WorldWideScience

Sample records for single mutant embryos

  1. Changes in protein synthetic activity in early Drosophila embryos mutant for the segmentation gene Krueppel

    International Nuclear Information System (INIS)

    Bedian, V.; Summers, M.C.; Kauffman, S.A.

    1988-01-01

    We have identified early embryo proteins related to the segmentation gene Krueppel by [35S]methionine pulse labelling and two-dimensional gel electrophoresis. Protein synthesis differences shared by homozygous embryos of two Krueppel alleles when compared to heterozygous and wild-type embryos are reported. The study was extended to syncytial blastoderm stages by pulse labelling and gel analysis of single embryos, using Krueppel-specific proteins from gastrula stages as molecular markers for identifying homozygous Krueppel embryos. Localized expression of interesting proteins was examined in embryo fragments. The earliest differences detected at nuclear migration stages showed unregulated synthesis in mutant embryos of two proteins that have stage specific synthesis in normal embryos. At the cellular blastoderm stage one protein was not synthesized and two proteins showed apparent shifts in isoelectric point in mutant embryos. Differences observed in older embryos included additional proteins with shifted isoelectric points and a number of qualitative and quantitative changes in protein synthesis. Five of the proteins with altered rates of synthesis in mutant embryos showed localized synthesis in normal embryos. The early effects observed are consistent with the hypothesis that the Krueppel product can be a negative or positive regulator of expression of other loci, while blastoderm and gastrula stage shifts in isoelectric point indicate that a secondary effect of Krueppel function may involve post-translational modification of proteins

  2. γ-Oryzanol, tocol and mineral compositions in different grain fractions of giant embryo rice mutants.

    Science.gov (United States)

    Jeng, Toong Long; Shih, Yi Ju; Ho, Pei Tzu; Lai, Chia Chi; Lin, Yu Wen; Wang, Chang Sheng; Sung, Jih Min

    2012-05-01

    Rice embryo is concentrated with lipid, protein and some bioactive chemicals. Two rice mutants IR64-GE and TNG71-GE (M7 generation) were characterised by an enlarged embryo compared with their wild types. In the present study, distributions of protein, lipid, total phenolics, γ-oryzanol, tocols and some essential minerals in these two giant embryo mutants and their respective normal embryo wild types IR64 and TNG71 were compared. The embryo dry weights of giant embryo mutants IR64-GE and TNG71-GE were 0.92 and 1.32 mg per seed respectively. These values were higher than those of their respective normal embryo genotypes (0.50 and 0.62 mg per seed). Large variations in protein, lipid, phenolic, γ-oryzanol, tocol and minerals levels were found between mutant and wild-type pairs. The brown rice of TNG71-GE had higher total γ-oryzanol (average of 24% increase) and total tocol (average of 75% increase) levels than TNG71, IR64 and IR64-GE. The embryo and bran parts of giant embryo mutant TNG71-GE were found to be good sources of vitamin E and γ-oryzanol. Therefore it could be used to produce high-value by-products from milled embryo and bran parts and as a genetic resource for rice improvement programmes. TNG71-GE can also be used as a nutrient-fortified rice cultivar. Copyright © 2011 Society of Chemical Industry.

  3. Correction of β-thalassemia mutant by base editor in human embryos

    Directory of Open Access Journals (Sweden)

    Puping Liang

    2017-09-01

    Full Text Available Abstract β-Thalassemia is a global health issue, caused by mutations in the HBB gene. Among these mutations, HBB −28 (A>G mutations is one of the three most common mutations in China and Southeast Asia patients with β-thalassemia. Correcting this mutation in human embryos may prevent the disease being passed onto future generations and cure anemia. Here we report the first study using base editor (BE system to correct disease mutant in human embryos. Firstly, we produced a 293T cell line with an exogenous HBB −28 (A>G mutant fragment for gRNAs and targeting efficiency evaluation. Then we collected primary skin fibroblast cells from a β-thalassemia patient with HBB −28 (A>G homozygous mutation. Data showed that base editor could precisely correct HBB −28 (A>G mutation in the patient’s primary cells. To model homozygous mutation disease embryos, we constructed nuclear transfer embryos by fusing the lymphocyte or skin fibroblast cells with enucleated in vitro matured (IVM oocytes. Notably, the gene correction efficiency was over 23.0% in these embryos by base editor. Although these embryos were still mosaic, the percentage of repaired blastomeres was over 20.0%. In addition, we found that base editor variants, with narrowed deamination window, could promote G-to-A conversion at HBB −28 site precisely in human embryos. Collectively, this study demonstrated the feasibility of curing genetic disease in human somatic cells and embryos by base editor system.

  4. Cell lineage of timed cohorts of Tbx6-expressing cells in wild-type and Tbx6 mutant embryos

    Directory of Open Access Journals (Sweden)

    Daniel Concepcion

    2017-07-01

    Full Text Available Tbx6 is a T-box transcription factor with multiple roles in embryonic development as evidenced by dramatic effects on mesoderm cell fate determination, left/right axis determination, and somite segmentation in mutant mice. The expression of Tbx6 is restricted to the primitive streak and presomitic mesoderm, but some of the phenotypic features of mutants are not easily explained by this expression pattern. We have used genetically-inducible fate mapping to trace the fate of Tbx6-expressing cells in wild-type and mutant embryos to explain some of the puzzling features of the mutant phenotype. We created an inducible Tbx6-creERT2 transgenic mouse in which cre expression closely recapitulates endogenous Tbx6 expression both temporally and spatially. Using a lacZ-based Cre reporter and timed tamoxifen injections, we followed temporally overlapping cohorts of cells that had expressed Tbx6 and found contributions to virtually all mesodermally-derived embryonic structures as well as the extraembryonic allantois. Contribution to the endothelium of major blood vessels may account for the embryonic death of homozygous mutant embryos. In mutant embryos, Tbx6-creERT2-traced cells contributed to the abnormally segmented anterior somites and formed the characteristic ectopic neural tubes. Retention of cells in the mutant tail bud indicates a deficiency in migratory behavior of the mutant cells and the presence of Tbx6-creERT2-traced cells in the notochord, a node derivative provides a possible explanation for the heterotaxia seen in mutant embryos.

  5. SUCROSE TRANSPORTER 5 supplies Arabidopsis embryos with biotin and affects triacylglycerol accumulation

    Science.gov (United States)

    Pommerrenig, Benjamin; Popko, Jennifer; Heilmann, Mareike; Schulmeister, Sylwia; Dietel, Katharina; Schmitt, Bianca; Stadler, Ruth; Feussner, Ivo; Sauer, Norbert

    2013-01-01

    The Arabidopsis SUC5 protein represents a classical sucrose/H+ symporter. Functional analyses previously revealed that SUC5 also transports biotin, an essential co-factor for fatty acid synthesis. However, evidence for a dual role in transport of the structurally unrelated compounds sucrose and biotin in plants was lacking. Here we show that SUC5 localizes to the plasma membrane, and that the SUC5 gene is expressed in developing embryos, confirming the role of the SUC5 protein as substrate carrier across apoplastic barriers in seeds. We show that transport of biotin but not of sucrose across these barriers is impaired in suc5 mutant embryos. In addition, we show that SUC5 is essential for the delivery of biotin into the embryo of biotin biosynthesis-defective mutants (bio1 and bio2). We compared embryo and seedling development as well as triacylglycerol accumulation and fatty acid composition in seeds of single mutants (suc5, bio1 or bio2), double mutants (suc5 bio1 and suc5 bio2) and wild-type plants. Although suc5 mutants were like the wild-type, bio1 and bio2 mutants showed developmental defects and reduced triacylglycerol contents. In suc5 bio1 and suc5 bio2 double mutants, developmental defects were severely increased and the triacylglycerol content was reduced to a greater extent in comparison to the single mutants. Supplementation with externally applied biotin helped to reduce symptoms in both single and double mutants, but the efficacy of supplementation was significantly lower in double than in single mutants, showing that transport of biotin into the embryo is lower in the absence of SUC5. PMID:23031218

  6. Automatic Blastomere Recognition from a Single Embryo Image

    Directory of Open Access Journals (Sweden)

    Yun Tian

    2014-01-01

    Full Text Available The number of blastomeres of human day 3 embryos is one of the most important criteria for evaluating embryo viability. However, due to the transparency and overlap of blastomeres, it is a challenge to recognize blastomeres automatically using a single embryo image. This study proposes an approach based on least square curve fitting (LSCF for automatic blastomere recognition from a single image. First, combining edge detection, deletion of multiple connected points, and dilation and erosion, an effective preprocessing method was designed to obtain part of blastomere edges that were singly connected. Next, an automatic recognition method for blastomeres was proposed using least square circle fitting. This algorithm was tested on 381 embryo microscopic images obtained from the eight-cell period, and the results were compared with those provided by experts. Embryos were recognized with a 0 error rate occupancy of 21.59%, and the ratio of embryos in which the false recognition number was less than or equal to 2 was 83.16%. This experiment demonstrated that our method could efficiently and rapidly recognize the number of blastomeres from a single embryo image without the need to reconstruct the three-dimensional model of the blastomeres first; this method is simple and efficient.

  7. Single-embryo transfer versus multiple-embryo transfer.

    Science.gov (United States)

    Gerris, Jan

    2009-01-01

    Despite the progress made in assisted reproductive technology, live birth rates remain disappointingly low. Multiple-embryo transfer has been an accepted practice with which to increase the success rate. This has led to a higher incidence of multiple-order births compared with natural conception, which not only increase the risk of mortality and morbidity to both mother and children but are also associated with social and economic consequences. Elective single-embryo transfer (eSET) was developed in an effort to increase singleton pregnancies in assisted reproduction. Studies comparing eSET with multiple-embryo transfer highlight the benefit of this approach and suggest that, with careful patient selection and the transfer of good-quality embryos, the risk of a multiple-order pregnancy can be reduced without significantly decreasing live birth rates. Although the use of eSET has gradually increased in clinical practice, its acceptance has been limited by factors such as availability of funding and awareness of the procedure. An open discussion of eSET is warranted in an effort to enable a broader understanding by physicians and patients of the merits of this approach. Ultimately, eSET may provide a more cost-effective, potentially safer approach to patients undergoing assisted reproduction technology.

  8. Description of Phaseolus vulgaris L. aborting embryos from ethyl methanesulfonate (EMS mutagenized plants

    Directory of Open Access Journals (Sweden)

    Silué, S.

    2013-01-01

    Full Text Available The aim of this study was to describe the embryos abortion process and the inheritance of the embryos abortion trait in Phaseolus vulgaris plants deficient in seed development. These plants were isolated within the second generation of an ethyl methanesulfonate (EMS TILLING population of P. vulgaris cv. 'BAT93'. Mutant embryos show abnormalities mainly in suspensors, shoot apical meristem (SAM and cotyledons from the globular to the cotyledon stages and abort before maturity compared to those observed in wild-type samples. Mutant embryos show also hyperhydricity and contain low amount of chlorophyll. Genetic analyses of F1, F2 and F3 populations from the crosses carried out between the mutagenized plants with aborting embryos and the wild-type plants indicated that the embryo abortion phenotype is maternally inherited and controlled by a single recessive gene. These Phaseolus mutant plants with aborting embryos constitute a valuable material for plant embryogenesis studies.

  9. Generation of single-copy transgenic mouse embryos directly from ES cells by tetraploid embryo complementation

    Directory of Open Access Journals (Sweden)

    Zhao Roong

    2001-12-01

    Full Text Available Abstract Background Transgenic mice have been used extensively to analyze gene function. Unfortunately, traditional transgenic procedures have only limited use in analyzing alleles that cause lethality because lines of founder mice cannot be established. This is frustrating given that such alleles often reveal crucial aspects of gene function. For this reason techniques that facilitate the generation of embryos expressing such alleles would be of enormous benefit. Although the transient generation of transgenic embryos has allowed limited analysis of lethal alleles, it is expensive, time consuming and technically challenging. Moreover a fundamental limitation with this approach is that each embryo generated is unique and transgene expression is highly variable due to the integration of different transgene copy numbers at random genomic sites. Results Here we describe an alternative method that allows the generation of clonal mouse embryos harboring a single-copy transgene at a defined genomic location. This was facilitated through the production of Hprt negative embryonic stem cells that allow the derivation of embryos by tetraploid embryo complementation. We show that targeting transgenes to the hprt locus in these ES cells by homologous recombination can be efficiently selected by growth in HAT medium. Moreover, embryos derived solely from targeted ES cells containing a single copy LacZ transgene under the control of the α-myosin heavy chain promoter exhibited the expected cardiac specific expression pattern. Conclusion Our results demonstrate that tetraploid embryo complementation by F3 hprt negative ES cells facilitates the generation of transgenic mouse embryos containing a single copy gene at a defined genomic locus. This approach is simple, extremely efficient and bypasses any requirement to generate chimeric mice. Moreover embryos generated by this procedure are clonal in that they are all derived from a single ES cell lines. This

  10. [Single embryo transfer: is Scandinavian model valuable in France?].

    Science.gov (United States)

    Belaisch-Allart, J; Mayenga, J-M; Grefenstette, I; Chouraqui, A; Serkine, A-M; Abirached, F; Kulski, O

    2008-11-01

    The aim of infertility treatment is clearly to obtain one healthy baby. If the transfer of a top quality single embryo could provide a baby to all the patients, there would be no more discussion. The problem is that, nowadays, French pregnancy rates after fresh embryo or frozen embryo transfer are not the same as in Nordic countries. All studies show that in unselected patients, single embryo transfer decreases twin pregnancy rate but decreases pregnancy rate too. Pregnancy rate is dependent on embryo quality, women's age, rank of IVF attempt (clear data) but also on body mass index, ovarian reserve, smoking habits. All these data cannot be taken into account in a law. That is the reason why a flexible policy of transfer adapted to each couple is preferable. Each couple and each IVF team are unique and must keep the freedom to choose how many embryos must be transferred to obtain healthy babies, and to avoid twin pregnancies but without demonizing them.

  11. Noninvasive metabolomic profiling as an adjunct to morphology for noninvasive embryo assessment in women undergoing single embryo transfer

    NARCIS (Netherlands)

    Seli, E.; Vergouw, C.G.; Morita, H.; Botros, L.; Roos, P.; Lambalk, C.B.; Yamashita, N.; Kato, O.; Sakkas, D.

    2010-01-01

    Objective: To determine whether metabolomic profiling of spent embryo culture media correlates with reproductive potential of human embryos. Design: Retrospective study. Setting: Academic and a private assisted reproductive technology (ART) programs. Patient(s): Women undergoing single embryo

  12. Cost-effectiveness of single versus double embryo transfer in IVF in relation to female age.

    Science.gov (United States)

    van Loendersloot, Laura L; Moolenaar, Lobke M; van Wely, Madelon; Repping, Sjoerd; Bossuyt, Patrick M; Hompes, Peter G A; van der Veen, Fulco; Mol, Ben Willem J

    2017-07-01

    To evaluate the cost-effectiveness of single embryo transfer followed by an additional frozen-thawed single embryo transfer, if more embryos are available, as compared to double embryo transfer in relation to female age. We used a decision tree model to evaluate the costs from a healthcare provider perspective and the pregnancy rates of two embryo transfer policies: one fresh single embryo transfer followed by an additional frozen-thawed single embryo transfer, if more embryos are available (strategy I), and double embryo transfer (strategy II). The analysis was performed on an intention-to-treat basis. Sensitivity analyses were carried out to evaluate the robustness of our model and to identify which model parameters had the strongest impact on the results. SET followed by an additional frozen-thawed single embryo transfer if available was dominant, less costly and more effective, over DET in women under 32 years. In women aged 32 or older DET was more effective than SET followed by an additional frozen-thawed single embryo transfer if available but also more costly. SET followed by an additional frozen-thawed single embryo transfer should be the preferred strategy in women under 32 undergoing IVF. The choice for SET followed by an additional frozen-thawed single embryo transfer or DET in women aged 32 or older depends on individual patient preferences and on how much society is willing to pay for an extra child. There is a strong need for a randomized clinical trial comparing the cost and effects of SET followed by an additional frozen-thawed single embryo transfer and DET in the latter category of women. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Somatic embryogenesis and embryo culture coupled with gamma irradiation for generating avocado (Persea americana Miller) mutants in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Avenido, R. A. [Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños (Philippines); Crop Science Cluster, College of Agriculture, University of the Philippines Los Baños (Philippines); Galvez, H. F.; Dimaculangan, J. G.; Welgas, J. N.; Frankie, R. B.; Damasco, O. P. [Crop Science Cluster, College of Agriculture, University of the Philippines Los Baños (Philippines)

    2009-05-15

    Plant regeneration through somatic embryogenesis from immature zygotic embryos and embryo cultures from mature fruits were achieved in select avocado accession ‘Semil’ and other seedling trees in the Philippines. Embryogenic cultures were induced from immature zygotic embryos of eight (8) avocado genotypes using either SE1 medium (MS + 30 g/l sucrose + 5 mg/l 2, 4-D + 0.5 mg/l BAP) or SE2 medium (MS + 30 g/l sucrose + 0.1 mg/l picloram). Embryogenic cultures of 2 genotypes namely ‘Semil’ and ‘Mainit’ developed into somatic embryos after repeated subcultures in SE2, SE3 (MS + 30 g/l sucrose + 0.1 mg/l TDZ + 0.5 mg/l GA{sub 3}) and SE4 (MS + 30 g/l sucrose + 2 mg/l BAP + 1 mg/l IBA) media. Plant/shoot regeneration from ‘Semil’ somatic embryos was recorded in 3 trials at 16.3, 23.0 and 20.7%, and was affected by culture age, light treatment and media used. R4 regeneration medium (B5 macro salts + MS minor salts and vitamins + 60 g/l sucrose + 400 g/l glu + 2 mg/l BAP + 4.5 g/l Phytagel was found to be the best. Gamma irradiation (10 to 30 Gy) of embryogenic cultures of ‘Semil’ resulted in reduced proliferation and formation of cotyledonary stage somatic embryos. However, shoot regeneration from somatic embryos from gamma-irradiated cultures was comparable or even higher (17.8 to 26.9%) as compared to the control (18.3%). Over 200 somatic embryo-derived putative variant/mutant lines from tissue culture and gamma irradiation experiments are being maintained as shoot cultures. Due to slow growth and other related problems, micrografting and in vitro rooting were used to rescue and ensure the greenhouse establishment of putative mutant shoots, and fast-track mutant confirmation by genetic analysis. Preliminary genetic analyses by SSR revealed that (a) the 3 asexually propagated ‘Semil’ mother trees are genetically similar, and (b) mutations marked by the generation of a new allele (band) at the SSR locus was evident among the somatic embryo

  14. Economic evaluations of single- versus double-embryo transfer in IVF.

    Science.gov (United States)

    Fiddelers, A A A; Severens, J L; Dirksen, C D; Dumoulin, J C M; Land, J A; Evers, J L H

    2007-01-01

    Multiple pregnancies lead to complications and induce high costs. The most successful way to decrease multiple pregnancies in IVF is to transfer only one embryo, which might reduce the efficacy of treatment. The objective of this review is to determine which embryo-transfer policy is most cost-effective: elective single-embryo transfer (eSET) or double-embryo transfer (DET). Several databases were searched for (cost* or econ*) and (single embryo* or double embryo* or one embryo* or two embryo* or elect* embryo or multip* embryo*). On the basis of five exclusion criteria, titles and abstracts were screened by two individual reviewers. The remaining papers were read for further selection, and data were extracted from the selected studies. A total of 496 titles were identified through the searches and resulted in the selection of one observational study and three randomized studies. Study characteristics, total costs and probability of live births were extracted. Besides this, cost-effectiveness and incremental cost-effectiveness were derived. It can be concluded that DET is the most expensive strategy. DET is also most effective if performed in one fresh cycle. eSET is only preferred from a cost-effectiveness point of view when performed in good prognosis patients and when frozen/thawed cycles are included. If frozen/thawed cycles are excluded, the choice between eSET and DET depends on how much society is willing to pay for one extra successful pregnancy.

  15. Cost-effectiveness of single versus double embryo transfer in IVF in relation to female age

    NARCIS (Netherlands)

    van Loendersloot, Laura L.; Moolenaar, Lobke M.; van Wely, Madelon; Repping, Sjoerd; Bossuyt, Patrick M.; Hompes, Peter G. A.; van der Veen, Fulco; Mol, Ben Willem J.

    2017-01-01

    Objective: To evaluate the cost-effectiveness of single embryo transfer followed by an additional frozen thawed single embryo transfer, if more embryos are available, as compared to double embryo transfer in relation to female age. Study design: We used a decision tree model to evaluate the costs

  16. Early embryo development in a sequential versus single medium: a randomized study

    Directory of Open Access Journals (Sweden)

    D'Hooghe Thomas M

    2010-07-01

    Full Text Available Abstract Background The success of in vitro fertilization techniques is defined by multiple factors including embryo culture conditions, related to the composition of the culture medium. In view of the lack of solid scientific data and in view of the current general belief that sequential media are superior to single media, the aim of this randomized study was to compare the embryo quality in two types of culture media. Methods In this study, the embryo quality on day 3 was measured as primary outcome. In total, 147 patients younger than 36 years treated with IVF/ICSI during the first or second cycle were included in this study. Embryos were randomly cultured in a sequential (group A or a single medium (group B to compare the embryo quality on day 1, day 2 and day 3. The embryo quality was compared in both groups using a Chi-square test with a significance level of 0.05. Results At day 1, the percentage of embryos with a cytoplasmic halo was higher in group B (46% than in group A (32%. At day 2, number of blastomeres, degree of fragmentation and the percentage of unequally sized blastomeres were higher in group B than in group A. At day 3, a higher percentage of embryos had a higher number of blastomeres and unequally sized blastomeres in group B. The number of good quality embryos (GQE was comparable in both groups. The embryo utilization rate was higher in group B (56% compared to group A (49%. Conclusions Although, no significant difference in the number of GQE was found in both media, the utilization rate was significantly higher when the embryos were cultured in the single medium compared to the sequential medium. The results of this study have a possible positive effect on the cumulative cryo-augmented pregnancy rate. Trial registration number NCT01094314

  17. The influence of the type of embryo culture medium on neonatal birthweight after single embryo transfer in IVF

    NARCIS (Netherlands)

    Vergouw, C.G.; Kostelijk, E.H.; Doejaaren, E.; Hompes, P.G.A.; Lambalk, C.B.; Schats, R.

    2012-01-01

    STUDY QUESTION Does the type of medium used to culture fresh and frozenthawed embryos influence neonatal birthweight after single embryo transfer (SET) in IVF? SUMMARY ANSWER A comparison of two commercially available culture media showed no significant influence on mean birthweight and mean

  18. Single-site neural tube closure in human embryos revisited.

    Science.gov (United States)

    de Bakker, Bernadette S; Driessen, Stan; Boukens, Bastiaan J D; van den Hoff, Maurice J B; Oostra, Roelof-Jan

    2017-10-01

    Since the multi-site closure theory was first proposed in 1991 as explanation for the preferential localizations of neural tube defects, the closure of the neural tube has been debated. Although the multi-site closure theory is much cited in clinical literature, single-site closure is most apparent in literature concerning embryology. Inspired by Victor Hamburgers (1900-2001) statement that "our real teacher has been and still is the embryo, who is, incidentally, the only teacher who is always right", we decided to critically review both theories of neural tube closure. To verify the theories of closure, we studied serial histological sections of 10 mouse embryos between 8.5 and 9.5 days of gestation and 18 human embryos of the Carnegie collection between Carnegie stage 9 (19-21 days) and 13 (28-32 days). Neural tube closure was histologically defined by the neuroepithelial remodeling of the two adjoining neural fold tips in the midline. We did not observe multiple fusion sites in neither mouse nor human embryos. A meta-analysis of case reports on neural tube defects showed that defects can occur at any level of the neural axis. Our data indicate that the human neural tube fuses at a single site and, therefore, we propose to reinstate the single-site closure theory for neural tube closure. We showed that neural tube defects are not restricted to a specific location, thereby refuting the reasoning underlying the multi-site closure theory. Clin. Anat. 30:988-999, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Perinatal outcomes among singletons after assisted reproductive technology with single-embryo or double-embryo transfer versus no assisted reproductive technology.

    Science.gov (United States)

    Martin, Angela S; Chang, Jeani; Zhang, Yujia; Kawwass, Jennifer F; Boulet, Sheree L; McKane, Patricia; Bernson, Dana; Kissin, Dmitry M; Jamieson, Denise J

    2017-04-01

    To examine outcomes of singleton pregnancies conceived without assisted reproductive technology (non-ART) compared with singletons conceived with ART by elective single-embryo transfer (eSET), nonelective single-embryo transfer (non-eSET), and double-embryo transfer with the establishment of 1 (DET -1) or ≥2 (DET ≥2) early fetal heartbeats. Retrospective cohort using linked ART surveillance data and vital records from Florida, Massachusetts, Michigan, and Connecticut. Not applicable. Singleton live-born infants. None. Preterm birth (PTB score score approach, we found that singletons conceived after eSET were less likely to have a 5-minute Apgar Reproductive Medicine. All rights reserved.

  20. Single molecule transcription factor dynamics in the syncytial Drosophila embryo

    Science.gov (United States)

    Darzacq, Xavier

    During early development in the Drosophila embryo, cell fates are determined over the course of just 2 hours with exquisite spatio-temoral precision. One of the key regulators of this process is the transcription factor Bicoid which forms a concentration gradient across the long axis of the embryo. Although Bicoids' primary role is activation at the anterior, where concentrations are highest, it is also known to play a role in the posterior where there are only 100s of molecules per nucleus. Understanding how Bicoid can find its target at such low concentrations has remained intractable, largely due to the inability to perform single molecule imaging in the context of the developing embryo. Here we use lattice light sheet microscopy to overcome the technical barriers of sample thickness and auto-fluorescence to characterize the single molecule dynamics of Bicoid. We find that off-rates do not vary across the embryo and that instead the on-rates are modulated through the formation of clusters that enrich local concentration. This data is contrary to the current concentration dependent model of Bicoid function since local concentration within the nucleus is now a regulated parameter and suggests a previously unknown mechanism for regulation at extremely low concentrations.

  1. Robust embryo identification using first polar body single nucleotide polymorphism microarray-based DNA fingerprinting.

    Science.gov (United States)

    Treff, Nathan R; Su, Jing; Kasabwala, Natasha; Tao, Xin; Miller, Kathleen A; Scott, Richard T

    2010-05-01

    This study sought to validate a novel, minimally invasive system for embryo tracking by single nucleotide polymorphism microarray-based DNA fingerprinting of the first polar body. First polar body-based assignments of which embryos implanted and were delivered after multiple ET were 100% consistent with previously validated embryo DNA fingerprinting-based assignments. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Embryo density and medium volume effects on early murine embryo development.

    Science.gov (United States)

    Canseco, R S; Sparks, A E; Pearson, R E; Gwazdauskas, F C

    1992-10-01

    One-cell mouse embryos were used to determine the effects of drop size and number of embryos per drop for optimum development in vitro. Embryos were collected from immature C57BL6 female mice superovulated with pregnant mare serum gonadotropin and human chorionic gonadotropin and mated by CD1 males. Groups of 1, 5, 10, or 20 embryos were cultured in 5-, 10-, 20-, or 40-microliters drops of CZB under silicon oil at 37.5 degrees C in a humidified atmosphere of 5% CO2 and 95% air. Development score for embryos cultured in 10 microliters was higher than that of embryos cultured in 20 or 40 microliters. Embryos cultured in groups of 5, 10, or 20 had higher development scores than embryos cultured singly. The highest development score was obtained by the combination of 5 embryos per 10-microliters drop. The percentage of live embryos in 20 or 40 microliters was lower than that of embryos cultured in 10 microliters. Additionally, the percentage of live embryos cultured singly was lower than that of embryos cultured in groups. Our results suggest that a stimulatory interaction occurs among embryos possibly exerted through the secretion of growth factors. This effect can be diluted if the embryos are cultured in large drops or singly.

  3. Developing Xenopus Embryos Recover by Compacting and Expelling Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Holt, Brian D.; Shawky, Joseph H.; Dahl, Kris Noel; Davidson, Lance A.; Islam, Mohammad F.

    2015-01-01

    Single-wall carbon nanotubes are high aspect ratio nanomaterials that are being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties, and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single-wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 μm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one-to-two cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call “boluses”. Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. PMID:26153061

  4. Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes.

    Science.gov (United States)

    Holt, Brian D; Shawky, Joseph H; Dahl, Kris Noel; Davidson, Lance A; Islam, Mohammad F

    2016-04-01

    Single wall carbon nanotubes are high aspect ratio nanomaterials being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 µm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one- to two-cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call "boluses." Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Aquatic toxicity assessment of single-walled carbon nanotubes using zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Pan Huichin; Lin Yujun; Li Mengwei [Department of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan (China); Chuang Hanni; Chou Chengchung, E-mail: bioccc@ccu.edu.tw, E-mail: hp29@csmu.edu.tw [Department of Life Science, National Chung Cheng University, Min-Hsiung, 62102 Taiwan (China)

    2011-07-06

    Zebrafish embryos selected at the 64-cell stage were exposed to various concentrations of amide functionalized single-walled carbon nanotubes (SWCNTs) ranging from 1 to 10 {mu}g/ml dissolved in 1% Pluronic F-68 (a cell culture grade surfactant), and the development of embryos was examined from 24 to 120 hours post fertilization (hpf). Incubation of embryos in 1% F-68 did not induce overt abnormal phenotype as compared to the wild-type; neither did it cause significant mortality during the exposure period. Generally, there was a slight developmental delay in larvae treated with SWCNTs of 5 {mu}g/ml or above. Only larvae exposed to {>=} 5 {mu}g/ml SWCNTs showed significantly reduced survival rates. About 50% of the embryos exposed to 5 {mu}g/ml showed abnormal phenotypes at 24 hpf as compared to the control group. As development proceeds to 120 hpf, more embryos displayed defective morphology. A slight hatching delay was observed in embryos exposed to concentrations above 5 {mu}g/ml. There was a general reduction of body axes, including narrowed somite and shortened yolk stalk. In addition, pigmentation in the ventral trunk area was less than that observed in control group. The body lengths of the exposed embryos were decreased significantly at 48 hpf (3.11 mm in control vs. 3.00 mm in SWCNTs-exposed embryos). However, exposure to SWCNTs did not affect the number of somites. Other features that were noticed in the SWCNTs-exposed embryos included edema and shrinkage and blebbling of the epidermal lining. Most of these observed phenotypes persisted from 48 hpf through 120 hpf. Overall, the aforementioned results indicate that soluble amide-functionalized SWCNTs are toxic to zebrafish embryos at a minimum concentration of 5 {mu}g/ml.

  6. Single embryo transfer and IVF/ICSI outcome: a balanced appraisal.

    Science.gov (United States)

    Gerris, Jan M R

    2005-01-01

    This review considers the value of single embryo transfer (SET) to prevent multiple pregnancies (MP) after IVF/ICSI. The incidence of MP (twins and higher order pregnancies) after IVF/ICSI is much higher (approximately 30%) than after natural conception (approximately 1%). Approximately half of all the neonates are multiples. The obstetric, neonatal and long-term consequences for the health of these children are enormous and costs incurred extremely high. Judicious SET is the only method to decrease this epidemic of iatrogenic multiple gestations. Clinical trials have shown that programmes with >50% of SET maintain high overall ongoing pregnancy rates ( approximately 30% per started cycle) while reducing the MP rate to select patients suitable for SET and embryos with a high putative implantation potential. The typical patient suitable for SET is young (aged Embryo selection is performed using one or a combination of embryo characteristics. Available evidence suggests that, for the overall population, day 3 and day 5 selection yield similar results but better than zygote selection results. Prospective studies correlating embryo characteristics with documented implantation potential, utilizing databases of individual embryos, are needed. The application of SET should be supported by other measures: reimbursement of IVF/ICSI (earned back by reducing costs), optimized cryopreservation to augment cumulative pregnancy rates per oocyte harvest and a standardized format for reporting results. To make SET the standard of care in the appropriate target group, there is a need for more clinical studies, for intensive counselling of patients, and for an increased sense of responsibility in patients, health care providers and health insurers.

  7. PEP activity and expression of photosynthesis genes required for embryo and seed development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Dmitry eKremnev

    2014-08-01

    Full Text Available Chloroplast biogenesis and function is essential for proper plant embryo and seed development but the molecular mechanisms underlying the role of plastids during embryogenesis are poorly understood. Expression of plastid encoded genes is dependent on two different transcription machineries; a plastid-encoded bacterial-type RNA polymerase (PEP and a nuclear-encoded phage-type RNA polymerase (NEP, which recognize distinct types of promoters. However, the division of labor between PEP and NEP during plastid development and in mature chloroplasts is unclear. We show here that PRIN2 and CSP41b, two proteins identified in plastid nucleoid preparations, are essential for proper plant embryo development. Using Co-IP assays and native PAGE we have shown a direct physical interaction between PRIN2 and CSP41b. Moreover, PRIN2 and CSP41b form a distinct protein complex in vitro that binds DNA. The prin2.2 and csp41b-2 single mutants displayed pale phenotypes, abnormal chloroplasts with reduced transcript levels of photosynthesis genes and defects in embryo development. The respective csp41b-2prin2.2 homo/heterozygote double mutants produced abnormal white colored ovules and shrunken seeds. Thus, the csp41b-2prin2.2 double mutant is embryo lethal. In silico analysis of available array data showed that a large number of genes traditionally classified as PEP dependent genes are transcribed during early embryo development from the pre-globular stage to the mature-green-stage. Taken together, our results suggest that PEP activity and consequently the switch from NEP to PEP activity, is essential during embryo development and that the PRIN2-CSP41b DNA binding protein complex possibly is important for full PEP activity during this process.

  8. Reducing twin pregnancy rates after IVF--elective single embryo transfer (eSET).

    LENUS (Irish Health Repository)

    Milne, P

    2010-01-01

    Multiple pregnancy is a major complication of IVF and is associated with increased maternal, fetal and neonatal morbidity. Elective single embryo transfer (eSET) during IVF, rather than the more standard transfer of two embryos (double embryo transfer or DET), has been shown to significantly reduce the multiple pregnancy rate associated with IVF, while maintaining acceptable pregnancy rates. Couples undergoing IVF in 2008 who met good prognostic criteria had eSET performed. Pregnancy and twinning rates were compared with those for similar couples in 2007 who had DET. Couples unsuccessful with a fresh cycle of treatment had subsequent frozen embryo transfer cycles with DET. The cumulative pregnancy rate was similar for each group. However there were no multiple pregnancies in the eSET group, compared to 4 twins of 5 pregnancies in the DET group. 96% of eligible couples agreed to eSET. ESET is successful in and acceptable to good prognosis Irish couples undergoing IVF.

  9. Variations in dysfunction of sister chromatid cohesion in esco2 mutant zebrafish reflect the phenotypic diversity of Roberts syndrome

    Directory of Open Access Journals (Sweden)

    Stefanie M. Percival

    2015-08-01

    Full Text Available Mutations in ESCO2, one of two establishment of cohesion factors necessary for proper sister chromatid cohesion (SCC, cause a spectrum of developmental defects in the autosomal-recessive disorder Roberts syndrome (RBS, warranting in vivo analysis of the consequence of cohesion dysfunction. Through a genetic screen in zebrafish targeting embryonic-lethal mutants that have increased genomic instability, we have identified an esco2 mutant zebrafish. Utilizing the natural transparency of zebrafish embryos, we have developed a novel technique to observe chromosome dynamics within a single cell during mitosis in a live vertebrate embryo. Within esco2 mutant embryos, we observed premature chromatid separation, a unique chromosome scattering, prolonged mitotic delay, and genomic instability in the form of anaphase bridges and micronuclei formation. Cytogenetic studies indicated complete chromatid separation and high levels of aneuploidy within mutant embryos. Amongst aneuploid spreads, we predominantly observed decreases in chromosome number, suggesting that either cells with micronuclei or micronuclei themselves are eliminated. We also demonstrated that the genomic instability leads to p53-dependent neural tube apoptosis. Surprisingly, although many cells required Esco2 to establish cohesion, 10-20% of cells had only weakened cohesion in the absence of Esco2, suggesting that compensatory cohesion mechanisms exist in these cells that undergo a normal mitotic division. These studies provide a unique in vivo vertebrate view of the mitotic defects and consequences of cohesion establishment loss, and they provide a compensation-based model to explain the RBS phenotypes.

  10. Arabidopsis mitochondrial protein slow embryo development1 is essential for embryo development

    International Nuclear Information System (INIS)

    Ju, Yan; Liu, Chunying; Lu, Wenwen; Zhang, Quan; Sodmergen

    2016-01-01

    The plant seeds formation are crucial parts in reproductive process in seed plants as well as food source for humans. Proper embryo development ensure viable seed formation. Here, we showed an Arabidopsis T-DNA insertion mutant slow embryo development1 (sed1) which exhibited retarded embryogenesis, led to aborted seeds. Embryo without SED1 developed slower compared to normal one and could be recognized at early globular stage by its white appearance. In later development stage, storage accumulated poorly with less protein and lipid body production. In vitro culture did not rescue albino embryo. SED1 encoded a protein targeted to mitochondria. Transmission electron microscopic analysis revealed that mitochondria developed abnormally, and more strikingly plastid failed to construct grana in time in sed1/sed1 embryo. These data indicated that SED1 is indispensable for embryogenesis in Arabidopsis, and the mitochondria may be involved in the regulation of many aspects of seed development. -- Highlights: •Arabidopsis SED1 is essential for embryo development. •The sed1 embryo accumulates less storage and has abnormal ultrastructure. •SED1 localizes to the mitochondrion.

  11. Arabidopsis mitochondrial protein slow embryo development1 is essential for embryo development

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yan; Liu, Chunying; Lu, Wenwen; Zhang, Quan; Sodmergen, E-mail: sodmergn@pku.edu.cn

    2016-05-27

    The plant seeds formation are crucial parts in reproductive process in seed plants as well as food source for humans. Proper embryo development ensure viable seed formation. Here, we showed an Arabidopsis T-DNA insertion mutant slow embryo development1 (sed1) which exhibited retarded embryogenesis, led to aborted seeds. Embryo without SED1 developed slower compared to normal one and could be recognized at early globular stage by its white appearance. In later development stage, storage accumulated poorly with less protein and lipid body production. In vitro culture did not rescue albino embryo. SED1 encoded a protein targeted to mitochondria. Transmission electron microscopic analysis revealed that mitochondria developed abnormally, and more strikingly plastid failed to construct grana in time in sed1/sed1 embryo. These data indicated that SED1 is indispensable for embryogenesis in Arabidopsis, and the mitochondria may be involved in the regulation of many aspects of seed development. -- Highlights: •Arabidopsis SED1 is essential for embryo development. •The sed1 embryo accumulates less storage and has abnormal ultrastructure. •SED1 localizes to the mitochondrion.

  12. The influence of the type of embryo culture medium on neonatal birthweight after single embryo transfer in IVF.

    Science.gov (United States)

    Vergouw, Carlijn G; Kostelijk, E Hanna; Doejaaren, Els; Hompes, Peter G A; Lambalk, Cornelis B; Schats, Roel

    2012-09-01

    Does the type of medium used to culture fresh and frozen-thawed embryos influence neonatal birthweight after single embryo transfer (SET) in IVF? A comparison of two commercially available culture media showed no significant influence on mean birthweight and mean birthweight adjusted for gestational age, gender and parity (z-scores) of singletons born after a fresh or frozen-thawed SET. Furthermore, we show that embryo freezing and thawing cycles may lead to a significantly higher mean birthweight. Animal studies have shown that culture media constituents are responsible for changes in birthweight of offspring. In human IVF, there is still little knowledge of the effect of medium type on birthweight. Until now, only a small number of commercially available culture media have been investigated (Vitrolife, Cook(®) Medical and IVF online medium). Our study adds new information: it has a larger population of singleton births compared with the previously published studies, it includes outcomes of other media types (HTF and Sage(®)), not previously analysed, and it includes data on frozen-thawed SETs. This study was a retrospective analysis of birthweights of singleton newborns after fresh (Day 3) or frozen-thawed (Day 5) SET cycles, using embryos cultured in either of two different types of commercially available culture media, between 2008 and 2011. Before January 2009, a single-step culture medium was used: human tubal fluid (HTF) with 4 mg/ml human serum albumin. From January 2009 onwards, a commercially available sequential medium was introduced: Sage(®), Quinn's advantage protein plus medium. Singletons born after a fresh SET (99 embryos cultured in HTF and 259 in Sage(®)) and singletons born after a frozen-thawed SET (32 embryos cultured in HTF only, 41 in HTF and Sage(®) and 86 in Sage(®) only) were analysed. Only patients using autologous gametes without the use of a gestational carrier were considered. Also excluded were (vanishing) twins, triplets

  13. Mutation in cpsf6/CFIm68 (Cleavage and Polyadenylation Specificity Factor Subunit 6 causes short 3'UTRs and disturbs gene expression in developing embryos, as revealed by an analysis of primordial germ cell migration using the medaka mutant naruto.

    Directory of Open Access Journals (Sweden)

    Takao Sasado

    Full Text Available Our previous studies analyzing medaka mutants defective in primordial germ cell (PGC migration identified cxcr4b and cxcr7, which are both receptors of the chemokine sdf1/cxcl12, as key regulators of PGC migration. Among PGC migration mutants, naruto (nar is unique in that the mutant phenotype includes gross morphological abnormalities of embryos, suggesting that the mutation affects a broader range of processes. A fine genetic linkage mapping and genome sequencing showed the nar gene encodes Cleavage and Polyadenylation Specificity Factor subunit 6 (CPSF6/CFIm68. CPSF6 is a component of the Cleavage Factor Im complex (CFIm which plays a key role in pre-mRNA 3'-cleavage and polyadenylation. 3'RACE of sdf1a/b and cxcr7 transcripts in the mutant embryos indicated shorter 3'UTRs with poly A additions occurring at more upstream positions than wild-type embryos, suggesting CPSF6 functions to prevent premature 3'UTR cleavage. In addition, expression of the coding region sequences of sdf1a/b in nar mutants was more anteriorly extended in somites than wild-type embryos, accounting for the abnormally extended distribution of PGCs in nar mutants. An expected consequence of shortening 3'UTR is the escape from the degradation mechanism mediated by microRNAs interacting with distal 3'UTR sequence. The abnormal expression pattern of sdf1a coding sequence may be at least partially accounted for by this mechanism. Given the pleiotropic effects of nar mutation, further analysis using the nar mutant will reveal processes in which CPSF6 plays essential regulatory roles in poly A site selection and involvement of 3'UTRs in posttranscriptional gene regulation in various genes in vivo.

  14. Mutation in cpsf6/CFIm68 (Cleavage and Polyadenylation Specificity Factor Subunit 6) causes short 3'UTRs and disturbs gene expression in developing embryos, as revealed by an analysis of primordial germ cell migration using the medaka mutant naruto.

    Science.gov (United States)

    Sasado, Takao; Kondoh, Hisato; Furutani-Seiki, Makoto; Naruse, Kiyoshi

    2017-01-01

    Our previous studies analyzing medaka mutants defective in primordial germ cell (PGC) migration identified cxcr4b and cxcr7, which are both receptors of the chemokine sdf1/cxcl12, as key regulators of PGC migration. Among PGC migration mutants, naruto (nar) is unique in that the mutant phenotype includes gross morphological abnormalities of embryos, suggesting that the mutation affects a broader range of processes. A fine genetic linkage mapping and genome sequencing showed the nar gene encodes Cleavage and Polyadenylation Specificity Factor subunit 6 (CPSF6/CFIm68). CPSF6 is a component of the Cleavage Factor Im complex (CFIm) which plays a key role in pre-mRNA 3'-cleavage and polyadenylation. 3'RACE of sdf1a/b and cxcr7 transcripts in the mutant embryos indicated shorter 3'UTRs with poly A additions occurring at more upstream positions than wild-type embryos, suggesting CPSF6 functions to prevent premature 3'UTR cleavage. In addition, expression of the coding region sequences of sdf1a/b in nar mutants was more anteriorly extended in somites than wild-type embryos, accounting for the abnormally extended distribution of PGCs in nar mutants. An expected consequence of shortening 3'UTR is the escape from the degradation mechanism mediated by microRNAs interacting with distal 3'UTR sequence. The abnormal expression pattern of sdf1a coding sequence may be at least partially accounted for by this mechanism. Given the pleiotropic effects of nar mutation, further analysis using the nar mutant will reveal processes in which CPSF6 plays essential regulatory roles in poly A site selection and involvement of 3'UTRs in posttranscriptional gene regulation in various genes in vivo.

  15. Clinical effectiveness of elective single versus double embryo transfer: meta-analysis of individual patient data from randomised trials

    NARCIS (Netherlands)

    McLernon, D. J.; Harrild, K.; Bergh, C.; Davies, M. J.; de Neubourg, D.; Dumoulin, J. C. M.; Gerris, J.; Kremer, J. A. M.; Martikainen, H.; Mol, B. W.; Norman, R. J.; Thurin-Kjellberg, A.; Tiitinen, A.; van Montfoort, A. P. A.; van Peperstraten, A. M.; van Royen, E.; Bhattacharya, S.

    2010-01-01

    Objective To compare the effectiveness of elective single embryo transfer versus double embryo transfer on the outcomes of live birth, multiple live birth, miscarriage, preterm birth, term singleton birth, and low birth weight after fresh embryo transfer, and on the outcomes of cumulative live birth

  16. Cytoembryologic study of gamma-ray induced sterile Pisum sativum L. mutants

    International Nuclear Information System (INIS)

    Molkhova, E.; Vasileva, M.

    1977-01-01

    Three new pea mutant forms are described - 1878, Crampled petal Waxless type, and Lathyrus type - which were induced by different gamma-ray ( 60 Co) doses and rates. The flowers of the 1878 and Crampled petal Waxless type mutants were very much deformed, while those of the Lathyrus type had smaller flowers with normal morphology. The three mutant forms were entirely sterile and were propagated by segregation in the progeny of heterozygous sister plants. PMC meiosis and the development of the male gametophyte of the Lathyrus type mutant had a normal course, while in the mutant forms Crampled petal Waxless type and 1878 slight disturbances were observed, but the pollen of all three mutants was not functional. The development of the female gametophyte of the three mutants stops at an early phase and only in the Lathyrus type mutant in single cases embryosacks were formed with differentiated sex apparatus and early stages of embryo and endosperm development were scored, but they also soon degenerate. It is pointed out that sterility of the three pea mutant forms studied depends on factors, which stop at different stages the normal development of the generative organs, of the female gametophyte and of embryogenesis. (author)

  17. Composition of single-step media used for human embryo culture.

    Science.gov (United States)

    Morbeck, Dean E; Baumann, Nikola A; Oglesbee, Devin

    2017-04-01

    To determine compositions of commercial single-step culture media and test with a murine model whether differences in composition are biologically relevant. Experimental laboratory study. University-based laboratory. Inbred female mice were superovulated and mated with outbred male mice. Amino acid, organic acid, and ions content were determined for single-step culture media: CSC, Global, G-TL, and 1-Step. To determine whether differences in composition of these media are biologically relevant, mouse one-cell embryos were cultured for 96 hours in each culture media at 5% and 20% oxygen in a time-lapse incubator. Compositions of four culture media were analyzed for concentrations of 30 amino acids, organic acids, and ions. Blastocysts at 96 hours of culture and cell cycle timings were calculated, and experiments were repeated in triplicate. Of the more than 30 analytes, concentrations of glucose, lactate, pyruvate, amino acids, phosphate, calcium, and magnesium varied in concentrations. Mouse embryos were differentially affected by oxygen in G-TL and 1-Step. Four single-step culture media have compositions that vary notably in pyruvate, lactate, and amino acids. Blastocyst development was affected by culture media and its interaction with oxygen concentration. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. Characterization and quantification of proteins secreted by single human embryos prior to implantation.

    Science.gov (United States)

    Poli, Maurizio; Ori, Alessandro; Child, Tim; Jaroudi, Souraya; Spath, Katharina; Beck, Martin; Wells, Dagan

    2015-11-01

    The use of in vitro fertilization (IVF) has revolutionized the treatment of infertility and is now responsible for 1-5% of all births in industrialized countries. During IVF, it is typical for patients to generate multiple embryos. However, only a small proportion of them possess the genetic and metabolic requirements needed in order to produce a healthy pregnancy. The identification of the embryo with the greatest developmental capacity represents a major challenge for fertility clinics. Current methods for the assessment of embryo competence are proven inefficient, and the inadvertent transfer of non-viable embryos is the principal reason why most IVF treatments (approximately two-thirds) end in failure. In this study, we investigate how the application of proteomic measurements could improve success rates in clinical embryology. We describe a procedure that allows the identification and quantification of proteins of embryonic origin, present in attomole concentrations in the blastocoel, the enclosed fluid-filled cavity that forms within 5-day-old human embryos. By using targeted proteomics, we demonstrate the feasibility of quantifying multiple proteins in samples derived from single blastocoels and that such measurements correlate with aspects of embryo viability, such as chromosomal (ploidy) status. This study illustrates the potential of high-sensitivity proteomics to measure clinically relevant biomarkers in minute samples and, more specifically, suggests that key aspects of embryo competence could be measured using a proteomic-based strategy, with negligible risk of harm to the living embryo. Our work paves the way for the development of "next-generation" embryo competence assessment strategies, based on functional proteomics. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  19. Embryo splitting

    Directory of Open Access Journals (Sweden)

    Karl Illmensee

    2010-04-01

    Full Text Available Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board approval has been carried out to determine its efficiency for blastocyst development. Embryo splitting at the 6–8 cell stage provided a much higher developmental efficiency compared to splitting at the 2–5 cell stage. Embryo splitting may be advantageous for providing additional embryos to be cryopreserved and for patients with low response to hormonal stimulation in assisted reproduction programs. Social and ethical issues concerning embryo splitting are included regarding ethics committee guidelines. Prognostic perspectives are presented for human embryo splitting in reproductive medicine.

