of the galactose-1-phosphate uridyltransferase (GALT) enzyme and genetic locus in both affected and carrier individuals revealed three distinct base substitutions in this family, two (Q188R and S135L) that had been reported previously and one (V151A) that was novel. Biochemical analyses of red-blood-cell lysates from the relevant family members suggested that each of these mutations was associated with dramatic impairment of GALT activity in these cells. While this observation was consistent with our previous findings concerning the Q188R mutation expressed both in humans and in a yeast-model system, it was at odds with a report by Reichardt and colleagues, indicating that in their COS cell-expression system the S135L substitution behaved as a neutral polymorphism. To address this apparent paradox, as well as to investigate the functional significance of the newly identified V151A substitution, all three mutations were recreated by site-directed mutagenesis of the otherwise wild-type human GALT sequence and were expressed both individually and in the appropriate allelic combinations in a GALT-deficient strain of the yeast Saccharomyces cerevisiae. The results of these yeast-modeling studies were fully consistent with the patient data, leading us to conclude that, at least within the context of the cell types studied, in the homozygous state Q188R is a mutation that eliminates GALT activity, and S135L and V151A are both mutations that impair GALT activity to <6% of wild-type values. 22 refs., 5 figs.

  8. JAK2 V617F, MPL, and CALR mutations in essential thrombocythaemia and major thrombotic complications: a single-institute retrospective analysis.

    Science.gov (United States)

    Pósfai, Éva; Marton, Imelda; Király, Péter Attila; Kotosz, Balázs; Kiss-László, Zsuzsanna; Széll, Márta; Borbényi, Zita

    2015-07-01

    Thrombo-haemorrhagic events are the main cause of morbidity and mortality in essential thrombocythemia. The aim of this study was to estimate the incidence of thrombotic events and the impact of the JAK2V617F, MPL (W515L, W515K, W515R, W515A and S505N) and CALR (type-1, type-2) mutations on 101 essential thrombocythaemia patients (72 females and 29 males with a mean age of 61 years) diagnosed in a Southern Hungarian regional academic centre. The incidence of major thrombosis was 13.86 %. Sixty percent of the patients carried the JAK2V617F mutation. The MPL mutations were analysed by sequencing and the W515L was the only one we could identify with an incidence of 3.96 %. Type-2 CALR mutation could be identified in 3 cases among the patients who had JAK2/MPL-unmutated ET. Statistical analyses revealed that the JAK2V617F mutation was associated with significantly increased levels of platelet (p = 0.042), haemoglobin (p = 0.000), red blood cell (p = 0.000) and haematocrit (p = 0.000) and hepatomegaly (p = 0.045) at diagnosis compared to JAK2V617F negative counterparts, however there was no significant association between the JAK2V617F mutation status (relative risk: 1.297, 95 % CI 0.395-4.258; p = 0.668) and subsequent thrombotic complications. The impact of JAK2V617F, MPL W515L and CALR mutations on the clinical findings at the diagnosis of ET was obvious, but their statistically significant role in the prediction of thrombotic events could not be proven in this study. Our results indirectly support the concept that, besides the quantitative and qualitative changes in the platelets, the mechanisms leading to thrombosis are more complex and multifactorial.

  9. Effect of Promoter Region Mutations and mgrA Overexpression on Transcription of norA, Which Encodes a Staphylococcus aureus Multidrug Efflux Transporter

    OpenAIRE

    Kaatz, Glenn W.; Thyagarajan, Rama V.; Seo, Susan M.

    2005-01-01

    NorA is a Staphylococcus aureus multidrug transporter that confers resistance to structurally distinct compounds. The MgrA global regulatory protein is reported to augment norA expression when mgrA is overexpressed from an undefined plasmid-based promoter. Further details about norA regulatory mechanisms are scant. A chromosomal norA::lacZ transcriptional fusion was constructed in different S. aureus strains, and allele replacement was used to define the relevance of promoter region sequences...

  10. L1014F-kdr Mutation in Indian Anopheles subpictus (Diptera: Culicidae) Arising From Two Alternative Transversions in the Voltage-Gated Sodium Channel and a Single PIRA-PCR for Their Detection.

    Science.gov (United States)

    Singh, O P; Dykes, C L; Sharma, G; Das, M K

    2015-01-01

    Leucine-to-phenylalanine substitution at residue L1014 in the voltage-gated sodium channel, target site of action for dichlorodiphenyltrichloroethane (DDT) and pyrethroids, is the most common knockdown resistance (kdr) mutation reported in several insects conferring resistance against DDT and pyrethroids. Here, we report presence of two coexisting alternative transversions, A>T and A>C, on the third codon position of L1014 residue in malaria vector Anopheles subpictus Grassi (species A) from Jamshedpur (India), both leading to the same amino acid substitution of Leu-to-Phe with allelic frequencies of 19 and 67%, respectively. A single primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) was devised for the identification of L1014F-kdr mutation in An. subpictus resulting from either type of point mutation. Genotyping of samples with PIRA-PCR revealed high frequency (82%) of L1014F-kdr mutation in the study area. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. TIMP-1 is under regulation of the EGF signaling axis and promotes an aggressive phenotype in KRAS-mutated colorectal cancer cells

    DEFF Research Database (Denmark)

    Tarpgaard, Line S; Ørum-Madsen, Maj Sofie; Christensen, Ib J

    2016-01-01

    EGFR inhibitors. Metalloproteinase inhibitor 1 (TIMP-1) is a pleiotropic factor predictive of survival outcome of CRC patients. Levels of TIMP-1 were measured in pre-treatment plasma samples (n = 426) of metastatic CRC patients randomized to Nordic FLOX (5-fluorouracil and oxaliplatin) +/- cetuximab...... (NORDIC VII study). Multivariate analysis demonstrated a significant interaction between plasma TIMP-1 protein levels, KRAS status and treatment with patients bearing KRAS mutated tumors and high TIMP-1 plasma level (> 3rd quartile) showing a significantly longer overall survival if treated with cetuximab...

  12. A Vector with a Single Promoter for In Vitro Transcription and Mammalian Cell Expression of CRISPR gRNAs.

    Directory of Open Access Journals (Sweden)

    Peter J Romanienko

    Full Text Available The genomes of more than 50 organisms have now been manipulated due to rapid advancement of gene editing technology. One way to perform gene editing in the mouse using the CRISPR/CAS system, guide RNA (gRNA and CAS9 mRNA transcribed in vitro are microinjected into fertilized eggs that are then allowed to develop to term. As a rule, gRNAs are tested first in tissue culture cells and the one with the highest locus-specific cleavage activity is chosen for microinjection. For cell transfections, gRNAs are typically expressed using the human U6 promoter (hU6. However, gRNAs for microinjection into zygotes are obtained by in vitro transcription from a T7 bacteriophage promoter in a separate plasmid vector. Here, we describe the design and construction of a combined U6T7 hybrid promoter from which the same gRNA sequence can be expressed. An expression vector containing such a hybrid promoter can now be used to generate gRNA for testing in mammalian cells as well as for microinjection purposes. The gRNAs expressed and transcribed from this vector are found to be functional in cells as well as in mice.

  13. Acute intermittent porphyria: A single-base deletion and a nonsense mutation in the human hydroxymethylbilane synthase gene, predicting truncations of the enzyme polypeptide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, G.L.; Astrin, K.H.; Desnick, R.J. [Mount Sinai School of Medicine, New York, NY (United States)

    1995-08-28

    Acute intermittent porphyria (AIP) is an autosomal-dominant inborn error of metabolism that results from the half-normal activity of the third enzyme in the heme biosynthetic pathway, hydroxymethylbilane synthase (HMB-synthase). AIP is an ecogenetic condition, since the life-threatening acute attacks are precipitated by various factors, including drugs, alcohol, fasting, and certain hormones. Biochemical diagnosis is problematic, and the identification of mutations in the HMB-synthase gene provides accurate detection of presymptomatic heterozygotes, permitting avoidance of the acute precipitating factors. By direct solid-phase sequencing, two mutations causing AIP were identified, an adenine deletion at position 629 in exon 11(629delA), which alters the reading frame and predicts premature truncation of the enzyme protein after amino acid 255, and a nonsense mutation in exon 12 (R225X). These mutations were confirmed by either restriction enzyme analysis or family studies of symptomatic patients, permitting accurate presymptomatic diagnosis of affected relatives. 29 refs., 2 figs.

  14. Single molecule real time sequencing in ADTKD-MUC1 allows complete assembly of the VNTR and exact positioning of causative mutations

    NARCIS (Netherlands)

    Wenzel, Andrea; Altmueller, Janine; Ekici, Arif B.; Popp, Bernt; Stueber, Kurt; Thiele, Holger; Pannes, Alois; Staubach, Simon; Salido, Eduardo; Nuernberg, Peter; Reinhardt, Richard; Reis, Andre; Rump, Patrick; Hanisch, Franz-Georg; Wolf, Matthias T. F.; Wiesener, Michael; Huettel, Bruno; Beck, Bodo B.

    2018-01-01

    Recently, the Mucin-1 (MUC1) gene has been identified as a causal gene of autosomal dominant tubulointerstitial kidney disease (ADTKD). Most causative mutations are buried within a GC-rich 60 basepair variable number of tandem repeat (VNTR), which escapes identification by massive parallel

  15. Familial partial lipodystrophy phenotype resulting from a single-base mutation in deoxyribonucleic acid-binding domain of peroxisome proliferator-activated receptor-gamma

    NARCIS (Netherlands)

    Monajemi, Houshang; Zhang, Lin; Li, Gang; Jeninga, Ellen H.; Cao, Henian; Maas, Mario; Brouwer, C. B.; Kalkhoven, Eric; Stroes, Erik; Hegele, Robert A.; Leff, Todd

    2007-01-01

    CONTEXT: Familial partial lipodystrophy (FPLD) results from coding sequence mutations either in LMNA, encoding nuclear lamin A/C, or in PPARG, encoding peroxisome proliferator-activated receptor-gamma (PPARgamma). The LMNA form is called FPLD2 (MIM 151660) and the PPARG form is called FPLD3 (MIM

  16. Mutation and Methylation Analysis of the Chromodomain-Helicase-DNA Binding 5 Gene in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Kylie L. Gorringe

    2008-11-01

    Full Text Available Chromodomain, helicase, DNA binding 5 (CHD5 is a member of a subclass of the chromatin remodeling Swi/Snf proteins and has recently been proposed as a tumor suppressor in a diverse range of human cancers. We analyzed all 41 coding exons of CHD5 for somatic mutations in 123 primary ovarian cancers as well as 60 primary breast cancers using high-resolution melt analysis. We also examined methylation of the CHD5 promoter in 48 ovarian cancer samples by methylation-specific single-stranded conformation polymorphism and bisulfite sequencing. In contrast to previous studies, no mutations were identified in the breast cancers, but somatic heterozygous missense mutations were identified in 3 of 123 ovarian cancers. We identified promoter methylation in 3 of 45 samples with normal CHD5 and in 2 of 3 samples with CHD5 mutation, suggesting these tumors may have biallelic inactivation of CHD5. Hemizygous copy number loss at CHD5 occurred in 6 of 85 samples as assessed by single nucleotide polymorphism array. Tumors with CHD5 mutation or methylation were more likely to have mutation of KRAS or BRAF (P = .04. The aggregate frequency of CHD5 haploinsufficiency or inactivation is 16.2% in ovarian cancer. Thus, CHD5 may play a role as a tumor suppressor gene in ovarian cancer; however, it is likely that there is another target of the frequent copy number neutral loss of heterozygosity observed at 1p36.

  17. Decreased expression of lysyl hydroxylase 2 (LH2) in skin fibroblasts from three Ehlers-Danlos patients does not result from mutations in either the coding or proximal promoter region of the LH2 gene.

    Science.gov (United States)

    Walker, L C; Teebi, A S; Marini, J C; De Paepe, A; Malfait, F; Atsawasuwan, P; Yamauchi, M; Yeowell, H N

    2004-12-01

    The Ehlers-Danlos syndromes (EDS) are a heterogeneous group of inherited connective tissue disorders characterized by tissue fragility, hyperelasticity of the skin and joint hypermobility. This phenotype, accompanied by kyphoscoliosis and/or ocular fragility, is present in patients with the autosomal recessive type VI form of EDS. These patients have significantly decreased levels of lysyl hydroxylase (LH) activity, due to mutations in the LH1 gene. LH hydroxylates specific lysine residues in the collagen molecule that are precursors for the formation of cross-links which provide collagen with its tensile strength. No disorder has been directly linked to decreased expression of LH2 and LH3, two other isoforms of LH. This study describes 3 patients with mixed phenotypes of EDS, who have significantly decreased mRNAs for LH2, but normal levels of LH1 and LH3 mRNAs, in their skin fibroblasts. In contrast to the effect of LH1 deficiency in EDS VI patients, the decreased expression of LH2 does not affect LH activity, bifunctional collagen cross-links (measured after reduction as dihydroxylysinonorleucine (DHLNL) and hydroxylysinonorleucine (HLNL)), or helical lysine hydroxylation in these cell lines. Sequence analysis of full length LH2 cDNAs and 1kb of the promoter region of LH2 does not show mutations that could explain the decreased expression of LH2. These results suggest that the deficiency of LH2 in these fibroblasts may be caused by changes in other factors required for the expression of LH2.

  18. Consecutive analysis of mutation spectrum in the dystrophin gene of 507 Korean boys with Duchenne/Becker muscular dystrophy in a single center.

    Science.gov (United States)

    Cho, Anna; Seong, Moon-Woo; Lim, Byung Chan; Lee, Hwa Jeen; Byeon, Jung Hye; Kim, Seung Soo; Kim, Soo Yeon; Choi, Sun Ah; Wong, Ai-Lynn; Lee, Jeongho; Kim, Jon Soo; Ryu, Hye Won; Lee, Jin Sook; Kim, Hunmin; Hwang, Hee; Choi, Ji Eun; Kim, Ki Joong; Hwang, Young Seung; Hong, Ki Ho; Park, Seungman; Cho, Sung Im; Lee, Seung Jun; Park, Hyunwoong; Seo, Soo Hyun; Park, Sung Sup; Chae, Jong Hee

    2017-05-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are allelic X-linked recessive muscle diseases caused by mutations in the large and complex dystrophin gene. We analyzed the dystrophin gene in 507 Korean DMD/BMD patients by multiple ligation-dependent probe amplification and direct sequencing. Overall, 117 different deletions, 48 duplications, and 90 pathogenic sequence variations, including 30 novel variations, were identified. Deletions and duplications accounted for 65.4% and 13.3% of Korean dystrophinopathy, respectively, suggesting that the incidence of large rearrangements in dystrophin is similar among different ethnic groups. We also detected sequence variations in >100 probands. The small variations were dispersed across the whole gene, and 12.3% were nonsense mutations. Precise genetic characterization in patients with DMD/BMD is timely and important for implementing nationwide registration systems and future molecular therapeutic trials in Korea and globally. Muscle Nerve 55: 727-734, 2017. © 2016 Wiley Periodicals, Inc.

  19. Promoting effects of a single Rhodopseudomonas palustris inoculant on plant growth by Brassica rapa chinensis under low fertilizer input.

    Science.gov (United States)

    Wong, Wai-Tak; Tseng, Ching-Han; Hsu, Shu-Hua; Lur, Huu-Sheng; Mo, Chia-Wei; Huang, Chu-Ning; Hsu, Shu-Chiung; Lee, Kung-Ta; Liu, Chi-Te

    2014-09-17

    Several Rhodopseudomonas palustris strains have been isolated from rice paddy fields in Taiwan by combining the Winogradsky column method and molecular marker detection. These isolates were initially screened by employing seed germination and seedling vigor assays to evaluate their potential as inoculants. To fulfill the demand in the present farming system for reducing the application of chemical fertilizers, we assessed the plant growth-promoting effects of the R. palustris YSC3, YSC4, and PS3 inoculants on Brassica rapa chinensis (Chinese cabbage) cultivated under a half quantity of fertilizer. The results obtained showed that supplementation with approximately 4.0×10(6) CFU g(-1) soil of the PS3 inoculant at half the amount of fertilizer consistently produced the same plant growth potential as 100% fertility, and also increased the nitrogen use efficiency of the applied fertilizer nutrients. Furthermore, we noted that the plant growth-promotion rate elicited by PS3 was markedly higher with old seeds than with new seeds, suggesting it has the potential to boost the development of seedlings that were germinated from carry-over seeds of poor quality. These beneficial traits suggest that the PS3 isolate may serve as a potential PGPR inoculant for integrated nutrient management in agriculture.

  20. Retrospective mutational analysis of NPHS1, NPHS2, WT1 and LAMB2 in children with steroid-resistant focal segmental glomerulosclerosis – a single-centre experience

    Directory of Open Access Journals (Sweden)

    Agnieszka Bińczak-Kuleta

    2015-05-01

    Full Text Available The aim of our study was to examine NPHS1, NPHS2, WT1 and LAMB2 mutations, previously reported in two thirds of patients with nephrotic syndrome with onset before the age of one year old. Genomic DNA samples from Polish children (n=33 with Steroid-ResistantNephrotic Syndrome (SRNS due to focal segmental glomerulosclerosis (FSGS, manifesting before the age of 13 years old, underwent retrospective analysis of NPHS1, NPHS2, WT1 (exons 8, 9 and adjacent exon/intron boundaries and LAMB2. No pathogenic NPHS1 or LAMB2 mutations were found in our FSGS cohort. SRNS-causing mutations of NPHS2 and WT1 were detected in 7 of 33 patients (21%, including those with nephrotic syndrome manifesting before one year old: five of seven patients. Four patients had homozygous c.413G>A (p.Arg138Gln NPHS2 mutations; one subject was homozygous for c.868G>A (p.Val290Met NPHS2. A phenotypic female had C>T transition at position +4 of the WT1 intron 9 (c.1432+4C>T splice-donor site, and another phenotypic female was heterozygous for G>A transition at position +5 (c.1432+5G>A. Genotyping revealed a female genotypic gender (46, XX for the first subject and male (46, XY for the latter. In addition, one patient was heterozygous for c.104dup (p.Arg36Profs*34 NPHS2; two patients carried a c.686G>A (p.Arg229Gln NPHS2 non-neutral variant. Results indicate possible clustering of causative NPHS2 mutations in FSGS-proven SRNS with onset before age one year old, and provide additional evidence that patients with childhood steroid-resistant nephrotic syndrome due to focal segmentalglomerulosclerosis should first undergo analysis of NPHS2 coding sequence and WT1 exons 8 and 9 and surrounding exon/intron boundary sequences, followed by gender genotyping.

  1. Promoting Barrier Performance and Cathodic Protection of Zinc-Rich Epoxy Primer via Single-Layer Graphene

    Directory of Open Access Journals (Sweden)

    Jingrong Liu

    2018-05-01

    Full Text Available The effect of single-layer graphene sheets (Gr on the corrosion protection of zinc-rich epoxy primers (ZRPs was investigated. Scanning electron microscopy (SEM with an energy dispersive spectrometer (EDS were used to characterize morphology and composition of the coatings after immersion for 25 days. The cross-sectional SEM images and X-ray photoelectron spectroscopy (XPS confirmed that the addition of single-layer graphene facilitated assembling of zinc oxides on the interface between the coating and the steel. The open circuit potential (OCP, electrochemical impedance spectroscopy (EIS measurements revealed that both the cathodic protection and barrier performance of the ZRP were enhanced after addition of 0.6 wt. % Gr (Gr0.6-ZRP. In addition, the cathodic protection property of the Gr0.6-ZRP was characterized quantitatively by localized electrochemical impedance spectroscopy (LEIS in the presence of an artificial scratch on the coating. The results demonstrate that moderate amounts of single-layer graphene can significantly improve corrosion resistance of ZRP, due to the barrier protection and cathodic protection effects.

  2. Comparison between Radioisotopic and Non-radioisotopic Polymerase Chain Reaction-Single Strand Conformation Polymorphism (PCR-SSCP) Procedures in the Detection of Mutations at the rpoB Gene Associated with Rifampicin Resistance in Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Lee, H.; Bang, H.E.; Johnson, R.; Jordaan, A.M.; Victor, T.C. . E-mail : tv@sun.ac.za; Dar, L.; Khan, B.K.; Cho, S.N. . E-mail : raycho@yonsei.ac.kr

    2006-01-01

    Rapid and sensitive detection of mutations at the rpoB gene of Mycobacterium tuberculosis would be of great importance for proper management of tuberculosis (TB) patients and control of multi-drug resistant TB. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) using both radioisotopic and non-radioisotopic methods have been widely used for detecting such mutations. However, the silver staining method, which is the most frequently employed in PCR-SSCP, has been reported to be producing results of varying sensitivity. Radioisotope-based methods have shown greater sensitivity in detecting the rpoB mutations than the silver staining method. The primary objective of this study was therefore to compare the radioisotopic method with the silver staining method detection of mutations of rpoB gene by PCR-SSCP in the same laboratory. Purified DNAs from M. tuberculosis H37Rv were serially diluted and used for PCR amplification with and without radionuclides. The PCR products were then detected by silver staining and autoradiography methods. In addition, clinical isolates were analyzed by PCR-SSCP. The radioisotopic method showed about four-fold increase in the detection of PCR products over ethidium bromide staining in agarose gel. When compared with silver staining, the radioisotopic method gave a sensitivity of more than 10-fold in detecting PCR products and about 8-fold in PCR-SSCP. Radioisotope-based detection methods provided a clearer resolution in PCR-SSCP than the silver staining method when applied to clinical isolates of M. tuberculosis. Radioisotope-based detection method was shown to be more sensitive than non-isotope-based method in detecting PCR products and mutations at the rpoB gene of M. tuberculosis by PCR-SSCP. It may be noted that mutations in the rpoB gene as a marker have significant clinical importance because of the increasing number of MDR-TB cases in the world. It is especially relevant to MDR and Extreme Drug Resistance TB

  3. Association of single nucleotide polymorphisms in promoter of matrix metalloproteinase-2, 8 genes with bladder cancer risk in Northern India.

    Science.gov (United States)

    Srivastava, Priyanka; Kapoor, Rakesh; Mittal, Rama D

    2013-02-01

    Matrix metalloproteinases (MMPs) are expressed in melanocytes and their overexpression has been linked to tumor development, progression, and metastasis. At the genetic level, following functional promoter polymorphisms are known to modify the gene transcription: -1306 C > T, -735 C > T in MMP2, and 799 C > T in MMP8 gene. Hence we hypothesize that functional polymorphisms in the 2 MMP SNPs in promoter region may modulate the risk for bladder cancer (BC) progression in North Indian population. Genotyping for these polymorphisms were done in a group of 200 BC and 200 age matched, similar ethnicity unrelated healthy controls using PCR-based methods. Two-sided χ(2), Cox-regression was utilized to evaluate the associations between genotype and various clinical and epidemiologic factors. Multivariate analyses were conducted using logistic regression, adjusting for known BC confounders such as age and gender. Survival analysis was done using the Kaplan-Meier method and differences in survival were assessed using the log rank test. Individuals with MMP2 (-1306) TT genotype as well as T allele were at higher risk of BC (P, 0.042; OR, 2.85; P, 0.001; OR, 1.76). This effect was even more apparent in case of CT+TT (P T were associated with high risk of recurrence in BCG treated patients (HR, 4.32; P, 0.006 and HR, 2.06; P, 0.047) thus showing reduced recurrence free survival (CT+TT/CC = 34/45 months; log rank P, 0.039). Our data suggested that variant allele of MMP2 1306C > T was associated with high risk of tumor recurrence and reduced recurrence free survival in superficial BC patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Meclozine promotes longitudinal skeletal growth in transgenic mice with achondroplasia carrying a gain-of-function mutation in the FGFR3 gene.

    Science.gov (United States)

    Matsushita, Masaki; Hasegawa, Satoru; Kitoh, Hiroshi; Mori, Kensaku; Ohkawara, Bisei; Yasoda, Akihiro; Masuda, Akio; Ishiguro, Naoki; Ohno, Kinji

    2015-02-01

    Achondroplasia (ACH) is one of the most common skeletal dysplasias causing short stature owing to a gain-of-function mutation in the FGFR3 gene, which encodes the fibroblast growth factor receptor 3. We found that meclozine, an over-the-counter drug for motion sickness, inhibited elevated FGFR3 signaling in chondrocytic cells. To examine the feasibility of meclozine administration in clinical settings, we investigated the effects of meclozine on ACH model mice carrying the heterozygous Fgfr3(ach) transgene. We quantified the effect of meclozine in bone explant cultures employing limb rudiments isolated from developing embryonic tibiae from Fgfr3(ach) mice. We found that meclozine significantly increased the full-length and cartilaginous primordia of embryonic tibiae isolated from Fgfr3(ach) mice. We next analyzed the skeletal phenotypes of growing Fgfr3(ach) mice and wild-type mice with or without meclozine treatment. In Fgfr3(ach) mice, meclozine significantly increased the body length after 2 weeks of administration. At skeletal maturity, the bone lengths including the cranium, radius, ulna, femur, tibia, and vertebrae were significantly longer in meclozine-treated Fgfr3(ach) mice than in untreated Fgfr3(ach) mice. Interestingly, meclozine also increased bone growth in wild-type mice. The plasma concentration of meclozine during treatment was within the range that has been used in clinical settings for motion sickness. Increased longitudinal bone growth in Fgfr3(ach) mice by oral administration of meclozine in a growth period suggests potential clinical feasibility of meclozine for the improvement of short stature in ACH.

  5. Yeast Srs2 Helicase Promotes Redistribution of Single-Stranded DNA-Bound RPA and Rad52 in Homologous Recombination Regulation

    Directory of Open Access Journals (Sweden)

    Luisina De Tullio

    2017-10-01

    Full Text Available Srs2 is a super-family 1 helicase that promotes genome stability by dismantling toxic DNA recombination intermediates. However, the mechanisms by which Srs2 remodels or resolves recombination intermediates remain poorly understood. Here, single-molecule imaging is used to visualize Srs2 in real time as it acts on single-stranded DNA (ssDNA bound by protein factors that function in recombination. We demonstrate that Srs2 is highly processive and translocates rapidly (∼170 nt per second in the 3′→5′ direction along ssDNA saturated with replication protein A (RPA. We show that RPA is evicted from DNA during the passage of Srs2. Remarkably, Srs2 also readily removes the recombination mediator Rad52 from RPA-ssDNA and, in doing so, promotes rapid redistribution of both Rad52 and RPA. These findings have important mechanistic implications for understanding how Srs2 and related nucleic acid motor proteins resolve potentially pathogenic nucleoprotein intermediates.

  6. Yeast Srs2 Helicase Promotes Redistribution of Single-Stranded DNA-Bound RPA and Rad52 in Homologous Recombination Regulation.

    Science.gov (United States)

    De Tullio, Luisina; Kaniecki, Kyle; Kwon, Youngho; Crickard, J Brooks; Sung, Patrick; Greene, Eric C

    2017-10-17

    Srs2 is a super-family 1 helicase that promotes genome stability by dismantling toxic DNA recombination intermediates. However, the mechanisms by which Srs2 remodels or resolves recombination intermediates remain poorly understood. Here, single-molecule imaging is used to visualize Srs2 in real time as it acts on single-stranded DNA (ssDNA) bound by protein factors that function in recombination. We demonstrate that Srs2 is highly processive and translocates rapidly (∼170 nt per second) in the 3'→5' direction along ssDNA saturated with replication protein A (RPA). We show that RPA is evicted from DNA during the passage of Srs2. Remarkably, Srs2 also readily removes the recombination mediator Rad52 from RPA-ssDNA and, in doing so, promotes rapid redistribution of both Rad52 and RPA. These findings have important mechanistic implications for understanding how Srs2 and related nucleic acid motor proteins resolve potentially pathogenic nucleoprotein intermediates. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. The mutation frequency of 8-oxo-7,8 dihydroguanine (8-oxoG) situated in a multiply damaged site: comparison of a single and two closely opposed 8-oxodG in Escherichia coli

    International Nuclear Information System (INIS)

    Malyarchuk, S.G.; Youngblood, R.C.; Landry, A.M.; Quillin, E.; Harrison, L.

    2003-01-01

    Full text: A multiply damaged site (MDS) is defined as >= two lesions within a distance of 10-15 base pairs (bp). MDS generated by ionizing radiation contains oxidative base damage, and in vitro studies have indicated that if the base damage is less than 3 bp apart, repair of one lesion is inhibited until repair of the lesion in the opposite strand is completed. Inhibition of repair could result in an increase in the mutation frequency of the base damage. We have designed an assay to determine whether a closely opposed lesion causes an increase in adenine insertion opposite an 8-oxodG in bacteria. The double-stranded oligonucleotides (with no damage, each single 8-oxodG or the MDS) were ligated into the firefly luciferase coding region of a reporter vector and transformed into wild type or MutY-deficient bacteria. The MDS contained an 8-oxodG in the transcribed strand (T) and a second 8-oxodG immediately 5' to this lesion in the non-transcribed strand (NT). During two rounds of replication, insertion of adenine opposite the 8-oxodG in the T or NT strand results in a translation termination codon at position 444 or 445, respectively. In wild-type bacteria, we detected a translation stop at a frequency of 0.15% (codon 444) and 0.09% (codon 445) with a single 8-oxodG in the T or NT strand, respectively. This was enhanced ∼3 fold when single lesions were replicated in MutY-deficient bacteria. Positioning an 8-oxodG in the T strand within the MDS enhanced the mutation frequency by ∼2 fold in wild-type bacteria and 8 fold in Mut Y-deficient bacteria, while the mutation frequency of the 8-oxodG in the NT strand increased by 6 fold in Mut Y-deficient bacteria. This enhancement of mutation frequency supports the in vitro MDS studies, which demonstrated the inability of base excision repair to completely repair closely opposed lesions

  8. MLH1-93 G/a polymorphism is associated with MLH1 promoter methylation and protein loss in dysplastic sessile serrated adenomas with BRAFV600E mutation.

    Science.gov (United States)

    Fennell, Lochlan J; Jamieson, Saara; McKeone, Diane; Corish, Tracie; Rohdmann, Megan; Furner, Tori; Bettington, Mark; Liu, Cheng; Kawamata, Futoshi; Bond, Catherine; Van De Pols, Jolieke; Leggett, Barbara; Whitehall, Vicki

    2018-01-05

    Sessile serrated adenomas with BRAF mutation progress rapidly to cancer following the development of dysplasia (SSAD). Approximately 75% of SSADs methylate the mismatch repair gene MLH1, develop mismatch repair deficiency and the resultant cancers have a good prognosis. The remaining SSADs and BRAF mutant traditional serrated adenomas (TSA) develop into microsatellite stable cancers with a poor prognosis. The reason for this dichotomy is unknown. In this study, we assessed the genotypic frequency of the MLH1-93 polymorphism rs1800734 in SSADs and TSAs to determine if the uncommon variant A allele predisposes to MLH1 promoter hypermethylation. We performed genotyping for the MLH1-93 polymorphism, quantitative methylation specific PCR, and MLH1 immunohistochemistry on 124 SSAD, 128 TSA, 203 BRAF mutant CRCs and 147 control subjects with normal colonoscopy. The minor A allele was significantly associated with a dose dependent increase in methylation at the MLH1 promoter in SSADs (p = 0.022). The AA genotype was only observed in SSADs with MLH1 loss. The A allele was also overrepresented in BRAF mutant cancers with MLH1 loss. Only one of the TSAs showed loss of MLH1 and the overall genotype distribution in TSAs did not differ from controls. The MLH1-93 AA genotype is significantly associated with promoter hypermethylation and MLH1 loss in the context of SSADs. BRAF mutant microsatellite stable colorectal cancers with the AA genotype most likely arise in TSAs since the A allele does not predispose to methylation in this context.

  9. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma

    Science.gov (United States)

    Ramos, Grasieli de Oliveira; Bernardi, Lisiane; Lauxen, Isabel; Sant’Ana Filho, Manoel; Horwitz, Alan Rick; Lamers, Marcelo Lazzaron

    2016-01-01

    Cell migration is regulated by adhesion to the extracellular matrix (ECM) through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC). We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad) or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad), plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization. PMID:26978651

  10. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Grasieli de Oliveira Ramos

    Full Text Available Cell migration is regulated by adhesion to the extracellular matrix (ECM through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC. We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad, plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization.

  11. Detection of single nucleotide polymorphisms in p53 mutation hotspots and expression of mutant p53 in human cell lines using an enzyme-linked electrochemical assay

    Czech Academy of Sciences Publication Activity Database

    Horáková Brázdilová, Petra; Šimková, Eva; Vychodilová, Zdenka; Brázdová, Marie; Fojta, Miroslav

    2009-01-01

    Roč. 21, č. 15 (2009), s. 1723-1729 ISSN 1040-0397 R&D Projects: GA ČR(CZ) GA203/07/1195; GA AV ČR(CZ) IAA400040901; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : enzyme-linked electrochemical assay * SNP typing * p53 mutation Subject RIV: AQ - Safety, Health Protection, Human - Machine Impact factor: 2.630, year: 2009

  12. Exploration of pathomechanisms triggered by a single-nucleotide polymorphism in titin's I-band: the cardiomyopathy-linked mutation T2580I

    NARCIS (Netherlands)

    Bogomolovas, J.; Fleming, J.R.; Anderson, B.R.; Williams, R.; Lange, S.; Simon, B.; Khan, M.M.; Rudolf, R.; Franke, B.; Bullard, B.; Rigden, D.J.; Granzier, H.; Labeit, S.; Mayans, O.

    2016-01-01

    Missense single-nucleotide polymorphisms (mSNPs) in titin are emerging as a main causative factor of heart failure. However, distinguishing between benign and disease-causing mSNPs is a substantial challenge. Here, we research the question of whether a single mSNP in a generic domain of titin can

  13. Promoting mechanism of N-doped single-walled carbon nanotubes for O2 dissociation and SO2 oxidation

    Science.gov (United States)

    Chen, Yanqiu; Yin, Shi; Chen, Yang; Cen, Wanglai; Li, Jianjun; Yin, Huaqiang

    2018-03-01

    Although heteroatom doping in carbon based catalysts have recently received intensive attentions, the role of the intrinsically porous structure of practical carbon materials and their potential synergy with doping atoms are still unclear. To investigate the complex effects, a range of N-doped single-walled carbon nanotubes (SWCNTs) were used to investigate their potential use for O2 dissociation and the subsequent SO2 oxidation using density functional theory. It is found that graphite N doping can synergize with the outer surface of SWCNTs to facilitate the dissociation of O2. The barrier for the dissociation on dual graphite N-doped SWCNT-(8, 8) is as low as 0.3 eV, and the subsequent SO2 oxidation is thermodynamically favorable and kinetically feasible. These results spotlight on developing promising carboncatalyst via utilization of porous gemometry and heteroatom-doping of carbon materials simultaneously.