  20. Comparison of two commercial embryo culture media (SAGE-1 step single medium vs. G1-PLUSTM/G2-PLUSTM sequential media): Influence on in vitro fertilization outcomes and human embryo quality.

    Science.gov (United States)

    López-Pelayo, Iratxe; Gutiérrez-Romero, Javier María; Armada, Ana Isabel Mangano; Calero-Ruiz, María Mercedes; Acevedo-Yagüe, Pablo Javier Moreno de

    2018-04-26

    To compare embryo quality, fertilization, implantation, miscarriage and clinical pregnancy rates for embryos cultured in two different commercial culture media until D-2 or D-3. In this retrospective study, we analyzed 189 cycles performed in 2016. Metaphase II oocytes were microinjected and allocated into single medium (SAGE 1-STEP, Origio) until transferred, frozen or discarded; or, if sequential media were used, the oocytes were cultured in G1-PLUSTM (Vitrolife) up to D-2 or D-3 and in G2-PLUSTM (Vitrolife) to transfer. On the following day, the oocytes were checked for normal fertilization and on D-2 and D-3 for morphological classification. Statistical analysis was performed using the chi-square and Mann-Whitney tests in PASW Statistics 18.0. The fertilization rates were 70.07% for single and 69.11% for sequential media (p=0.736). The mean number of embryos with high morphological quality (class A/B) was higher in the single medium than in the sequential media: D-2 [class A (190 vs. 107, pcultured in single medium were frozen: 197 (21.00%) vs. sequential: 102 (11.00%), pculture in single medium yields greater efficiency per cycle than in sequential media. Higher embryo quality and quantity were achieved, resulting in more frozen embryos. There were no differences in clinical pregnancy rates.

  1. Effects of a gamma irradiation and 5-methyltryptophan on the selection of high tryptophan accumulating rice mutants by an embryo culture system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sub; Kim, Jin Baek; Song, Jae Young; Jeon, Jae Beom; Lee, Young Mi; Lee, Geung Joo; Kang, Si Yong [Radiation Research Center for Bio-technology, Advanced Radiation Research Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Kang, Kwon Kyoo [Division of Life Science, Hankyong National University, Anseong (Korea, Republic of); Cho, Yong Gu [College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju (Korea, Republic of); Kim, Bo Kyeong [Division of Rice Breeding and Cultivation, Honam Agricultural Research Institute, NICS, Iksan (Korea, Republic of)

    2008-11-15

    For an increase of specific free amino acids through embryo cultures, the rice (Oryza sativa L.) mutant lines resistant to a growth inhibition by 5-methyltryptophan (5MT) were selected from calli irradiated with 0-90 Gy gamma rays in 3 rice cultivars, Dongjinbyeo, Donganbyeo and Jakwangdo. The optimum 5MT concentrations for a resistance selection were 0.25 mM at the callus level. In the test of the radiation sensitivity for the callus level, radiation doses of RD50 (50% reduction on fresh weight) were 71.2, 64.0, and 68.2 Gy in the cvs. Dongjinbyeo, Donganbyeo and Jakwangdo by each exponential function. The appearance of 5MT resistant calli seemed to be dependent on a combination between the radiation dose and the 5MT selection pressure. The treatment of mutagens for the selection of amino acid analog resistant mutants has a different influence among cultivars on the resistance frequency. In the effect of growth regulators on a regeneration, a combination of 0.1 mg/l IAA and 5 mg/l kinetin, was the optimum concentration for a regeneration of calli induced from rice embryo. The regeneration rate of cv. Donganbyeo was 14.8%, which was 3.5 times and 2.6 times higher than cv. Dongjinbyeo (4.2%) and cv. Jakwangdo (5.6%), respectively. In the progeny test, the 5MT resistance character is inherited to the next generation and is expressed in the germinating M2 seeds and would appear to be a dominant trait. The 5MT resistant mutants will be useful in molecular and biochemical studies for the regulation of the nutritional quality in rice.

  2. Defective processing of methylated single-stranded DNA by E. coli alkB mutants

    Science.gov (United States)

    Dinglay, Suneet; Trewick, Sarah C.; Lindahl, Tomas; Sedgwick, Barbara

    2000-01-01

    Escherichia coli alkB mutants are very sensitive to DNA methylating agents. Despite these mutants being the subject of many studies, no DNA repair or other function has been assigned to the AlkB protein or to its human homolog. Here, we report that reactivation of methylmethanesulfonate (MMS)-treated single-stranded DNA phages, M13, f1, and G4, was decreased dramatically in alkB mutants. No such decrease occurred when using methylated λ phage or M13 duplex DNA. These data show that alkB mutants have a marked defect in processing methylation damage in single-stranded DNA. Recombinant AlkB protein bound more efficiently to single- than double-stranded DNA. The single-strand damage processed by AlkB was primarily cytotoxic and not mutagenic and was induced by SN2 methylating agents, MMS, DMS, and MeI but not by SN1 agent N-methyl-N-nitrosourea or by γ irradiation. Strains lacking other DNA repair activities, alkA tag, xth nfo, uvrA, mutS, and umuC, were not defective in reactivation of methylated M13 phage and did not enhance the defect of an alkB mutant. A recA mutation caused a small but additive defect. Thus, AlkB functions in a novel pathway independent of these activities. We propose that AlkB acts on alkylated single-stranded DNA in replication forks or at transcribed regions. Consistent with this theory, stationary phase alkB cells were less MMS sensitive than rapidly growing cells. PMID:10950872

  3. In vitro culture of individual mouse preimplantation embryos: the role of embryo density, microwells, oxygen, timing and conditioned media.

    Science.gov (United States)

    Kelley, Rebecca L; Gardner, David K

    2017-05-01

    Single embryo culture is suboptimal compared with group culture, but necessary for embryo monitoring, and culture systems should be improved for single embryos. Pronucleate mouse embryos were used to assess the effect of culture conditions on single embryo development. Single culture either before or after compaction reduced cell numbers (112.2 ± 3.1; 110.2 ± 3.5) compared with group culture throughout (127.0 ± 3.4; P media volume from 20 µl to 2 µl increased blastocyst cell numbers in single embryos cultured in 5% oxygen (84.4 ± 3.2 versus 97.8 ± 2.8; P Culture in microwell plates for the EmbryoScope and Primo Vision time-lapse systems changed cleavage timings and increased inner cell mass cell number (24.1 ± 1.0; 23.4 ± 1.2) compared with a 2 µl microdrop (18.4 ± 1.0; P media to single embryos increased hatching rate and blastocyst cell number (91.5 ± 4.7 versus 113.1 ± 4.4; P culture before or after compaction is therefore detrimental; oxygen, media volume and microwells influence single embryo development; and embryo-conditioned media may substitute for group culture. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Temperature-sensitive host range mutants of herpes simplex virus type 2

    International Nuclear Information System (INIS)

    Koment, R.W.; Rapp, F.

    1975-01-01

    Herpesviruses are capable of several types of infection of a host cell. To investigate the early events which ultimately determine the nature of the virus-host cell interaction, a system was established utilizing temperature-sensitive mutants of herpes simplex virus type 2. Four mutants have been isolated which fail to induce cytopathic effects and do not replicate at 39 C in hamster embryo fibroblast cells. At least one mutant is virus DNA negative. Since intracellular complementation is detectable between pairs of mutants, a virus function is known to be temperature sensitive. However, all four mutants induce cytopathic effects and replicate to parental virus levels in rabbit kidney cells at 39 C. This suggests that a host cell function, lacking or nonfunctional in HEF cells but present in rabbit kidney cells at 39 C, is required for the replication of these mutants in hamster embryo fibroblast cells at 39 C. Therefore, we conclude that these mutants are both temperature sensitive and exhibit host range properties

  5. Randomized single versus double embryo transfer: obstetric and paediatric outcome and a cost-effectiveness analysis.

    Science.gov (United States)

    Kjellberg, Ann Thurin; Carlsson, Per; Bergh, Christina

    2006-01-01

    Transfer of several embryos after IVF results in a high multiple birth rate associated with increased morbidity and high costs for the neonatal care. In a previous randomized trial we demonstrated that a single embryo transfer (SET) strategy, including one fresh single embryo transfer and, if no live birth, one additional frozen-thawed SET, resulted in a live-birth rate that was not substantially lower than after double embryo transfer (DET) but markedly reduced the multiple birth rate. We compared costs for maternal health care and productivity losses and paediatric costs for the SET and DET strategies. In addition, maternal and paediatric outcomes between the two groups were compared. The SET strategy resulted in lower average total costs from treatment until 6 months after delivery. There were a few more deliveries with at least one live-born child in the DET group. The incremental cost per extra delivery in the DET alternative was high, 71 940. The rates of prematurely born and low birthweight children were significantly lower with the SET strategy. There were also markedly fewer maternal and paediatric complications in the SET group. The SET strategy is superior to the DET strategy, when number of deliveries with at least one live-born child, incremental cost-effectiveness ratio and maternal and paediatric complications are taken into consideration. The findings do not support continuing transfers of two embryos in this group of patients.

  6. Effect of culture medium volume and embryo density on early mouse embryonic development: tracking the development of the individual embryo.

    Science.gov (United States)

    Dai, Shan-Jun; Xu, Chang-Long; Wang, Jeffrey; Sun, Ying-Pu; Chian, Ri-Cheng

    2012-07-01

    To determine the optimal volume or density of embryos for the well-of-the-well (WOW) system in order to track the development of individual embryos and to determine whether the WOW system can reverse the negative impact of culturing embryos singly. (1) Mouse embryos (groups of nine at the 2-cell stage) were cultured in 6.25 μl, 12.50 μl, 25.00 μl and 50.00 μl of droplets of culture medium under paraffin oil; (2) Groups of three, six, nine and twelve embryos at the 2-cell stage were cultured in 50 μl of droplet of culture medium under paraffin oil; (3) Groups of nine embryos at the 2-cell stage were cultured in 50 μl of droplet under paraffin oil with or without nine micro-wells made on the bottom of the Petri dish into each of which were placed one of the nine embryos (WOW system). Also single 2-cell stage embryos was cultured individually in 5.5 μl of droplet of culture medium under paraffin oil with or without a single micro-well made on the bottom of the Petri dish (WOW system for single culture). At the end of culture, the percentages of blastocyst development, hatching and hatched blastocysts were compared in each group. The blastocysts were fixed for differential staining. The blastocyst development was significantly higher (P WOW system. The blastocyst development was not improved when single embryo cultured individually in a micro-well was compared to single embryo cultured individually without micro-well. The total cell numbers of blastocysts were significantly higher in group embryo culture than single embryo culture regardless of whether the WOW system was used. In addition, the total cell numbers of blastocysts were significantly higher (P WOW system than without. Group embryo culture is superior to single embryo culture for blastocyst development. The WOW system with 50 μl of droplet of culture medium can be used to track the individual development of embryo cultured in groups while preserving good embryonic development. The reduced

  7. Preferences of subfertile women regarding elective single embryo transfer : additional in vitro fertilization cycles are acceptable, lower pregnancy rates are not

    NARCIS (Netherlands)

    Twisk, Moniek; van der Veen, Fulco; Repping, Sjoerd; Heineman, Maas-Jan; Korevaar, Johanna C.; Bossuyt, Patrick M. M.

    2007-01-01

    With identical pregnancy rates after elective single embryo transfer (ET) and double ET strategies consisting of three cycles of IVF or intracytoplasmic sperm injection (ICSI) plus transfers of thawed/frozen embryos if available, 46% of the women undergoing IVF/ICSI favor elective single ET. If

  8. Preferences of subfertile women regarding elective single embryo transfer: additional in vitro fertilization cycles are acceptable, lower pregnancy rates are not

    NARCIS (Netherlands)

    Twisk, Moniek; van der Veen, Fulco; Repping, Sjoerd; Heineman, Maas-Jan; Korevaar, Johanna C.; Bossuyt, Patrick M. M.

    2007-01-01

    With identical pregnancy rates after elective single embryo transfer (ET) and double ET strategies consisting of three cycles of IVF or intracytoplasmic sperm injection (ICSI) plus transfers of thawed/frozen embryos if available, 46% of the women undergoing IVF/ICSI favor elective single ET. If

  9. Impact of single-walled carbon nanotubes on the embryo: a brief review

    Directory of Open Access Journals (Sweden)

    Al Moustafa AE

    2016-01-01

    Full Text Available Ala-Eddin Al Moustafa,1–4 Etienne Mfoumou,5 Dacian E Roman,3 Vahe Nerguizian,6 Anas Alazzam,7 Ion Stiharu,3 Amber Yasmeen8 1College of Medicine & Biomedical Research Centre, Qatar University, Doha, Qatar; 2Oncology Department, McGill University, 3Mechanical and Industrial Engineering Department, Concordia University, Montreal, QC, Canada; 4Syrian Research Cancer Centre of the Syrian Society against Cancer, Aleppo, Syria; 5Nova Scotia Community College, Dartmouth, NS, 6École de Technologie Supérieure, Montreal, QC, Canada; 7Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE; 8Segal Cancer Centre, Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada Abstract: Carbon nanotubes (CNTs are considered one of the most interesting materials in the 21st century due to their unique physiochemical characteristics and applicability to various industrial products and medical applications. However, in the last few years, questions have been raised regarding the potential toxicity of CNTs to humans and the environment; it is believed that the physiochemical characteristics of these materials are key determinants of CNT interaction with living cells and hence determine their toxicity in humans and other organisms as well as their embryos. Thus, several recent studies, including ours, pointed out that CNTs have cytotoxic effects on human and animal cells, which occur via the alteration of key regulator genes of cell proliferation, apoptosis, survival, cell–cell adhesion, and angiogenesis. Meanwhile, few investigations revealed that CNTs could also be harmful to the normal development of the embryo. In this review, we will discuss the toxic role of single-walled CNTs in the embryo, which was recently explored by several groups including ours. Keywords: single-walled carbon nanotubes, embryo, toxicity

  10. Comprehensive genetic assessment of the human embryo: can empiric application of microarray comparative genomic hybridization reduce multiple gestation rate by single fresh blastocyst transfer?

    Science.gov (United States)

    Sills, Eric Scott; Yang, Zhihong; Walsh, David J; Salem, Shala A

    2012-09-01

    The unacceptable multiple gestation rate currently associated with in vitro fertilization (IVF) would be substantially alleviated if the routine practice of transferring more than one embryo were reconsidered. While transferring a single embryo is an effective method to reduce the clinical problem of multiple gestation, rigid adherence to this approach has been criticized for negatively impacting clinical pregnancy success in IVF. In general, single embryo transfer is viewed cautiously by IVF patients although greater acceptance would result from a more effective embryo selection method. Selection of one embryo for fresh transfer on the basis of chromosomal normalcy should achieve the dual objective of maintaining satisfactory clinical pregnancy rates and minimizing the multiple gestation problem, because embryo aneuploidy is a major contributing factor in implantation failure and miscarriage in IVF. The initial techniques for preimplantation genetic screening unfortunately lacked sufficient sensitivity and did not yield the expected results in IVF. However, newer molecular genetic methods could be incorporated with standard IVF to bring the goal of single embryo transfer within reach. Aiming to make multiple embryo transfers obsolete and unnecessary, and recognizing that array comparative genomic hybridization (aCGH) will typically require an additional 12 h of laboratory time to complete, we propose adopting aCGH for mainstream use in clinical IVF practice. As aCGH technology continues to develop and becomes increasingly available at lower cost, it may soon be considered unusual for IVF laboratories to select a single embryo for fresh transfer without regard to its chromosomal competency. In this report, we provide a rationale supporting aCGH as the preferred methodology to provide a comprehensive genetic assessment of the single embryo before fresh transfer in IVF. The logistics and cost of integrating aCGH with IVF to enable fresh embryo transfer are also

  11. Perceived barriers to elective single embryo transfer among IVF professionals: a national survey.

    NARCIS (Netherlands)

    Peperstraten, A.M. van; Hermens, R.P.M.G.; Nelen, W.L.D.M.; Stalmeier, P.F.M.; Scheffer, G.J.; Grol, R.P.T.M.; Kremer, J.A.M.

    2008-01-01

    BACKGROUND: After initial years of improvement, the multiple pregnancy rate after in vitro fertilization (IVF) in Europe now remains stable at 23% with single embryo transfer (SET) constituting 19% of all IVF cycles. Although elective SET prevents multiple pregnancies after IVF, couples and

  12. Single versus double embryo transfer: cost-effectiveness analysis alongside a randomized clinical trial.

    Science.gov (United States)

    Fiddelers, Audrey A A; van Montfoort, Aafke P A; Dirksen, Carmen D; Dumoulin, John C M; Land, Jolande A; Dunselman, Gerard A J; Janssen, J Marij; Severens, Johan L; Evers, Johannes L H

    2006-08-01

    Twin pregnancies after IVF are still frequent and are considered high-risk pregnancies leading to high costs. Transferring one embryo can reduce the twin pregnancy rate. We compared cost-effectiveness of one fresh cycle elective single embryo transfer (eSET) versus one fresh cycle double embryo transfer (DET) in an unselected patient population. Patients starting their first IVF cycle were randomized between eSET and DET. Societal costs per couple were determined empirically, from hormonal stimulation up to 42 weeks after embryo transfer. An incremental cost-effectiveness ratio (ICER) was calculated, representing additional costs per successful pregnancy. Successful pregnancy rates were 20.8% for eSET and 39.6% for DET. Societal costs per couple were significantly lower after eSET (7334 euro) compared with DET (10,924 euro). The ICER of DET compared with eSET was 19,096 euro, meaning that each additional successful pregnancy in the DET group will cost 19,096 euro extra. One cycle eSET was less expensive, but also less effective compared to one cycle DET. It depends on the society's willingness to pay for one extra successful pregnancy, whether one cycle DET is preferred from a cost-effectiveness point of view.

  13. Is mandating elective single embryo transfer ethically justifiable in young women?

    Directory of Open Access Journals (Sweden)

    Kelton Tremellen

    2015-12-01

    Full Text Available Compared with natural conception, IVF is an effective form of fertility treatment associated with higher rates of obstetric complications and poorer neonatal outcomes. While some increased risk is intrinsic to the infertile population requiring treatment, the practice of multiple embryo transfer contributes to these complications and outcomes, especially concerning its role in higher order pregnancies. As a result, several jurisdictions (e.g. Sweden, Belgium, Turkey, and Quebec have legally mandated elective single-embryo transfer (eSET for young women. We accept that in very high-risk scenarios (e.g. past history of preterm delivery and poor maternal health, double-embryo transfer (DET should be prohibited due to unacceptably high risks. However, we argue that mandating eSET for all young women can be considered an unacceptable breach of patient autonomy, especially since DET offers certain women financial and social advantages. We also show that mandated eSET is inconsistent with other practices (e.g. ovulation induction and intrauterine insemination–ovulation induction that can expose women and their offspring to risks associated with multiple pregnancies. While defending the option of DET for certain women, some recommendations are offered regarding IVF practice (e.g. preimplantation genetic screening and better support of IVF and maternity leave to incentivise patients to choose eSET.

  14. PHO1 Exports Phosphate from the Chalazal Seed Coat to the Embryo in Developing Arabidopsis Seeds.

    Science.gov (United States)

    Vogiatzaki, Evangelia; Baroux, Célia; Jung, Ji-Yul; Poirier, Yves

    2017-10-09

    Seed production requires the transfer of nutrients from the maternal seed coat to the filial endosperm and embryo. Because seed coat and filial tissues are symplasmically isolated, nutrients arriving in the seed coat via the phloem must be exported to the apoplast before reaching the embryo. Proteins implicated in the transfer of inorganic phosphate (Pi) from the seed coat to the embryo are unknown despite seed P content being an important agronomic trait. Here we show that the Arabidopsis Pi exporters PHO1 and PHOH1 are expressed in the chalazal seed coat (CZSC) of developing seeds. PHO1 is additionally expressed in developing ovules. Phosphorus (P) content and Pi flux between the seed coat and embryo were analyzed in seeds from grafts between WT roots and scions from either pho1, phoh1, or the pho1 phoh1 double mutant. Whereas P content and distribution between the seed coat and embryo in fully mature dry seeds of these mutants are similar to the WT, at the mature green stage of seed development the seed coat of the pho1 and pho1 phoh1 mutants, but not of the phoh1 mutant, retains approximately 2-fold more P than its WT control. Expression of PHO1 under a CZSC-specific promoter complemented the seed P distribution phenotype of the pho1 phoh1 double mutant. CZSC-specific down-expression of PHO1 also recapitulated the seed P distribution phenotype of pho1. Together, these experiments show that PHO1 expression in the CZSC is important for the transfer of P from the seed coat to the embryo in developing seeds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Prevention of Lysosomal Storage Diseases and Derivation of Mutant Stem Cell Lines by Preimplantation Genetic Diagnosis

    Science.gov (United States)

    Altarescu, Gheona; Beeri, Rachel; Eiges, Rachel; Epsztejn-Litman, Silvina; Eldar-Geva, Talia; Elstein, Deborah; Zimran, Ari; Margalioth, Ehud J.; Levy-Lahad, Ephrat; Renbaum, Paul

    2012-01-01

    Preimplantation genetic diagnosis (PGD) allows birth of unaffected children for couples at risk for a genetic disorder. We present the strategy and outcome of PGD for four lysosomal storage disorders (LSD): Tay-Sachs disease (TSD), Gaucher disease (GD), Fabry disease (FD), and Hunter syndrome (HS), and subsequent development of stem cell lines. For each disease, we developed a family-specific fluorescent multiplex single-cell PCR protocol that included the familial mutation and informative markers surrounding the mutation. Embryo biopsy and PGD analysis were performed on either oocytes (polar bodies one and two) or on single blastomeres from a six-cell embryo. We treated twenty families carrying mutations in these lysosomal storage disorders, including 3 couples requiring simultaneous analysis for two disorders (TSD/GD, TSD/balanced Robertsonian translocation 45XYder(21;14), and HS/oculocutaneus albinism). These analyses led to an overall pregnancy rate/embryo transfer of 38% and the birth of 20 unaffected children from 17 families. We have found that PGD for lysosomal disorders is a safe and effective method to prevent birth of affected children. In addition, by using mutant embryos for the derivation of stem cell lines, we have successfully established GD and HS hESC lines for use as valuable models in LSD research. PMID:23320174

  16. Label-free characterization of vitrification-induced morphology changes in single-cell embryos with full-field optical coherence tomography

    Science.gov (United States)

    Zarnescu, Livia; Leung, Michael C.; Abeyta, Michael; Sudkamp, Helge; Baer, Thomas; Behr, Barry; Ellerbee, Audrey K.

    2015-09-01

    Vitrification is an increasingly popular method of embryo cryopreservation that is used in assisted reproductive technology. Although vitrification has high post-thaw survival rates compared to other freezing techniques, its long-term effects on embryo development are still poorly understood. We demonstrate an application of full-field optical coherence tomography (FF-OCT) to visualize the effects of vitrification on live single-cell (2 pronuclear) mouse embryos without harmful labels. Using FF-OCT, we observed that vitrification causes a significant increase in the aggregation of structures within the embryo cytoplasm, consistent with reports in literature based on fluorescence techniques. We quantify the degree of aggregation with an objective metric, the cytoplasmic aggregation (CA) score, and observe a high degree of correlation between the CA scores of FF-OCT images of embryos and of fluorescence images of their mitochondria. Our results indicate that FF-OCT shows promise as a label-free assessment of the effects of vitrification on embryo mitochondria distribution. The CA score provides a quantitative metric to describe the degree to which embryos have been affected by vitrification and could aid clinicians in selecting embryos for transfer.

  17. Insights from imaging the implanting embryo and the uterine environment in three dimensions

    Science.gov (United States)

    Arora, Ripla; Fries, Adam; Oelerich, Karina; Marchuk, Kyle; Sabeur, Khalida; Giudice, Linda C.

    2016-01-01

    Although much is known about the embryo during implantation, the architecture of the uterine environment in which the early embryo develops is not well understood. We employed confocal imaging in combination with 3D analysis to identify and quantify dynamic changes to the luminal structure of murine uterus in preparation for implantation. When applied to mouse mutants with known implantation defects, this method detected striking peri-implantation abnormalities in uterine morphology that cannot be visualized by histology. We revealed 3D organization of uterine glands and found that they undergo a stereotypical reorientation concurrent with implantation. Furthermore, we extended this technique to generate a 3D rendering of the cycling human endometrium. Analyzing the uterine and embryo structure in 3D for different genetic mutants and pathological conditions will help uncover novel molecular pathways and global structural changes that contribute to successful implantation of an embryo. PMID:27836961

  18. Biochemical Analysis of Two Single Mutants that Give Rise to a Polymorphic G6PD A-Double Mutant

    Directory of Open Access Journals (Sweden)

    Edson Jiovany Ramírez-Nava

    2017-10-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is a key regulatory enzyme that plays a crucial role in the regulation of cellular energy and redox balance. Mutations in the gene encoding G6PD cause the most common enzymopathy that drives hereditary nonspherocytic hemolytic anemia. To gain insights into the effects of mutations in G6PD enzyme efficiency, we have investigated the biochemical, kinetic, and structural changes of three clinical G6PD variants, the single mutations G6PD A+ (Asn126AspD and G6PD Nefza (Leu323Pro, and the double mutant G6PD A− (Asn126Asp + Leu323Pro. The mutants showed lower residual activity (≤50% of WT G6PD and displayed important kinetic changes. Although all Class III mutants were located in different regions of the three-dimensional structure of the enzyme and were not close to the active site, these mutants had a deleterious effect over catalytic activity and structural stability. The results indicated that the G6PD Nefza mutation was mainly responsible for the functional and structural alterations observed in the double mutant G6PD A−. Moreover, our study suggests that the G6PD Nefza and G6PD A− mutations affect enzyme functions in a similar fashion to those reported for Class I mutations.

  19. Near Infrared Microspectroscopy, Fluorescence Microspectroscopy, Infrared Chemical Imaging and High Resolution Nuclear Magnetic Resonance Analysis of Soybean Seeds, Somatic Embryos and Single Cells

    CERN Document Server

    Baianu, I C; Hofmann, N E; Korban, S S; Lozano, P; You, T; AOCS 94th Meeting, Kansas

    2002-01-01

    Novel methodologies are currently being developed and established for the chemical analysis of soybean seeds, embryos and single cells by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR) Microspectroscopy, Fluorescence and High-Resolution NMR (HR-NMR). The first FT-NIR chemical images of biological systems approaching one micron resolution are presented here. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos are also presented here with nanoliter precision. Such 400 MHz 1H NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. ~20%) compared to non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monitored by FT-NIR with a precision ...

  20. Plants Regeneration Derived From Various on Peanut on Mutant Lines

    International Nuclear Information System (INIS)

    Dewi, Kumala; Masrizal; Mugiono

    1998-01-01

    The study of calli, greenspot formation and shoot regeneration on peanut mutant lines has ben conducted by MS media. Three explants derived from shoot tips, embryo and seeding root of two mutant lines a/20/3 and D/25/3/2 were used in this experiment. the explants were cultured on modified MS media enriched by vitamins, growth regulation, amino acids for fourth teen calli were transferred on regeneration media. The ability of calli formation and plant regeneration of each explant and genotypes of plants was varied. Greenspot and shoot formation were observed seventh days after the calli transferred on regeneration media. It is shown that the ability of calli, greenspot and shoot formation of each explants and genotypes was varied. the high ability of calli, greenspot and shoot formation were found in explant derived from shoot tip and embryo. Seedling root explant has lower ability in calli formation, while greenspot and shoot was formatted. The ability of calli, greenspot and shoot formation on A/20/3 mutant line was better than D/25/3/2 mutant line. (author)

  1. Enzymatic amplification of a Y chromosome repeat in a single blastomere allows identification of the sex of preimplantation mouse embryos

    International Nuclear Information System (INIS)

    Bradbury, M.W.; Isola, L.M.; Gordon, J.W.

    1990-01-01

    The polymerase chain reaction (PCR) technique has been adapted to identify the sex of preimplantation mouse embryos rapidly. PCR was used to amplify a specific repeated DNA sequence on the Y chromosome from a single isolated blastomere in under 12 hr. The remainder of the biopsied embryo was then transferred to a pseudopregnant female and carried to term. Using this technique, 72% of embryos can be classed as potentially either male or female. Transfers of such embryos have produced pregnancies with 8/8 fetuses (100%) being of the predicted sex. Variations of the technique have demonstrated certain limitations to the present procedure as well as indicated possible strategies for improvement of the assay. The PCR technique may have wide application in the genetic analysis of preimplantation embryos

  2. Elective single-embryo transfer: persuasive communication strategies can affect choice in a young British population.

    Science.gov (United States)

    van den Akker, O B A; Purewal, S

    2011-12-01

    This study tested the effectiveness of the framing effect and fear appeals to inform young people about the risks of multiple births and the option of selecting elective single-embryo transfer (eSET). A non-patient student sample (age (mean±SD) 23±5.5 years; n=321) were randomly allocated to one of seven groups: (1) framing effect: (1a) gain and (1b) loss frame; (2) fear appeal: (2a) high, (2b) medium and (2c) low fear; or (3) a control group: (3a) education and (3b) non-education. The primary outcome measure was the Attitudes towards Single Embryo Transfer questionnaire, before exposure to the messages (time 1) and immediately afterwards (time 2). Results revealed participants in the high fear, medium fear and gain condition demonstrated the most positive and significant differences (Pframe and education and non-education messages. The results demonstrate that the use of complex persuasive communication techniques on a student population to promote immediate and hypothetical eSET preferences is more successful at promoting eSET than merely reporting educational content. Future research should investigate its application in a clinical population. A multiple pregnancy is a health risk to both infant and mother following IVF treatment. The aims of this study were to test the effectiveness of two persuasive communication techniques (the framing effect and fear appeals) to inform young people about the risks of multiple births and the hypothetical option of selecting elective single-embryo transfer (eSET) (i.e., only one embryo is transferred to the uterus using IVF treatment). A total of 321 non-patient student sample (mean age 23) were randomly allocated to read a message from one of seven groups: (1) framing effect: (1a) gain and (1b) loss frame; (2) fear appeal: (2a) high, (2b) medium and (2c) low fear; or (3) a control group: education (3a) and (3b) non-education. Participants completed the Attitudes towards Single Embryo Transfer questionnaire, before exposure

  3. Myosin heavy chain expression in cranial, pectoral fin, and tail muscle regions of zebrafish embryos.

    Science.gov (United States)

    Peng, Mou-Yun; Wen, Hui-Ju; Shih, Li-Jane; Kuo, Ching-Ming; Hwang, Sheng-Ping L

    2002-12-01

    To investigate whether different myosin heavy chain (MHC) isoforms may constitute myofibrils in the trunk and tail musculature and if their respective expression may be regulated by spadetail (spt) and no tail (brachyury), we identified and characterized mRNA expression patterns of an embryonic- and tail muscle-specific MHC gene (named myhz2) during zebrafish development in wild type, spt, and ntl mutant embryos. The identified myhz2 MHC gene encodes a polypeptide containing 1,935 amino acids. Deduced amino acid comparisons showed that myhz2 MHC shared 92.6% sequence identity with that of carp fast skeletal MHC. Temporal and spatial myhz2 MHC mRNA expression patterns were analyzed by quantitative RT-PCR and whole-mount in situ hybridization using primer pairs and probes designed from the 3'-untranslated region (UTR). Temporally myhz2 MHC mRNA appears in pharyngula embryos and peaks in protruding-mouth larvae. The expression level decreased in 7-day-old hatching larvae, and mRNA expression was not detectable in adult fish. Spatially in pharyngula embryos, mRNA was localized only in the tail somite region, while in long-pec embryos, transcripts were also expressed in the two cranial muscle elements of the adductor mandibulae and medial rectus, as well as in pectoral fin muscles and the tail muscle region. Myhz2 MHC mRNA was expressed in most cranial muscle elements, pectoral fin muscles, and the tail muscle region of 3-day-old hatching larvae. In contrast, no expression of myhz2 MHC mRNA could be observed in spt prim-15 mutant embryos. In spt long-pec mutant embryos, transcripts were expressed in two cranial muscle elements and the tail muscle region, but not in pectoral fin muscles, while only trace amounts of myhz2 MHC mRNA were expressed in the remaining tail muscle region of 38 hpf and long-pec ntl mutant embryos. Copyright 2002 Wiley-Liss, Inc.

  4. Embryo quality and impact of specific embryo characteristics on ongoing implantation in unselected embryos derived from modified natural cycle in vitro fertilization

    NARCIS (Netherlands)

    Pelinck, Marie-Jose; Hoek, Annemieke; Simons, Arnold H. M.; Heineman, Maas Jan; van Echten-Arends, Janny; Arts, Eus G. J. M.

    Objective: To study the implantation potential of unselected embryos derived from modified natural cycle IVF according to their morphological characteristics. Design: Cohort study. Setting: Academic department of reproductive medicine. Patient(S): A series of 449 single embryo transfers derived from

  5. Integration of single oocyte trapping, in vitro fertilization and embryo culture in a microwell-structured microfluidic device.

    Science.gov (United States)

    Han, Chao; Zhang, Qiufang; Ma, Rui; Xie, Lan; Qiu, Tian; Wang, Lei; Mitchelson, Keith; Wang, Jundong; Huang, Guoliang; Qiao, Jie; Cheng, Jing

    2010-11-07

    In vitro fertilization (IVF) therapy is an important treatment for human infertility. However, the methods for clinical IVF have only changed slightly over decades: culture medium is held in oil-covered drops in Petri dishes and manipulation occurs by manual pipetting. Here we report a novel microwell-structured microfluidic device that integrates single oocyte trapping, fertilization and subsequent embryo culture. A microwell array was used to capture and hold individual oocytes during the flow-through process of oocyte and sperm loading, medium substitution and debris cleaning. Different microwell depths were compared by computational modeling and flow washing experiments for their effectiveness in oocyte trapping and debris removal. Fertilization was achieved in the microfluidic devices with similar fertilization rates to standard oil-covered drops in Petri dishes. Embryos could be cultured to blastocyst stages in our devices with developmental status individually monitored and tracked. The results suggest that the microfluidic device may bring several advantages to IVF practices by simplifying oocyte handling and manipulation, allowing rapid and convenient medium changing, and enabling automated tracking of any single embryo development.

  6. Separating genetic and hemodynamic defects in neuropilin 1 knockout embryos.

    Science.gov (United States)

    Jones, Elizabeth A V; Yuan, Li; Breant, Christine; Watts, Ryan J; Eichmann, Anne

    2008-08-01

    Targeted inactivation of genes involved in murine cardiovascular development frequently leads to abnormalities in blood flow. As blood fluid dynamics play a crucial role in shaping vessel morphology, the presence of flow defects generally prohibits the precise assignment of the role of the mutated gene product in the vasculature. In this study, we show how to distinguish between genetic defects caused by targeted inactivation of the neuropilin 1 (Nrp1) receptor and hemodynamic defects occurring in homozygous knockout embryos. Our analysis of a Nrp1 null allele bred onto a C57BL/6 background shows that vessel remodeling defects occur concomitantly with the onset of blood flow and cause death of homozygous mutants at E10.5. Using mouse embryo culture, we establish that hemodynamic defects are already present at E8.5 and continuous circulation is never established in homozygous mutants. The geometry of yolk sac blood vessels is altered and remodeling into yolk sac arteries and veins does not occur. To separate flow-induced deficiencies from those caused by the Nrp1 mutation, we arrested blood flow in cultured wild-type and mutant embryos and followed their vascular development. We find that loss of Nrp1 function rather than flow induces the altered geometry of the capillary plexus. Endothelial cell migration, but not replication, is altered in Nrp1 mutants. Gene expression analysis of endothelial cells isolated from freshly dissected wild-type and mutants and after culture in no-flow conditions showed down-regulation of the arterial marker genes connexin 40 and ephrin B2 related to the loss of Nrp1 function. This method allows genetic defects caused by loss-of-function of a gene important for cardiovascular development to be isolated even in the presence of hemodynamic defects.

  7. The MARVEL domain protein, Singles Bar, is required for progression past the pre-fusion complex stage of myoblast fusion.

    Science.gov (United States)

    Estrada, Beatriz; Maeland, Anne D; Gisselbrecht, Stephen S; Bloor, James W; Brown, Nicholas H; Michelson, Alan M

    2007-07-15

    Multinucleated myotubes develop by the sequential fusion of individual myoblasts. Using a convergence of genomic and classical genetic approaches, we have discovered a novel gene, singles bar (sing), that is essential for myoblast fusion. sing encodes a small multipass transmembrane protein containing a MARVEL domain, which is found in vertebrate proteins involved in processes such as tight junction formation and vesicle trafficking where--as in myoblast fusion--membrane apposition occurs. sing is expressed in both founder cells and fusion competent myoblasts preceding and during myoblast fusion. Examination of embryos injected with double-stranded sing RNA or embryos homozygous for ethane methyl sulfonate-induced sing alleles revealed an identical phenotype: replacement of multinucleated myofibers by groups of single, myosin-expressing myoblasts at a stage when formation of the mature muscle pattern is complete in wild-type embryos. Unfused sing mutant myoblasts form clusters, suggesting that early recognition and adhesion of these cells are unimpaired. To further investigate this phenotype, we undertook electron microscopic ultrastructural studies of fusing myoblasts in both sing and wild-type embryos. These experiments revealed that more sing mutant myoblasts than wild-type contain pre-fusion complexes, which are characterized by electron-dense vesicles paired on either side of the fusing plasma membranes. In contrast, embryos mutant for another muscle fusion gene, blown fuse (blow), have a normal number of such complexes. Together, these results lead to the hypothesis that sing acts at a step distinct from that of blow, and that sing is required on both founder cell and fusion-competent myoblast membranes to allow progression past the pre-fusion complex stage of myoblast fusion, possibly by mediating fusion of the electron-dense vesicles to the plasma membrane.

  8. Noninvasive embryo assessment technique based on buoyancy and its association with embryo survival after cryopreservation.

    Science.gov (United States)

    Wessels, Cara; Penrose, Lindsay; Ahmad, Khaliq; Prien, Samuel

    2017-11-01

    Embryo cryopreservation offers many benefits by allowing genetic preservation, genetic screening, cost reduction, global embryo transport and single embryo transfer. However, freezing of embryos decreases embryo viability, as intracellular ice crystal formation often damages embryos. Success rates of frozen embryo transfer are expected to be 15-20% less than fresh embryo transfer. We have developed a noninvasive embryo assessment technique (NEAT) which enables us to predict embryo viability based on buoyancy. The purpose of this research was twofold. First was to determine if a NEAT, through a specific gravity device can detect embryo survival of cryopreservation. Second, it was to relate embryo buoyancy to embryo viability for establishing pregnancies in sheep. Blastocysts descent times were measured on one-hundred sixty-nine mice blastocysts before cryopreservation, according to standard protocol and post-thawing blastocysts descent times were measured again. There was a significant difference in blastocyst post-thaw descent times with NEAT in those blastocysts which demonstrated viability from those that did not (P embryos. Further studies on a larger scale commercial setting will evaluate the efficacy of NEAT. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. mPeriod2 Brdm1 and other single Period mutant mice have normal food anticipatory activity.

    Science.gov (United States)

    Pendergast, Julie S; Wendroth, Robert H; Stenner, Rio C; Keil, Charles D; Yamazaki, Shin

    2017-11-14

    Animals anticipate the timing of food availability via the food-entrainable oscillator (FEO). The anatomical location and timekeeping mechanism of the FEO are unknown. Several studies showed the circadian gene, Period 2, is critical for FEO timekeeping. However, other studies concluded that canonical circadian genes are not essential for FEO timekeeping. In this study, we re-examined the effects of the Per2 Brdm1 mutation on food entrainment using methods that have revealed robust food anticipatory activity in other mutant lines. We examined food anticipatory activity, which is the output of the FEO, in single Period mutant mice. Single Per1, Per2, and Per3 mutant mice had robust food anticipatory activity during restricted feeding. In addition, we found that two different lines of Per2 mutant mice (ldc and Brdm1) anticipated restricted food availability. To determine if FEO timekeeping persisted in the absence of the food cue, we assessed activity during fasting. Food anticipatory (wheel-running) activity in all Period mutant mice was also robust during food deprivation. Together, our studies demonstrate that the Period genes are not necessary for the expression of food anticipatory activity.

  10. Altered methanol embryopathies in embryo culture with mutant catalase-deficient mice and transgenic mice expressing human catalase

    International Nuclear Information System (INIS)

    Miller, Lutfiya; Wells, Peter G.

    2011-01-01

    The mechanisms underlying the teratogenicity of methanol (MeOH) in rodents, unlike its acute toxicity in humans, are unclear, but may involve reactive oxygen species (ROS). Embryonic catalase, although expressed at about 5% of maternal activity, may protect the embryo by detoxifying ROS. This hypothesis was investigated in whole embryo culture to remove confounding maternal factors, including metabolism of MeOH by maternal catalase. C57BL/6 (C57) mouse embryos expressing human catalase (hCat) or their wild-type (C57 WT) controls, and C3Ga.Cg-Catb/J acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1), exposed for 24 h to 4 mg/ml MeOH or vehicle, and evaluated for functional and morphological changes. hCat and C57 WT vehicle-exposed embryos developed normally. MeOH was embryopathic in C57 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed and turning, whereas hCat embryos were protected. Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to C3H WT controls, suggesting that endogenous ROS are embryopathic. MeOH was more embryopathic in aCat embryos than WT controls, with reduced anterior neuropore closure and head length only in catalase-deficient embryos. These data suggest that ROS may be involved in the embryopathic mechanism of methanol, and that embryonic catalase activity may be a determinant of teratological risk.

  11. Current Status of Comprehensive Chromosome Screening for Elective Single-Embryo Transfer

    Directory of Open Access Journals (Sweden)

    Ming-Yih Wu

    2014-01-01

    Full Text Available Most in vitro fertilization (IVF experts and infertility patients agree that the most ideal assisted reproductive technology (ART outcome is to have a healthy, full-term singleton born. To this end, the most reliable policy is the single-embryo transfer (SET. However, unsatisfactory results in IVF may result from plenty of factors, in which aneuploidy associated with advanced maternal age is a major hurdle. Throughout the past few years, we have got a big leap in advancement of the genetic screening of embryos on aneuploidy, translocation, or mutations. This facilitates a higher success rate in IVF accompanied by the policy of elective SET (eSET. As the cost is lowering while the scale of genome characterization continues to be up over the recent years, the contemporary technologies on trophectoderm biopsy and freezing-thaw, comprehensive chromosome screening (CCS with eSET appear to be getting more and more popular for modern IVF centers. Furthermore, evidence has showen that, by these avant-garde techniques (trophectoderm biopsy, vitrification, and CCS, older infertile women with the help of eSET may have an opportunity to increase the success of their live birth rates approaching those reported in younger infertility patients.

  12. Evaluation of an effective multifaceted implementation strategy for elective single-embryo transfer after in vitro fertilization

    NARCIS (Netherlands)

    Kreuwel, I.A.M.; Peperstraten, A.M. van; Hulscher, M.E.J.L.; Kremer, J.A.M.; Grol, R.P.T.M.; Nelen, W.L.D.M.; Hermens, R.P.M.G.

    2013-01-01

    STUDY QUESTION: What is the relationship between the rate of elective single-embryo transfer (eSET) and couples' exposure to different elements of a multifaceted implementation strategy? SUMMARY ANSWER: Additional elements in a multifaceted implementation strategy do not result in an increased eSET

  13. Preimplantation genetic diagnosis guided by single-cell genomics

    Science.gov (United States)

    2013-01-01

    Preimplantation genetic diagnosis (PGD) aims to help couples with heritable genetic disorders to avoid the birth of diseased offspring or the recurrence of loss of conception. Following in vitro fertilization, one or a few cells are biopsied from each human preimplantation embryo for genetic testing, allowing diagnosis and selection of healthy embryos for uterine transfer. Although classical methods, including single-cell PCR and fluorescent in situ hybridization, enable PGD for many genetic disorders, they have limitations. They often require family-specific designs and can be labor intensive, resulting in long waiting lists. Furthermore, certain types of genetic anomalies are not easy to diagnose using these classical approaches, and healthy offspring carrying the parental mutant allele(s) can result. Recently, state-of-the-art methods for single-cell genomics have flourished, which may overcome the limitations associated with classical PGD, and these underpin the development of generic assays for PGD that enable selection of embryos not only for the familial genetic disorder in question, but also for various other genetic aberrations and traits at once. Here, we discuss the latest single-cell genomics methodologies based on DNA microarrays, single-nucleotide polymorphism arrays or next-generation sequence analysis. We focus on their strengths, their validation status, their weaknesses and the challenges for implementing them in PGD. PMID:23998893

  14. mei-9/sup a/ mutant of Drosophila melanogaster increases mutagen sensitivity and decreases excision repair

    International Nuclear Information System (INIS)

    Boyd, J.B.; Golino, M.D.; Setlow, R.B.

    1976-01-01

    The mei-9/sup a/ mutant of Drosophila melanogaster, which reduces meiotic recombination in females, is deficient in the excision of uv-induced pyrimidine dimers in both sexes. Assays were performed in primary cultures and established cell lines derived from embryos. An endonuclease preparation from M. luteus, which is specific for pyrimidine dimers, was employed to monitor uv-induced dimers in cellular DNA. The rate of disappearance of endonuclease-sensitive sites from DNA of control cells is 10-20 times faster than that from mei-9/sup a/ cells. The mutant mei-218, which is also deficient in meiotic recombination, removes nuclease-sensitive sites at control rates. The mei-9/sup a/ cells exhibit control levels of photorepair, postreplication repair and repair of single strand breaks. In mei-9 cells DNA synthesis and possibly postreplication repair are weakly sensitive to caffeine. Larvae which are hemizygous for either of the two mutants that define the mei-9 locus are hypersensitive to killing by the mutagens methyl methanesulfonate, nitrogen mustard and 2-acetylaminofluorene. Larvae hemizygous for the mei-218 mutant are insensitive to each of these reagents. These data demonstrate that the mei-9 locus is active in DNA repair of somatic cells. Thus functions involved in meiotic recombination are also active in DNA repair in this higher eukaryote. The results are consistent with the earlier suggestions that the mei-9 locus functions in the exchange events of meiosis. The mei-218 mutation behaves differently in genetic tests and our data suggest its function may be restricted to meiosis. These studies demonstrate that currently recognized modes of DNA repair can be efficiently detected in primary cell cultures derived from Drosophila embryos

  15. Effect of embryo density on in vitro developmental characteristics of bovine preimplantative embryos with respect to micro and macroenvironments.

    Science.gov (United States)

    Hoelker, M; Rings, F; Lund, Q; Phatsara, C; Schellander, K; Tesfaye, D

    2010-10-01

    To overcome developmental problems as a consequence of single embryo culture, the Well of the Well (WOW) culture system has been developed. In this study, we aimed to examine the effect of embryo densities with respect to both microenvironment and macroenvironment on developmental rates and embryo quality to get a deeper insight into developmentally important mechanisms. WOW diameter and depth significantly affected developmental rates (p < 0.05). WOWs with diameter of 500 μm reached significantly higher blastocyst rates (32.5 vs 21.1% vs 20.3%) compared to embryos cultured in WOWs of 300 μm diameter or plain cultured controls. Embryos cultured in WOWs with 700 μm depth reached significant higher developmental rates compared with embryos cultured in WOWs of 300 μm depth and control embryos (30.6 vs 22.6% vs 20.3%). Correlation of the embryo per WOW volume with developmental rates was higher (r(2) = 0.92, p = 0.0004) than correlation of WOW diameter or WOW depth with developmental rates. However, the embryo per WOW volume did not affect differential cell counts. An embryo per culture dish volume of 1 : 30 μl was identified to be optimal when the embryo per WOW volume was 1 : 0.27 μl increasing developmental rates up to the level of mass embryo production. Giving the opportunity to track each embryo over the complete culture period while keeping high developmental rates with normal mitotic dynamics, the results of this work will provide benefit for the single culture of embryos in human assisted reproduction, mammalian embryos with high economic interest as well as for scientific purpose. © 2009 Blackwell Verlag GmbH.

  16. Single-cell duplex RT-LATE-PCR reveals Oct4 and Xist RNA gradients in 8-cell embryos

    Directory of Open Access Journals (Sweden)

    Hartung Odelya

    2007-12-01

    Full Text Available Abstract Background The formation of two distinctive cell lineages in preimplantation mouse embryos is characterized by differential gene expression. The cells of the inner cell mass are pluripotent and express high levels of Oct4 mRNA, which is down-regulated in the surrounding trophectoderm. In contrast, the trophectoderm of female embryos contains Xist mRNA, which is absent from cells of the inner mass. Prior to blastocyst formation, all blastomeres of female embryos still express both of these RNAs. We, thus, postulated that simultaneous quantification of Oct4 and Xist transcripts in individual blastomeres at the 8-cell stage could be informative as to their subsequent fate. Testing this hypothesis, however, presented numerous technical challenges. We overcame these difficulties by combining PurAmp, a single-tube method for RNA preparation and quantification, with LATE-PCR, an advanced form of asymmetric PCR. Results We constructed a duplex RT-LATE-PCR assay for real-time measurement of Oct4 and Xist templates and confirmed its specificity and quantitative accuracy with different methods. We then undertook analysis of sets of blastomeres isolated from embryos at the 8-cell stage. At this stage, all cells in the embryo are still pluripotent and morphologically equivalent. Our results demonstrate, however, that both Oct4 and Xist RNA levels vary in individual blastomeres comprising the same embryo, with some cells having particularly elevated levels of either transcript. Analysis of multiple embryos also shows that Xist and Oct4 expression levels are not correlated at the 8-cell stage, although transcription of both genes is up-regulated at this time in development. In addition, comparison of data from males and females allowed us to determine that the efficiency of the Oct4/Xist assay is unaffected by sex-related differences in gene expression. Conclusion This paper describes the first example of multiplex RT-LATE-PCR and its utility, when

  17. Embryo genome profiling by single-cell sequencing for preimplantation genetic diagnosis in a β-thalassemia family

    DEFF Research Database (Denmark)

    Xu, Yanwen; Chen, Shengpei; Yin, Xuyang

    2015-01-01

    for a β-thalassemia-carrier couple to have a healthy second baby. We carried out sequencing for single blastomere cells and the family trio and further developed the analysis pipeline, including recovery of the missing alleles, removal of the majority of errors, and phasing of the embryonic genome...... leukocyte antigen matching tests. CONCLUSIONS: This retrospective study in a β-thalassemia family demonstrates a method for embryo genome recovery through single-cell sequencing, which permits detection of genetic variations in preimplantation genetic diagnosis. It shows the potential of single...

  18. An economic assessment of embryo diagnostics (Dx) - the costs of introducing non-invasive embryo diagnostics into IVF standard treatment practices.

    Science.gov (United States)

    Fugel, Hans-Joerg; Connolly, Mark; Nuijten, Mark

    2014-10-09

    New techniques in assessing oocytes and embryo quality are currently explored to improve pregnancy and delivery rates per embryo transfer. While a better understanding of embryo quality could help optimize the existing "in vitro fertilization" (IVF) therapy schemes, it is essential to address the economic viability of such technologies in the healthcare setting. An Embryo-Dx economic model was constructed to assess the cost-effectiveness of 3 different IVF strategies from a payer's perspective; it compares Embryo-Dx with single embryo transfer (SET) to elective single embryo transfer (eSET) and to double embryo transfer (DET) treatment practices. The introduction of a new non-invasive embryo technology (Embryo-Dx) associated with a cost up to €460 is cost-effective compared to eSET and DET based on the cost per live birth. The model assumed that Embryo-Dx will improve ongoing pregnancy rate/realize an absolute improvement in live births of 9% in this case. This study shows that improved embryo diagnosis combined with SET may have the potential to reduce the cost per live birth per couple treated in IVF treatment practices. The results of this study are likely more sensitive to changes in the ongoing pregnancy rate and consequently the live birth rate than the diagnosis costs. The introduction of a validated Embryo-Dx technology will further support a move towards increased eSET procedures in IVF clinical practice and vice versa.

  19. [Relationship between mitochondrial DNA copy number, membrane potential of human embryo and embryo morphology].

    Science.gov (United States)

    Zhao, H; Teng, X M; Li, Y F

    2017-11-25

    Objective: To explore the relationship between the embryo with the different morphological types in the third day and its mitochondrial copy number, the membrane potential. Methods: Totally 117 embryos with poor development after normal fertilization and were not suitable transferred in the fresh cycle and 106 frozen embryos that were discarded voluntarily by infertility patients with in vitro fertilization-embryo transfer after successful pregnancy were selected. According to evaluation of international standard in embryos, all cleavage stage embryos were divided into class Ⅰ frozen embryo group ( n= 64), class Ⅱ frozen embryo group ( n= 42) and class Ⅲ fresh embryonic group (not transplanted embryos; n= 117). Real-time PCR and confocal microscopy methods were used to detect mitochondrial DNA (mtDNA) copy number and the mitochondrial membrane potential of a single embryo. The differences between embryo quality and mtDNA copy number and membrane potential of each group were compared. Results: The copy number of mtDNA and the mitochondrial membrane potential in class Ⅲ fresh embryonic group [(1.7±1.0)×10(5) copy/μl, 1.56±0.32] were significantly lower than those in class Ⅰ frozen embryo group [(3.4±1.7)×10(5) copy/μl, 2.66±0.21] and class Ⅱ frozen embryo group [(2.6±1.2)×10(5) copy/μl, 1.80±0.32; all Pembryo group were significantly higher than those in classⅡ frozen embryo group (both Pembryos of the better quality embryo are higher.

  20. Gene expression profiling of brakeless mutant Drosophila embryos.

    Science.gov (United States)

    Crona, Filip; Singla, Bhumica; Mannervik, Mattias

    2015-12-01

    The transcriptional co-regulator Brakeless performs many important functions during Drosophila development, but few target genes have been identified. Here we use Affymetrix microarrays to identify Brakeless-regulated genes in 2-4 h old Drosophila embryos. Robust multi-array analysis (RMA) and statistical tests revealed 240 genes that changed their expression more than 1.5 fold. We find that up- and down-regulated genes fall into distinct gene ontology categories. In our associated study [2] we demonstrate that both up- and down-regulated genes can be direct Brakeless targets. Our results indicate that the co-repressor and co-activator activities of Brakeless may result in distinct biological responses. The microarray data complies with MIAME guidelines and is deposited in GEO under accession number GSE60048.

  1. Stress-tolerant mutants induced by heavy-ion beams

    International Nuclear Information System (INIS)

    Abe, Tomoko; Yoshida, Shigeo; Bae, Chang-Hyu; Ozaki, Takuo

    2000-01-01

    Comparative study was made on mutagenesis in tobacco embryo induced by exposure to EMS (ethyl methane-sulfonate) ion beams during the fertilization cycle. Tobacco embryo cells immediately after pollination were exposed to heavy ion beam and the sensitivity to the irradiation was assessed in each developmental stage and compared with the effects of EMS, a chemical mutagen. Morphologically abnormality such as chlorophyll deficiency was used as a marker. A total of 17 salt-tolerant plants were selected from 3447 M 1 seeds. A cell line showed salt resistance. The cell growth and chlorophyll content were each two times higher than that of WT cells in the medium containing 154 mM NaCl. Seven strains of M 3 progeny of 17 salt-tolerant plants, showed strong resistance, but no salt tolerant progeny were obtained from Xanthi or Ne-ion irradiation. This shows that the sensitivity of plant embryo to this irradiation technique may vary among species. When exposed to 14 N ion beam for 24-108 hours after pollination, various morphological mutants appeared at 18% in M 1 progeny and herbicide tolerant and salt tolerant mutants were obtained. A strong Co-tolerant strain was obtained in two of 17 salt-tolerant strains and a total of 46 tolerant strains (0.2%) were obtained from 22,272 grains of M 1 seeds. In these tolerant strains, the absorption of Co was slightly decreased, but those of Mg and Mn were increased. Mutants induced with ion-beam irradiation have potential not only for practical use in the breeding of stress-tolerant plants but also for gene analysis that will surely facilitate the molecular understanding of the tolerance mechanisms. (M.N.)

  2. Economic evaluations of single- versus double-embryo transfer in IVF

    NARCIS (Netherlands)

    Fiddelers, A. A. A.; Severens, J. L.; Dirksen, C. D.; Dumoulin, J. C. M.; Land, J. A.; Evers, J. L. H.

    2007-01-01

    Multiple pregnancies lead to complications and induce high costs. The most successful way to decrease multiple pregnancies in IVF is to transfer only one embryo, which might reduce the efficacy of treatment. The objective of this review is to determine which embryo-transfer policy is most

  3. High gonadotropin dosage does not affect euploidy and pregnancy rates in IVF PGS cycles with single embryo transfer.

    Science.gov (United States)

    Barash, Oleksii O; Hinckley, Mary D; Rosenbluth, Evan M; Ivani, Kristen A; Weckstein, Louis N

    2017-11-01

    Does high gonadotropin dosage affect euploidy and pregnancy rates in PGS cycles with single embryo transfer? High gonadotropin dosage does NOT affect euploidy and pregnancy rates in PGS cycles with single embryo transfer. PGS has been proven to be the most effective and reliable method for embryo selection in IVF cycles. Euploidy and blastulation rates decrease significantly with advancing maternal age. In order to recruit an adequate number of follicles, the average dosage of gonadotropins administered during controlled ovarian stimulation in IVF cycles often increases significantly with advancing maternal age. A retrospective study of SNP (Single Nucleotide Polymorphism) PGS outcome data from blastocysts biopsied on day 5 or day 6 was conducted to identify differences in euploidy and clinical pregnancy rates. Seven hundred and ninety four cycles of IVF treatment with PGS between January 2013 and January 2017 followed by 651 frozen embryo transfers were included in the study (506 patients, maternal age (y.o.) - 37.2 ± 4.31). A total of 4034 embryos were analyzed (5.1 ± 3.76 per case) for euploidy status. All embryos were vitrified after biopsy, and selected embryos were subsequently thawed for a hormone replacement frozen embryo transfer cycle. All cycles were analyzed by total gonadotropin dosage (5000 IU), by number of eggs retrieved (1-5, 5-10, 10-15 and >15 eggs) and patient's age (cycles) euploidy rates ranged from 62.3% (cycle) to 67.5% (>5000 IU were used in the IVF cycle) (OR = 0.862, 95% CI 0.687-1.082, P = 0.2) and from 69.5% (1-5 eggs retrieved) to 60.0% (>15 eggs retrieved) (OR = 0.658, 95% CI 0.405-1.071, P = 0.09). Similar data were obtained in the oldest group of patients (≥41 y.o. - 189 IVF cycles): euploidy rates ranged from 30.7 to 26.4% (OR = 0.811, 95% CI 0.452-1.454, P = 0.481) when analyzed by total dosage of gonadotropins used in the IVF cycle and from 40.0 to 30.7% (OR = 0.531, 95% CI 0.204-1.384, P = 0.19), when assessed by the total

  4. The Nicotine-Evoked Locomotor Response: A Behavioral Paradigm for Toxicity Screening in Zebrafish (Danio rerio Embryos and Eleutheroembryos Exposed to Methylmercury.

    Directory of Open Access Journals (Sweden)

    Francisco X Mora-Zamorano

    Full Text Available This study is an adaptation of the nicotine-evoked locomotor response (NLR assay, which was originally utilized for phenotype-based neurotoxicity screening in zebrafish embryos. Zebrafish embryos do not exhibit spontaneous swimming until roughly 4 days post-fertilization (dpf, however, a robust swimming response can be induced as early as 36 hours post-fertilization (hpf by means of acute nicotine exposure (30-240μM. Here, the NLR was tested as a tool for early detection of locomotor phenotypes in 36, 48 and 72 hpf mutant zebrafish embryos of the non-touch-responsive maco strain; this assay successfully discriminated mutant embryos from their non-mutant siblings. Then, methylmercury (MeHg was used as a proof-of-concept neurotoxicant to test the effectiveness of the NLR assay as a screening tool in toxicology. The locomotor effects of MeHg were evaluated in 6 dpf wild type eleutheroembryos exposed to waterborne MeHg (0, 0.01, 0.03 and 0.1μM. Afterwards, the NLR assay was tested in 48 hpf embryos subjected to the same MeHg exposure regimes. Embryos exposed to 0.01 and 0.03μM of MeHg exhibited significant increases in locomotion in both scenarios. These findings suggest that similar locomotor phenotypes observed in free swimming fish can be detected as early as 48 hpf, when locomotion is induced with nicotine.

  5. Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Jin Akagi

    Full Text Available Zebrafish (Danio rerio has recently emerged as a powerful experimental model in drug discovery and environmental toxicology. Drug discovery screens performed on zebrafish embryos mirror with a high level of accuracy the tests usually performed on mammalian animal models, and fish embryo toxicity assay (FET is one of the most promising alternative approaches to acute ecotoxicity testing with adult fish. Notwithstanding this, automated in-situ analysis of zebrafish embryos is still deeply in its infancy. This is mostly due to the inherent limitations of conventional techniques and the fact that metazoan organisms are not easily susceptible to laboratory automation. In this work, we describe the development of an innovative miniaturized chip-based device for the in-situ analysis of zebrafish embryos. We present evidence that automatic, hydrodynamic positioning, trapping and long-term immobilization of single embryos inside the microfluidic chips can be combined with time-lapse imaging to provide real-time developmental analysis. Our platform, fabricated using biocompatible polymer molding technology, enables rapid trapping of embryos in low shear stress zones, uniform drug microperfusion and high-resolution imaging without the need of manual embryo handling at various developmental stages. The device provides a highly controllable fluidic microenvironment and post-analysis eleuthero-embryo stage recovery. Throughout the incubation, the position of individual embryos is registered. Importantly, we also for first time show that microfluidic embryo array technology can be effectively used for the analysis of anti-angiogenic compounds using transgenic zebrafish line (fli1a:EGFP. The work provides a new rationale for rapid and automated manipulation and analysis of developing zebrafish embryos at a large scale.

  6. Sterol Methyl Oxidases Affect Embryo Development via Auxin-Associated Mechanisms1

    Science.gov (United States)

    Zhang, Xia; Sun, Shuangli; Nie, Xiang; Boutté, Yohann; Grison, Magali; Li, Panpan; Kuang, Susu

    2016-01-01

    Sterols are essential molecules for multiple biological processes, including embryogenesis, cell elongation, and endocytosis. The plant sterol biosynthetic pathway is unique in the involvement of two distinct sterol 4α-methyl oxidase (SMO) families, SMO1 and SMO2, which contain three and two isoforms, respectively, and are involved in sequential removal of the two methyl groups at C-4. In this study, we characterized the biological functions of members of the SMO2 gene family. SMO2-1 was strongly expressed in most tissues during Arabidopsis (Arabidopsis thaliana) development, whereas SMO2-2 showed a more specific expression pattern. Although single smo2 mutants displayed no obvious phenotype, the smo2-1 smo2-2 double mutant was embryonic lethal, and the smo2-1 smo2-2/+ mutant was dwarf, whereas the smo2-1/+ smo2-2 mutant exhibited a moderate phenotype. The phenotypes of the smo2 mutants resembled those of auxin-defective mutants. Indeed, the expression of DR5rev:GFP, an auxin-responsive reporter, was reduced and abnormal in smo2-1 smo2-2 embryos. Furthermore, the expression and subcellular localization of the PIN1 auxin efflux facilitator also were altered. Consistent with these observations, either the exogenous application of auxin or endogenous auxin overproduction (YUCCA9 overexpression) partially rescued the smo2-1 smo2-2 embryonic lethality. Surprisingly, the dwarf phenotype of smo2-1 smo2-2/+ was completely rescued by YUCCA9 overexpression. Gas chromatography-mass spectrometry analysis revealed a substantial accumulation of 4α-methylsterols, substrates of SMO2, in smo2 heterozygous double mutants. Together, our data suggest that SMO2s are important for correct sterol composition and function partially through effects on auxin accumulation, auxin response, and PIN1 expression to regulate Arabidopsis embryogenesis and postembryonic development. PMID:27006488

  7. Soybean roots retain the seed urease isozyme synthesized during embryo development

    International Nuclear Information System (INIS)

    Torisky, R.S.; Polacco, J.C.

    1990-01-01

    Roots of young soybean plants contain two urease isozymes which are separable by hydroxyapatite chromatography. These two urease species (HAP1 and HAP2) differ in: (1) native gel electrophoretic mobility, (2) pH optima, and (3) recognition by a monoclonal antibody specific for the embryo-specific urease. By these parameters HAP1 is similar to the abundant embryo-specific urease isozyme while HAP2 resembles the ubiquitous urease, found in all soybean tissues previously examined (embryo, seed coat, cultured cells). Roots of mutant soybean plants lacking the seed urease contain no HAP1 urease activity, whereas roots of mutants lacking the ubiquitous urease contain no HAP2 urease activity. However, adventitious roots generated from cuttings of any urease genotype lack HAP1 urease activity. Furthermore, [ 35 S] methionine labelling shows no de novo synthesis of the HAP1 urease in the root, and total root HAP1 urease activity decreases sharply following germination. We conclude: (1) HAP1 is a remnant of the seed urease accumulated in the embryonic root axis during seed development, and (2) HAP2 is ubiquitous urease synthesized de novo in the root

  8. Identification and quantification of flavonoids in yellow grain mutant of rice (Oryza sativa L.).

    Science.gov (United States)

    Kim, Backki; Woo, Sunmin; Kim, Mi-Jung; Kwon, Soon-Wook; Lee, Joohyun; Sung, Sang Hyun; Koh, Hee-Jong

    2018-02-15

    Flavonoids are naturally occurring phenolic compounds with potential health-promoting activities. Although anthocyanins and phenolic acids in coloured rice have been investigated, few studies have focused on flavonoids. Herein, we analysed flavonoids in a yellow grain rice mutant using UHPLC-DAD-ESI-Q-TOF-MS, and identified 19 flavonoids by comparing retention times and accurate mass measurements. Among them, six flavonoids, isoorientin, isoorientin 2″-O-glucoside, vitexin 2″-O-glucoside, isovitexin, isoscoparin 2″-O-glucoside and isoscoparin, were isolated and fully identified from the yellow grain rice mutant, and the levels were significantly higher than wild-type, with isoorientin particularly abundant in mutant embryo. Significant differences in total phenolic compounds and antioxidant activity were observed in mutant rice by DPPH, FRAP and TEAC assays. The results suggest that the representative six flavonoids may play an important role in colouration and antioxidant activity of embryo and endosperm tissue. The findings provide insight into flavonoid biosynthesis and the possibility of improving functionality in rice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Molecular basis of proton uptake in single and double mutants of cytochrome c oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Rowan M; Caplan, David; Pomes, Regis [Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada); Fadda, Elisa, E-mail: pomes@sickkids.ca [Department of Chemistry, University of Galway (Ireland)

    2011-06-15

    Cytochrome c oxidase, the terminal enzyme of the respiratory chain, utilizes the reduction of dioxygen into water to pump protons across the mitochondrial inner membrane. The principal pathway of proton uptake into the enzyme, the D channel, is a 2.5 nm long channel-like cavity named after a conserved, negatively charged aspartic acid (D) residue thought to help recruiting protons to its entrance (D132 in the first subunit of the S. sphaeroides enzyme). The single-point mutation of D132 to asparagine (N), a neutral residue, abolishes enzyme activity. Conversely, replacing conserved N139, one-third into the D channel, by D, induces a decoupled phenotype, whereby oxygen reduction proceeds but not proton pumping. Intriguingly, the double mutant D132N/N139D, which conserves the charge of the D channel, restores the wild-type phenotype. We use molecular dynamics simulations and electrostatic calculations to examine the structural and physical basis for the coupling of proton pumping and oxygen chemistry in single and double N139D mutants. The potential of mean force for the conformational isomerization of N139 and N139D side chains reveals the presence of three rotamers, one of which faces the channel entrance. This out-facing conformer is metastable in the wild-type and in the N139D single mutant, but predominant in the double mutant thanks to the loss of electrostatic repulsion with the carboxylate group of D132. The effects of mutations and conformational isomerization on the pKa of E286, an essential proton-shuttling residue located at the top of the D channel, are shown to be consistent with the electrostatic control of proton pumping proposed recently (Fadda et al 2008 Biochim. Biophys. Acta 1777 277-84). Taken together, these results suggest that preserving the spatial distribution of charges at the entrance of the D channel is necessary to guarantee both the uptake and the relay of protons to the active site of the enzyme. These findings highlight the interplay

  10. Molecular basis of proton uptake in single and double mutants of cytochrome c oxidase

    International Nuclear Information System (INIS)

    Henry, Rowan M; Caplan, David; Pomes, Regis; Fadda, Elisa

    2011-01-01

    Cytochrome c oxidase, the terminal enzyme of the respiratory chain, utilizes the reduction of dioxygen into water to pump protons across the mitochondrial inner membrane. The principal pathway of proton uptake into the enzyme, the D channel, is a 2.5 nm long channel-like cavity named after a conserved, negatively charged aspartic acid (D) residue thought to help recruiting protons to its entrance (D132 in the first subunit of the S. sphaeroides enzyme). The single-point mutation of D132 to asparagine (N), a neutral residue, abolishes enzyme activity. Conversely, replacing conserved N139, one-third into the D channel, by D, induces a decoupled phenotype, whereby oxygen reduction proceeds but not proton pumping. Intriguingly, the double mutant D132N/N139D, which conserves the charge of the D channel, restores the wild-type phenotype. We use molecular dynamics simulations and electrostatic calculations to examine the structural and physical basis for the coupling of proton pumping and oxygen chemistry in single and double N139D mutants. The potential of mean force for the conformational isomerization of N139 and N139D side chains reveals the presence of three rotamers, one of which faces the channel entrance. This out-facing conformer is metastable in the wild-type and in the N139D single mutant, but predominant in the double mutant thanks to the loss of electrostatic repulsion with the carboxylate group of D132. The effects of mutations and conformational isomerization on the pKa of E286, an essential proton-shuttling residue located at the top of the D channel, are shown to be consistent with the electrostatic control of proton pumping proposed recently (Fadda et al 2008 Biochim. Biophys. Acta 1777 277-84). Taken together, these results suggest that preserving the spatial distribution of charges at the entrance of the D channel is necessary to guarantee both the uptake and the relay of protons to the active site of the enzyme. These findings highlight the interplay

  11. Molecular basis of proton uptake in single and double mutants of cytochrome c oxidase

    Science.gov (United States)

    Henry, Rowan M.; Caplan, David; Fadda, Elisa; Pomès, Régis

    2011-06-01

    Cytochrome c oxidase, the terminal enzyme of the respiratory chain, utilizes the reduction of dioxygen into water to pump protons across the mitochondrial inner membrane. The principal pathway of proton uptake into the enzyme, the D channel, is a 2.5 nm long channel-like cavity named after a conserved, negatively charged aspartic acid (D) residue thought to help recruiting protons to its entrance (D132 in the first subunit of the S. sphaeroides enzyme). The single-point mutation of D132 to asparagine (N), a neutral residue, abolishes enzyme activity. Conversely, replacing conserved N139, one-third into the D channel, by D, induces a decoupled phenotype, whereby oxygen reduction proceeds but not proton pumping. Intriguingly, the double mutant D132N/N139D, which conserves the charge of the D channel, restores the wild-type phenotype. We use molecular dynamics simulations and electrostatic calculations to examine the structural and physical basis for the coupling of proton pumping and oxygen chemistry in single and double N139D mutants. The potential of mean force for the conformational isomerization of N139 and N139D side chains reveals the presence of three rotamers, one of which faces the channel entrance. This out-facing conformer is metastable in the wild-type and in the N139D single mutant, but predominant in the double mutant thanks to the loss of electrostatic repulsion with the carboxylate group of D132. The effects of mutations and conformational isomerization on the pKa of E286, an essential proton-shuttling residue located at the top of the D channel, are shown to be consistent with the electrostatic control of proton pumping proposed recently (Fadda et al 2008 Biochim. Biophys. Acta 1777 277-84). Taken together, these results suggest that preserving the spatial distribution of charges at the entrance of the D channel is necessary to guarantee both the uptake and the relay of protons to the active site of the enzyme. These findings highlight the interplay

  12. The agronomic characters of a high protein rice mutant

    International Nuclear Information System (INIS)

    Harn, C.; Won, J.L.; Choi, K.T.

    1975-01-01

    Mutant lines (M 5 -M 9 ) of macro-phenotypic traits from several varieties were screened for the protein content. Mutant 398 (M 9 ) is one of the high protein mutants selected from Hokwang. Three years' tests revealed that it has a high protein line under any condition of cultivation. Except for early maturity and short culmness, other agronomic and yield characters were similar to the original variety. There was no difference between the mutant 398 and its mother variety in grain shape and weight, and also the size and protein content of the embryo. The high protein content of the mutant is attributable to the increase of protein in the endosperm. About 150 normal-looking or a few days-earlier-maturing selections were made from Jinheung variety in the M 3 and screened for protein. Promising lines in terms of the plant type, yield and protein were obtained. (author)

  13. Stress-tolerant mutants induced by heavy-ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Tomoko; Yoshida, Shigeo [Institute of Physical and Chemical Research, Wako, Saitama (Japan); Bae, Chang-Hyu [Sunchon National University, Sunchon (Korea); Ozaki, Takuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Wang, Jing Ming [Akita Prefectural Univ. (Japan)

    2000-07-01

    Comparative study was made on mutagenesis in tobacco embryo induced by exposure to EMS (ethyl methane-sulfonate) ion beams during the fertilization cycle. Tobacco embryo cells immediately after pollination were exposed to heavy ion beam and the sensitivity to the irradiation was assessed in each developmental stage and compared with the effects of EMS, a chemical mutagen. Morphologically abnormality such as chlorophyll deficiency was used as a marker. A total of 17 salt-tolerant plants were selected from 3447 M{sub 1} seeds. A cell line showed salt resistance. The cell growth and chlorophyll content were each two times higher than that of WT cells in the medium containing 154 mM NaCl. Seven strains of M{sub 3} progeny of 17 salt-tolerant plants, showed strong resistance, but no salt tolerant progeny were obtained from Xanthi or Ne-ion irradiation. This shows that the sensitivity of plant embryo to this irradiation technique may vary among species. When exposed to {sup 14}N ion beam for 24-108 hours after pollination, various morphological mutants appeared at 18% in M{sub 1} progeny and herbicide tolerant and salt tolerant mutants were obtained. A strong Co-tolerant strain was obtained in two of 17 salt-tolerant strains and a total of 46 tolerant strains (0.2%) were obtained from 22,272 grains of M{sub 1} seeds. In these tolerant strains, the absorption of Co was slightly decreased, but those of Mg and Mn were increased. Mutants induced with ion-beam irradiation have potential not only for practical use in the breeding of stress-tolerant plants but also for gene analysis that will surely facilitate the molecular understanding of the tolerance mechanisms. (M.N.)

  14. Long term costs and effects of reducing the number of twin pregnancies in IVF by single embryo transfer: the TwinSing study.

    Science.gov (United States)

    van Heesch, Mirjam M J; Bonsel, Gouke J; Dumoulin, John C M; Evers, Johannes L H; van der Hoeven, Mark Ahbm; Severens, Johan L; Dykgraaf, Ramon H M; van der Veen, Fulco; Tonch, Nino; Nelen, Willianne L D M; van Zonneveld, Piet; van Goudoever, Johannes B; Tamminga, Pieter; Steiner, Katerina; Koopman-Esseboom, Corine; van Beijsterveldt, Catharina E M; Boomsma, Dorret I; Snellen, Diana; Dirksen, Carmen D

    2010-10-20

    Pregnancies induced by in vitro fertilisation (IVF) often result in twin gestations, which are associated with both maternal and perinatal complications. An effective way to reduce the number of IVF twin pregnancies is to decrease the number of embryos transferred from two to one. The interpretation of current studies is limited because they used live birth as outcome measure and because they applied limited time horizons. So far, research on long-term outcomes of IVF twins and singletons is scarce and inconclusive. The objective of this study is to investigate the short (1-year) and long-term (5 and 18-year) costs and health outcomes of IVF singleton and twin children and to consider these in estimating the cost-effectiveness of single embryo transfer compared with double embryo transfer, from a societal and a healthcare perspective. A multi-centre cohort study will be performed, in which IVF singletons and IVF twin children born between 2003 and 2005 of whom parents received IVF treatment in one of the five participating Dutch IVF centres, will be compared. Data collection will focus on children at risk of health problems and children in whom health problems actually occurred. First year of life data will be collected in approximately 1,278 children (619 singletons and 659 twin children). Data up to the fifth year of life will be collected in approximately 488 children (200 singletons and 288 twin children). Outcome measures are health status, health-related quality of life and costs. Data will be obtained from hospital information systems, a parent questionnaire and existing registries. Furthermore, a prognostic model will be developed that reflects the short and long-term costs and health outcomes of IVF singleton and twin children. This model will be linked to a Markov model of the short-term cost-effectiveness of single embryo transfer strategies versus double embryo transfer strategies to enable the calculation of the long-term cost-effectiveness. This is

  15. Long term costs and effects of reducing the number of twin pregnancies in IVF by single embryo transfer: the TwinSing study

    Directory of Open Access Journals (Sweden)

    van Goudoever Johannes B

    2010-10-01

    Full Text Available Abstract Background Pregnancies induced by in vitro fertilisation (IVF often result in twin gestations, which are associated with both maternal and perinatal complications. An effective way to reduce the number of IVF twin pregnancies is to decrease the number of embryos transferred from two to one. The interpretation of current studies is limited because they used live birth as outcome measure and because they applied limited time horizons. So far, research on long-term outcomes of IVF twins and singletons is scarce and inconclusive. The objective of this study is to investigate the short (1-year and long-term (5 and 18-year costs and health outcomes of IVF singleton and twin children and to consider these in estimating the cost-effectiveness of single embryo transfer compared with double embryo transfer, from a societal and a healthcare perspective. Methods/Design A multi-centre cohort study will be performed, in which IVF singletons and IVF twin children born between 2003 and 2005 of whom parents received IVF treatment in one of the five participating Dutch IVF centres, will be compared. Data collection will focus on children at risk of health problems and children in whom health problems actually occurred. First year of life data will be collected in approximately 1,278 children (619 singletons and 659 twin children. Data up to the fifth year of life will be collected in approximately 488 children (200 singletons and 288 twin children. Outcome measures are health status, health-related quality of life and costs. Data will be obtained from hospital information systems, a parent questionnaire and existing registries. Furthermore, a prognostic model will be developed that reflects the short and long-term costs and health outcomes of IVF singleton and twin children. This model will be linked to a Markov model of the short-term cost-effectiveness of single embryo transfer strategies versus double embryo transfer strategies to enable the

  16. Annotating and quantifying pri-miRNA transcripts using RNA-Seq data of wild type and serrate-1 globular stage embryos of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Daniel Lepe-Soltero

    2017-12-01

    Full Text Available The genome annotation for the model plant Arabidopsis thaliana does not include the primary transcripts from which MIRNAs are processed. Here we present and analyze the raw mRNA sequencing data from wild type and serrate-1 globular stage embryos of A. thaliana, ecotype Columbia. Because SERRATE is required for pri-miRNA processing, these precursors accumulate in serrate-1 mutants, facilitating their detection using standard RNA-Seq protocols. We first use the mapping of the RNA-Seq reads to the reference genome to annotate the potential primary transcripts of MIRNAs expressed in the embryo. We then quantify these pri-miRNAs in wild type and serrate-1 mutants. Finally, we use differential expression analysis to determine which are up-regulated in serrate-1 compared to wild type, to select the best candidates for bona fide pri-miRNAs expressed in the globular stage embryos. In addition, we analyze a previously published RNA-Seq dataset of wild type and dicer-like 1 mutant embryos at the globular stage [1]. Our data are interpreted and discussed in a separate article [2].

  17. Annotating and quantifying pri-miRNA transcripts using RNA-Seq data of wild type and serrate-1 globular stage embryos of Arabidopsis thaliana.

    Science.gov (United States)

    Lepe-Soltero, Daniel; Armenta-Medina, Alma; Xiang, Daoquan; Datla, Raju; Gillmor, C Stewart; Abreu-Goodger, Cei

    2017-12-01

    The genome annotation for the model plant Arabidopsis thaliana does not include the primary transcripts from which MIRNAs are processed. Here we present and analyze the raw mRNA sequencing data from wild type and serrate-1 globular stage embryos of A. thaliana , ecotype Columbia. Because SERRATE is required for pri-miRNA processing, these precursors accumulate in serrate-1 mutants, facilitating their detection using standard RNA-Seq protocols. We first use the mapping of the RNA-Seq reads to the reference genome to annotate the potential primary transcripts of MIRNAs expressed in the embryo. We then quantify these pri-miRNAs in wild type and serrate-1 mutants. Finally, we use differential expression analysis to determine which are up-regulated in serrate-1 compared to wild type, to select the best candidates for bona fide pri-miRNAs expressed in the globular stage embryos. In addition, we analyze a previously published RNA-Seq dataset of wild type and dicer-like 1 mutant embryos at the globular stage [1]. Our data are interpreted and discussed in a separate article [2].

  18. Growth and sporulation defects in Bacillus subtilis mutants with a single rrn operon can be suppressed by amplification of the rrn operon.

    Science.gov (United States)

    Yano, Koichi; Masuda, Kenta; Akanuma, Genki; Wada, Tetsuya; Matsumoto, Takashi; Shiwa, Yuh; Ishige, Taichiro; Yoshikawa, Hirofumi; Niki, Hironori; Inaoka, Takashi; Kawamura, Fujio

    2016-01-01

    The genome of Bacillus subtilis strain 168 encodes ten rRNA (rrn) operons. We previously reported that strains with only a single rrn operon had a decreased growth and sporulation frequency. We report here the isolation and characterization of suppressor mutants from seven strains that each have a single rrn operon (rrnO, A, J, I, E, D or B). The suppressor mutants for strain RIK656 with a single rrnO operon had a higher frequency of larger colonies. These suppressor mutants had not only increased growth rates, but also increased sporulation frequencies and ribosome levels compared to the parental mutant strain RIK656. Quantitative PCR analyses showed that all these suppressor mutants had an increased number of copies of the rrnO operon. Suppressor mutants were also isolated from the six other strains with single rrn operons (rrnA, J, I, E, D or B). Next generation and capillary sequencing showed that all of the suppressor mutants had tandem repeats of the chromosomal locus containing the remaining rrn operon (amplicon). These amplicons varied in size from approximately 9 to 179 kb. The amplifications were likely to be initiated by illegitimate recombination between non- or micro-homologous sequences, followed by unequal crossing-over during DNA replication. These results are consistent with our previous report that rrn operon copy number has a major role in cellular processes such as cell growth and sporulation.

  19. Facile mutant identification via a single parental backcross method and application of whole genome sequencing based mapping pipelines

    Directory of Open Access Journals (Sweden)

    Robert Silas Allen

    2013-09-01

    Full Text Available Forward genetic screens have identified numerous genes involved in development and metabolism, and remain a cornerstone of biological research. However to locate a causal mutation, the practice of crossing to a polymorphic background to generate a mapping population can be problematic if the mutant phenotype is difficult to recognise in the hybrid F2 progeny, or dependent on parental specific traits. Here in a screen for leaf hyponasty mutants, we have performed a single backcross of an Ethane Methyl Sulphonate (EMS generated hyponastic mutant to its parent. Whole genome deep sequencing of a bulked homozygous F2 population and analysis via the Next Generation EMS mutation mapping pipeline (NGM unambiguously determined the causal mutation to be a single nucleotide polymorphisim (SNP residing in HASTY, a previously characterised gene involved in microRNA biogenesis. We have evaluated the feasibility of this backcross approach using three additional SNP mapping pipelines; SHOREmap, the GATK pipeline, and the samtools pipeline. Although there was variance in the identification of EMS SNPs, all returned the same outcome in clearly identifying the causal mutation in HASTY. The simplicity of performing a single parental backcross and genome sequencing a small pool of segregating mutants has great promise for identifying mutations that may be difficult to map using conventional approaches.

  20. In Vivo Quantitative Study of Sized-Dependent Transport and Toxicity of Single Silver Nanoparticles Using Zebrafish Embryos

    Science.gov (United States)

    Lee, Kerry J.; Browning, Lauren M.; Nallathamby, Prakash D.; Desai, Tanvi; Cherukui, Pavan K.; Xu, Xiao-Hong Nancy

    2012-01-01

    Nanomaterials possess distinctive physicochemical properties (e.g., small sizes, high surface area-to-volume ratios) and promise a wide variety of applications, ranging from design of high quality consumer products to effective disease diagnosis and therapy. These properties can lead to toxic effects, potentially hindering advance in nanotechnology. In this study, we have synthesized and characterized purified and stable (non-aggregation) silver nanoparticles (Ag NPs, 41.6±9.1 nm in average diameters), and utilized early-developing (cleavage-stage) zebrafish embryos (critical aquatic and eco- species) as in vivo model organisms to probe diffusion and toxicity of Ag NPs. We found that single Ag NPs (30–72 nm diameters) passively diffused into the embryos through chorionic pores via random Brownian motion and stayed inside the embryos throughout their entire development (120 hours-post-fertilization, hpf). Dose and size dependent toxic effects of the NPs on embryonic development were observed, showing the possibility of tuning biocompatibility and toxicity of the NPs. At lower concentrations of the NPs (≤ 0.02 nM), 75–91% of embryos developed to normal zebrafish. At the higher concentrations of NPs (≥ 0.20 nM), 100% of embryos became dead. At the concentrations in between (0.02–0.2 nM), embryos developed to various deformed zebrafish. Number and sizes of individual Ag NPs embedded in tissues of normal and deformed zebrafish at 120 hpf were quantitatively analyzed, showing deformed zebrafish with higher number of larger NPs than normal zebrafish, and size-dependent nanotoxicity. By comparing with our previous studies of smaller Ag NPs (11.6±3.5 nm), the results further demonstrate striking size-dependent nanotoxicity that, at the same molar concentration, the larger Ag NPs (41.6±9.1 nm) are more toxic than the smaller Ag NPs (11.6±3.5 nm). PMID:22486336

  1. Preventing Mitochondrial Diseases: Embryo-Sparing Donor-Independent Options.

    Science.gov (United States)

    Adashi, Eli Y; Cohen, I Glenn

    2018-05-01

    Mutant mitochondrial DNA gives rise to a broad range of incurable inborn maladies. Prevention may now be possible by replacing the mutation-carrying mitochondria of zygotes or oocytes at risk with donated unaffected counterparts. However, mitochondrial replacement therapy is being held back by theological, ethical, and safety concerns over the loss of human zygotes and the involvement of a donor. These concerns make it plain that the identification, validation, and regulatory adjudication of novel embryo-sparing donor-independent technologies remains a pressing imperative. This Opinion highlights three emerging embryo-sparing donor-independent options that stand to markedly allay theological, ethical, and safety concerns raised by mitochondrial replacement therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Sterol Methyl Oxidases Affect Embryo Development via Auxin-Associated Mechanisms.

    Science.gov (United States)

    Zhang, Xia; Sun, Shuangli; Nie, Xiang; Boutté, Yohann; Grison, Magali; Li, Panpan; Kuang, Susu; Men, Shuzhen

    2016-05-01

    Sterols are essential molecules for multiple biological processes, including embryogenesis, cell elongation, and endocytosis. The plant sterol biosynthetic pathway is unique in the involvement of two distinct sterol 4α-methyl oxidase (SMO) families, SMO1 and SMO2, which contain three and two isoforms, respectively, and are involved in sequential removal of the two methyl groups at C-4. In this study, we characterized the biological functions of members of the SMO2 gene family. SMO2-1 was strongly expressed in most tissues during Arabidopsis (Arabidopsis thaliana) development, whereas SMO2-2 showed a more specific expression pattern. Although single smo2 mutants displayed no obvious phenotype, the smo2-1 smo2-2 double mutant was embryonic lethal, and the smo2-1 smo2-2/+ mutant was dwarf, whereas the smo2-1/+ smo2-2 mutant exhibited a moderate phenotype. The phenotypes of the smo2 mutants resembled those of auxin-defective mutants. Indeed, the expression of DR5rev:GFP, an auxin-responsive reporter, was reduced and abnormal in smo2-1 smo2-2 embryos. Furthermore, the expression and subcellular localization of the PIN1 auxin efflux facilitator also were altered. Consistent with these observations, either the exogenous application of auxin or endogenous auxin overproduction (YUCCA9 overexpression) partially rescued the smo2-1 smo2-2 embryonic lethality. Surprisingly, the dwarf phenotype of smo2-1 smo2-2/+ was completely rescued by YUCCA9 overexpression. Gas chromatography-mass spectrometry analysis revealed a substantial accumulation of 4α-methylsterols, substrates of SMO2, in smo2 heterozygous double mutants. Together, our data suggest that SMO2s are important for correct sterol composition and function partially through effects on auxin accumulation, auxin response, and PIN1 expression to regulate Arabidopsis embryogenesis and postembryonic development. © 2016 American Society of Plant Biologists. All Rights Reserved.

  3. Response of maternal immune cells of irradiation of mouse embryos

    International Nuclear Information System (INIS)

    Nicholls, E.M.; Markovic, B.

    1988-01-01

    This work began as an attempt to explain the paradox of pregnancy - the survival and growth of the semi-allogenic embryo in an immunologically hostile environment. In 1982 and 1983 we reported the tracing of quinacrine labelled maternal leukocytes (WBC) in maternal, placental and embryonic mouse tissues by fluorescence microscopy. We found that cells in the placenta phagocytose labelled WBC, so that after 1-2 hours the labelled nuclear DNA is found as brightly fluorescing particles in the cytoplasm of the phagocytes with no evidence of it in the nuclei. Identical cells were observed in slide preparations of embryos which had been carefully separated from their placentas. We also found a small population of intact labelled lymphocytes, clearly maternal in origin, in the embryos. This seems to be another paradox - placental phagocytes are observed to be phagocytosing maternal WBC in the placenta and embryo, but there are also free maternal cells in the placenta and embryo. A theoretical explanation is that maternal lymphocytes alloreactive against the embryo will attempt to react with placental cells and in the process be phagocytosed, while other maternal cells will be able to enter the embryo where they could have a surveillance function, removing dead or mutant embryonic cells. To test this theory a series of experiments were carried out and are reported

  4. Possible role of the 38 kDa protein, lacking in the gastrula-arrested Xenopus mutant, in gastrulation.

    Science.gov (United States)

    Tanaka, Tetsuya S; Ikenishi, Kohji

    2002-02-01

    An acidic, 38 kDa protein that is present in Xenopus wild-type embryos has been previously shown to be lacking in gastrula-arrested mutant embryos. To gain understanding of the role of this protein, its spatio-temporal distribution and involvement in gastrulation was investigated using the monoclonal antibody (9D10) against it. The protein was prominent in the cortical cytoplasm of cells facing the outside in the animal hemisphere of embryos until the gastrula stage, and in ciliated epithelial cells of embryos at stages later than the late neurula. When the 9D10 antibody was injected into fertilized wild-type eggs, they cleaved normally, but most of them had arrested development, always at the early stage of gastrulation, as in the mutant embryos. In contrast, the majority of the control antibody-injected eggs gastrulated normally and developed further. Cytoskeletal F-actin, which was mainly observed in the area beneath the plasma membrane facing the outside of the epithelial layer of not only the dorsal involuting marginal zone but also the dorsal, vegetal cell mass of the control antibody-injected embryos at the early gastrula stage, was scarcely recognized in the corresponding area of the 9D10 antibody-injected embryos. It is likely that the paucity of the F-actin caused by the 9D10 antibody inhibition of the 38 kDa protein might lead to a failure of cell movement in gastrulation, resulting in developmental arrest.

  5. Characterization of a Weak Allele of Zebrafish cloche Mutant

    Science.gov (United States)

    Ma, Ning; Huang, Zhibin; Chen, Xiaohui; He, Fei; Wang, Kun; Liu, Wei; Zhao, Linfeng; Xu, Xiangmin; Liao, Wangjun; Ruan, Hua; Luo, Shenqiu; Zhang, Wenqing

    2011-01-01

    Hematopoiesis is a complicated and dynamic process about which the molecular mechanisms remain poorly understood. Danio rerio (zebrafish) is an excellent vertebrate system for studying hematopoiesis and developmental mechanisms. In the previous study, we isolated and identified a cloche 172 (clo 172) mutant, a novel allele compared to the original cloche (clo) mutant, through using complementation test and initial mapping. Here, according to whole mount in-situ hybridization, we report that the endothelial cells in clo 172 mutant embryos, although initially developed, failed to form the functional vascular system eventually. In addition, further characterization indicates that the clo 172 mutant exhibited weaker defects instead of completely lost in primitive erythroid cells and definitive hematopoietic cells compared with the clo s5 mutant. In contrast, primitive myeloid cells were totally lost in clo 172 mutant. Furthermore, these reappeared definitive myeloid cells were demonstrated to initiate from the remaining hematopoietic stem cells (HSCs) in clo 172 mutant, confirmed by the dramatic decrease of lyc in clo 172 runx1w84x double mutant. Collectively, the clo 172 mutant is a weak allele compared to the clo s5 mutant, therefore providing a model for studying the early development of hematopoietic and vascular system, as well as an opportunity to further understand the function of the cloche gene. PMID:22132109

  6. Embryo selection: the role of time-lapse monitoring.

    Science.gov (United States)

    Kovacs, Peter

    2014-12-15

    In vitro fertilization has been available for over 3 decades. Its use is becoming more widespread worldwide, and in the developed world, up to 5% of children have been born following IVF. It is estimated that over 5 million children have been conceived in vitro. In addition to giving hope to infertile couples to have their own family, in vitro fertilization has also introduced risks as well. The risk of multiple gestation and the associated maternal and neonatal morbidity/mortality has increased significantly over the past few decades. While stricter transfer policies have eliminated the majority of the high-order multiples, these changes have not yet had much of an impact on the incidence of twins. A twin pregnancy can be avoided by the transfer of a single embryo only. However, the traditionally used method of morphologic embryo selection is not predictive enough to allow routine single embryo transfer; therefore, new screening tools are needed. Time-lapse embryo monitoring allows continuous, non-invasive embryo observation without the need to remove the embryo from optimal culturing conditions. The extra information on the cleavage pattern, morphologic changes and embryo development dynamics could help us identify embryos with a higher implantation potential. These technologic improvements enable us to objectively select the embryo(s) for transfer based on certain algorithms. In the past 5-6 years, numerous studies have been published that confirmed the safety of time-lapse technology. In addition, various markers have already been identified that are associated with the minimal likelihood of implantation and others that are predictive of blastocyst development, implantation potential, genetic health and pregnancy. Various groups have proposed different algorithms for embryo selection based on mostly retrospective data analysis. However, large prospective trials are needed to study the full benefit of these (and potentially new) algorithms before their

  7. Effect of pollen irradiation on hybridization of wheat and Eltrigia intermedia and their embryo development

    International Nuclear Information System (INIS)

    Li Guiying; Wang Linqing; Shi Jinguo

    2005-01-01

    Spikes of Eltrigia intermedia were radiated with 5-100 Gy γ-ray during anthesis, and then their pollens were collected to pollinate to the common wheat 'J-11' and 'Chinese Spring'. The effects of pollen irradiation on the seed setting, embryo development, embryo culture and plantlet rate were studied. The results showed that low dose (5-9 Gy) of irradiation enhanced the seed setting for Chinese spring x E. intermedia, but no such effect for J-11xE. intermedia. Irradiation with all doses damaged embryo development, percentage of seeds with embryos; rate of immature hybrid embryos developing into plantlets decreases with the increased doses. Percentage of seeds with abnormal embryos increased significantly with the doses. 12.9%-14.5% of embryos could develop into plants in 30 Gy treatment, which seldom occur to wheat. Embryos in 50 Gy-100 Gy treatment were affected so serious that even none of them could develop into plants in vitro culture. It may be an effective approach to obtaining more mutants and enhancing induced mutation breeding by using combination of pollen irradiation, immature embryo rescue and anther culture of the resultant progenies. (authors)

  8. Potential of human twin embryos generated by embryo splitting in assisted reproduction and research.

    Science.gov (United States)

    Noli, Laila; Ogilvie, Caroline; Khalaf, Yacoub; Ilic, Dusko

    2017-03-01

    Embryo splitting or twinning has been widely used in veterinary medicine over 20 years to generate monozygotic twins with desirable genetic characteristics. The first human embryo splitting, reported in 1993, triggered fierce ethical debate on human embryo cloning. Since Dolly the sheep was born in 1997, the international community has acknowledged the complexity of the moral arguments related to this research and has expressed concerns about the potential for reproductive cloning in humans. A number of countries have formulated bans either through laws, decrees or official statements. However, in general, these laws specifically define cloning as an embryo that is generated via nuclear transfer (NT) and do not mention embryo splitting. Only the UK includes under cloning both embryo splitting and NT in the same legislation. On the contrary, the Ethics Committee of the American Society for Reproductive Medicine does not have a major ethical objection to transferring two or more artificially created embryos with the same genome with the aim of producing a single pregnancy, stating that 'since embryo splitting has the potential to improve the efficacy of IVF treatments for infertility, research to investigate the technique is ethically acceptable'. Embryo splitting has been introduced successfully to the veterinary medicine several decades ago and today is a part of standard practice. We present here an overview of embryo splitting experiments in humans and non-human primates and discuss the potential of this technology in assisted reproduction and research. A comprehensive literature search was carried out using PUBMED and Google Scholar databases to identify studies on embryo splitting in humans and non-human primates. 'Embryo splitting' and 'embryo twinning' were used as the keywords, alone or in combination with other search phrases relevant to the topics of biology of preimplantation embryos. A very limited number of studies have been conducted in humans and non

  9. Predictive value of plasma human chorionic gonadotropin measured 14 days after Day-2 single embryo transfer

    DEFF Research Database (Denmark)

    Løssl, Kristine; Oldenburg, Anna; Toftager, Mette

    2017-01-01

    Introduction: Prediction of pregnancy outcome after in vitro fertilization is important for patients and clinicians. Early plasma human chorionic gonadotropin (p-hCG) levels are the best known predictor of pregnancy outcome, but no studies have been restricted to single embryo transfer (SET) of Day......-2 embryos. The aim of the present study was to investigate the predictive value of p-hCG measured exactly 14 days after the most commonly used Day-2 SET on pregnancy, delivery, and perinatal outcome. Material and methods: A retrospective analysis of prospectively collected data on 466 women who had...... p-hCG measured exactly 14 days after Day-2 SET during a randomized trial including 1050 unselected women (aged 18–40 years) undergoing their first in vitro fertilization/ intracytoplasmic sperm injection treatment. Results: The p-hCG predicted clinical pregnancy [area under the curve (AUC) 0.953; 95...

  10. Isolation of transformation-defective, replication-nondefective early region 1B mutants of adenovirus 12

    International Nuclear Information System (INIS)

    Fukui, Y.; Saito, I.; Shiroki, K.; Shimojo, H.