  14. Whole-exome sequencing in a single proband reveals a mutation in the CHST8 gene in autosomal recessive peeling skin syndrome.

    Science.gov (United States)

    Cabral, Rita M; Kurban, Mazen; Wajid, Muhammad; Shimomura, Yutaka; Petukhova, Lynn; Christiano, Angela M

    2012-04-01

    Generalized peeling skin syndrome (PSS) is an autosomal recessive genodermatosis characterized by lifelong, continuous shedding of the upper epidermis. Using whole-genome homozygozity mapping and whole-exome sequencing, we identified a novel homozygous missense mutation (c.229C>T, R77W) within the CHST8 gene, in a large consanguineous family with non-inflammatory PSS type A. CHST8 encodes a Golgi transmembrane N-acetylgalactosamine-4-O-sulfotransferase (GalNAc4-ST1), which we show by immunofluorescence staining to be expressed throughout normal epidermis. A colorimetric assay for total sulfated glycosaminoglycan (GAG) quantification, comparing human keratinocytes (CCD1106 KERTr) expressing wild type and mutant recombinant GalNAc4-ST1, revealed decreased levels of total sulfated GAGs in cells expressing mutant GalNAc4-ST1, suggesting loss of function. Western blotting revealed lower expression levels of mutant recombinant GalNAc4-ST1 compared to wild type, suggesting that accelerated degradation may result in loss of function, leading to PSS type A. This is the first report describing a mutation as the cause of PSS type A. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. MPL mutations in myeloproliferative disorders

    DEFF Research Database (Denmark)

    Beer, Philip A.; Campbell, Peter J.; Scott, Linda M.

    2008-01-01

    Activating mutations of MPL exon 10 have been described in a minority of patients with idiopathic myelofibrosis (IMF) or essential thrombocythemia (ET), but their prevalence and clinical significance are unclear. Here we demonstrate that MPL mutations outside exon 10 are uncommon in platelet c......DNA and identify 4 different exon 10 mutations in granulocyte DNA from a retrospective cohort of 200 patients with ET or IMF. Allele-specific polymerase chain reaction was then used to genotype 776 samples from patients with ET entered into the PT-1 studies. MPL mutations were identified in 8.5% of JAK2 V617F......(-) patients and a single V617F(+) patient. Patients carrying the W515K allele had a significantly higher allele burden than did those with the W515L allele, suggesting a functional difference between the 2 variants. Compared with V617F(+) ET patients, those with MPL mutations displayed lower hemoglobin...

  16. Thin films of single-walled carbon nanotubes promote human osteoblastic cells (Saos-2) proliferation in low serum concentrations

    International Nuclear Information System (INIS)

    Akasaka, Tsukasa; Yokoyama, Atsuro; Matsuoka, Makoto; Hashimoto, Takeshi; Watari, Fumio

    2010-01-01

    One strategy used for the regeneration of bone is the development of cell culture substrates and scaffolds that can control osteoblast proliferation and differentiation. In recent investigations, carbon nanotubes (CNTs) have been utilized as scaffolds for osteoblastic cell cultures; however, there are only a few reports describing the proliferation of osteoblastic cells on thin CNT films; in particular, the effects of serum concentration on cell proliferation have not been studied. In the present study, we prepared culture dishes with homogeneous thin or thick films of non-modified CNTs and examined the effect of serum concentrations on human osteoblastic cells (Saos-2) proliferation in these culture dishes. We demonstrated that the ratio of cell proliferation was strongly affected by the concentration of serum. Interestingly, single-walled carbon nanotube (SWNT) thin films were found to be the most effective substrate for the proliferation of Saos-2 cells in low concentrations of serum. Thus, thin SWNT films may be used as an effective biomaterial for the culture of Saos-2 cells in low serum concentrations.

  17. Identification of factors promoting ex vivo maintenance of mouse hematopoietic stem cells by long-term single-cell quantification.

    Science.gov (United States)

    Kokkaliaris, Konstantinos D; Drew, Erin; Endele, Max; Loeffler, Dirk; Hoppe, Philipp S; Hilsenbeck, Oliver; Schauberger, Bernhard; Hinzen, Christoph; Skylaki, Stavroula; Theodorou, Marina; Kieslinger, Matthias; Lemischka, Ihor; Moore, Kateri; Schroeder, Timm

    2016-09-01

    The maintenance of hematopoietic stem cells (HSCs) during ex vivo culture is an important prerequisite for their therapeutic manipulation. However, despite intense research, culture conditions for robust maintenance of HSCs are still missing. Cultured HSCs are quickly lost, preventing their improved analysis and manipulation. Identification of novel factors supporting HSC ex vivo maintenance is therefore necessary. Coculture with the AFT024 stroma cell line is capable of maintaining HSCs ex vivo long-term, but the responsible molecular players remain unknown. Here, we use continuous long-term single-cell observation to identify the HSC behavioral signature under supportive or nonsupportive stroma cocultures. We report early HSC survival as a major characteristic of HSC-maintaining conditions. Behavioral screening after manipulation of candidate molecules revealed that the extracellular matrix protein dermatopontin (Dpt) is involved in HSC maintenance. DPT knockdown in supportive stroma impaired HSC survival, whereas ectopic expression of the Dpt gene or protein in nonsupportive conditions restored HSC survival. Supplementing defined stroma- and serum-free culture conditions with recombinant DPT protein improved HSC clonogenicity. These findings illustrate a previously uncharacterized role of Dpt in maintaining HSCs ex vivo. © 2016 by The American Society of Hematology.

  18. APOBEC3 cytidine deaminases in double-strand DNA break repair and cancer promotion.

    Science.gov (United States)

    Nowarski, Roni; Kotler, Moshe

    2013-06-15

    High frequency of cytidine to thymidine conversions was identified in the genome of several types of cancer cells. In breast cancer cells, these mutations are clustered in long DNA regions associated with single-strand DNA (ssDNA), double-strand DNA breaks (DSB), and genomic rearrangements. The observed mutational pattern resembles the deamination signature of cytidine to uridine carried out by members of the APOBEC3 family of cellular deaminases. Consistently, APOBEC3B (A3B) was recently identified as the mutational source in breast cancer cells. A3G is another member of the cytidine deaminases family predominantly expressed in lymphoma cells, where it is involved in mutational DSB repair following ionizing radiation treatments. This activity provides us with a new paradigm for cancer cell survival and tumor promotion and a mechanistic link between ssDNA, DSBs, and clustered mutations. Cancer Res; 73(12); 3494-8. ©2013 AACR. ©2013 AACR.

  19. Single Nucleotide Polymorphisms of MMP2 Gene Promoter on the Risk of Development and Metastasis of lung Cancer

    Directory of Open Access Journals (Sweden)

    H Keshvary Ravan

    2017-04-01

    Full Text Available     Background & aim: The high incidence and poor prognosis of the lung cancer makes it aa a major health problem in the last few decades. Determination of frequency of different histopathology types of primary lung cancer has great importance in creating integrated treatment programs and recognized the effective factors causing the disease. Overexpression of MMPs has a direct relation with invasion and metastasis of malignant tumors in different tissues. The aim of this study was to assess the effect of MMP-2 gene promoter polymorphism with lung cancer and metastases in patients with lung cancer and compared with the control groups by the PCR-RFLP method.   Methods: In the present case-control study, The MMP-2 polymorphisms were analyzed by restriction fragment-length polymorphism (RFLP in 50 patients with lung cancer and 77 cohort sample. All samples were taken under supervision of a physician. DNA isolation was performed using DNA extraction kit (Cinnagen, Iran. MMP9 gene was amplified by specific primers and PCR product was digested with FSPBI restriction enzyme. Data were analysis using Chi square by the SPSS software.   Results: The examination of allelic and genotypic distribution in patients with lung cancer and control showed that the allele frequency of C and T in patients with lung cancer were 90 and 10% (P=0.04 and in the control were 80.15 and 30% (P=0.05 respectively. Also genotype frequency of CC, CT and TT in patients with lung cancer were 82, 16 and 2 (P=0.05 and in the control were 69.93, 31.16, 3.1 percentage respectively (P=0.5. No significant difference was seen in comparison of genotype groups in non-metastatic and control. Comparison of homozygous CC genotype and control were confirmed the direct involvement of c allele in metastasis   Conclusion: It seems that individuals with C allele can increase susceptibility to lung cancer. Also these findings indicate that CC genotype as a risk factor facilitating the spread of

  20. Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of Arabidopsis thaliana

    KAUST Repository

    Belfield, E.J.; Gan, X.; Mithani, A.; Brown, C.; Jiang, C.; Franklin, K.; Alvey, E.; Wibowo, A.; Jung, M.; Bailey, K.; Kalwani, S.; Ragoussis, J.; Mott, R.; Harberd, N.P.

    2012-01-01

    Ionizing radiation has long been known to induce heritable mutagenic change in DNA sequence. However, the genome-wide effect of radiation is not well understood. Here we report the molecular properties and frequency of mutations in phenotypically selected mutant lines isolated following exposure of the genetic model flowering plant Arabidopsis thaliana to fast neutrons (FNs). Previous studies suggested that FNs predominantly induce deletions longer than a kilobase in A. thaliana. However, we found a higher frequency of single base substitution than deletion mutations. While the overall frequency and molecular spectrum of fast-neutron (FN)-induced single base substitutions differed substantially from those of "background" mutations arising spontaneously in laboratory-grown plants, G:C>A:T transitions were favored in both. We found that FN-induced G:C>A:T transitions were concentrated at pyrimidine dinucleotide sites, suggesting that FNs promote the formation of mutational covalent linkages between adjacent pyrimidine residues. In addition, we found that FNs induced more single base than large deletions, and that these single base deletions were possibly caused by replication slippage. Our observations provide an initial picture of the genome-wide molecular profile of mutations induced in A. thaliana by FN irradiation and are particularly informative of the nature and extent of genome-wide mutation in lines selected on the basis of mutant phenotypes from FN-mutagenized A. thaliana populations.

  1. Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of Arabidopsis thaliana

    KAUST Repository

    Belfield, E.J.

    2012-04-12

    Ionizing radiation has long been known to induce heritable mutagenic change in DNA sequence. However, the genome-wide effect of radiation is not well understood. Here we report the molecular properties and frequency of mutations in phenotypically selected mutant lines isolated following exposure of the genetic model flowering plant Arabidopsis thaliana to fast neutrons (FNs). Previous studies suggested that FNs predominantly induce deletions longer than a kilobase in A. thaliana. However, we found a higher frequency of single base substitution than deletion mutations. While the overall frequency and molecular spectrum of fast-neutron (FN)-induced single base substitutions differed substantially from those of "background" mutations arising spontaneously in laboratory-grown plants, G:C>A:T transitions were favored in both. We found that FN-induced G:C>A:T transitions were concentrated at pyrimidine dinucleotide sites, suggesting that FNs promote the formation of mutational covalent linkages between adjacent pyrimidine residues. In addition, we found that FNs induced more single base than large deletions, and that these single base deletions were possibly caused by replication slippage. Our observations provide an initial picture of the genome-wide molecular profile of mutations induced in A. thaliana by FN irradiation and are particularly informative of the nature and extent of genome-wide mutation in lines selected on the basis of mutant phenotypes from FN-mutagenized A. thaliana populations.

  2. Radiation-induced mutation at minisatellite loci

    International Nuclear Information System (INIS)

    Dubrova, Y.E.; Nesterov, V.N.; Krouchinsky, N.G.

    1997-01-01

    We are studying the radiation-induced increase of mutation rate in minisatellite loci in mice and humans. Minisatellite mutations were scored by multilocus DNA fingerprint analysis in the progeny of γ-irradiated and non-irradiated mice. The frequency of mutation in offspring of irradiated males was 1.7 higher that in the control group. Germline mutation at human minisatellite loci was studied among children born in heavily polluted areas of the Mogilev district of Belarus after the Chernobyl accident and in a control population. The frequency of mutation assayed both by DNA fingerprinting and by eight single locus probes was found to be two times higher in the exposed families than in the control group. Furthermore, mutation rate was correlated with the parental radiation dose for chronic exposure 137 Cs, consistent with radiation-induction of germline mutation. The potential use of minisatellites in monitoring germline mutation in humans will be discussed

  3. A single amino acid change within the R2 domain of the VvMYB5b transcription factor modulates affinity for protein partners and target promoters selectivity

    Directory of Open Access Journals (Sweden)

    Granier Thierry

    2011-08-01

    Full Text Available Abstract Background Flavonoid pathway is spatially and temporally controlled during plant development and the transcriptional regulation of the structural genes is mostly orchestrated by a ternary protein complex that involves three classes of transcription factors (R2-R3-MYB, bHLH and WDR. In grapevine (Vitis vinifera L., several MYB transcription factors have been identified but the interactions with their putative bHLH partners to regulate specific branches of the flavonoid pathway are still poorly understood. Results In this work, we describe the effects of a single amino acid substitution (R69L located in the R2 domain of VvMYB5b and predicted to affect the formation of a salt bridge within the protein. The activity of the mutated protein (name VvMYB5bL, the native protein being referred as VvMYB5bR was assessed in different in vivo systems: yeast, grape cell suspensions, and tobacco. In the first two systems, VvMYB5bL exhibited a modified trans-activation capability. Moreover, using yeast two-hybrid assay, we demonstrated that modification of VvMYB5b transcriptional properties impaired its ability to correctly interact with VvMYC1, a grape bHLH protein. These results were further substantiated by overexpression of VvMYB5bR and VvMYB5bL genes in tobacco. Flowers from 35S::VvMYB5bL transgenic plants showed a distinct phenotype in comparison with 35S::VvMYB5bR and the control plants. Finally, significant differences in transcript abundance of flavonoid metabolism genes were observed along with variations in pigments accumulation. Conclusions Taken together, our findings indicate that VvMYB5bL is still able to bind DNA but the structural consequences linked to the mutation affect the capacity of the protein to activate the transcription of some flavonoid genes by modifying the interaction with its co-partner(s. In addition, this study underlines the importance of an internal salt bridge for protein conformation and thus for the establishment

  4. Promotion of the oxidation of carbon monoxide at stepped platinum single-crystal electrodes in alkaline media by lithium and beryllium cations.

    Science.gov (United States)

    Stoffelsma, Chantal; Rodriguez, Paramaconi; Garcia, Gonzalo; Garcia-Araez, Nuria; Strmcnik, Dusan; Marković, Nenad M; Koper, Marc T M

    2010-11-17

    The role of alkali cations (Li(+), Na(+), K(+), Cs(+), and Be(2+)) on the blank voltammetric response and the oxidative stripping of carbon monoxide from stepped Pt single-crystal electrodes in alkaline media has been investigated by cyclic voltammetry. A strong influence of the nature of the cation on both the blank voltammetric profile and the CO oxidation is observed and related to the influence of the cation on the specific adsorption of OH on the platinum surface. Especially Li(+) and Be(2+) cations markedly affect the adsorption of OH and thereby have a significant promoting effect on CO(ads) oxidation. The voltammetric experiments suggest that, on Pt(111), the influence of Li(+) (and Be(2+)) is primarily through a weakening of the repulsive interactions between the OH in the OH adlayer, whereas in the presence of steps also, the onset of OH adsorption is at a lower potential, both on steps and on terraces.

  5. The NOD2 Single Nucleotide Polymorphism rs72796353 (IVS4+10 A>C) Is a Predictor for Perianal Fistulas in Patients with Crohn's Disease in the Absence of Other NOD2 Mutations.

    Science.gov (United States)

    Schnitzler, Fabian; Friedrich, Matthias; Wolf, Christiane; Stallhofer, Johannes; Angelberger, Marianne; Diegelmann, Julia; Olszak, Torsten; Tillack, Cornelia; Beigel, Florian; Göke, Burkhard; Glas, Jürgen; Lohse, Peter; Brand, Stephan

    2015-01-01

    A previous study suggested an association of the single nucleotide polymorphism (SNP) rs72796353 (IVS4+10 A>C) in the NOD2 gene with susceptibility to Crohn's disease (CD). However, this finding has not been confirmed. Given that NOD2 variants still represent the most important predictors for CD susceptibility and phenotype, we evaluated the association of rs72796353 with inflammatory bowel disease (IBD) susceptibility and the IBD phenotype. Genomic DNA from 2256 Caucasians, including 1073 CD patients, 464 patients with ulcerative colitis (UC), and 719 healthy controls, was genotyped for the NOD2 SNP rs72796353 and the three main CD-associated NOD2 mutations rs2066844, rs2066845, and rs2066847. Subsequently, IBD association and genotype-phenotype analyses were conducted. In contrast to the strong associations of the NOD2 SNPs rs2066844 (p=3.51 x 10(-3)), rs2066845 (p=1.54 x 10(-2)), and rs2066847 (p=1.61 x 10(-20)) with CD susceptibility, no significant association of rs72796353 with CD or UC susceptibility was found. However, in CD patients without the three main CD-associated NOD2 mutations, rs72796353 was significantly associated with the development of perianal fistulas (p=2.78 x 10(-7), OR 5.27, [95% CI 2.75-10.12] vs. NOD2 wild-type carriers). Currently, this study represents the largest genotype-phenotype analysis of the impact of the NOD2 variant rs72796353 on the disease phenotype in IBD. Our data demonstrate that in CD patients the IVS4+10 A>C variant is strongly associated with the development of perianal fistulas. This association is particularly pronounced in patients who are not carriers of the three main CD-associated NOD2 mutations, suggesting rs72796353 as additional genetic marker for the CD disease behaviour.

  6. Decrease in Survival Rate of Colorectal Cancer Patients Due to Insertion of a Single Guanine Base in Promoter Sequences of Matrix Metalloproteinase-1 Gene (in Tehran Population

    Directory of Open Access Journals (Sweden)

    Z Hojati

    2009-01-01

    Full Text Available Introduction: Insertion or deletion of a guanine in -1607 at promoter region of matrix metalloproteinase-1 enzyme creates two allelic types for this gene in the population: 2G and 1G, respectively. 2G allele contains an extra binding site for ETS transcription factors that this may increase the level of gene expression. Therefore, aim of this study was investigation of the single Guanine insertion in the promoter gene and its association with colorectal cancer patient survival rate and tumor progression. Methods: Blood samples from 150 colorectal patients and 100 cases were extracted. The mean follow-up was 25 months (12-36 months. Cases and patients were genotyped using genomic DNA extraction and PCR-RFLP. Results: Colorectal cancer patients were divided in two groups; with activity of metastasis (M+ and without activity of metastasis (M-. 2G allele in metastasis group (55% showed more frequency rather than controls (23%. Survival analyses showed that 3 years survival patients rate in the patients without metastasis activity carrying 1G allele (homo and heterozygote was 81% and for 2G homozygote is 66% (p=0.04. The survival rate dependent to cancer was 90% and 71%, respectively (P=0.01. Conclusion: According to the results, it seems that patients carrying 1G allele show a better survival rate dependent on cancer as compared to patients who do not carry this allele.

  7. Characterization of a mutation commonly associated with persistent stuttering: evidence for a founder mutation

    Science.gov (United States)

    Fedyna, Alison; Drayna, Dennis; Kang, Changsoo

    2010-01-01

    Stuttering is a disorder which affects the fluency of speech. It has been shown to have high heritability, and has recently been linked to mutations in the GNPTAB gene. One such mutation, Glu1200Lys, has been repeatedly observed in unrelated families and individual cases. Eight unrelated individuals carrying this mutation were analyzed in an effort to distinguish whether these arise from repeated mutation at the same site, or whether they represent a founder mutation with a single origin. Results show that all 12 chromosomes carrying this mutation share a common haplotype in this region, indicating it is a founder mutation. Further analysis estimated the age of this allele to be ~572 generations. Construction of a cladogram tracing the mutation through our study sample also supports the founder mutation hypothesis. PMID:20944643

  8. Single nucleotide polymorphisms (SNPs at CDH1 promoter region in familial gastric cancer Polimorfismos de nucleótido único (SNPs en la región promotora CDH1 en cáncer gástrico familiar

    Directory of Open Access Journals (Sweden)

    A. Ramos-de la Medina

    2006-01-01

    Full Text Available Introduction: gastric cancer is the most frequent gastrointestinal malignancy in Mexico and the proportion of patients younger than 40 years is one of the highest reported in the world literature. Recently several families with familial diffuse gastric cancer have been identified at the National Institute of Medical Sciences and Nutrition. Germline mutations in the E-cadherin gene (CHD1 have been described that result in the development of diffuse hereditary gastric cancer in young patients. Methods: the complete coding sequence at exons 1 to 16 and the promoter region of CDH1 was amplified by polymerase chain reaction in peripheral blood samples of two patients with early onset familial diffuse gastric cancer. Results: no germline inactivating mutations of CHD1 were found on either patient. Single nucleotide polymorphisms -160 C→A were detected in the promoter region of CDH1 in both patients. Conclusions: the polymorphism -160 C→A theoretically confers an increased risk of developing diffuse gastric cancer. The relatives of these patients may an increased risk of gastric cancer among other tumors. There is presently not enough evidence to consider the -160 C→A polymorphism an etiologic factor of diffuse gastric cancer in these patients since the frequency and type of genetic alterations of CDH1 are largely unknown in the Mexican population. It will be necessary to conduct epidemiologic studies in the Mexican population to determine the influence that genetic alterations have on the genesis of diffuse gastric carcinoma.Introducción: el cáncer gástrico es la neoplasia más frecuente del tracto gastrointestinal en México y la proporción de pacientes menores de 40 años es una de las más altas reportadas en la literatura mundial. Recientemente se han identificado en el Instituto Nacional de Ciencias Médicas y Nutrición varias familias con cáncer gástrico difuso familiar. Múltiples mutaciones germinales del gene de E-cadherina (CHD1

  9. Time-Resolved Tracking of Mutations Reveals Diverse Allele Dynamics during Escherichia coli Antimicrobial Adaptive Evolution to Single Drugs and Drug Pairs

    DEFF Research Database (Denmark)

    Hickman, Rachel A.; Munck, Christian; Sommer, Morten Otto Alexander

    2017-01-01

    + CHL and CHL + CIP). We find that lineages evolved to antibiotic combinations exhibit different resistance allele dynamics compared with those of single-drug evolved lineages, especially for a drug pair with reciprocal collateral sensitivity. During adaptation, we observed interfering, superimposing...

  10. The added value of using mutational profiling in addition to cytology in diagnosing aggressive pancreaticobiliary disease: review of clinical cases at a single center

    Science.gov (United States)

    2014-01-01

    Background This study aimed to better understand the supporting role that mutational profiling (MP) of DNA from microdissected cytology slides and supernatant specimens may play in the diagnosis of malignancy in fine-needle aspirates (FNA) and biliary brushing specimens from patients with pancreaticobiliary masses. Methods Cytology results were examined in a total of 30 patients with associated surgical (10) or clinical (20) outcomes. MP of DNA from microdissected cytology slides and from discarded supernatant fluid was analyzed in 26 patients with atypical, negative or indeterminate cytology. Results Cytology correctly diagnosed aggressive disease in 4 patients. Cytological diagnoses for the remaining 26 were as follows: 16 negative (9 false negative), 9 atypical, 1 indeterminate. MP correctly determined aggressive disease in 1 false negative cytology case and confirmed a negative cytology diagnosis in 7 of 7 cases of non-aggressive disease. Of the 9 atypical cytology cases, MP correctly diagnosed 7 as positive and 1 as negative for aggressive disease. One specimen that was indeterminate by cytology was correctly diagnosed as non-aggressive by MP. When first line malignant (positive) cytology results were combined with positive second line MP results, 12/21 cases of aggressive disease were identified, compared to 4/21 cases identified by positive cytology alone. Conclusions When first line cytology results were uncertain (atypical), questionable (negative), or not possible (non-diagnostic/indeterminate), MP provided additional information regarding the presence of aggressive disease. When used in conjunction with first line cytology, MP increased detection of aggressive disease without compromising specificity in patients that were difficult to diagnose by cytology alone. PMID:25084836

  11. Fundus albipunctatus associated with compound heterozygous mutations in RPE65

    DEFF Research Database (Denmark)

    Schatz, Patrik; Preising, Markus; Lorenz, Birgit

    2011-01-01

    To describe a family with an 18-year-old woman with fundus albipunctatus and compound heterozygous mutations in RPE65 whose unaffected parents and 1 female sibling harbored single heterozygous RPE65 mutations.......To describe a family with an 18-year-old woman with fundus albipunctatus and compound heterozygous mutations in RPE65 whose unaffected parents and 1 female sibling harbored single heterozygous RPE65 mutations....

  12. An eHealth Intervention to Promote Physical Activity and Social Network of Single, Chronically Impaired Older Adults: Adaptation of an Existing Intervention Using Intervention Mapping.

    Science.gov (United States)

    Boekhout, Janet M; Peels, Denise A; Berendsen, Brenda Aj; Bolman, Catherine Aw; Lechner, Lilian

    2017-11-23

    Especially for single older adults with chronic diseases, physical inactivity and a poor social network are regarded as serious threats to their health and independence. The Active Plus intervention is an automated computer-tailored eHealth intervention that has been proven effective to promote physical activity (PA) in the general population of adults older than 50 years. The aim of this study was to report on the methods and results of the systematic adaptation of Active Plus to the wishes and needs of the subgroup of single people older than 65 years who have one or more chronic diseases, as this specific target population may encounter specific challenges regarding PA and social network. The Intervention Mapping (IM) protocol was used to systematically adapt the existing intervention to optimally suit this specific target population. A literature study was performed, and quantitative as well as qualitative data were derived from health care professionals (by questionnaires, n=10) and the target population (by focus group interviews, n=14), which were then systematically integrated into the adapted intervention. As the health problems and the targeted behavior are largely the same in the original and adapted intervention, the outcome of the needs assessment was that the performance objectives remained the same. As found in the literature study and in data derived from health professionals and focus groups, the relative importance and operationalization of the relevant psychosocial determinants related to these objectives are different from the original intervention, resulting in a refinement of the change objectives to optimally fit the specific target population. This refinement also resulted in changes in the practical applications, program components, intervention materials, and the evaluation and implementation strategy for the subgroup of single, chronically impaired older adults. This study demonstrates that the adaptation of an existing intervention is an

  13. Minisequencing mitochondrial DNA pathogenic mutations

    Directory of Open Access Journals (Sweden)

    Carracedo Ángel

    2008-04-01

    Full Text Available Abstract Background There are a number of well-known mutations responsible of common mitochondrial DNA (mtDNA diseases. In order to overcome technical problems related to the analysis of complete mtDNA genomes, a variety of different techniques have been proposed that allow the screening of coding region pathogenic mutations. Methods We here propose a minisequencing assay for the analysis of mtDNA mutations. In a single reaction, we interrogate a total of 25 pathogenic mutations distributed all around the whole mtDNA genome in a sample of patients suspected for mtDNA disease. Results We have detected 11 causal homoplasmic mutations in patients suspected for Leber disease, which were further confirmed by standard automatic sequencing. Mutations m.11778G>A and m.14484T>C occur at higher frequency than expected by change in the Galician (northwest Spain patients carrying haplogroup J lineages (Fisher's Exact test, P-value Conclusion We here developed a minisequencing genotyping method for the screening of the most common pathogenic mtDNA mutations which is simple, fast, and low-cost. The technique is robust and reproducible and can easily be implemented in standard clinical laboratories.

  14. Mutation induction by ion beams in plants

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    The effect of ion beams such as C, He, and Ne ions was investigated on the mutation induction in plants with the expectation that ion beams of high linear energy transfer (LET) can frequently produce large DNA alternation such as inversion, translocation and large deletion rather than point mutation. Mutation frequency was investigated using Arabidopsis visible phenotype loci and was 8 to 33 fold higher for 220 MeV carbon ions than for electrons. Mutation spectrum was investigated on the flower color of chrysanthemum cv to find that flower mutants induced by ion beams show complex and stripe types rather than single color. Polymerase chain reaction analysis was performed to investigate DNA alteration of mutations. In conclusion, the characteristics of ion beams for the mutation induction are 1) high frequency, 2) broad mutation spectrum, and 3) novel mutants. (S. Ohno)

  15. Mutation induction by ion beams in plants

    International Nuclear Information System (INIS)

    Tanaka, Atsushi

    2001-01-01

    The effect of ion beams such as C, He, and Ne ions was investigated on the mutation induction in plants with the expectation that ion beams of high linear energy transfer (LET) can frequently produce large DNA alternation such as inversion, translocation and large deletion rather than point mutation. Mutation frequency was investigated using Arabidopsis visible phenotype loci and was 8 to 33 fold higher for 220 MeV carbon ions than for electrons. Mutation spectrum was investigated on the flower color of chrysanthemum cv to find that flower mutants induced by ion beams show complex and stripe types rather than single color. Polymerase chain reaction analysis was performed to investigate DNA alteration of mutations. In conclusion, the characteristics of ion beams for the mutation induction are 1) high frequency, 2) broad mutation spectrum, and 3) novel mutants. (S. Ohno)

  16. A single point mutation in Tomato spotted wilt virus NSs protein is sufficient to overcome Tsw-gene-mediated resistance in pepper.

    Science.gov (United States)

    Almási, Asztéria; Nemes, Katalin; Csömör, Zsófia; Tóbiás, István; Palkovics, László; Salánki, Katalin

    2017-06-01

    The nonstructural protein (NSs) of Tomato spotted wilt virus (TSWV) was previously identified as an avirulence determinant for Tsw-based resistance on pepper. The NSs of wild-type (WT) and resistance-breaking (RB) TSWV strains isolated in Hungary had only two amino acid substitutions (104, 461). We have analysed the ability of the NSs and their point mutant variants to trigger Tsw-mediated hypersensitive responses and RNA silencing suppressor (RSS) activity in patch assays. We identified a single amino acid change at position 104 (T-A) that was responsible for the necrosis induction or loss, while a significant difference was not detected in the RSS activity of the two parental strains. We have successfully complemented the infection of the WT strain on resistant pepper cultivar with the infectious S RNA transcript of the RB strain and the WT-T104A point mutant. Our work provides direct evidence that a single amino acid change can induce an RB phenotype.

  17. Promotion and inhibition of mutation in pathogens

    Directory of Open Access Journals (Sweden)

    Maurice Samuel Devaraj

    2014-03-01

    Findings from this research may be used to prevent development of drug resistance, whether epigenetic or arising due to deoxyribonucleic acid (DNA modification, in several pathogens, especially Mycobacterium tuberculosis through the co-administration of adenosine along with antibiotic treatment.

  18. Mutations in PIK3CA are infrequent in neuroblastoma

    International Nuclear Information System (INIS)

    Dam, Vincent; Morgan, Brian T; Mazanek, Pavel; Hogarty, Michael D

    2006-01-01

    Neuroblastoma is a frequently lethal pediatric cancer in which MYCN genomic amplification is highly correlated with aggressive disease. Deregulated MYC genes require co-operative lesions to foster tumourigenesis and both direct and indirect evidence support activated Ras signaling for this purpose in many cancers. Yet Ras genes and Braf, while often activated in cancer cells, are infrequent targets for activation in neuroblastoma. Recently, the Ras effector PIK3CA was shown to be activated in diverse human cancers. We therefore assessed PIK3CA for mutation in human neuroblastomas, as well as in neuroblastomas arising in transgenic mice with MYCN overexpressed in neural-crest tissues. In this murine model we additionally surveyed for Ras family and Braf mutations as these have not been previously reported. Sixty-nine human neuroblastomas (42 primary tumors and 27 cell lines) were sequenced for PIK3CA activating mutations within the C2, helical and kinase domain 'hot spots' where 80% of mutations cluster. Constitutional DNA was sequenced in cases with confirmed alterations to assess for germline or somatic acquisition. Additionally, Ras family members (Hras1, Kras2 and Nras) and the downstream effectors Pik3ca and Braf, were sequenced from twenty-five neuroblastomas arising in neuroblastoma-prone transgenic mice. We identified mutations in the PIK3CA gene in 2 of 69 human neuroblastomas (2.9%). Neither mutation (R524M and E982D) has been studied to date for effects on lipid kinase activity. Though both occurred in tumors with MYCN amplification the overall rate of PIK3CA mutations in MYCN amplified and single-copy tumors did not differ appreciably (2 of 31 versus 0 of 38, respectively). Further, no activating mutations were identified in a survey of Ras signal transduction genes (including Hras1, Kras2, Nras, Pik3ca, or Braf genes) in twenty-five neuroblastic tumors arising in the MYCN-initiated transgenic mouse model. These data suggest that activating

  19. Correction of a splice-site mutation in the beta-globin gene stimulated by triplex-forming peptide nucleic acids

    DEFF Research Database (Denmark)

    Chin, Joanna Y; Kuan, Jean Y; Lonkar, Pallavi S

    2008-01-01

    Splice-site mutations in the beta-globin gene can lead to aberrant transcripts and decreased functional beta-globin, causing beta-thalassemia. Triplex-forming DNA oligonucleotides (TFOs) and peptide nucleic acids (PNAs) have been shown to stimulate recombination in reporter gene loci in mammalian...... DNA fragments, can promote single base-pair modification at the start of the second intron of the beta-globin gene, the site of a common thalassemia-associated mutation. This single base pair change was detected by the restoration of proper splicing of transcripts produced from a green fluorescent...

  20. Feasibility of a Humor Training to Promote Humor and Decrease Stress in a Subclinical Sample: A Single-Arm Pilot Study

    Directory of Open Access Journals (Sweden)

    Nektaria Tagalidou

    2018-04-01

    Full Text Available The present study investigates the feasibility of a humor training for a subclinical sample suffering from increased stress, depressiveness, or anxiety. Based on diagnostic interviews, 35 people were invited to participate in a 7-week humor training. Evaluation measures were filled in prior training, after training, and at a 1-month follow-up including humor related outcomes (coping humor and cheerfulness and mental health-related outcomes (perceived stress, depressiveness, anxiety, and well-being. Outcomes were analyzed using repeated-measures ANOVAs. Within-group comparisons of intention-to-treat analysis showed main effects of time with large effect sizes on all outcomes. Post hoc tests showed medium to large effect sizes on all outcomes from pre to post and results remained stable until follow-up. Satisfaction with the training was high, attrition rate low (17.1%, and participants would highly recommend the training. Summarizing the results, the pilot study showed promising effects for people suffering from subclinical symptoms. All outcomes were positively influenced and showed stability over time. Humor trainings could be integrated more into mental health care as an innovative program to reduce stress whilst promoting also positive emotions. However, as this study was a single-arm pilot study, further research (including also randomized controlled trials is still needed to evaluate the effects more profoundly.

  1. Evaluation of polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis for the detection of the rpoB mutations associated with resistance to rifampicin in Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Lee, H.; Cho, S.-N.; Bang, H.-E.; Kim, S.-C.; Victor, T.C.; Jordaan, A.; Suffys, P.N.; Gomes, H.M.; Singh, U.; Suresh, V.N.; Khan, B.K.