    1984-01-01

    The authors isolated three adenovirus 12 early region 1B mutants (in205B, in205C, and dl205) by ligation of the cleaved DNA-protein complex and transfection of human embryo kidney cells with the ligation products. These mutants could replicate efficiently in human embryo kidney or KB cells but showed markedly reduced transforming capacities both in vitro and in vivo. In cells infected with the mutants, the early region 1B gene was transcribed efficiently. In cells infected with in205B, the products corresponding to the early region 1B-coded 19,000-molecular-weight polypeptide was detected by in vitro translation but not immunoprecipitated extract of labeled cells. In cells infected with in205C or dl205, the products corresponding to the same polypeptide were not detected by either in vitro translation or immunoprecipitation of labeled cell extracts. The results suggest that the 19,000-molecular-weight polypeptide encoded by early region 1B is required for cell transformation but not for viral propagation

  11. Arabidopsis EMB1990 Encoding a Plastid-Targeted YlmG Protein Is Required for Chloroplast Biogenesis and Embryo Development

    Directory of Open Access Journals (Sweden)

    Hongyu Chen

    2018-02-01

    Full Text Available In higher plants, embryo development originated from fertilized egg cell is the first step of the life cycle. The chloroplast participates in many essential metabolic pathways, and its function is highly associated with embryo development. However, the mechanisms and relevant genetic components by which the chloroplast functions in embryogenesis are largely uncharacterized. In this paper, we describe the Arabidopsis EMB1990 gene, encoding a plastid-targeted YlmG protein which is required for chloroplast biogenesis and embryo development. Loss of the EMB1990/YLMG1-1 resulted in albino seeds containing abortive embryos, and the morphological development of homozygous emb1990 embryos was disrupted after the globular stage. Our results showed that EMB1990/YLMG1-1 was expressed in the primordia and adaxial region of cotyledon during embryogenesis, and the encoded protein was targeted to the chloroplast. TEM observation of cellular ultrastructure showed that chloroplast biogenesis was impaired in emb1990 embryo cells. Expression of certain plastid genes was also affected in the loss-of-function mutants, including genes encoding core protein complex subunits located in the thylakoid membrane. Moreover, the tissue-specific genes of embryo development were misexpressed in emb1990 mutant, including genes known to delineate cell fate decisions in the SAM (shoot apical meristem, cotyledon and hypophysis. Taken together, we propose that the nuclear-encoded YLMG1-1 is targeted to the chloroplast and required for normal plastid gene expression. Hence, YLMG1-1 plays a critical role in Arabidopsis embryogenesis through participating in chloroplast biogenesis.

  12. The effect of the number of transferred embryos, the interval between nuclear transfer and embryo transfer, and the transfer pattern on pig cloning efficiency.

    Science.gov (United States)

    Rim, Chol Ho; Fu, Zhixin; Bao, Lei; Chen, Haide; Zhang, Dan; Luo, Qiong; Ri, Hak Chol; Huang, Hefeng; Luan, Zhidong; Zhang, Yan; Cui, Chun; Xiao, Lei; Jong, Ui Myong

    2013-12-01

    To improve the efficiency of producing cloned pigs, we investigated the influence of the number of transferred embryos, the culturing interval between nuclear transfer (NT) and embryo transfer, and the transfer pattern (single oviduct or double oviduct) on cloning efficiency. The results demonstrated that transfer of either 150-200 or more than 200NT embryos compared to transfer of 100-150 embryos resulted in a significantly higher pregnancy rate (48 ± 16, 50 ± 16 vs. 29 ± 5%, pcloning efficiency is achieved by adjusting the number and in vitro culture time of reconstructed embryos as well as the embryo transfer pattern. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Protein O-Mannosyltransferases Affect Sensory Axon Wiring and Dynamic Chirality of Body Posture in the Drosophila Embryo.

    Science.gov (United States)

    Baker, Ryan; Nakamura, Naosuke; Chandel, Ishita; Howell, Brooke; Lyalin, Dmitry; Panin, Vladislav M

    2018-02-14

    Genetic defects in protein O-mannosyltransferase 1 (POMT1) and POMT2 underlie severe muscular dystrophies. POMT genes are evolutionarily conserved in metazoan organisms. In Drosophila , both male and female POMT mutants show a clockwise rotation of adult abdominal segments, suggesting a chirality of underlying pathogenic mechanisms. Here we described and analyzed a similar phenotype in POMT mutant embryos that shows left-handed body torsion. Our experiments demonstrated that coordinated muscle contraction waves are associated with asymmetric embryo rolling, unveiling a new chirality marker in Drosophila development. Using genetic and live-imaging approaches, we revealed that the torsion phenotype results from differential rolling and aberrant patterning of peristaltic waves of muscle contractions. Our results demonstrated that peripheral sensory neurons are required for normal contractions that prevent the accumulation of torsion. We found that POMT mutants show abnormal axonal connections of sensory neurons. POMT transgenic expression limited to sensory neurons significantly rescued the torsion phenotype, axonal connectivity defects, and abnormal contractions in POMT mutant embryos. Together, our data suggested that protein O-mannosylation is required for normal sensory feedback to control coordinated muscle contractions and body posture. This mechanism may shed light on analogous functions of POMT genes in mammals and help to elucidate the etiology of neurological defects in muscular dystrophies. SIGNIFICANCE STATEMENT Protein O-mannosyltransferases (POMTs) are evolutionarily conserved in metazoans. Mutations in POMTs cause severe muscular dystrophies associated with pronounced neurological defects. However, neurological functions of POMTs remain poorly understood. We demonstrated that POMT mutations in Drosophila result in abnormal muscle contractions and cause embryo torsion. Our experiments uncovered a chirality of embryo movements and a unique POMT -dependent

  14. [Specification of cell destiny in early Caenorhabditis elegans embryo].

    Science.gov (United States)

    Schierenberg, E

    1997-02-01

    Embryogenesis of the nematode Caenorhabditis elegans has been described completely on a cell-by-cell basis and found to be essentially invariant. With this knowledge in hands, micromanipulated embryos and mutants have been analyzed for cell lineage defects and the distribution of specific gene products. The results challenge the classical view of cell-autonomous development in nematodes and indicate that the early embryo of C. elegans is a highly dynamic system. A network of inductive events between neighboring cells is being revealed, which is necessary to assign different developmental programs to blastomeres. In those cases where molecules involved in these cell-cell interactions have been identified, homologies to cell surface receptors, ligands and transcription factors found in other systems have become obvious.

  15. Costs of achieving live birth from assisted reproductive technology: a comparison of sequential single and double embryo transfer approaches.

    Science.gov (United States)

    Crawford, Sara; Boulet, Sheree L; Mneimneh, Allison S; Perkins, Kiran M; Jamieson, Denise J; Zhang, Yujia; Kissin, Dmitry M

    2016-02-01

    To assess treatment and pregnancy/infant-associated medical costs and birth outcomes for assisted reproductive technology (ART) cycles in a subset of patients using elective double embryo (ET) and to project the difference in costs and outcomes had the cycles instead been sequential single ETs (fresh followed by frozen if the fresh ET did not result in live birth). Retrospective cohort study using 2012 and 2013 data from the National ART Surveillance System. Infertility treatment centers. Fresh, autologous double ETs performed in 2012 among ART patients younger than 35 years of age with no prior ART use who cryopreserved at least one embryo. Sequential single and double ETs. Actual live birth rates and estimated ART treatment and pregnancy/infant-associated medical costs for double ET cycles started in 2012 and projected ART treatment and pregnancy/infant-associated medical costs if the double ET cycles had been performed as sequential single ETs. The estimated total ART treatment and pregnancy/infant-associated medical costs were $580.9 million for 10,001 double ETs started in 2012. If performed as sequential single ETs, estimated costs would have decreased by $195.0 million to $386.0 million, and live birth rates would have increased from 57.7%-68.0%. Sequential single ETs, when clinically appropriate, can reduce total ART treatment and pregnancy/infant-associated medical costs by reducing multiple births without lowering live birth rates. Published by Elsevier Inc.

  16. Alcohol-tolerant mutants of cyanobacterium Synechococcus elongatus PCC 7942 obtained by single-cell mutant screening system.

    Science.gov (United States)

    Arai, Sayuri; Hayashihara, Kayoko; Kanamoto, Yuki; Shimizu, Kazunori; Hirokawa, Yasutaka; Hanai, Taizo; Murakami, Akio; Honda, Hiroyuki

    2017-08-01

    Enhancement of alcohol tolerance in microorganisms is an important strategy for improving bioalcohol productivity. Although cyanobacteria can be used as a promising biocatalyst to produce various alcohols directly from CO 2 , low productivity, and low tolerance against alcohols are the main issues to be resolved. Nevertheless, to date, a mutant with increasing alcohol tolerance has rarely been reported. In this study, we attempted to select isopropanol (IPA)-tolerant mutants of Synechococcus elongatus PCC 7942 using UV-C-induced random mutagenesis, followed by enrichment of the tolerant candidates in medium containing 10 g/L IPA and screening of the cells with a high growth rate in the single cell culture system in liquid medium containing 10 g/L IPA. We successfully acquired the most tolerant strain, SY1043, which maintains the ability to grow in medium containing 30 g/L IPA. The photosynthetic oxygen-evolving activities of SY1043 were almost same in cells after 72 h incubation under light with or without 10 g/L IPA, while the activity of the wild-type was remarkably decreased after the incubation with IPA. SY1043 also showed higher tolerance to ethanol, 1-butanol, isobutanol, and 1-pentanol than the wild type. These results suggest that SY1043 would be a promising candidate to improve alcohol production using cyanobacteria. Biotechnol. Bioeng. 2017;114: 1771-1778. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Assessing embryo development using swept source optical coherence tomography

    Science.gov (United States)

    Caujolle, S.; Cernat, R.; Silvestri, G.; Marques, M. J.; Bradu, A.; Feuchter, T.; Robinson, G.; Griffin, D.; Podoleanu, A.

    2018-03-01

    A detailed assessment of embryo development would assist biologists with selecting the most suitable embryos for transfer leading to higher pregnancy rates. Currently, only low resolution microscopy is employed to perform this assessment. Although this method delivers some information on the embryo surface morphology, no specific details are shown related to its inner structure. Using a Master-Slave Swept-Source Optical Coherence Tomography (SS-OCT), images of bovine embryos from day 7 after fertilization were collected from different depths. The dynamic changes inside the embryos were examined, in detail and in real-time from several depths. To prove our ability to characterize the morphology, a single embryo was imaged over 26 hours. The embryo was deprived of its life support environment, leading to its death. Over this period, clear morphological changes were observed.

  18. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.

    Science.gov (United States)

    Baba, Tomoya; Ara, Takeshi; Hasegawa, Miki; Takai, Yuki; Okumura, Yoshiko; Baba, Miki; Datsenko, Kirill A; Tomita, Masaru; Wanner, Barry L; Mori, Hirotada

    2006-01-01

    We have systematically made a set of precisely defined, single-gene deletions of all nonessential genes in Escherichia coli K-12. Open-reading frame coding regions were replaced with a kanamycin cassette flanked by FLP recognition target sites by using a one-step method for inactivation of chromosomal genes and primers designed to create in-frame deletions upon excision of the resistance cassette. Of 4288 genes targeted, mutants were obtained for 3985. To alleviate problems encountered in high-throughput studies, two independent mutants were saved for every deleted gene. These mutants-the 'Keio collection'-provide a new resource not only for systematic analyses of unknown gene functions and gene regulatory networks but also for genome-wide testing of mutational effects in a common strain background, E. coli K-12 BW25113. We were unable to disrupt 303 genes, including 37 of unknown function, which are candidates for essential genes. Distribution is being handled via GenoBase (http://ecoli.aist-nara.ac.jp/).

  19. MODELS FOR MOUSE CHIMERA PRODUCTION: AGGREGATION OF ES CELLS WITH CLEAVAGE STAGE EMBRYOS

    Directory of Open Access Journals (Sweden)

    STANCA CLAUDIA

    2007-01-01

    Full Text Available In a mutant ES cells↔ wild-type embryo chimera, ES cells behave more like epiblastcells. They can contribute to the primitive ectoderm layers, which give rise to all theembryonic tissues and some extraembryonic tissues (Beddington and Robertson,1989, but not to trophectoderm or primitive endoderm. Using transgenic ES celllines, aggregated with cleavage stage host embryo, ES cells can integrate randomlyin the embryo proper. If they will be take part in the formation of ICM (inner cellmass, it will be possible to obtain germline chimera animals. To generate ES cells↔ cleavage stage host embryo chimeras, we used (CD-1 mice as donors of hostembryos as well as recipients of manipulated embryos. For chimera production, weused fluorescent-labeled ES cell line (CD1/EGFP, because in this case we canfollow the fate of ES cells during the embryonic development. We produced thechimers using “aggregation chimera technique”. 8 cells stage zona pellucida free,mouse embryos were aggregated in an aggregation plates, with a clump of ES cells(10 – 15 cells. The chimera embryos were cultivated for 24 hours in the incubator(at 37 °C, 5% CO2 in air. The chimera blastocysts resulted after cultivation, weretransferred to the uterus of the 2.5-dpc pseudo pregnant females.

  20. MODELS FOR MOUSE CHIMERA PRODUCTION: AGGREGATION OF ES CELLS WITH CLEAVAGE STAGE EMBRYOS

    Directory of Open Access Journals (Sweden)

    CLAUDIA STANCA

    2007-05-01

    Full Text Available In a mutant ES cells↔ wild-type embryo chimera, ES cells behave more like epiblastcells. They can contribute to the primitive ectoderm layers, which give rise to all theembryonic tissues and some extraembryonic tissues (Beddington and Robertson,1989, but not to trophectoderm or primitive endoderm. Using transgenic ES celllines, aggregated with cleavage stage host embryo, ES cells can integrate randomlyin the embryo proper. If they will be take part in the formation of ICM (inner cellmass, it will be possible to obtain germline chimera animals. To generate ES cells↔ cleavage stage host embryo chimeras, we used (CD-1 mice as donors of hostembryos as well as recipients of manipulated embryos. For chimera production, weused fluorescent-labeled ES cell line (CD1/EGFP, because in this case we canfollow the fate of ES cells during the embryonic development. We produced thechimers using “aggregation chimera technique”. 8 cells stage zona pellucida free,mouse embryos were aggregated in an aggregation plates, with a clump of ES cells(10 – 15 cells. The chimera embryos were cultivated for 24 hours in the incubator(at 37 °C, 5% CO2 in air. The chimera blastocysts resulted after cultivation, weretransferred to the uterus of the 2.5-dpc pseudo pregnant females.

  1. Plant regeneration from immature embryos of Kenyan maize inbred ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... their respective single cross hybrids were evaluated for their ability form callus, somatic embryos and .... Callus was induced from embryos excised from ears at. 10, 15, 18, 21 and ..... Plant Cell Tissue Organ Cult., 18: 143-151.

  2. Cost-effectiveness analysis of different embryo transfer strategies in England.

    Science.gov (United States)

    Dixon, S; Faghih Nasiri, F; Ledger, W L; Lenton, E A; Duenas, A; Sutcliffe, P; Chilcott, J B

    2008-05-01

    The objective of this study was to assess the cost-effectiveness of different embryo transfer strategies for a single cycle when two embryos are available, and taking the NHS cost perspective. Cost-effectiveness model. Five in vitro fertilisation (IVF) centres in England between 2003/04 and 2004/05. Women with two embryos available for transfer in three age groups (Costs and adverse outcomes are estimated up to 5 years after the birth. Incremental cost per live birth was calculated for different embryo transfer strategies and for three separate age groups: less than 30, 30-35 and 36-39 years. Premature birth, neonatal intensive care unit admissions and days, cerebral palsy and incremental cost-effectiveness ratios. Single fresh embryo transfer (SET) plus frozen single embryo transfer (fzSET) is the more costly in terms of IVF costs, but the lower rates of multiple births mean that in terms of total costs, it is less costly than double embryo transfer (DET). Adverse events increase when moving from SET to SET+fzSET to DET. The probability of SET+fzSET being cost-effective decreases with age. When SET is included in the analysis, SET+fzSET no longer becomes a cost-effective option at any threshold value for all age groups studied. The analyses show that the choice of embryo transfer strategy is a function of four factors: the age of the mother, the relevance of the SET option, the value placed on a live birth and the relative importance placed on adverse outcomes. For each patient group, the choice of strategy is a trade-off between the value placed on a live birth and cost.

  3. In vivo DNA mismatch repair measurement in zebrafish embryos and its use in screening of environmental carcinogens

    International Nuclear Information System (INIS)

    Chen, Yuanhong; Huang, Changjiang; Bai, Chenglian; Du, Changchun; Liao, Junhua; Dong, Qiaoxiang

    2016-01-01

    Highlights: • We developed an in vivo DNA mismatch repair (MMR) measurement assay in zebrafish embryos. • This assay involves microinjection of homo- and heteroduplex EGFP plasmids into zebrafish embryos. • This novel assay was validated with embryos from the MMR-deficient mlh1 mutant fish. • We successfully applied this assay for detecting environmental chemicals with carcinogenic effect. • This novel assay can be used for screening of environmental carcinogens. - Abstract: Impairment of DNA mismatch repair (MMR) function leads to the development and progression of certain cancers. Many environmental contaminants can target DNA MMR system. Currently, measurement of MMR activity is limited to in vitro or in vivo methods at the cell line level, and reports on measurement of MMR activity at the live organism level are lacking. Here, we report an efficient method to measure DNA MMR activity in zebrafish embryos. A G-T mismatch was introduced into enhanced green fluorescent protein (EGFP) gene. Repair of the G-T mismatch to G-C in the heteroduplex plasmid generates a functional EGFP expression. The heteroduplex plasmid and a similarly constructed homoduplex plasmid were injected in parallel into the same batch of embryos at 1-cell stage and EGFP expression in EGFP positive embryos was quantified at 24 h after injection. MMR efficiency was calculated as the total fluorescence intensity of embryos injected with the heteroduplex construct divided by that of embryos injected with the homoduplex construct. Our results showed 73% reduction of MMR activity in embryos derived from MMR-deficient mlh1 mutant fish (positive control) when compared with embryos from MMR-competent wild type AB line fish, indicating feasibility of in vivo MMR activity measurement in zebrafish embryos. We further applied this novel assay for measurement of MMR efficiency in embryos exposed to environmental chemicals such as cadmium chloride (CdCl_2), benzo[a]pyrene (BaP), and

  4. In vivo DNA mismatch repair measurement in zebrafish embryos and its use in screening of environmental carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuanhong [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China); Huang, Changjiang, E-mail: cjhuang5711@163.com [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China); Bai, Chenglian; Du, Changchun; Liao, Junhua [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China); Dong, Qiaoxiang, E-mail: dqxdong@163.com [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China); School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035 (China)

    2016-01-25

    Highlights: • We developed an in vivo DNA mismatch repair (MMR) measurement assay in zebrafish embryos. • This assay involves microinjection of homo- and heteroduplex EGFP plasmids into zebrafish embryos. • This novel assay was validated with embryos from the MMR-deficient mlh1 mutant fish. • We successfully applied this assay for detecting environmental chemicals with carcinogenic effect. • This novel assay can be used for screening of environmental carcinogens. - Abstract: Impairment of DNA mismatch repair (MMR) function leads to the development and progression of certain cancers. Many environmental contaminants can target DNA MMR system. Currently, measurement of MMR activity is limited to in vitro or in vivo methods at the cell line level, and reports on measurement of MMR activity at the live organism level are lacking. Here, we report an efficient method to measure DNA MMR activity in zebrafish embryos. A G-T mismatch was introduced into enhanced green fluorescent protein (EGFP) gene. Repair of the G-T mismatch to G-C in the heteroduplex plasmid generates a functional EGFP expression. The heteroduplex plasmid and a similarly constructed homoduplex plasmid were injected in parallel into the same batch of embryos at 1-cell stage and EGFP expression in EGFP positive embryos was quantified at 24 h after injection. MMR efficiency was calculated as the total fluorescence intensity of embryos injected with the heteroduplex construct divided by that of embryos injected with the homoduplex construct. Our results showed 73% reduction of MMR activity in embryos derived from MMR-deficient mlh1 mutant fish (positive control) when compared with embryos from MMR-competent wild type AB line fish, indicating feasibility of in vivo MMR activity measurement in zebrafish embryos. We further applied this novel assay for measurement of MMR efficiency in embryos exposed to environmental chemicals such as cadmium chloride (CdCl{sub 2}), benzo[a]pyrene (BaP), and

  5. The PAM-1 aminopeptidase regulates centrosome positioning to ensure anterior-posterior axis specification in one-cell C. elegans embryos.

    Science.gov (United States)

    Fortin, Samantha M; Marshall, Sara L; Jaeger, Eva C; Greene, Pauline E; Brady, Lauren K; Isaac, R Elwyn; Schrandt, Jennifer C; Brooks, Darren R; Lyczak, Rebecca

    2010-08-15

    In the one-cell Caenorhabditis elegans embryo, the anterior-posterior (A-P) axis is established when the sperm donated centrosome contacts the posterior cortex. While this contact appears to be essential for axis polarization, little is known about the mechanisms governing centrosome positioning during this process. pam-1 encodes a puromycin sensitive aminopeptidase that regulates centrosome positioning in the early embryo. Previously we showed that pam-1 mutants fail to polarize the A-P axis. Here we show that PAM-1 can be found in mature sperm and in cytoplasm throughout early embryogenesis where it concentrates around mitotic centrosomes and chromosomes. We provide further evidence that PAM-1 acts early in the polarization process by showing that PAR-1 and PAR-6 do not localize appropriately in pam-1 mutants. Additionally, we tested the hypothesis that PAM-1's role in polarity establishment is to ensure centrosome contact with the posterior cortex. We inactivated the microtubule motor dynein, DHC-1, in pam-1 mutants, in an attempt to prevent centrosome movement from the cortex and restore anterior-posterior polarity. When this was done, the aberrant centrosome movements of pam-1 mutants were not observed and anterior-posterior polarity was properly established, with proper localization of cortical and cytoplasmic determinants. We conclude that PAM-1's role in axis polarization is to prevent premature movement of the centrosome from the posterior cortex, ensuring proper axis establishment in the embryo. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Single-Cell Profiling of Epigenetic Modifiers Identifies PRDM14 as an Inducer of Cell Fate in the Mammalian Embryo

    Directory of Open Access Journals (Sweden)

    Adam Burton

    2013-11-01

    Full Text Available Cell plasticity or potency is necessary for the formation of multiple cell types. The mechanisms underlying this plasticity are largely unknown. Preimplantation mouse embryos undergo drastic changes in cellular potency, starting with the totipotent zygote through to the formation of the pluripotent inner cell mass (ICM and differentiated trophectoderm in the blastocyst. Here, we set out to identify and functionally characterize chromatin modifiers that define the transitions of potency and cell fate in the mouse embryo. Using a quantitative microfluidics approach in single cells, we show that developmental transitions are marked by distinctive combinatorial profiles of epigenetic modifiers. Pluripotent cells of the ICM are distinct from their differentiated trophectoderm counterparts. We show that PRDM14 is heterogeneously expressed in 4-cell-stage embryos. Forced expression of PRDM14 at the 2-cell stage leads to increased H3R26me2 and can induce a pluripotent ICM fate. Our results shed light on the epigenetic networks that govern cellular potency and identity in vivo.

  7. Elective single embryo transfer with cryopreservation improves the outcome and diminishes the costs of IVF/ICSI.

    Science.gov (United States)

    Veleva, Zdravka; Karinen, Petri; Tomás, Candido; Tapanainen, Juha S; Martikainen, Hannu

    2009-07-01

    Although elective single embryo transfer (eSET) minimizes the multiple birth rate after in vitro fertilization (IVF)/intra cytoplasmic sperm injection (ICSI), there remain concerns in many countries that it is less effective and more expensive than conventional double embryo transfer (DET). We compared the clinical outcome achieved in the years 1995-1999, in which eSET was rarely used (4.2% of women, DET period) with that of the years 2000-2004, in which eSET was more widely used (46.2%, eSET period). In the DET period, 826 women had 1359 fresh embryo cycles followed by 589 frozen-thawed embryo transfer (FET) cycles. In the eSET period, 684 women had 1027 fresh and 683 FET cycles. The cumulative term live birth rate/woman was the primary clinical outcome measure. An incremental cost-effectiveness ratio of a term live birth was also calculated based on hospital charges and medication prices of IVF/ICSI treatment. The cumulative pregnancy rate/oocytes pickup (38.2 versus 33.1%, P = 0.01), cumulative live birth rate/oocytes pickup (28.0 versus 22.5%, P = 0.002) and cumulative live birth rate/woman (41.7 versus 36.6%, P = 0.04) were all higher in the eSET period than in the DET period. The cumulative multiple birth rate was significantly lower in the eSET period than in the DET period (8.9 versus 19.6%, P < 0.0001). A term live birth in the eSET period was 19 889 euros less expensive than in the DET period. This study shows that eSET with cryopreservation is more effective and less expensive than DET and should be adopted as a treatment of choice.

  8. Digital microfluidic processing of mammalian embryos for vitrification.

    Directory of Open Access Journals (Sweden)

    Derek G Pyne

    Full Text Available Cryopreservation is a key technology in biology and clinical practice. This paper presents a digital microfluidic device that automates sample preparation for mammalian embryo vitrification. Individual micro droplets manipulated on the microfluidic device were used as micro-vessels to transport a single mouse embryo through a complete vitrification procedure. Advantages of this approach, compared to manual operation and channel-based microfluidic vitrification, include automated operation, cryoprotectant concentration gradient generation, and feasibility of loading and retrieval of embryos.

  9. Ultrastructural observations of lethal yellow (A/sup y//A/sup y/) mouse embryos

    Energy Technology Data Exchange (ETDEWEB)

    Calarco, P G; Pedersen, R A

    1976-01-01

    A/sup y//A/sup y/ embryos were identified by the presence of large excluded blastomeres (Pedersen, 1974) and examined cytologically and ultrastructurally. Cell organelles, inclusions and junctions in the excluded blastomeres were compared with those of non-excluded cells of A/sup y//A/sup y/ embryos and control embryos. Excluded blastomeres always had the fine structural characteristics of earlier developmental stages and may have arrested at the 4- to 8-cell stage or slightly later. Interior cells (inner cell mass) were observed in all mutant blastocysts. Nonexcluded cells of A/sup y//A/sup y/ embryos were normal until degenerative changes appear in the late blastocyst stage. The mode of action of the +/sup A/sup y/ gene was not determined, but evidence from this study and others indicates that the effects of +/sup A/sup y/ gene action occur over a wide range of time in early cleavage and implantation.

  10. NMR studies of preimplantation embryo metabolism in human assisted reproductive techniques: a new biomarker for assessment of embryo implantation potential.

    Science.gov (United States)

    Pudakalakatti, Shivanand M; Uppangala, Shubhashree; D'Souza, Fiona; Kalthur, Guruprasad; Kumar, Pratap; Adiga, Satish Kumar; Atreya, Hanudatta S

    2013-01-01

    There has been growing interest in understanding energy metabolism in human embryos generated using assisted reproductive techniques (ART) for improving the overall success rate of the method. Using NMR spectroscopy as a noninvasive tool, we studied human embryo metabolism to identify specific biomarkers to assess the quality of embryos for their implantation potential. The study was based on estimation of pyruvate, lactate and alanine levels in the growth medium, ISM1, used in the culture of embryos. An NMR study involving 127 embryos from 48 couples revealed that embryos transferred on Day 3 (after 72 h in vitro culture) with successful implantation (pregnancy) exhibited significantly (p < 10(-5) ) lower pyruvate/alanine ratios compared to those that failed to implant. Lactate levels in media were similar for all embryos. This implies that in addition to lactate production, successfully implanted embryos use pyruvate to produce alanine and other cellular functions. While pyruvate and alanine individually have been used as biomarkers, the present study highlights the potential of combining them to provide a single parameter that correlates strongly with implantation potential. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Development and application of giant embryo rice of functional special type-MhgeR

    International Nuclear Information System (INIS)

    Zhang Qingqi; Zhang Shubiao; Huang Ronghua; Zheng Baodong; Yang Rencui

    2009-01-01

    Induced mutants MhgeR with embryo were directly obtained with 60 Co γ-rays irradiation on restorer line M86. Compared with M86, MhgeR had similar plant tapes and agricultural characteristics and increased in the absolute and relative embryo weight, from 0.68 mg to 1.19 mg and 2.70% to 5.50%, respectively, but decreased in the 1000 grain weight and yield. Compared with M86, MhgeR contained higher protein (9.94%), crude fat (6.08%), crude fibre (1.21%) and γ- aminobutyric acid (GABA) (6.16 mg/100g) and it had an increase in the contents of 8 kinds of essential free amino acids and 7 kinds of mineral element. In addition, the breeding technology and product development for giant embryo rice were discussed. (authors)

  12. Mid-embryo patterning and precision in Drosophila segmentation: Krüppel dual regulation of hunchback.

    Directory of Open Access Journals (Sweden)

    David M Holloway

    Full Text Available In early development, genes are expressed in spatial patterns which later define cellular identities and tissue locations. The mechanisms of such pattern formation have been studied extensively in early Drosophila (fruit fly embryos. The gap gene hunchback (hb is one of the earliest genes to be expressed in anterior-posterior (AP body segmentation. As a transcriptional regulator for a number of downstream genes, the spatial precision of hb expression can have significant effects in the development of the body plan. To investigate the factors contributing to hb precision, we used fine spatial and temporal resolution data to develop a quantitative model for the regulation of hb expression in the mid-embryo. In particular, modelling hb pattern refinement in mid nuclear cleavage cycle 14 (NC14 reveals some of the regulatory contributions of simultaneously-expressed gap genes. Matching the model to recent data from wild-type (WT embryos and mutants of the gap gene Krüppel (Kr indicates that a mid-embryo Hb concentration peak important in thoracic development (at parasegment 4, PS4 is regulated in a dual manner by Kr, with low Kr concentration activating hb and high Kr concentration repressing hb. The processes of gene expression (transcription, translation, transport are intrinsically random. We used stochastic simulations to characterize the noise generated in hb expression. We find that Kr regulation can limit the positional variability of the Hb mid-embryo border. This has been recently corroborated in experimental comparisons of WT and Kr- mutant embryos. Further, Kr regulation can decrease uncertainty in mid-embryo hb expression (i.e. contribute to a smooth Hb boundary and decrease between-copy transcriptional variability within nuclei. Since many tissue boundaries are first established by interactions between neighbouring gene expression domains, these properties of Hb-Kr dynamics to diminish the effects of intrinsic expression noise may

  13. The Brakeless co-regulator can directly activate and repress transcription in early Drosophila embryos.

    Science.gov (United States)

    Crona, Filip; Holmqvist, Per-Henrik; Tang, Min; Singla, Bhumica; Vakifahmetoglu-Norberg, Helin; Fantur, Katrin; Mannervik, Mattias

    2015-11-01

    The Brakeless protein performs many important functions during Drosophila development, but how it controls gene expression is poorly understood. We previously showed that Brakeless can function as a transcriptional co-repressor. In this work, we perform transcriptional profiling of brakeless mutant embryos. Unexpectedly, the majority of affected genes are down-regulated in brakeless mutants. We demonstrate that genomic regions in close proximity to some of these genes are occupied by Brakeless, that over-expression of Brakeless causes a reciprocal effect on expression of these genes, and that Brakeless remains an activator of the genes upon fusion to an activation domain. Together, our results show that Brakeless can both repress and activate gene expression. A yeast two-hybrid screen identified the Mediator complex subunit Med19 as interacting with an evolutionarily conserved part of Brakeless. Both down- and up-regulated Brakeless target genes are also affected in Med19-depleted embryos, but only down-regulated targets are influenced in embryos depleted of both Brakeless and Med19. Our data provide support for a Brakeless activator function that regulates transcription by interacting with Med19. We conclude that the transcriptional co-regulator Brakeless can either activate or repress transcription depending on context. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. MiRNA-mediated regulation of cell signaling and homeostasis in the early mouse embryo.

    Science.gov (United States)

    Pernaute, Barbara; Spruce, Thomas; Rodriguez, Tristan A; Manzanares, Miguel

    2011-02-15

    At the time of implantation the mouse embryo is composed of three tissues the epiblast, trophectoderm and primitive endoderm. As development progresses the epiblast goes on to form the foetus whilst the trophectoderm and primitive endoderm give rise to extra-embryonic structures with important roles in embryo patterning and nutrition. Dramatic changes in gene expression occur during early embryo development and these require regulation at different levels. miRNAs are small non coding RNAs that have emerged over the last decade as important post-transcriptional repressors of gene expression. The roles played by miRNAs during early mammalian development are only starting to be elucidated. In order to gain insight into the function of miRNAs in the different lineages of the early mouse embryo we have analysed in depth the phenotype of embryos and extra-embryonic stem cells mutant for the miRNA maturation protein Dicer. This study revealed that miRNAs are involved in regulating cell signaling and homeostasis in the early embryo. Specifically, we identified a role for miRNAs in regulating the Erk signaling pathway in the extra-embryonic endoderm, cell cycle progression in extra-embryonic tissues and apoptosis in the epiblast.

  15. A modifier screen for Bazooka/PAR-3 interacting genes in the Drosophila embryo epithelium.

    Directory of Open Access Journals (Sweden)

    Wei Shao

    2010-04-01

    Full Text Available The development and homeostasis of multicellular organisms depends on sheets of epithelial cells. Bazooka (Baz; PAR-3 localizes to the apical circumference of epithelial cells and is a key hub in the protein interaction network regulating epithelial structure. We sought to identify additional proteins that function with Baz to regulate epithelial structure in the Drosophila embryo.The baz zygotic mutant cuticle phenotype could be dominantly enhanced by loss of known interaction partners. To identify additional enhancers, we screened molecularly defined chromosome 2 and 3 deficiencies. 37 deficiencies acted as strong dominant enhancers. Using deficiency mapping, bioinformatics, and available single gene mutations, we identified 17 interacting genes encoding known and predicted polarity, cytoskeletal, transmembrane, trafficking and signaling proteins. For each gene, their loss of function enhanced adherens junction defects in zygotic baz mutants during early embryogenesis. To further evaluate involvement in epithelial polarity, we generated GFP fusion proteins for 15 of the genes which had not been found to localize to the apical domain previously. We found that GFP fusion proteins for Drosophila ASAP, Arf79F, CG11210, Septin 5 and Sds22 could be recruited to the apical circumference of epithelial cells. Nine of the other proteins showed various intracellular distributions, and one was not detected.Our enhancer screen identified 17 genes that function with Baz to regulate epithelial structure in the Drosophila embryo. Our secondary localization screen indicated that some of the proteins may affect epithelial cell polarity by acting at the apical cell cortex while others may act through intracellular processes. For 13 of the 17 genes, this is the first report of a link to baz or the regulation of epithelial structure.

  16. Methanol as a cryoprotectant for equine embryos.

    Science.gov (United States)

    Bass, L D; Denniston, D J; Maclellan, L J; McCue, P M; Seidel, G E; Squires, E L

    2004-09-15

    Equine embryos (n=43) were recovered nonsurgically 7-8 days after ovulation and randomly assigned to be cryopreserved in one of two cryoprotectants: 48% (15M) methanol (n=22) or 10% (136 M) glycerol (n=21). Embryos (300-1000 microm) were measured at five intervals after exposure to glycerol (0, 2, 5, 10 and 15 min) or methanol (0, 15, 35, 75 and 10 min) to determine changes (%) in diameter over time (+/-S.D.). Embryos were loaded into 0.25-ml plastic straws, sealed, placed in a programmable cell freezer and cooled from room temperature (22 degrees C) to -6 degrees C. Straws were then seeded, held at -6 degrees C for 10 min and then cooled to -33 degrees C before being plunged into liquid nitrogen. Two or three embryos within a treatment group were thawed and assigned to be either cultured for 12 h prior to transfer or immediately nonsurgically transferred to a single mare. Embryo diameter decreased in all embryos upon initial exposure to cryoprotectant. Embryos in methanol shrank and recovered slightly to 76+/-8 % of their original diameter; however, embryos in glycerol continued to shrink, reaching 57+/-6 % of their original diameter prior to cryopreservation. Survival rates of embryos through Day 16 of pregnancy were 38 and 23%, respectively (P>0.05) for embryos cryopreserved in the presence of glycerol or methanol. There was no difference in pregnancy rates of mares receiving embryos that were cultured prior to transfer or not cultured (P>0.05). Preliminary experiments indicated that 48% methanol was not toxic to fresh equine embryos but methanol provided no advantage over glycerol as a cryoprotectant for equine blastocysts.

  17. Patients' Preference for Number of Embryos Transferred During IVF ...

    African Journals Online (AJOL)

    Background: The Human Fertilization and Embryology Authority is considering limiting the number of embryos that can be transferred to single embryo per cycle as has been done in several European countries, with the aim of reducing the rate of multiple pregnancies and its attendant complications following in vitro ...

  18. Is a Blanket Elective Single Embryo Transfer Policy Defensible?

    Directory of Open Access Journals (Sweden)

    Eli Y. Adashi

    2017-04-01

    Full Text Available For the purpose of reducing maternal and neonatal morbidity, elective single transfer (eSET in in vitro fertilization (IVF was first proposed in 1999. The purpose of this review is to summarize recent oral debate between a proponent and an opponent of expanded eSET utilization in an attempt to determine whether a blanket eSET policy, as is increasingly considered, is defensible. While eSET is preferable when possible, and agreed upon by provider and patient, selective double embryo transfer (DET must be seriously entertained if deemed more appropriate or is desired by the patient. Patient autonomy, let alone prolonged infertility and advancing age, demand nothing less. Importantly, IVF-generated twins represent only 15.7% of the national twin birth rate in the United States. Non-IVF fertility treatments have been identified as the main cause of all multiple births for quite some time. However, educational and regulatory efforts over the last decade, paradoxically, have exclusively only been directed at the practice of IVF, although IVF patient populations are rapidly aging. It is difficult to understand why non-IVF fertility treatments, usually applied to younger women, have so far escaped attention. This debate on eSET utilization in association with IVF may contribute to a redirection of priorities.

  19. Effects of alpha particles on zebrafish embryos

    International Nuclear Information System (INIS)

    Yum, E.H.W.; Choi, V.W.Y.; Yu, K.N.; Li, V.W.T.; Cheng, S.H.

    2008-01-01

    Full text: Ionizing radiation such as X-ray and alpha particles can damage cellular macromolecules, which can lead to DNA single- and double-strand breaks. In the present work, we studied the effects of alpha particles on dechorionated zebrafish embryos. Thin polyallyldiglycol carbonate (PADC) films with a thickness of 16 μm were prepared from commercially available PADC films (with thickness of 100 μm) by chemical etching and used as support substrates for holding zebrafish embryos for alpha-particle irradiation. These films recorded alpha-particle hit positions, quantified the number and energy of alpha particles actually incident on the embryo cells, and thus enabled the calculation of the dose absorbed by the embryo cells. Irradiation was made at 1.25 hours post fertilization (hpf) with various absorbed dose. TdT-mediated dUTP Nick-End Labeling (TUNEL) assay was performed on the embryos at different time stages after irradiation. Marked apoptosis was detected only in embryos at earlier time stages. The results showed that DNA double-strand break during zebrafish embryogenesis can be induced by alpha-particle irradiation, which suggests that zebrafish is a potential model for assessing the effects of alpha-particle radiation

  20. Effect of the microenvironment and embryo density on developmental characteristics and gene expression profile of bovine preimplantative embryos cultured in vitro.

    Science.gov (United States)

    Hoelker, Michael; Rings, Franka; Lund, Qamaruddin; Ghanem, Nasser; Phatsara, Chirawath; Griese, Josef; Schellander, Karl; Tesfaye, Dawit

    2009-03-01

    The Well of the Well (WOW) system has been developed to culture embryos in small groups or to track the development of single embryos. In the present study, we aimed to examine the effects of the microenvironment provided by the WOW system and embryo density on developmental rates, embryo quality and preimplantative gene expression profile of the resulting embryos. Embryos cultured in a group of 16 reached the blastocyst stage at a significantly lower level than zygotes cultured in a group of 50 (22.2 vs 30.3%), whereas zygotes cultured in WOW were able to compensate against low embryo densities, reaching a blastocyst rate as high as embryos cultured in a group of 50 (31.3 vs 30.3%). Moreover, embryos derived from WOW culture did not differ in terms of differential cell counts and apoptotic cell index compared with controls. The gene expression analysis revealed 62 transcripts to be upregulated and 33 transcripts to be downregulated by WOW culture. Comparing the in vivo derived blastocysts with the blastocysts derived from WOW culture, and group culture, expression of ATP5A1, PLAC8 and KRT8 was more similar to the embryos derived from WOW culture, whereas expression of S100A10 and ZP3 genes was more similar to blastocysts cultured in a group. In conclusion, microenvironment as well as embryo density significantly affected developmental rates. While subsequent blastocysts did not differ in terms of differential cell counts and apoptotic cell index, significant differences were observed in terms of the relative abundance of transcripts in the resulting embryos.

  1. Evaluating the Zebrafish Embryo Toxicity Test for Pesticide ...

    Science.gov (United States)

    Given the numerous chemicals used in society, it is critical to develop tools for accurate and efficient evaluation of potential risks to human and ecological receptors. Fish embryo acute toxicity tests are 1 tool that has been shown to be highly predictive of standard, more resource-intensive, juvenile fish acute toxicity tests. However, there is also evidence that fish embryos are less sensitive than juvenile fish for certain types of chemicals, including neurotoxicants. The utility of fish embryos for pesticide hazard assessment was investigated by comparing published zebrafish embryo toxicity data from pesticides with median lethal concentration 50% (LC50) data for juveniles of 3 commonly tested fish species: rainbow trout, bluegill sunfish, and sheepshead minnow. A poor, albeit significant, relationship (r2 = 0.28; p embryo and juvenile fish toxicity when pesticides were considered as a single group, but a much better relationship (r2 = 0.64; p embryo toxicity test endpoints are particularly insensitive to neurotoxicants. These results indicate that it is still premature to replace juvenile fish toxicity tests with embryo-based tests such as the Organisation for Economic Co-op

  2. The Construction of cDNA Libraries from Human Single Preimplantation Embryos and Their Use in the Study of Gene Expression During Development

    OpenAIRE

    Adjaye, James; Daniels, Rob; Monk, Marilyn

    1998-01-01

    Purpose:The construction and application of polymerase chain reaction (PCR)-based cDNA libraries from unfertilized human oocytes and single preimplantation-stage embryos are described. The purpose of these studies is to provide a readily available resource for the study of gene expression during human preimplantation development.

  3. HIGHLY METHYL ESTERIFIED SEEDS is a pectin methyl esterase involved in embryo development.

    Science.gov (United States)

    Levesque-Tremblay, Gabriel; Müller, Kerstin; Mansfield, Shawn D; Haughn, George W

    2015-03-01

    Homogalacturonan pectin domains are synthesized in a highly methyl-esterified form that later can be differentially demethyl esterified by pectin methyl esterase (PME) to strengthen or loosen plant cell walls that contain pectin, including seed coat mucilage, a specialized secondary cell wall of seed coat epidermal cells. As a means to identify the active PMEs in seed coat mucilage, we identified seven PMEs expressed during seed coat development. One of these, HIGHLY METHYL ESTERIFIED SEEDS (HMS), is abundant during mucilage secretion, peaking at 7 d postanthesis in both the seed coat and the embryo. We have determined that this gene is required for normal levels of PME activity and homogalacturonan methyl esterification in the seed. The hms-1 mutant displays altered embryo morphology and mucilage extrusion, both of which are a consequence of defects in embryo development. A significant decrease in the size of cells in the embryo suggests that the changes in embryo morphology are a consequence of lack of cell expansion. Progeny from a cross between hms-1 and the previously characterized PME inhibitor5 overexpression line suggest that HMS acts independently from other cell wall-modifying enzymes in the embryo. We propose that HMS is required for cell wall loosening in the embryo to facilitate cell expansion during the accumulation of storage reserves and that its role in the seed coat is masked by redundancy. © 2015 American Society of Plant Biologists. All Rights Reserved.

  4. Viability of bovine demi embryo after splitting of fresh and frozen thawed embryo derived from in vitro embryo production

    Directory of Open Access Journals (Sweden)

    M Imron

    2007-06-01

    Full Text Available In vivo embryo production was limited by number of donor, wide variability respond due to superovulation program and also immunoactifity of superovulation hormone (FSH. Splitting technology could be an alternative to increase the number of transferrable embryos into recipien cows. Splitting is done with cutting embryo becoming two equal pieces (called demi embrio base on ICM orientation. The objective of this research was to determine the viability of demi embryo obtained from embryo splitting of fresh and frozen thawed embryo. The results showed that demi embryos which performed blastocoel reexpansion 3 hours after embryo splitting using fresh and frozen thawed embryos were 76.9 and 76.2% respectively. Base on existention of inner cell mass (ICM, the number of demi embryos developed with ICM from fresh and frozen thawed embryos were not significantly different (90.6 and 85.7% respectively. The cell number of demi embryo from fresh embryos splitting was not different compared with those from frozen thawed embryos (36.1 and 35.9 respectively. These finding indicated that embryo splitting can be applied to frozen thawed embryos with certain condition as well as fresh embryos.

  5. In vitro testing of defense reactions in zygotic and somatic embryos of Abies numidica

    Directory of Open Access Journals (Sweden)

    Jiří Hřib

    2011-01-01

    Full Text Available Defense of desiccated cotyledonary somatic embryos and mature zygotic embryos of Abies numidica was tested in vitro by dual cultures with tester, fungus Phaeolus schweinitzii. Both types of embryos expressed defense reactions manifested by inhibited growth of fungal tester towards the embryos. Mycelial growth was described by logistic sigmoid growth model with a single asymptote. Mutual comparisons of mycelial growth in presence of zygotic and somatic embryos showed significant differences in parameters of mycelium growth curves towards the embryos. Larger defense reactions were observed in zygotic embryos relative to somatic embryos and unlimited control cultivations without embryo. The possible role of auxin in the defense response of plant embryos is discussed.

  6. Untwisting the Caenorhabditis elegans embryo

    Science.gov (United States)

    Christensen, Ryan Patrick; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina-Solis, Javier; Guo, Min; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter W; Tashakkori, Nicole; McCreedy, Evan; Liu, Huafeng; McAuliffe, Matthew; Mohler, William; Colón-Ramos, Daniel A; Bao, Zhirong; Shroff, Hari

    2015-01-01

    The nematode Caenorhabditis elegans possesses a simple embryonic nervous system with few enough neurons that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open-source untwisting and annotation software (http://mipav.cit.nih.gov/plugin_jws/mipav_worm_plugin.php) that allows the investigation of neurodevelopmental events in late embryogenesis and apply it to track the 3D positions of seam cell nuclei, neurons, and neurites in multiple elongating embryos. We also provide a tutorial describing how to use the software (Supplementary file 1) and a detailed description of the untwisting algorithm (Appendix). The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an 'average' worm embryo. The untwisting and cell tracking capabilities of our method provide a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis. DOI: http://dx.doi.org/10.7554/eLife.10070.001 PMID:26633880

  7. Untwisting the Caenorhabditis elegans embryo.

    Science.gov (United States)

    Christensen, Ryan Patrick; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina-Solis, Javier; Guo, Min; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter W; Tashakkori, Nicole; McCreedy, Evan; Liu, Huafeng; McAuliffe, Matthew; Mohler, William; Colón-Ramos, Daniel A; Bao, Zhirong; Shroff, Hari

    2015-12-03

    The nematode Caenorhabditis elegans possesses a simple embryonic nervous system with few enough neurons that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open-source untwisting and annotation software (http://mipav.cit.nih.gov/plugin_jws/mipav_worm_plugin.php) that allows the investigation of neurodevelopmental events in late embryogenesis and apply it to track the 3D positions of seam cell nuclei, neurons, and neurites in multiple elongating embryos. We also provide a tutorial describing how to use the software (Supplementary file 1) and a detailed description of the untwisting algorithm (Appendix). The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an 'average' worm embryo. The untwisting and cell tracking capabilities of our method provide a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis.

  8. Genetical, cytological and physiological studies on the induced mutants with special regard to effective methods for obtaining useful mutants in perennial woody plant

    International Nuclear Information System (INIS)

    Kukimura, H.; Ikeda, F.; Fujita, H.; Maeta, T.; Nakajima, K.; Katagiri, K.; Nakahira, K.; Somegou, M.

    1976-01-01

    The plants studied included apple trees, cryptomeria (japanese cedar) and mulberry. In apple, dwarf and compact types of mutants from cv. Fuji were found to be graft incompatible on Maruba-kaido(Malus prunifolia) rootstock. In Sunki mandarin(Citrus sunki), the number of nucellar embryo per seed was affected by gamma-irradiation, and morphological mutants from nucellar seedlings were obtained at high rate by irradiation at floral bud stage with 2kR exposure. In Cryptomeria, re-irradiated waxless mutants by gamma-rays showed very high rate of somatic mutation when compared to other morphological mutants. Pollen sterility and pollen shaped PMC were found in the most of gamma-induced-mutants. Mutants forming pollen shaped PMC had a genetical tendency of continuous male flower bud formation for a longer term. With mulberry, time of sprouting of induced mutants differed from the originals. Ability of root initiation of semi-softwood cuttings in morphological mutants were tested. Cytochimera induction were found at considerably high rate when actively growing diploid plants were irradiated by gamma-rays. Eight kinds of cytochimeras were induced. Frequency of 2-4-4 was extremely high(approx. 50%), then 4-2-2 and 2-4-2 chimeras followed. Seven kinds were induced by semi-acute irradiation(200R/h), while 4 kinds by acute irradiation(5kR/h). By breeding test it was cleared that the elongate and entire leaf was sexually transmissible, whereas the 'dwarf' was not obvious and the 'marginally curledleaf' was not transmissible. Pyronin-methylgreen staining method proved to be useful in some morphological mutants to distinguish the histo-genetical differences which exist in the shoot apex.

  9. A study of eukaryotic response mechanisms to atmospheric pressure cold plasma by using Saccharomyces cerevisiae single gene mutants

    International Nuclear Information System (INIS)

    Feng Hongqing; Wang Ruixue; Sun Peng; Wu Haiyan; Liu Qi; Li Fangting; Fang Jing; Zhang Jue; Zhu Weidong

    2010-01-01

    The mechanisms of eukaryotic cell response to cold plasma are studied. A series of single gene mutants of eukaryotic model organism Saccharomyces cerevisiae are used to compare their sensitivity to plasma treatment with the wild type. We examined 12 mutants in the oxidative stress pathway and the cell cycle pathway, in which 8 are found to be hypersensitive to plasma processing. The mutated genes' roles in the two pathways are analyzed to understand the biological response mechanisms of plasma treatment. The results demonstrate that genes from both pathways are needed for the eukaryotic cells to survive the complex plasma treatment.

  10. Embryo Aggregation in Pig Improves Cloning Efficiency and Embryo Quality.

    Science.gov (United States)

    Buemo, Carla Paola; Gambini, Andrés; Moro, Lucia Natalia; Hiriart, María Inés; Fernández-Martín, Rafael; Collas, Philippe; Salamone, Daniel Felipe

    2016-01-01

    In this study, we analyzed the effects of the cloned embryo aggregation on in vitro embryo development and embryo quality by measuring blastocyst diameter and cell number, DNA fragmentation levels and the expression of genes associated with pluripotency, apoptosis, trophoblast and DNA methylation in the porcine. Zona-free reconstructed cloned embryos were cultured in the well of the well system, placing one (1x non aggregated group) or three (3x group) embryos per microwell. Our results showed that aggregation of three embryos increased blastocyst formation rate and blastocyst diameter of cloned pig embryos. DNA fragmentation levels in 3x aggregated cloned blastocysts were significantly decreased compared to 1x blastocysts. Levels of Oct4, Klf4, Igf2, Bax and Dnmt 1 transcripts were significantly higher in aggregated embryos, whereas Nanog levels were not affected. Transcripts of Cdx2 and Bcl-xl were essentially non-detectable. Our study suggests that embryo aggregation in the porcine may be beneficial for cloned embryo development and embryo quality, through a reduction in apoptotic levels and an improvement in cell reprogramming.

  11. O-polysaccharide is important for Salmonella Pullorum survival in egg albumen, and virulence and colonization in chicken embryos.

    Science.gov (United States)

    Guo, Rongxian; Li, Zhuoyang; Jiao, Yang; Geng, Shizhong; Pan, Zhiming; Chen, Xiang; Li, Qiuchun; Jiao, Xinan

    2017-10-01

    The pathogen Salmonella Pullorum is the causative agent of persistent systemic infection of poultry, leading to economic losses in developing countries due to morbidity, mortality and reduction in egg production. These infections may result in vertical transmission to eggs or progeny. Limited information is available regarding the mechanisms involved in the survival of Salmonella Pullorum in egg albumen and developing chicken embryos. Hence, we investigated the role of O-polysaccharide in the contamination of eggs and the colonization of chicken embryos. Compared with the wild-type strain, the isogenic waaL mutant exhibited an O-antigen-deficient rough phenotype, and increased sensitivity to egg albumen and chicken serum, as well as reduced adherence to DF-1 cells. Infection with Salmonella Pullorum lacking O-polysaccharide resulted in significantly reduced embryo lethality and bacterial colonization. These results suggest that O-polysaccharide is essential for Salmonella Pullorum colonization in eggs, both post-lay and developing embryos. The chicken embryo infection model could be used to characterize the interaction between Salmonella Pullorum and developing embryos, and it will also contribute to the development of more rational vaccines to protect laying hens and embryos.

  12. Evaluation of an effective multifaceted implementation strategy for elective single-embryo transfer after in vitro fertilization.

    Science.gov (United States)

    Kreuwel, I A M; van Peperstraten, A M; Hulscher, M E J L; Kremer, J A M; Grol, R P T M; Nelen, W L D M; Hermens, R P M G

    2013-02-01

    What is the relationship between the rate of elective single-embryo transfer (eSET) and couples' exposure to different elements of a multifaceted implementation strategy? Additional elements in a multifaceted implementation strategy do not result in an increased eSET rate. A multifaceted eSET implementation strategy with four different elements is effective in increasing the eSET rate by 11%. It is unclear whether every strategy element contributes equally to the strategy's effectiveness. An observational study was performed among 222 subfertile couples included in a previously performed randomized controlled trial. Of the 222 subfertile couples included, 109 couples received the implementation strategy and 113 couples received standard IVF care. A multivariate regression analysis assessed the effectiveness of four different strategy elements on the decision about the number embryos to be transferred. Questionnaires evaluated the experiences of couples with the different elements. Of the couples who received the implementation strategy, almost 50% (52/109) were exposed to all the four elements of the strategy. The remaining 57 couples who received two or three elements of the strategy could be divided into two further classes of exposure. Our analysis demonstrated that additional elements do not result in an increased eSET rate. In addition to the physician's advice, couples rated a decision aid and a counselling session as more important for their decision to transfer one or two embryos, compared with a phone call and a reimbursement offer (P implementation strategy does not always result in an increased effectiveness, which is in concordance with recent literature. This in-depth evaluation of a multifaceted intervention strategy could therefore help to modify strategies, by making them more effective and less expensive.

  13. Embryo genome profiling by single-cell sequencing for successful preimplantation genetic diagnosis in a family harboring COL4A1 c.1537G>A; p.G513S mutation

    Directory of Open Access Journals (Sweden)

    Nayana H Patel

    2016-01-01

    Full Text Available CONTEXT: Genetic profiling of embryos (also known as preimplantation genetic diagnosis before implantation has dramatically enhanced the success quotient of in vitro fertilization (IVF in recent times. The technology helps in avoiding selective pregnancy termination since the baby is likely to be free of the disease under consideration. AIM: Screening of embryos free from c.1537G>A; p.G513S mutation within the COL4A1 gene for which the father was known in before be in heterozygous condition. SUBJECTS AND METHODS: Processing of trophectoderm biopsies was done from twelve embryos for c.1537G>A; p.G513S mutation within the COL4A1 gene. DNA extracted from isolated cells were subjected to whole genome amplification using an isothermal amplification and strand displacement technology. Oligonucleotide primers bracketing the mutation were synthesized and used to amplify 162 base pairs (bp polymerase chain reaction amplicons originating from each embryo which were subsequently sequenced to detect the presence or absence of the single base polymorphism. RESULTS: Three out of 12 embryos interrogated in this study were found to be normal while 9 were found to harbor the mutation in heterozygous condition. Implantation of one of the normal embryos following by chorionic villus sampling at 11 th week of pregnancy indicated that the baby was free from c.1537G>A; p.G513S mutation within the COL4A1 gene. CONCLUSIONS: Single-cell sequencing is a helpful tool for preimplantation embryo profiling. This is the first report from India describing the birth of a normal child through IVF procedure where a potential pathogenic COL4A1 allele was avoided using this technology.

  14. Study of Charge-Dependent Transport and Toxicity of Peptide-Functionalized Silver Nanoparticles Using Zebrafish Embryos and Single Nanoparticle Plasmonic Spectroscopy

    Science.gov (United States)

    Lee, Kerry J.; Browning, Lauren M.; Nallathamby, Prakash D.; Xu, Xiao-Hong Nancy

    2013-01-01

    Nanomaterials possess unusually high surface area-to-volume ratios, and surface-determined physicochemical properties. It is essential to understand their surface-dependent toxicity in order to rationally design biocompatible nanomaterials for a wide variety of applications. In this study, we have functionalized the surfaces of silver nanoparticles (Ag NPs, 11.7 ± 2.7 nm in diameters) with three biocompatible peptides (CALNNK, CALNNS, CALNNE) to prepare positively (Ag-CALNNK NPs+ζ), negatively (Ag-CALNNS NPs−2ζ), and more negatively charged NPs (Ag-CALNNE NPs−4ζ), respectively. Each peptide differs in a single amino acid at its C-terminus, which minimizes the effects of peptide sequences and serves as a model molecule to create positive, neutral and negative charges on the surface of the NPs at pH 4–10. We have studied their charge-dependent transport into early-developing (cleavage-stage) zebrafish embryos and their effects on embryonic development using dark-field optical microscopy and spectroscopy (DFOMS). We found that all three Ag-peptide NPs passively diffused into the embryos via their chorionic pore canals, and stayed inside the embryos throughout their entire development (120 h), showing charge-independent diffusion modes and charge-dependent diffusion coefficients. Notably, the NPs create charge-dependent toxic effects on embryonic development, showing that the Ag-CALNNK NPs+ζ (positively charged) are the most biocompatible while the Ag-CALNNE NPs–4ζ (more negatively charged) are the most toxic. By comparing with our previous studies of the same sized citrated Ag and Au NPs, the Ag-peptide NPs are much more biocompatible than the citrated Ag NPs, and nearly as biocompatible as the Au NPs, showing the dependence of nanotoxicity upon the surface charges, surface functional groups and chemical compositions of the NPs. This study also demonstrates powerful applications of single NP plasmonic spectroscopy for quantitative analysis of single NPs

  15. Pathogenesis of Candida albicans infections in the alternative chorio-allantoic membrane chicken embryo model resembles systemic murine infections.

    Directory of Open Access Journals (Sweden)

    Ilse D Jacobsen

    Full Text Available Alternative models of microbial infections are increasingly used to screen virulence determinants of pathogens. In this study, we investigated the pathogenesis of Candida albicans and C. glabrata infections in chicken embryos infected via the chorio-allantoic membrane (CAM and analyzed the virulence of deletion mutants. The developing immune system of the host significantly influenced susceptibility: With increasing age, embryos became more resistant and mounted a more balanced immune response, characterized by lower induction of proinflammatory cytokines and increased transcription of regulatory cytokines, suggesting that immunopathology contributes to pathogenesis. While many aspects of the chicken embryo response resembled murine infections, we also observed significant differences: In contrast to systemic infections in mice, IL-10 had a beneficial effect in chicken embryos. IL-22 and IL-17A were only upregulated after the peak mortality in the chicken embryo model occurred; thus, the role of the Th17 response in this model remains unclear. Abscess formation occurs frequently in murine models, whereas the avian response was dominated by granuloma formation. Pathogenicity of the majority of 15 tested C. albicans deletion strains was comparable to the virulence in mouse models and reduced virulence was associated with significantly lower transcription of proinflammatory cytokines. However, fungal burden did not correlate with virulence and for few mutants like bcr1Δ and tec1Δ different outcomes in survival compared to murine infections were observed. C. albicans strains locked in the yeast stage disseminated significantly more often from the CAM into the embryo, supporting the hypothesis that the yeast morphology is responsible for dissemination in systemic infections. These data suggest that the pathogenesis of C. albicans infections in the chicken embryo model resembles systemic murine infections but also differs in some aspects. Despite

  16. Small Molecule Injection into Single-Cell C. elegans Embryos via Carbon-Reinforced Nanopipettes

    Science.gov (United States)

    Morton, Diane G.; Fellman, Shanna M.; Chung, SueYeon; Soltani, Mohammad; Kevek, Joshua W.; McEuen, Paul M.; Kemphues, Kenneth J.; Wang, Michelle D.

    2013-01-01

    The introduction of chemical inhibitors into living cells at specific times in development is a useful method for investigating the roles of specific proteins or cytoskeletal components in developmental processes. Some embryos, such as those of Caenorhabditis elegans, however, possess a tough eggshell that makes introducing drugs and other molecules into embryonic cells challenging. We have developed a procedure using carbon-reinforced nanopipettes (CRNPs) to deliver molecules into C. elegans embryos with high temporal control. The use of CRNPs allows for cellular manipulation to occur just subsequent to meiosis II with minimal damage to the embryo. We have used our technique to replicate classical experiments using latrunculin A to inhibit microfilaments and assess its effects on early polarity establishment. Our injections of latrunculin A confirm the necessity of microfilaments in establishing anterior-posterior polarity at this early stage, even when microtubules remain intact. Further, we find that latrunculin A treatment does not prevent association of PAR-2 or PAR-6 with the cell cortex. Our experiments demonstrate the application of carbon-reinforced nanopipettes to the study of one temporally-confined developmental event. The use of CRNPs to introduce molecules into the embryo should be applicable to investigations at later developmental stages as well as other cells with tough outer coverings. PMID:24086620

  17. Mutations in new cell cycle genes that fail to complement a multiply mutant third chromosome of Drosophila.

    Science.gov (United States)

    White-Cooper, H; Carmena, M; Gonzalez, C; Glover, D M

    1996-11-01

    We have simultaneously screened for new alleles and second site mutations that fail to complement five cell cycle mutations of Drosphila carried on a single third chromosome (gnu, polo, mgr, asp, stg). Females that are either transheterozygous for scott of the antartic (scant) and polo, or homozygous for scant produce embryos that show mitotic defects. A maternal effect upon embryonic mitoses is also seen in embryos derived from females transheterozygous with helter skelter (hsk) and either mgr or asp. cleopatra (cleo), fails to complement asp but is not uncovered by a deficiency for asp. The mitotic phenotype of larvae heterozygous for cleo and the multiple mutant chromosome is similar to weak alleles of asp, but there are no defects in male meiosis. Mutations that failed to complement stg fell into two complementation groups corresponding to stg and a new gene noose. Three of the new stg alleles are early zygotic lethals, whereas the fourth is a pharate adult lethal allele that affects both mitosis and meiosis. Mutations in noose fully complement a small deficiency that removes stg, but when placed in trans to certain stg alleles, result in late lethality and mitotic abnormalities in larval brains.

  18. A novel mouse Fgfr2 mutant, hobbyhorse (hob, exhibits complete XY gonadal sex reversal.

    Directory of Open Access Journals (Sweden)

    Pam Siggers

    Full Text Available The secreted molecule fibroblast growth factor 9 (FGF9 plays a critical role in testis determination in the mouse. In embryonic gonadal somatic cells it is required for maintenance of SOX9 expression, a key determinant of Sertoli cell fate. Conditional gene targeting studies have identified FGFR2 as the main gonadal receptor for FGF9 during sex determination. However, such studies can be complicated by inefficient and variable deletion of floxed alleles, depending on the choice of Cre deleter strain. Here, we report a novel, constitutive allele of Fgfr2, hobbyhorse (hob, which was identified in an ENU-based forward genetic screen for novel testis-determining loci. Fgr2hob is caused by a C to T mutation in the invariant exon 7, resulting in a polypeptide with a mis-sense mutation at position 263 (Pro263Ser in the third extracellular immunoglobulin-like domain of FGFR2. Mutant homozygous embryos show severe limb and lung defects and, when on the sensitised C57BL/6J (B6 genetic background, undergo complete XY gonadal sex reversal associated with failure to maintain expression of Sox9. Genetic crosses employing a null mutant of Fgfr2 suggest that Fgr2hob is a hypomorphic allele, affecting both the FGFR2b and FGFR2c splice isoforms of the receptor. We exploited the consistent phenotype of this constitutive mutant by analysing MAPK signalling at the sex-determining stage of gonad development, but no significant abnormalities in mutant embryos were detected.

  19. Approaches for prediction of the implantation potential of human embryos

    Directory of Open Access Journals (Sweden)

    Georgi Stamenov

    2013-01-01

    Full Text Available Optimization of assisted reproductive technologies (ART has become the main goal of contemporary reproductive medicine. The main aspiration of scientists working in the field is to use less intervention to achieve more, and, if possible, in a more cost-effective way. A number of directions have been under development, namely – various stimulation protocols, ART with no stimulation whatever, all aiming at a single goal – the chase for Moby Dick, or the perfect embryo. Comprehensive embryo selection resulting in reducing the number of transferred embryos is one of the main directions for optimization of the ART procedures. Both clinical and laboratory procedures are being constantly improved, and today there is a significant number of clinics that report success rates of 30% and even higher. Based on results achieved, and analyzing data from millions of ART procedures, researchers from different centers are seeking to develop prognostic models in order to further improve success rates. One of the greatest challenges remains the reduction of the incidence of multifetal pregnancy, and that can be achieved only through reducing the number of embryos per transfer and a rise in single embryo transfer (SET numbers. This, however, depends on reliable methods for preliminary embryo selection, employing a growing number of morphological, biochemical, genetic and other characteristics of the embryo. A primary concern in developing prognostic models for in vitro fertilization (IVF outcome is selecting the prognostic parameters to be included. A number of publications define the main criteria that have an impact on fertilization outcome on the side of the embryo, and for the ultimate outcome of the ART procedure – on the side of the maternal organism as a whole. In this review, some of the most important parameters are discussed, with particular focus on their application for development of IVF prognostic models.

  20. 4D atlas of the mouse embryo for precise morphological staging.

    Science.gov (United States)

    Wong, Michael D; van Eede, Matthijs C; Spring, Shoshana; Jevtic, Stefan; Boughner, Julia C; Lerch, Jason P; Henkelman, R Mark

    2015-10-15

    After more than a century of research, the mouse remains the gold-standard model system, for it recapitulates human development and disease and is quickly and highly tractable to genetic manipulations. Fundamental to the power and success of using a mouse model is the ability to stage embryonic mouse development accurately. Past staging systems were limited by the technologies of the day, such that only surface features, visible with a light microscope, could be recognized and used to define stages. With the advent of high-throughput 3D imaging tools that capture embryo morphology in microscopic detail, we now present the first 4D atlas staging system for mouse embryonic development using optical projection tomography and image registration methods. By tracking 3D trajectories of every anatomical point in the mouse embryo from E11.5 to E14.0, we established the first 4D atlas compiled from ex vivo 3D mouse embryo reference images. The resulting 4D atlas comprises 51 interpolated 3D images in this gestational range, resulting in a temporal resolution of 72 min. From this 4D atlas, any mouse embryo image can be subsequently compared and staged at the global, voxel and/or structural level. Assigning an embryonic stage to each point in anatomy allows for unprecedented quantitative analysis of developmental asynchrony among different anatomical structures in the same mouse embryo. This comprehensive developmental data set offers developmental biologists a new, powerful staging system that can identify and compare differences in developmental timing in wild-type embryos and shows promise for localizing deviations in mutant development. © 2015. Published by The Company of Biologists Ltd.

  1. Debating elective single embryo transfer after in vitro fertilization: a ...

    African Journals Online (AJOL)

    However, despite clinical recommendations and policy statements, patients in clinical practice frequently do request for the transfer of multiple embryos in order to have twins. Such requests conflict with policy guidelines and create an ethical dilemma for physicians: Should the physician do as the couple requests, and there ...

  2. A single gene (Eu4) encodes the tissue-ubiquitous urease of soybean.

    Science.gov (United States)

    Torisky, R S; Griffin, J D; Yenofsky, R L; Polacco, J C

    1994-02-01

    We sought to determine the genetic basis of expression of the ubiquitous (metabolic) urease of soybean. This isozyme is termed the metabolic urease because its loss, in eu4/eu4 mutants, leads to accumulation of urea, whereas loss of the embryo-specific urease isozyme does not. The eu4 lesion eliminated the expression of the ubiquitous urease in vegetative and embryonic tissues. RFLP analysis placed urease clone LC4 near, or within, the Eu4 locus. Sequence comparison of urease proteins (ubiquitous and embryo-specific) and clones (LC4 and LS1) indicated that LC4 and LS1 encode ubiquitous and embryo-specific ureases, respectively. That LC4 is transcribed into poly(A)+ RNA in all tissues was indicated by the amplification of its transcript by an LC4-specific PCR primer. (The LS1-specific primer, on the other hand, amplified poly(A)+ RNA only from developing embryos expressing the embryo-specific urease.) These observations are consistent with Eu4 being the ubiquitous urease structural gene contained in the LC4 clone. In agreement with this notion, the mutant phenotype of eu4/eu4 callus was partially corrected by the LC4 urease gene introduced by particle bombardment.

  3. Developmental effects of aerosols and coal burning particles in zebrafish embryos

    International Nuclear Information System (INIS)

    Olivares, Alba; Drooge, Barend L. van; Casado, Marta; Prats, Eva; Serra, Montserrat; Ven, Leo T. van der; Kamstra, Jorke H.; Hamers, Timo; Hermsen, Sanne; Grimalt, Joan O.; Piña, Benjamin

    2013-01-01

    Embryo toxicity of particles generated by combustion processes is of special concern for human health. A significant part of these toxic effects is linked to the binding of some pollutants (like polycyclic aromatic hydrocarbons or PAHs) to the Aryl hydrocarbon Receptor (AhR) and the activation of target genes, like the cytochrome P4501A. This activity was analyzed for ambient air and coal-combustion particle extracts in zebrafish embryos (the cyp1aDarT assay) and in two single-cell bioassays: the yeast-based YCM-RYA and the DR-luc (rat cells) assay. Observed AhR ligand activity of samples generally correlated to the predicted toxic effect according to their PAH composition, except for one of the coal combustion samples with an anomalously high activity in the cyp1aDarT assay. This sample induced deformities in zebrafish embryos. We concluded that the combination of morphological and molecular assays may detect embryonic toxic effects that cannot be predicted from chemical analyses or single-cell bioassays. -- Highlights: ► Samples from air particulated matter and coal waste gob showed embryo toxicity in zebrafish. ► PAHs composition of samples does not adequately predict the toxic effects in zebrafish. ► Active coal waste gob samples show maximal AhR-ligand activity and induce deformations in zebrafish embryos. -- Aerosols and coal burning particles showed a strong developmental toxicity in zebrafish, in a degree that cannot be directly predicted from chemical analyses or single-cell bioassays

  4. Shp2 knockdown and Noonan/LEOPARD mutant Shp2-induced gastrulation defects.

    Directory of Open Access Journals (Sweden)

    Chris Jopling

    2007-12-01

    Full Text Available Shp2 is a cytoplasmic protein-tyrosine phosphatase that is essential for normal development. Activating and inactivating mutations have been identified in humans to cause the related Noonan and LEOPARD syndromes, respectively. The cell biological cause of these syndromes remains to be determined. We have used the zebrafish to assess the role of Shp2 in early development. Here, we report that morpholino-mediated knockdown of Shp2 in zebrafish resulted in defects during gastrulation. Cell tracing experiments demonstrated that Shp2 knockdown induced defects in convergence and extension cell movements. In situ hybridization using a panel of markers indicated that cell fate was not affected by Shp2 knock down. The Shp2 knockdown-induced defects were rescued by active Fyn and Yes and by active RhoA. We generated mutants of Shp2 with mutations that were identified in human patients with Noonan or LEOPARD Syndrome and established that Noonan Shp2 was activated and LEOPARD Shp2 lacked catalytic protein-tyrosine phosphatase activity. Expression of Noonan or LEOPARD mutant Shp2 in zebrafish embryos induced convergence and extension cell movement defects without affecting cell fate. Moreover, these embryos displayed craniofacial and cardiac defects, reminiscent of human symptoms. Noonan and LEOPARD mutant Shp2s were not additive nor synergistic, consistent with the mutant Shp2s having activating and inactivating roles in the same signaling pathway. Our results demonstrate that Shp2 is required for normal convergence and extension cell movements during gastrulation and that Src family kinases and RhoA were downstream of Shp2. Expression of Noonan or LEOPARD Shp2 phenocopied the craniofacial and cardiac defects of human patients. The finding that defective Shp2 signaling induced cell movement defects as early as gastrulation may have implications for the monitoring and diagnosis of Noonan and LEOPARD syndrome.

  5. Effects of decreased muscle activity on developing axial musculature in nic b107 mutant zebrafish (Danio rerio)

    NARCIS (Netherlands)

    Meulen, van der T.; Schipper, H.; Leeuwen, van J.L.; Kranenbarg, S.

    2005-01-01

    The present paper discusses the effects of decreased muscle activity (DMA) on embryonic development in the zebrafish. Wild-type zebrafish embryos become mobile around 18 h post-fertilisation, long before the axial musculature is fully differentiated. As a model for DMA, the nicb107 mutant was used.

  6. Pregnancy and neonatal outcomes following letrozole use in frozen-thawed single embryo transfer cycles.

    Science.gov (United States)

    Tatsumi, T; Jwa, S C; Kuwahara, A; Irahara, M; Kubota, T; Saito, H

    2017-06-01

    Are pregnancy and neonatal outcomes following letrozole use comparable with natural and HRT cycles in patients undergoing single frozen-thawed embryo transfer (FET)? Letrozole use was significantly associated with higher rates of clinical pregnancy, clinical pregnancy with fetal heart beat and live birth, and with a lower rate of miscarriage, compared with natural and HRT cycles. Letrozole is the most commonly used aromatase inhibitor for mild ovarian stimulation in ART. However, the effect of letrozole on pregnancy and neonatal outcomes in FET are not well known. A retrospective cohort study was conducted using data from the Japanese national ART registry between 2012 and 2013. A total of 110 722 single FET cycles with letrozole (n = 2409), natural (n = 41 470) or HRT cycles (n = 66 843) were included. The main outcomes were the rates of clinical pregnancy, clinical pregnancy with fetal heart beat, miscarriage and live birth. Adjusted odds ratios and relative risks (RRs) were calculated using a generalized estimating equation adjusting for correlations within clinics. The rates of clinical pregnancy, clinical pregnancy with fetal heart beat, and live birth were significantly higher, while the rate of miscarriage was significantly lower in the letrozole group compared with the natural and HRT groups. In blastocyst stage transfers, the adjusted RRs for clinical pregnancy with fetal heart beat of letrozole compared with natural and HRT cycles were 1.48 (95% CI: 1.41-1.55) and 1.62 (95% CI: 1.54-1.70), respectively. Similarly, the adjusted RRs of letrozole for miscarriage compared with natural and HRT cycles were 0.91 (95% CI: 0.88-0.93) and 0.84 (95% CI: 0.82-0.87), respectively. Neonatal outcomes were mostly similar in letrozole, natural and HRT cycles. Important limitations of this study included the lack of information concerning the reasons for selecting the specific FET method, parity, the number of previous ART failures, embryo quality and the dose and duration

  7. Is it time for a paradigm shift in understanding embryo selection?

    Science.gov (United States)

    Gleicher, Norbert; Kushnir, Vitaly A; Barad, David H

    2015-01-11

    Embryo selection has been an integral feature of in vitro fertilization (IVF) almost since its inception. Since the advent of extended blastocyst stage embryo culture, and especially with increasing popularity of elective single embryo transfer (eSET), the concept of embryo selection has increasingly become a mainstay of routine IVF. We here, however, argue that embryo selection via blastocyst stage embryo transfer (BSET), as currently practiced, at best improves IVF outcomes only for a small minority of patients undergoing IVF cycles. For a large majority BSET is either ineffective or, indeed, may actually be harmful by decreasing IVF pregnancy chances. Overall, only a small minority of patients, thus, benefit from prolonged embryo culture, while BSET, as a tool to enhance IVF outcomes, is increasingly utilized as routine care in IVF for all patients. Since newer methods of embryo selection, like preimplantation genetic screening (PGS) and closed system embryo incubation with time-lapse photography are practically dependent on BSET, these concepts of embryo selection, currently increasingly adopted in mainstream IVF, require reconsideration. They, automatically, transfer the downsides of BSET, including decreases in IVF pregnancy chances in some patients, to these new procedures, and in addition raise serious questions about cost-effectiveness.

  8. Number of blastocysts biopsied as a predictive indicator to obtain at least one normal/balanced embryo following preimplantation genetic diagnosis with single nucleotide polymorphism microarray in translocation cases.

    Science.gov (United States)

    Wang, Yi-Zi; Ding, Chen-Hui; Wang, Jing; Zeng, Yan-Hong; Zhou, Wen; Li, Rong; Zhou, Can-Quan; Deng, Ming-Fen; Xu, Yan-Wen

    2017-01-01

    The aim of this study is to investigate the minimum number of blastocysts for biopsy to increase the likelihood of obtaining at least one normal/balanced embryo in preimplantation genetic diagnosis (PGD) for translocation carriers. This blinded retrospective study included 55 PGD cycles for Robertsonian translocation (RT) and 181 cycles for reciprocal translocation (rcp) to indicate when only one of the couples carried a translocation. Single-nucleotide polymorphism microarray after trophectoderm biopsy was performed. Reliable results were obtained for 355/379 (93.7 %) biopsied blastocysts in RT group and 986/1053 (93.6 %) in rcp group. Mean numbers of biopsied embryos per patient, normal/balanced embryos per patient, and mean normal/balanced embryo rate per patient were 7.4, 3.1, and 40.7 % in RT group and 8.0, 2.1, and 27.3 %, respectively, in rcp group. In a regression model, three factors significantly affected the number of genetically transferrable embryos: number of biopsied embryos (P = 0.001), basal FSH level (P = 0.040), and maternal age (P = 0.027). ROC analysis with a cutoff of 1.5 was calculated for the number of biopsied embryos required to obtain at least one normal/balanced embryo for RT carriers. For rcp carriers, the cutoff was 3.5. The clinical pregnancy rate per embryo transfer was 44.2 and 42.6 % in RT and rcp groups (P = 0.836). The minimum numbers of blastocysts to obtain at least one normal/balanced embryo for RT and rcp were 2 and 4 under the conditions of female age < 37 years with a basal FSH level < 11.4 IU/L.

  9. Contribution of single-strand breaks and alkali-labile bonds to the loss of infectivity of γ-irradiated phiX174 RF-DNA in E. coli cells mutant in various repair functions

    International Nuclear Information System (INIS)

    McKee, R.H.

    1975-01-01

    Twenty-one radiation sensitive mutants have been examined for their capacity to support gamma-irradiated phiX174 RF-DNA. The survival of phiX174 RF-DNA was reduced in essentially all of the sensitive mutants. The irradiated phiX174 RF-DNA was then separated into populations containing either single-strand breaks or alkali-labile bonds to examine the capacity of the mutants to repair each of the classes of lesions. It was found that all E. coli strains are unable to repair 22 percent of the single-strand breaks and all sensitive mutants are unable to repair an additional 10 percent of the breaks. All the repair functions examined are involved in single-strand break repair and none are more or less necessary than any of the others. PhiX174 RF-DNA is also inactivated by alkali-labile bonds. In the normal strains the inactivation efficiency is 0.16 lethal events per lesion with a threshold dose of 15 to 20 krads. The mutants are divided into two classes by their sensitivity to alkali-labile bonds. Both classes of mutants are also inactivated by alkali-labile bonds with efficiencies of about 0.17 and 0.29 lethal events per lesion, respectively. It is proposed that the differences seen in survival curves of phiX174 measured in the sensitive mutants is due to this difference. Although in normal cells the efficiency of inactivation of phiX174 by single-strand breaks is 50 percent greater than by alkali-labile bonds, alkali-labile bonds are produced at approximately twice the rate of single-strand breaks so alkali-labile bonds account for about 61 percent of the overall inactivation. In the mutants of least sensitivity alkali-labile bonds account for about 54 percent of the inactivating events and in the most sensitive about 67 percent

  10. Factors Associated with the Use of Elective Single Embryo Transfer And Pregnancy Outcomes in the United States, 2004–2012

    Science.gov (United States)

    Styer, Aaron K.; Luke, Barbara; Vitek, Wendy; Christianson, Mindy S.; Baker, Valerie L.; Christy, Alicia Y.; Polotsky, Alex J.

    2017-01-01

    Objective To evaluate factors associated with elective single embryo transfer (eSET) utilization and its effect on assisted reproductive technology (ART) outcomes in the United States. Design Historical cohort Setting Not applicable Patient(s) Fresh IVF cycles of women 18–37 years using autologous oocytes with either one (SET) or two (DET) embryos transferred and reported to the Society for Assisted Reproductive Technology Clinic Outcome Reporting System between 2004 and 2012. Cycles were categorized into four groups with[+] or without[−] supernumerary embryos cryopreserved. The SET group with embryos cryopreserved was designated as eSET. Interventions None Main Outcomes Measure(s) The likelihood of eSET utilization, live birth, and singleton non-low birthweight term live birth, modeled using logistic regression. Presented as adjusted odds ratios (aORs) and 95% confidence intervals (CIs). Result(s) The study included 263,375 cycles (21,917 SET[−]cryopreservation, 20,996 SET [+]cryopreservation, 103,371 DET[−]cryopreservation, and 117,091 DET[+]cryopreservation). The utilization of eSET (SET[+]cryopreservation) increased from 1.8% in 2004 to 14.9% in 2012 (aOR 7.66, 95% CI 6.87, 8.53), and was more likely with ART insurance coverage (1.60, 1.54–1.66), Asian race (1.26, 1.20–1.33), uterine factor diagnosis (1.48, 1.37–1.59), retrieval of ≥ 16 oocytes (2.85, 2.55–3.19), and the transfer of day 5–6 embryos (4.23, 4.06–4.40); eSET was less likely in women ages 35–37 years (0.76, 0.73–0.80). Compared to DET cycles, the likelihood of the ideal outcome, term non-low birthweight singleton live birth, was increased 45–52% with eSET. Conclusions Expanding insurance coverage for IVF would facilitate the broader use of eSET, and reduce the morbidity and healthcare costs associated with multiple pregnancies. PMID:26997248

  11. Association between ABO blood type and live-birth outcomes in single-embryo transfer cycles.

    Science.gov (United States)

    Pereira, Nigel; Patel, Hency H; Stone, Logan D; Christos, Paul J; Elias, Rony T; Spandorfer, Steven D; Rosenwaks, Zev

    2017-11-01

    To investigate the association between ABO blood type and live-birth outcomes in patients undergoing IVF with day 5 single-embryo transfer (SET). Retrospective cohort study. University-affiliated center. Normal responders, blood type and live birth, while controlling for confounders. Odds ratios (OR) with 95% confidence intervals (CI) for live birth were estimated. A total of 2,329 patients were included. The mean age of the study cohort was 34.6 ± 4.78 years. The distribution of blood types was as follows: A = 897 (38.5%); B = 397 (17.0%); AB = 120 (5.2%); and, O = 1,915 (39.3%) patients. There was no difference in the baseline demographics, ovarian stimulation, or embryo quality parameters between the blood types. The unadjusted ORs for live birth when comparing blood type A (referent) with blood types B, AB, and O were 0.96 (95% CI, 0.6-1.7), 0.72 (95% CI, 0.4-1.2), and 0.96 (95% CI. 0.6-1.7), respectively. The adjusted ORs for live birth remained not significant when comparing blood type A to blood types B, AB, and O individually. No difference in birth weight or gestational age at delivery was noted among the four blood types. Our findings suggest that ABO blood type is not associated with live-birth rate, birth weight, or gestational age at delivery in patients undergoing IVF with day 5 SET. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Air bubble migration is a random event post embryo transfer.

    Science.gov (United States)

    Confino, E; Zhang, J; Risquez, F

    2007-06-01

    Air bubble location following embryo transfer (ET) is the presumable placement spot of embryos. The purpose of this study was to document endometrial air bubble position and migration following embryo transfer. Multicenter prospective case study. Eighty-eight embryo transfers were performed under abdominal ultrasound guidance in two countries by two authors. A single or double air bubble was loaded with the embryos using a soft, coaxial, end opened catheters. The embryos were slowly injected 10-20 mm from the fundus. Air bubble position was recorded immediately, 30 minutes later and when the patient stood up. Bubble marker location analysis revealed a random distribution without visible gravity effect when the patients stood up. The bubble markers demonstrated splitting, moving in all directions and dispersion. Air bubbles move and split frequently post ET with the patient in the horizontal position, suggestive of active uterine contractions. Bubble migration analysis supports a rather random movement of the bubbles and possibly the embryos. Standing up changed somewhat bubble configuration and distribution in the uterine cavity. Gravity related bubble motion was uncommon, suggesting that horizontal rest post ET may not be necessary. This report challenges the common belief that a very accurate ultrasound guided embryo placement is mandatory. The very random bubble movement observed in this two-center study suggests that a large "window" of embryo placement maybe present.

  13. Does trans-lesion synthesis explain the UV-radiation resistance of DNA synthesis in C.elegans embryos?

    International Nuclear Information System (INIS)

    Hartman, Phil; Reddy, Jennifer; Svendsen, Betty-Ann

    1991-01-01

    Over 10-fold larger fluences were required to inhibit both DNA synthesis and cell division in wild-type C.elegans embryos as compared with other model systems or C.elegans rad mutants. In addition, unlike in other organisms, the molecular weight of daughter DNA strands was reduced only after large, superlethal fluences. The molecular weight of nascent DNA fragments exceeded the interdimer distance by up to 19-fold, indicating that C.elegans embryos can replicate through non-instructional lesions. This putative trans-lesion synthetic capability may explain the refractory nature of UV-radiation on embryonic DNA synthesis and nuclear division in C.elegans. (author). 42 refs.; 7 figs

  14. Does trans-lesion synthesis explain the UV-radiation resistance of DNA synthesis in C. elegans embryos

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Phil; Reddy, Jennifer; Svendsen, Betty-Ann [Texas Christian Univ., Fort Worth, TX (United States). Dept. of Biology

    1991-09-01

    Over 10-fold larger fluences were required to inhibit both DNA synthesis and cell division in wild-type C.elegans embryos as compared with other model systems or C.elegans rad mutants. In addition, unlike in other organisms, the molecular weight of daughter DNA strands was reduced only after large, superlethal fluences. The molecular weight of nascent DNA fragments exceeded the interdimer distance by up to 19-fold, indicating that C.elegans embryos can replicate through non-instructional lesions. This putative trans-lesion synthetic capability may explain the refractory nature of UV-radiation on embryonic DNA synthesis and nuclear division in C.elegans. (author). 42 refs.; 7 figs.

  15. Attenuation of the goose parvovirus strain B. Laboratory and field trials of the attenuated mutant for vaccination against Derzsy's disease.

    Science.gov (United States)

    Kisary, J; Derzsy, D; Meszaros, J

    1978-07-01

    Serial transfer of the goose parvovirus strain B, causal agent of Derzsy's gosling disease, in cultured goose-embryo fibroblast (GEF) resulted in a mutant (designated as Bav) apathogenic for both goose embryos and susceptible goslings. Goose embryos inoculated with the 38th or higher passages of strain B survived the infection, although the virus replicated in their organs. Susceptible goslings survived challenge with the Bav strain without showing symptoms, and developed normally. Only 4.2% of gosling progeny of parents vaccinated twice with strain Bav died after challenge with the virulent strain B goose parvovirus compared with 95% of gosling progeny of unvaccinated parents. Progeny of vaccinated and unvaccinated geese were placed on a farm on which Derzsy's disease was present. During the first month of life mortality was 7.7% in the progeny of vaccinated geese compared with 59.8% in the progeny of the unvaccinated geese. At 8 weeks of age the mean weight of the vaccinated goslings was 20% greater than for the unvaccinated goslings. These results indicate that the attenuated apathogenic Bav mutant is suitable for the immunisation of layers to protect their progeny by passive immunisation against Derzsy's disease.

  16. Effects of single dose GnRH agonist as luteal support on pregnancy outcome in frozen-thawed embryo transfer cycles: an RCT

    Directory of Open Access Journals (Sweden)

    Robab Davar

    2015-08-01

    Full Text Available Background: There is no doubt that luteal phase support is essential to enhance the reproductive outcome in IVF cycles. In addition to progesterone and human chorionic gonadotropin, several studies have described GnRH agonists as luteal phase support to improve implantation rate, pregnancy rate and live birth rate, whereas other studies showed dissimilar conclusions. All of these studies have been done in fresh IVF cycles. Objective: To determine whether an additional GnRH agonist administered at the time of implantation for luteal phase support in frozen-thawed embryo transfer (FET improves the embryo developmental potential. Materials and Methods: This is a prospective controlled trial study in 200 FET cycles, patients were randomized on the day of embryo transfer into group 1 (n=100 to whom a single dose of GnRH agonist (0.1 mg triptorelin was administered three days after transfer and group 2 (n=100, who did not receive agonist. Both groups received daily vaginal progesterone suppositories plus estradiol valerate 6 mg daily. Primary outcome measure was clinical pregnancy rate. Secondary outcome measures were implantation rate, chemical, ongoing pregnancy rate and abortion rate. Results: A total of 200 FET cycles were analyzed. Demographic data and embryo quality were comparable between two groups. No statistically significant difference in clinical and ongoing pregnancy rates was observed between the two groups (26% versus 21%, p=0.40 and 21% versus 17%, p=0.37, respectively. Conclusion: Administration of a subcutaneous GnRH agonist at the time of implantation does not increase clinical or ongoing pregnancy.

  17. Sourcing human embryos for embryonic stem cell lines: Problems & perspectives

    Directory of Open Access Journals (Sweden)

    Rajvi H Mehta

    2014-01-01

    Full Text Available The ability to successfully derive human embryonic stem cells (hESC lines from human embryos following in vitro fertilization (IVF opened up a plethora of potential applications of this technique. These cell lines could have been successfully used to increase our understanding of human developmental biology, transplantation medicine and the emerging science of regenerative medicine. The main source for human embryos has been ′discarded′ or ′spare′ fresh or frozen human embryos following IVF. It is a common practice to stimulate the ovaries of women undergoing any of the assisted reproductive technologies (ART and retrieve multiple oocytes which subsequently lead to multiple embryos. Of these, only two or maximum of three embryos are transferred while the rest are cryopreserved as per the decision of the couple. In case a couple does not desire to ′cryopreserve′ their embryos then all the embryos remaining following embryo transfer can be considered ′spare′ or if a couple is no longer in need of the ′cryopreserved′ embryos then these also can be considered as ′spare′. But, the question raised by the ethicists is, "what about ′slightly′ over-stimulating a woman to get a few extra eggs and embryos? The decision becomes more difficult when it comes to ′discarded′ embryos. As of today, the quality of the embryos is primarily assessed based on morphology and the rate of development mainly judged by single point assessment. Despite many criteria described in the literature, the quality assessment is purely subjective. The question that arises is on the decision of ′discarding′ embryos. What would be the criteria for discarding embryos and the potential ′use′ of ESC derived from the ′abnormal appearing′ embryos? This paper discusses some of the newer methods to procure embryos for the derivation of embryonic stem cell lines which will respect the ethical concerns but still provide the source material.

  18. Hormonal control of seed development in gibberellin- and ABA-deficient tomato (Lycopersicon esculentum Mill. cv. Moneymaker) mutants

    NARCIS (Netherlands)

    Castro, de R.D.; Hilhorst, H.W.M.

    2006-01-01

    Developing seeds of tomato gibberellin (GA)-deficient gib1 and abscisic acid (ABA)-deficient sitw mutants enabled us to analyze the role of GA in the regulation of embryo histo-differentiation, and the role of ABA in the regulation of maturation and quiescence. Our data show that DNA synthesis and

  19. Novel embryo selection techniques to increase embryo implantation in IVF attempts.

    Science.gov (United States)

    Sigalos, George Α; Triantafyllidou, Olga; Vlahos, Nikos F

    2016-11-01

    The final success of an IVF attempt depends on several steps and decisions taken during the ovarian stimulation, the oocyte retrieval, the embryo culture and the embryo transfer. The final selection of the embryos most likely to implant is the final step in this process and the responsibility of the lab. Apart from strict morphologic criteria that historically have been used in embryo selection, additional information on genetic, metabolomic and morphokinetic characteristics of the embryo is recently combined to morphology to select the embryo most likely to produce a pregnancy. In this manuscript, we review the most recent information on the current methods used for embryo selection presenting the predictive capability of each one. A literature search was performed on Pubmed, Medline and Cochrane Database of Systematic Reviews for published studies using appropriate key words and phrases with no limits placed on time. It seems that the combination of morphologic criteria in conjunction to embryo kinetics as documented by time-lapse technology provides the most reliable information on embryo quality. Blastocyst biopsy with subsequent comprehensive chromosome analysis allows the selection of the euploid embryos with the higher implantation potential. Embryo time-lapse imaging and blastocyst biopsy combined to comprehensive chromosome analysis are the most promising technologies to increase pregnancy rates and reduce the possibility of multiple pregnancies. However, further studies will demonstrate the capability of routinely using these technologies to significantly improve IVF outcomes.

  20. Mutants of alfalfa mosaic virus

    International Nuclear Information System (INIS)

    Roosien, J.

    1983-01-01

    In this thesis the isolation and characterization of a number of mutants of alfalfa mosaic virus, a plant virus with a coat protein dependent genome, is described. Thermo-sensitive (ts) mutants were selected since, at least theoretically, ts mutations can be present in all virus coded functions. It was found that a high percentage of spontaneous mutants, isolated because of their aberrant symptoms, were ts. The majority of these isolates could grow at the non-permissive temperature in the presence of a single wild type (wt) component. To increase the mutation rate virus preparations were treated with several mutagens. After nitrous acid treatment or irradiation with ultraviolet light, an increase in the level of mutations was observed. UV irradiation was preferred since it did not require large amounts of purified viral components. During the preliminary characterization of potential ts mutants the author also obtained one structural and several symptom mutants which were analysed further (chapter 7, 8 and 9). The properties of the ts mutants are described in chapter 3-7. (Auth.)

  1. Wheat (Triticum aestivum L.) transformation using immature embryos.

    Science.gov (United States)

    Ishida, Yuji; Tsunashima, Masako; Hiei, Yukoh; Komari, Toshihiko

    2015-01-01

    Wheat may now be transformed very efficiently by Agrobacterium tumefaciens. Under the protocol hereby described, immature embryos of healthy plants of wheat cultivar Fielder grown in a well-conditioned greenhouse were pretreated with centrifuging and cocultivated with A. tumefaciens. Transgenic wheat plants were obtained routinely from between 40 and 90 % of the immature embryos, thus infected in our tests. All regenerants were normal in morphology and fully fertile. About half of the transformed plants carried single copy of the transgene, which are inherited by the progeny in a Mendelian fashion.

  2. DNA deformability changes of single base pair mutants within CDE binding sites in S. Cerevisiae centromere DNA correlate with measured chromosomal loss rates and CDE binding site symmetries

    Directory of Open Access Journals (Sweden)

    Marx Kenneth A

    2006-03-01

    Full Text Available Abstract Background The centromeres in yeast (S. cerevisiae are organized by short DNA sequences (125 bp on each chromosome consisting of 2 conserved elements: CDEI and CDEIII spaced by a CDEII region. CDEI and CDEIII are critical sequence specific protein binding sites necessary for correct centromere formation and following assembly with proteins, are positioned near each other on a specialized nucleosome. Hegemann et al. BioEssays 1993, 15: 451–460 reported single base DNA mutants within the critical CDEI and CDEIII binding sites on the centromere of chromosome 6 and quantitated centromere loss of function, which they measured as loss rates for the different chromosome 6 mutants during cell division. Olson et al. Proc Natl Acad Sci USA 1998, 95: 11163–11168 reported the use of protein-DNA crystallography data to produce a DNA dinucleotide protein deformability energetic scale (PD-scale that describes local DNA deformability by sequence specific binding proteins. We have used the PD-scale to investigate the DNA sequence dependence of the yeast chromosome 6 mutants' loss rate data. Each single base mutant changes 2 PD-scale values at that changed base position relative to the wild type. In this study, we have utilized these mutants to demonstrate a correlation between the change in DNA deformability of the CDEI and CDEIII core sites and the overall experimentally measured chromosome loss rates of the chromosome 6 mutants. Results In the CDE I and CDEIII core binding regions an increase in the magnitude of change in deformability of chromosome 6 single base mutants with respect to the wild type correlates to an increase in the measured chromosome loss rate. These correlations were found to be significant relative to 105 Monte Carlo randomizations of the dinucleotide PD-scale applied to the same calculation. A net loss of deformability also tends to increase the loss rate. Binding site position specific, 4 data-point correlations were also

  3. Zebrafish mutants in the von Hippel-Lindau tumor suppressor display a hypoxic response and recapitulate key aspects of Chuvash polycythemia

    NARCIS (Netherlands)

    van Rooijen, E.; Voest, E.E.; Logister, I.; Korving, J.; Schwerte, T.; Schulte-Merker, S.; Giles, R.H.; van Eeden, F.J.

    2009-01-01

    We have generated 2 zebrafish lines carrying inactivating germline mutations in the von Hippel-Lindau (VHL) tumor suppressor gene ortholog vhl. Mutant embryos display a general systemic hypoxic response, including the up-regulation of hypoxia-induced genes by 1 day after fertilization and a severe

  4. Creating Sunflower Mutant Lines (Helianthus Annuus L.) Using Induced Mutagenesis

    International Nuclear Information System (INIS)

    Encheva, J.

    2009-01-01

    Immature sunflower zygotic embryos of sunflower fertility restorer line 374 R were treated with ultrasound and gamma radiation before plating embryos to culture medium. All plants were isolated and self-pollinated for several generations. New sunflower forms with inherited morphological and biochemical changes were obtained. The genetic changes occurring during the mutation procedure included fourteen morphological and biochemical characters. In comparison to the check line 374 R, decreasing of the mean value of the indexes was registered for 33 % of the total number of characters and vise verse, significant increasing was observed for 60 %. Mutation for resistance to the local population of Orobanche cumana race A-E was obtained from the susceptible Bulgarian control line 374 R. Two investigated mutant lines possessed 100 % resistance to Orobanche and stable inheritance in the next generations. Our results showed that induced mutagenesis in sunflower can be successfully used to develop new lines useful for heterosis breeding

  5. Chemotaxis-defective mutants of the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Dusenbery, D B; Sheridan, R E; Russell, R L

    1975-06-01

    The technique of countercurrent separation has been used to isolate 17 independent chemotaxis-defective mutants of the nematode Caenorhabditis elegans. The mutants, selected to be relatively insensitive to the normally attractive salt NaCl, show varying degrees of residual sensitivity; some are actually weakly repelled by NaCl. The mutants are due to single gene defects, are autosomal and recessive, and identify at least five complementation groups.

  6. Behaviour of UV-sensitive mutants of Proteus mirabilis to repair incision breaks

    International Nuclear Information System (INIS)

    Stoerl, K.; Mund, C.