    2003-01-01

    Resistance of Mycobacterium tuberculosis to rifampicin (RIF) has been associated with mutations of the rpoB gene, which encodes for the RNA polymerase B subunit. Based on this information, polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) has been suggested as a sensitive and rapid screening test for the detection of RIF-resistant M. tuberculosis from clinical isolates. PCR-SSCP analyses with radioisotopes and without radioisotopes were employed to detect mutations of the rpoB gene associated with resistance to RIF in four laboratories, and results were compared with those of sequence analysis and the conventional proportion method of drug susceptibility test between laboratories. Radioisotopic PCR-SSCP showed an excellent correlation with sequence analysis of the 157 bp region of the rpoB gene by identifying correctly all 32 isolates analyzed in this study, with a high resolution of the banding patterns obtained. In a separate study, non-radioisotopic PCR-SSCP also gave a good correlation with sequence analysis in 22 isolates, but two (9.1%) isolates were classified as resistant by PCR-SSCP despite wild type sequences. When PCR-SSCP was compared with the results obtained using the proportion method, sensitivity of 44% to 85% were obtained in the 4 laboratories that participated in this study. Possible reasons for discordant results are discussed. It has been concluded that despite discordant results, which were sometimes observed, depending on the experimental conditions, PCR-SSCP appears to be an effective and promising method for the rapid detection of RIF-resistant M. tuberculosis, a marker of multidrug resistant tuberculosis. (author)

  2. Structural changes induced by L50P and I61T single mutations of ubiquitin affect cell cycle progression while impairing its regulatory and degradative functions in Saccharomyces cerevisiae.

    Science.gov (United States)

    Doshi, Ankita; Sharma, Mrinal; Prabha, C Ratna

    2017-06-01

    Posttranslational conjugation of ubiquitin to proteins either regulates their function directly or concentration through ubiquitination dependent degradation. High degree of conservation of ubiquitin's sequence implies structural and functional importance of the conserved residues. Ubiquitin gene of Saccharomyces cerevisiae was evolved in vitro by us to study the significance of conserved residues. Present study investigates the structural changes in the protein resulting from the single mutations UbS20F, UbA46S, UbL50P, UbI61T and their functional consequences in the SUB60 strain of S. cerevisiae. Expression of UbL50P and UbI61T decreased Cdc28 protein kinase, enhanced Fus3 levels, caused dosage dependent lethality and at sublethal level produced drastic effects on stress tolerance, protein sorting, protein degradation by ubiquitin fusion degradation pathway and by lysosomes. UbS20F and UbA46S produced insignificant effects over the cells. All four mutations of ubiquitin were incorporated into polyubiquitin. However, polyubiquitination with K63 linkage decreased significantly in cells expressing UbL50P and UbI61T. Structural studies on UbL50P and UbI61T revealed distorted structure with greatly reduced α-helical and elevated β-sheet contents, while UbS20F and UbA46S show mild structural alterations. Our results on functional efficacy of ubiquitin in relation to structural integrity may be useful for designing inhibitors to investigate and modulate eukaryotic cellular dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A MITF mutation associated with a dominant white phenotype and bilateral deafness in German Fleckvieh cattle.

    Directory of Open Access Journals (Sweden)

    Ute Philipp

    Full Text Available A dominantly inherited syndrome associated with hypopigmentation, heterochromia irides, colobomatous eyes and bilateral hearing loss has been ascertained in Fleckvieh cattle (German White Fleckvieh syndrome. This syndrome has been mapped to bovine chromosome (BTA 22 using a genome-wide association study with the bovine high density single nucleotide polymorphism array. An R210I missense mutation has been identified within microphthalmia-associated transcription factor (MITF as responsible for this syndrome. The mutation is located in the highly conserved basic region of the protein and causes a negative-dominant effect. SOX10 and PAX3 promoter binding site mutations in MITF could be ruled out as causative for the German White Fleckvieh syndrome. Molecular characterization of this newly detected bovine syndrome means a large animal model is now available for the Tietz syndrome in humans.

  4. DNA polymerase η mutational signatures are found in a variety of different types of cancer.

    Science.gov (United States)

    Rogozin, Igor B; Goncearenco, Alexander; Lada, Artem G; De, Subhajyoti; Yurchenko, Vyacheslav; Nudelman, German; Panchenko, Anna R; Cooper, David N; Pavlov, Youri I

    2018-01-01

    DNA polymerase (pol) η is a specialized error-prone polymerase with at least two quite different and contrasting cellular roles: to mitigate the genetic consequences of solar UV irradiation, and promote somatic hypermutation in the variable regions of immunoglobulin genes. Misregulation and mistargeting of pol η can compromise genome integrity. We explored whether the mutational signature of pol η could be found in datasets of human somatic mutations derived from normal and cancer cells. A substantial excess of single and tandem somatic mutations within known pol η mutable motifs was noted in skin cancer as well as in many other types of human cancer, suggesting that somatic mutations in A:T bases generated by DNA polymerase η are a common feature of tumorigenesis. Another peculiarity of pol ηmutational signatures, mutations in YCG motifs, led us to speculate that error-prone DNA synthesis opposite methylated CpG dinucleotides by misregulated pol η in tumors might constitute an additional mechanism of cytosine demethylation in this hypermutable dinucleotide.

  5. The effect of metallothionein 2A core promoter region single-nucleotide polymorphism on accumulation of toxic metals in sinonasal inverted papilloma tissues

    Energy Technology Data Exchange (ETDEWEB)

    Starska, Katarzyna, E-mail: katarzyna.starska@umed.lodz.pl [I Department of Otolaryngology and Laryngological Oncology, Medical University of Łódź, Kopcinskiego 22, 90-153 Łódź (Poland); Bryś, Magdalena; Forma, Ewa [Department of Cytobiochemistry, University of Łódź, Pomorska 142/143, 90-236 Łódź (Poland); Olszewski, Jurek; Pietkiewicz, Piotr [II Department of Otolaryngology and Laryngological Oncology, Medical University of Łódź, Żeromskiego 113, 90-549 Łódź (Poland); Lewy-Trenda, Iwona; Danilewicz, Marian [Department of Pathology, Medical University of Łódź, Pomorska 251, 92-213 Łódź (Poland); Krześlak, Anna [Department of Cytobiochemistry, University of Łódź, Pomorska 142/143, 90-236 Łódź (Poland)

    2015-06-15

    Metallothioneins (MTs) are intracellular thiol-rich heavy metal-binding proteins which join trace metal ions protecting cells against heavy metal toxicity and regulate metal distribution and donation to various enzymes and transcription factors. The goal of this study was to identify the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene, and to investigate its effect on allele-specific gene expression and Cd, Zn, Cu and Ni content in sinonasal inverted papilloma tissue (IP), with non-cancerous sinonasal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was identified by restriction fragment length polymorphism using 117 IP and 132 NCM. MT2A gene analysis was performed by quantitative real-time PCR. Metal levels were analyzed by flame atomic absorption spectrometry. The frequency of A allele carriage was 99.2% and 100% in IP and NCM, respectively. The G allele carriage was detected in 23.9% of IP and in 12.1% of the NCM samples. As a result, a significant association of − 5 A/G SNP in MT2A gene with mRNA expression in both groups was determined. A significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. A highly significant association was detected between the rs28366003 genotype and Cd and Zn content in IP. Furthermore, significant differences were identified between A/A and A/G genotype with regard to the type of metal contaminant. The Spearman rank correlation results showed the MT2A gene expression and both Cd and Cu levels were negatively correlated. The results obtained in this study suggest that the − 5 A/G SNP in the MT2A gene may have an effect on allele-specific gene expression and toxic metal accumulation in sinonasal inverted papilloma. - Highlights: • MT2A gene expression and metal content in sinonasal inverted papilloma tissues • Association between SNP (rs28366003) and expression of MT2A • Significant

  6. A study of Huntington disease-like syndromes in black South African patients reveals a single SCA2 mutation and a unique distribution of normal alleles across five repeat loci.

    Science.gov (United States)

    Baine, Fiona K; Peerbhai, Nabeelah; Krause, Amanda

    2018-07-15

    Huntington disease (HD) is a progressive neurodegenerative disease, characterised by a triad of movement disorder, emotional and behavioural disturbances and cognitive impairment. The underlying cause is an expanded CAG repeat in the huntingtin gene. For a small proportion of patients presenting with HD-like symptoms, the mutation in this gene is not identified and they are said to have a HD "phenocopy". South Africa has the highest number of recorded cases of an African-specific phenocopy, Huntington disease-like 2 (HDL2), caused by a repeat expansion in the junctophilin-3 gene. However, a significant proportion of black patients with clinical symptoms suggestive of HD still test negative for HD and HDL2. This study thus aimed to investigate five other loci associated with HD phenocopy syndromes - ATN1, ATXN2, ATXN7, TBP and C9orf72. In a sample of patients in whom HD and HDL2 had been excluded, a single expansion was identified in the ATXN2 gene, confirming a diagnosis of Spinocerebellar ataxia 2. The results indicate that common repeat expansion disorders do not contribute significantly to the HD-like phenotype in black South African patients. Importantly, allele sizing reveals unique distributions of normal repeat lengths across the associated loci in the African population studied. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Development of a cost-efficient novel method for rapid, concurrent genotyping of five common single nucleotide polymorphisms of the brain derived neurotrophic factor (BDNF) gene by tetra-primer amplification refractory mutation system.

    Science.gov (United States)

    Wang, Cathy K; Xu, Michael S; Ross, Colin J; Lo, Ryan; Procyshyn, Ric M; Vila-Rodriguez, Fidel; White, Randall F; Honer, William G; Barr, Alasdair M

    2015-09-01

    Brain derived neurotrophic factor (BDNF) is a molecular trophic factor that plays a key role in neuronal survival and plasticity. Single nucleotide polymorphisms (SNPs) of the BDNF gene have been associated with specific phenotypic traits in a large number of neuropsychiatric disorders and the response to psychotherapeutic medications in patient populations. Nevertheless, due to study differences and occasionally contrasting findings, substantial further research is required to understand in better detail the association between specific BDNF SNPs and these psychiatric disorders. While considerable progress has been made recently in developing advanced genotyping platforms of SNPs, many high-throughput probe- or array-based detection methods currently available are limited by high costs, slow processing times or access to advanced instrumentation. The polymerase chain reaction (PCR)-based, tetra-primer amplification refractory mutation system (T-ARMS) method is a potential alternative technique for detecting SNP genotypes efficiently, quickly, easily, and cheaply. As a tool in psychopathology research, T-ARMS was shown to be capable of detecting five common SNPs in the BDNF gene (rs6265, rs988748, rs11030104, 11757G/C and rs7103411), which are all SNPs with previously demonstrated clinical relevance to schizophrenia and depression. The present technique therefore represents a suitable protocol for many research laboratories to study the genetic correlates of BDNF in psychiatric disorders. Copyright Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Rapid detection of the H275Y oseltamivir resistance mutation in influenza A/H1N1 2009 by single base pair RT-PCR and high-resolution melting.

    Directory of Open Access Journals (Sweden)

    Steven Y C Tong

    Full Text Available We aimed to design a real-time reverse-transcriptase-PCR (rRT-PCR, high-resolution melting (HRM assay to detect the H275Y mutation that confers oseltamivir resistance in influenza A/H1N1 2009 viruses.A novel strategy of amplifying a single base pair, the relevant SNP at position 823 of the neuraminidase gene, was chosen to maintain specificity of the assay. Wildtype and mutant virus were differentiated when using known reference samples of cell-cultured virus. However, when dilutions of these reference samples were assayed, amplification of non-specific primer-dimer was evident and affected the overall melting temperature (T(m of the amplified products. Due to primer-dimer appearance at >30 cycles we found that if the cycle threshold (C(T for a dilution was >30, the HRM assay did not consistently discriminate mutant from wildtype. Where the C(T was 32.98 would have an H275Y assay C(T>30. Analysis of the TaqMan C(T values for 609 consecutive clinical samples predicted that 207 (34% of the samples would result in an HRM assay C(T>30 and therefore not be amenable to the HRM assay.The use of single base pair PCR and HRM can be useful for specifically interrogating SNPs. When applied to H1N1 09, the constraints this placed on primer design resulted in amplification of primer-dimer products. The impact primer-dimer had on HRM curves was adjusted for by plotting T(m against C(T. Although less sensitive than TaqMan assays, the HRM assay can rapidly, and at low cost, screen samples with moderate viral concentrations.

  9. The Mutational Robustness of Influenza A Virus.

    Directory of Open Access Journals (Sweden)

    Elisa Visher

    2016-08-01

    Full Text Available A virus' mutational robustness is described in terms of the strength and distribution of the mutational fitness effects, or MFE. The distribution of MFE is central to many questions in evolutionary theory and is a key parameter in models of molecular evolution. Here we define the mutational fitness effects in influenza A virus by generating 128 viruses, each with a single nucleotide mutation. In contrast to mutational scanning approaches, this strategy allowed us to unambiguously assign fitness values to individual mutations. The presence of each desired mutation and the absence of additional mutations were verified by next generation sequencing of each stock. A mutation was considered lethal only after we failed to rescue virus in three independent transfections. We measured the fitness of each viable mutant relative to the wild type by quantitative RT-PCR following direct competition on A549 cells. We found that 31.6% of the mutations in the genome-wide dataset were lethal and that the lethal fraction did not differ appreciably between the HA- and NA-encoding segments and the rest of the genome. Of the viable mutants, the fitness mean and standard deviation were 0.80 and 0.22 in the genome-wide dataset and best modeled as a beta distribution. The fitness impact of mutation was marginally lower in the segments coding for HA and NA (0.88 ± 0.16 than in the other 6 segments (0.78 ± 0.24, and their respective beta distributions had slightly different shape parameters. The results for influenza A virus are remarkably similar to our own analysis of CirSeq-derived fitness values from poliovirus and previously published data from other small, single stranded DNA and RNA viruses. These data suggest that genome size, and not nucleic acid type or mode of replication, is the main determinant of viral mutational fitness effects.

  10. Survival of mutations arising during invasions.

    Science.gov (United States)

    Miller, Judith R

    2010-03-01

    When a neutral mutation arises in an invading population, it quickly either dies out or 'surfs', i.e. it comes to occupy almost all the habitat available at its time of origin. Beneficial mutations can also surf, as can deleterious mutations over finite time spans. We develop descriptive statistical models that quantify the relationship between the probability that a mutation will surf and demographic parameters for a cellular automaton model of surfing. We also provide a simple analytic model that performs well at predicting the probability of surfing for neutral and beneficial mutations in one dimension. The results suggest that factors - possibly including even abiotic factors - that promote invasion success may also increase the probability of surfing and associated adaptive genetic change, conditioned on such success.

  11. Distinct pattern of p53 mutations in bladder cancer

    DEFF Research Database (Denmark)

    Spruck, C H; Rideout, W M; Olumi, A F

    1993-01-01

    A distinct mutational spectrum for the p53 tumor suppressor gene in bladder carcinomas was established in patients with known exposures to cigarette smoke. Single-strand conformational polymorphism analysis of exons 5 through 8 of the p53 gene showed inactivating mutations in 16 of 40 (40%) bladder...... tumors from smokers and 13 of 40 (33%) tumors from lifetime nonsmokers. Overall, 13 of the 50 (26%) total point mutations discovered in this and previous work were G:C-->C:G transversions, a relatively rare mutational type in human tumors. In six tumors, identical AGA (Arg)-->ACA (Thr) point mutations...... double mutations, four of which were tandem mutations on the same allele. No double mutations were found in tumors from nonsmoking patients. None of the mutations in smokers were G:C-->T:A transversions, which would be anticipated for exposure to the suspected cigarette smoke carcinogen 4-aminobiphenyl...

  12. Single nucleotide substitution mutations and polymorphisms in ...

    African Journals Online (AJOL)

    Administrator

    2011-09-14

    Sep 14, 2011 ... 1The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan. 2Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan. 3Department of Dermatology, Jinnah Postgraduate Medical Center, Karachi, Pakistan. Accepted 7 July, 2011.

  13. Genome Mutational and Transcriptional Hotspots Are Traps for Duplicated Genes and Sources of Adaptations.

    Science.gov (United States)

    Fares, Mario A; Sabater-Muñoz, Beatriz; Toft, Christina

    2017-05-01

    Gene duplication generates new genetic material, which has been shown to lead to major innovations in unicellular and multicellular organisms. A whole-genome duplication occurred in the ancestor of Saccharomyces yeast species but 92% of duplicates returned to single-copy genes shortly after duplication. The persisting duplicated genes in Saccharomyces led to the origin of major metabolic innovations, which have been the source of the unique biotechnological capabilities in the Baker's yeast Saccharomyces cerevisiae. What factors have determined the fate of duplicated genes remains unknown. Here, we report the first demonstration that the local genome mutation and transcription rates determine the fate of duplicates. We show, for the first time, a preferential location of duplicated genes in the mutational and transcriptional hotspots of S. cerevisiae genome. The mechanism of duplication matters, with whole-genome duplicates exhibiting different preservation trends compared to small-scale duplicates. Genome mutational and transcriptional hotspots are rich in duplicates with large repetitive promoter elements. Saccharomyces cerevisiae shows more tolerance to deleterious mutations in duplicates with repetitive promoter elements, which in turn exhibit higher transcriptional plasticity against environmental perturbations. Our data demonstrate that the genome traps duplicates through the accelerated regulatory and functional divergence of their gene copies providing a source of novel adaptations in yeast. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. A Novel Mechanism of High-Level, Broad-Spectrum Antibiotic Resistance Caused by a Single Base Pair Change in Neisseria gonorrhoeae

    Science.gov (United States)

    2011-09-20

    respect, Eisenstein and Sparling noted that a single base pair deletion in the inverted repeat in the mtrR promoter, a mutation which also confers high...Regulation of the MtrC-MtrD-MtrE efflux-pump system modulates the in vivo fitness of Neisseria gonorrhoeae. J. Infect. Dis. 196:1804 –1812. 21. Eisenstein BI

  15. Precise estimates of mutation rate and spectrum in yeast

    Science.gov (United States)

    Zhu, Yuan O.; Siegal, Mark L.; Hall, David W.; Petrov, Dmitri A.

    2014-01-01

    Mutation is the ultimate source of genetic variation. The most direct and unbiased method of studying spontaneous mutations is via mutation accumulation (MA) lines. Until recently, MA experiments were limited by the cost of sequencing and thus provided us with small numbers of mutational events and therefore imprecise estimates of rates and patterns of mutation. We used whole-genome sequencing to identify nearly 1,000 spontaneous mutation events accumulated over ∼311,000 generations in 145 diploid MA lines of the budding yeast Saccharomyces cerevisiae. MA experiments are usually assumed to have negligible levels of selection, but even mild selection will remove strongly deleterious events. We take advantage of such patterns of selection and show that mutation classes such as indels and aneuploidies (especially monosomies) are proportionately much more likely to contribute mutations of large effect. We also provide conservative estimates of indel, aneuploidy, environment-dependent dominant lethal, and recessive lethal mutation rates. To our knowledge, for the first time in yeast MA data, we identified a sufficiently large number of single-nucleotide mutations to measure context-dependent mutation rates and were able to (i) confirm strong AT bias of mutation in yeast driven by high rate of mutations from C/G to T/A and (ii) detect a higher rate of mutation at C/G nucleotides in two specific contexts consistent with cytosine methylation in S. cerevisiae. PMID:24847077

  16. Single gene deletions of mrpA to mrpG and mrpE point mutations affect activity of the Mrp Na+/H+ antiporter of alkaliphilic Bacillus and formation of hetero-oligomeric Mrp complexes.

    Science.gov (United States)

    Morino, Masato; Natsui, Shinsuke; Swartz, Talia H; Krulwich, Terry A; Ito, Masahiro

    2008-06-01

    Mrp antiporters catalyze secondary Na(+)(Li(+))/H(+) antiport and/or K(+)/H(+) antiport that is physiologically important in diverse bacteria. An additional capacity for anion flux has been observed for a few systems. Mrp is unique among antiporters in that it requires all six or seven hydrophobic gene products (MrpA to MrpG) of the mrp operon for full antiporter activity, but MrpE has been reported to be dispensable. Here, the membrane complexes formed by Mrp proteins were examined using a cloned mrp operon from alkaliphilic Bacillus pseudofirmus OF4. The operon was engineered so that the seven Mrp proteins could be detected in single samples. Membrane extracts of an antiporter-deficient Escherichia coli strain expressing this construct were analyzed by blue native-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Mrp complexes of two sizes were identified containing all seven Mrp proteins. Studies of the single nonpolar mrp gene deletions in the construct showed that a subcomplex of MrpA, MrpB, MrpC, and MrpD was formed in the absence of MrpE, MrpF, or MrpG. By contrast, MrpE, MrpF, and MrpG were not observed in membranes lacking MrpA, MrpB, MrpC, or MrpD. Although MrpA and MrpD have been hypothesized to be the antiporter proteins, the MrpA-to-D complex was inactive. Every Mrp protein was required for an activity level near that of the wild-type Na(+)/H(+) antiporter, but a very low activity level was observed in the absence of MrpE. The introduction of an MrpE(P114G) mutation into the full Mrp complex led to antiport activity with a greatly increased apparent K(m) value for Na(+). The results suggested that interactions among the proteins of heterooligomeric Mrp complexes strongly impact antiporter properties.

  17. Mutation breeding in chickpea

    International Nuclear Information System (INIS)

    2009-01-01

    Chickpea is an important food legume in Turkey. Turkey is one of the most important gene centers in the world for legumes. The most widely known characteristic of chickpea is that it is an important vegetable protein source used in human and animal nutrition. However, the dry grains of chickpea, has 2-3 times more protein than our traditional food of wheat. In addition, cheakpea is also energy source because of its high carbohydrate content. It is very rich in some vitamin and mineral basis. In the plant breeding, mutation induction has become an effective way of supplementing existing germplasm and improving cultivars. Many successful examples of mutation induction have proved that mutation breeding is an effective and important approach to food legume improvement. The induced mutation technique in chickpea has proved successful and good results have been attained. Realizing the potential of induced mutations, a mutation breeding programme was initiated at the Nuclear Agriculture Section of the Saraykoey Nuclear Research and Training Center in 1994. The purpose of the study was to obtain high yielding chickpea mutants with large seeds, good cooking quality and high protein content. Beside this some characters such as higher adaptation ability, tolerant to cold and drought, increased machinery harvest type, higher yield, resistant to diseases especially to antracnose and pest were investigated too. Parents varieties were ILC-482, AK-7114 and AKCIN-91 (9 % seed moisture content and germination percentage 98 %) in these experiments. The irradiation doses were 0 (control), 50, 100, 150, 200, 250, 300, 350, 400, 500 ve 600 Gy for greenhouse experiments and 0 (control), 50, 100, 150, 200, 250, 300, 350 ve 400 Gy for field experiments, respectively. One thousand seeds for per treatment were sown in the field for the M 1 . At maturity, 3500 single plants were harvested and 20 seeds were taken from each M 1 plant and planted in the following season. During plant growth

  18. Mapping the fitness landscape of gene expression uncovers the cause of antagonism and sign epistasis between adaptive mutations.

    Directory of Open Access Journals (Sweden)

    Hsin-Hung Chou

    2014-02-01

    Full Text Available How do adapting populations navigate the tensions between the costs of gene expression and the benefits of gene products to optimize the levels of many genes at once? Here we combined independently-arising beneficial mutations that altered enzyme levels in the central metabolism of Methylobacterium extorquens to uncover the fitness landscape defined by gene expression levels. We found strong antagonism and sign epistasis between these beneficial mutations. Mutations with the largest individual benefit interacted the most antagonistically with other mutations, a trend we also uncovered through analyses of datasets from other model systems. However, these beneficial mutations interacted multiplicatively (i.e., no epistasis at the level of enzyme expression. By generating a model that predicts fitness from enzyme levels we could explain the observed sign epistasis as a result of overshooting the optimum defined by a balance between enzyme catalysis benefits and fitness costs. Knowledge of the phenotypic landscape also illuminated that, although the fitness peak was phenotypically far from the ancestral state, it was not genetically distant. Single beneficial mutations jumped straight toward the global optimum rather than being constrained to change the expression phenotypes in the correlated fashion expected by the genetic architecture. Given that adaptation in nature often results from optimizing gene expression, these conclusions can be widely applicable to other organisms and selective conditions. Poor interactions between individually beneficial alleles affecting gene expression may thus compromise the benefit of sex during adaptation and promote genetic differentiation.

  19. IFITM5 mutations and osteogenesis imperfecta.

    Science.gov (United States)

    Hanagata, Nobutaka

    2016-03-01

    Interferon-induced transmembrane protein 5 (IFITM5) is an osteoblast-specific membrane protein that has been shown to be a positive regulatory factor for mineralization in vitro. However, Ifitm5 knockout mice do not exhibit serious bone abnormalities, and thus the function of IFITM5 in vivo remains unclear. Recently, a single point mutation (c.-14C>T) in the 5' untranslated region of IFITM5 was identified in patients with osteogenesis imperfecta type V (OI-V). Furthermore, a single point mutation (c.119C>T) in the coding region of IFITM5 was identified in OI patients with more severe symptoms than patients with OI-V. Although IFITM5 is not directly involved in the formation of bone in vivo, the reason why IFITM5 mutations cause OI remains a major mystery. In this review, the current state of knowledge of OI pathological mechanisms due to IFITM5 mutations will be reviewed.

  20. Identification of a type 1 diabetes-associated CD4 promoter haplotype with high constitutive activity

    DEFF Research Database (Denmark)

    Kristiansen, O P; Karlsen, A E; Larsen, Z M

    2004-01-01

    screened the human CD4 promoter for mutations and identified three frequent single nucleotide polymorphisms (SNPs): CD4-181C/G, CD4-521C/G and CD4-1050T/C. The SNPs are in strong linkage disequilibrium (LD) and association with the CD4-1188(TTTTC)(5-14) alleles, and we observed nine CD4 promoter haplotypes...... promoter activity and (2) the CD4-181G variant encodes higher stimulated promoter activity than the CD4-181C variant. This difference is in part neutralized in the frequently occurring CD4 promoter haplotypes by the more upstream genetic variants. Thus, we report functional impact of a novel CD4-181C/G SNP...

  1. Prevalent mutations in fatty acid oxidation disorders

    DEFF Research Database (Denmark)

    Gregersen, N; Andresen, B S; Bross, P

    2000-01-01

    UNLABELLED: The mutational spectrum in a given disease-associated gene is often comprised of a large number of different mutations, of which a single or a few are present in a large proportion of diseased individuals. Such prevalent mutations are known in four genes of the fatty acid oxidation...... of the disease in question and determination of the carrier frequency in the general population may help in elucidating the penetrance of the genotype. This is exemplified in disorders of mitochondrial fatty acid oxidation....

  2. Parkinson-Related LRRK2 Mutation R1628P Enables Cdk5 Phosphorylation of LRRK2 and Upregulates Its Kinase Activity.

    Directory of Open Access Journals (Sweden)

    Yang Shu

    Full Text Available Recent studies have linked certain single nucleotide polymorphisms in the leucine-rich repeat kinase 2 (LRRK2 gene with Parkinson's disease (PD. Among the mutations, LRRK2 c.4883G>C (R1628P variant was identified to have a significant association with the risk of PD in ethnic Han-Chinese populations. But the molecular pathological mechanisms of R1628P mutation in PD is still unknown.Unlike other LRRK2 mutants in the Roc-COR-Kinase domain, the R1628P mutation didn't alter the LRRK2 kinase activity and promote neuronal death directly. LRRK2 R1628P mutation increased the binding affinity of LRRK2 with Cyclin-dependent kinase 5 (Cdk5. Interestingly, R1628P mutation turned its adjacent amino acid residue S1627 on LRRK2 protein to a novel phosphorylation site of Cdk5, which could be defined as a typical type II (+ phosphorylation-related single nucleotide polymorphism. Importantly, we showed that the phosphorylation of S1627 by Cdk5 could activate the LRRK2 kinase, and neurons ectopically expressing R1628P displayed a higher sensitivity to 1-methyl-4-phenylpyridinium, a bioactive metabolite of environmental toxin MPTP, in a Cdk5-dependent manner.Our data indicate that Parkinson-related LRRK2 mutation R1628P leads to Cdk5 phosphorylation of LRRK2 at S1627, which would upregulate the kinase activity of LRRK2 and consequently cause neuronal death.

  3. The dual nature of mismatch repair as antimutator and mutator

    DEFF Research Database (Denmark)

    Bak, Sara Thornby; Sakellariou, Despoina; Pena Diaz, Javier

    2014-01-01

    MMR also has detrimental effects; it promotes repeat expansions associated with neuromuscular and neurodegenerative diseases and may contribute to cancer/disease-related aberrant mutations and translocations. The reaction responsible for replication error correction has been the most thoroughly...

  4. SP-transcription factors are involved in basal MVP promoter activity and its stimulation by HDAC inhibitors.

    Science.gov (United States)

    Steiner, Elisabeth; Holzmann, Klaus; Pirker, Christine; Elbling, Leonilla; Micksche, Michael; Berger, Walter

    2004-04-23

    The major vault protein (MVP) has been implicated in multidrug resistance, cellular transport, and malignant transformation. In this study we aimed to identify crucial MVP promoter elements that regulate MVP expression. By mutation as well as deletion analysis a conserved proximal GC-box element was demonstrated to be essential for basal human MVP promoter transactivation. Binding of Sp-family transcription factors but not AP2 to this element in vitro and in vivo was shown by EMSA and ChIP assays, respectively. Inhibition of GC-box binding by a dominant-negative Sp1-variant and by mithramycin A distinctly attenuated MVP promoter activity. In Sp-null Drosophila cells, the silent human MVP promoter was transactivated by several human Sp-family members. In human cells the MVP promoter was potently stimulated by the histone deacetylase (HDAC) inhibitors butyrate (NaB) and trichostatin A (TSA), resulting in enhanced MVP expression. This stimulation was substantially decreased by mutation of the single GC-box and by application of mithramycin A. Treatment with HDAC inhibitors led to a distinct decrease of Sp1 but increase of Sp3 binding in vivo to the respective promoter sequence as demonstrated by ChIP assays. Summarising, this study identifies variations in Sp-transcription factor binding to a single proximal GC-box element as critical for basal MVP promoter activation and its stimulation by HDAC inhibitors.

  5. Mutations in the Norrie disease gene.

    Science.gov (United States)

    Schuback, D E; Chen, Z Y; Craig, I W; Breakefield, X O; Sims, K B

    1995-01-01

    We report our experience to date in mutation identification in the Norrie disease (ND) gene. We carried out mutational analysis in 26 kindreds in an attempt to identify regions presumed critical to protein function and potentially correlated with generation of the disease phenotype. All coding exons, as well as noncoding regions of exons 1 and 2, 636 nucleotides in the noncoding region of exon 3, and 197 nucleotides of 5' flanking sequence, were analyzed for single-strand conformation polymorphisms (SSCP) by polymerase chain reaction (PCR) amplification of genomic DNA. DNA fragments that showed altered SSCP band mobilities were sequenced to locate the specific mutations. In addition to three previously described submicroscopic deletions encompassing the entire ND gene, we have now identified 6 intragenic deletions, 8 missense (seven point mutations, one 9-bp deletion), 6 nonsense (three point mutations, three single bp deletions/frameshift) and one 10-bp insertion, creating an expanded repeat in the 5' noncoding region of exon 1. Thus, mutations have been identified in a total of 24 of 26 (92%) of the kindreds we have studied to date. With the exception of two different mutations, each found in two apparently unrelated kindreds, these mutations are unique and expand the genotype database. Localization of the majority of point mutations at or near cysteine residues, potentially critical in protein tertiary structure, supports a previous protein model for norrin as member of a cystine knot growth factor family (Meitinger et al., 1993). Genotype-phenotype correlations were not evident with the limited clinical data available, except in the cases of larger submicroscopic deletions associated with a more severe neurologic syndrome.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Novel mutations of CYP3A4 in Chinese.

    Science.gov (United States)

    Hsieh, K P; Lin, Y Y; Cheng, C L; Lai, M L; Lin, M S; Siest, J P; Huang, J D

    2001-03-01

    Human cytochrome P450 3A4 is a major P450 enzyme in the liver and gastrointestinal tract. It plays important roles in the metabolism of a wide variety of drugs, some endogenous steroids, and harmful environmental contaminants. CYP3A4 exhibits a remarkable interindividual activity variation as high as 20-fold. To investigate whether the interindividual variation in CYP3A4 levels can be partly explained by genetic polymorphism, we analyzed DNA samples from 102 Chinese subjects by polymerase chain reaction (PCR)-single-strand conformation polymorphism analysis for novel point mutation in the CYP3A4 coding sequence and promoter region. Using PCR and directed sequencing method to establish the complete intron sequence of CYP3A4 from leukocytes, the complete genomic sequence from exon 1 through 13 of CYP3A4 was determined and published in the GenBank database (accession no. AF209389). CYP3A4-specific primers were designed accordingly. After PCR-single-strand conformation polymorphism and restriction fragment length polymorphism screening, we found three novel mutations; two are point mutations and one is insertion. The first variant allele (CYP3A4*4), an Ile118Val change, was found in 3 of 102 Chinese subjects. The next allele (CYP3A4*5), which causes a Pro218Arg amino acid change, was found in 2 of 102 subjects. We found an insertion in A(17776), designated as CYP3A4*6, which causes frame shift and an early stop codon in exon 9, in one heterozygous subject. We also investigated the CYP3A4 activity in these mutant subjects by measuring the morning spot urinary 6beta-hydroxycortisol to free cortisol ratio with the enzyme-linked immunosorbent assay method. When compared with healthy Chinese population data, the 6beta-hydroxycortisol to free cortisol ratio data suggested that these alleles (CYP3A4*4, CYP3A4*5, and CYP3A4*6) may decrease the CYP3A4 activity. Incidences of these mutations in Chinese subjects are rare. The prevalence of these point mutations in other ethnic

  7. Deletion mutations of bacteriophage

    International Nuclear Information System (INIS)

    Ryo, Yeikou

    1975-01-01

    Resolution of mutation mechanism with structural changes of DNA was discussed through the studies using bacteriophage lambda. One of deletion mutations inductions of phage lambda is the irradiation of ultraviolet ray. It is not clear if the inductions are caused by errors in reparation of ultraviolet-induced damage or by the activation of int gene. Because the effective site of int gene lies within the regions unnecessary for existing, it is considered that int gene is connected to deletion mutations induction. A certain system using prophage complementarity enables to detect deletion mutations at essential hereditary sites and to solve the relations of deletion mutations with other recombination system, DNA reproduction and repairment system. Duplication and multiplication of hereditary elements were discussed. If lambda deletion mutations of the system, which can control recombination, reproduction and repairment of added DNA, are constructed, mutations mechanism with great changes of DNA structure can be solved by phage lambda. (Ichikawa, K.)

  8. The WHIM-like CXCR4(S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom's Macroglobulinemia.

    Science.gov (United States)

    Cao, Y; Hunter, Z R; Liu, X; Xu, L; Yang, G; Chen, J; Patterson, C J; Tsakmaklis, N; Kanan, S; Rodig, S; Castillo, J J; Treon, S P

    2015-01-01

    CXCR4(WHIM) somatic mutations are common Waldenstrom's Macroglobulinemia (WM), and are associated with clinical resistance to ibrutinib. We engineered WM cells to express the most common WHIM (Warts, Hypogammaglobulinemia, Infections and Myelokathexis), CXCR(S338X) mutation in WM. Following SDF-1a stimulation, CXCR4(S338X) WM cells exhibited decreased receptor internalization, enhanced and sustained AKT kinase (AKT) and extracellular regulated kinase (ERK) signaling, decreased poly (ADP-ribose) polymerase and caspase 3 cleavage, and decreased Annexin V staining versus CXCR4 wild-type (WT) cells. CXCR4(S338X)-related signaling and survival effects were blocked by the CXCR4 inhibitor AMD3100. SDF-1a-treated CXCR4(S338X) WM cells showed sustained AKT and ERK activation and decreased apoptotic changes versus CXCR4(WT) cells following ibrutinib treatment, findings which were also reversed by AMD3100. AKT or ERK antagonists restored ibrutinib-triggered apoptotic changes in SDF-1a-treated CXCR4(S338X) WM cells demonstrating their role in SDF-1a-mediated ibrutinib resistance. Enhanced bone marrow pAKT staining was also evident in CXCR4(WHIM) versus CXCR4(WT) WM patients, and remained active despite ibrutinib therapy in CXCR4(WHIM) patients. Last, CXCR4(S338X) WM cells showed varying levels of resistance to other WM relevant therapeutics, including bendamustine, fludarabine, bortezomib and idelalisib in the presence of SDF-1a. These studies demonstrate a functional role for CXCR4(WHIM) mutations, and provide a framework for investigation of CXCR4 inhibitors in WM.

  9. Using Elite Athletes to Promote Drug Abstinence: Evaluation of a Single-Session School-Based Drug Use Prevention Program Delivered by Junior Hockey Players

    Science.gov (United States)

    Wong, Jennifer

    2016-01-01

    School-based substance use prevention programs are a common method to approaching drug use in youths. Project SOS is a single-session drug prevention program developed by police officers and delivered by elite junior hockey players to students in grades 6 and 7. The current study evaluates the effects of Project SOS at achieving its objectives of…

  10. Mutational specificity of γ-rays

    International Nuclear Information System (INIS)

    Hoebee, Barbara.

    1990-01-01

    The aim of the study described in this thesis was to get more information on the mutagenic properties of radiation-induced DNA modifications and the possible mechanisms involved in radiation-induced mutagenesis, principally by investigating the kinds of mutations by DNA sequence analysis. The mutations were analyzed after γ-irradiation of recombinant bacteriophage M13 and plasmide pUC DNA in diluted aqueous solutions, followed by transfection or transformation to E. coli cells, in which the damaged DNA molecules are repaired and replicated. Error-prone repair, misrepair or bypass of lesions during replication may lead to the introduction of mutations. Both the M13 and the plasmid DNA used in our mutation studies contain a mutation target sequence, which makes an easy selection and sequence analysis of mutant DNA molecules possible. Under the radiation conditions used, e.g. irradiation of diluted aqueous DNA solutions, only DNA damage occurs introduced by the water derived OH* and H* radicals and the hydrated electrons. By using different gas conditions during irradiation the relative yields of these reaction species can be manipulated, which opens up the opportunity to determine their effects separately. The mutation spectrum obtained in double-stranded (ds) M13DNA after irradiation under oxic conditions and the mutation spectrum obtained under the same conditions and in the same mutation target but cloned in plasmid DNA, are described. The mutation specificity under anoxic conditions in ds M13DNA is given. Results obtained after irradiation of ds M13DNA under N 2 conditions are discussed together with experiments with single-stranded DNA. Similarities and differences between radiation-induced mutation spectra obtained by other groups and those presented in this thesis are discussed. (author). 155 refs.; 134 figs.; 16 tabs

  11. Spectrum of small mutations in the dystrophin coding region

    Energy Technology Data Exchange (ETDEWEB)

    Prior, T.W.; Bartolo, C.; Pearl, D.K. [Ohio State Univ., Columbus, OH (United States)] [and others

    1995-07-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are caused by defects in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5` and central portion of the gene. The nondeletion/duplication cases are most likely the result of smaller mutations that cannot be identified by current diagnostic screening strategies. We screened {approximately} 80% of the dystrophin coding sequence for small mutations in 158 patients without deletions or duplications and identified 29 mutations. The study indicates that many of the DMD and the majority of the BMD small mutations lie in noncoding regions of the gene. All of the mutations identified were unique to single patients, and most of the mutations resulted in protein truncation. We did not find a clustering of small mutations similar to the deletion distribution but found > 40% of the small mutations 3` of exon 55. The extent of protein truncation caused by the 3` mutations did not determine the phenotype, since even the exon 76 nonsense mutation resulted in the severe DMD phenotype. Our study confirms that the dystrophin gene is subject to a high rate of mutation in CpG sequences. As a consequence of not finding any hotspots or prevalent small mutations, we conclude that it is presently not possible to perform direct carrier and prenatal diagnostics for many families without deletions or duplications. 71 refs., 2 figs., 2 tabs.

  12. Complete amino acid sequence of the human alpha 5 (IV) collagen chain and identification of a single-base mutation in exon 23 converting glycine 521 in the collagenous domain to cysteine in an Alport syndrome patient

    DEFF Research Database (Denmark)

    Zhou, J; Hertz, Jens Michael; Leinonen, A

    1992-01-01

    We have generated and characterized cDNA clones providing the complete amino acid sequence of the human type IV collagen chain whose gene has been shown to be mutated in X chromosome-linked Alport syndrome. The entire translation product has 1,685 amino acid residues. There is a 26-residue signal...

  13. High mutation rates limit evolutionary adaptation in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Kathleen Sprouffske

    2018-04-01

    Full Text Available Mutation is fundamental to evolution, because it generates the genetic variation on which selection can act. In nature, genetic changes often increase the mutation rate in systems that range from viruses and bacteria to human tumors. Such an increase promotes the accumulation of frequent deleterious or neutral alleles, but it can also increase the chances that a population acquires rare beneficial alleles. Here, we study how up to 100-fold increases in Escherichia coli's genomic mutation rate affect adaptive evolution. To do so, we evolved multiple replicate populations of asexual E. coli strains engineered to have four different mutation rates for 3000 generations in the laboratory. We measured the ability of evolved populations to grow in their original environment and in more than 90 novel chemical environments. In addition, we subjected the populations to whole genome population sequencing. Although populations with higher mutation rates accumulated greater genetic diversity, this diversity conveyed benefits only for modestly increased mutation rates, where populations adapted faster and also thrived better than their ancestors in some novel environments. In contrast, some populations at the highest mutation rates showed reduced adaptation during evolution, and failed to thrive in all of the 90 alternative environments. In addition, they experienced a dramatic decrease in mutation rate. Our work demonstrates that the mutation rate changes the global balance between deleterious and beneficial mutational effects on fitness. In contrast to most theoretical models, our experiments suggest that this tipping point already occurs at the modest mutation rates that are found in the wild.

  14. Variable mutation rates as an adaptive strategy in replicator populations.

    Directory of Open Access Journals (Sweden)

    Michael Stich

    2010-06-01

    Full Text Available For evolving populations of replicators, there is much evidence that the effect of mutations on fitness depends on the degree of adaptation to the selective pressures at play. In optimized populations, most mutations have deleterious effects, such that low mutation rates are favoured. In contrast to this, in populations thriving in changing environments a larger fraction of mutations have beneficial effects, providing the diversity necessary to adapt to new conditions. What is more, non-adapted populations occasionally benefit from an increase in the mutation rate. Therefore, there is no optimal universal value of the mutation rate and species attempt to adjust it to their momentary adaptive needs. In this work we have used stationary populations of RNA molecules evolving in silico to investigate the relationship between the degree of adaptation of an optimized population and the value of the mutation rate promoting maximal adaptation in a short time to a new selective pressure. Our results show that this value can significantly differ from the optimal value at mutation-selection equilibrium, being strongly influenced by the structure of the population when the adaptive process begins. In the short-term, highly optimized populations containing little variability respond better to environmental changes upon an increase of the mutation rate, whereas populations with a lower degree of optimization but higher variability benefit from reducing the mutation rate to adapt rapidly. These findings show a good agreement with the behaviour exhibited by actual organisms that replicate their genomes under broadly different mutation rates.

  15. Motor pathway excitability in ATP13A2 mutation carriers

    DEFF Research Database (Denmark)

    Zittel, S; Kroeger, J; van der Vegt, J P M

    2012-01-01

    OBJECTIVE: To describe excitability of motor pathways in Kufor-Rakeb syndrome (PARK9), an autosomal recessive nigro-striatal-pallidal-pyramidal neurodegeneration caused by a mutation in the ATP13A2 gene, using transcranial magnetic stimulation (TMS). METHODS: Five members of a Chilean family...... with an ATP13A2 mutation (one affected mutation carrier (MC) with a compound heterozygous mutation, 4 asymptomatic MC with a single heterozygous mutation) and 11 healthy subjects without mutations were studied. We measured motor evoked potentials (MEP), the contralateral silent period (cSP), short interval....... RESULTS: CSP duration was increased in the symptomatic ATP13A2 MC. The iSP measurements revealed increased interhemispheric inhibition in both the compound heterozygous and the heterozygous MC. CONCLUSION: A compound heterozygous mutation in the ATP13A2 gene is associated with increased intracortical...

  16. Mutation of serine 1333 in the ATR HEAT repeats creates a hyperactive kinase.

    Directory of Open Access Journals (Sweden)

    Jessica W Luzwick

    Full Text Available Subcellular localization, protein interactions, and post-translational modifications regulate the DNA damage response kinases ATR, ATM, and DNA-PK. During an analysis of putative ATR phosphorylation sites, we found that a single mutation at S1333 creates a hyperactive kinase. In vitro and in cells, mutation of S1333 to alanine (S1333A-ATR causes elevated levels of kinase activity with and without the addition of the protein activator TOPBP1. S1333 mutations to glycine, arginine, or lysine also create a hyperactive kinase, while mutation to aspartic acid decreases ATR activity. S1333A-ATR maintains the G2 checkpoint and promotes completion of DNA replication after transient exposure to replication stress but the less active kinase, S1333D-ATR, has modest defects in both of these functions. While we find no evidence that S1333 is phosphorylated in cultured cells, our data indicate that small changes in the HEAT repeats can have large effects on kinase activity. These mutants may serve as useful tools for future studies of the ATR pathway.

  17. Condensin II mutation causes T-cell lymphoma through tissue-specific genome instability

    Science.gov (United States)

    Woodward, Jessica; Taylor, Gillian C.; Soares, Dinesh C.; Boyle, Shelagh; Sie, Daoud; Read, David; Chathoth, Keerthi; Vukovic, Milica; Tarrats, Nuria; Jamieson, David; Campbell, Kirsteen J.; Blyth, Karen; Acosta, Juan Carlos; Ylstra, Bauke; Arends, Mark J.; Kranc, Kamil R.; Jackson, Andrew P.; Bickmore, Wendy A.

    2016-01-01

    Chromosomal instability is a hallmark of cancer, but mitotic regulators are rarely mutated in tumors. Mutations in the condensin complexes, which restructure chromosomes to facilitate segregation during mitosis, are significantly enriched in cancer genomes, but experimental evidence implicating condensin dysfunction in tumorigenesis is lacking. We report that mice inheriting missense mutations in a condensin II subunit (Caph2nes) develop T-cell lymphoma. Before tumors develop, we found that the same Caph2 mutation impairs ploidy maintenance to a different extent in different hematopoietic cell types, with ploidy most severely perturbed at the CD4+CD8+ T-cell stage from which tumors initiate. Premalignant CD4+CD8+ T cells show persistent catenations during chromosome segregation, triggering DNA damage in diploid daughter cells and elevated ploidy. Genome sequencing revealed that Caph2 single-mutant tumors are near diploid but carry deletions spanning tumor suppressor genes, whereas P53 inactivation allowed Caph2 mutant cells with whole-chromosome gains and structural rearrangements to form highly aggressive disease. Together, our data challenge the view that mitotic chromosome formation is an invariant process during development and provide evidence that defective mitotic chromosome structure can promote tumorigenesis. PMID:27737961

  18. Pathoadaptation of a Human Pathogen Through Non-Coding Intergenic Mutations

    DEFF Research Database (Denmark)

    Khademi, Seyed Mohammad Hossein

    in CF adaptation of P. aeruginosa and their expressions are altered by the mutation. It was established that mutations upstream ampR increased tolerance of P. aeruginosa to some β-lactam antibiotics. Mutations in promoter of phuR, encoding receptor of pseudomonas heme uptake system, conferred growth...... advantage in the presence of hemoglobin demonstrating that P. aeruginosa has adapted towards utilization of iron from hemoglobin. Further investigation of phuR promoter mutation revealed pleiotropic effects on expression of many other genes. The pleiotropic effect by this mutation was contingent...

  19. Short barb: a feather structure mutation in Japanese quail.

    Science.gov (United States)

    Fulton, J E; Roberts, C W; Nichols, C R; Cheng, K M

    1982-12-01

    A type of feather structure abnormality in Japanese quail resulting in shortened barbs on contour feathers was found to be controlled by a single autosomal recessive gene, sh (short barb). The mutation was first identified in a full-sib family from the University of British Columbia wild type line. Unlike other feather structure mutations in Japanese quail reported previously in literature, the short barb mutation is not associated with poor reproduction.

  20. Duodenal ulcer promoting gene 1 (dupA1 is associated with A2147G clarithromycin-resistance mutation but not interleukin-8 secretion from gastric mucosa in Iraqi patients

    Directory of Open Access Journals (Sweden)

    N.R. Hussein

    2015-07-01

    Full Text Available Helicobacter pylori causes peptic ulceration and gastric adenocarcinoma. The aims were to study the influence of dupA1 positivity upon interleukin-8 (IL-8 secretion from gastric mucosa and determine the prevalence of mutations responsible for clarithromycin and fluoroquinolone resistance. DNA was extracted from 74 biopsies and the virulence factors were studied. Levels of IL-8 in gastric mucosa were measured using ELISA and the mutations responsible for clarithromycin and fluoroquinolone resistance were determined using a GenoType-HelicoDR assay. The prevalence of cagA in strains isolated from gastric ulcer (GU and duodenal ulcer (DU was significantly higher than those isolated from non-ulcer disease (NUD (90% and 57.9% versus 33.3%; p 0.01. The vacA s1m1 genotype was more prevalent in patients with DU (73.7% and GU (70% than in those with NUD (13.3% (p 0.01. The prevalence of dupA1 was higher in DU patients (36.8% than those with GU (10% and NUD (8.9% (p 0.01. Multivariate analysis showed that a cagA+/vacA s1i1m2 virulence gene combination was independently associated with the developing peptic ulcer disease (PUD with increased odds of developing PUD (p 0.03; OR = 2.1. We found no significant difference in the levels of IL-8 secretion in gastric mucosa infected with H. pylori dupA-negative and H. pylori dupA1-positive strains (dupA-negative: mean ± median: 28 ± 26 versus 30 ± 27.1 for dupA1; p 0.6. While 12 strains were clarithromycin resistant, only three isolates were levofloxacin resistant. A significant association was found between dupA1 genotype and A2147G clarithromycin resistance mutation (p <0.01. Further study is needed to explore the relationship between virulence factors and disease process and treatment failure.

  1. Duodenal ulcer promoting gene 1 (dupA1) is associated with A2147G clarithromycin-resistance mutation but not interleukin-8 secretion from gastric mucosa in Iraqi patients.

    Science.gov (United States)

    Hussein, N R; Tunjel, I; Majed, H S; Yousif, S T; Aswad, S I; Assafi, M S

    2015-07-01

    Helicobacter pylori causes peptic ulceration and gastric adenocarcinoma. The aims were to study the influence of dupA1 positivity upon interleukin-8 (IL-8) secretion from gastric mucosa and determine the prevalence of mutations responsible for clarithromycin and fluoroquinolone resistance. DNA was extracted from 74 biopsies and the virulence factors were studied. Levels of IL-8 in gastric mucosa were measured using ELISA and the mutations responsible for clarithromycin and fluoroquinolone resistance were determined using a GenoType-HelicoDR assay. The prevalence of cagA in strains isolated from gastric ulcer (GU) and duodenal ulcer (DU) was significantly higher than those isolated from non-ulcer disease (NUD) (90% and 57.9% versus 33.3%; p 0.01). The vacA s1m1 genotype was more prevalent in patients with DU (73.7%) and GU (70%) than in those with NUD (13.3%) (p 0.01). The prevalence of dupA1 was higher in DU patients (36.8%) than those with GU (10%) and NUD (8.9%) (p 0.01). Multivariate analysis showed that a cagA+/vacA s1i1m2 virulence gene combination was independently associated with the developing peptic ulcer disease (PUD) with increased odds of developing PUD (p 0.03; OR = 2.1). We found no significant difference in the levels of IL-8 secretion in gastric mucosa infected with H. pylori dupA-negative and H. pylori dupA1-positive strains (dupA-negative: mean ± median: 28 ± 26 versus 30 ± 27.1 for dupA1; p 0.6). While 12 strains were clarithromycin resistant, only three isolates were levofloxacin resistant. A significant association was found between dupA1 genotype and A2147G clarithromycin resistance mutation (p <0.01). Further study is needed to explore the relationship between virulence factors and disease process and treatment failure.

  2. Histone H3.3 promotes IgV gene diversification by?enhancing formation of AID?accessible single?stranded DNA

    OpenAIRE

    Romanello, Marina; Schiavone, Davide; Frey, Alexander; Sale, Julian E

    2016-01-01

    Abstract Immunoglobulin diversification is driven by activation?induced deaminase (AID), which converts cytidine to uracil within the Ig variable (IgV) regions. Central to the recruitment of AID to the IgV genes are factors that regulate the generation of single?stranded DNA (ssDNA), the enzymatic substrate of AID. Here, we report that chicken DT40 cells lacking variant histone H3.3 exhibit reduced IgV sequence diversification. We show that this results from impairment of the ability of AID t...

  3. Better plants through mutations

    International Nuclear Information System (INIS)

    1988-01-01

    This is a public relations film describing problems associated with the genetic improvement of crop plants through induced mutations. Mutations are the ultimate source of genetic variation in plants. Mutation induction is now established as a practical tool in plant breeding. The Joint FAO/IAEA Division and the IAEA's laboratory at Seibersdorf have supported research and practical implementation of mutation breeding of both seed propagated and vegetatively propagated plants. Plant biotechnology based on in vitro culture and recombinant DNA technology will make a further significant contribution to plant breeding

  4. Histone H3.3 promotes IgV gene diversification by enhancing formation of AID-accessible single-stranded DNA.

    Science.gov (United States)

    Romanello, Marina; Schiavone, Davide; Frey, Alexander; Sale, Julian E

    2016-07-01

    Immunoglobulin diversification is driven by activation-induced deaminase (AID), which converts cytidine to uracil within the Ig variable (IgV) regions. Central to the recruitment of AID to the IgV genes are factors that regulate the generation of single-stranded DNA (ssDNA), the enzymatic substrate of AID Here, we report that chicken DT40 cells lacking variant histone H3.3 exhibit reduced IgV sequence diversification. We show that this results from impairment of the ability of AID to access the IgV genes due to reduced formation of ssDNA during IgV transcription. Loss of H3.3 also diminishes IgV R-loop formation. However, reducing IgV R-loops by RNase HI overexpression in wild-type cells does not affect IgV diversification, showing that these structures are not necessary intermediates for AID access. Importantly, the reduction in the formation of AID-accessible ssDNA in cells lacking H3.3 is independent of any effect on the level of transcription or the kinetics of RNAPII elongation, suggesting the presence of H3.3 in the nucleosomes of the IgV genes increases the chances of the IgV DNA becoming single-stranded, thereby creating an effective AID substrate. © 2016 MRC Laboratory of Molecular Biology. Published under the terms of the CC BY 4.0 license.

  5. Acromelic frontonasal dysostosis and ZSWIM6 mutation

    DEFF Research Database (Denmark)

    Twigg, Stephen R F; Ousager, Lilian Bomme; Miller, Kerry A

    2016-01-01

    Acromelic frontonasal dysostosis (AFND) is a distinctive and rare frontonasal malformation that presents in combination with brain and limb abnormalities. A single recurrent heterozygous missense substitution in ZSWIM6, encoding a protein of unknown function, was previously shown to underlie this...... sequencing of DNA isolated from a variety of tissues, which each contain different levels of mutation. This has important implications for genetic counselling....

  6. Mutational landscape of MCPyV-positive and MCPyV-negative Merkel cell carcinomas with implications for immunotherapy.

    Science.gov (United States)

    Goh, Gerald; Walradt, Trent; Markarov, Vladimir; Blom, Astrid; Riaz, Nadeem; Doumani, Ryan; Stafstrom, Krista; Moshiri, Ata; Yelistratova, Lola; Levinsohn, Jonathan; Chan, Timothy A; Nghiem, Paul; Lifton, Richard P; Choi, Jaehyuk

    2016-01-19

    Merkel cell carcinoma (MCC) is a rare but highly aggressive cutaneous neuroendocrine carcinoma, associated with the Merkel cell polyomavirus (MCPyV) in 80% of cases. To define the genetic basis of MCCs, we performed exome sequencing of 49 MCCs. We show that MCPyV-negative MCCs have a high mutation burden (median of 1121 somatic single nucleotide variants (SSNVs) per-exome with frequent mutations in RB1 and TP53 and additional damaging mutations in genes in the chromatin modification (ASXL1, MLL2, and MLL3), JNK (MAP3K1 and TRAF7), and DNA-damage pathways (ATM, MSH2, and BRCA1). In contrast, MCPyV-positive MCCs harbor few SSNVs (median of 12.5 SSNVs/tumor) with none in the genes listed above. In both subgroups, there are rare cancer-promoting mutations predicted to activate the PI3K pathway (HRAS, KRAS, PIK3CA, PTEN, and TSC1) and to inactivate the Notch pathway (Notch1 and Notch2). TP53 mutations appear to be clinically relevant in virus-negative MCCs as 37% of these tumors harbor potentially targetable gain-of-function mutations in TP53 at p.R248 and p.P278. Moreover, TP53 mutational status predicts death in early stage MCC (5-year survival in TP53 mutant vs wild-type stage I and II MCCs is 20% vs. 92%, respectively; P = 0.0036). Lastly, we identified the tumor neoantigens in MCPyV-negative and MCPyV-positive MCCs. We found that virus-negative MCCs harbor more tumor neoantigens than melanomas or non-small cell lung cancers (median of 173, 65, and 111 neoantigens/sample, respectively), two cancers for which immune checkpoint blockade can produce durable clinical responses. Collectively, these data support the use of immunotherapies for virus-negative MCCs.

  7. Compilation and analysis of Escherichia coli promoter DNA sequences.

    OpenAIRE

    Hawley, D K; McClure, W R

    1983-01-01

    The DNA sequence of 168 promoter regions (-50 to +10) for Escherichia coli RNA polymerase were compiled. The complete listing was divided into two groups depending upon whether or not the promoter had been defined by genetic (promoter mutations) or biochemical (5' end determination) criteria. A consensus promoter sequence based on homologies among 112 well-defined promoters was determined that was in substantial agreement with previous compilations. In addition, we have tabulated 98 promoter ...

  8. Germline TP53 mutations and single nucleotide polymorphisms in children Mutaciones y polimorfismos de un único nucleótido del gen TP53 en línea germinal en niños

    Directory of Open Access Journals (Sweden)

    Pamela Valva

    2009-02-01

    Full Text Available Mutations in the gene TP53, which codifies the tumor suppressor protein p53, are found in about 50% of tumors. These mutations can occur not only at somatic level, but also in germline. Pediatric cancer patients, mostly with additional family history of malignancy, should be considered as potential TP53 germline mutation carriers. Germline TP53 mutations and polymorphisms have been widely studied to determine their relation with different tumors' pathogenesis. Our aim was to analyze the occurrence frequency of germline TP53 mutations and polymorphisms and to relate these to tumor development in a pediatric series. Peripheral blood mononuclear cell samples from 26 children with solid tumors [PST] and 21 pediatric healthy donors [HD] were analyzed for germline mutations and polymorphisms in TP53 gene spanning from exon 5 to 8 including introns 5 and 7. These PCR amplified fragments were sequenced to determine variations. A heterozygous mutation at codon 245 was found in 1/26 PST and 0/21 HD. Comparative polymorphisms distribution, at position 14181 and 14201(intron 7, between HD and PST revealed a trend of association (p= 0.07 with cancer risk. HD group disclosed a similar polymorphism distribution as published data for Caucasian and Central/South American populations. This is the first study about TP53 variant frequency and distribution in healthy individuals and cancer patients in Argentina.El gen que codifica para la proteína supresora de tumor p53 (TP53 se encuentra mutado en aproximadamente el 50% de los tumores. Estas mutaciones pueden presentarse como somáticas o en línea germinal. Los niños con tumores, sobre todo aquellos con historia familiar de enfermedad oncológica, deben considerarse potenciales portadores de mutaciones en línea germinal. Las mutaciones de TP53 y los polimorfismos son estudiados para determinar su relación con la patogénesis de diferentes tumores. El objetivo del trabajo fue analizar la frecuencia de

  9. Modulating ectopic gene expression levels by using retroviral vectors equipped with synthetic promoters.

    Science.gov (United States)

    Ferreira, Joshua P; Peacock, Ryan W S; Lawhorn, Ingrid E B; Wang, Clifford L

    2011-12-01

    The human cytomegalovirus and elongation factor 1α promoters are constitutive promoters commonly employed by mammalian expression vectors. These promoters generally produce high levels of expression in many types of cells and tissues. To generate a library of synthetic promoters capable of generating a range of low, intermediate, and high expression levels, the TATA and CAAT box elements of these promoters were mutated. Other promoter variants were also generated by random mutagenesis. Evaluation using plasmid vectors integrated at a single site in the genome revealed that these various synthetic promoters were capable of expression levels spanning a 40-fold range. Retroviral vectors were equipped with the synthetic promoters and evaluated for their ability to reproduce the graded expression demonstrated by plasmid integration. A vector with a self-inactivating long terminal repeat could neither reproduce the full range of expression levels nor produce stable expression. Using a second vector design, the different synthetic promoters enabled stable expression over a broad range of expression levels in different cell lines. The online version of this article (doi:10.1007/s11693-011-9089-0) contains supplementary material, which is available to authorized users.

  10. Mutation and premating isolation

    Science.gov (United States)

    Woodruff, R. C.; Thompson, J. N. Jr

    2002-01-01

    While premating isolation might be traceable to different genetic mechanisms in different species, evidence supports the idea that as few as one or two genes may often be sufficient to initiate isolation. Thus, new mutation can theoretically play a key role in the process. But it has long been thought that a new isolation mutation would fail, because there would be no other individuals for the isolation-mutation-carrier to mate with. We now realize that premeiotic mutations are very common and will yield a cluster of progeny carrying the same new mutant allele. In this paper, we discuss the evidence for genetically simple premating isolation barriers and the role that clusters of an isolation mutation may play in initiating allopatric, and even sympatric, species divisions.

  11. Peripheral immunophenotype and viral promoter variants during the asymptomatic phase of feline immunodeficiency virus infection.

    Science.gov (United States)

    Murphy, B; Hillman, C; McDonnel, S

    2014-01-22

    Feline immunodeficiency virus (FIV)-infected cats enter a clinically asymptomatic phase during chronic infection. Despite the lack of overt clinical disease, the asymptomatic phase is characterized by persistent immunologic impairment. In the peripheral blood obtained from cats experimentally infected with FIV-C for approximately 5 years, we identified a persistent inversion of the CD4/CD8 ratio. We cloned and sequenced the FIV-C long terminal repeat containing the viral promoter from cells infected with the inoculating virus and from in vivo-derived peripheral blood mononuclear cells and CD4 T cells isolated at multiple time points throughout the asymptomatic phase. Relative to the inoculating virus, viral sequences amplified from cells isolated from all of the infected animals demonstrated multiple single nucleotide mutations and a short deletion within the viral U3, R and U5 regions. A transcriptionally inactivating proviral mutation in the U3 promoter AP-1 site was identified at multiple time points from all of the infected animals but not within cell-associated viral RNA. In contrast, no mutations were identified within the sequence of the viral dUTPase gene amplified from PBMC isolated at approximately 5 years post-infection relative to the inoculating sequence. The possible implications of these mutations to viral pathogenesis are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Mutation effect of ion implantation on tomato breeding

    International Nuclear Information System (INIS)

    Wu Baoshan; Ling Haiqiu; Mao Peihong; Jin Xiang; Zeng Xianxian

    2003-01-01

    The mutation effects of N + ion implantation on cultivated tomato, Catchup type and Eatable type were studied. The result show that the mutation ranges of single-fruit weight and fruit number per plant were increased and their mutation frequencies were high, however the effect of ion implantation on germination rate of seed and quality of fruit was very weak. Using doses of 4 x 10 16 and 6 x 10 16 N + /cm 2 , the yield was greatly improved. The optimum mutation dosage was slightly different for seed of 2 tomato lines

  13. OBSCN Mutations Associated with Dilated Cardiomyopathy and Haploinsufficiency.

    Directory of Open Access Journals (Sweden)

    Steven Marston

    Full Text Available Studies of the functional consequences of DCM-causing mutations have been limited to a few cases where patients with known mutations had heart transplants. To increase the number of potential tissue samples for direct investigation we performed whole exon sequencing of explanted heart muscle samples from 30 patients that had a diagnosis of familial dilated cardiomyopathy and screened for potentially disease-causing mutations in 58 HCM or DCM-related genes.We identified 5 potentially disease-causing OBSCN mutations in 4 samples; one sample had two OBSCN mutations and one mutation was judged to be not disease-related. Also identified were 6 truncating mutations in TTN, 3 mutations in MYH7, 2 in DSP and one each in TNNC1, TNNI3, MYOM1, VCL, GLA, PLB, TCAP, PKP2 and LAMA4. The mean level of obscurin mRNA was significantly greater and more variable in healthy donor samples than the DCM samples but did not correlate with OBSCN mutations. A single obscurin protein band was observed in human heart myofibrils with apparent mass 960 ± 60 kDa. The three samples with OBSCN mutations had significantly lower levels of obscurin immunoreactive material than DCM samples without OBSCN mutations (45±7, 48±3, and 72±6% of control level.Obscurin levels in DCM controls, donor heart and myectomy samples were the same.OBSCN mutations may result in the development of a DCM phenotype via haploinsufficiency. Mutations in the obscurin gene should be considered as a significant causal factor of DCM, alone or in concert with other mutations.

  14. Novel SLC19A3 Promoter Deletion and Allelic Silencing in Biotin-Thiamine-Responsive Basal Ganglia Encephalopathy.

    Directory of Open Access Journals (Sweden)

    Irene Flønes

    Full Text Available Biotin-thiamine responsive basal ganglia disease is a severe, but potentially treatable disorder caused by mutations in the SLC19A3 gene. Although the disease is inherited in an autosomal recessive manner, patients with typical phenotypes carrying single heterozygous mutations have been reported. This makes the diagnosis uncertain and may delay treatment.In two siblings with early-onset encephalopathy dystonia and epilepsy, whole-exome sequencing revealed a novel single heterozygous SLC19A3 mutation (c.337T>C. Although Sanger-sequencing and copy-number analysis revealed no other aberrations, RNA-sequencing in brain tissue suggested the second allele was silenced. Whole-genome sequencing resolved the genetic defect by revealing a novel 45,049 bp deletion in the 5'-UTR region of the gene abolishing the promoter. High dose thiamine and biotin therapy was started in the surviving sibling who remains stable. In another patient two novel compound heterozygous SLC19A3 mutations were found. He improved substantially on thiamine and biotin therapy.We show that large genomic deletions occur in the regulatory region of SLC19A3 and should be considered in genetic testing. Moreover, our study highlights the power of whole-genome sequencing as a diagnostic tool for rare genetic disorders across a wide spectrum of mutations including non-coding large genomic rearrangements.

  15. Amelogenesis Imperfecta and Screening of Mutation in Amelogenin Gene

    Directory of Open Access Journals (Sweden)

    Fernanda Veronese Oliveira

    2014-01-01

    Full Text Available The aim of this study was to report the clinical findings and the screening of mutations of amelogenin gene of a 7-year-old boy with amelogenesis imperfecta (AI. The genomic DNA was extracted from saliva of patient and his family, followed by PCR and direct DNA sequencing. The c.261C>T mutation was found in samples of mother, father, and brother, but the mutation was not found in the sequence of the patient. This mutation is a silent mutation and a single-nucleotide polymorphism (rs2106416. Thus, it is suggested that the mutation found was not related to the clinical presence of AI. Further research is necessary to examine larger number of patients and genes related to AI.

  16. Mutation breeding in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Neto, A T; Menten, J O.M. [Centro de Energia Nuclear na Agricultura, Piracicaba (Brazil); Ando, A

    1980-03-01

    How mutation induction is used for plant breeding in Brazil is reported. For upland rice, the combined treatment with gamma-ray and mutagens (ethylene imine or ethylmethane sulfonate) has been used on the variety, Dourado Precoce, and some mutants with shortculm length and/or earliness without altering the productivity have been obtained. A project on the quantitative and qualitative protein improvement in upland rice was also started in 1979. In corn, the effect of gamma-irradiation on heterosis has been analyzed, and it was found that the single hybrids from two parental lines derived from irradiated seeds had increased ear productivity. For beans (Phaseolus yulgaris), gamma-irradiation and chemical mutagens have been used to induce the mutants with different seed color, disease resistance to golden mosaic virus and Xanthomonas phaseoli, earliness, high productivity and high protein content. Some mutants with partly improved characters have been obtained in these experiments. Two varieties of wheat tolerant to aluminum toxicity have been obtained, but the one showed high lodging due to its unfavorable plant height, and the other was highly susceptible to culm rust. Therefore, irradiation experiments have been started to improve these characters. The projects involving the use of gamma-irradiation have been tested to obtain the mutant lines insensitive to photoperiod and resistant to bud-blight in soybean, the mutant lines resistant to mosaic virus in papaya, the photoperiod-insensitive mutants in sorghum, the mosaic virus resistant and non-flowering mutants in sugar cane, and the Fusarium and nematode-resistant mutants in black pepper.