    1977-01-01

    In U.V.-sensitive mutants of P. mirabilis with the phenotype HCR, REC and EXR single-strand breaks appeared immediately after UV-irradiation. The behaviour of REC- and EXR-mutants was similar to the wildtype. The number of incision breaks observed by sedimentation analysis in these strains was very low. They could be joined during the excision repair process. From the ability of REC- and EXR-strains to rejoin most of the induced single-strand breaks it can be concluded that these strains have approximately the same capacity for excision repair as the wildtype. HCR-mutants of P. mirabilis produced single-strand breaks after UV-irradiation in contrast to HCR-mutants of E. coli. Therefore we suggest that HCR-mutants of P. mirabilis are not completely inhibited in the incision step. The single-strand breaks introduced in the DNA at the beginning of the repair process were not rejoined during further incubation. Experiments with toluenized cells led to the same results. The newly synthesized daughter DNA-strands of UV-irradiated HCR-mutants were of low molecular weight in comparison with those from unirradiated control cells during the repair period. This result is in agreement with the incapability of HCR-mutants to remove the pyrimidine dimers from the parental template strand. (author)

  7. Is there a link between blastomere contact surfaces of day 3 embryos and live birth rate?

    Directory of Open Access Journals (Sweden)

    Paternot Goedele

    2012-09-01

    Full Text Available Abstract Background Cell-cell communication and adhesion are essential for the compaction process of early stage embryos. The aim of this study was to develop a non-invasive objective calculation system of embryo compaction in order to test the hypothesis that embryos with a larger mean contact surface result in a higher live birth rate compared to embryos with a lower mean contact surface. Methods Multilevel images of 474 embryos transferred on day 3 were evaluated by the Cellify software. This software calculates the contact surfaces between the blastomeres. The primary outcome of this study was live birth. An ideal range of contact surface was determined and the positive and negative predictive value, the sensitivity, the specificity and the area under the curve for this new characteristic were calculated. Results In total, 115 (24% transferred embryos resulted in a live birth. Selection of an embryo for transfer on its mean contact surface could predict live birth with a high sensitivity (80% and high negative predicting value (83% but with a low positive predictive value (27%, a low specificity (31% and low area under the ROC curve (0.56. The mean contact surface of embryos cultured in a single medium was significantly higher compared to the mean contact surface of embryos cultured in a sequential medium (p = 0.0003. Conclusions Neither the mean contact surface nor the number of contact surfaces of a day 3 embryo had an additional value in the prediction of live birth. The type of culture medium, however, had an impact on the contact surface of an embryo. Embryos cultured in a single medium had a significant larger contact surface compared to embryos cultured in the sequential medium.

  8. New method for culture of zona-included or zona-free embryos: the Well of the Well (WOW) system.

    Science.gov (United States)

    Vajta, G; Peura, T T; Holm, P; Páldi, A; Greve, T; Trounson, A O; Callesen, H

    2000-03-01

    Culture of mammalian zygotes individually and in small groups results in lower developmental rates than culture of large groups. Zona-free zygotes also have impaired developmental potential in current culture systems. This paper describes a new approach to resolve the problems, the Well of the Well (WOW) system. Small wells (WOWs) were formed in four-well dishes by melting the bottom with heated steel rods. The WOWs were then rinsed, the wells were filled with medium, and the embryos were placed into the WOWs. To test the value of the WOW system a 3 x 3 factorial experiment was performed. Bovine presumptive zygotes were cultured from day 1 to day 7 (day 0: day of insemination) using three modules (single embryos, embryo groups of five, or single zona-digested embryos) and three different culture systems (400 microl medium, 200 microl drops, or WOWs). An additional control group consisted of 40 to 50 embryos cultured in 400 microl medium. The WOW system resulted in higher blastocyst/oocyte rates for all three modules (single: 59%; group of five: 61%; single zona-digested: 53%) than the culture in drops or in wells (P WOWs per well. The cell number of blastocysts cultured in the WOW system did not differ from that of the controls. Apart from its theoretical value in revealing the role of different factors influencing embryo development in vitro, the WOW system may have immediate practical consequences in certain areas of mammalian embryo production. Copyright 2000 Wiley-Liss, Inc.

  9. Soluble CD146, an innovative and non-invasive biomarker of embryo selection for in vitro fertilization.

    Directory of Open Access Journals (Sweden)

    Sylvie Bouvier

    Full Text Available Although progress was made in in vitro fertilization (IVF techniques, the majority of embryos transferred fail to implant. Morphology embryo scoring is the standard procedure for most of IVF centres for choosing the best embryo, but remains limited since even the embryos classified as "top quality" may not implant. As it has been shown that i CD146 is involved in embryo implantation and ii membrane form is shed to generate soluble CD146 (sCD146, we propose that sCD146 in embryo supernatants may constitute a new biomarker of embryo selection. Immunocytochemical staining showed expression of CD146 in early embryo stages and sCD146 was detected by ELISA and Western-blot in embryo supernatants from D2. We retrospectively studied 126 couples who underwent IVF attempt. The embryo culture medium from each transferred embryo (n = 222 was collected for measurement of sCD146 by ELISA. Significantly higher sCD146 concentrations were present in embryo supernatants that did not implant (n = 185 as compared to those that successfully implanted (n = 37 (1310 +/- 1152 pg.mL-1 vs. 845+/- 1173 pg.mL-1, p = 0.024. Sensitivity analysis performed on single embryo transfers (n = 71 confirmed this association (p = 0.0054. The computed ROC curve established that the optimal sCD146 concentration for embryo implantation is under 1164 pg.mL-1 (sensitivity: 76%, specificity: 48%, PPV: 25% and NPV: 92%. Over this sCD146 threshold, the implantation rate was significantly lower (9% with sCD146 levels >1164 pg.ml-1 vs. 22% with sCD146 levels ≤ 1164 pg.mL-1, p = 0.01. Among the embryos preselected by morphologic scoring, sCD146 determination could allow a better selection of the embryo(s, thus improving the success of elective single embryo transfer. This study establishes the proof of concept for the use of sCD146 as a biomarker for IVF by excluding the embryo with the highest sCD146 level. A multicentre prospective study will now be necessary to further establish its use in

  10. Apoc2 loss-of-function zebrafish mutant as a genetic model of hyperlipidemia

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2015-08-01

    Full Text Available Apolipoprotein C-II (APOC2 is an obligatory activator of lipoprotein lipase. Human patients with APOC2 deficiency display severe hypertriglyceridemia while consuming a normal diet, often manifesting xanthomas, lipemia retinalis and pancreatitis. Hypertriglyceridemia is also an important risk factor for development of cardiovascular disease. Animal models to study hypertriglyceridemia are limited, with no Apoc2-knockout mouse reported. To develop a genetic model of hypertriglyceridemia, we generated an apoc2 mutant zebrafish characterized by the loss of Apoc2 function. apoc2 mutants show decreased plasma lipase activity and display chylomicronemia and severe hypertriglyceridemia, which closely resemble the phenotype observed in human patients with APOC2 deficiency. The hypertriglyceridemia in apoc2 mutants is rescued by injection of plasma from wild-type zebrafish or by injection of a human APOC2 mimetic peptide. Consistent with a previous report of a transient apoc2 knockdown, apoc2 mutant larvae have a minor delay in yolk consumption and angiogenesis. Furthermore, apoc2 mutants fed a normal diet accumulate lipid and lipid-laden macrophages in the vasculature, which resemble early events in the development of human atherosclerotic lesions. In addition, apoc2 mutant embryos show ectopic overgrowth of pancreas. Taken together, our data suggest that the apoc2 mutant zebrafish is a robust and versatile animal model to study hypertriglyceridemia and the mechanisms involved in the pathogenesis of associated human diseases.

  11. Combining zygotic embryo culture and mutation induction to improve salinity tolerance in avocado (Persea americana Mill)

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, J. L.; Santiago, L.; Alvarez, A.; Valdés, Y.; Vernhe, M.; Guerra, M.; Altanez, S.; Prieto, E. F. [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Miramar, Playa, C. Habana (Cuba); Rodríguez, N. N.; Arbelo, O. Coto; Velázquez, B.; Rodríguez, J. A.; Sourd, D. G.; Fuentes, V. R. [Instituto de Investigaciones de Fruticultura Tropical (IICF), Miramar, Playa, C. Habana (Cuba); Leal, M. R. [Departamento de Microbiología, Facultad de Biología, Universidad de la Habana, Vedado, C. Habana (Cuba)

    2009-05-15

    Mutation induction and biotechnological techniques are some of the current approaches used in plant breeding. In the present work radiation-induced mutation followed by in vitro culture of zygotic embryos and high osmotic pressure selection methods to improve salt tolerance in avocado are investigated. The in vitro germination, rooting, bud multiplication and plantlet acclimatization of Cuban avocado varieties were recorded. The germination rates of whole embryos in vitro were found to be higher when using mature rather than immature embryos. Almost 80% of the whole embryos derived plantlets produced were successfully acclimatized under greenhouse conditions. An in vitro propagation method for avocado breeding purposes was optimized and documented. However, in vitro multiplication results indicated the need to improve bud multiplication methods in avocado. The survival rates of gamma rays irradiated and salt pressured avocado embryos were also investigated. Both mutagenic (LD{sub 50} = 27-28 Gy) and selective (LD{sub 20} = 157 mM of NaCl) doses were established. A procedure combining zygotic embryo culture and mutation induction was used to obtain. Putative mutant lines derived from salt tolerant rootstocks were developed. Putative M{sub 1}V{sub 3} progenies were planted in the field for segregation analysis. An avocado gene bank was established under the same study. Therefore this methodology appears as an alternative to traditional breeding methods, particularly for improving agronomic characteristics such as salt tolerance in avocado. (author)

  12. Urochordate ascidians possess a single isoform of Aurora kinase that localizes to the midbody via TPX2 in eggs and cleavage stage embryos.

    Directory of Open Access Journals (Sweden)

    Celine Hebras

    Full Text Available Aurora kinases are key proteins found throughout the eukaryotes that control mitotic progression. Vertebrate Aurora-A and B kinases are thought to have evolved from a single Aurora-kinase isoform closest to that found in present day urochordates. In urochordate ascidians Aurora binds both TPX2 (a vertebrate AURKA partner and INCENP (a vertebrate AURKB partner and localizes to centrosomes and spindle microtubules as well as chromosomes and midbody during both meiosis and mitosis. Ascidian Aurora also displays this localization pattern during mitosis in echinoderms, strengthening the idea that non-vertebrate deuterostomes such as the urochordates and echinoderms possess a single form of Aurora kinase that has properties of vertebrate Aurora-kinase A and B. In the ascidian, TPX2 localizes to the centrosome and the spindle poles also as in vertebrates. However, we were surprised to find that TPX2 also localized strongly to the midbody in ascidian eggs and embryos. We thus examined more closely Aurora localization to the midbody by creating two separate point mutations of ascidian Aurora predicted to perturb binding to TPX2. Both forms of mutated Aurora behaved as predicted: neither localized to spindle poles where TPX2 is enriched. Interestingly, neither form of mutated Aurora localized to the midbody where TPX2 is also enriched, suggesting that ascidian Aurora midbody localization required TPX2 binding in ascidians. Functional analysis revealed that inhibition of Aurora kinase with a pharmacological inhibitor or with a dominant negative kinase dead form of Aurora caused cytokinesis failure and perturbed midbody formation during polar body extrusion. Our data support the view that vertebrate Aurora-A and B kinases evolved from a single non-vertebrate deuterostome ancestor. Moreover, since TPX2 localizes to the midbody in ascidian eggs and cleavage stage embryos it may be worthwhile re-assessing whether Aurora A kinase or TPX2 localize to the midbody

  13. MORPHOLOGICAL CHANGES DURING THE DEVELOPMENT OF SOMATIC EMBRYOS OF SAGO (Metroxylon sagu Rottb.

    Directory of Open Access Journals (Sweden)

    Pauline D. Kasi

    2016-10-01

    Full Text Available Development of somatic embryos of sago (Metroxylon sagu Rottb. on agar-solidified medium are highly varied producing heterogeneous seedlings. Understanding of this phenomenon may help in improving the cultural procedures and conditions of sagosomatic embryogenesis to obtain uniform seedlings in a large scale. This experiment was conducted at the laboratory for plant cell culture and micropropagation, Indonesian Biotechnology Research Institute for Estate Crops from January to March 2006 to examine morphological changes i.e. color and development stages of sago during their somatic embryo development on an agar-solidified medium. Twenty single globular somatic embryos of sago with specific color (yellowish, greenish, and reddish were cultured in a Petri dish supplemented with a solid medium. The medium was a micronutrients-modified MS (MMS with half strength of macronutrients containing 0.01 mg l-1 ABA, 2 mg l-1 kinetin, 20 g l-1 sucrose, 0.5 g l-1 activated charcoal, and 2 g l-1 gelrite. Parameter observed was the percentage of embryo’s number based on color and developmental stage. The result showed that at the end of 6-week culture passage, most originally greenish (80.8% and reddish (95.8% embryos remained unchanged in their colors, whereas almost half of the originally yellowish embryos turned to greenish and only 30%remained yellowish. At the same time, single globular embryos have changed gradually into the next developmental stages, although not all of the embryos were germinated. The initial color of embryo affected the rate of the developmental stage changes. Yellowish and greenish globular embryos developed more rapidly into cotyledon or germinant stages at 58% and 55% respectively, in 6 weeks than the reddish ones (41%. Therefore, the yellowish and greenish embryos are the best sources of material for in vitro mass propagation and synthetic seed production of sago.

  14. Lessons from Embryos: Haeckel's Embryo Drawings, Evolution, and Secondary Biology Textbooks

    Science.gov (United States)

    Wellner, Karen L.

    2014-01-01

    In 1997, developmental biologist Michael Richardson compared his research team's embryo photographs to Ernst Haeckel's 1874 embryo drawings and called Haeckel's work "noncredible". "Science" soon published "Haeckel's Embryos: Fraud Rediscovered," and Richardson's comments further reinvigorated criticism of Haeckel by…

  15. Towards single embryo transfer? Modelling clinical outcomes of potential treatment choices using multiple data sources: predictive models and patient perspectives.

    Science.gov (United States)

    Roberts, Sa; McGowan, L; Hirst, Wm; Brison, Dr; Vail, A; Lieberman, Ba

    2010-07-01

    In vitro fertilisation (IVF) treatments involve an egg retrieval process, fertilisation and culture of the resultant embryos in the laboratory, and the transfer of embryos back to the mother over one or more transfer cycles. The first transfer is usually of fresh embryos and the remainder may be cryopreserved for future frozen cycles. Most commonly in UK practice two embryos are transferred (double embryo transfer, DET). IVF techniques have led to an increase in the number of multiple births, carrying an increased risk of maternal and infant morbidity. The UK Human Fertilisation and Embryology Authority (HFEA) has adopted a multiple birth minimisation strategy. One way of achieving this would be by increased use of single embryo transfer (SET). To collate cohort data from treatment centres and the HFEA; to develop predictive models for live birth and twinning probabilities from fresh and frozen embryo transfers and predict outcomes from treatment scenarios; to understand patients' perspectives and use the modelling results to investigate the acceptability of twin reduction policies. A multidisciplinary approach was adopted, combining statistical modelling with qualitative exploration of patients' perspectives: interviews were conducted with 27 couples at various stages of IVF treatment at both UK NHS and private clinics; datasets were collated of over 90,000 patients from the HFEA registry and nearly 9000 patients from five clinics, both over the period 2000-5; models were developed to determine live birth and twin outcomes and predict the outcomes of policies for selecting patients for SET or DET in the fresh cycle following egg retrieval and fertilisation, and the predictions were used in simulations of treatments; two focus groups were convened, one NHS and one web based on a patient organisation's website, to present the results of the statistical analyses and explore potential treatment policies. The statistical analysis revealed no characteristics that

  16. A KAS2 cDNA complements the phenotypes of the Arabidopsis fab1 mutant that differs in a single residue bordering the substrate binding pocket

    DEFF Research Database (Denmark)

    Carlsson, A.S.; LaBrie, S.T.; Kinney, A.J.

    2002-01-01

    The fab1 mutant of Arabidopsis is partially deficient in activity of ß-ketoacyl-[acyl carrier protein] synthase II (KAS II). This defect results in increased levels of 16 : 0 fatty acid and is associated with damage and death of the mutants at low temperature. Transformation of fab1 plants with a c......DNA from Brassica napus encoding a KAS II enzyme resulted in complementation of both mutant phenotypes. The dual complementation by expression of the single gene proves that low-temperature damage is a consequence of altered membrane unsaturation. The fab1 mutation is a single nucleotide change...... chain to bend. For functional analysis the equivalent Leu207Phe mutation was introduced into the fabB gene encoding the E. coli KAS I enzyme. Compared to wild-type, the Leu207Phe protein showed a 10-fold decrease in binding affinity for the fatty acid substrate, exhibited a modified behavior during size...

  17. Embryo density may affect embryo quality during in vitro culture in a microwell group culture dish.

    Science.gov (United States)

    Lehner, Adam; Kaszas, Zita; Murber, Akos; Rigo, Janos; Urbancsek, Janos; Fancsovits, Peter

    2017-08-01

    Culturing embryos in groups is a common practice in mammalian embryology. Since the introduction of different microwell dishes, it is possible to identify oocytes or embryos individually. As embryo density (embryo-to-volume ratio) may affect the development and viability of the embryos, the purpose of this study was to assess the effect of different embryo densities on embryo quality. Data of 1337 embryos from 228 in vitro fertilization treatment cycles were retrospectively analyzed. Embryos were cultured in a 25 μl microdrop in a microwell group culture dish containing 9 microwells. Three density groups were defined: Group 1 with 2-4 (6.3-12.5 μl/embryo), Group 2 with 5-6 (4.2-5.0 μl/embryo), and Group 3 with 7-9 (2.8-3.6 μl/embryo) embryos. Proportion of good quality embryos was higher in Group 2 on both days (D2: 18.9 vs. 31.5 vs. 24.7%; p Culturing 5-6 embryos together in a culture volume of 25 μl may benefit embryo quality. As low egg number, position, and distance of the embryos may influence embryo quality, results should be interpreted with caution.

  18. Excision repair in MUT-mutants of Proteus mirabilis after UV-irradiation

    International Nuclear Information System (INIS)

    Stoerl, K.; Mund, C.

    1977-01-01

    The behaviour of MUT-mutants of P.mirabilis to perform certain steps of excision repair after U.V.-irradiation is described. MUT-mutants introduce single-strand breaks in the DNA immediately after U.V.-irradiation, but their ability to excise pyrimidine dimers from the DNA is very diminished. Moreover, they are not able to accomplish the excision repair by rejoining of the single-strand breaks. The connection between the incomplete excision repair and the mutator phenotype of these mutants is discussed. (author)

  19. Embryo transfer practices in the United States: a survey of clinics registered with the Society for Assisted Reproductive Technology.

    Science.gov (United States)

    Jungheim, Emily S; Ryan, Ginny L; Levens, Eric D; Cunningham, Alexandra F; Macones, George A; Carson, Kenneth R; Beltsos, Angeline N; Odem, Randall R

    2010-09-01

    To gain a better understanding of factors influencing clinicians' embryo transfer practices. Cross-sectional survey. Web-based survey conducted in December 2008 of individuals practicing IVF in centers registered with the Society for Assisted Reproductive Technology (SART). None. None. Prevalence of clinicians reporting following embryo transfer guidelines recommended by the American Society for Reproductive Medicine (ASRM), prevalence among these clinicians to deviate from ASRM guidelines in commonly encountered clinical scenarios, and practice patterns related to single embryo transfer. Six percent of respondents reported following their own, independent guidelines for the number of embryos to transfer after IVF. Of the 94% of respondents who reported routinely following ASRM embryo transfer guidelines, 52% would deviate from these guidelines for patient request, 51% for cycles involving the transfer of frozen embryos, and 70% for patients with previously failed IVF cycles. All respondents reported routinely discussing the risks of multiple gestations associated with standard embryo transfer practices, whereas only 34% reported routinely discussing single embryo transfer with all patients. Although the majority of clinicians responding to our survey reported following ASRM embryo transfer guidelines, at least half would deviate from these guidelines in a number of different situations. Copyright (c) 2010 American Society for Reproductive Medicine. All rights reserved.

  20. X-ray-sensitive mutants of Chinese hamster ovary cell line

    International Nuclear Information System (INIS)

    Jeggo, P.A.; Kemp, L.M.

    1983-01-01

    A standard technique of microbial genetics, which involves the transfer of cells from single colonies by means of sterile toothpicks, has been adapted to somatic cell genetics. Its use has been demonstrated in the isolation of X-ray-sensitive mutants of CHO cells. 9000 colonies have been tested and 6 appreciably X-ray-sensitive mutants were isolated. (D 10 values 5-10-fold of wild-type D 10 value.) A further 6 mutants were obtained which showed a slight level of sensitivity (D 10 values less than 2-fold of wild-type D 10 value). The 6 more sensitive mutants were also sensitive to bleomycin, a chemotherapeutic agent inducing X-ray-like damage. Cross-sensitivity to UV-irradiation and treatment with the alkylating agents, MMS, EMS and MNNG, was investigated for these mutants. Some sensitivity to these other agents was observed, but in all cases it was less severe than the level of sensitivity to X-irradiation. Each mutant showed a different overall response to the spectrum of agents examined and these appear to represent new mutant phenotypes derived from cultured mammalian cell lines. One mutant strain, xrs-7, was cross-sensitive to all the DNA-damaging agents, but was proficient in the repair of single-strand breaks. (Auth.)

  1. Effect of women's age on embryo morphology, cleavage rate and competence-A multicenter cohort study

    DEFF Research Database (Denmark)

    Grøndahl, Marie Louise; Christiansen, Sofie Lindgren; Kesmodel, Ulrik Schiøler

    2017-01-01

    This multicenter cohort study on embryo assessment and outcome data from 11,744 IVF/ICSI cycles with 104,830 oocytes and 42,074 embryos, presents the effect of women's age on oocyte, zygote, embryo morphology and cleavage parameters, as well as cycle outcome measures corrected for confounding.......0001) with increasing age. Maternal age had no effect on cleavage parameters or on the morphology of the embryo day 2 post insemination. Interestingly, initial hCG value after single embryo transfer followed by ongoing pregnancy was increased with age in both IVF (p = 0.007) and ICSI (p = 0.001) cycles. For the first...... time, we show that a woman's age does impose a significant footprint on early embryo morphological development (3PN). In addition, the developmentally competent embryos were associated with increased initial hCG values as the age of the women increased. Further studies are needed to elucidate...

  2. The Quantity and Quality of Brahman Cross Cattle Embryo After Injected FSH and PMSG

    Directory of Open Access Journals (Sweden)

    Adriani Adriani

    2009-05-01

    Full Text Available Twenty cattles were used in this experiment to determine the quantity and quality of embryo after injected FSH (follicle stimulating hormone and PMSG (pregnant mare serum gonadotrophin in Brahman Cross Cattle. The experiment was assigned into Completely Randomized Design with 5 treatments and 4 replications. The treatments were T1 = 4 mg of FSH twice a day intra-ovary decreased doses, T2 = 8 mg of FSH twice a day intra-ovary decreased doses, T3 = 300 IU of PMSG single dose intra-ovary, T4 = 600 IU of PMSG single dose intra-ovary, T5 = 40 mg of FSH twice a day intramuscular decreased doses. Trial cattle were oestrus synchronized using 15 mg of PGF2α that gave twice at 11-daily intervals. One day after giving FSH and PMSG was detected the cattle’s oestrus. Washing uterus was done at day 7 after AI using mixture of PBS, FCS and streptomicyn. Data observed were cow performances, embryo quantity and embryo quality. Results of experiment showed that 19 cattle (95% responded oestrus synchronized treatment and super ovulation, whereas 1 cattle (5% did not respond oestrus synchronized treatment and super ovulation. Generally, cattle showed oestrus at 2 – 3 days after giving PGF2α. Eleven cattle (57,90% showed oestrus at 2 days after giving PGF2α whereas the others (8 cattle, 42,10% showed oestrus 3 days giving PGF2α. The treatment of giving FSH and PMSG could increase (P<0,05 embryo. T5 was highest compared the others ( T1, T2, T3 and T4, while T2 and T4 were higher than T1 and T3. Produced total embryo was 82 with average 4,3 ± 5,67 using FSH and PMSG. 8 embryo (9,76%, 9 embryos (10,90, 20 embryo (24,40%, 16 embryo (19,50% and 29 embryos (35,40% were grade A, B, C, D and E respectively. It is concluded that giving of 40 mg FSH intramusculer produce the best embryo donor whereas and giving of FSH 8 mg intraovari was the best effeciency. (Animal Production 11(2: 96-102 (2009 Key Words : Brahman Cross Cattle, embryo, PGF2α PMSG, FSH

  3. Centrosome Amplification Increases Single-Cell Branching in Post-mitotic Cells.

    Science.gov (United States)

    Ricolo, Delia; Deligiannaki, Myrto; Casanova, Jordi; Araújo, Sofia J

    2016-10-24

    Centrosome amplification is a hallmark of cancer, although we are still far from understanding how this process affects tumorigenesis [1, 2]. Besides the contribution of supernumerary centrosomes to mitotic defects, their biological effects in the post-mitotic cell are not well known. Here, we exploit the effects of centrosome amplification in post-mitotic cells during single-cell branching. We show that Drosophila tracheal cells with extra centrosomes branch more than wild-type cells. We found that mutations in Rca1 and CycA affect subcellular branching, causing tracheal tip cells to form more than one subcellular lumen. We show that Rca1 and CycA post-mitotic cells have supernumerary centrosomes and that other mutant conditions that increase centrosome number also show excess of subcellular lumen branching. Furthermore, we show that de novo lumen formation is impaired in mutant embryos with fewer centrioles. The data presented here define a requirement for the centrosome as a microtubule-organizing center (MTOC) for the initiation of subcellular lumen formation. We propose that centrosomes are necessary to drive subcellular lumen formation. In addition, centrosome amplification increases single-cell branching, a process parallel to capillary sprouting in blood vessels [3]. These results shed new light on how centrosomes can contribute to pathology independently of mitotic defects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Sample Preparation and Mounting of Drosophila Embryos for Multiview Light Sheet Microscopy.

    Science.gov (United States)

    Schmied, Christopher; Tomancak, Pavel

    2016-01-01

    Light sheet fluorescent microscopy (LSFM), and in particular its most widespread flavor Selective Plane Illumination Microscopy (SPIM), promises to provide unprecedented insights into developmental dynamics of entire living systems. By combining minimal photo-damage with high imaging speed and sample mounting tailored toward the needs of the specimen, it enables in toto imaging of embryogenesis with high spatial and temporal resolution. Drosophila embryos are particularly well suited for SPIM imaging because the volume of the embryo does not change from the single cell embryo to the hatching larva. SPIM microscopes can therefore image Drosophila embryos embedded in rigid media, such as agarose, from multiple angles every few minutes from the blastoderm stage until hatching. Here, we describe sample mounting strategies to achieve such a recording. We also provide detailed protocols to realize multiview, long-term, time-lapse recording of Drosophila embryos expressing fluorescent markers on the commercially available Zeiss Lightsheet Z.1 microscope and the OpenSPIM.

  5. Replacing single frozen-thawed euploid embryos in a natural cycle in ovulatory women may increase live birth rates compared to medicated cycles in anovulatory women.

    Science.gov (United States)

    Melnick, Alexis P; Setton, Robert; Stone, Logan D; Pereira, Nigel; Xu, Kangpu; Rosenwaks, Zev; Spandorfer, Steven D

    2017-10-01

    The goal of this study was to compare pregnancy outcomes between natural frozen embryo transfer (FET) cycles in ovulatory women and programmed FET cycles in anovulatory women after undergoing in vitro fertilization with preimplantation genetic screening (IVF-PGS). This was a retrospective cohort study performed at an academic medical center. Patients undergoing single FET IVF-PGS cycles between October 2011 and December 2014 were included. Patients were stratified by type of endometrial replacement: programmed cycles with estrogen/progesterone replacement and natural cycles. IVF-PGS with 24-chromosome screening was performed on all included patients. Those patients with euploid embryos had single embryo transfer in a subsequent FET. The primary study outcome was live birth/ongoing pregnancy rate. Secondary outcomes included implantation, biochemical pregnancy, and miscarriage rates. One hundred thirteen cycles met inclusion criteria: 65 natural cycles and 48 programmed cycles. The programmed FET group was younger (35.9 ± 4.5 vs. 37.5 ± 3.7, P = 0.03) and had a higher AMH (3.95 ± 4.2 vs. 2.37 ± 2.4, P = 0.045). The groups were similar for BMI, gravidity, parity, history of uterine surgery, and incidence of Asherman's syndrome. There was also no difference in embryo grade at biopsy or transfer, and proportion of day 5 and day 6 transfers. Implantation rates were higher in the natural FET group (0.66 ± 0.48 vs. 0.44 ± 0.50, P = 0.02). There was no difference in the rates of biochemical pregnancy or miscarriage. After controlling for age, live birth/ongoing pregnancy rate was higher in natural FETs with an adjusted odds ratio of 2.68 (95% CI 1.22-5.87). Natural FET in ovulatory women after IVF-PGS is associated with increased implantation and live birth rates compared to programmed FET in anovulatory women. Further investigation is needed to determine whether these findings hold true in other patient cohorts.

  6. [Association of human chorionic gonadotropin level in embryo culture media with early embryo development].

    Science.gov (United States)

    Wang, Haiying; Zhang, Renli; Han, Dong; Liu, Caixia; Cai, Jiajie; Bi, Yanling; Wen, Anmin; Quan, Song

    2014-06-01

    To investigate the association of human chorionic gonadotropin (HCG) level on day 3 of embryo culture with embryo development. Spent culture media were collected from individually cultured embryos on day 3 of in vitro fertilization and embryo transfer (IVF-ET) cycles. HCG concentration in the culture media was measured using an ELISA kit and its association with embryo development was assessed. In the 163 samples of embryo culture media from 60 patients, HCG was positive in 153 sample (93.8%) with a mean level of 0.85 ± 0.43 mIU/ml. The concentration of hCG in the culture media increased gradually as the number of blastomeres increased (F=2.273, P=0.03), and decreased as the morphological grade of the embryo was lowered (F=3.900, P=0.02). ELISA is capable of detecting HCG levels in spent culture media of embryos on day 3 of in vitro culture. The concentration of HCG in spent culture media is positively correlated with the status of early embryo development and implantation rate and thus serves as a useful marker for embryo selection in IVF-ET procedure.

  7. Homocysteine in embryo culture media as a predictor of pregnancy outcome in assisted reproductive technology.

    Science.gov (United States)

    Boyama, Burcu Aydin; Cepni, Ismail; Imamoglu, Metehan; Oncul, Mahmut; Tuten, Abdullah; Yuksel, Mehmet Aytac; Kervancioglu, Mehmet Ertan; Kaleli, Semih; Ocal, Pelin

    2016-01-01

    The aim of this study was to determine whether homocysteine (hcy) concentrations in embryo culture media correlate with pregnancy outcome in assisted reproductive technology (ART) cycles. Forty patients who underwent single embryo transfer at the infertility clinic of a tertiary care center were recruited for this case-control study. Spent embryo culture media from all patients were collected after single embryo transfer on day 3 (n = 40). Hcy concentrations in embryo culture media were analyzed by enzyme cycling method. Patients were grouped according to the diagnosis of a clinical pregnancy. Sixteen patients were pregnant while 24 patients failed to achieve conception. Mean Hcy levels in the culture media were significantly different between the groups (p < 0.003), as 4.58 ± 1.31 μmol/l in the non-pregnant group and 3.37 ± 0.92 μmol/l in the pregnant group. Receiver operator curve analysis for determining the diagnostic potential of Hcy for pregnancy revealed an area under the curve of 0.792 (confidence interval: 0.65-0.94; p < 0.05). A cut-off value of 3.53 μmol/l was determined with a sensitivity of 83.3%, and a specificity of 68.8%. Lower hcy levels were associated with a better chance of pregnancy and better embryo grades. Hcy may be introduced as an individual metabolomic profiling marker for embryos.

  8. Genetic analysis of plant height in induced mutants of aromatic rice

    International Nuclear Information System (INIS)

    Kole, P.C.

    2005-01-01

    Inheritance of plant height in five gamma-ray induced mutants of aromatic rice cultivar Gobindabhog was studied through 6 x 6 diallel cross and segregation analyses. Diallel analysis revealed presence of additive and non-additive gene action with the preponderance of the latter. Proportion of dominant and recessive alleles was distributed unequally among the parents. The direction of dominance was towards tallness. The number of groups of genes was found to be three. The segregation analysis indicated the role of a single major recessive gene for height reduction in three mutants and, in another mutant, a single major recessive gene with negative modifiers. The other semi-dwarf mutant had two major recessive genes with almost equal effect in height reduction. The mutant allele(s) of the latter two mutants were non-allelic to sd sub(1) gene, which could be used as an alternative source of Dee Gee Woo Gen to widen the genetic diversity in semi-dwarfism [it

  9. Two-photon-based photoactivation in live zebrafish embryos.

    Science.gov (United States)

    Russek-Blum, Niva; Nabel-Rosen, Helit; Levkowitz, Gil

    2010-12-24

    Photoactivation of target compounds in a living organism has proven a valuable approach to investigate various biological processes such as embryonic development, cellular signaling and adult physiology. In this respect, the use of multi-photon microscopy enables quantitative photoactivation of a given light responsive agent in deep tissues at a single cell resolution. As zebrafish embryos are optically transparent, their development can be monitored in vivo. These traits make the zebrafish a perfect model organism for controlling the activity of a variety of chemical agents and proteins by focused light. Here we describe the use of two-photon microscopy to induce the activation of chemically caged fluorescein, which in turn allows us to follow cell's destiny in live zebrafish embryos. We use embryos expressing a live genetic landmark (GFP) to locate and precisely target any cells of interest. This procedure can be similarly used for precise light induced activation of proteins, hormones, small molecules and other caged compounds.

  10. Synthesis of a wild-type and three mutant Cucurbita maxima trypsin inhibitor-encoding genes by a single-strand approach.

    Science.gov (United States)

    Botes, D P; Qobose, M D; Corfield, V A

    1991-09-15

    A single-strand approach to gene assembly, based on a modification of an in vitro complementary oligodeoxyribonucleotide template-directed ligation of the desired sequence to a linearized vector [Chen et al., Nucleic Acids Res. 18 (1990) 871-878], is described. The gene coding for the wild-type Cucurbita maxima trypsin inhibitor of 29 amino acid residues [Bode et al., FEBS Lett. 242 (1989) 285-292], as well as three mutant forms of the gene, in which two of the three disulfide bonds have been replaced singly or as a pair, have been synthesized in a single synthesis run with minimal manual intervention. Subsequent to ligation to pUC9 and in vivo gapped duplex repair by Escherichia coli, their sequences have been verified.

  11. Change of nucleolus characteristic of fish embryo cells under the influence of low-level radiation

    International Nuclear Information System (INIS)

    Arkhipchuk, V.V.

    1995-01-01

    The nucleolus activity of fish embryo cells was stimulated by low-level radiation at a dose rate of 2-13 mGy/h. The size of nucleoli generally increased in embryos of Cyprinus carpio, whereas the number of nucleoli was greater in embryos of Carassius auratus gibelio. The higher the functional activity of nucleolus is, the more pronounced are changes in the characteristics. The size of single nucleolus at gastrulation is the most sensitive characteristic. 16 refs.; 1 tab

  12. The Chromatin Regulator Brpf1 Regulates Embryo Development and Cell Proliferation*

    Science.gov (United States)

    You, Linya; Yan, Kezhi; Zou, Jinfeng; Zhao, Hong; Bertos, Nicholas R.; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao

    2015-01-01

    With hundreds of chromatin regulators identified in mammals, an emerging issue is how they modulate biological and pathological processes. BRPF1 (bromodomain- and PHD finger-containing protein 1) is a unique chromatin regulator possessing two PHD fingers, one bromodomain and a PWWP domain for recognizing multiple histone modifications. In addition, it binds to the acetyltransferases MOZ, MORF, and HBO1 (also known as KAT6A, KAT6B, and KAT7, respectively) to promote complex formation, restrict substrate specificity, and enhance enzymatic activity. We have recently showed that ablation of the mouse Brpf1 gene causes embryonic lethality at E9.5. Here we present systematic analyses of the mutant animals and demonstrate that the ablation leads to vascular defects in the placenta, yolk sac, and embryo proper, as well as abnormal neural tube closure. At the cellular level, Brpf1 loss inhibits proliferation of embryonic fibroblasts and hematopoietic progenitors. Molecularly, the loss reduces transcription of a ribosomal protein L10 (Rpl10)-like gene and the cell cycle inhibitor p27, and increases expression of the cell-cycle inhibitor p16 and a novel protein homologous to Scp3, a synaptonemal complex protein critical for chromosome association and embryo survival. These results uncover a crucial role of Brpf1 in controlling mouse embryo development and regulating cellular and gene expression programs. PMID:25773539

  13. Selection of the in vitro culture media influences mRNA expression of Hedgehog genes, Il-6, and important genes regarding reactive oxygen species in single murine preimplantation embryos.

    Science.gov (United States)

    Pfeifer, N; Baston-Büst, D M; Hirchenhain, J; Friebe-Hoffmann, U; Rein, D T; Krüssel, J S; Hess, A P

    2012-01-01

    The aim of this paper was to determine the influence of different in vitro culture media on mRNA expression of Hedgehog genes, il-6, and important genes regarding reactive oxygen species in single mouse embryos. Reverse transcription of single embryos either cultured in vitro from day 0.5 until 3.5 (COOK's Cleavage medium or Vitrolife's G-1 PLUS medium) or in vivo until day 3.5 post coitum. PCR was carried out for β-actin followed by nested-PCR for shh, ihh, il-6, nox, gpx4, gpx1, and prdx2. The number of murine blastocysts cultured in COOK medium which expressed il-6, gpx4, gpx1, and prdx2 mRNA differed significantly compared to the in vivo group. Except for nox, the mRNA profile of the Vitrolife media group embryos varied significantly from the in vivo ones regarding the number of blastocysts expressing the mRNA of shh, ihh, il-6, gpx4, gpx1 and prdx2. The present study shows that different in vitro culture media lead to different mRNA expression profiles during early development. Even the newly developed in vitro culture media are not able to mimic the female reproductive tract. The question of long-term consequences for children due to assisted reproduction techniques needs to be addressed in larger studies.

  14. Selection of the In Vitro Culture Media Influences mRNA Expression of Hedgehog Genes, Il-6, and Important Genes regarding Reactive Oxygen Species in Single Murine Preimplantation Embryos

    Science.gov (United States)

    Pfeifer, N.; Baston-Büst, D. M.; Hirchenhain, J.; Friebe-Hoffmann, U.; Rein, D. T.; Krüssel, J. S.; Hess, A. P.

    2012-01-01

    Background. The aim of this paper was to determine the influence of different in vitro culture media on mRNA expression of Hedgehog genes, il-6, and important genes regarding reactive oxygen species in single mouse embryos. Methods. Reverse transcription of single embryos either cultured in vitro from day 0.5 until 3.5 (COOK's Cleavage medium or Vitrolife's G-1 PLUS medium) or in vivo until day 3.5 post coitum. PCR was carried out for β-actin followed by nested-PCR for shh, ihh, il-6, nox, gpx4, gpx1, and prdx2. Results. The number of murine blastocysts cultured in COOK medium which expressed il-6, gpx4, gpx1, and prdx2 mRNA differed significantly compared to the in vivo group. Except for nox, the mRNA profile of the Vitrolife media group embryos varied significantly from the in vivo ones regarding the number of blastocysts expressing the mRNA of shh, ihh, il-6, gpx4, gpx1 and prdx2. Conclusions. The present study shows that different in vitro culture media lead to different mRNA expression profiles during early development. Even the newly developed in vitro culture media are not able to mimic the female reproductive tract. The question of long-term consequences for children due to assisted reproduction techniques needs to be addressed in larger studies. PMID:22919324

  15. Selection of the In Vitro Culture Media Influences mRNA Expression of Hedgehog Genes, Il-6, and Important Genes regarding Reactive Oxygen Species in Single Murine Preimplantation Embryos

    Directory of Open Access Journals (Sweden)

    N. Pfeifer

    2012-01-01

    Full Text Available Background. The aim of this paper was to determine the influence of different in vitro culture media on mRNA expression of Hedgehog genes, il-6, and important genes regarding reactive oxygen species in single mouse embryos. Methods. Reverse transcription of single embryos either cultured in vitro from day 0.5 until 3.5 (COOK’s Cleavage medium or Vitrolife’s G-1 PLUS medium or in vivo until day 3.5 post coitum. PCR was carried out for β-actin followed by nested-PCR for shh, ihh, il-6, nox, gpx4, gpx1, and prdx2. Results. The number of murine blastocysts cultured in COOK medium which expressed il-6, gpx4, gpx1, and prdx2 mRNA differed significantly compared to the in vivo group. Except for nox, the mRNA profile of the Vitrolife media group embryos varied significantly from the in vivo ones regarding the number of blastocysts expressing the mRNA of shh, ihh, il-6, gpx4, gpx1 and prdx2. Conclusions. The present study shows that different in vitro culture media lead to different mRNA expression profiles during early development. Even the newly developed in vitro culture media are not able to mimic the female reproductive tract. The question of long-term consequences for children due to assisted reproduction techniques needs to be addressed in larger studies.

  16. Embryo aggregation does not improve the development of interspecies somatic cell nuclear transfer embryos in the horse.

    Science.gov (United States)

    Gambini, Andrés; De Stéfano, Adrián; Jarazo, Javier; Buemo, Carla; Karlanian, Florencia; Salamone, Daniel Felipe

    2016-09-01

    The low efficiency of interspecies somatic cell nuclear transfer (iSCNT) makes it necessary to investigate new strategies to improve embryonic developmental competence. Embryo aggregation has been successfully applied to improve cloning efficiency in mammals, but it remains unclear whether it could also be beneficial for iSCNT. In this study, we first compared the effect of embryo aggregation over in vitro development and blastocyst quality of porcine, bovine, and feline zona-free (ZF) parthenogenetic (PA) embryos to test the effects of embryo aggregation on species that were later used as enucleated oocytes donors in our iSCNT study. We then assessed whether embryo aggregation could improve the in vitro development of ZF equine iSCNT embryos after reconstruction with porcine, bovine, and feline ooplasm. Bovine- and porcine-aggregated PA blastocysts had significantly larger diameters compared with nonaggregated embryos. On the other hand, feline- and bovine-aggregated PA embryos had higher blastocyst cell number. Embryo aggregation of equine-equine SCNT was found to be beneficial for embryo development as we have previously reported, but the aggregation of three ZF reconstructed embryos did not improve embryo developmental rates on iSCNT. In vitro embryo development of nonaggregated iSCNT was predominantly arrested around the stage when transcriptional activation of the embryonic genome is reported to start on the embryo of the donor species. Nevertheless, independent of embryo aggregation, equine blastocyst-like structures could be obtained in our study using domestic feline-enucleated oocytes. Taken together, these results reported that embryo aggregation enhance in vitro PA embryo development and embryo quality but effects vary depending on the species. Embryo aggregation also improves, as expected, the in vitro embryo development of equine-equine SCNT embryos; however, we did not observe positive effects on equine iSCNT embryo development. Among oocytes

  17. Single embryo transfer: the role of natural cycle/minimal stimulation IVF in the future.

    Science.gov (United States)

    Nygren, Karl-Gösta

    2007-05-01

    There are several good reasons to assume that single embryo transfer (SET) eventually will become the norm internationally in IVF treatments. A tendency is clearly visible, as demonstrated in the latest IVF World Report. The Nordic countries and Belgium have been leading the way. Sweden at present has 70% SET, with 5% twins and a pregnancy rate per transfer remaining constant at about 30%. As a consequence, recent data show a drastic reduction of the risk of prematurity and therefore of child morbidity and perinatal mortality. It is now time to discuss alternatives to the current clinical policy of quite an aggressive ovarian stimulation in settings where SET is the norm. When and at what proportion could natural cycle/soft stimulation be used? What group of patients would benefit? What will the consequences be in terms of efficacy, safety, cost, time and quality of life? Selection of the most beneficial, rather than the most aggressive, ovarian stimulation protocol by clinicians and by the couples themselves in the future may well include a much wider use of natural cycle/soft stimulation in IVF.

  18. Adaptation to osmotic stress provides protection against ammonium nitrate in Pelophylax perezi embryos

    International Nuclear Information System (INIS)

    Ortiz-Santaliestra, Manuel E.; Fernandez-Beneitez, Maria Jose; Lizana, Miguel; Marco, Adolfo

    2010-01-01

    The negative effects of pollution on amphibians are especially high when animals are additionally stressed by other environmental factors such as water salinity. However, the stress provoked by salinity may vary among populations because of adaptation processes. We tested the combined effect of a common fertilizer, ammonium nitrate (0-90.3 mg N-NO 3 NH 4 /L), and water salinity (0-2 per mille ) on embryos of two Pelophylax perezi populations from ponds with different salinity concentrations. Embryos exposed to the fertilizer were up to 17% smaller than controls. Survival rates of embryos exposed to a single stressor were always below 10%. The exposure to both stressors concurrently increased mortality rate (>95%) of embryos from freshwater. Since the fertilizer was lethal only when individuals were stressed by the salinity, it did not cause lethal effects on embryos naturally adapted to saline environments. Our results underscore the importance of testing multiple stressors when analyzing amphibian sensitivity to environmental pollution. - Natural resistance to salinity minimizes the impact of chemical fertilizers on amphibian embryos.

  19. [How can we nowadays select the best embryo to transfer?].

    Science.gov (United States)

    Alter, L; Boitrelle, F; Sifer, C

    2014-01-01

    Multiple pregnancies stand as the most common adverse outcome of assisted reproduction technologies (ART) and the dangers associated with those pregnancies have been reduced by doing elective single embryo transfers (e-SET). Many studies have shown that e-SET is compatible with a continuously high pregnancy rate per embryo transfer. Yet, it still becomes necessary to improve the selection process in order to define the quality of individual embryos - so that the ones we choose for transfer are more likely to implant. First, analysis of embryo morphology has greatly helped in this identification and remains the most relevant criterion for choosing the embryo. The introduction of time-lapse imaging provides new criteria predictive of implantation potential, but the real contribution of this system - including the benefit/cost ratio - seems to be not yet properly established. In this context, extended culture until blastocyst stage is an essential practice but it appears wise to keep it for a population showing a good prognosis. Then, the failure of aneuploid embryos to implant properly led to achieve preimplantation genetic screening (PGS) in order to increase pregnancy and delivery rates after ART. However, PGS by fluorescence in situ hybridization (FISH) at day 3 is a useless process - and may even be harmful. Another solution involves using comparative genomic hybridisation (CGH) and moving to blastocyst biopsy. Finally, it is envisaged that morphology will also be significantly aided by non-invasive analysis of biomarkers in the culture media that give a better reflection of whole-embryo physiology and function. Copyright © 2014. Published by Elsevier SAS.

  20. Embryos, individuals, and persons: an argument against embryo creation and research.

    Science.gov (United States)

    Tollefsen, C

    2001-01-01

    One strategy for arguing that it should be legally permissible to create human embryos, or to use spare human embryos, for scientific research purposes involves the claim that such embryos cannot be persons because they are not human individuals while twinning may yet take place. Being a human individual is considered to be by most people a necessary condition for being a human person. I argue first that such an argument against the personhood of embryos must be rationally conclusive if their destruction in public places such as laboratories is to be countenanced. I base this argument on a popular understanding of the role that the notion of privacy plays in abortion laws. I then argue that such arguments against personhood are not rationally conclusive. The claim that the early embryos is not a human individual is not nearly as obvious as some assert.

  1. In vitro development of donated frozen-thawed human embryos in a prototype static microfluidic device: a randomized controlled trial.

    Science.gov (United States)

    Kieslinger, Dorit C; Hao, Zhenxia; Vergouw, Carlijn G; Kostelijk, Elisabeth H; Lambalk, Cornelis B; Le Gac, Séverine

    2015-03-01

    To compare the development of human embryos in microfluidic devices with culture in standard microdrop dishes, both under static conditions. Prospective randomized controlled trial. In vitro fertilization laboratory. One hundred eighteen donated frozen-thawed human day-4 embryos. Random allocation of embryos that fulfilled the inclusion criteria to single-embryo culture in a microfluidics device (n = 58) or standard microdrop dish (n = 60). Blastocyst formation rate and quality after 24, 28, 48, and 72 hours of culture. The percentage of frozen-thawed day-4 embryos that developed to the blastocyst stage did not differ significantly in the standard microdrop dishes and microfluidic devices after 28 hours of culture (53.3% vs. 58.6%) or at any of the other time points. The proportion of embryos that would have been suitable for embryo transfer was comparable after 28 hours of culture in the control dishes and microfluidic devices (90.0% vs. 93.1%). Furthermore, blastocyst quality was similar in the two study groups. This study shows that a microfluidic device can successfully support human blastocyst development in vitro under static culture conditions. Future studies need to clarify whether earlier stage embryos will benefit from the culture in microfluidic devices more than the tested day-4 embryos because many important steps in the development of human embryos already take place before day 4. Further improvements of the microfluidic device will include parallel culture of single embryos, application of medium refreshment, and built-in sensors. NTR3867. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Mouse Embryo Compaction.

    Science.gov (United States)

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. © 2016 Elsevier Inc. All rights reserved.