  17. CO2 Tax or Fee as a Single Economic Instrument for Climate Protection Policy Promoting Renewable Energy Sources and Enhancing Energy Efficiency

    International Nuclear Information System (INIS)

    Granic, G.; Horvath, L.; Jelavic, B.; Juric, Z.; Kulisic, B.; Vuk, B.

    2013-01-01

    This paper presents the analysis of the current implementation of the policy to reduce CO 2 emissions through four practically independent processes: energy market, emission market, support for renewable energy sources through feed-in tariffs (FIT) and support scheme for enhancing energy efficiency. The conclusion is that in this system, some elements of which appear to be controversial, it is not possible to reach the goal - a radical reduction of CO 2 emissions by 80% in total and 95% in electricity production until 2050, which the EU has set as emission reduction targets for this period. Therefore, a new system is now proposed that is based on a single objective function, CO 2 emissions. The process would be managed through taxes or fees on CO 2 , while the raised revenues would be returned to projects aimed at reducing CO 2 emissions, projects for enhancing energy efficiency, renewable energy sources projects and projects reducing emissions from fossil fuels. The paper outlines the basis of the concept of CO 2 tax or fee as a key measure to stimulate the lowering of emissions and gives an analysis of the impact of different rates of tax or fee on CO 2 emissions on the energy price. A critical analysis of the new model's impact on development of renewable energy sources and on improving energy efficiency in buildings was carried out. Also, there is an analysis of the impact of the new model on transport development. The introduction of the new model should clear the energy market from administrative limitations and privileged positions of renewable sources and should bring all back in the frame of market economy, no matter what source of energy for production of electricity we are dealing with. One limitation to the new model is translation of the current situation in to the new system, especially in the field of renewable energy sources and their protected position under the already concluded long-term contracts. The paper also elaborates the basis for the

  18. Mutations in the bacterial ribosomal protein l3 and their association with antibiotic resistance

    DEFF Research Database (Denmark)

    Klitgaard, Rasmus N; Ntokou, Eleni; Nørgaard, Katrine

    2015-01-01

    -type genes with mutated L3 genes in a chromosomal L3 deletion strain. In this way, the essential L3 gene is available for the bacteria while allowing replacement of the wild type with mutated L3 genes. This enables investigation of the effect of single mutations in Escherichia coli without a wild-type L3...

  19. Molecular evaluation of a novel missense mutation & an insertional truncating mutation in SUMF1 gene

    Directory of Open Access Journals (Sweden)

    Udhaya H Kotecha

    2014-01-01

    Full Text Available Background & objectives: Multiple suphphatase deficiency (MSD is an autosomal recessive disorder affecting the post translational activation of all enzymes of the sulphatase family. To date, approximately 30 different mutations have been identified in the causative gene, sulfatase modifying factor 1 (SUMF1. We describe here the mutation analysis of a case of MSD. Methods: The proband was a four year old boy with developmental delay followed by neuroregression. He had coarse facies, appendicular hypertonia, truncal ataxia and ichthyosis limited to both lower limbs. Radiographs showed dysostosis multiplex. Clinical suspicion of MSD was confirmed by enzyme analysis of four enzymes of the sulphatase group. Results: The patient was compound heterozygote for a c.451A>G (p.K151E substitution in exon 3 and a single base insertion mutation (c.690_691 InsT in exon 5 in the SUMF1 gene. The bioinformatic analysis of the missense mutation revealed no apparent effect on the overall structure. However, the mutated 151-amino acid residue was found to be adjacent to the substrate binding and the active site residues, thereby affecting the substrate binding and/or catalytic activity, resulting in almost complete loss of enzyme function. Conclusions: The two mutations identified in the present case were novel. This is perhaps the first report of an insertion mutation in SUMF1 causing premature truncation of the protein.

  20. Comparative analysis of myostatin gene and promoter sequences of Qinchuan and Red Angus cattle.

    Science.gov (United States)

    He, Y L; Wu, Y H; Quan, F S; Liu, Y G; Zhang, Y

    2013-09-04

    To better understand the function of the myostatin gene and its promoter region in bovine, we amplified and sequenced the myostatin gene and promoter from the blood of Qinchuan and Red Angus cattle by using polymerase chain reaction. The sequences of Qinchuan and Red Angus cattle were compared with those of other cattle breeds available in GenBank. Exon splice sites were confirmed by mRNA sequencing. Compared to the published sequence (GenBank accession No. AF320998), 69 single nucleotide polymorphisms (SNPs) were identified in the Qinchuan myostatin gene, only one of which was an insertion mutation in Qinchuan cattle. There was a 16-bp insertion in the first 705-bp intron in 3 Qinchuan cattle. A total of 7 SNPs were identified in exon 3, in which the mutation occurred in the third base of the codon and was synonymous. On comparing the Qinchuan myostatin gene sequence to that of Red Angus cattle, a total of 50 SNPs were identified in the first and third exons. In addition, there were 18 SNPs identified in the Qinchuan cattle promoter region compared with those of other cattle compared to the Red Angus cattle myostatin promoter region. breeds (GenBank accession No. AF348479), but only 14 SNPs when compared to the Red Angus cattle myostatin promoter region.

  1. Nogo-receptor 1 antagonization in combination with neurotrophin-4/5 is not superior to single factor treatment in promoting survival and morphological complexity of cultured dopaminergic neurons.

    Science.gov (United States)

    Seiler, Stefanie; Di Santo, Stefano; Sahli, Sebastian; Andereggen, Lukas; Widmer, Hans Rudolf

    2017-08-01

    Cell transplantation using ventral mesencephalic tissue is an experimental approach to treat Parkinson's disease. This approach is limited by poor survival of the transplants and the high number of dopaminergic neurons needed for grafting. Increasing the yield of dopaminergic neurons in donor tissue is of great importance. We have previously shown that antagonization of the Nogo-receptor 1 by NEP1-40 promoted survival of cultured dopaminergic neurons and exposure to neurotrophin-4/5 increased dopaminergic cell densities in organotypic midbrain cultures. We investigated whether a combination of both treatments offers a novel tool to further improve dopaminergic neuron survival. Rat embryonic ventral mesencephalic neurons grown as organotypic free-floating roller tube or primary dissociated cultures were exposed to neurotrophin-4/5 and NEP1-40. The combined and single factor treatment resulted in significantly higher numbers of tyrosine hydroxylase positive neurons compared to controls. Significantly stronger tyrosine hydroxylase signal intensity was detected by Western blotting in the combination-treated cultures compared to controls but not compared to single factor treatments. Neurotrophin-4/5 and the combined treatment showed significantly higher signals for the neuronal marker microtubule-associated protein 2 in Western blots compared to control while no effects were observed for the astroglial marker glial fibrillary acidic protein between groups, suggesting that neurotrophin-4/5 targets mainly neuronal cells. Finally, NEP1-40 and the combined treatment significantly augmented tyrosine hydroxylase positive neurite length. Summarizing, our findings substantiate that antagonization of the Nogo-receptor 1 promotes dopaminergic neurons but does not further increase the yield of dopaminergic neurons and their morphological complexity when combined with neurotrophin-4/5 hinting to the idea that these treatments might exert their effects by activating common

  2. Epidermal growth factor receptor mutation in gastric cancer.

    Science.gov (United States)

    Liu, Zhimin; Liu, Lina; Li, Mei; Wang, Zhaohui; Feng, Lu; Zhang, Qiuping; Cheng, Shihua; Lu, Shen

    2011-04-01

    Epidermal growth factor receptor (EGFR) and Kirsten-RAS (KRAS) mutations have been identified as predictors of response to EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer. We aimed to screen the mutations of both genes in gastric carcinoma to detect the suitability of EGFR TKIs for patients with gastric carcinoma. We screened EGFR mutation in exons 19-21 and KRAS mutation in exon 2 in 58 gastric adenocarcinomas from China using high resolution melting analysis (HRMA). Positive samples were confirmed by DNA sequencing. Three EGFR missense mutations (5.2%) and 22 single nucleotide polymorphisms (SNP, Q787Q, 37.9%) were identified. To our knowledge, we report for the first time three mutation patterns of EGFR, Y801C, L858R and G863D, in gastric carcinoma. Two samples with EGFR mutation were mucinous adenocarcinoma. These three samples were collected from male patients aged over 75 years old. The frequency of KRAS mutation was 10.3% (6/58). The exclusiveness of EGFR and KRAS mutations was proven for the first time in gastric cancer. Gastric carcinoma of the mucinous adenocarcinoma type collected from older male patients may harbour EGFR mutations. The small subset of gastric adenocarcinoma patients may respond to EGFR TKIs.

  3. Carrier frequency of a nonsense mutation in the adenosine deaminase (ADA) gene implies a high incidence of ADA-deficient severe combined immunodeficiency (SCID) in Somalia and a single, common haplotype indicates common ancestry

    DEFF Research Database (Denmark)

    Sanchez Sanchez, Juan Jose; Monaghan, Gemma; Børsting, Claus

    2007-01-01

    Inherited adenosine deaminase (ADA) deficiency is a rare metabolic disorder that causes immunodeficiency, varying from severe combined immunodeficiency (SCID) in the majority of cases to a less severe form in a small minority of patients. Five patients of Somali origin from four unrelated families......, with severe ADA-SCID, were registered in the Greater London area. Patients and their parents were investigated for the nonsense mutation Q3X (ADA c7C>T), two missense mutations K80R (ADA c239A>G) and R142Q (ADA c425G>A), and a TAAA repeat located at the 3' end of an Alu element (AluVpA) positioned 1.1 kb...... upstream of the ADA transcription start site. All patients were homozygous for the haplotype ADA-7T/ADA-239G/ADA-425G/AluVpA7. Among 207 Somali immigrants to Denmark, the frequency of ADA c7C>T and the maximum likelihood estimate of the frequency of the haplotype ADA-7T/ADA-239G/ADA-425G/AluVpA7 were both...

  4. Aphid thermal tolerance is governed by a point mutation in bacterial symbionts.

    Directory of Open Access Journals (Sweden)

    Helen E Dunbar

    2007-05-01

    Full Text Available Symbiosis is a ubiquitous phenomenon generating biological complexity, affecting adaptation, and expanding ecological capabilities. However, symbionts, which can be subject to genetic limitations such as clonality and genomic degradation, also impose constraints on hosts. A model of obligate symbiosis is that between aphids and the bacterium Buchnera aphidicola, which supplies essential nutrients. We report a mutation in Buchnera of the aphid Acyrthosiphon pisum that recurs in laboratory lines and occurs in field populations. This single nucleotide deletion affects a homopolymeric run within the heat-shock transcriptional promoter for ibpA, encoding a small heat-shock protein. This Buchnera mutation virtually eliminates the transcriptional response of ibpA to heat stress and lowers its expression even at cool or moderate temperatures. Furthermore, this symbiont mutation dramatically affects host fitness in a manner dependent on thermal environment. Following a short heat exposure as juveniles, aphids bearing short-allele symbionts produced few or no progeny and contained almost no Buchnera, in contrast to aphids bearing symbionts without the deletion. Conversely, under constant cool conditions, aphids containing symbionts with the short allele reproduced earlier and maintained higher reproductive rates. The short allele has appreciable frequencies in field populations (up to 20%, further supporting the view that lowering of ibpA expression improves host fitness under some conditions. This recurring Buchnera mutation governs thermal tolerance of aphid hosts. Other cases in which symbiont microevolution has a major effect on host ecological tolerance are likely to be widespread because of the high mutation rates of symbiotic bacteria and their crucial roles in host metabolism and development.

  5. Mutations of maturity-onset diabetes of the young (MODY) genes in Thais with early-onset type 2 diabetes mellitus.

    Science.gov (United States)

    Plengvidhya, Nattachet; Boonyasrisawat, Watip; Chongjaroen, Nalinee; Jungtrakoon, Prapaporn; Sriussadaporn, Sutin; Vannaseang, Sathit; Banchuin, Napatawn; Yenchitsomanus, Pa-thai

    2009-06-01

    Six known genes responsible for maturity-onset diabetes of the young (MODY) were analysed to evaluate the prevalence of their mutations in Thai patients with MODY and early-onset type 2 diabetes. Fifty-one unrelated probands with early-onset type 2 diabetes, 21 of them fitted into classic MODY criteria, were analysed for nucleotide variations in promoters, exons, and exon-intron boundaries of six known MODY genes, including HNF-4alpha, GCK, HNF-1alpha, IPF-1, HNF-1beta, and NeuroD1/beta2, by the polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) method followed by direct DNA sequencing. Missense mutations or mutations located in regulatory region, which were absent in 130 chromosomes of non-diabetic controls, were classified as potentially pathogenic mutations. We found that mutations of the six known MODY genes account for a small proportion of classic MODY (19%) and early-onset type 2 diabetes (10%) in Thais. Five of these mutations are novel including GCK R327H, HNF-1alpha P475L, HNF-1alphaG554fsX556, NeuroD1-1972 G > A and NeuroD1 A322N. Mutations of IPF-1 and HNF-1beta were not identified in the studied probands. Mutations of the six known MODY genes may not be a major cause of MODY and early-onset type 2 diabetes in Thais. Therefore, unidentified genes await discovery in a majority of Thai patients with MODY and early-onset type 2 diabetes.

  6. Genetic Mutations in Cancer

    Science.gov (United States)

    Many different types of genetic mutations are found in cancer cells. This infographic outlines certain types of alterations that are present in cancer, such as missense, nonsense, frameshift, and chromosome rearrangements.

  7. AIP mutations and gigantism.

    Science.gov (United States)

    Rostomyan, Liliya; Potorac, Iulia; Beckers, Pablo; Daly, Adrian F; Beckers, Albert

    2017-06-01

    AIP mutations are rare in sporadic acromegaly but they are seen at a higher frequency among certain specific populations of pituitary adenoma patients (pituitary gigantism cases, familial isolated pituitary adenoma (FIPA) kindreds, and patients with macroadenomas who are diagnosed ≤30 years). AIP mutations are most prevalent in patients with pituitary gigantism (29% of this group were found to have mutations in AIP gene). These data support targeted genetic screening for AIP mutations/deletions in these groups of pituitary adenoma patients. Earlier diagnosis of AIP-related acromegaly-gigantism cases enables timely clinical evaluation and treatment, thereby improving outcomes in terms of excessive linear growth and acromegaly comorbidities. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Germ-line origins of mutation in families with hemophilia B: The sex ratio varies with the type of mutation

    Energy Technology Data Exchange (ETDEWEB)

    Ketterling, R.P.; Vielhaber, E.; Bottema, C.D.K.; Schaid, D.J.; Sommer, S.S. (Mayo Clinic/Foundation, Rochester, MN (United States)); Cohen, M.P. (Vanderbilt Univ., Nashville, TN (United States)); Sexauer, C.L. (Children' s Hospital, Oklahoma City, OK (United States))

    1993-01-01

    Previous epidemiological and biochemical studies have generated conflicting estimates of the sex ratio of mutation. Direct genomic sequencing in combination with haplotype analysis extends previous analyses by allowing the precise mutation to be determined in a given family. From analysis of the factor IX gene of 260 consecutive families with hemophilia B, the authors report the germ-line origin of mutation in 25 families. When combined with 14 origins of mutation reported by others and with 4 origins previously reported by them, a total of 25 occur in the female germ line, and 18 occur in the male germ line. The excess of germ-line origins in females does not imply an overall excess mutation rate per base pair in the female germ line. Bayesian analysis of the data indicates that the sex ratio varies with the type of mutation. The aggregate of single-base substitutions shows a male predominance of germ-line mutations (P < .002). The maximum-likelihood estimate of the male predominance is 3.5-fold. Of the single-base substitutions, deletions display a sex ratio of unity. Analysis of the parental age at transmission of a new mutation suggests that germ-line mutations are associated with a small increase in parental age in females but little, if any, increase in males. Although direct genomic sequencing offers a general method for defining the origin of mutation in specific families, accurate estimates of the sex ratios of different mutational classes require large sample sizes and careful correction for multiple biases of ascertainment. The biases in the present data result in an underestimate of the enhancement of mutation in males. 62 refs., 1 fig., 5 tabs.

  9. Mutation breeding in peas

    Energy Technology Data Exchange (ETDEWEB)

    Jaranowski, J [Institute of Genetics and Plant Breeding, Academy of Agriculture, Poznan (Poland); Micke, A [Joint FAO/IAEA Division of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, International Atomic Energy Agency, Vienna (Austria)

    1985-02-01

    The pea as an ancient crop plant still today has wide uses and is an import source of food protein. It is also an important object for genetic studies and as such has been widely used in mutation induction experiments. However, in comparison with cereals this ancient crop plant (like several other grain legumes) has gained relatively little from advances in breeding. The review focuses on the prospects of genetic improvement of pea by induced mutations, discusses principles and gives methodological information. (author)

  10. Mutation breeding in peas

    International Nuclear Information System (INIS)

    Jaranowski, J.; Micke, A.

    1985-01-01

    The pea as an ancient crop plant still today has wide uses and is an import source of food protein. It is also an important object for genetic studies and as such has been widely used in mutation induction experiments. However, in comparison with cereals this ancient crop plant (like several other grain legumes) has gained relatively little from advances in breeding. The review focuses on the prospects of genetic improvement of pea by induced mutations, discusses principles and gives methodological information. (author)

  11. Challenging a dogma: co-mutations exist in MAPK pathway genes in colorectal cancer.

    Science.gov (United States)

    Grellety, Thomas; Gros, Audrey; Pedeutour, Florence; Merlio, Jean-Philippe; Duranton-Tanneur, Valerie; Italiano, Antoine; Soubeyran, Isabelle

    2016-10-01

    Sequencing of genes encoding mitogen-activated protein kinase (MAPK) pathway proteins in colorectal cancer (CRC) has established as dogma that of the genes in a pathway only a single one is ever mutated. We searched for cases with a mutation in more than one MAPK pathway gene (co-mutations). Tumor tissue samples of all patients presenting with CRC, and referred between 01/01/2008 and 01/06/2015 to three French cancer centers for determination of mutation status of RAS/RAF+/-PIK3CA, were retrospectively screened for co-mutations using Sanger sequencing or next-generation sequencing. We found that of 1791 colorectal patients with mutations in the MAPK pathway, 20 had a co-mutation, 8 of KRAS/NRAS, and some even with a third mutation. More than half of the mutations were in codons 12 and 13. We also found 3 cases with a co-mutation of NRAS/BRAF and 9 with a co-mutation of KRAS/BRAF. In 2 patients with a co-mutation of KRAS/NRAS, the co-mutation existed in the primary as well as in a metastasis, which suggests that co-mutations occur early during carcinogenesis and are maintained when a tumor disseminates. We conclude that co-mutations exist in the MAPK genes but with low frequency and as yet with unknown outcome implications.

  12. Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process.

    Science.gov (United States)

    Kishimoto, Toshihiko; Ying, Bei-Wen; Tsuru, Saburo; Iijima, Leo; Suzuki, Shingo; Hashimoto, Tomomi; Oyake, Ayana; Kobayashi, Hisaka; Someya, Yuki; Narisawa, Dai; Yomo, Tetsuya

    2015-07-01

    The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution experiment in duplicated lineages. The cells from the continuously fitness-increasing evolutionary process were subjected to genome sequencing and analyzed at both the population and single-colony levels. Although the dynamics of genome mutation fixation were complicated by the combination of the stochastic appearance of adaptive mutations and clonal interference, the mutation fixation in the population was simply linear over generations. Each genome in the population accumulated 1.6 synonymous and 3.1 non-synonymous neutral mutations, on average, by the spontaneous mutation accumulation rate, while only a single genome in the population occasionally acquired an adaptive mutation. The neutral mutations that preexisted on the single genome hitchhiked on the domination of the adaptive mutation. The successive fixation processes of the 128 mutations demonstrated that hitchhiking and not genetic drift were responsible for the coincidence of the spontaneous mutation accumulation rate in the genome with the fixation rate of neutral mutations in the population. The molecular clock of neutral mutations to the fitness-increasing evolution suggests that the numerous neutral mutations observed in molecular phylogenetic trees may not always have been fixed in fitness-steady evolution but in adaptive evolution.

  13. Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process.

    Directory of Open Access Journals (Sweden)

    Toshihiko Kishimoto

    2015-07-01

    Full Text Available The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution experiment in duplicated lineages. The cells from the continuously fitness-increasing evolutionary process were subjected to genome sequencing and analyzed at both the population and single-colony levels. Although the dynamics of genome mutation fixation were complicated by the combination of the stochastic appearance of adaptive mutations and clonal interference, the mutation fixation in the population was simply linear over generations. Each genome in the population accumulated 1.6 synonymous and 3.1 non-synonymous neutral mutations, on average, by the spontaneous mutation accumulation rate, while only a single genome in the population occasionally acquired an adaptive mutation. The neutral mutations that preexisted on the single genome hitchhiked on the domination of the adaptive mutation. The successive fixation processes of the 128 mutations demonstrated that hitchhiking and not genetic drift were responsible for the coincidence of the spontaneous mutation accumulation rate in the genome with the fixation rate of neutral mutations in the population. The molecular clock of neutral mutations to the fitness-increasing evolution suggests that the numerous neutral mutations observed in molecular phylogenetic trees may not always have been fixed in fitness-steady evolution but in adaptive evolution.

  14. Mutation of Rice BC12/GDD1, Which Encodes a Kinesin-Like Protein That Binds to a GA Biosynthesis Gene Promoter, Leads to Dwarfism with Impaired Cell Elongation[W][OA

    Science.gov (United States)

    Li, Juan; Jiang, Jiafu; Qian, Qian; Xu, Yunyuan; Zhang, Cui; Xiao, Jun; Du, Cheng; Luo, Wei; Zou, Guoxing; Chen, Mingluan; Huang, Yunqing; Feng, Yuqi; Cheng, Zhukuan; Yuan, Ming; Chong, Kang

    2011-01-01

    The kinesins are a family of microtubule-based motor proteins that move directionally along microtubules and are involved in many crucial cellular processes, including cell elongation in plants. Less is known about kinesins directly regulating gene transcription to affect cellular physiological processes. Here, we describe a rice (Oryza sativa) mutant, gibberellin-deficient dwarf1 (gdd1), that has a phenotype of greatly reduced length of root, stems, spikes, and seeds. This reduced length is due to decreased cell elongation and can be rescued by exogenous gibberellic acid (GA3) treatment. GDD1 was cloned by a map-based approach, was expressed constitutively, and was found to encode the kinesin-like protein BRITTLE CULM12 (BC12). Microtubule cosedimentation assays revealed that BC12/GDD1 bound to microtubules in an ATP-dependent manner. Whole-genome microarray analysis revealed the expression of ent-kaurene oxidase (KO2), which encodes an enzyme involved in GA biosynthesis, was downregulated in gdd1. Electrophoretic mobility shift and chromatin immunoprecipitation assays revealed that GDD1 bound to the element ACCAACTTGAA in the KO2 promoter. In addition, GDD1 was shown to have transactivation activity. The level of endogenous GAs was reduced in gdd1, and the reorganization of cortical microtubules was altered. Therefore, BC12/GDD1, a kinesin-like protein with transcription regulation activity, mediates cell elongation by regulating the GA biosynthesis pathway in rice. PMID:21325138

  15. Identification of Variant-Specific Functions of PIK3CA by Rapid Phenotyping of Rare Mutations | Office of Cancer Genomics

    Science.gov (United States)

    Large-scale sequencing efforts are uncovering the complexity of cancer genomes, which are composed of causal "driver" mutations that promote tumor progression along with many more pathologically neutral "passenger" events. The majority of mutations, both in known cancer drivers and uncharacterized genes, are generally of low occurrence, highlighting the need to functionally annotate the long tail of infrequent mutations present in heterogeneous cancers.

  16. Mechanisms of mutations in myeloproliferative neoplasms.

    Science.gov (United States)

    Levine, Ross L

    2009-12-01

    In recent years, a series of studies have provided genetic insight into the pathogenesis of myeloproliferative neoplasms (MPNs). It is now known that JAK2V617F mutations are present in 90% of patients with polycythaemia vera (PV), 60% of patients with essential thrombocytosis (ET) and 50% of patients with myelofibrosis (MF). Despite the high prevalence of JAK2V617F mutations in these three myeloid malignancies, several questions remain. For example, how does one mutation contribute to the pathogenesis of three clinically distinct diseases, and how do some patients develop these diseases in the absence of a JAK2V617F mutation? Single nucleotide polymorphisms at various loci and somatic mutations, such as those in MPLW515L/K, TET2 and in exon 12 of JAK2, may also contribute to the pathogenesis of these MPNs. There are likely additional germline and somatic genetic factors important to the MPN phenotype. Additional studies of large MPN and control cohorts with new techniques will help identify these factors.

  17. Identification of functional DNA variants in the constitutive promoter region of MDM2

    Directory of Open Access Journals (Sweden)

    Lalonde Marie-Eve

    2012-09-01

    Full Text Available Abstract Although mutations in the oncoprotein murine double minute 2 (MDM2 are rare, MDM2 gene overexpression has been observed in several human tumors. Given that even modest changes in MDM2 levels might influence the p53 tumor suppressor signaling pathway, we postulated that sequence variation in the promoter region of MDM2 could lead to disregulated expression and variation in gene dosage. Two promoters have been reported for MDM2; an internal promoter (P2, which is located near the end of intron 1 and is p53-responsive, and an upstream constitutive promoter (P1, which is p53-independent. Both promoter regions contain DNA variants that could influence the expression levels of MDM2, including the well-studied single nucleotide polymorphism (SNP SNP309, which is located in the promoter P2; i.e., upstream of exon 2. In this report, we screened the promoter P1 for DNA variants and assessed the functional impact of the corresponding SNPs. Using the dbSNP database and genotyping validation in individuals of European descent, we identified three common SNPs (−1494 G > A; indel 40 bp; and −182 C > G. Three major promoter haplotypes were inferred by using these three promoter SNPs together with rs2279744 (SNP309. Following subcloning into a gene reporter system, we found that two of the haplotypes significantly influenced MDM2 promoter activity in a haplotype-specific manner. Site-directed mutagenesis experiments indicated that the 40 bp insertion/deletion variation is causing the observed allelic promoter activity. This study suggests that part of the variability in the MDM2 expression levels could be explained by allelic p53-independent P1 promoter activity.

  18. Mutation K42E in dehydrodolichol diphosphate synthase (DHDDS) causes recessive retinitis pigmentosa.

    Science.gov (United States)

    Lam, Byron L; Züchner, Stephan L; Dallman, Julia; Wen, Rong; Alfonso, Eduardo C; Vance, Jeffery M; Peričak-Vance, Margaret A

    2014-01-01

    A single-nucleotide mutation in the gene that encodes DHDDS has been identified by whole exome sequencing as the cause of the non-syndromic recessive retinitis pigmentosa (RP) in a family of Ashkenazi Jewish origin in which three of the four siblings have early onset retinal degeneration. The peripheral retinal degeneration in the affected siblings was evident in the initial examination in 1992 and only one had detectable electroretinogram (ERG) that suggested cone-rod dysfunction. The pigmentary retinal degeneration subsequently progressed rapidly. The identified mutation changes the highly conserved residue Lys42 to Glu, resulting in lower catalytic efficiency. Patterns of plasma transferrin isoelectric focusing gel were normal in all family members, indicating no significant abnormality in protein glycosylation. Dolichols have been shown to influence the fluidity and of the membrane and promote vesicle fusion. Considering that photoreceptor outer segments contain stacks of membrane discs, we believe that the mutation may lead to low dolichol levels in photoreceptor outer segments, resulting in unstable membrane structure that leads to photoreceptor degeneration.

  19. A Molecular Modeling Study of the Hydroxyflutamide Resistance Mechanism Induced by Androgen Receptor Mutations

    Directory of Open Access Journals (Sweden)

    Hong-Li Liu

    2017-08-01

    Full Text Available Hydroxyflutamide (HF, an active metabolite of the first generation antiandrogen flutamide, was used in clinic to treat prostate cancer targeting androgen receptor (AR. However, a drug resistance problem appears after about one year’s treatment. AR T877A is the first mutation that was found to cause a resistance problem. Then W741C_T877A and F876L_T877A mutations were also reported to cause resistance to HF, while W741C and F876L single mutations cannot. In this study, molecular dynamics (MD simulations combined with the molecular mechanics generalized Born surface area (MM-GBSA method have been carried out to analyze the interaction mechanism between HF and wild-type (WT/mutant ARs. The obtained results indicate that AR helix 12 (H12 plays a pivotal role in the resistance of HF. It can affect the coactivator binding site at the activation function 2 domain (AF2, surrounded by H3, H4, and H12. When H12 closes to the AR ligand-binding domain (LBD like a lid, the coactivator binding site can be formed to promote transcription. However, once H12 is opened to expose LBD, the coactivator binding site will be distorted, leading to invalid transcription. Moreover, per-residue free energy decomposition analyses indicate that N705, T877, and M895 are vital residues in the agonist/antagonist mechanism of HF.

  20. HER2 activating mutations are targets for colorectal cancer treatment.

    Science.gov (United States)

    Kavuri, Shyam M; Jain, Naveen; Galimi, Francesco; Cottino, Francesca; Leto, Simonetta M; Migliardi, Giorgia; Searleman, Adam C; Shen, Wei; Monsey, John; Trusolino, Livio; Jacobs, Samuel A; Bertotti, Andrea; Bose, Ron

    2015-08-01

    The Cancer Genome Atlas project identified HER2 somatic mutations and gene amplification in 7% of patients with colorectal cancer. Introduction of the HER2 mutations S310F, L755S, V777L, V842I, and L866M into colon epithelial cells increased signaling pathways and anchorage-independent cell growth, indicating that they are activating mutations. Introduction of these HER2 activating mutations into colorectal cancer cell lines produced resistance to cetuximab and panitumumab by sustaining MAPK phosphorylation. HER2 mutants are potently inhibited by low nanomolar doses of the irreversible tyrosine kinase inhibitors neratinib and afatinib. HER2 gene sequencing of 48 cetuximab-resistant, quadruple (KRAS, NRAS, BRAF, and PIK3CA) wild-type (WT) colorectal cancer patient-derived xenografts (PDX) identified 4 PDXs with HER2 mutations. HER2-targeted therapies were tested on two PDXs. Treatment with a single HER2-targeted drug (trastuzumab, neratinib, or lapatinib) delayed tumor growth, but dual HER2-targeted therapy with trastuzumab plus tyrosine kinase inhibitors produced regression of these HER2-mutated PDXs. HER2 activating mutations cause EGFR antibody resistance in colorectal cell lines, and PDXs with HER2 mutations show durable tumor regression when treated with dual HER2-targeted therapy. These data provide a strong preclinical rationale for clinical trials targeting HER2 activating mutations in metastatic colorectal cancer. ©2015 American Association for Cancer Research.

  1. Rapid identification of HEXA mutations in Tay-Sachs patients.

    Science.gov (United States)

    Giraud, Carole; Dussau, Jeanne; Azouguene, Emilie; Feillet, François; Puech, Jean-Philippe; Caillaud, Catherine

    2010-02-19

    Tay-Sachs disease (TSD) is a recessively inherited neurodegenerative disorder due to mutations in the HEXA gene resulting in a beta-hexosaminidase A (Hex A) deficiency. The purpose of this study was to characterize the molecular abnormalities in patients with infantile or later-onset forms of the disease. The complete sequencing of the 14 exons and flanking regions of the HEXA gene was performed with a unique technical condition in 10 unrelated TSD patients. Eleven mutations were identified, including five splice mutations, one insertion, two deletions and three single-base substitutions. Four mutations were novel: two splice mutations (IVS8+5G>A, IVS2+4delAGTA), one missense mutation in exon 6 (c.621T>G (p.D207E)) and one small deletion (c.1211-1212delTG) in exon 11 resulting in a premature stop codon at residue 429. The c.621T>G missense mutation was found in a patient presenting an infantile form. Its putative role in the pathogenesis of TSD is suspected as residue 207 is highly conserved in human, mouse and rat. Moreover, structural modelling predicted changes likely to affect substrate binding and catalytic activity of the enzyme. The time-saving procedure reported here could be useful for the characterization of Tay-Sachs-causing mutations, in particular in non-Ashkenazi patients mainly exhibiting rare mutations. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  2. Radiation induced mutations for plant selection

    International Nuclear Information System (INIS)

    Brunner, H.

    1994-01-01

    The successful use of plant breeding for improving crops requires the existence of genetic variation of useful traits. Unfortunately, the desired variation is often lacking. However, radiation can be used to induce mutations and thereby generate genetic variation from which desired mutants may be selected. Mutation induction has become a proven way of creating variation within a crop variety. It offers the possibility of inducing desired attributes that either cannot be expressed in nature or have been lost during evolution. More than 1700 mutant cultivars of crop plants with significantly improved attributes such as increased yield, improved quality, disease and stress resistance, have been released worldwide in the last thirty years. The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture has contributed to these achievements through the promotion of research and development in mutation breeding techniques using nuclear and related biotechnological methods and the provision of in plant breeding is then transferred to Member States of the IAEA and the FAO through training in mutation breeding methods and the provision of technical advice. Moreover, radiation treatment services are provided to foster applications of nuclear techniques in crop improvement programmes of member states and more specifically to render direct support to plant breeders by efficient generation of mutations. Plant materials are standardized prior to radiation exposure to warrant reproducibility of the induced effects within practical limits and a radiosensitivity test is implemented to affirm useful doses for applied objectives of a request. This review deals with irradiation methods applied at the IAEA laboratories for the efficient induction of mutations in seeds, vegetative propagules and tissue and cell cultures and the establishment of genetically variable populations upon which selection of desired traits can be based. 3 tabs., 18 refs. (author)

  3. Single nucleotide polymorphism of CC chemokine ligand 5 promoter gene in recipients may predict the risk of chronic graft-versus-host disease and its severity after allogeneic transplantation.

    Science.gov (United States)

    Kim, Dong Hwan; Jung, Hee Du; Lee, Nan Young; Sohn, Sang Kyun

    2007-10-15

    Leukocyte trafficking, regulated by chemokine ligands and their receptors, involves in the pathogenesis of graft-versus-host disease (GVHD) including CC ligand 5 (CCL5) or CC receptor 5 (CCR5). The current study analyzed the association of acute or chronic GVHD (cGVHD) with the CCR5/CCL5 gene single nucleotide polymorphisms (SNPs) of recipients and donors. We evaluated the SNPs of CCL5 promoter gene at position -28 (rs1800825)/-403 (rs2107538) and CCR5 gene at 59029 (rs1799987) in 72 recipients and donors using polymerase chain reaction/RFLP (Restriction Fragment Length Polymorphism) methods. With a median follow up of 924 days for survivors (range 48-2,360 days), the CG genotype of CCL5 gene at position -28 in recipients was significantly associated with a higher incidence of cGVHD (P=0.004), extensive cGVHD (P=0.038 by Seattle's criteria), and severe grade of cGVHD at presentation (P=0.017 by prognostic grading by Apkek et al.) compared to CC genotype. In terms of haplotype analysis, the recipients with AG haplotype of CCL5 gene also showed a higher incidence of cGVHD (P=0.003), extensive cGVHD (P=0.023), and more severe grade of cGVHD (P=0.020). However, there was no association of CCL5/CCR5 SNPs with acute GVHD. The donors' genotype of CCL5/CCR5 was not associated with the risk of cGVHD. The CCL5 promoter gene polymorphism of recipients was associated with the risk of cGVHD and its severity. The current study suggested an involvement of CCL5 in leukocyte trafficking for the development of cGVHD.

  4. p16 mutation spectrum in the premalignant condition Barrett's esophagus.

    Directory of Open Access Journals (Sweden)

    Thomas G Paulson

    Full Text Available BACKGROUND: Mutation, promoter hypermethylation and loss of heterozygosity involving the tumor suppressor gene p16 (CDKN2a/INK4a have been detected in a wide variety of human cancers, but much less is known concerning the frequency and spectrum of p16 mutations in premalignant conditions. METHODS AND FINDINGS: We have determined the p16 mutation spectrum for a cohort of 304 patients with Barrett's esophagus, a premalignant condition that predisposes to the development of esophageal adenocarcinoma. Forty seven mutations were detected by sequencing of p16 exon 2 in 44 BE patients (14.5% with a mutation spectrum consistent with that caused by oxidative damage and chronic inflammation. The percentage of patients with p16 mutations increased with increasing histologic grade. In addition, samples from 3 out of 19 patients (15.8% who underwent esophagectomy were found to have mutations. CONCLUSIONS: The results of this study suggest the environment of the esophagus in BE patients can both generate and select for clones with p16 mutations.

  5. Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations.

    Science.gov (United States)

    Rebbeck, Timothy R; Friebel, Tara M; Friedman, Eitan; Hamann, Ute; Huo, Dezheng; Kwong, Ava; Olah, Edith; Olopade, Olufunmilayo I; Solano, Angela R; Teo, Soo-Hwang; Thomassen, Mads; Weitzel, Jeffrey N; Chan, T L; Couch, Fergus J; Goldgar, David E; Kruse, Torben A; Palmero, Edenir Inêz; Park, Sue Kyung; Torres, Diana; van Rensburg, Elizabeth J; McGuffog, Lesley; Parsons, Michael T; Leslie, Goska; Aalfs, Cora M; Abugattas, Julio; Adlard, Julian; Agata, Simona; Aittomäki, Kristiina; Andrews, Lesley; Andrulis, Irene L; Arason, Adalgeir; Arnold, Norbert; Arun, Banu K; Asseryanis, Ella; Auerbach, Leo; Azzollini, Jacopo; Balmaña, Judith; Barile, Monica; Barkardottir, Rosa B; Barrowdale, Daniel; Benitez, Javier; Berger, Andreas; Berger, Raanan; Blanco, Amie M; Blazer, Kathleen R; Blok, Marinus J; Bonadona, Valérie; Bonanni, Bernardo; Bradbury, Angela R; Brewer, Carole; Buecher, Bruno; Buys, Saundra S; Caldes, Trinidad; Caliebe, Almuth; Caligo, Maria A; Campbell, Ian; Caputo, Sandrine M; Chiquette, Jocelyne; Chung, Wendy K; Claes, Kathleen B M; Collée, J Margriet; Cook, Jackie; Davidson, Rosemarie; de la Hoya, Miguel; De Leeneer, Kim; de Pauw, Antoine; Delnatte, Capucine; Diez, Orland; Ding, Yuan Chun; Ditsch, Nina; Domchek, Susan M; Dorfling, Cecilia M; Velazquez, Carolina; Dworniczak, Bernd; Eason, Jacqueline; Easton, Douglas F; Eeles, Ros; Ehrencrona, Hans; Ejlertsen, Bent; Engel, Christoph; Engert, Stefanie; Evans, D Gareth; Faivre, Laurence; Feliubadaló, Lidia; Ferrer, Sandra Fert; Foretova, Lenka; Fowler, Jeffrey; Frost, Debra; Galvão, Henrique C R; Ganz, Patricia A; Garber, Judy; Gauthier-Villars, Marion; Gehrig, Andrea; Gerdes, Anne-Marie; Gesta, Paul; Giannini, Giuseppe; Giraud, Sophie; Glendon, Gord; Godwin, Andrew K; Greene, Mark H; Gronwald, Jacek; Gutierrez-Barrera, Angelica; Hahnen, Eric; Hauke, Jan; Henderson, Alex; Hentschel, Julia; Hogervorst, Frans B L; Honisch, Ellen; Imyanitov, Evgeny N; Isaacs, Claudine; Izatt, Louise; Izquierdo, Angel; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jensen, Uffe Birk; John, Esther M; Vijai, Joseph; Kaczmarek, Katarzyna; Karlan, Beth Y; Kast, Karin; Investigators, KConFab; Kim, Sung-Won; Konstantopoulou, Irene; Korach, Jacob; Laitman, Yael; Lasa, Adriana; Lasset, Christine; Lázaro, Conxi; Lee, Annette; Lee, Min Hyuk; Lester, Jenny; Lesueur, Fabienne; Liljegren, Annelie; Lindor, Noralane M; Longy, Michel; Loud, Jennifer T; Lu, Karen H; Lubinski, Jan; Machackova, Eva; Manoukian, Siranoush; Mari, Véronique; Martínez-Bouzas, Cristina; Matrai, Zoltan; Mebirouk, Noura; Meijers-Heijboer, Hanne E J; Meindl, Alfons; Mensenkamp, Arjen R; Mickys, Ugnius; Miller, Austin; Montagna, Marco; Moysich, Kirsten B; Mulligan, Anna Marie; Musinsky, Jacob; Neuhausen, Susan L; Nevanlinna, Heli; Ngeow, Joanne; Nguyen, Huu Phuc; Niederacher, Dieter; Nielsen, Henriette Roed; Nielsen, Finn Cilius; Nussbaum, Robert L; Offit, Kenneth; Öfverholm, Anna; Ong, Kai-Ren; Osorio, Ana; Papi, Laura; Papp, Janos; Pasini, Barbara; Pedersen, Inge Sokilde; Peixoto, Ana; Peruga, Nina; Peterlongo, Paolo; Pohl, Esther; Pradhan, Nisha; Prajzendanc, Karolina; Prieur, Fabienne; Pujol, Pascal; Radice, Paolo; Ramus, Susan J; Rantala, Johanna; Rashid, Muhammad Usman; Rhiem, Kerstin; Robson, Mark; Rodriguez, Gustavo C; Rogers, Mark T; Rudaitis, Vilius; Schmidt, Ane Y; Schmutzler, Rita Katharina; Senter, Leigha; Shah, Payal D; Sharma, Priyanka; Side, Lucy E; Simard, Jacques; Singer, Christian F; Skytte, Anne-Bine; Slavin, Thomas P; Snape, Katie; Sobol, Hagay; Southey, Melissa; Steele, Linda; Steinemann, Doris; Sukiennicki, Grzegorz; Sutter, Christian; Szabo, Csilla I; Tan, Yen Y; Teixeira, Manuel R; Terry, Mary Beth; Teulé, Alex; Thomas, Abigail; Thull, Darcy L; Tischkowitz, Marc; Tognazzo, Silvia; Toland, Amanda Ewart; Topka, Sabine; Trainer, Alison H; Tung, Nadine; van Asperen, Christi J; van der Hout, Annemieke H; van der Kolk, Lizet E; van der Luijt, Rob B; Van Heetvelde, Mattias; Varesco, Liliana; Varon-Mateeva, Raymonda; Vega, Ana; Villarreal-Garza, Cynthia; von Wachenfeldt, Anna; Walker, Lisa; Wang-Gohrke, Shan; Wappenschmidt, Barbara; Weber, Bernhard H F; Yannoukakos, Drakoulis; Yoon, Sook-Yee; Zanzottera, Cristina; Zidan, Jamal; Zorn, Kristin K; Hutten Selkirk, Christina G; Hulick, Peter J; Chenevix-Trench, Georgia; Spurdle, Amanda B; Antoniou, Antonis C; Nathanson, Katherine L

    2018-05-01

    The prevalence and spectrum of germline mutations in BRCA1 and BRCA2 have been reported in single populations, with the majority of reports focused on White in Europe and North America. The Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) has assembled data on 18,435 families with BRCA1 mutations and 11,351 families with BRCA2 mutations ascertained from 69 centers in 49 countries on six continents. This study comprehensively describes the characteristics of the 1,650 unique BRCA1 and 1,731 unique BRCA2 deleterious (disease-associated) mutations identified in the CIMBA database. We observed substantial variation in mutation type and frequency by geographical region and race/ethnicity. In addition to known founder mutations, mutations of relatively high frequency were identified in specific racial/ethnic or geographic groups that may reflect founder mutations and which could be used in targeted (panel) first pass genotyping for specific populations. Knowledge of the population-specific mutational spectrum in BRCA1 and BRCA2 could inform efficient strategies for genetic testing and may justify a more broad-based oncogenetic testing in some populations. © 2018 Wiley Periodicals, Inc.

  6. The normally expressed kappa immunoglobulin light chain gene repertoire and somatic mutations studied by single-sided specific polymerase chain reaction (PCR); frequent occurrence of features often assigned to autoimmunity

    DEFF Research Database (Denmark)

    Juul, L; Hougs, L; Andersen, V

    1997-01-01

    The expressed human kappa light chain gene repertoire utilized by healthy individuals was studied by two different single-sided specific PCR techniques to avoid bias for certain V genes. A total of 103 rearranged kappa sequences from peripheral blood mononuclear cells from healthy individuals were...

  7. High mutation rates limit evolutionary adaptation in Escherichia coli

    Science.gov (United States)

    Wagner, Andreas

    2018-01-01

    Mutation is fundamental to evolution, because it generates the genetic variation on which selection can act. In nature, genetic changes often increase the mutation rate in systems that range from viruses and bacteria to human tumors. Such an increase promotes the accumulation of frequent deleterious or neutral alleles, but it can also increase the chances that a population acquires rare beneficial alleles. Here, we study how up to 100-fold increases in Escherichia coli’s genomic mutation rate affect adaptive evolution. To do so, we evolved multiple replicate populations of asexual E. coli strains engineered to have four different mutation rates for 3000 generations in the laboratory. We measured the ability of evolved populations to grow in their original environment and in more than 90 novel chemical environments. In addition, we subjected the populations to whole genome population sequencing. Although populations with higher mutation rates accumulated greater genetic diversity, this diversity conveyed benefits only for modestly increased mutation rates, where populations adapted faster and also thrived better than their ancestors in some novel environments. In contrast, some populations at the highest mutation rates showed reduced adaptation during evolution, and failed to thrive in all of the 90 alternative environments. In addition, they experienced a dramatic decrease in mutation rate. Our work demonstrates that the mutation rate changes the global balance between deleterious and beneficial mutational effects on fitness. In contrast to most theoretical models, our experiments suggest that this tipping point already occurs at the modest mutation rates that are found in the wild. PMID:29702649

  8. Health Promotion

    DEFF Research Database (Denmark)

    Povlsen, Lene; Borup, I.

    2015-01-01

    and Adolescent Health Promotion', Salutogenesis - from theory to practice' and Health, Stress and Coping'. More than half of all doctoral theses undertaken at NHV during these years had health promotion as their theme. As a derivative, the Nordic Health Promotion Research Network (NHPRN) was established in 2007......In 1953 when the Nordic School of Public Health was founded, the aim of public health programmes was disease prevention more than health promotion. This was not unusual, since at this time health usually was seen as the opposite of disease and illness. However, with the Ottawa Charter of 1986......, the World Health Organization made a crucial change to view health not as a goal in itself but as the means to a full life. In this way, health promotion became a first priority and fundamental action for the modern society. This insight eventually reached NHV and in 2002 - 50 years after the foundation...

  9. Are There Mutator Polymerases?

    Directory of Open Access Journals (Sweden)

    Miguel Garcia-Diaz

    2003-01-01

    Full Text Available DNA polymerases are involved in different cellular events, including genome replication and DNA repair. In the last few years, a large number of novel DNA polymerases have been discovered, and the biochemical analysis of their properties has revealed a long list of intriguing features. Some of these polymerases have a very low fidelity and have been suggested to play mutator roles in different processes, like translesion synthesis or somatic hypermutation. The current view of these processes is reviewed, and the current understanding of DNA polymerases and their role as mutator enzymes is discussed.

  10. MUTATIONS IN CALMODULIN GENES

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an isolated polynucleotide encoding at least a part of calmodulin and an isolated polypeptide comprising at least a part of a calmodulin protein, wherein the polynucleotide and the polypeptide comprise at least one mutation associated with a cardiac disorder. The ...... the binding of calmodulin to ryanodine receptor 2 and use of such compound in a treatment of an individual having a cardiac disorder. The invention further provides a kit that can be used to detect specific mutations in calmodulin encoding genes....

  11. Adaptive synonymous mutations in an experimentally evolved Pseudomonas fluorescens population

    DEFF Research Database (Denmark)

    Bailey, Susan; Hinz, Aaron; Kassen, Rees

    2014-01-01

    Conventional wisdom holds that synonymous mutations, nucleotide changes that do not alter the encoded amino acid, have no detectable effect on phenotype or fitness. However, a growing body of evidence from both comparative and experimental studies suggests otherwise. Synonymous mutations have been...... shown to impact gene expression, protein folding and fitness, however, direct evidence that they can be positively selected, and so contribute to adaptation, is lacking. Here we report the recovery of two beneficial synonymous single base pair changes that arose spontaneously and independently...... in an experimentally evolved population of Pseudomonas fluorescens. We show experimentally that these mutations increase fitness by an amount comparable to non-synonymous mutations and that the fitness increases stem from increased gene expression. These results provide unequivocal evidence that synonymous mutations...

  12. Single amino acid changes in the 6K1-CI region can promote the alternative adaptation of Prunus- and Nicotiana-propagated Plum pox virus C isolates to either host.

    Science.gov (United States)

    Calvo, María; Malinowski, Tadeusz; García, Juan Antonio

    2014-02-01

    Plum pox virus (PPV) C is one of the less common PPV strains and specifically infects cherry trees in nature. Making use of two PPV-C isolates that display different pathogenicity features, i.e., SwCMp, which had been adapted to Nicotiana species, and BY101, which had been isolated from cherry rootstock L2 (Prunus lannesiana) and propagated only in cherry species, we have generated two infective full-length cDNA clones in order to determine which viral factors are involved in the adaptation to each host. According to our results, the C-P3(PIPO)/6K1/N-CI (cylindrical inclusion) region contains overlapping but not coincident viral determinants involved in symptoms development, local viral amplification, and systemic movement capacity. Amino acid changes in this region promoting the adaptation to N. benthamiana or P. avium have trade-off effects in the alternative host. In both cases, adaptation can be achieved through single amino acid changes in the NIapro protease recognition motif between 6K1 and CI or in nearby sequences. Thus, we hypothesize that the potyvirus polyprotein processing could depend on specific host factors and the adaptation of PPV-C isolates to particular hosts relies on a fine regulation of the proteolytic cleavage of the 6K1-CI junction.

  13. Single site mutations in the hetero-oligomeric Mrp antiporter from alkaliphilic Bacillus pseudofirmus OF4 that affect Na+/H+ antiport activity, sodium exclusion, individual Mrp protein levels, or Mrp complex formation.

    Science.gov (United States)

    Morino, Masato; Natsui, Shinsuke; Ono, Tomohiro; Swartz, Talia H; Krulwich, Terry A; Ito, Masahiro

    2010-10-01

    Mrp systems are widely distributed and structurally complex cation/proton antiporters. Antiport activity requires hetero-oligomeric complexes of all six or seven hydrophobic Mrp proteins (MrpA-MrpG). Here, a panel of site-directed mutants in conserved or proposed motif residues was made in the Mrp Na(+)(Li(+))/H(+) antiporter from an alkaliphilic Bacillus. The mutant operons were expressed in antiporter-deficient Escherichia coli KNabc and assessed for antiport properties, support of sodium resistance, membrane levels of each Mrp protein, and presence of monomeric and dimeric Mrp complexes. Antiport did not depend on a VFF motif or a conserved tyrosine pair, but a role for a conserved histidine in a potential quinone binding site of MrpA was supported. The importance of several acidic residues for antiport was confirmed, and the importance of additional residues was demonstrated (e.g. three lysine residues conserved across MrpA, MrpD, and membrane-bound respiratory Complex I subunits (NuoL/M/N)). The results extended indications that MrpE is required for normal membrane levels of other Mrp proteins and for complex formation. Moreover, mutations in several other Mrp proteins lead to greatly reduced membrane levels of MrpE. Thus, changes in either of the two Mrp modules, MrpA-MrpD and MrpE-MrpG, influence the other. Two mutants, MrpB-P37G and MrpC-Q70A, showed a normal phenotype but lacked the MrpA-MrpG monomeric complex while retaining the dimeric hetero-oligomeric complex. Finally, MrpG-P81A and MrpG-P81G mutants exhibited no antiport activity but supported sodium resistance and a low [Na(+)](in). Such mutants could be used to screen hypothesized but uncharacterized sodium efflux functions of Mrp apart from Na(+) (Li(+))/H(+) antiport.

  14. Intercellular distribution of mutations induced in oopcytes of Drosophila melanogaster by chemical and physical mutagens

    International Nuclear Information System (INIS)

    Traut, H.

    1979-01-01

    When females of Drosophila melanogaster are treated with chemical or physical mutagens, not only in one but also in both of the two homologous X chromosomes of a given oocyte, a recessive sex-linked lethal mutation may be induced. A method is described that discriminates between such single and double mutations. A theory is developed to show how a comparison betweeen the expected and the observer frequency of double mutations yields an indication of the intercellular distribution (random or nonrandom) of recessive lethal mutations induced by mutagenic agents in oocytes and, consequently, of the distribution (homogenous or nonhomogeneous) of those agents. Three agents were tested: FUdR (12.5, 50.0 and 81.0 μg/ml), mitomycin C (130.0 μg/ml) and x rays (2000 R, 150 kV). After FUdR feeding, no increase in the mutation frequency usually observed in D. melanogaster without mutagenic treatment was obtained (u = 0.13%, namely three single mutations among 2332 chromosomes tested). After mitomycin C feeding 104 single and three double mutations were obtained. All of the 50 mutations observed after x irradiation were single mutations. The results obtained in the mitomycin C and radiation experiments favor the assumption of a random intercellular distribution of recessive lethal mutations induced by these two agents in oocytes of D. melanogaster. Reasons are discussed why for other types of mutagenic agents nonrandom distributions may be observed with our technique

  15. Mutation, somatic mutation and diseases of man

    International Nuclear Information System (INIS)

    Burnet, F.M.

    1976-01-01

    The relevance of the intrinsic mutagenesis for the evolution process, genetic diseases and the process of aging is exemplified. The fundamental reaction is the function of the DNA and the DNA-enzymes like the DNA-polymerases in replication, repair, and transcription. These defects are responsible for the mutation frequency and the genetic drift in the evolution process. They cause genetic diseases like Xeroderma pigmentosum which is described here in detail. The accumulation of structural and functional mistakes leads to diseases of old age, for example to autoimmune diseases and immune suppression. There is a proportionality between the duration of life and the frequency of mistakes in the enzymatic repair system. No possibility of prophylaxis or therapy is seen. Methods for prognosis could be developed. (AJ) [de

  16. Mutation induction by ion beams in arabidopsis

    International Nuclear Information System (INIS)

    Tanaka, Atsushi

    1999-01-01

    An investigation was made on characteristics of ion beams for the biological effects and the induction of mutation using Arabidopsis plant as a model plant for the molecular genetics. Here, the characteristics of mutation at the molecular level as well as new mutants induced by ion beams were described. The ast and sep1 were obtained from the offspring of 1488 carbon ion-irradiated seeds respectively. The uvi1-uvi4 mutants were also induced from 1280 M 1 lines. Thus, ion beams can induce not only known mutants such as tt, gl and hy but also novel mutants with high frequency. Even in the tt phenotype, two new mutant loci other than known loci were found. In chrysanthemum, several kinds of single, complex or stripped flower-color mutants that have been never induced by γirradiation, indicating that ion beams could produce a variety of mutants with the same phenotype. In conclusion, ion beams for the mutation induction are characterized by 1) to induce mutants with high frequency, 2) to show broad mutation spectrum and 3) to produce novel mutants. For these reasons, chemical mutagens such as EMS and low LET ionizing radiation such as X-rays and γ-rays will predominantly induce many but small modifications or DNA damages on the DNA strands. As the result, several point mutations will be produced on the genome. On the contrary, ion beams as a high LET ionizing radiation will not cause so many but large and irreparable DNA damage locally, resulting in production of limited number of null mutation. (M.N.)

  17. Mutation induction by ion beams in arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1999-07-01

    An investigation was made on characteristics of ion beams for the biological effects and the induction of mutation using Arabidopsis plant as a model plant for the molecular genetics. Here, the characteristics of mutation at the molecular level as well as new mutants induced by ion beams were described. The ast and sep1 were obtained from the offspring of 1488 carbon ion-irradiated seeds respectively. The uvi1-uvi4 mutants were also induced from 1280 M{sub 1} lines. Thus, ion beams can induce not only known mutants such as tt, gl and hy but also novel mutants with high frequency. Even in the tt phenotype, two new mutant loci other than known loci were found. In chrysanthemum, several kinds of single, complex or stripped flower-color mutants that have been never induced by {gamma}irradiation, indicating that ion beams could produce a variety of mutants with the same phenotype. In conclusion, ion beams for the mutation induction are characterized by 1) to induce mutants with high frequency, 2) to show broad mutation spectrum and 3) to produce novel mutants. For these reasons, chemical mutagens such as EMS and low LET ionizing radiation such as X-rays and {gamma}-rays will predominantly induce many but small modifications or DNA damages on the DNA strands. As the result, several point mutations will be produced on the genome. On the contrary, ion beams as a high LET ionizing radiation will not cause so many but large and irreparable DNA damage locally, resulting in production of limited number of null mutation. (M.N.)

  18. Major contribution from recurrent alterations and MSH6 mutations in the Danish Lynch syndrome population

    DEFF Research Database (Denmark)

    Nilbert, Mef; Wikman, Friedrik P; Hansen, Thomas V O

    2009-01-01

    mutations in 164 families are considered pathogenic and an additional 50 variants from 76 families are considered to represent variants of unknown pathogenicity. The different MMR genes contribute to 40% (MSH2), 29% (MLH1), and 22% (MSH6) of the mutations and the Danish population thus shows a considerably...... higher frequency of MSH6 mutations than previously described. Although 69/88 (78%) pathogenic mutations were present in a single family, previously recognized recurrent/founder mutations were causative in 75/137 (55%) MLH1/MSH2 mutant families. In addition, the Danish MLH1 founder mutation c.1667......+2_1667_+8TAAATCAdelinsATTT was identified in 14/58 (24%) MLH1 mutant families. The Danish Lynch syndrome population thus demonstrates that MSH6 mutations and recurrent/founder mutations have a larger contribution than previously recognized, which implies that the MSH6 gene should be included in routine diagnostics...

  19. Mutations and chromosomal aberrations

    International Nuclear Information System (INIS)

    Kihlman, B.A.

    1977-01-01

    The genetic changes of mutations and chromosomal aberrations are discussed. The consequences of both depend not only on the type of genetic change produced but also on the type of cell that is affected and on the development stage of the organism. (C.F.)

  20. Mutations in GABRB3

    DEFF Research Database (Denmark)

    Møller, Rikke S; Wuttke, Thomas V; Helbig, Ingo

    2017-01-01

    OBJECTIVE: To examine the role of mutations in GABRB3 encoding the β3 subunit of the GABAA receptor in individual patients with epilepsy with regard to causality, the spectrum of genetic variants, their pathophysiology, and associated phenotypes. METHODS: We performed massive parallel sequencing ...

  1. Kin Selection - Mutation Balance

    DEFF Research Database (Denmark)

    Dyken, J. David Van; Linksvayer, Timothy Arnold; Wade, Michael J.

    2011-01-01

    selection-mutation balance, which provides an evolutionary null hypothesis for the statics and dynamics of cheating. When social interactions have linear fitness effects and Hamilton´s rule is satisfied, selection is never strong enough to eliminate recurrent cheater mutants from a population, but cheater...

  2. Mutation breeding research of wheat (T. aestivum) in China

    International Nuclear Information System (INIS)

    Wang, L.; Zhang, B.; Shi, J.; Tao, S.; Fan, Q.

    1990-01-01

    Full text: 78 cultivars and various valuable strains have been obtained through induced genic mutation and chromosome translocation. Irradiation of hybrid seeds, gametes, zygotes and in vitro cultured cells, gave increased mutation frequency and expanded spectrum. Various physical agents were examined either singly or in combination with chemical agents. Combined use of γ-irradiation by low dose and in vitro culture proved effective in raising the percentage of seed-set in wide-crosses. (author)

  3. SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis

    OpenAIRE

    Orlacchio, Antonio; Babalini, Carla; Borreca, Antonella; Patrono, Clarice; Massa, Roberto; Basaran, Sarenur; Munhoz, Renato P.; Rogaeva, Ekaterina A.; St George-Hyslop, Peter H.; Bernardi, Giorgio; Kawarai, Toshitaka

    2010-01-01

    The mutation of the spatacsin gene is the single most common cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum. Common clinical, pathological and genetic features between amyotrophic lateral sclerosis and hereditary spastic paraplegia motivated us to investigate 25 families with autosomal recessive juvenile amyotrophic lateral sclerosis and long-term survival for mutations in the spatascin gene. The inclusion criterion was a diagnosis of clinically definite ...

  4. Genetic improvement of 'NPq' rice with induced mutations

    International Nuclear Information System (INIS)

    Ram, Mahabal

    1974-01-01

    Exposure of the seeds of rice to different doses of gamma-rays increased the total mutation frequency with an increase in the dose rate, and the most economic mutations occurred around 30 kr. Induced mutants with dwarf plant type, early maturity, fine grain, high-yielding ability, and resistance to lodging and major diseases were isolated in the M, and M generations. Genetical studies indicated that height is controlled by 4 pairs of additive genes, grass-clumps by 2 pairs of non-allelic interacting genes (inhibitory), and chlorophyll mutations such as albina by 2 pairs of duplicate genes and xantha by a single gene pair. (author)

  5. Mutations in galactosemia

    Energy Technology Data Exchange (ETDEWEB)

    Reichardt, J.K.V. [Univ. of Southern California School of Medicine, Los Angeles, CA (United States)

    1995-10-01

    This Letter raises four issues concerning two papers on galactosemia published in the March 1995 of the Journal. First, table 2 in the paper by Elsas et al. incorrectly attributes seven galactose-l-phosphate uridyl transferase (GALT) mutations (S135L, L195P, K285N, N314D, R333W, R333G, and K334R). The table also fails to mention that others have reported the same two findings attributed to {open_quotes}Leslie et al.; Elsas et al. and in press{close_quotes} and {open_quotes}Leslie et al.; Elsas et al.{close_quotes} The first finding on the prevalence of the Q188R galactosemia mutation in the G/G Caucasian population has also been described by Ng et al., and the second finding on the correlation of the N314D GALT mutation with the Duarte variant was reported by Lin et al. Second, Elsas et al. suggest that the E203K and N314D mutations may {open_quotes}produce intra-allelic complementation when in cis{close_quotes}. This speculation is supported by the activity data of individual III-2 but is inconsistent with the activities of three other individuals I-1, II-1, and III-1 of the same pedigree. The GALT activity measured in these three individuals suggests a dominant negative effect of E203K in E203K-N314D chromosomes, since they all have less than normal activity. Thus, the preponderance of the data in this paper is at odds with the authors speculation. It is worth recalling that Lin et al. also identified four N314D GALT mutations on 95 galactosemic chromosomes examined. A similar situation also appears to be the case in proband III-1 (with genotype E203K-N314D/IVSC) in the Elsas et al. paper. 9 refs.

  6. Mutation breeding newsletter. No. 45

    International Nuclear Information System (INIS)

    2001-07-01

    This issue of the Mutation Breeding newsletter contains 39 articles dealing with radiation induced mutations and chemical mutagenesis techniques in plant breeding programs with the aims of improving crop productivity and disease resistance as well as exploring genetic variabilities

  7. Mutation breeding newsletter. No. 33

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-01-01

    This issue of the newsletter reports a number of research news and research abstracts on application of radiation induced mutation techniques to increase mutagenesis and mutation frequency in plant breeding projects.

  8. Mutation breeding newsletter. No. 33

    International Nuclear Information System (INIS)

    1989-01-01

    This issue of the newsletter reports a number of research news and research abstracts on application of radiation induced mutation techniques to increase mutagenesis and mutation frequency in plant breeding projects

  9. Diverse growth hormone receptor gene mutations in Laron syndrome.

    Science.gov (United States)

    Berg, M A; Argente, J; Chernausek, S; Gracia, R; Guevara-Aguirre, J; Hopp, M; Pérez-Jurado, L; Rosenbloom, A; Toledo, S P; Francke, U

    1993-01-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), we analyzed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. We amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). We identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71 + 1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, we determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations we identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. We conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. Images Figure 1 Figure 2 PMID:8488849

  10. Screening for duplications, deletions and a common intronic mutation detects 35% of second mutations in patients with USH2A monoallelic mutations on Sanger sequencing.

    Science.gov (United States)

    Steele-Stallard, Heather B; Le Quesne Stabej, Polona; Lenassi, Eva; Luxon, Linda M; Claustres, Mireille; Roux, Anne-Francoise; Webster, Andrew R; Bitner-Glindzicz, Maria

    2013-08-08

    23 (35%) of 'missing' mutations in Usher type 2 probands with only a single heterozygous USH2A mutation detected with Sanger sequencing could be attributed to deletions, duplications or a pathogenic deep intronic variant. Future mutation detection strategies and genetic counselling will need to take into account the prevalence of these types of mutations in order to provide a more comprehensive diagnostic service.

  11. An activation domain within the walleye dermal sarcoma virus retroviral cyclin protein is essential for inhibition of the viral promoter

    International Nuclear Information System (INIS)

    Rovnak, Joel; Hronek, Brett W.; Ryan, Sean O.; Cai, Sumin; Quackenbush, Sandra L.

    2005-01-01

    Walleye dermal sarcoma virus (WDSV) is a complex retrovirus associated with seasonal dermal sarcomas. Developing tumors have low levels of accessory gene transcripts, A1 and B, and regressing tumors have high levels of full-length and spliced transcripts. Transcript A1 encodes a retroviral cyclin (rv-cyclin) with limited homology to host cyclins. The rv-cyclin is physically linked to components of the transcriptional co-activator complex, Mediator, and regulates transcription. In walleye fibroblasts, it inhibits the WDSV promoter independently of cis-acting DNA sequences. The rv-cyclin activates transcription from GAL4 promoters when fused to the GAL4 DNA binding domain. A 30 a.a. activation domain in the carboxy region can be inactivated by single point mutations, and these mutations diminish the ability of the rv-cyclin to inhibit the WDSV promoter. When fused to glutathione S-transferase, the rv-cyclin, its carboxy region, and the activation domain pull down components of transcription complexes from nuclear extracts, and pulldown is lost by mutation of the activation domain

  12. An activating mutation of interferon regulatory factor 4 (IRF4) in adult T cell leukemia.

    Science.gov (United States)

    Cherian, Mathew A; Olson, Sydney; Sundaramoorthi, Hemalatha; Cates, Kitra; Cheng, Xiaogang; Harding, John; Martens, Andrew; Challen, Grant A; Tyagi, Manoj; Ratner, Lee; Rauch, Daniel

    2018-03-14

    The human T cell leukemia virus-1 (HTLV-1) oncoprotein Tax drives cell proliferation and resistance to apoptosis early in the pathogenesis of adult T-cell leukemia (ATL). Subsequently, likely as a result of specific immuno-editing, Tax expression is downregulated and functionally replaced by somatic driver mutations of the host genome. Both amplification and point mutations of interferon regulatory factor 4 (IRF4) have been previously detected in ATL, and the K59R mutation is the most common single-nucleotide variation in IRF4 and is found exclusively in ATL. Here high throughput whole-exome sequencing revealed recurrent activating genetic alterations in the T cell receptor, CD28, and NF-kB pathways. Moreover, we found that IRF4, which is transcriptionally activated downstream of these pathways, is frequently mutated in ATL. IRF4 RNA, protein, and IRF4 transcriptional targets are uniformly elevated in HTLV transformed cells and ATL cell lines, and IRF4 was bound to genomic regulatory DNA of many of these transcriptional targets in HTLV-1 transformed cell lines. We further noted that the K59R IRF4 mutant is expressed at higher levels in the nucleus than is wild-type IRF4, and is transcriptionally more active. Expression of both wild-type and the K59R mutant of IRF4 from a constitutive promoter in retrovirally transduced murine bone marrow cells increased the abundance of T lymphocytes but not myeloid cells or B lymphocytes in mice. IRF4 may represent a therapeutic target in ATL since ATL cells select for a mutant of IRF4 with higher nuclear expression and transcriptional activity, and over-expression of IRF4 induces the expansion of T lymphocytes in vivo. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  13. RADIA: RNA and DNA integrated analysis for somatic mutation detection.

    Directory of Open Access Journals (Sweden)

    Amie J Radenbaugh

    Full Text Available The detection of somatic single nucleotide variants is a crucial component to the characterization of the cancer genome. Mutation calling algorithms thus far have focused on comparing the normal and tumor genomes from the same individual. In recent years, it has become routine for projects like The Cancer Genome Atlas (TCGA to also sequence the tumor RNA. Here we present RADIA (RNA and DNA Integrated Analysis, a novel computational method combining the patient-matched normal and tumor DNA with the tumor RNA to detect somatic mutations. The inclusion of the RNA increases the power to detect somatic mutations, especially at low DNA allelic frequencies. By integrating an individual's DNA and RNA, we are able to detect mutations that would otherwise be missed by traditional algorithms that examine only the DNA. We demonstrate high sensitivity (84% and very high precision (98% and 99% for RADIA in patient data from endometrial carcinoma and lung adenocarcinoma from TCGA. Mutations with both high DNA and RNA read support have the highest validation rate of over 99%. We also introduce a simulation package that spikes in artificial mutations to patient data, rather than simulating sequencing data from a reference genome. We evaluate sensitivity on the simulation data and demonstrate our ability to rescue back mutations at low DNA allelic frequencies by including the RNA. Finally, we highlight mutations in important cancer genes that were rescued due to the incorporation of the RNA.