  3. Role of the phagocytes on embryos: some morphological aspects.

    Science.gov (United States)

    Da Silva, José Roberto Machado Cunha

    2002-06-15

    Phagocytosis in embryos was studied by Elie Metchnikoff more than a century ago and is a pillar of the Phagocytic Theory. Throughout the last three decades phagocytosis in embryos has been studied from different perspectives, which this review describes and analyzes. The following branches were identified: 1) the search for the origin and first identification of well-known adult phagocytes in embryos, including their role after induced injuries; 2) the search for the occurrence of phagocytosis in embryos and its role during their physiological development; and 3) the search for phagocytosis in embryos, as a tool to study identity and self-recognition. It is possible to verify that different cell types are able to undertake phagocytosis, under a variety of different stimuli, and that the nature of what is phagocytosed also varies widely. Although the overwhelming majority of species described among metazoarians are invertebrates, most published articles in this field relate to mammals (particularly mice and humans) and birds (particularly chicks). In order to enrich this field of knowledge, research using a wider variety of vertebrate and invertebrate species should be undertaken. Furthermore, the present knowledge of phagocytosis in embryos needs a revised paradigm capable of embracing all the above-mentioned research trends under a single, more general, biological theory. In this sense, Metchnikoff's Phagocytic Theory, which is based on a broad biological paradigm and is thus capable of dealing with all research trends mentioned herein, should be revisited in order to contribute to this edification. Copyright 2002 Wiley-Liss, Inc.

  4. Genetic background of Prop1(df) mutants provides remarkable protection against hypothyroidism-induced hearing impairment.

    Science.gov (United States)

    Fang, Qing; Giordimaina, Alicia M; Dolan, David F; Camper, Sally A; Mustapha, Mirna

    2012-04-01

    Hypothyroidism is a cause of genetic and environmentally induced deafness. The sensitivity of cochlear development and function to thyroid hormone (TH) mandates understanding TH action in this sensory organ. Prop1(df) and Pou1f1(dw) mutant mice carry mutations in different pituitary transcription factors, each resulting in pituitary thyrotropin deficiency. Despite the same lack of detectable serum TH, these mutants have very different hearing abilities: Prop1(df) mutants are mildly affected, while Pou1f1(dw) mutants are completely deaf. Genetic studies show that this difference is attributable to the genetic backgrounds. Using embryo transfer, we discovered that factors intrinsic to the fetus are the major contributor to this difference, not maternal effects. We analyzed Prop1(df) mutants to identify processes in cochlear development that are disrupted in other hypothyroid animal models but protected in Prop1(df) mutants by the genetic background. The development of outer hair cell (OHC) function is delayed, but Prestin and KCNQ4 immunostaining appear normal in mature Prop1(df) mutants. The endocochlear potential and KCNJ10 immunostaining in the stria vascularis are indistinguishable from wild type, and no differences in neurofilament or synaptophysin staining are evident in Prop1(df) mutants. The synaptic vesicle protein otoferlin normally shifts expression from OHC to IHC as temporary afferent fibers beneath the OHC regress postnatally. Prop1(df) mutants exhibit persistent, abnormal expression of otoferlin in apical OHC, suggesting delayed maturation of synaptic function. Thus, the genetic background of Prop1(df) mutants is remarkably protective for most functions affected in other hypothyroid mice. The Prop1(df) mutant is an attractive model for identifying the genes that protect against deafness.

  5. Assay using embryo aggregation chimeras for the detection of nonlethal changes in X-irradiated mouse preimplantation embryos

    International Nuclear Information System (INIS)

    Obasaju, M.F.; Wiley, L.M.; Oudiz, D.J.; Miller, L.; Samuels, S.J.; Chang, R.J.; Overstreet, J.W.

    1988-01-01

    We have developed a short-term in vitro assay for the detection of sublethal effects produced by very low levels of ionizing radiation. The assay utilizes mouse embryo aggregation chimeras consisting of one irradiated embryo paired with an unirradiated embryo whose blastomeres have been labeled with fluorescein isothiocyanate (FITC). X irradiation (from 0.05 to 2 Gy) and chimera construction were performed with four-cell stage embryos, and the chimeras were cultured for 40 h to the morula stage. The morulae were partially dissociated with calcium-free culture medium and viewed under phase contrast and epifluorescence microscopy to obtain total embryo cell number and the cellular contribution of irradiated (unlabeled) and control (FITC labeled) embryos per chimera. In chimeras where neither embryo was irradiated, the ratio of the unlabeled blastomeres to the total number of blastomeres per chimera embryo was 0.50 (17.8 +/- 5.6 cells per unlabeled embryo and 17.4 +/- 5.5 cells per FITC-labeled partner embryo). However, in chimeras formed after the unlabeled embryos were irradiated with as little as 0.05 Gy, the ratio of unlabeled blastomeres to the total number of blastomeres per chimera embryo was 0.43 (P less than 0.01). The apparent decreases in cell proliferation were not observed in irradiated embryos that were merely cocultured with control embryos, regardless of whether the embryos were zona enclosed or zona free. We conclude that very low levels of radiation induce sublethal changes in cleaving embryos that are expressed as a proliferative disadvantage within two cell cycles when irradiated embryos are in direct cell-to-cell contact with unirradiated embryos

  6. A double-mutant collection targeting MAP kinase related genes in Arabidopsis for studying genetic interactions.

    Science.gov (United States)

    Su, Shih-Heng; Krysan, Patrick J

    2016-12-01

    Mitogen-activated protein kinase cascades are conserved in all eukaryotes. In Arabidopsis thaliana there are approximately 80 genes encoding MAP kinase kinase kinases (MAP3K), 10 genes encoding MAP kinase kinases (MAP2K), and 20 genes encoding MAP kinases (MAPK). Reverse genetic analysis has failed to reveal abnormal phenotypes for a majority of these genes. One strategy for uncovering gene function when single-mutant lines do not produce an informative phenotype is to perform a systematic genetic interaction screen whereby double-mutants are created from a large library of single-mutant lines. Here we describe a new collection of 275 double-mutant lines derived from a library of single-mutants targeting genes related to MAP kinase signaling. To facilitate this study, we developed a high-throughput double-mutant generating pipeline using a system for growing Arabidopsis seedlings in 96-well plates. A quantitative root growth assay was used to screen for evidence of genetic interactions in this double-mutant collection. Our screen revealed four genetic interactions, all of which caused synthetic enhancement of the root growth defects observed in a MAP kinase 4 (MPK4) single-mutant line. Seeds for this double-mutant collection are publicly available through the Arabidopsis Biological Resource Center. Scientists interested in diverse biological processes can now screen this double-mutant collection under a wide range of growth conditions in order to search for additional genetic interactions that may provide new insights into MAP kinase signaling. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  7. Redundant roles of Sox17 and Sox18 in early cardiovascular development of mouse embryos

    International Nuclear Information System (INIS)

    Sakamoto, Youhei; Hara, Kenshiro; Kanai-Azuma, Masami; Matsui, Toshiyasu; Miura, Yutaroh; Tsunekawa, Naoki; Kurohmaru, Masamichi; Saijoh, Yukio; Koopman, Peter; Kanai, Yoshiakira

    2007-01-01

    Sox7, -17 and -18 constitute the Sox subgroup F (SoxF) of HMG box transcription factor genes, which all are co-expressed in developing vascular endothelial cells in mice. Here we characterized cardiovascular phenotypes of Sox17/Sox18-double and Sox17-single null embryos during early-somite stages. Whole-mount PECAM staining demonstrated the aberrant heart looping, enlarged cardinal vein and mild defects in anterior dorsal aorta formation in Sox17 single-null embryos. The Sox17/Sox18 double-null embryos showed more severe defects in formation of anterior dorsal aorta and head/cervical microvasculature, and in some cases, aberrant differentiation of endocardial cells and defective fusion of the endocardial tube. However, the posterior dorsal aorta and allantoic microvasculature was properly formed in all of the Sox17/Sox18 double-null embryos. The anomalies in both anterior dorsal aorta and head/cervical vasculature corresponded with the weak Sox7 expression sites. This suggests the region-specific redundant activities of three SoxF members along the anteroposterior axis of embryonic vascular network

  8. Linking embryo toxicity with genotoxic responses in the freshwater snail Physa acuta: single exposure to benzo(a)pyrene, fluoxetine, bisphenol A, vinclozolin and exposure to binary mixtures with benzo(a)pyrene.

    Science.gov (United States)

    Sánchez-Argüello, Paloma; Aparicio, Natalia; Fernández, Carlos

    2012-06-01

    Genotoxic effects on fauna after waterborne pollutant exposure have been demonstrated by numerous research programmes. Less effort has been focused on establishing relationship between genotoxicity and long-term responses at higher levels of biological organization. Taking into account that embryos may be more sensitive indicators of reproductive impairment than alterations in fertility, we have developed two assays in multiwell plates to address correlations between embryo toxicity and genotoxicity. The potential teratogenicity was assessed by analyzing abnormal development and mortality of Physa acuta at embryonic stage. Genotoxicity was measured by the micronucleus (MN) test using embryonic cells. Our results showed that linkage between genotoxicity and embryo toxicity depends on mechanisms of action of compounds under study. Embryo toxic responses showed a clear dose-related tendency whereas no clear dose-dependent effect was observed in micronucleus induction. The higher embryo toxicity was produced by benzo(a)pyrene exposure followed by fluoxetine and bisphenol A. Vinclozolin was the lower embryo toxic compound. Binary mixtures with BaP always resulted in higher embryo toxicity than single exposures but antagonistic effects were observed for MN induction. Benzo(a)pyrene produced the higher MN induction at 0.04 mg/L, which also produced clear embryo toxic effects. Fluoxetine did not induce cytogenetic effects but 0.25mg/L altered embryonic development. Bisphenol A significantly reduced hatchability at 0.5mg/L while MN induction appeared with higher treatments than those that start causing teratogenicity. Much higher concentration of vinclozolin (5mg/L) reduced hatchability and induced maximum MN formation. In conclusion, while validating one biomarker of genotoxicity and employing one ecologically relevant effect, we have evaluated the relative sensitivity of a freshwater mollusc for a range of chemicals. The embryo toxicity test is a starting point for the

  9. Interfacing Lab-on-a-Chip Embryo Technology with High-Definition Imaging Cytometry.

    Science.gov (United States)

    Zhu, Feng; Hall, Christopher J; Crosier, Philip S; Wlodkowic, Donald

    2015-08-01

    To spearhead deployment of zebrafish embryo biotests in large-scale drug discovery studies, automated platforms are needed to integrate embryo in-test positioning and immobilization (suitable for high-content imaging) with fluidic modules for continuous drug and medium delivery under microperfusion to developing embryos. In this work, we present an innovative design of a high-throughput three-dimensional (3D) microfluidic chip-based device for automated immobilization and culture and time-lapse imaging of developing zebrafish embryos under continuous microperfusion. The 3D Lab-on-a-Chip array was fabricated in poly(methyl methacrylate) (PMMA) transparent thermoplastic using infrared laser micromachining, while the off-chip interfaces were fabricated using additive manufacturing processes (fused deposition modelling and stereolithography). The system's design facilitated rapid loading and immobilization of a large number of embryos in predefined clusters of traps during continuous microperfusion of drugs/toxins. It was conceptually designed to seamlessly interface with both upright and inverted fluorescent imaging systems and also to directly interface with conventional microtiter plate readers that accept 96-well plates. Compared with the conventional Petri dish assays, the chip-based bioassay was much more convenient and efficient as only small amounts of drug solutions were required for the whole perfusion system running continuously over 72 h. Embryos were spatially separated in the traps that assisted tracing single embryos, preventing interembryo contamination and improving imaging accessibility.

  10. A Simple and Rapid Gene Disruption Strategy in Mycobacterium abscessus: On the Design and Application of Glycopeptidolipid Mutants.

    Science.gov (United States)

    Viljoen, Albertus; Gutiérrez, Ana Victoria; Dupont, Christian; Ghigo, Eric; Kremer, Laurent

    2018-01-01

    Little is known about the disease-causing genetic determinants that are used by Mycobacterium abscessus , increasingly acknowledged as an important emerging pathogen, notably in cystic fibrosis. The presence or absence of surface exposed glycopeptidolipids (GPL) conditions the smooth (S) or rough (R) M. abscessus subsp. abscessus ( M. abscessus ) variants, respectively, which are characterized by distinct infective programs. However, only a handful of successful gene knock-out and conditional mutants have been reported in M. abscessus , testifying that genetic manipulation of this mycobacterium is difficult. To facilitate gene disruption and generation of conditional mutants in M. abscessus , we have designed a one-step single cross-over system that allows the rapid and simple generation of such mutants. Cloning of as small as 300 bp of the target gene allows for efficient homologous recombination to occur without additional exogenous recombination-promoting factors. The presence of tdTomato on the plasmids allows easily sifting out the large background of mutants spontaneously resistant to antibiotics. Using this strategy in the S genetic background and the target gene mmpL4a , necessary for GPL synthesis and transport, nearly 100% of red fluorescent clones exhibited a rough morphotype and lost GPL on the surface, suggesting that most red fluorescent colonies obtained after transformation incorporated the plasmid through homologous recombination into the chromosome. This system was further exploited to generate another strain with reduced GPL levels to explore how the presence of these cell wall-associated glycolipids influences M. abscessus hydrophobicity as well as virulence in the zebrafish model of infection. This mutant exhibited a more pronounced killing phenotype in zebrafish embryos compared to its S progenitor and this effect correlated with the production of abscesses in the central nervous system. Overall, these results suggest that the near

  11. Genetic analysis and molecular detection of the corn endosperm mutants induced by space flight

    International Nuclear Information System (INIS)

    Zhang Caibo; Zhou Yuanyuan; Wang Hanyu; Wang Hongwei; Wang Shengqing; Rong Tingzhao; Cao Moju

    2013-01-01

    In this study, two maize inbred lines 08-641 and 18-599 were carried into cosmic space by recoverable satellite 'Shijian 8', grain shrunken transparently and opaquely mutants were selected as experimental materials and their soluble sugar content in kernel were measured by annthrone colorimetry. The content of soluble sugar in mutant st1 kernels began to rise in 10 days after pollination, to reach the peak in 25 days and significantly higher than the contrast 08-641, while in mutant sol kernels it began to rise in 10 days after pollination, to reach the peak in 20 days and significantly higher than the contrast 18-599. The results of genetic analysis and allelism test showed that the trait in both mutants was all controlled by a single recessive gene, the mutant st1 was allelic to the su1 and the mutant sol was allelic to the sh2. DNA sequence alignment found 2 single-base mutations in 2 and 13 exon of su1 gene in the mutant st1 and 3 single-base mutations in 2, 5 and 16 exon of sh2 gene in mutant so1 leading to the change in amino acid sequences. So it is inferred that starch biosynthesis in the mutants may be blocked by these mutations, which lead to the increase of soluble sugar content in kernel. (authors)

  12. Dynamic fluorescence spectroscopy on single tryptophan mutants of EIImtl in detergent micelles : Effects of substrate binding and phosphorylation on the fluorescence and anisotropy decay

    NARCIS (Netherlands)

    Swaving Dijkstra, Dolf; Broos, J.; Visser, Antonie J.W.G.; van Hoek, A.; Robillard, George

    1997-01-01

    The effects of substrate and substrate analogue binding and phosphorylation on the conformational dynamics of the mannitol permease of Escherichia coli were investigated, using time-resolved fluorescence spectroscopy on mutants containing five single tryptophans situated in the membrane-embedded C

  13. The Well-of-the-Well system: an efficient approach to improve embryo development.

    Science.gov (United States)

    Vajta, Gábor; Korösi, Tamás; Du, Yutao; Nakata, Kumiko; Ieda, Shoko; Kuwayama, Masashige; Nagy, Zsolt Peter

    2008-07-01

    Transfer of human embryos at the blastocyst stage may offer considerable benefits including an increased implantation rate and a decreased risk of multiple pregnancies; however, blastocyst culture requires an efficient and reliable in-vitro embryo culture system. In this study, the effect of the Well-of-the-Well (WOW) system consisting of microwells formed on the bottom of the culture dish was tested in three mammalian species, including humans. The WOW system resulted in significant improvement when comparing the drops for culture of in-vitro-matured and parthenogenetically activated porcine oocytes, and in-vivo-derived mouse zygotes. In human embryos, using a sibling oocyte design, embryos cultured in WOW developed to the blastocyst stage in a significantly higher proportion than did embryos cultured traditionally (55% in WOW and 37% in conventional culture; P WOW system or in microdrops. Transferable quality blastocyst development (48.9% of cultured zygotes) was observed in the WOW system. Ninety-four blastocysts transferred to 45 patients resulted in clinical pregnancy rates of 48.9%, including nine twin pregnancies, seven single pregnancies, five miscarriages and one ectopic pregnancy. The results indicate that the WOW system provides a promising alternative for microdrop culture of mammalian embryos, including human embryos.

  14. Migration and growth of protoplanetary embryos. I. Convergence of embryos in protoplanetary disks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaojia; Lin, Douglas N. C. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Liu, Beibei [Kavli Institute for Astronomy and Astrophysics and Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Li, Hui, E-mail: xzhang47@ucsc.edu [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2014-12-10

    According to the core accretion scenario, planets form in protostellar disks through the condensation of dust, coagulation of planetesimals, and emergence of protoplanetary embryos. At a few AU in a minimum mass nebula, embryos' growth is quenched by dynamical isolation due to the depletion of planetesimals in their feeding zone. However, embryos with masses (M{sub p} ) in the range of a few Earth masses (M {sub ⊕}) migrate toward a transition radius between the inner viscously heated and outer irradiated regions of their natal disk. Their limiting isolation mass increases with the planetesimals surface density. When M{sub p} > 10 M {sub ⊕}, embryos efficiently accrete gas and evolve into cores of gas giants. We use a numerical simulation to show that despite stream line interference, convergent embryos essentially retain the strength of non-interacting embryos' Lindblad and corotation torques by their natal disks. In disks with modest surface density (or equivalently accretion rates), embryos capture each other in their mutual mean motion resonances and form a convoy of super-Earths. In more massive disks, they could overcome these resonant barriers to undergo repeated close encounters, including cohesive collisions that enable the formation of massive cores.

  15. Who abandons embryos after IVF?

    LENUS (Irish Health Repository)

    Walsh, A P H

    2010-04-01

    This investigation describes features of in vitro fertilisation (IVF) patients who never returned to claim their embryos following cryopreservation. Frozen embryo data were reviewed to establish communication patterns between patient and clinic; embryos were considered abandoned when 1) an IVF patient with frozen embryo\\/s stored at our facility failed to make contact with our clinic for > 2 yrs and 2) the patient could not be located after a multi-modal outreach effort was undertaken. For these patients, telephone numbers had been disconnected and no forwarding address was available. Patient, spouse and emergency family contact\\/s all escaped detection efforts despite an exhaustive public database search including death records and Internet directory portals. From 3244 IVF cycles completed from 2000 to 2008, > or = 1 embryo was frozen in 1159 cases (35.7%). Those without correspondence for > 2 yrs accounted for 292 (25.2%) patients with frozen embryos; 281 were contacted by methods including registered (signature involving abandoned embryos did not differ substantially from other patients. The goal of having a baby was achieved by 10\\/11 patients either by spontaneous conception, adoption or IVF. One patient moved away with conception status unconfirmed. The overall rate of embryo abandonment was 11\\/1159 (< 1%) in this IVF population. Pre-IVF counselling minimises, but does not totally eliminate, the problem of abandoned embryos. As the number of abandoned embryos from IVF accumulates, their fate urgently requires clarification. We propose that clinicians develop a policy consistent with relevant Irish Constitutional provisions to address this medical dilemma.

  16. Developmental potential of bovine hand-made clone embryos reconstructed by aggregation or fusion with distinct cytoplasmic volumes.

    Science.gov (United States)

    Ribeiro, Eduardo de Souza; Gerger, Renato Pereira da Costa; Ohlweiler, Lain Uriel; Ortigari, Ivens; Mezzalira, Joana Cláudia; Forell, Fabiana; Bertolini, Luciana Relly; Rodrigues, José Luiz; Ambrósio, Carlos Eduardo; Miglino, Maria Angélica; Mezzalira, Alceu; Bertolini, Marcelo

    2009-09-01

    Animal cloning has been associated with developmental abnormalities, with the level of heteroplasmy caused by the procedure being one of its potential limiting factors. The aim of this study was to determine the effect of the fusion of hemicytoplasts or aggregation of hemiembryos, varying the final cytoplasmic volume, on development and cell density of embryos produced by hand-made cloning (HMC), parthenogenesis or by in vitro fertilization (IVF). One or two enucleated hemicytoplasts were paired and fused with one skin somatic cell. Activated clone and zona-free parthenote embryos and hemiembryos were in vitro cultured in the well-of-the-well (WOW) system, being allocated to one of six experimental groups, on a per WOW basis: single clone or parthenote hemiembryos (1 x 50%); aggregation of two (2 x 50%), three (3 x 50%), or four (4 x 50%) clone or parthenote hemiembryos; single clone or parthenote embryos (1 x 100%); or aggregation of two clone or parthenote embryos (2 x 100%). Control zona-intact parthenote or IVF embryos were in vitro cultured in four-well dishes. Results indicated that the increase in the number of aggregated structures within each WOW was followed by a linear increase in cleavage, blastocyst rate, and cell density. The increase in cytoplasmic volume, either by fusion or by aggregation, had a positive effect on embryo development, supporting the establishment of pregnancies and the birth of a viable clone calf after transfer to recipients. However, embryo aggregation did not improve development on a hemicytoplast basis, except for the aggregation of two clone embryos.

  17. Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation.

    Science.gov (United States)

    Stigliani, S; Anserini, P; Venturini, P L; Scaruffi, P

    2013-10-01

    Is the amount of cell-free DNA released by human embryos into culture medium correlated with embryo morphological features? The mitochondrial DNA (mtDNA) content of culture medium is significantly associated with the fragmentation rate on Days 2 and 3 of embryo development, whether the oocyte came from women ≤ 35 or >35 years old. Cellular fragmentation is often utilized as one of the morphological parameters for embryo quality assessment. The amount of cellular fragments is considered to be an important morphological parameter for embryo implantation potential. It has been hypothesized that fragments are apoptotic bodies or anuclear cytoplasmatic pieces of blastomeres, although no definitive conclusion has been drawn about their pathogenesis. Human fertilized oocytes were individually cultured from Day 1 to Days 2 and 3. A total of 800 samples (166 spent media from Day 2 and 634 from Day 3) were enrolled into the present study. Double-stranded DNA (dsDNA) was quantified in 800 spent embryo culture media by Pico Green dye fluorescence assay. After DNA purification, genomic DNA (gDNA) and mtDNA were profiled by specific quantitative PCR. Statistical analyses defined correlations among DNA contents, embryo morphology and maternal age. Different independent tests confirmed the presence of DNA into embryo culture medium and, for the first time, we demonstrate that both gDNA and mtDNA are detectable in the secretome. The amount of DNA is larger in embryos with bad quality cleavage compared with high-grade embryos, suggesting that the DNA profile of culture medium is an objective marker for embryo quality assessment. In particular, DNA profiles are significantly associated with fragmentation feature (total dsDNA: P = 0.0010; mtDNA; P = 0.0247) and advanced maternal age. It is necessary to establish whether DNA profiling of spent embryo culture medium is a robust onsite test that can improve the prediction of blastulation, implantation and/or pregnancy rate. The

  18. Comparison of pregnancy rate between fresh embryo transfers and frozen-thawed embryo transfers following ICSI treatment

    Directory of Open Access Journals (Sweden)

    Zahra Basirat

    2016-01-01

    Full Text Available Background: The use of assisted reproductive technology (ART is increasing in the world. The rate, efficacy and safety of ART are very different among countries. There is an increase in the use of intra cytoplasmic sperm injection (ICSI, single fresh embryo transfer (ET and frozen-thawed embryo transfer (FET. Objective: The objective of this study was to compare pregnancy rate in fresh ET and FET. Materials and Methods: In this retrospective cross-sectional study 1014 ICSI-ET cycles (426 fresh ET and 588 FET from 753 women undergoing ICSI treatment referred to Fatemezahra Infertility and Reproductive Health Research Center in Babol, Iran from 2008 to 2013 were reviewed. Results: There were no significant differences between biochemical pregnancy rate (23% versus 18.8%, OR 1.301; 95% CI .95-1.774, gestational sac (95.6% versus 100% in FET, OR 0.60; 95% CI 0.54-0.67, and fetal heart activity (87.2% versus 93.6% OR .46; 95% CI .16-1.32 in fresh ET and FET cycles, respectively. P< 0.05 was considered statistically significant for all measures. Conclusion: Although, the result showed no significantly difference between the fresh ET and the FET cycles, however the embryos are able to be stored for subsequent ART. Therefore, we recommend FET cycles as an option alongside the fresh ET.

  19. Establishment of Homozygote Mutant Human Embryonic Stem Cells by Parthenogenesis.

    Science.gov (United States)

    Epsztejn-Litman, Silvina; Cohen-Hadad, Yaara; Aharoni, Shira; Altarescu, Gheona; Renbaum, Paul; Levy-Lahad, Ephrat; Schonberger, Oshrat; Eldar-Geva, Talia; Zeligson, Sharon; Eiges, Rachel

    2015-01-01

    We report on the derivation of a diploid 46(XX) human embryonic stem cell (HESC) line that is homozygous for the common deletion associated with Spinal muscular atrophy type 1 (SMA) from a pathenogenetic embryo. By characterizing the methylation status of three different imprinted loci (MEST, SNRPN and H19), monitoring the expression of two parentally imprinted genes (SNRPN and H19) and carrying out genome-wide SNP analysis, we provide evidence that this cell line was established from the activation of a mutant oocyte by diploidization of the entire genome. Therefore, our SMA parthenogenetic HESC (pHESC) line provides a proof-of-principle for the establishment of diseased HESC lines without the need for gene manipulation. As mutant oocytes are easily obtained and readily available during preimplantation genetic diagnosis (PGD) cycles, this approach should provide a powerful tool for disease modelling and is especially advantageous since it can be used to induce large or complex mutations in HESCs, including gross DNA alterations and chromosomal rearrangements, which are otherwise hard to achieve.

  20. Establishment of Homozygote Mutant Human Embryonic Stem Cells by Parthenogenesis.

    Directory of Open Access Journals (Sweden)

    Silvina Epsztejn-Litman

    Full Text Available We report on the derivation of a diploid 46(XX human embryonic stem cell (HESC line that is homozygous for the common deletion associated with Spinal muscular atrophy type 1 (SMA from a pathenogenetic embryo. By characterizing the methylation status of three different imprinted loci (MEST, SNRPN and H19, monitoring the expression of two parentally imprinted genes (SNRPN and H19 and carrying out genome-wide SNP analysis, we provide evidence that this cell line was established from the activation of a mutant oocyte by diploidization of the entire genome. Therefore, our SMA parthenogenetic HESC (pHESC line provides a proof-of-principle for the establishment of diseased HESC lines without the need for gene manipulation. As mutant oocytes are easily obtained and readily available during preimplantation genetic diagnosis (PGD cycles, this approach should provide a powerful tool for disease modelling and is especially advantageous since it can be used to induce large or complex mutations in HESCs, including gross DNA alterations and chromosomal rearrangements, which are otherwise hard to achieve.

  1. X-ray inactivation of Caenorhabditis elegans embryos or larvae

    Energy Technology Data Exchange (ETDEWEB)

    Ishi, N; Suzuki, K [Tokai Univ., Isehara, Kanagawa (Japan). School of Medicine

    1990-11-01

    The lethal effects of X-irradiation were examined in staged populations of Caenorhabditis elegans embryos or larvae. Radiation resistance decreased slightly throughout the first, proliferative phase of embryogenesis. This might be due to the increase in target size, since most cells in C. elegans are autonomously determined. Animals irradiated in the second half of embryogenesis were about 40-fold more resistant to the lethal effects of X-rays. This is probably due to the absence of cell divisions during this time. The radiation resistance increased still more with advancing larval stages. A radiation hypersensitive mutant, rad-1, irradiated in the first half of embryogenesis, is about 30-fold more sensitive than wild-type, but in the second half it is the same as wild-type. (author).

  2. Analysis of the expression of putatively imprinted genes in bovine peri-implantation embryos

    DEFF Research Database (Denmark)

    Tveden-Nyborg, Pernille Yde; Alexopoulos, N.I.; Cooney, M.A.

    2008-01-01

    The application of assisted reproductive technologies (ART) has been shown to induce changes in the methylation of the embryonic genome, leading to aberrant gene expression, including that of imprinted genes. Aberrant methylation and gene expression has been linked to the large offspring syndrome...... (LOS) in bovine embryos resulting in increased embryonic morbidity and mortality. In the bovine, limited numbers of imprinted genes have been studied and studies have primarily been restricted to pre-implantation stages. This study reports original data on the expression pattern of 8 putatively...... imprinted genes (Ata3, Dlk1, Gnas, Grb10, Magel2, Mest-1, Ndn and Sgce) in bovine peri-implantation embryos. Two embryonic developmental stages were examined, Day 14 and Day 21. The gene expression pattern of single embryos was recorded for in vivo, in vitro produced (IVP) and parthenogenetic embryos...

  3. Establishment of pten knockout medaka with transcription activator-like effector nucleases (TALENs as a model of PTEN deficiency disease.

    Directory of Open Access Journals (Sweden)

    Yuriko Matsuzaki

    Full Text Available Phosphatase and tensin homolog (PTEN is a lipid and protein phosphatase that antagonizes signaling by the phosphatidylinositol 3-kinase (PI3K-AKT signaling pathway. The PTEN gene is a major tumor suppressor, with mutations of this gene occurring frequently in tumors of humans and mice. We have now developed mutant medaka deficient in PTEN with the use of transcription activator-like effector nuclease (TALEN technology. Medaka possesses two pten genes, ptena and ptenb, similar to zebrafish. We established 16 ptena mutant lines and two ptenb mutant lines. Homozygous single pten mutants were found to be viable and fertile. In contrast, pten double-knockout (dko embryos manifested severe abnormalities in vasculogenesis, eye size, and tail development at 72 hours post fertilization(hpf and died before hatching. Immunoblot analysis revealed that the ratio of phosphorylated to total forms of AKT (pAKT/AKT in pten dko embryos was four times that in wild-type embryos, indicative of up-regulation of signaling by the PI3K-AKT pathway. Treatment of pten dko embryos with the PI3K inhibitor LY294002 reduced the pAKT/AKT ratio by about one-half and partially rescued the defect in vasculogenesis. Additional inhibitors of the PI3K-AKT pathway, including rapamycin and N-α-tosyl-L-phenylalanyl chloromethyl ketone, also partially restored vasculogenesis in the dko embryos. Our model system thus allows pten dko embryos to be readily distinguished from wild-type embryos at an early stage of development and is suitable for the screening of drugs able to compensate for PTEN deficiency.

  4. Cep70 and Cep131 contribute to ciliogenesis in zebrafish embryos

    Directory of Open Access Journals (Sweden)

    Carl Matthias

    2009-03-01

    Full Text Available Abstract Background The centrosome is the cell's microtubule organising centre, an organelle with important roles in cell division, migration and polarity. However, cells can divide and flies can, for a large part of development, develop without them. Many centrosome proteins have been identified but the roles of most are still poorly understood. The centrioles of the centrosome are similar to the basal bodies of cilia, hair-like extensions of many cells that have important roles in cell signalling and development. In a number of human diseases, such Bardet-Biedl syndrome, centrosome/cilium proteins are mutated, leading to polycystic kidney disease, situs inversus, and neurological problems, amongst other symptoms. Results We describe zebrafish (Danio rerio embryos depleted for two uncharacterised, centrosome proteins, Cep70 and Cep131. The phenotype of these embryos resembles that of zebrafish mutants for intraflagellar transport proteins (IFTs, with kidney and ear development affected and left-right asymmetry randomised. These organs and processes are those affected in Bardet-Biedl syndrome and other similar diseases. Like these diseases, the root cause of the phenotype lies, in fact, in dysfunctional cilia, which are shortened but not eliminated in several tissues in the morphants. Centrosomes and basal bodies, on the other hand, are present. Both Cep70 and Cep131 possess a putative HDAC (histone deacetylase interacting domain. However, we could not detect in yeast two-hybrid assays any interaction with the deacetylase that controls cilium length, HDAC6, or any of the IFTs that we tested. Conclusion Cep70 and Cep131 contribute to ciliogenesis in many tissues in the zebrafish embryo: cilia are made in cep70 and cep131 morphant zebrafish embryos but are shortened. We propose that the role of these centrosomal/basal body proteins is in making the cilium and that they are involved in determination of the length of the axoneme.

  5. PedonnanceofE3rly MatUring MutantS Derived from ''SuPa'~ Rice ...

    African Journals Online (AJOL)

    Vienna, Austria in 1994. The dry seeds were in-adiated with gamma rays using three doses (170, 210. --iifid 24OC;Y).frOm C.obalt 60 (lCO) in order shorten the plant height and maturity period. From the resulting mutant. PoPulations ortgindtiriifroni modified single seed descent method, five Jery early maturing lines plus the ...

  6. β-catenin functions pleiotropically in differentiation and tumorigenesis in mouse embryo-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Noriko Okumura

    Full Text Available The canonical Wnt/β-catenin signaling pathway plays a crucial role in the maintenance of the balance between proliferation and differentiation throughout embryogenesis and tissue homeostasis. β-Catenin, encoded by the Ctnnb1 gene, mediates an intracellular signaling cascade activated by Wnt. It also plays an important role in the maintenance of various types of stem cells including adult stem cells and cancer stem cells. However, it is unclear if β-catenin is required for the derivation of mouse embryo-derived stem cells. Here, we established β-catenin-deficient (β-cat(Δ/Δ mouse embryo-derived stem cells and showed that β-catenin is not essential for acquiring self-renewal potential in the derivation of mouse embryonic stem cells (ESCs. However, teratomas formed from embryo-derived β-cat(Δ/Δ ESCs were immature germ cell tumors without multilineage differentiated cell types. Re-expression of functional β-catenin eliminated their neoplastic, transformed phenotype and restored pluripotency, thereby rescuing the mutant ESCs. Our findings demonstrate that β-catenin has pleiotropic effects in ESCs; it is required for the differentiation of ESCs and prevents them from acquiring tumorigenic character. These results highlight β-catenin as the gatekeeper in differentiation and tumorigenesis in ESCs.

  7. Frozen-Thawed Embryo Transfer Cycles Have a Lower Incidence of Ectopic Pregnancy Compared With Fresh Embryo Transfer Cycles.

    Science.gov (United States)

    Zhang, Xinyu; Ma, Caihong; Wu, Zhangxin; Tao, Liyuan; Li, Rong; Liu, Ping; Qiao, Jie

    2017-01-01

    To evaluate the risk of ectopic pregnancy of embryo transfer. A retrospective cohort study on the incidence of ectopic pregnancy in fresh and frozen-thawed embryo transfer cycles from January 1 st , 2010, to January 1 st , 2015. Infertile women undergoing frozen-thawed transfer cycles or fresh transfer cycles. In-vitro fertilization, fresh embryo transfer, frozen-thawed embryo transfer, ectopic pregnancy. Ectopic pregnancy rate and clinical pregnancy rate. A total of 69 756 in vitro fertilization-embryo transfer cycles from 2010 to 2015 were analyzed, including 45 960 (65.9%) fresh and 23 796 (34.1%) frozen-thawed embryo transfer cycles. The clinical pregnancy rate per embryo transfer was slightly lower in fresh embryo transfer cycles compared with frozen-thawed embryo transfer cycles (40.8% vs 43.1%, P cycles, blastocyst transfer shows a significantly lower incidence of ectopic pregnancy (0.8% vs 1.8%, P = .002) in comparison with day 3 cleavage embryo transfer. The risk of ectopic pregnancy is lower in frozen-thawed embryo transfer cycles than fresh embryo transfer cycles, and blastocyst transfer could further decrease the ectopic pregnancy rate in frozen-thawed embryo transfer cycles.

  8. Nanomolar oligomerization and selective co-aggregation of α-synuclein pathogenic mutants revealed by single-molecule fluorescence

    Science.gov (United States)

    Sierecki, Emma; Giles, Nichole; Bowden, Quill; Polinkovsky, Mark E.; Steinbeck, Janina; Arrioti, Nicholas; Rahman, Diya; Bhumkar, Akshay; Nicovich, Philip R.; Ross, Ian; Parton, Robert G.; Böcking, Till; Gambin, Yann

    2016-01-01

    Protein aggregation is a hallmark of many neurodegenerative diseases, notably Alzheimer’s and Parkinson’s disease. Parkinson’s disease is characterized by the presence of Lewy bodies, abnormal aggregates mainly composed of α-synuclein. Moreover, cases of familial Parkinson’s disease have been linked to mutations in α-synuclein. In this study, we compared the behavior of wild-type (WT) α-synuclein and five of its pathological mutants (A30P, E46K, H50Q, G51D and A53T). To this end, single-molecule fluorescence detection was coupled to cell-free protein expression to measure precisely the oligomerization of proteins without purification, denaturation or labelling steps. In these conditions, we could detect the formation of oligomeric and pre-fibrillar species at very short time scale and low micromolar concentrations. The pathogenic mutants surprisingly segregated into two classes: one group forming large aggregates and fibrils while the other tending to form mostly oligomers. Strikingly, co-expression experiments reveal that members from the different groups do not generally interact with each other, both at the fibril and monomer levels. Together, this data paints a completely different picture of α-synuclein aggregation, with two possible pathways leading to the development of fibrils. PMID:27892477

  9. Modulating Wnt Signaling Rescues Palate Morphogenesis in Pax9 Mutant Mice.

    Science.gov (United States)

    Li, C; Lan, Y; Krumlauf, R; Jiang, R

    2017-10-01

    Cleft palate is a common birth defect caused by disruption of palatogenesis during embryonic development. Although mutations disrupting components of the Wnt signaling pathway have been associated with cleft lip and palate in humans and mice, the mechanisms involving canonical Wnt signaling and its regulation in secondary palate development are not well understood. Here, we report that canonical Wnt signaling plays an important role in Pax9-mediated regulation of secondary palate development. We found that cleft palate pathogenesis in Pax9-deficient embryos is accompanied by significantly reduced expression of Axin2, an endogenous target of canonical Wnt signaling, in the developing palatal mesenchyme, particularly in the posterior regions of the palatal shelves. We found that expression of Dkk2, encoding a secreted Wnt antagonist, is significantly increased whereas the levels of active β-catenin protein, the essential transcriptional coactivator of canonical Wnt signaling, is significantly decreased in the posterior regions of the palatal shelves in embryonic day 13.5 Pax9-deficent embryos in comparison with control littermates. We show that small molecule-mediated inhibition of Dickkopf (DKK) activity in utero during palatal shelf morphogenesis partly rescued secondary palate development in Pax9-deficient embryos. Moreover, we found that genetic inactivation of Wise, which is expressed in the developing palatal shelves and encodes another secreted antagonist of canonical Wnt signaling, also rescued palate morphogenesis in Pax9-deficient mice. Furthermore, whereas Pax9 del/del embryos exhibit defects in palatal shelf elevation/reorientation and significant reduction in accumulation of hyaluronic acid-a high molecular extracellular matrix glycosaminoglycan implicated in playing an important role in palatal shelf elevation-80% of Pax9 del/del ;Wise -/- double-mutant mouse embryos exhibit rescued palatal shelf elevation/reorientation, accompanied by restored

  10. Selection and genetic relationship of salt tolerant rice mutants by in vitro mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jae Young; Kim, Dong Sub; Lee, Kyung Jun; Kim, Jin Baek; Kim, Sang Hoon; Kang, Si Yong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Lee, Myung Chul [National Academy of Agriculture and Science, Suwon (Korea, Republic of); Yun, Song Joong [Chonbuk National University, Jeonju (Korea, Republic of)

    2010-12-15

    Plants have evolved physiological, biochemical and metabolic mechanisms to increase their survival under the adverse conditions. This present study has been performed to select salt tolerant rice mutant lines through in vivo and in vitro mutagenesis with gamma-rays. For the selection of the salt-tolerant rice mutants, we conducted three times of selection procedure using 1,500 gamma ray mutant lines resulted from an embryo culture of the original rice cv. Dongan (wild-type, WT): first, selection in the a nutrient solution with 171 mM NaCI: second, selection under in vitro condition with 171 mM NaCI: and third, selection in a reclaimed saline land. Based on a growth comparison of the entries, out of the mutant lines, two putative 2 salt tolerant (ST) rice mutant lines, ST-87 and ST-301, were finally selected. The survival rate of the WT, ST-87 and ST-301 were 36.6%, 60% and 66.3% after 7 days in 171 mM NaCI treatment, respectively. The WT and two salt tolerant mutant lines were used to analyze their genetic variations. A total of 21 EcoRI and Msel primer combinations were used to analyze the genetic relationship of among the two salt tolerant lines and the WT using the ABI3130 capillary electrophoresis system. In the AFLP analysis, a total of 1469 bands were produced by the 21 primer combinations, and 700 (47.6%) of them were identified as having polymorphism. The genetic similarity coefficients were ranged from 0.52 between the ST-87 and WT to 0.24 between the ST-301 and the WT. These rice mutant lines will be used as a control plot for physiological analysis and genetic research on salt tolerance.

  11. Individual blastomeres of 16- and 32-cell mouse embryos are able to develop into foetuses and mice.

    Science.gov (United States)

    Tarkowski, Andrzej K; Suwińska, Aneta; Czołowska, Renata; Ożdżeński, Wacław

    2010-12-15

    Cell and developmental studies have clarified how, by the time of implantation, the mouse embryo forms three primary cell lineages: epiblast (EPI), primitive endoderm (PE), and trophectoderm (TE). However, it still remains unknown when cells allocated to these three lineages become determined in their developmental fate. To address this question, we studied the developmental potential of single blastomeres derived from 16- and 32-cell stage embryos and supported by carrier, tetraploid blastomeres. We were able to generate singletons, identical twins, triplets, and quadruplets from individual inner and outer cells of 16-cell embryos and, sporadically, foetuses from single cells of 32-cell embryos. The use of embryos constitutively expressing GFP as the donors of single diploid blastomeres enabled us to identify their cell progeny in the constructed 2n↔4n blastocysts. We showed that the descendants of donor blastomeres were able to locate themselves in all three first cell lineages, i.e., epiblast, primitive endoderm, and trophectoderm. In addition, the application of Cdx2 and Gata4 markers for trophectoderm and primitive endoderm, respectively, showed that the expression of these two genes in the descendants of donor blastomeres was either down- or up-regulated, depending on the cell lineage they happened to occupy. Thus, our results demonstrate that up to the early blastocysts stage, the destiny of at least some blastomeres, although they have begun to express markers of different lineage, is still labile. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Cytoplasmic vitamin A binding proteins in chick embryo dermis and epidermis

    International Nuclear Information System (INIS)

    Gates, R.E.; King, L.E. Jr.

    1985-01-01

    Excess vitamin A has striking morphologic and developmental effects on chick embryo skin. While cytoplasmic retinoic acid-binding protein (CRABP) was known to be abundant in chick embryo skin, neither quantitative values nor the distribution between dermis and epidermis have been established. The authors determined CRABP levels in collagenase-separated dermis and epidermis from 8-day-old embryos using specific binding of all-trans-[11- 3 H]retinoic acid in cytosols prepared from gram quantities of these tissues. The level of CRABP in dermis was twice the level in epidermis whether calculated on the basis of wet weight, cytosol protein, or DNA. When averaged over many preparations, 3 times as much dermis as epidermis was recovered from a single piece of skin. Therefore, the dermis contained 85% of the extremely high CRABP levels found in collagenase-treated skin, while epidermis contributed only 15%. Cytoplasmic retinol binding protein (CRBP) was also detected in chick embryo skin, but the binding was low and the levels in epidermis and dermis were not significantly different. The amount of CRABP in chick embryo skin (1600 pmol/g wet weight or 100 pmol/mg cytosol protein) is the highest level reported in any tissue and suggests an important role for vitamin A in the normal development and maturation of skin

  13. Recent microfluidic devices for studying gamete and embryo biomechanics.

    Science.gov (United States)

    Lai, David; Takayama, Shuichi; Smith, Gary D

    2015-06-25

    The technical challenges of biomechanic research such as single cell analysis at a high monetary cost, labor, and time for just a small number of measurements is a good match to the strengths of microfluidic devices. New scientific discoveries in the fertilization and embryo development process, of which biomechanics is a major subset of interest, is crucial to fuel the continual improvement of clinical practice in assisted reproduction. The following review will highlight some recent microfluidic devices tailored for gamete and embryo biomechanics where biomimicry arises as a major theme of microfluidic device design and function, and the application of fundamental biomechanic principles are used to improve outcomes of cryopreservation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Preimplantation Genetic Diagnosis for Stargardt Disease

    Science.gov (United States)

    Sohrab, Mahsa A.; Allikmets, Rando; Guarnaccia, Michael M.; Smith, R. Theodore

    2010-01-01

    Purpose To report the first use of in vitro fertilization (IVF) and preimplantation genetic diagnosis to achieve an unaffected pregnancy in an autosomal-recessive retinal dystrophy. Design Case report. Methods An affected male with Stargardt disease and his carrier wife underwent IVF. Embryos obtained by intracytoplasmic sperm injection underwent single-cell DNA testing via polymerase chain reaction and restriction enzyme analysis to detect the presence of ABCA4 mutant alleles. Embryos were diagnosed as being either affected by or carriers for Stargardt disease. A single carrier embryo was implanted. Results Chorionic villus sampling performed during the first trimester verified that the fetus possessed only one mutant paternal allele and one normal maternal allele, thus making her an unaffected carrier of the disease. A healthy, live-born female was delivered. Conclusion IVF and preimplantation genetic diagnosis can assist couples with an affected spouse and a carrier spouse with recessive retinal dystrophies to have an unaffected child. PMID:20149343

  15. Raman Spectroscopic Imaging of the Whole Ciona intestinalis Embryo during Development

    Science.gov (United States)

    Nakamura, Mitsuru J.; Hotta, Kohji; Oka, Kotaro

    2013-01-01

    Intracellular composition and the distribution of bio-molecules play central roles in the specification of cell fates and morphogenesis during embryogenesis. Consequently, investigation of changes in the expression and distribution of bio-molecules, especially mRNAs and proteins, is an important challenge in developmental biology. Raman spectroscopic imaging, a non-invasive and label-free technique, allows simultaneous imaging of the intracellular composition and distribution of multiple bio-molecules. In this study, we explored the application of Raman spectroscopic imaging in the whole Ciona intestinalis embryo during development. Analysis of Raman spectra scattered from C. intestinalis embryos revealed a number of localized patterns of high Raman intensity within the embryo. Based on the observed distribution of bio-molecules, we succeeded in identifying the location and structure of differentiated muscle and endoderm within the whole embryo, up to the tailbud stage, in a label-free manner. Furthermore, during cell differentiation, we detected significant differences in cell state between muscle/endoderm daughter cells and daughter cells with other fates that had divided from the same mother cells; this was achieved by focusing on the Raman intensity of single Raman bands at 1002 or 1526 cm−1, respectively. This study reports the first application of Raman spectroscopic imaging to the study of identifying and characterizing differentiating tissues in a whole chordate embryo. Our results suggest that Raman spectroscopic imaging is a feasible label-free technique for investigating the developmental process of the whole embryo of C. intestinalis. PMID:23977129

  16. A novel zebrafish mutant with wavy-notochord: an effective biological index for monitoring the copper pollution of water from natural resources.

    Science.gov (United States)

    Chen, Yau-Hung; Lin, Ji-Sheng

    2011-02-01

    We identified a novel zebrafish mutant that has wavy-notochord phenotypes, such as severely twisted notochord and posterior malformations, but has normal melanocytes. Histological evidences showed that proliferating vacuolar cells extended their growth to the muscle region, and consequently caused the wavy-notochord phenotypes. Interestingly, those malformations can be greatly reversed by exposure with copper, suggesting that copper plays an important role on wavy-notochord phenotypes. In addition, after long-term copper exposure, the surviving larvae derived from wavy-notochord mutants displayed bone malformations, such as twisted axial skeleton and osteophyte. These phenotypic changes and molecular evidences of wavy-notochord mutants are highly similar to those embryos whose lysyl oxidases activities have been inactivated. Taken together, we propose that (i) the putative mutated genes of this wavy-notochord mutant might be highly associated with the lysyl oxidase genes in zebrafish; and (ii) this fish model is an effective tool for monitoring copper pollution of water from natural resources. Copyright © 2009 Wiley Periodicals, Inc.