  14. A comparative study of mutation screening of sarcomeric genes (MYBPC3, MYH7, TNNT2 using single gene approach versus targeted gene panel next generation sequencing in a cohort of HCM patients in Egypt

    Directory of Open Access Journals (Sweden)

    Heba Sh. Kassem

    2017-10-01

    Full Text Available Background: NGS enables simultaneous sequencing of large numbers of associated genes in genetic heterogeneous disorders, in a more rapid and cost-effective manner than traditional technologies. However there have been limited direct comparisons between NGS and more established technologies to assess the sensitivity and false negative rates of this new approach. The scope of the present manuscript is to compare variants detected in MYBPC3, MYH7 and TNNT2 genes using the stepwise dHPLC/Sanger versus targeted NGS. Methods: In this study, we have analysed a group of 150 samples of patients from the Bibliotheca Alexandrina-Aswan Heart Centre National HCM program. The genetic testing was simultaneously undertaken by high throughput denaturing high-performance liquid chromatography (dHPLC followed by Sanger based sequencing and targeted next generation deep sequencing using panel of inherited cardiac genes (ICC. The panel included over 100 genes including the 3 sarcomeric genes. Analysis of the sequencing data of the 3 genes was undertaken in a double blinded strategy. Results: NGS analysis detected all pathogenic and likely pathogenic variants identified by dHPLC (50 in total, some samples had double hits. There was a 0% false negative rate for NGS based analysis. Nineteen variants were missed by dHPLC and detected by NGS, thus increasing the diagnostic yield in this co- analysed cohort from 22.0% (33/150 to 31.3% (47/150.Of interest to note that the mutation spectrum in this Egyptian HCM population revealed a high rate of homozygosity in MYBPC3 and MYH7 genes in comparison to other population studies (6/150, 4%. None of the homozygous samples were detected by dHPLC analysis. Conclusion: NGS provides a useful and rapid tool to allow panoramic screening of several genes simultaneously with a high sensitivity rate amongst genes of known etiologic role allowing high throughput analysis of HCM patients and relevant control series in a less characterised

  15. Phenotypic diversity associated with the mitochondrial m.8313G>A point mutation.

    LENUS (Irish Health Repository)

    O'Rourke, Killian

    2012-02-01

    We report the clinical, histochemical, and molecular genetic findings in a patient with progressive mitochondrial cytopathy due to the m.8313G>A point mutation in the mitochondrial tRNA(Lys) (MTTK) gene. The clinical features in this case are severe, including short stature, myopathy, peripheral neuropathy, and osteoporosis, while extensive analysis of maternal relatives indicate that the mutation has arisen de novo and was not maternally inherited. This report of a second case, together with single muscle fiber mutation analysis that shows clear segregation of mutation load with cytochrome c oxidase deficiency, confirms that the mutation is pathologic.

  16. Mutation rates at 42 Y chromosomal short tandem repeats in Chinese Han population in Eastern China.

    Science.gov (United States)

    Wu, Weiwei; Ren, Wenyan; Hao, Honglei; Nan, Hailun; He, Xin; Liu, Qiuling; Lu, Dejian

    2018-01-31

    Mutation analysis of 42 Y chromosomal short tandem repeats (Y-STRs) loci was performed using a sample of 1160 father-son pairs from the Chinese Han population in Eastern China. The results showed that the average mutation rate across the 42 Y-STR loci was 0.0041 (95% CI 0.0036-0.0047) per locus per generation. The locus-specific mutation rates varied from 0.000 to 0.0190. No mutation was found at DYS388, DYS437, DYS448, DYS531, and GATA_H4. DYS627, DYS570, DYS576, and DYS449 could be classified as rapidly mutating Y-STRs, with mutation rates higher than 1.0 × 10 -2 . DYS458, DYS630, and DYS518 were moderately mutating Y-STRs, with mutation rates ranging from 8 × 10 -3 to 1 × 10 -2 . Although the characteristics of the Y-STR mutations were consistent with those in previous studies, mutation rate differences between our data and previous published data were found at some rapidly mutating Y-STRs. The single-copy loci located on the short arm of the Y chromosome (Yp) showed relatively higher mutation rates more frequently than the multi-copy loci. These results will not only extend the data for Y-STR mutations but also be important for kinship analysis, paternal lineage identification, and family relationship reconstruction in forensic Y-STR analysis.

  17. Tumor-specific mutations in low-frequency genes affect their functional properties

    NARCIS (Netherlands)

    L. Erdem-Eraslan (Lale); D. Heijsman (Daphne); M. De Wit (Maurice); A.E. Kremer (Andreas); A. Sacchetti (Andrea); P.J. van der Spek (Peter); P.A.E. Sillevis Smitt (Peter); P.J. French (Pim)

    2015-01-01

    textabstractCausal genetic changes in oligodendrogliomas (OD) with 1p/19q co-deletion include mutations in IDH1, IDH2, CIC, FUBP1, TERT promoter and NOTCH1. However, it is generally assumed that more somatic mutations are required for tumorigenesis. This study aimed to establish whether genes

  18. The − 5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Starska, Katarzyna, E-mail: katarzyna.starska@umed.lodz.pl [I Department of Otolaryngology and Laryngological Oncology, Medical University of Łódź, Kopcinskiego 22, 90-153 Łódź (Poland); Krześlak, Anna; Forma, Ewa [Department of Cytobiochemistry, University of Łódź, Pomorska 142/143, 90-236 Łódź (Poland); Olszewski, Jurek [II Department of Otolaryngology and Laryngological Oncology, Medical University of Łódź, Żeromskiego 113, 90-549 Łódź (Poland); Morawiec-Sztandera, Alina [Department of Head and Neck Surgery, Medical University of Łódź, Paderewskiego 4, 93-509 Łódź (Poland); Aleksandrowicz, Paweł [Department of Otolaryngology and Laryngological Oncology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin (Poland); Lewy-Trenda, Iwona [Department of Pathology, Medical University of Łódź, Pomorska 251, 92-213 Łódź (Poland); and others

    2014-10-15

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was determined by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that − 5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer. - Highlights: • MT2A gene expression and metal content in laryngeal cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn and Cu levels • Negative correlation between MT2A gene expression and Cd, Zn and Cu levels.

  19. The − 5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer

    International Nuclear Information System (INIS)

    Starska, Katarzyna; Krześlak, Anna; Forma, Ewa; Olszewski, Jurek; Morawiec-Sztandera, Alina; Aleksandrowicz, Paweł; Lewy-Trenda, Iwona

    2014-01-01

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was determined by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that − 5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer. - Highlights: • MT2A gene expression and metal content in laryngeal cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn and Cu levels • Negative correlation between MT2A gene expression and Cd, Zn and Cu levels

  20. Teaching the fluctuation test in silico by using mutate: a program to distinguish between the adaptive and spontaneous mutation hypotheses.

    Science.gov (United States)

    Carvajal-Rodríguez, Antonio

    2012-07-01

    Mutate is a program developed for teaching purposes to impart a virtual laboratory class for undergraduate students of Genetics in Biology. The program emulates the so-called fluctuation test whose aim is to distinguish between spontaneous and adaptive mutation hypotheses in bacteria. The plan is to train students in certain key multidisciplinary aspects of current genetics such as sequence databases, DNA mutations, and hypothesis testing, while introducing the fluctuation test. This seminal experiment was originally performed studying Escherichia coli resistance to the infection by bacteriophage T1. The fluctuation test initiated the modern bacterial genetics that 25 years later ushered in the era of the recombinant DNA. Nowadays we know that some deletions in fhuA, the gene responsible for E. coli membrane receptor of T1, could cause the E. coli resistance to this phage. For the sake of simplicity, we will introduce the assumption that a single mutation generates the resistance to T1. During the practical, the students use the program to download some fhuA gene sequences, manually introduce some stop codon mutations, and design a fluctuation test to obtain data for distinguishing between preadaptative (spontaneous) and induced (adaptive) mutation hypotheses. The program can be launched from a browser or, if preferred, its executable file can be downloaded from http://webs.uvigo.es/acraaj/MutateWeb/Mutate.html. It requires the Java 5.0 (or higher) Runtime Environment (freely available at http://www.java.com). Copyright © 2012 Wiley Periodicals, Inc.

  1. Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women

    NARCIS (Netherlands)

    Rebbeck, Timothy R.; Friebel, Tara M.; Mitra, Nandita; Wan, Fei; Chen, Stephanie; Andrulis, Irene L.; Apostolou, Paraskevi; Arnold, Norbert; Arun, Banu K.; Barrowdale, Daniel; Benitez, Javier; Berger, Raanan; Berthet, Pascaline; Borg, Ake; Buys, Saundra S.; Caldes, Trinidad; Carter, Jonathan; Chiquette, Jocelyne; Claes, Kathleen B. M.; Couch, Fergus J.; Cybulski, Cezary; Daly, Mary B.; de la Hoya, Miguel; Diez, Orland; Domchek, Susan M.; Nathanson, Katherine L.; Durda, Katarzyna; Ellis, Steve; Evans, D. Gareth; Foretova, Lenka; Friedman, Eitan; Frost, Debra; Ganz, Patricia A.; Garber, Judy; Glendon, Gord; Godwin, Andrew K.; Greene, Mark H.; Gronwald, Jacek; Hahnen, Eric; Hallberg, Emily; Hamann, Ute; Hansen, Thomas V. O.; Imyanitov, Evgeny N.; Isaacs, Claudine; Jakubowska, Anna; Janavicius, Ramunas; Jaworska-Bieniek, Katarzyna; Ligtenberg, Jakobus; Oosterwijk, Jan; van der Hout, Annemarie

    2016-01-01

    Background: Most BRCA1 or BRCA2 mutation carriers have inherited a single (heterozygous) mutation. Transheterozygotes (TH) who have inherited deleterious mutations in both BRCA1 and BRCA2 are rare, and the consequences of transheterozygosity are poorly understood. Methods: From 32,295 female BRCA1/2

  2. Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women

    NARCIS (Netherlands)

    R. Rebbeck (Timothy); M.O.W. Friebel (Mark ); N. Mitra (Nandita); Wan, F. (Fei); Chen, S. (Stephanie); I.L. Andrulis (Irene); P. Apostolou (Paraskevi); N. Arnold (Norbert); B.K. Arun (Banu); D. Barrowdale (Daniel); J. Benítez (Javier); R. Berger (Raanan); P. Berthet (Pascaline); Å. Borg (Åke); Buys, S.S. (Saundra S.); T. Caldes (Trinidad); J. Carter (Jonathan); Chiquette, J. (Jocelyne); K.B.M. Claes (Kathleen B.M.); Couch, F.J. (Fergus J.); C. Cybulski (Cezary); M.B. Daly (Mary); M. de La Hoya (Miguel); O. Díez (Orland); S.M. Domchek (Susan); K.L. Nathanson (Katherine); Durda, K. (Katarzyna); S.D. Ellis (Steve); Evans, D.G. (D.Gareth); L. Foretova (Lenka); E. Friedman (Eitan); D. Frost (Debra); P.A. Ganz (Patricia); J. Garber (Judy); G. Glendon (Gord); A.K. Godwin (Andrew); M.H. Greene (Mark); J. Gronwald (Jacek); E. Hahnen (Eric); Hallberg, E. (Emily); U. Hamann (Ute); T.V.O. Hansen (Thomas); E.N. Imyanitov (Evgeny); C. Isaacs (Claudine); A. Jakubowska (Anna); R. Janavicius (Ramunas); Jaworska-Bieniek, K. (Katarzyna); E.M. John (Esther); B.Y. Karlan (Beth); B. Kaufman (Bella); A. Kwong (Ava); Y. Laitman (Yael); C. Lasset (Christine); C. Lazaro (Conxi); K.J. Lester (Kathryn); N. Loman (Niklas); J. Lubinski (Jan); S. Manoukian (Siranoush); G. Mitchell (Gillian); M. Montagna (Marco); S.L. Neuhausen (Susan); H. Nevanlinna (Heli); D. Niederacher (Dieter); R. Nussbaum (Robert); K. Offit (Kenneth); E. Olah; O.I. Olopade (Olofunmilayo); S.K. Park (Sue K.); Piedmonte, M. (Marion); P. Radice (Paolo); Rappaport-Fuerhauser, C. (Christine); M.A. Rookus (Matti); C.M. Seynaeve (Caroline); J. Simard (Jacques); C.F. Singer (Christian); Soucy, P. (Penny); M.C. Southey (Melissa); D. Stoppa-Lyonnet (Dominique); G. Sukiennicki (Grzegorz); C. Szabo (Csilla); Tancredi, M. (Mariella); P.J. Teixeira; S.-H. Teo (Soo-Hwang); M.B. Terry (Mary Beth); M. Thomassen (Mads); L. Tihomirova (Laima); M. Tischkowitz (Marc); A.E. Toland (Amanda); A. Toloczko-Grabarek (Aleksandra); N. Tung (Nadine); E.J. van Rensburg (Elizabeth); Villano, D. (Danylo); S. Wang-Gohrke (Shan); B. Wapenschmidt (Barbara); J.N. Weitzel (Jeffrey); J. Zidan (Jamal); Zorn, K.K. (Kristin K.); L. McGuffog (Lesley); D.F. Easton (Douglas); G. Chenevix-Trench (Georgia); A.C. Antoniou (Antonis C.); S.J. Ramus (Susan)

    2016-01-01

    textabstractBackground: Most BRCA1 or BRCA2 mutation carriers have inherited a single (heterozygous) mutation. Transheterozygotes (TH) who have inherited deleterious mutations in both BRCA1 and BRCA2 are rare, and the consequences of transheterozygosity are poorly understood. Methods: From 32,295

  3. Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women

    DEFF Research Database (Denmark)

    Rebbeck, Timothy R; Friebel, Tara M; Mitra, Nandita

    2016-01-01

    BACKGROUND: Most BRCA1 or BRCA2 mutation carriers have inherited a single (heterozygous) mutation. Transheterozygotes (TH) who have inherited deleterious mutations in both BRCA1 and BRCA2 are rare, and the consequences of transheterozygosity are poorly understood. METHODS: From 32,295 female BRCA...

  4. Mutations in MITF and PAX3 Cause “Splashed White” and Other White Spotting Phenotypes in Horses

    Science.gov (United States)

    Blatter, Marlis; Brooks, Samantha A.; Burger, Dominik; Drögemüller, Cord; Gerber, Vincent; Henke, Diana; Janda, Jozef; Jude, Rony; Magdesian, K. Gary; Matthews, Jacqueline M.; Poncet, Pierre-André; Svansson, Vilhjálmur; Tozaki, Teruaki; Wilkinson-White, Lorna; Penedo, M. Cecilia T.; Rieder, Stefan; Leeb, Tosso

    2012-01-01

    During fetal development neural-crest-derived melanoblasts migrate across the entire body surface and differentiate into melanocytes, the pigment-producing cells. Alterations in this precisely regulated process can lead to white spotting patterns. White spotting patterns in horses are a complex trait with a large phenotypic variance ranging from minimal white markings up to completely white horses. The “splashed white” pattern is primarily characterized by an extremely large blaze, often accompanied by extended white markings at the distal limbs and blue eyes. Some, but not all, splashed white horses are deaf. We analyzed a Quarter Horse family segregating for the splashed white coat color. Genome-wide linkage analysis in 31 horses gave a positive LOD score of 1.6 in a region on chromosome 6 containing the PAX3 gene. However, the linkage data were not in agreement with a monogenic inheritance of a single fully penetrant mutation. We sequenced the PAX3 gene and identified a missense mutation in some, but not all, splashed white Quarter Horses. Genome-wide association analysis indicated a potential second signal near MITF. We therefore sequenced the MITF gene and found a 10 bp insertion in the melanocyte-specific promoter. The MITF promoter variant was present in some splashed white Quarter Horses from the studied family, but also in splashed white horses from other horse breeds. Finally, we identified two additional non-synonymous mutations in the MITF gene in unrelated horses with white spotting phenotypes. Thus, several independent mutations in MITF and PAX3 together with known variants in the EDNRB and KIT genes explain a large proportion of horses with the more extreme white spotting phenotypes. PMID:22511888

  5. Mutations and binding sites of human transcription factors

    KAUST Repository

    Kamanu, Frederick Kinyua

    2012-06-01

    Mutations in any genome may lead to phenotype characteristics that determine ability of an individual to cope with adaptation to environmental challenges. In studies of human biology, among the most interesting ones are phenotype characteristics that determine responses to drug treatments, response to infections, or predisposition to specific inherited diseases. Most of the research in this field has been focused on the studies of mutation effects on the final gene products, peptides, and their alterations. Considerably less attention was given to the mutations that may affect regulatory mechanism(s) of gene expression, although these may also affect the phenotype characteristics. In this study we make a pilot analysis of mutations observed in the regulatory regions of 24,667 human RefSeq genes. Our study reveals that out of eight studied mutation types, insertions are the only one that in a statistically significant manner alters predicted transcription factor binding sites (TFBSs). We also find that 25 families of TFBSs have been altered by mutations in a statistically significant manner in the promoter regions we considered. Moreover, we find that the related transcription factors are, for example, prominent in processes related to intracellular signaling; cell fate; morphogenesis of organs and epithelium; development of urogenital system, epithelium, and tube; neuron fate commitment. Our study highlights the significance of studying mutations within the genes regulatory regions and opens way for further detailed investigations on this topic, particularly on the downstream affected pathways. 2012 Kamanu, Medvedeva, Schaefer, Jankovic, Archer and Bajic.

  6. Common mutations of hepatitis B virus and their clinical significance

    Directory of Open Access Journals (Sweden)

    HU Airong

    2016-06-01

    Full Text Available Hepatitis B virus (HBV tends to mutate easily due to its special structure and life cycle. Mutation changes the biological behavior of HBV and its sensitivity to antiviral drugs and even affects therapeutic effect and accelerate disease progression. The point mutations are commonly see in the pre-S/S open reading frame (ORF, which may be associated with immune escape and occult HBV infection. The G1896A mutation is often observed in the pre-C/C-ORF and is associated with the development of HBeAg-negative chronic hepatitis B (CHB, hepatocellular carcinoma (HCC, and severe chronic hepatitis (liver failure. The mutations in P-ORF mainly occur in the reverse transcriptase (RT domain and are closely related to the resistance to nucleos(tide analogues. The A1762T and G1764A mutations occur in the basal core promoter (BCP, which overlaps with X-ORF, and may be associated with HBeAg-negative CHB, HCC, and severe chronic hepatitis (liver failure. Clarification of the association between these mutations and diseases helps to develop tailor-made diagnostic and therapeutic regimens for patients with HBV infection.

  7. Aromatase expression is increased in BRCA1 mutation carriers

    International Nuclear Information System (INIS)

    Chand, Ashwini L; KConFab; Simpson, Evan R; Clyne, Colin D

    2009-01-01

    Until recently, the molecular mechanisms explaining increased incidence of ovarian and breast cancers in carriers of BRCA1 gene mutations had not been clearly understood. Of significance is the finding that BRCA1 negatively regulates aromatase expression in vitro. Our objective was to characterise aromatase gene (CYP19A1) and its promoter expression in breast adipose and ovarian tissue in BRCA1 mutation carriers and unaffected controls. We measured aromatase transcripts, total and promoter-specific (PII, PI.3, PI.4) in prophylactic oophorectomy or mastectomy, therapeutic mastectomy, ovarian and breast tissue from unaffected women. We demonstrate that the lack of functional BRCA1 protein correlates to higher aromatase levels in 85% of BRCA1 mutation carriers. This increase is mediated by aberrant transcriptional regulation of aromatase; in breast adipose by increases in promoter II/I.3 and I.4-specific transcripts; and in the ovary with elevation in promoter I.3 and II-specific transcripts. Understanding the link between BRCA1 and aromatase is significant in terms of understanding why carcinogenesis is restricted to estrogen-producing tissues in BRCA1 mutation carriers

  8. Pervasive within-Mitochondrion Single-Nucleotide Variant Heteroplasmy as Revealed by Single-Mitochondrion Sequencing

    Directory of Open Access Journals (Sweden)

    Jacqueline Morris

    2017-12-01

    Full Text Available Summary: A number of mitochondrial diseases arise from single-nucleotide variant (SNV accumulation in multiple mitochondria. Here, we present a method for identification of variants present at the single-mitochondrion level in individual mouse and human neuronal cells, allowing for extremely high-resolution study of mitochondrial mutation dynamics. We identified extensive heteroplasmy between individual mitochondrion, along with three high-confidence variants in mouse and one in human that were present in multiple mitochondria across cells. The pattern of variation revealed by single-mitochondrion data shows surprisingly pervasive levels of heteroplasmy in inbred mice. Distribution of SNV loci suggests inheritance of variants across generations, resulting in Poisson jackpot lines with large SNV load. Comparison of human and mouse variants suggests that the two species might employ distinct modes of somatic segregation. Single-mitochondrion resolution revealed mitochondria mutational dynamics that we hypothesize to affect risk probabilities for mutations reaching disease thresholds. : Morris et al. use independent sequencing of multiple individual mitochondria from mouse and human brain cells to show high pervasiveness of mutations. The mutations are heteroplasmic within single mitochondria and within and between cells. These findings suggest mechanisms by which mutations accumulate over time, resulting in mitochondrial dysfunction and disease. Keywords: single mitochondrion, single cell, human neuron, mouse neuron, single-nucleotide variation

  9. Enhanced performance feedback and patient participation to improve hand hygiene compliance of health-care workers in the setting of established multimodal promotion: a single-centre, cluster randomised controlled trial.

    Science.gov (United States)

    Stewardson, Andrew James; Sax, Hugo; Gayet-Ageron, Angèle; Touveneau, Sylvie; Longtin, Yves; Zingg, Walter; Pittet, Didier

    2016-12-01

    Hand hygiene compliance of health-care workers remains suboptimal despite standard multimodal promotion, and evidence for the effectiveness of novel interventions is urgently needed. We aimed to assess the effect of enhanced performance feedback and patient participation on hand hygiene compliance in the setting of multimodal promotion. We did a single-centre, cluster randomised controlled trial at University of Geneva Hospitals (Geneva, Switzerland). All wards hosting adult, lucid patients, and all health-care workers and patients in these wards, were eligible. After a 15-month baseline period, eligible wards were assigned by computer-generated block randomisation (1:1:1), stratified by the type of ward, to one of three groups: control, enhanced performance feedback, or enhanced performance feedback plus patient participation. Standard multimodal hand hygiene promotion was done hospital-wide throughout the study. The primary outcome was hand hygiene compliance of health-care workers (according to the WHO Five Moments of Hand Hygiene) at the opportunity level, measured by direct observation (20-min sessions) by 12 validated infection control nurses, with each ward audited at least once every 3 months. This trial is registered with ISRCTN, number ISRCTN43599478. We randomly assigned 67 wards to the control group (n=21), enhanced performance feedback (n=24), or enhanced performance feedback plus patient participation (n=22) on May 19, 2010. One ward in the control group became a high-dependency unit and was excluded from analysis. During 1367 observation sessions, 12 579 hand hygiene opportunities were recorded. Between the baseline period (April 1, 2009, to June 30, 2010) and the intervention period (July 1, 2010, to June 30, 2012), mean hand hygiene compliance increased from 66% (95% CI 62-70) to 73% (70-77) in the control group (odds ratio [OR] 1·41, 95% CI 1·21-1·63), from 65% (62-69) to 75% (72-77) in the enhanced performance feedback group (1·61, 1·41-1

  10. Screening of point mutations by multiple SSCP analysis in the dystrophin gene

    Energy Technology Data Exchange (ETDEWEB)

    Lasa, A.; Baiget, M.; Gallano, P. [Hospital Sant Pau, Barcelona (Spain)

    1994-09-01

    Duchenne muscular dystrophy (DMD) is a lethal, X-linked neuromuscular disorder. The population frequency of DMD is one in approximately 3500 boys, of which one third is thought to be a new mutant. The DMD gene is the largest known to date, spanning over 2,3 Mb in band Xp21.2; 79 exons are transcribed into a 14 Kb mRNA coding for a protein of 427 kD which has been named dystrophin. It has been shown that about 65% of affected boys have a gene deletion with a wide variation in localization and size. The remaining affected individuals who have no detectable deletions or duplications would probably carry more subtle mutations that are difficult to detect. These mutations occur in several different exons and seem to be unique to single patients. Their identification represents a formidable goal because of the large size and complexity of the dystrophin gene. SSCP is a very efficient method for the detection of point mutations if the parameters that affect the separation of the strands are optimized for a particular DNA fragment. The multiple SSCP allows the simultaneous study of several exons, and implies the use of different conditions because no single set of conditions will be optimal for all fragments. Seventy-eight DMD patients with no deletion or duplication in the dystrophin gene were selected for the multiple SSCP analysis. Genomic DNA from these patients was amplified using the primers described for the diagnosis procedure (muscle promoter and exons 3, 8, 12, 16, 17, 19, 32, 45, 48 and 51). We have observed different mobility shifts in bands corresponding to exons 8, 12, 43 and 51. In exons 17 and 45, altered electrophoretic patterns were found in different samples identifying polymorphisms already described.

  11. Mutation breeding in pepper

    Energy Technology Data Exchange (ETDEWEB)

    Daskalov, S [Plant Breeding Unit, Joint FAO/IAEA Division of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, Seibersdorf Laboratory, International Atomic Energy Agency, Vienna (Austria)

    1986-03-01

    Pepper (Capsicum sp.) is an important vegetable and spice crop widely grown in tropical as well as in temperate regions. Until recently the improvement programmes were based mainly on using natural sources of germ plasma, crossbreeding and exploiting the heterosis of F{sub 1} hybrids. However, interest in using induced mutations is growing. A great number of agronomically useful mutants as well as mutants valuable for genetic, cytological and physiological studies have been induced and described. In this review information is presented about suitable mutagen treatment procedures with radiation as well as chemicals, M{sub 1} effects, handling the treated material in M{sub 1}, M{sub 2} and subsequent generations, and mutant screening procedures. This is supplemented by a description of reported useful mutants and released cultivars. Finally, general advice is given on when and how to incorporate mutation induction in Capsicum improvement programmes. (author)

  12. Mutation breeding in pepper

    International Nuclear Information System (INIS)

    Daskalov, S.

    1986-01-01

    Pepper (Capsicum sp.) is an important vegetable and spice crop widely grown in tropical as well as in temperate regions. Until recently the improvement programmes were based mainly on using natural sources of germ plasma, crossbreeding and exploiting the heterosis of F 1 hybrids. However, interest in using induced mutations is growing. A great number of agronomically useful mutants as well as mutants valuable for genetic, cytological and physiological studies have been induced and described. In this review information is presented about suitable mutagen treatment procedures with radiation as well as chemicals, M 1 effects, handling the treated material in M 1 , M 2 and subsequent generations, and mutant screening procedures. This is supplemented by a description of reported useful mutants and released cultivars. Finally, general advice is given on when and how to incorporate mutation induction in Capsicum improvement programmes. (author)

  13. Results based on 124 cases of breast cancer and 97 controls from Taiwan suggest that the single nucleotide polymorphism (SNP309) in the MDM2 gene promoter is associated with earlier onset and increased risk of breast cancer

    International Nuclear Information System (INIS)

    Sun, Ying-Fang; Leu, Jyh-Der; Chen, Su-Mei; Lin, I-Feng; Lee, Yi-Jang

    2009-01-01

    It has been suggested that the single nucleotide polymorphism 309 (SNP309, T -> G) in the promoter region of the MDM2 gene is important for tumor development; however, with regards to breast cancer, inconsistent associations have been reported worldwide. It is speculated that these conflicting results may have arisen due to different patient subgroups and ethnicities studied. For the first time, this study explores the effect of the MDM2 SNP309 genotype on Taiwanese breast cancer patients. Genomic DNA was obtained from the whole blood of 124 breast cancer patients and 97 cancer-free healthy women living in Taiwan. MDM2 SNP309 genotyping was carried out by restriction fragment length polymorphism (RFLP) assay. The multivariate logistic regression and the Kaplan-Meier method were used for analyzing the risk association and significance of age at diagnosis among different MDM2 SNP309 genotypes, respectively. Compared to the TT genotype, an increased risk association with breast cancer was apparent for the GG genotype (OR = 3.05, 95% CI = 1.04 to 8.95), and for the TG genotype (OR = 2.12, 95% CI = 0.90 to 5.00) after adjusting for age, cardiovascular disease/diabetes, oral contraceptive usage, and body mass index, which exhibits significant difference between cases and controls. Furthermore, the average ages at diagnosis for breast cancer patients were 53.6, 52 and 47 years for those harboring TT, TG and GG genotypes, respectively. A significant difference in median age of onset for breast cancer between GG and TT+TG genotypes was obtained by the log-rank test (p = 0.0067). Findings based on the current sample size suggest that the MDM2 SNP309 GG genotype may be associated with both the risk of breast cancer and an earlier age of onset in Taiwanese women

  14. Research for structure and function of protein promoting mutation induction

    International Nuclear Information System (INIS)

    Nohmi, Takehiko; Gruz, P.; Shimizu, M.

    2004-01-01

    The nature of Y family DNA polymerase, which takes a damaged deoxynucleotide 3 phosphate (dNTP) into the template, was discussed in detail. Bacterial endoenzyme DNA pol Y1 took in the oxidized dNTP uniquely. The pol Y1 showed following singularity: (1) taking 2-OH-dGTP in opposite side of template A, (2) taking 2-OH-dATP in opposite side of template G and T, (3) not only taking in both of the oxidized dNTP, but also carrying out an elongation reaction of the dNTP, (4) after taking in the oxidized nucleotide continuously, the elongation reaction stopped. Human Y family DNA polymerase, hpol η showed the same nature of the preceding item (1) and (2), also. Above mentioned natures indicated possibility of common nature of Y family polymerase. (M. Suetake)

  15. Limited importance of the dominant-negative effect of TP53 missense mutations

    International Nuclear Information System (INIS)

    Stoczynska-Fidelus, Ewelina; Liberski, Pawel P; Rieske, Piotr; Szybka, Malgorzata; Piaskowski, Sylwester; Bienkowski, Michal; Hulas-Bigoszewska, Krystyna; Banaszczyk, Mateusz; Zawlik, Izabela; Jesionek-Kupnicka, Dorota; Kordek, Radzislaw

    2011-01-01

    Heterozygosity of TP53 missense mutations is related to the phenomenon of the dominant-negative effect (DNE). To estimate the importance of the DNE of TP53 mutations, we analysed the percentage of cancer cases showing a single heterozygous mutation of TP53 and searched for a cell line with a single heterozygous mutation of this gene. This approach was based on the knowledge that genes with evident DNE, such as EGFR and IDH1, represent nearly 100% of single heterozygous mutations in tumour specimens and cell lines. Genetic analyses (LOH and sequencing) performed for early and late passages of several cell lines originally described as showing single heterozygous TP53 mutations (H-318, G-16, PF-382, MOLT-13, ST-486 and LS-123). Statistical analysis of IARC TP53 and SANGER databases. Genetic analyses of N-RAS, FBXW7, PTEN and STR markers to test cross-contamination and cell line identity. Cell cloning, fluorescence-activated cell sorting and SSCP performed for the PF-382 cell line. A database study revealed TP53 single heterozygous mutations in 35% of in vivo (surgical and biopsy) samples and only 10% of cultured cells (in vitro), although those numbers appeared to be overestimated. We deem that published in vivo TP53 mutation analyses are not as rigorous as studies in vitro, and we did not find any cell line showing a stable, single heterozygous mutation. G16, PF-382 and MOLT-13 cells harboured single heterozygous mutations temporarily. ST-486, H-318 and LS-123 cell lines were misclassified. Specific mutations, such as R175H, R273H, R273L or R273P, which are reported in the literature to exert a DNE, showed the lowest percentage of single heterozygous mutations in vitro (about 5%). We suggest that the currently reported percentage of TP53 single heterozygous mutations in tumour samples and cancer cell lines is overestimated. Thus, the magnitude of the DNE of TP53 mutations is questionable. This scepticism is supported by database investigations showing that retention

  16. Mitochondrial DNA deletion mutations in adult mouse cardiac side population cells

    International Nuclear Information System (INIS)

    Lushaj, Entela B.; Lozonschi, Lucian; Barnes, Maria; Anstadt, Emily; Kohmoto, Takushi

    2012-01-01

    We investigated the presence and potential role of mitochondrial DNA (mtDNA) deletion mutations in adult cardiac stem cells. Cardiac side population (SP) cells were isolated from 12-week-old mice. Standard polymerase chain reaction (PCR) was used to screen for the presence of mtDNA deletion mutations in (a) freshly isolated SP cells and (b) SP cells cultured to passage 10. When present, the abundance of mtDNA deletion mutation was analyzed in single cell colonies. The effect of different levels of deletion mutations on SP cell growth and differentiation was determined. MtDNA deletion mutations were found in both freshly isolated and cultured cells from 12-week-old mice. While there was no significant difference in the number of single cell colonies with mtDNA deletion mutations from any of the groups mentioned above, the abundance of mtDNA deletion mutations was significantly higher in the cultured cells, as determined by quantitative PCR. Within a single clonal cell population, the detectable mtDNA deletion mutations were the same in all cells and unique when compared to deletions of other colonies. We also found that cells harboring high levels of mtDNA deletion mutations (i.e. where deleted mtDNA comprised more than 60% of total mtDNA) had slower proliferation rates and decreased differentiation capacities. Screening cultured adult stem cells for mtDNA deletion mutations as a routine assessment will benefit the biomedical application of adult stem cells.

  17. Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa

    International Nuclear Information System (INIS)

    Dryja, T.P.; Han, L.B.; Cowley, G.S.; McGee, T.L.; Berson, E.L.

    1991-01-01

    The authors searched for point mutations in every exon of the rhodopsin gene in 150 patients from separate families with autosomal dominant retinitis pigmentosa. Including the 4 mutations the authors reported previously, they found a total of 17 different mutations that correlate with the disease. Each of these mutations is a single-base substitution corresponding to a single amino acid substitution. Based on current models for the structure of rhodopsin, 3 of the 17 mutant amino acids are normally located on the cytoplasmic side of the protein, 6 in transmembrane domains, and 8 on the intradiscal side. Forty-three of the 150 patients (29%) carry 1 of these mutations, and no patient has more than 1 mutation. In every family with a mutation so far analyzed, the mutation cosegregates with the disease. They found one instance of a mutation in an affected patient that was absent in both unaffected parents (i.e., a new germ-line mutation), indicating that some isolate cases of retinitis pigmentosa carry a mutation of the rhodopsin gene

  18. Mutated hilltop inflation revisited

    Science.gov (United States)

    Pal, Barun Kumar

    2018-05-01

    In this work we re-investigate pros and cons of mutated hilltop inflation. Applying Hamilton-Jacobi formalism we solve inflationary dynamics and find that inflation goes on along the {W}_{-1} branch of the Lambert function. Depending on the model parameter mutated hilltop model renders two types of inflationary solutions: one corresponds to small inflaton excursion during observable inflation and the other describes large field inflation. The inflationary observables from curvature perturbation are in tune with the current data for a wide range of the model parameter. The small field branch predicts negligible amount of tensor to scalar ratio r˜ O(10^{-4}), while the large field sector is capable of generating high amplitude for tensor perturbations, r˜ O(10^{-1}). Also, the spectral index is almost independent of the model parameter along with a very small negative amount of scalar running. Finally we find that the mutated hilltop inflation closely resembles the α -attractor class of inflationary models in the limit of α φ ≫ 1.

  19. Mutation breeding in jute

    International Nuclear Information System (INIS)

    Joshua, D.C.

    1980-01-01

    Mutagenic studies in jute in general dealt with the morphological abnormalities of the M 1 generation in great detail. Of late, induction of a wide spectrum of viable mutations have been reported in different varieties of both the species. Mutations affecting several traits of agronomic importance such as, plant height, time of flowering, fibre yield and quality, resistance to pests and diseases are also available. Cytological analysis of a large collection of induced mutants resulted in the isolation of seven trisomics in an olitorius variety. Several anatomical parameters which are the components of fibre yield, have also received attention. Some mutants with completely altered morphology were used for interpreting the evolution of leaf shape in Tiliaceas and related families. A capsularis variety developed using mutation breeding technique has been released for cultivation. Several others, including derivatives of inter-mutant hybridization have been found to perform well at different locations in the All India Coordinated Trials. Presently, chemical mutagenesis and induction of mutants of physiological significance are receiving considerable attention. The induced variability is being used in genetic and linkage studies. (author)

  20. The p16INK4alpha/p19ARF gene mutations are infrequent and are mutually exclusive to p53 mutations in Indian oral squamous cell carcinomas.

    Science.gov (United States)

    Kannan, K; Munirajan, A K; Krishnamurthy, J; Bhuvarahamurthy, V; Mohanprasad, B K; Panishankar, K H; Tsuchida, N; Shanmugam, G

    2000-03-01

    Eighty-seven untreated primary oral squamous cell carcinomas (SCCs) associated with betel quid and tobacco chewing from Indian patients were analysed for the presence of mutations in the commonly shared exon 2 of p16INK4alpha/p19ARF genes. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and sequencing analysis were used to detect mutations. SSCP analysis indicated that only 9% (8/87) of the tumours had mutation in p16INK4alpha/p19ARF genes. Seventy-two tumours studied here were previously analysed for p53 mutations and 21% (15/72) of them were found to have mutations in p53 gene. Only one tumour was found to have mutation at both p53 and p16INK4alpha/p19ARF genes. Thus, the mutation rates observed were 21% for p53, 9% for p16INK4alpha/p19ARF, and 1% for both. Sequencing analysis revealed two types of mutations; i) G to C (GCAG to CCAG) transversion type mutation at intron 1-exon 2 splice junction and ii) another C to T transition type mutation resulting in CGA to TGA changing arginine to a termination codon at p16INK4alpha gene codon 80 and the same mutation will alter codon 94 of p19ARF gene from CCG to CTG (proline to leucine). These results suggest that p16INK4alpha/p19ARF mutations are less frequent than p53 mutations in Indian oral SCCs. The p53 and p16INK4alpha/p19ARF mutational events are independent and are mutually exclusive suggesting that mutational inactivation of either p53 or p16INK4alpha/p19ARF may alleviate the need for the inactivation of the other gene.

  1. Association between Interleukin-18 promoter polymorphisms and ...

    African Journals Online (AJOL)

    Noha M. Bakr

    the study. Genotypic analysis of IL-18 promoter polymorphisms were performed using sequence- .... diabetes mellitus, heart disease, previous stroke, cigarette smok- ing. Included .... of the mutated AA genotype and A allele was observed in IS ..... factor for ischemic stroke in the Chinese population: a meta-analysis. Meta.

  2. Insight on Mutation-Induced Resistance from Molecular Dynamics Simulations of the Native and Mutated CSF-1R and KIT.

    Directory of Open Access Journals (Sweden)

    Priscila Da Silva Figueiredo Celestino Gomes

    Full Text Available The receptors tyrosine kinases (RTKs for the colony stimulating factor-1, CSF-1R, and for the stem cell factor, SCFR or KIT, are important mediators of signal transduction. The abnormal function of these receptors, promoted by gain-of-function mutations, leads to their constitutive activation, associated with cancer or other proliferative diseases. A secondary effect of the mutations is the alteration of receptors' sensitivity to tyrosine kinase inhibitors, compromising effectiveness of these molecules in clinical treatment. In particular, the mutation V560G in KIT increases its sensitivity to Imatinib, while the D816V in KIT, and D802V in CSF-1R, triggers resistance to the drug. We analyzed the Imatinib binding affinity to the native and mutated KIT (mutations V560G, S628N and D816V and CSF-1R (mutation D802V by using molecular dynamics simulations and energy calculations of Imatinib•target complexes. Further, we evaluated the sensitivity of the studied KIT receptors to Imatinib by measuring the inhibition of KIT phosphorylation. Our study showed that (i the binding free energy of Imatinib to the targets is highly correlated with their experimentally measured sensitivity; (ii the electrostatic interactions are a decisive factor affecting the binding energy; (iii the most deleterious impact to the Imatinib sensitivity is promoted by D802V (CSF-1R and D816V (KIT mutations; (iv the role of the juxtamembrane region, JMR, in the imatinib binding is accessory. These findings contribute to a better description of the mutation-induced effects alternating the targets sensitivity to Imatinib.

  3. Novel USH2A mutations in Japanese Usher syndrome type 2 patients: marked differences in the mutation spectrum between the Japanese and other populations.

    Science.gov (United States)

    Nakanishi, Hiroshi; Ohtsubo, Masafumi; Iwasaki, Satoshi; Hotta, Yoshihiro; Usami, Shin-Ichi; Mizuta, Kunihiro; Mineta, Hiroyuki; Minoshima, Shinsei

    2011-07-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by retinitis pigmentosa and hearing loss. USH type 2 (USH2) is the most common type of USH and is frequently caused by mutations in USH2A. In a recent mutation screening of USH2A in Japanese USH2 patients, we identified 11 novel mutations in 10 patients and found the possible frequent mutation c.8559-2A>G in 4 of 10 patients. To obtain a more precise mutation spectrum, we analyzed further nine Japanese patients in this study. We identified nine mutations, of which eight were novel. This result indicates that the mutation spectrum for USH2A among Japanese patients largely differs from Caucasian, Jewish and Palestinian patients. Meanwhile, we did not find the c.8559-2A>G in this study. Haplotype analysis of the c.8559-2G (mutated) alleles using 23 single nucleotide polymorphisms surrounding the mutation revealed an identical haplotype pattern of at least 635 kb in length, strongly suggesting that the mutation originated from a common ancestor. The fact that all patients carrying c.8559-2A>G came from western Japan suggests that the mutation is mainly distributed in that area; indeed, most of the patients involved in this study came from eastern Japan, which contributed to the absence of c.8559-2A>G.

  4. Calreticulin Mutations in Myeloproliferative Neoplasms

    Directory of Open Access Journals (Sweden)

    Noa Lavi

    2014-10-01

    Full Text Available With the discovery of the JAK2V617F mutation in patients with Philadelphia chromosome-negative (Ph− myeloproliferative neoplasms (MPNs in 2005, major advances have been made in the diagnosis of MPNs, in understanding of their pathogenesis involving the JAK/STAT pathway, and finally in the development of novel therapies targeting this pathway. Nevertheless, it remains unknown which mutations exist in approximately one-third of patients with non-mutated JAK2 or MPL essential thrombocythemia (ET and primary myelofibrosis (PMF. At the end of 2013, two studies identified recurrent mutations in the gene encoding calreticulin (CALR using whole-exome sequencing. These mutations were revealed in the majority of ET and PMF patients with non-mutated JAK2 or MPL but not in polycythemia vera patients. Somatic 52-bp deletions (type 1 mutations and recurrent 5-bp insertions (type 2 mutations in exon 9 of the CALR gene (the last exon encoding the C-terminal amino acids of the protein calreticulin were detected and found always to generate frameshift mutations. All detected mutant calreticulin proteins shared a novel amino acid sequence at the C-terminal. Mutations in CALR are acquired early in the clonal history of the disease, and they cause activation of JAK/STAT signaling. The CALR mutations are the second most frequent mutations in Ph− MPN patients after the JAK2V617F mutation, and their detection has significantly improved the diagnostic approach for ET and PMF. The characteristics of the CALR mutations as well as their diagnostic, clinical, and pathogenesis implications are discussed in this review.

  5. Study of hTERT and Histone 3 Mutations in Medulloblastoma.

    Science.gov (United States)

    Viana-Pereira, Marta; Almeida, Gisele Caravina; Stavale, João Norberto; Malheiro, Susana; Clara, Carlos; Lobo, Patrícia; Pimentel, José; Reis, Rui Manuel

    2017-01-01

    Hotspot activating mutations of the telomerase reverse transcriptase (hTERT) promoter region were recently described in several tumor types. These mutations lead to enhanced expression of telomerase, being responsible for telomere maintenance and allowing continuous cell division. Additionally, there are alternative telomere maintenance mechanisms, associated with histone H3 mutations, responsible for disrupting the histone code and affecting the regulation of transcription. Here, we investigated the clinical relevance of these mechanistically related molecules in medulloblastoma. Sixty-nine medulloblastomas, formalin fixed and paraffin embedded, from a cohort of patients aged 1.5-70 years, were used to investigate the hotspot mutations of the hTERT promoter region, i.e. H3F3A and HIST1H3B, using Sanger sequencing. We successfully sequenced hTERT in all 69 medulloblastoma samples and identified a total of 19 mutated cases (27.5%). c.-124:G>A and c.-146:G>A mutations were detected, respectively, in 16 and 3 samples. Similar to previous reports, hTERT mutations were more frequent in older patients (p < 0.0001), being found only in 5 patients <20 years of age. In addition, hTERT-mutated tumors were more frequently recurrent (p = 0.026) and hTERT mutations were significantly enriched in tumors located in the right cerebellar hemisphere (p = 0.039). No mutations were found on the H3F3A or HIST1H3B genes. hTERT promoter mutations are frequent in medulloblastoma and are associated with older patients, prone to recurrence and located in the right cerebellar hemisphere. On the other hand, histone 3 mutations do not seem to be present in medulloblastoma. © 2016 S. Karger AG, Basel.

  6. PPIB mutations cause severe osteogenesis imperfecta.

    Science.gov (United States)

    van Dijk, Fleur S; Nesbitt, Isabel M; Zwikstra, Eline H; Nikkels, Peter G J; Piersma, Sander R; Fratantoni, Silvina A; Jimenez, Connie R; Huizer, Margriet; Morsman, Alice C; Cobben, Jan M; van Roij, Mirjam H H; Elting, Mariet W; Verbeke, Jonathan I M L; Wijnaendts, Liliane C D; Shaw, Nick J; Högler, Wolfgang; McKeown, Carole; Sistermans, Erik A; Dalton, Ann; Meijers-Heijboer, Hanne; Pals, Gerard

    2009-10-01

    Deficiency of cartilage-associated protein (CRTAP) or prolyl 3-hydroxylase 1(P3H1) has been reported in autosomal-recessive lethal or severe osteogenesis imperfecta (OI). CRTAP, P3H1, and cyclophilin B (CyPB) form an intracellular collagen-modifying complex that 3-hydroxylates proline at position 986 (P986) in the alpha1 chains of collagen type I. This 3-prolyl hydroxylation is decreased in patients with CRTAP and P3H1 deficiency. It was suspected that mutations in the PPIB gene encoding CyPB would also cause OI with decreased collagen 3-prolyl hydroxylation. To our knowledge we present the first two families with recessive OI caused by PPIB gene mutations. The clinical phenotype is compatible with OI Sillence type II-B/III as seen with COL1A1/2, CRTAP, and LEPRE1 mutations. The percentage of 3-hydroxylated P986 residues in patients with PPIB mutations is decreased in comparison to normal, but it is higher than in patients with CRTAP and LEPRE1 mutations. This result and the fact that CyPB is demonstrable independent of CRTAP and P3H1, along with reported decreased 3-prolyl hydroxylation due to deficiency of CRTAP lacking the catalytic hydroxylation domain and the known function of CyPB as a cis-trans isomerase, suggest that recessive OI is caused by a dysfunctional P3H1/CRTAP/CyPB complex rather than by the lack of 3-prolyl hydroxylation of a single proline residue in the alpha1 chains of collagen type I.

  7. DNA degradation, UV sensitivity and SOS-mediated mutagenesis in strains of Escherichia coli deficient in single-strand DNA binding protein: Effects of mutations and treatments that alter levels of exonuclease V or RecA protein

    International Nuclear Information System (INIS)

    Lieberman, H.B.; Witkin, E.M.

    1983-01-01

    Certain strains suppress the temperature-sensitivity caused by ssb-1, which encodes a mutant ssDNA binding protein (SSB). At 42 0 C, such strains are extremely UV-sensitive, degrade their DNA extensively after UV irradiation, and are defficient in UV mutability and UV induction of recA protein synthesis. We transduced recC22, which eliminates Exonuclease V activity, and recAo281, which causes operator-constitutive synthesis of recA protein, into such an ssb-1 strain. Both double mutants degraded their DNA extensively at 42 0 C after UV irradiation, and both were even more UV-sensitive than the ssb-1 single mutant. We conclude that one or more nucleases other than Exonuclease V degrades DNA in the ssb recC strain, and that recA protein, even if synthesized copiously, can function efficiently in recombinational DNA repair and in control of post-UV DNA degradation only if normal SSB is also present. Pretreatment with nalidixic acid at 30 0 C restored normal UV mutability at 42 0 C, but did not increase UV resistance, in an ssb-1 strain. Another ssb allele, ssb-113, which blocks SOS induction at 30 0 C, increases spontaneous mutability more than tenfold. The ssb-113 allele was transduced into the SOS-constitutive recA730 strain SC30. This double mutant expressed the same elevated spontaneous and UV-induced mutability at 30 0 C as the ssb + recA730 strain, and was three times more UV-resistant than its ssb-113 recA + parent. We conclude that ssb-1 at 42 0 C and ssb-113 at 30 0 C block UV-induced activation of recA protease, but that neither allele interferes with subsequent steps in SOS-mediated mutagenesis. (orig.)

  8. A distal region of the human TGM1 promoter is required for expression in transgenic mice and cultured keratinocytes

    Directory of Open Access Journals (Sweden)

    Lu Ying

    2004-04-01

    Full Text Available Abstract Background TGM1(transglutaminase 1 is an enzyme that crosslinks the cornified envelope of mature keratinocytes. Appropriate expression of the TGM1 gene is crucial for proper keratinocyte function as inactivating mutations lead to the debilitating skin disease, lamellar ichthyosis. TGM1 is also expressed in squamous metaplasia, a consequence in some epithelia of vitamin A deficiency or toxic insult that can lead to neoplasia. An understanding of the regulation of this gene in normal and abnormal differentiation states may contribute to better disease diagnosis and treatment. Methods In vivo requirements for expression of the TGM1 gene were studied by fusing various lengths of promoter DNA to a reporter and injecting the DNA into mouse embryos to generate transgenic animals. Expression of the reporter was ascertained by Western blotting and immunohistochemistry. Further delineation of a transcriptionally important distal region was determined by transfections of progressively shortened or mutated promoter DNA into cultured keratinocytes. Results In vivo analysis of a reporter transgene driven by the TGM1 promoter revealed that 1.6 kilobases, but not 1.1 kilobases, of DNA was sufficient to confer tissue-specific and cell layer-specific expression. This same region was responsible for reporter expression in tissues undergoing squamous metaplasia as a response to vitamin A deprivation. Mutation of a distal promoter AP1 site or proximal promoter CRE site, both identified as important transcriptional elements in transfection assays, did not prevent appropriate expression. Further searching for transcriptional elements using electrophoretic mobility shift (EMSA and transfection assays in cultured keratinocytes identified two Sp1 elements in a transcriptionally active region between -1.6 and -1.4 kilobases. While mutation of either Sp1 site or the AP1 site singly had only a small effect, mutation of all three sites eliminated nearly all the

  9. Presence of calreticulin mutations in JAK2-negative polycythemia vera.

    Science.gov (United States)

    Broséus, Julien; Park, Ji-Hye; Carillo, Serge; Hermouet, Sylvie; Girodon, François

    2014-12-18

    Calreticulin (CALR) mutations have been reported in Janus kinase 2 (JAK2)- and myeloproliferative leukemia (MPL)-negative essential thrombocythemia and primary myelofibrosis. In contrast, no CALR mutations have ever been reported in the context of polycythemia vera (PV). Here, we describe 2 JAK2(V617F)-JAK2(exon12)-negative PV patients who presented with a CALR mutation in peripheral granulocytes at the time of diagnosis. In both cases, the CALR mutation was a 52-bp deletion. Single burst-forming units-erythroid (BFU-E) from 1 patient were grown in vitro and genotyped: the same CALR del 52-bp mutation was noted in 31 of the 37 colonies examined; 30 of 31 BFU-E were heterozygous for CALR del 52 bp, and 1 of 31 BFU-E was homozygous for CALR del 52 bp. In summary, although unknown mutations leading to PV cannot be ruled out, our results suggest that CALR mutations can be associated with JAK2-negative PV. © 2014 by The American Society of Hematology.

  10. Disease-associated mutations disrupt functionally important regions of intrinsic protein disorder.

    Directory of Open Access Journals (Sweden)

    Vladimir Vacic

    Full Text Available The effects of disease mutations on protein structure and function have been extensively investigated, and many predictors of the functional impact of single amino acid substitutions are publicly available. The majority of these predictors are based on protein structure and evolutionary conservation, following the assumption that disease mutations predominantly affect folded and conserved protein regions. However, the prevalence of the intrinsically disordered proteins (IDPs and regions (IDRs in the human proteome together with their lack of fixed structure and low sequence conservation raise a question about the impact of disease mutations in IDRs. Here, we investigate annotated missense disease mutations and show that 21.7% of them are located within such intrinsically disordered regions. We further demonstrate that 20% of disease mutations in IDRs cause local disorder-to-order transitions, which represents a 1.7-2.7 fold increase compared to annotated polymorphisms and neutral evolutionary substitutions, respectively. Secondary structure predictions show elevated rates of transition from helices and strands into loops and vice versa in the disease mutations dataset. Disease disorder-to-order mutations also influence predicted molecular recognition features (MoRFs more often than the control mutations. The repertoire of disorder-to-order transition mutations is limited, with five most frequent mutations (R→W, R→C, E→K, R→H, R→Q collectively accounting for 44% of all deleterious disorder-to-order transitions. As a proof of concept, we performed accelerated molecular dynamics simulations on a deleterious disorder-to-order transition mutation of tumor protein p63 and, in agreement with our predictions, observed an increased α-helical propensity of the region harboring the mutation. Our findings highlight the importance of mutations in IDRs and refine the traditional structure-centric view of disease mutations. The results of this study

  11. Bulk Genotyping of Biopsies Can Create Spurious Evidence for Hetereogeneity in Mutation Content.

    Directory of Open Access Journals (Sweden)

    Rumen Kostadinov

    2016-04-01

    Full Text Available When multiple samples are taken from the neoplastic tissues of a single patient, it is natural to compare their mutation content. This is often done by bulk genotyping of whole biopsies, but the chance that a mutation will be detected in bulk genotyping depends on its local frequency in the sample. When the underlying mutation count per cell is equal, homogenous biopsies will have more high-frequency mutations, and thus more detectable mutations, than heterogeneous ones. Using simulations, we show that bulk genotyping of data simulated under a neutral model of somatic evolution generates strong spurious evidence for non-neutrality, because the pattern of tissue growth systematically generates differences in biopsy heterogeneity. Any experiment which compares mutation content across bulk-genotyped biopsies may therefore suggest mutation rate or selection intensity variation even when these forces are absent. We discuss computational and experimental approaches for resolving this problem.

  12. The application of a linear algebra to the analysis of mutation rates.

    Science.gov (United States)

    Jones, M E; Thomas, S M; Clarke, K

    1999-07-07

    Cells and bacteria growing in culture are subject to mutation, and as this mutation is the ultimate substrate for selection and evolution, the factors controlling the mutation rate are of some interest. The mutational event is not observed directly, but is inferred from the phenotype of the original mutant or of its descendants; the rate of mutation is inferred from the number of such mutant phenotypes. Such inference presumes a knowledge of the probability distribution for the size of a clone arising from a single mutation. We develop a mathematical formulation that assists in the design and analysis of experiments which investigate mutation rates and mutant clone size distribution, and we use it to analyse data for which the classical Luria-Delbrück clone-size distribution must be rejected. Copyright 1999 Academic Press.

  13. Nonlinear dynamics of the rock-paper-scissors game with mutations.

    Science.gov (United States)

    Toupo, Danielle F P; Strogatz, Steven H

    2015-05-01

    We analyze the replicator-mutator equations for the rock-paper-scissors game. Various graph-theoretic patterns of mutation are considered, ranging from a single unidirectional mutation pathway between two of the species, to global bidirectional mutation among all the species. Our main result is that the coexistence state, in which all three species exist in equilibrium, can be destabilized by arbitrarily small mutation rates. After it loses stability, the coexistence state gives birth to a stable limit cycle solution created in a supercritical Hopf bifurcation. This attracting periodic solution exists for all the mutation patterns considered, and persists arbitrarily close to the limit of zero mutation rate and a zero-sum game.

  14. Novel de novo BRCA2 mutation in a patient with a family history of breast cancer

    DEFF Research Database (Denmark)

    Hansen, Thomas V O; Bisgaard, Marie Luise; Jønson, Lars

    2008-01-01

    whole blood. The paternity was determined by single nucleotide polymorphism (SNP) microarray analysis. Parental origin of the de novo mutation was determined by establishing mutation-SNP haplotypes by variant specific PCR, while de novo and mosaic status was investigated by sequencing of DNA from......BACKGROUND: BRCA2 germ-line mutations predispose to breast and ovarian cancer. Mutations are widespread and unclassified splice variants are frequently encountered. We describe the parental origin and functional characterization of a novel de novo BRCA2 splice site mutation found in a patient...... and synthesis of a truncated BRCA2 protein. The aberrant splicing was verified by RT-PCR analysis on RNA isolated from whole blood of the affected patient. The mutation was not found in any of the patient's parents or in the mother's carcinoma, showing it is a de novo mutation. Variant specific PCR indicates...

  15. Bulk Genotyping of Biopsies Can Create Spurious Evidence for Hetereogeneity in Mutation Content.

    Science.gov (United States)

    Kostadinov, Rumen; Maley, Carlo C; Kuhner, Mary K

    2016-04-01

    When multiple samples are taken from the neoplastic tissues of a single patient, it is natural to compare their mutation content. This is often done by bulk genotyping of whole biopsies, but the chance that a mutation will be detected in bulk genotyping depends on its local frequency in the sample. When the underlying mutation count per cell is equal, homogenous biopsies will have more high-frequency mutations, and thus more detectable mutations, than heterogeneous ones. Using simulations, we show that bulk genotyping of data simulated under a neutral model of somatic evolution generates strong spurious evidence for non-neutrality, because the pattern of tissue growth systematically generates differences in biopsy heterogeneity. Any experiment which compares mutation content across bulk-genotyped biopsies may therefore suggest mutation rate or selection intensity variation even when these forces are absent. We discuss computational and experimental approaches for resolving this problem.

  16. Pitfalls in genetic testing: the story of missed SCN1A mutations.

    Science.gov (United States)

    Djémié, Tania; Weckhuysen, Sarah; von Spiczak, Sarah; Carvill, Gemma L; Jaehn, Johanna; Anttonen, Anna-Kaisa; Brilstra, Eva; Caglayan, Hande S; de Kovel, Carolien G; Depienne, Christel; Gaily, Eija; Gennaro, Elena; Giraldez, Beatriz G; Gormley, Padhraig; Guerrero-López, Rosa; Guerrini, Renzo; Hämäläinen, Eija; Hartmann, Corinna; Hernandez-Hernandez, Laura; Hjalgrim, Helle; Koeleman, Bobby P C; Leguern, Eric; Lehesjoki, Anna-Elina; Lemke, Johannes R; Leu, Costin; Marini, Carla; McMahon, Jacinta M; Mei, Davide; Møller, Rikke S; Muhle, Hiltrud; Myers, Candace T; Nava, Caroline; Serratosa, Jose M; Sisodiya, Sanjay M; Stephani, Ulrich; Striano, Pasquale; van Kempen, Marjan J A; Verbeek, Nienke E; Usluer, Sunay; Zara, Federico; Palotie, Aarno; Mefford, Heather C; Scheffer, Ingrid E; De Jonghe, Peter; Helbig, Ingo; Suls, Arvid

    2016-07-01

    Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying all mutations. Therefore, we wondered to what extent inconsistencies between Sanger sequencing and NGS affect the molecular diagnosis of patients. Since mutations in SCN1A, the major gene implicated in epilepsy, are found in the majority of Dravet syndrome (DS) patients, we focused on missed SCN1A mutations. We sent out a survey to 16 genetic centers performing SCN1A testing. We collected data on 28 mutations initially missed using Sanger sequencing. All patients were falsely reported as SCN1A mutation-negative, both due to technical limitations and human errors. We illustrate the pitfalls of Sanger sequencing and most importantly provide evidence that SCN1A mutations are an even more frequent cause of DS than already anticipated.

  17. Modulating ectopic gene expression levels by using retroviral vectors equipped with synthetic promoters

    OpenAIRE

    Ferreira, Joshua P.; Peacock, Ryan W. S.; Lawhorn, Ingrid E. B.; Wang, Clifford L.

    2011-01-01

    The human cytomegalovirus and elongation factor 1α promoters are constitutive promoters commonly employed by mammalian expression vectors. These promoters generally produce high levels of expression in many types of cells and tissues. To generate a library of synthetic promoters capable of generating a range of low, intermediate, and high expression levels, the TATA and CAAT box elements of these promoters were mutated. Other promoter variants were also generated by random mutagenesis. Evalua...

  18. Turning up the volume on mutational pressure: Is more of a good thing always better? (A case study of HIV-1 Vif and APOBEC3

    Directory of Open Access Journals (Sweden)

    Wong Joseph K

    2008-03-01

    Full Text Available Abstract APOBEC3G and APOBEC3F are human cytidine deaminases that serve as innate antiviral defense mechanisms primarily by introducing C-to-U changes in the minus strand DNA of retroviruses during replication (resulting in G-to-A mutations in the genomic sense strand sequence. The HIV-1 Vif protein counteracts this defense by promoting the proteolytic degradation of APOBEC3G and APOBEC3F in the host cell. In the absence of Vif expression, APOBEC3 is incorporated into HIV-1 virions and the viral genome undergoes extensive G-to-A mutation, or "hypermutation", typically rendering it non-viable within a single replicative cycle. Consequently, Vif is emerging as an attractive target for pharmacological intervention and therapeutic vaccination. Although a highly effective Vif inhibitor may result in mutational meltdown of the viral quasispecies, a partially effective Vif inhibitor may accelerate the evolution of drug resistance and immune escape due to the codon structure and recombinogenic nature of HIV-1. This hypothesis rests on two principal assumptions which are supported by experimental evidence: a there is a dose response between intracellular APOBEC concentration and degree of viral hypermutation, and, b HIV-1 can tolerate an elevated mutation rate, and a true error or extinction threshold is as yet undetermined. Rigorous testing of this hypothesis will have timely and critical implications for the therapeutic management of HIV/AIDS, and delve into the complexities underlying the induction of lethal mutagenesis in a viral pathogen.

  19. Addition of molecular methods to mutation studies with Drosophila melanogaster

    International Nuclear Information System (INIS)

    Lee, W.R.

    1989-01-01

    For 80 years, Drosophila melanogaster has been used as a major tool in analyzing Mendelian genetics. By using chromosome inversions that suppress crossing over, geneticists have developed a large number of stocks for mutation analysis. These stocks permit numerous tests for specific locus mutations, lethals at multiple loci on any chromosome, chromosome exchanges, insertions, and deletions. The entire genome can be manipulated for a degree of genetic control not found in other germ-line systems. Recombinant DNA techniques now permit analysis of mutations to the nucleotide level. By combining classical genetic analysis with recombinant DNA techniques, it is possible to analyze mutations that range from chromosome aberrations and multilocus deficiencies to single nucleotide transitions

  20. Mutations in the Caenorhabditis elegans orthologs of human genes required for mitochondrial tRNA modification cause similar electron transport chain defects but different nuclear responses.

    Science.gov (United States)

    Navarro-González, Carmen; Moukadiri, Ismaïl; Villarroya, Magda; López-Pascual, Ernesto; Tuck, Simon; Armengod, M-Eugenia

    2017-07-01

    Several oxidative phosphorylation (OXPHOS) diseases are caused by defects in the post-transcriptional modification of mitochondrial tRNAs (mt-tRNAs). Mutations in MTO1 or GTPBP3 impair the modification of the wobble uridine at position 5 of the pyrimidine ring and cause heart failure. Mutations in TRMU affect modification at position 2 and cause liver disease. Presently, the molecular basis of the diseases and why mutations in the different genes lead to such different clinical symptoms is poorly understood. Here we use Caenorhabditis elegans as a model organism to investigate how defects in the TRMU, GTPBP3 and MTO1 orthologues (designated as mttu-1, mtcu-1, and mtcu-2, respectively) exert their effects. We found that whereas the inactivation of each C. elegans gene is associated with a mild OXPHOS dysfunction, mutations in mtcu-1 or mtcu-2 cause changes in the expression of metabolic and mitochondrial stress response genes that are quite different from those caused by mttu-1 mutations. Our data suggest that retrograde signaling promotes defect-specific metabolic reprogramming, which is able to rescue the OXPHOS dysfunction in the single mutants by stimulating the oxidative tricarboxylic acid cycle flux through complex II. This adaptive response, however, appears to be associated with a biological cost since the single mutant worms exhibit thermosensitivity and decreased fertility and, in the case of mttu-1, longer reproductive cycle. Notably, mttu-1 worms also exhibit increased lifespan. We further show that mtcu-1; mttu-1 and mtcu-2; mttu-1 double mutants display severe growth defects and sterility. The animal models presented here support the idea that the pathological states in humans may initially develop not as a direct consequence of a bioenergetic defect, but from the cell's maladaptive response to the hypomodification status of mt-tRNAs. Our work highlights the important association of the defect-specific metabolic rewiring with the pathological phenotype

  1. Mature Microsatellites: Mechanisms Underlying Dinucleotide Microsatellite Mutational Biases in Human Cells

    OpenAIRE

    Baptiste, Beverly A.; Ananda, Guruprasad; Strubczewski, Noelle; Lutzkanin, Andrew; Khoo, Su Jen; Srikanth, Abhinaya; Kim, Nari; Makova, Kateryna D.; Krasilnikova, Maria M.; Eckert, Kristin A.

    2013-01-01

    Dinucleotide microsatellites are dynamic DNA sequences that affect genome stability. Here, we focused on mature microsatellites, defined as pure repeats of lengths above the threshold and unlikely to mutate below it in a single mutational event. We investigated the prevalence and mutational behavior of these sequences by using human genome sequence data, human cells in culture, and purified DNA polymerases. Mature dinucleotides (?10 units) are present within exonic sequences of >350 genes, re...

  2. Pitfalls in genetic testing: the story of missed SCN1A mutations

    OpenAIRE

    Djémié, T.; Weckhuysen, S.; von Spiczak, S.; Carvill, G. L.; Jaehn, J.; Anttonen, A-K; Brilstra, E.; Caglayan, H. S.; de Kovel, C. G.; Depienne, C.; Gaily, E.; Gennaro, E.; Giraldez, B. G.; Gormley, P.; Guerrero-López, R.

    2016-01-01

    BACKGROUND: Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying all mutations. Therefore, we wondered to what extent inconsistencies between Sanger sequencing and NGS affect the molecular diagnosis of patients. Since mutations in SCN1A, the major gene implicated ...

  3. Pitfalls in genetic testing : the story of missed SCN1A mutations

    OpenAIRE

    Djémié, Tania; Weckhuysen, Sarah; von Spiczak, Sarah; Carvill, Gemma L; Jaehn, Johanna; Anttonen, Anna-Kaisa; Brilstra, Eva; Caglayan, Hande S; de Kovel, Carolien G; Depienne, Christel; Gaily, Eija; Gennaro, Elena; Giraldez, Beatriz G; Gormley, Padhraig; Guerrero-López, Rosa

    2016-01-01

    BACKGROUND: Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying all mutations. Therefore, we wondered to what extent inconsistencies between Sanger sequencing and NGS affect the molecular diagnosis of patients. Since mutations in SCN1A, the major gene implicated ...

  4. Induced mutations in citrus

    International Nuclear Information System (INIS)

    Spiegel-Roy, P.; Vardi, Aliza

    1990-01-01

    Full text: Parthenocarpic tendency is an important prerequisite for successful induction of seedlessness in breeding and especially in mutation breeding. A gene for asynapsis and accompanying seedless fruit has been found by us in inbred progeny of cv. 'Wilking'. Using budwood irradiation by gamma rays, seedless mutants of 'Eureka' and 'Villafranca' lemon (original clone of the latter has 25 seeds) and 'Minneola' tangelo have been obtained. Ovule sterility of the three mutants is nearly complete, with some pollen fertility still remaining. A semi-compact mutant of Shamouti orange has been obtained by irradiation. A programme for inducing seedlessness in easy peeling citrus varieties and selections has been initiated. (author)

  5. Induced skeletal mutations

    International Nuclear Information System (INIS)

    Selby, P.B.

    1979-01-01

    This paper describes a large-scale experiment that, by means of breeding tests, confirmed that many dominant skeletal mutations are induced by large-dose radiation exposure. The author also discusses: (1) the major advantages and disadvantages of the skeletal method in improving estimates of genetic hazard to man; (2) future uses of the skeletal method; (3) direct estimation of risk beyond the first generation using the skeletal method; and (4) the possibility of using the skeletal method as a quick and easy screen for chemical mutagens

  6. Mutation Breeding Newsletter. No. 39

    International Nuclear Information System (INIS)

    1992-01-01

    This newsletter contains brief articles on the use of radiation to induce mutations in plants; radiation-induced mutants in Chrysanthemum; disrupting the association between oil and protein content in soybean seeds; mutation studies on bougainvillea; a new pepper cultivar; and the use of mutation induction to improve the quality of yam beans. A short review of the seminar on the use of mutation and related biotechnology for crop improvement in the Middle East and Mediterranean regions, and a description of a Co-ordinated Research Programme on the application of DNA-based marker mutations for the improvement of cereals and other sexually reproduced crop species are also included. Two tables are given: these are based on the ''FAO/IAEA Mutant Varieties Database'' and show the number of mutated varieties and the number of officially released mutant varieties in particular crops/species. Refs and tabs