  17. Muscular contractions in the zebrafish embryo are necessary to reveal thiuram-induced notochord distortions

    International Nuclear Information System (INIS)

    Teraoka, Hiroki; Urakawa, Satsuki; Nanba, Satomi; Nagai, Yuhki; Wu Dong; Imagawa, Tomohiro; Tanguay, Robert L.; Svoboda, Kurt; Handley-Goldstone, Heather M.; Stegeman, John J.; Hiraga, Takeo

    2006-01-01

    Dithiocarbamates form a large group of chemicals that have numerous uses in agriculture and medicine. It has been reported that dithiocarbamates, including thiuram (tetramethylthiuram disulfide), cause wavy distortions of the notochord in zebrafish and other fish embryos. In the present study, we investigated the mechanism underlying the toxicity of thiuram in zebrafish embryos. When embryos were exposed to thiuram (2-1000 nM: 0.48-240 μg/L) from 3 h post fertilization (hpf) (30% epiboly) until 24 hpf (Prim-5), all embryos develop wavy notochords, disorganized somites, and have shortened yolk sac extensions. The thiuram response was specific and did not cause growth retardation or mortality at 24 hpf. The thiuram-dependent responses showed the same concentration dependence with a waterborne EC 5 values of approximately 7 nM. Morphometric measurements revealed that thiuram does not affect the rate of notochord lengthening. However, the rate of overall body lengthening was significantly reduced in thiuram-exposed animals. Other dithiocarbamates, such as ziram, caused similar malformations to thiuram. While expression of genes involved in somitogenesis was not affected, the levels of notochord-specific transcripts were altered after the onset of malformations. Distortion of the notochord started precisely at 18 hpf, which is concomitant with onset of spontaneous rhythmic trunk contractions. Abolishment of spontaneous contractions using tricaine, α-bungarotoxin, and a paralytic mutant sofa potato, resulted in normal notochord morphology in the presence of thiuram. These results indicate that muscle activity is necessary to reveal the underlying functional deficit and suggest that the developmental target of dithiocarbamates impairs trunk plasticity through an unknown mechanism

  18. The combined use of embryos and semen for cryogenic conservation of mammalian livestock genetic resources

    Directory of Open Access Journals (Sweden)

    Pizzi Flavia

    2005-11-01

    Full Text Available Abstract The objective of this empirical simulation study was to evaluate the use of a combination of semen and embryos in the creation of gene banks for reconstruction of an extinct breed. Such an approach was compared for banks with varying proportions of embryos on the basis of the amount of the material to be stored, time for reconstruction, maintenance of genetic variability, and probability of failure during reconstruction. Four types of populations were simulated, based on reproductive rate: single offspring, twinning, enhanced reproduction, and litter bearing. Reconstruction was simulated for banks consisting of different combinations of semen and reduced numbers of embryos (expressed as a percentage of the material needed for a bank containing exclusively embryos and ranging from 10 to 90%. The use of a combination of semen and embryos increased the number of insemination cycles needed for reconstruction and the level of genetic relatedness in the reconstructed population. The risk for extinction was unacceptably high when a very low proportion of embryos (

  19. Surgical manipulation of mammalian embryos in vitro.

    Science.gov (United States)

    Naruse, I; Keino, H; Taniguchi, M

    1997-04-01

    Whole-embryo culture systems are useful in the fields of not only embryology but also teratology, toxicology, pharmacology, and physiology. Of the many advantages of whole-embryo culture, we focus here on the surgical manipulation of mammalian embryos. Whole-embryo culture allows us to manipulate mammalian embryos, similarly to fish, amphibian and avian embryos. Many surgical experiments have been performed in mammalian embryos in vitro. Such surgical manipulation alters the destiny of morphogenesis of the embryos and can answer many questions concerning developmental issues. As an example of surgical manipulation using whole-embryo culture systems, one of our experiments is described. Microsurgical electrocauterization of the deep preaxial mesodermal programmed cell death zone (fpp) in the footplate prevented the manifestation of polydactyly in genetic polydactyly mouse embryos (Pdn/Pdn), in which fpp was abolished.

  20. Phytohemagglutinin facilitates the aggregation of blastomere pairs from Day 5 donor embryos with Day 4 host embryos for chimeric bovine embryo multiplication.

    Science.gov (United States)

    Simmet, Kilian; Reichenbach, Myriam; Reichenbach, Horst-Dieter; Wolf, Eckhard

    2015-12-01

    Multiplication of bovine embryos by the production of aggregation chimeras is based on the concept that few blastomeres of a donor embryo form the inner cell mass (ICM) and thus the embryo proper, whereas cells of a host embryo preferentially contribute to the trophectoderm (TE), the progenitor cells of the embryonic part of the placenta. We aggregated two fluorescent blastomeres from enhanced green fluorescent protein (eGFP) transgenic Day 5 morulae with two Day 4 embryos that did not complete their first cleavage until 27 hours after IVF and tested the effect of phytohemagglutinin-L (PHA) on chimeric embryo formation. The resulting blastocysts were characterized by differential staining of cell lineages using the TE-specific factor CDX2 and confocal laser scanning microscopy to facilitate the precise localization of eGFP-positive cells. The proportions of blastocyst development of sandwich aggregates with (n = 99) and without PHA (n = 46) were 85.9% and 54.3% (P chimeric blastocysts analyzed by confocal laser scanning microscopy, nine had eGFP-positive cells (three of them in the ICM, three in the TE, and three in both lineages). When integration in the ICM occurred, the number of eGFP-positive cells in this compartment was 8.3 ± 2.3 (mean ± standard error of the mean). We conclude that PHA is advantageous for the formation of aggregation chimeras, but the approach tested in the present study with only two donor blastomeres and two host embryos did not result in multiplication of genetically valuable donor embryos. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Human embryo culture media comparisons.

    Science.gov (United States)

    Pool, Thomas B; Schoolfield, John; Han, David

    2012-01-01

    Every program of assisted reproduction strives to maximize pregnancy outcomes from in vitro fertilization and selecting an embryo culture medium, or medium pair, consistent with high success rates is key to this process. The common approach is to replace an existing medium with a new one of interest in the overall culture system and then perform enough cycles of IVF to see if a difference is noted both in laboratory measures of embryo quality and in pregnancy. This approach may allow a laboratory to select one medium over another but the outcomes are only relevant to that program, given that there are well over 200 other variables that may influence the results in an IVF cycle. A study design that will allow for a more global application of IVF results, ones due to culture medium composition as the single variable, is suggested. To perform a study of this design, the center must have a patient caseload appropriate to meet study entrance criteria, success rates high enough to reveal a difference if one exists and a strong program of quality assurance and control in both the laboratory and clinic. Sibling oocytes are randomized to two study arms and embryos are evaluated on day 3 for quality grades. Inter and intra-observer variability are evaluated by kappa statistics and statistical power and study size estimates are performed to bring discriminatory capability to the study. Finally, the complications associated with extending such a study to include blastocyst production on day 5 or 6 are enumerated.

  2. Ovarian stimulation and embryo quality

    NARCIS (Netherlands)

    Baart, Esther; Macklon, Nick S.; Fauser, Bart J. C. M.

    To Study the effects of different ovarian stimulation approaches on oocyte and embryo quality, it is imperative to assess embryo quality with a reliable and objective method. Embryos rated as high quality by standardized morphological assessment are associated with higher implantation and pregnancy

  3. Survival of embryo irradiated with gamma rays by embryo culture in Brassica pekinensis Rupr

    International Nuclear Information System (INIS)

    Moue, T.

    1984-01-01

    The effect of irradiation on the survival rates and embryonic development of Brassica pekinensis RUPR. (Varieties; Kashin, Kohai 65 nichi and kairyochitose) was investigated. The purpose of this study was to seek ways of increasing the survival rates of embryos such as B.oleracea obtained through embryo culture techniques after irradiation doses affecting seed fertility and germination, for the purpose of increasing mutation rates. Embryos at different developmental stages ranging from the globular to the early heart stages were irradiated with 20 KR of gamma rays at the daily rate 0L 20 KR or 10 KR (Fig.1 and Table 1). The embryos were excised from ovules 4 to 10 days after irradiation and cultured on White's medium. The shooting and rooting rates on the 34th day of culture were higher at the dose of 10 KR/day than 20 KR/day and were lower when the materials were irradiated at the young embryonic stage (Table 3). Varietal differences in the shooting and rooting rates were also observed. The irradiated embryos survived mainly in the state of callus. It was concluded that the embryo culture technique was successful when applied to irradiated embryos excised at the young embryonic stage and that the technique affected B.pekinensis less than B.oleracea

  4. Transcriptome analyses of rhesus monkey preimplantation embryos reveal a reduced capacity for DNA double-strand break repair in primate oocytes and early embryos

    Science.gov (United States)

    Wang, Xinyi; Liu, Denghui; He, Dajian; Suo, Shengbao; Xia, Xian; He, Xiechao; Han, Jing-Dong J.; Zheng, Ping

    2017-01-01

    Preimplantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA), and cell-fate commitment. The molecular basis of these processes remains obscure in primates in which there is a high rate of embryo wastage. Thus, understanding the factors involved in genome reprogramming and ZGA might help reproductive success during this susceptible period of early development and generate induced pluripotent stem cells with greater efficiency. Moreover, explaining the molecular basis responsible for embryo wastage in primates will greatly expand our knowledge of species evolution. By using RNA-seq in single and pooled oocytes and embryos, we defined the transcriptome throughout preimplantation development in rhesus monkey. In comparison to archival human and mouse data, we found that the transcriptome dynamics of monkey oocytes and embryos were very similar to those of human but very different from those of mouse. We identified several classes of maternal and zygotic genes, whose expression peaks were highly correlated with the time frames of genome reprogramming, ZGA, and cell-fate commitment, respectively. Importantly, comparison of the ZGA-related network modules among the three species revealed less robust surveillance of genomic instability in primate oocytes and embryos than in rodents, particularly in the pathways of DNA damage signaling and homology-directed DNA double-strand break repair. This study highlights the utility of monkey models to better understand the molecular basis for genome reprogramming, ZGA, and genomic stability surveillance in human early embryogenesis and may provide insights for improved homologous recombination-mediated gene editing in monkey. PMID:28223401

  5. Male sterile mutant in Vigna radiata

    International Nuclear Information System (INIS)

    Pande, Kalpana; Raghuvanshi, S.S.

    1987-01-01

    Single and combined treatment of γ-rays and 0.25 per cent EMS were tried on Vigna radiata variety K851. A male sterile mutant was isolated in M 2 generation. Experiments indicated male sterility to be recessive and monogenic in nature. 6 figures. (author)

  6. Analysis of the albino-locus region of the mouse. II. Mosaic mutants

    International Nuclear Information System (INIS)

    Russell, L.B.

    1979-01-01

    Among 119 mutations involving the c locus that were recovered in the course of mouse specific-locus experiments with external radiations, 16 were found in mosaic, or fractional, mutants. The number of additional c-locus fractionals that could have occurred in these experiments and, for a variety of reasons, might not have been clearly identified, probably does not exceed the present number. There was no evidence for radiation induction of the fractionals, and even those occurring in the irradiated groups may thus be assumed to be of spontaneous origin. Since only two mutations in the control groups were found in whole-body mutants, it appears that the bulk of spontaneous c-locus mutations are fractionals. None of the mutations recovered in fractional mutants was homozygous lethal; 25% were viable intermediate alleles, and the remainder were albino-like mutants, all viable except for one subvital and one not tested. Genetic tests of the fractionals indicated no major selection against the new mutations, either gametically or in the progeny. For the group of fractionals as a whole, about one-half of the germinal tissue carried the mutation, indicating that the fractionals came from an overall blastomere population that was one-half mutant. Such a population could result from mutation in one strand of the gamete DNA, in a daughter chromosome derived from pronuclear DNA synthesis of the zygote, or in one of the first two blastomeres prior to replication. Since the mouse embryo does not stem from all of the cleavage products of the zygote, the frequency of fractionals observeed underestimates the frequency of mutational events that result in two types of blastomeres

  7. Auxin-dependent microtubule responses and seedling development are affected in a rice mutant resistant to EPC

    International Nuclear Information System (INIS)

    Nick, P.; Yatou, O.; Furuya, M.; Lambert, A.M.

    1994-01-01

    Mutants in rice (Oryza sativa L. cv. japonica) were used to study the role of the cytoskeleton in signal-dependent morphogenesis. Mutants obtained by gamma ray irradiation were selected that failed to show inhibition of coleoptile elongation by the anti microtubular drug ethyl-N-phenylcarbamate (EPC). The mutation EPC-Resistant 31 (ER31), isolated from such a screen, caused lethality in putatively homozygous embryos. Heterozygotes exhibited drug resistance, impaired development of crown roots, and characteristic changes in the pattern of cell elongation: cell elongation was enhanced in mesocotyls and leaf sheaths, but inhibited in coleoptiles. The orientation of cortical microtubules changed correspondingly: for etiolated seedlings, compared with the wild-type, they were more transverse with respect to the long cell axis in mesocotyls and leaf sheaths, but more longitudinal in coleoptiles. In mutant coleoptiles, in contrast to wild-type, microtubules did not reorient in response to auxin, and their response to microtubule-eliminating and microtubule-stabilizing drugs was conspicuously reduced. In contrast, they responded normally to other stimuli such as gibberellins or red light. Auxin sensitivity as assayed by the dose-response for callus induction did not show any significant differences between wild-type and mutant. The mutant phenotype is interpreted in terms of an interrupted link between auxin-triggered signal transduction and microtubule reorientation. (author)

  8. Noninvasive imaging systems for gametes and embryo selection in IVF programs: a review.

    Science.gov (United States)

    Omidi, Marjan; Faramarzi, Azita; Agharahimi, Azam; Khalili, Mohammad Ali

    2017-09-01

    Optimizing the efficiency of the in vitro fertilization procedure by improving pregnancy rates and reducing the risks of multiple pregnancies simultaneously are the primary goals of the current assisted reproductive technology program. With the move to single embryo transfers, the need for more cost-effective and noninvasive methods for embryo selection prior to transfer is paramount. These aims require advancement in a more acquire gametes/embryo testing and selection procedures using high-tech devices. Therefore, the aim of the present review is to evaluate the efficacy of noninvasive imaging systems in the current literatures, focusing on the potential clinical application in infertile patients undergoing assisted reproductive technology treatments. In this regards, three advanced imaging systems of motile sperm organelle morphology examination, polarization microscopy and time-lapse monitoring for the best selection of the gametes and preimplantation embryos are introduced in full. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  9. When no choice of embryos exists, the multiple pregnancy risk is still high.

    LENUS (Irish Health Repository)

    Wong, V V

    2012-10-01

    Multiple pregnancies arising from assisted reproduction are known to be associated with increased medical, psychological, economical and social risks. If only two embryos develop after culture, how should the couple be counselled in relation to the risk of multiple pregnancy? We performed a retrospective review of all IVF\\/ICSI treatments performed between 1 January 2005 and 31 December 2007, that resulted in double embryos transfer (DET). We identified 623 cycles with a fortuitous DET (Group I) and 635 cycles with an elective DET (Group II). Group II were significantly more likely to have twins when compared with Group I, irrespective of age. Twin rates in Group I were higher in IVF compared with ICSI; 33.3% vs 16.6% in < 35 years old and 16.2% vs 7.6% in 35-40 years old. Therefore, single embryo transfer should be considered for IVF patients below 35 years old, even if only two good quality embryos are available.

  10. Environment of oocyte and embryo determines heath of IVP offspring

    NARCIS (Netherlands)

    Kruip, T.A.M.; Bevers, M.M.; Kemp, B.

    2000-01-01

    In vitro embryo production (IVP) enhances the number of offspring from a single female and offers the possibility of accelerated genetic progress in animal husbandry. However, it also leads to a low but unacceptable percentage of anomalies in the offspring. The aim of this paper is to introduce the

  11. Limits of transforming competence of SV40 nuclear and cytoplasmic large T mutants with altered Rb binding sequences.

    Science.gov (United States)

    Tedesco, D; Fischer-Fantuzzi, L; Vesco, C

    1993-03-01

    Multiple amino acid substitutions were introduced into the SV40 large T region that harbors the retinoblastoma protein (Rb) binding site and the nuclear transport signal, changing either one or both of these determinants. Mutant activities were examined in a set of assays allowing different levels of transforming potential to be distinguished; phenotypic changes in established and pre-crisis rat embryo fibroblasts (REFs) were detected under isogenic cell conditions, and comparisons made with other established rodent cells. The limit of the transforming ability of mutants with important substitutions in the Rb binding site fell between two transformation levels of the same established rat cells. Such cells could be induced to form dense foci but not agar colonies (their parental pre-crises REFs, as expected, were untransformed either way). Nonetheless, agar colony induction was possible in other cell lines, such as mouse NIH3T3 and (for one of the mutants) rat F2408. All these mutants efficiently immortalized pre-crisis REFs. The transforming ability of cytoplasmic mutants appeared to depend on the integrity of the Rb-binding sequence to approximately the same extent as that of the wild-type large T, although evidence of in vivo Rb-cytoplasmic large T complexes was not found. The presence or absence of small t was critical when the transforming task of mutants was near the limit of their abilities.

  12. Embryo-maternal communication

    DEFF Research Database (Denmark)

    Østrup, Esben; Hyttel, Poul; Østrup, Olga

    2011-01-01

    Communication during early pregnancy is essential for successful reproduction. In this review we address the beginning of the communication between mother and developing embryo; including morphological and transcriptional changes in the endometrium as well as epigenetic regulation mechanisms dire...... directing the placentation. An increasing knowledge of the embryo-maternal communication might not only help to improve the fertility of our farm animals but also our understanding of human health and reproduction.......Communication during early pregnancy is essential for successful reproduction. In this review we address the beginning of the communication between mother and developing embryo; including morphological and transcriptional changes in the endometrium as well as epigenetic regulation mechanisms...

  13. Decreased uv mutagenesis in cdc8, a DNA replication mutant of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, L.; Hinkle, D.; Prakash, S.

    1978-01-01

    A DNA replication mutant of yeast, cdc8, was found to decrease uv-induced reversion of lys2-1, arg4-17, tryl and ural. This effect was observed with all three alleles of cdc8 tested. Survival curves obtained following uv irradiation in cdc8 rad double mutants show that cdc8 is epistatic to rad6, as well as to rad1; cdc8 rad51 double mutants seem to be more sensitive than the single mutants. Since uv-induced reversion in cdc8 rad1 and cdc8 rad51 double mutants is like that of the cdc8 single mutants, we conclude that CDC8 plays a direct role in error-prone repair. To test whether CDC8 codes for a DNA polymerase, we have purified both DNA polymerase I and DNA polymerase II from cdc8 and CDC+ cells. The purified DNA polymerases from cdc8 were no more heat labile than those from CDC+, suggesting that CDC8 is not a structural gene for either enzyme

  14. Sharing mutants and experimental information prepublication using FgMutantDb (https://scabusa.org/FgMutantDb).

    Science.gov (United States)

    Baldwin, Thomas T; Basenko, Evelina; Harb, Omar; Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E; Bregitzer, Phil P

    2018-06-01

    There is no comprehensive storage for generated mutants of Fusarium graminearum or data associated with these mutants. Instead, researchers relied on several independent and non-integrated databases. FgMutantDb was designed as a simple spreadsheet that is accessible globally on the web that will function as a centralized source of information on F. graminearum mutants. FgMutantDb aids in the maintenance and sharing of mutants within a research community. It will serve also as a platform for disseminating prepublication results as well as negative results that often go unreported. Additionally, the highly curated information on mutants in FgMutantDb will be shared with other databases (FungiDB, Ensembl, PhytoPath, and PHI-base) through updating reports. Here we describe the creation and potential usefulness of FgMutantDb to the F. graminearum research community, and provide a tutorial on its use. This type of database could be easily emulated for other fungal species. Published by Elsevier Inc.

  15. Therapeutic Targeting of Spliceosomal-Mutant Acquired Bone Marrow Failure Disorders

    Science.gov (United States)

    2017-05-01

    spliceosomal mutant cells . This effort has also highlighted a requirement for innate immune signaling in SF3B1-mutant MDS and has implicated a few specific...relative to single-mutant cells (Figure 5A). As innate immune signaling has been implicated in MDS pathogenesis (Basiorka et al., 2016; Fang et al...Sato et al., 2005; Tang et al., 2008; Vink et al., 2013; Xin et al., 2017). Here, we observed that SF3B1K700E/+ human lymphoid leukemia cells (NALM-6

  16. Is preimplantation genetic diagnosis the ideal embryo selection method in aneuploidy screening?

    Directory of Open Access Journals (Sweden)

    Levent Sahin

    2014-10-01

    Full Text Available To select cytogenetically normal embryos, preimplantation genetic diagnosis (PGD aneuploidy screening (AS is used in numerous centers around the world. Chromosomal abnormalities lead to developmental problems, implantation failure, and early abortion of embryos. The usefulness of PGD in identifying single-gene diseases, human leukocyte antigen typing, X-linked diseases, and specific genetic diseases is well-known. In this review, preimplantation embryo genetics, PGD research studies, and the European Society of Human Reproduction and Embryology PGD Consortium studies and reports are examined. In addition, criteria for embryo selection, technical aspects of PGD-AS, and potential noninvasive embryo selection methods are described. Indications for PGD and possible causes of discordant PGD results between the centers are discussed. The limitations of fluorescence in situ hybridization, and the advantages of the array comparative genomic hybridization are included in this review. Although PGD-AS for patients of advanced maternal age has been shown to improve in vitro fertilization outcomes in some studies, to our knowledge, there is not sufficient evidence to use advanced maternal age as the sole indication for PGD-AS. PGD-AS might be harmful and may not increase the success rates of in vitro fertilization. At the same time PGD, is not recommended for recurrent implantation failure and unexplained recurrent pregnancy loss.

  17. Phage Pl mutants with altered transducing abilities for Escherichia coli

    International Nuclear Information System (INIS)

    Wall, J.D.; Harriman, P.D.

    1974-01-01

    A search was made for mutants of the coliphage P1 with altered transducing frequencies. A method was developed for the rapid assay of transducing frequencies in single plaques using prophage lambda as the transduced bacterial marker. This procedure selects for mutants altered in their ability to package host DNA. Mutants with 5 to 10 times higher or 10 to 20 times lower frequencies than those of wild-type P1 were found. Not only are the markers used for the detection of the mutants affected, but all other markers are similarly affected (not always to the same extent). One of the high transducing frequency mutants is a suppressible amber, indicating that loss of a function increases P1's ability to package host DNA preferentially. (U.S.)

  18. Do donor oocyte cycles comply with ASRM/SART embryo transfer guidelines? An analysis of 13,393 donor cycles from the SART registry.

    Science.gov (United States)

    Acharya, Kelly S; Keyhan, Sanaz; Acharya, Chaitanya R; Yeh, Jason S; Provost, Meredith P; Goldfarb, James M; Muasher, Suheil J

    2016-09-01

    To analyze donor oocyte cycles in the Society for Assisted Reproductive Technology (SART) registry to determine: 1) how many cycles complied with the 2009 American Society for Reproductive Medicine/SART embryo transfer guidelines; and 2) cycle outcomes according to the number of embryos transferred. For donor oocyte IVF with donor age cycles from 2011 to 2012. Embryos transferred in donor IVF cycles. Percentage of compliant cycles, multiple pregnancy rate. There were 3,157 donor cleavage-stage transfers and 10,236 donor blastocyst transfers. In the cleavage-stage cycles, 88% met compliance criteria. The multiple pregnancy rate (MPR) was significantly higher in the noncompliant cycles. In a subanalysis of compliant cleavage-stage cycles, 91% transferred two embryos and only 9% single embryos. In those patients transferring two embryos, the MPR was significantly higher (33% vs. 1%). In blastocyst transfers, only 28% of the cycles met compliance criteria. The MPR was significantly higher in the noncompliant blastocyst cohort at 53% (compared with 2% in compliant cycles). The majority of donor cleavage-stage transfers are compliant with current guidelines, but the transfer of two embryos results in a significantly higher MPR compared with single-embryo transfer. The majority of donor blastocyst cycles are noncompliant, which appears to be driving an unacceptably high MPR in these cycles. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm and testa

    Directory of Open Access Journals (Sweden)

    Traud eWinkelmann

    2015-08-01

    Full Text Available Somatic embryogenesis has been shown to be an efficient in vitro plant regeneration system for many crops such as the important ornamental plant Cyclamen persicum, for which this regeneration pathway of somatic embryogenesis is of interest for the vegetative propagation of parental lines as well as elite plants. However, somatic embryogenesis is not commercially used in many crops due to several unsolved problems, such as malformations, asynchronous development, deficiencies in maturation and germination of somatic embryos. In contrast, zygotic embryos in seeds develop and germinate without abnormalities in most cases. Instead of time-consuming and labor-intensive experiments involving tests of different in vitro culture conditions and plant growth regulator supplements, we follow a more directed approach. Zygotic embryos served as a reference and were compared to somatic embryos in metabolomic analyses allowing the future optimization of the in vitro system. The aims of this study were to detect differences in the metabolite profiles of torpedo stage somatic and zygotic embryos of C. persicum. Moreover, major metabolites in endosperm and testa were identified and quantified.Two sets of extracts of two to four biological replicates each were analyzed. In total 52 metabolites were identified and quantified in the different tissues. One of the most significant differences between somatic and zygotic embryos was that the proline concentration in the zygotic embryos was about 40 times higher than that found in somatic embryos. Epicatechin, a scavenger for reactive oxygen species, was found in highest abundance in the testa. Sucrose, the most abundant metabolite was detected in significantly higher concentrations in zygotic embryos. Also, a yet unknown trisaccharide, was significantly enriched in zygotic embryos.

  20. The Arabidopsis NF-YA3 and NF-YA8 genes are functionally redundant and are required in early embryogenesis.

    Directory of Open Access Journals (Sweden)

    Monica Fornari

    Full Text Available Nuclear factor Y (NF-Y is a trimeric transcription factor composed of three distinct subunits called NF-YA, NF-YB and NF-YC. In Arabidopsis thaliana, NF-Y subunits are known to play roles in many processes, such as gametogenesis, embryogenesis, seed development, drought resistance, ABA signaling, flowering time, primary root elongation, Endoplasmic Reticulum (ER stress response and blue light responses. Here, we report that the closely related NF-YA3 and NF-YA8 genes control early embryogenesis. Detailed GUS and in situ analyses showed that NF-YA3 and NF-YA8 are expressed in vegetative and reproductive tissues with the highest expression being during embryo development from the globular to the torpedo embryo stage. Plants from the nf-ya3 and nf-ya8 single mutants do not display any obvious phenotypic alteration, whereas nf-ya3 nf-ya8 double mutants are embryo lethal. Morphological analyses showed that the nf-ya3 nf-ya8 embryos fail to undergo to the heart stage and develop into abnormal globular embryos with both proembryo and suspensor characterized by a disordered cell cluster with an irregular shape, suggesting defects in embryo development. The suppression of both NF-YA3 and NF-YA8 gene expression by RNAi experiments resulted in defective embryos that phenocopied the nf-ya3 nf-ya8 double mutants, whereas complementation experiments partially rescued the abnormal globular nf-ya3 nf-ya8 embryos, confirming that NF-YA3 and NF-YA8 are required in early embryogenesis. Finally, the lack of GFP expression of the auxin responsive DR5rev::GFP marker line in double mutant embryos suggested that mutations in both NF-YA3 and NF-YA8 affect auxin response in early developing embryos. Our findings indicate that NF-YA3 and NF-YA8 are functionally redundant genes required in early embryogenesis of Arabidopsis thaliana.

  1. Patient and cycle characteristics predicting high pregnancy rates with single-embryo transfer: an analysis of the Society for Assisted Reproductive Technology outcomes between 2004 and 2013.

    Science.gov (United States)

    Mersereau, Jennifer; Stanhiser, Jamie; Coddington, Charles; Jones, Tiffany; Luke, Barbara; Brown, Morton B

    2017-11-01

    To analyze factors associated with high live birth rate and low multiple birth rate in fresh and frozen-thawed assisted reproductive technology (ART) cycles. Retrospective cohort analysis. Not applicable. The study population included 181,523 women undergoing in vitro fertilization with autologous fresh first cycles, 27,033 with fresh first oocyte donor cycles, 37,658 with fresh second cycles, and 35,446 with frozen-thawed second cycles. None. Live birth rate and multiple birth rate after single-embryo transfer (SET) and double embryo transfer (DET) were measured, in addition to cycle characteristics. In patients with favorable prognostic factors, including younger maternal age, transfer of a blastocyst, and additional embryos cryopreserved, the gain in the live birth rate from SET to DET was approximately 10%-15%; however, the multiple birth rate increased from approximately 2% to greater than 49% in both autologous and donor fresh and frozen-thawed transfer cycles. This study reports a 10%-15% reduction in live birth rate and a 47% decrement in multiple birth rate with SET compared with DET in the setting of favorable patient prognostic factors. Our findings present an opportunity to increase the rate of SET across the United States and thereby reduce the multiple birth rate and its associated poor perinatal outcomes with assisted reproductive technology pregnancies. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. UV and gamma-ray sensitivity of meiosis-deficient mutants in Podospora anserina

    International Nuclear Information System (INIS)

    Simonet, J.M.

    1976-01-01

    Two mutants, mei1 and mei2, were isolated by screening for deficiencies occurring in the meiotic process. The sensitivity of mei1 and mei2 mutant strains to UV irradiation showed a significant increase as compared with that of the wild-type stock, hwhereas the sensitivity to γ-rays remained unchanged. The double-mutant strains were no more sensitive than each single mutant. The data indicate that both mei1 and mei2 loci are probably involved in the same pathway of excision-repair of UV-induced lesions

  3. EMS mutant spectra generated by multi-parameter flow cytometry

    Energy Technology Data Exchange (ETDEWEB)

    Keysar, Stephen B. [Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO (United States); Fox, Michael H., E-mail: michael.fox@colostate.edu [Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO (United States); Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO (United States)

    2009-12-01

    The CHO A{sub L} cell line contains a single copy of human chromosome 11 that encodes several cell surface proteins including glycosyl phosphatidylinositol (GPI) linked CD59 and CD90, as well as CD98, CD44 and CD151 which are not GPI-linked. The flow cytometry mutation assay (FCMA) measures mutations of the CD59 gene by the absence of fluorescence when stained with antibodies against the CD59 cell surface protein. We have measured simultaneous mutations in CD59, CD44, CD90, CD98 and CD151 to generate a mutant spectrum for ionizing radiation. After treatment with ethyl methanesulfonate (EMS) many cells have an intermediate level of CD59 staining. Single cells were sorted from CD59{sup -} regions with varying levels of fluorescence and the resulting clonal populations had a stable phenotype for CD59 expression. Mutant spectra were generated by flow cytometry using the isolated clones and nearly all clones were mutated in CD59 only. Interestingly, about 60% of the CD59 negative clones were actually GPI mutants determined by staining with the GPI specific fluorescently labeled bacterial toxin aerolysin (FLAER). The GPI negative cells are most likely caused by mutations in the X-linked pigA gene important in GPI biosynthesis. Small mutations of pigA and CD59 were expected for the alkylating agent EMS and the resulting spectra are significantly different than the large deletions found when analyzing radiation mutants. After analyzing the CD59{sup -} clonal populations we have adjusted the FCMA mutant regions from 1% to 10% of the mean of the CD59 positive peak to include the majority of CD59 mutants.

  4. Nano-nutrition of chicken embryos

    DEFF Research Database (Denmark)

    Sawosz, Filip; Pineda, Lane Manalili; Hotowy, Anna

    2013-01-01

    It has been suggested that the quantity and quality of nutrients stored in the egg might not be optimal for the fast rate of chicken embryo development in modern broilers, and embryos could be supplemented with nutrients by in ovo injection. Recent experiments showed that in ovo feeding reduces...... broiler eggs was randomly divided into a Control group without injection and injected groups with hydrocolloids of Nano-Ag, ATP or a complex of Nano-Ag and ATP (Nano-Ag/ATP). The embryos were evaluated on day 20 of incubation. The results indicate that the application of ATP to chicken embryos increases...

  5. Radionuclide transfer from mother to embryo

    International Nuclear Information System (INIS)

    Toader, M.; Vasilache, R.A.; Scridon, R.; Toader, M.L.

    1998-01-01

    The transfer of radionuclides from mother to embryo is still a matter of high interest. Therefore, the relation was investigated between the amount of radionuclides in the embryo and the dietary intake of the mother, this for two scenarios: a recurrent intake of variable amounts of radionuclides, and a long-term intake of a relatively constant amount of radionuclides, the radionuclide being 137 Cs. In the first case, the amount of radionuclides present in the embryo increases with the age of the embryo and with the intake of the mother. In the second case, no correlation could be found between the age of the embryo and its radioactive content; only the correlation between the intake of the mother and the radionuclide content of the embryo remained. (A.K.)

  6. Investigations on embryo and endosperm development in gamma-irradiated Capsicum annuum L. and Capsicum pendulum Willd. seeds

    Energy Technology Data Exchange (ETDEWEB)

    Ilieva, I; Molkhova, E [Akademiya na Selskostopanskite Nauki, Sofia (Bulgaria). Inst. po Genetika

    1976-01-01

    Investigations were carried out concerning the effect of ionizing rays on pepper embryo development and on the radiosensitivity of single phases of embryogenesis. A single gamma-irradiation was effected with doses 1000, 1500, 2000 and 2500 rad, 7 days after flower pollination, when the preembryo had two cells. As a result of irradiation a shortening of the suspensor was established as well as delayed development or even totally blocked growth and degeneration of the embryo. Blocked cell division and degeneration of endospermal cells were observed. These disturbances lead to histologic changes in the seeds and to their non-viability.

  7. Investigations on embryo and endosperm development in gamma-irradiated Capsicum annuum L. and Capsicum pendulum Willd. seeds

    International Nuclear Information System (INIS)

    Ilieva, I.; Molkhova, E.

    1976-01-01

    Investigations were carried out concerning the effect of ionizing rays on pepper embryo development and on the radiosensitivity of single phases of embryogenesis. A single gamma-irradiation was effected with doses 1000, 1500, 2000 and 2500 rad, 7 days after flower pollination, when the preembryo had two cells. As a result of irradiation a shortening of the suspensor was established as well as delayed development or even totally blocked growth and degeneration of the embryo. Blocked cell division and degeneration of endospermal cells were observed. These disturbances lead to histologic changes in the seeds and to their non-viability. (author)

  8. Manipulating early pig embryos.

    Science.gov (United States)

    Niemann, H; Reichelt, B

    1993-01-01

    On the basis of established surgical procedures for embryo recovery and transfer, the early pig embryo can be subjected to various manipulations aimed at a long-term preservation of genetic material, the generation of identical multiplets, the early determination of sex or the alteration of the genetic make-up. Most of these procedures are still at an experimental stage and despite recent considerable progress are far from practical application. Normal piglets have been obtained after cryopreservation of pig blastocysts hatched in vitro, whereas all attempts to freeze embryos with intact zona pellucida have been unsuccessful. Pig embryos at the morula and blastocyst stage can be bisected microsurgically and the resulting demi-embryos possess a high developmental potential in vitro, whereas their development in vivo is impaired. Pregnancy rates are similar (80%) but litter size is reduced compared with intact embryos and twinning rate is approximately 2%. Pig blastomeres isolated from embryos up to the 16-cell stage can be grown in culture and result in normal blastocysts. Normal piglets have been born upon transfer of blastocysts derived from isolated eight-cell blastomeres, clearly underlining the totipotency of this developmental stage. Upon nuclear transfer the developmental capacity of reconstituted pig embryos is low and culture. Sex determination can be achieved either by separation of X and Y chromosome bearing spermatozoa by flow cytometry or by analysing the expression of the HY antigen in pig embryos from the eight-cell to morula stage. Microinjection of foreign DNA has been successfully used to alter growth and development of transgenic pigs, and to produce foreign proteins in the mammary gland or in the bloodstream, indicating that pigs can be used as donors for valuable human pharmaceutical proteins. Another promising area of gene transfer is the increase of disease resistance in transgenic lines of pigs. Approximately 30% of pig spermatozoa bind

  9. Accurate and noninvasive embryos screening during in vitro fertilization (IVF) assisted by Raman analysis of embryos culture medium Accurate and noninvasive embryos screening during IVF

    Science.gov (United States)

    Shen, A. G.; Peng, J.; Zhao, Q. H.; Su, L.; Wang, X. H.; Hu, J. M.; Yang, J.

    2012-04-01

    In combination with morphological evaluation tests, we employ Raman spectroscopy to select higher potential reproductive embryos during in vitro fertilization (IVF) based on chemical composition of embryos culture medium. In this study, 57 Raman spectra are acquired from both higher and lower quality embryos culture medium (ECM) from 10 patients which have been preliminarily confirmed by clinical assay. Data are fit by using a linear combination model of least squares method in which 12 basis spectra represent the chemical features of ECM. The final fitting coefficients provide insight into the chemical compositions of culture medium samples and are subsequently used as criterion to evaluate the quality of embryos. The relative fitting coefficients ratios of sodium pyruvate/albumin and phenylalanine/albumin seem act as key roles in the embryo screening, attaining 85.7% accuracy in comparison with clinical pregnancy. The good results demonstrate that Raman spectroscopy therefore is an important candidate for an accurate and noninvasive screening of higher quality embryos, which potentially decrease the time-consuming clinical trials during IVF.

  10. What Drives Embryo Development? Chromosomal Normality or Mitochondria?

    Directory of Open Access Journals (Sweden)

    A. Bayram

    2017-01-01

    Full Text Available Objective. To report the arrest of euploid embryos with high mtDNA content. Design. A report of 2 cases. Setting. Private fertility clinic. Patients. 2 patients, 45 and 40 years old undergoing IVF treatment. Interventions. Mature oocytes were collected and vitrified from two ovarian stimulations. Postthaw, survived mature oocytes underwent fertilization by intracytoplasmic sperm injection (ICSI. Preimplantation genetic screening (PGS and mitochondrial DNA (mtDNA copy number were done using next generation sequencing (NGS. The only normal embryo among the all-biopsied embryos had the highest “Mitoscore” value and was the only arrested embryo in both cases. Therefore, the embryo transfer was cancelled. Main Outcome Measures. Postthaw survival and fertilization rate, embryo euploidy, mtDNA copy number, and embryo development. Results. In both patients, after PGS only 1 embryo was euploid. Both embryos had the highest mtDNA copy number from all tested embryos and both embryos were arrested on further development. Conclusions. These cases clearly demonstrate the lack of correlation between mtDNA value (Mitoscore and chromosomal status of embryo.

  11. Increasing The Number of Embryos Transferred from Two to Three, Does not Increase Pregnancy Rates in Good Prognosis Patients

    Directory of Open Access Journals (Sweden)

    Mahnaz Ashrafi

    2015-10-01

    Full Text Available Background: To compare the pregnancy outcomes after two embryos versus three embryos transfers (ETs in women undergoing in vitro fertilization (IVF/intracytoplasmic sperm injection (ICSI cycles. Materials and Methods: This retrospective study was performed on three hundred eighty seven women with primary infertility and with at least one fresh embryo in good quality in order to transfer at each IVF/ICSI cycle, from September 2006 to June 2010. Patients were categorized into two groups according to the number of ET as follows: ET2 and ET3 groups, indicating two and three embryos were respectively transferred. Pregnancy outcomes were compared between ET2 and ET3 groups. Chi square and student t tests were used for data analysis. Results: Clinical pregnancy and live birth rates were similar between two groups. The rates of multiple pregnancies were 27 and 45.2% in ET2 and ET3 groups, respectively. The rate of multiple pregnancies in young women was significantly increased when triple instead of double embryos were transferred. Logistic regression analysis indicated two significant prognostic variables for live birth that included number and quality of transferred embryos; it means that the chance of live birth following ICSI treatment increased 3.2-fold when the embryo with top quality (grade A was transferred, but the number of ET had an inverse relationship with live birth rate; it means that probability of live birth in women with transfer of two embryos was three times greater than those who had three ET. Conclusion: Due to the difficulty of implementation of the elective single-ET technique in some infertility centers in the world, we suggest transfer of double instead of triple embryos when at least one good quality embryo is available for transfer in women aged 39 years or younger. However, to reduce the rate of multiple pregnancies, it is recommended to consider the elective single ET strategy.

  12. Theory about the Embryo Cryo-Treatment.

    Science.gov (United States)

    Vladimirov, Iavor K; Tacheva, Desislava; Diez, Antonio

    2017-04-01

    To create hypothesis, which can give a logical explanation related to the benefits of freezing/thawing embryos. Cryopreservation is not only a technology used for storing embryos, but also a method of embryo treatment that can potentially improve the success rate in infertile couples. From the analysis of multiple results in assisted reproductive technology, which have no satisfactory explanation to date, we found evidence to support a 'therapeutic' effect of the freezing/thawing of embryos on the process of recovery of the embryo and its subsequent implantation. Freezing/thawing is a way to activate the endogenous survival and repair responses in preimplantation embryos. Several molecular mechanisms can explain the higher success rate of ET using thawed embryos compared to fresh ET in women of advanced reproductive age, the higher miscarriage rate in cases of thawed blastocyst ET compared to thawed ET at early cleavage embryo, and the higher perinatal parameters of born children after thawed ET. Embryo thawing induces a stress. Controlled stress is not necessarily detrimental, because it generates a phenomenon that is counteracted by several known biological responses aimed to repair mitochondrial damage of membrane and protein misfolding. The term for favorable biological responses to low exposures to stress is called hormesis. This thesis will summarize the role of cryopreservation in the activation of a hormetic response, preserving the mitochondrial function, improving survival, and having an impact on the process of implantation, miscarriage, and the development of pregnancy.

  13. Fourier Transform Near Infrared Microspectroscopy, Infrared Chemical Imaging, High-Resolution Nuclear Magnetic Resonance and Fluorescence Microspectroscopy Detection of Single Cancer Cells and Single Viral Particles

    CERN Document Server

    Baianu,I C; Hofmann, N E; Korban, S S; Lozano, P; You, T

    2004-01-01

    Single Cancer Cells from Human tumors are being detected and imaged by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR)Hyperspectral Imaging and Fluorescence Correlation Microspectroscopy. The first FT-NIR chemical, microscopic images of biological systems approaching one micron resolution are here reported. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are also presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos as well as 99% accurate calibrations are also presented here with nanoliter precision. Such high-resolution, 400 MHz H-1 NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. >~20%) compared to the average levels in non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monito...

  14. [The destiny of cryopreserved embryos].

    Science.gov (United States)

    Karpel, L; Achour-Frydman, N; Frydman, R; Flis-Trèves, M

    2007-12-01

    To know the psychological motivations of couples who keep their embryos so long (five years and more) and do not make a decision about them. We studied 84 couples refrained from making a decision on their cryopreserved embryos for at least five years. They were invited to fill out a questionnaire focusing on three points: the reasons of the indecision, their own representation of the cryopreserved embryos and their choice for the future: donation to another couple, to research, pregnancy or no solution for the moment. Mean (S.D.) women's and men's age were respectively, 38.8 (2.5)- and 41.3 (2.5)-years old. On average, three (1-9) embryos are preserved since 7.5 (5-12) years. Most of couples are parents. Four major reasons explain their attitudes: feeling of being too aged (25%), fear of a multiple pregnancy (45%), disagreement between members of couple (20%) and fear of failure (42.5%). Multiple choices were given to the future of the embryos: 25% wanted a pregnancy, 8% wanted to give them to infertile couples, 20% to research and 27.5% did not find any solution. Twenty percent were hesitating. The representation of those embryos is more symbolic than material. Most of the time, they see them like a potential child, a hope for the future or a brother or sister of their alive children. Those embryos are symbolized. They are a proof of fertility, a hope for another child. So, whatever the legal statement, couples will be in a dilemma because it is never easy for an infertile person to renounce to embryos, and the hope for children.

  15. Improved Murine Blastocyst Quality and Development in a Single Culture Medium Compared to Sequential Culture Media.

    Science.gov (United States)

    Hennings, Justin M; Zimmer, Randall L; Nabli, Henda; Davis, J Wade; Sutovsky, Peter; Sutovsky, Miriam; Sharpe-Timms, Kathy L

    2016-03-01

    Validate single versus sequential culture media for murine embryo development. Prospective laboratory experiment. Assisted Reproduction Laboratory. Murine embryos. Thawed murine zygotes cultured for 3 or 5 days (d3 or d5) in single or sequential embryo culture media developed for human in vitro fertilization. On d3, zygotes developing to the 8 cell (8C) stage or greater were quantified using 4',6-diamidino-2-phenylindole (DAPI), and quality was assessed by morphological analysis. On d5, the number of embryos reaching the blastocyst stage was counted. DAPI was used to quantify total nuclei and inner cell mass nuclei. Localization of ubiquitin C-terminal hydrolase L1 (UCHL1) and ubiquitin C-terminal hydrolase L3 (UCHL3) was reference points for evaluating cell quality. Comparing outcomes in single versus to sequential media, the odds of embryos developing to the 8C stage on d3 were 2.34 time greater (P = .06). On d5, more embryos reached the blastocyst stage (P = culture. Human embryo studies are needed. © The Author(s) 2015.

  16. Extensive review of fish embryo acute toxicities for the prediction of GHS acute systemic toxicity categories.

    Science.gov (United States)

    Scholz, Stefan; Ortmann, Julia; Klüver, Nils; Léonard, Marc

    2014-08-01

    Distribution and marketing of chemicals require appropriate labelling of health, physical and environmental hazards according to the United Nations global harmonisation system (GHS). Labelling for (human) acute toxicity categories is based on experimental findings usually obtained by oral, dermal or inhalative exposure of rodents. There is a strong societal demand for replacing animal experiments conducted for safety assessment of chemicals. Fish embryos are considered as alternative to animal testing and are proposed as predictive model both for environmental and human health effects. Therefore, we tested whether LC50s of the fish embryo acute toxicity test would allow effectively predicting of acute mammalian toxicity categories. A database of published fish embryo LC50 containing 641 compounds was established. For these compounds corresponding rat oral LD50 were identified resulting in 364 compounds for which both fish embryo LC50 and rat LD50 was available. Only a weak correlation of fish embryo LC50 and rat oral LD50 was obtained. Fish embryos were also not able to effectively predict GHS oral acute toxicity categories. We concluded that due to fundamental exposure protocol differences (single oral dose versus water-borne exposure) a reverse dosimetry approach is needed to explore the predictive capacity of fish embryos. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Isolation of New Gravitropic Mutants under Hypergravity Conditions.

    Science.gov (United States)

    Mori, Akiko; Toyota, Masatsugu; Shimada, Masayoshi; Mekata, Mika; Kurata, Tetsuya; Tasaka, Masao; Morita, Miyo T

    2016-01-01

    Forward genetics is a powerful approach used to link genotypes and phenotypes, and mutant screening/analysis has provided deep insights into many aspects of plant physiology. Gravitropism is a tropistic response in plants, in which hypocotyls and stems sense the direction of gravity and grow upward. Previous studies of gravitropic mutants have suggested that shoot endodermal cells in Arabidopsis stems and hypocotyls are capable of sensing gravity (i.e., statocytes). In the present study, we report a new screening system using hypergravity conditions to isolate enhancers of gravitropism mutants, and we also describe a rapid and efficient genome mapping method, using next-generation sequencing (NGS) and single nucleotide polymorphism (SNP)-based markers. Using the endodermal-amyloplast less 1 ( eal1 ) mutant, which exhibits defective development of endodermal cells and gravitropism, we found that hypergravity (10 g) restored the reduced gravity responsiveness in eal1 hypocotyls and could, therefore, be used to obtain mutants with further reduction in gravitropism in the eal1 background. Using the new screening system, we successfully isolated six ene ( enhancer of eal1 ) mutants that exhibited little or no gravitropism under hypergravity conditions, and using NGS and map-based cloning with SNP markers, we narrowed down the potential causative genes, which revealed a new genetic network for shoot gravitropism in Arabidopsis .

  18. Laboratory techniques for human embryos.

    Science.gov (United States)

    Geber, Selmo; Sales, Liana; Sampaio, Marcos A C

    2002-01-01

    This review is concerned with laboratory techniques needed for assisted conception, particularly the handling of gametes and embryos. Such methods are being increasingly refined. Successive stages of fertilization and embryogenesis require especial care, and often involve the use of micromanipulative methods for intracytoplasmic sperm injection (ICSI) or preimplantation genetic diagnosis. Embryologists must take responsibility for gamete collection and preparation, and for deciding on the means of insemination or ICSI. Embryos must be assessed in culture, during the 1-cell, cleaving and morula/blastocyst stages, and classified according to quality. Co-culture methods may be necessary. The best embryos for transfer must be selected and loaded into the transfer catheter. Embryos not transferred must be cryopreserved, which demands the correct application of current methods of media preparation, seeding and the correct speed for cooling and warming. Before too long, methods of detecting abnormal embryos and avoiding their transfer may become widespread.

  19. In vitro embryo culture of rarely endangered musella lasiocarpa (musaceae) with embryo dormancy

    International Nuclear Information System (INIS)

    Anjun, T.

    2014-01-01

    Musella lasiocarpa (Musaceae) is an ornamental annually producing many viable seeds, but seldom recruited by seeds in the wild. One mature Musella seed has a small mushroom-shaped embryo without discernible organ differentiation. Therefore, freshly-harvested mature seeds are dormant. When the seeds gradually finished differentiation during warm stratification at 23 degree C, they germinated to 82%. Besides, extracted embryos from fresh seeds did not germinate on the basal medium of Murshige and Skoog medium (MS) supplemented with 3% sucrose and 0.8% agar, but they were induced to form calli and root by media. The optimum medium for inducing calli was MS + 1.0 mg/L 6-BA + 0.05 mg/L NAA + 100 mg/L Vc with the highest proliferation coefficient (7.3) in 35 days. Moreover, the embryos from the 6-month warm stratified seeds could proliferate on the suitable medium. The optimal medium for rooting was MS + 0.5 mg/L 2, 4-D + Vitamin C 100 mg/L. The results confirmed that both the embryo developmental stage and appropriate combination of chemicals significantly affected seed germination and In vitro embryo culture of this species. (author)

  20. Effects of embryo-derived exosomes on the development of bovine cloned embryos.

    Directory of Open Access Journals (Sweden)

    Pengxiang Qu

    Full Text Available The developmental competence of in vitro cultured (IVC embryos is markedly lower than that of their in vivo counterparts, suggesting the need for optimization of IVC protocols. Embryo culture medium is routinely replaced three days after initial culture in bovine, however, whether this protocol is superior to continuous nonrenewal culture method under current conditions remains unclear. Using bovine somatic cell nuclear transfer (SCNT embryos as the model, our results showed that compared with routine renewal treatment, nonrenewal culture system significantly improved blastocyst formation, blastocyst quality (increased total cell number, decreased stress and apoptosis, enhanced Oct-4 expression and ratio of ICM/TE, as well as following development to term. Existence and function of SCNT embryo-derived exosomes were then investigated to reveal the cause of impaired development induced by culture medium replacement. Exosomes were successfully isolated through differential centrifugation and identified by both electron microscopy and immunostaining against exosomal membrane marker CD9. Supplementation of extracted exosomes into freshly renewed medium significantly rescued not only blastocyst formation and quality (in vitro development, but also following growth to term (in vivo development. Notably, ratio of ICM/TE and calving rate were enhanced to a similar level as that in nonrenewal group. In conclusion, our results for the first time indicate that 1: bovine SCNT embryos can secrete exosomes into chemically defined culture medium during IVC; 2: secreted exosomes are essential for SCNT blastocyst formation, blastocyst quality, and following development to term; 3: removal of exosomes induced by culture medium replacement impairs SCNT embryo development, which can be avoided by nonrenewal culture procedure or markedly recovered by exosome supplementation.

  1. Feminists on the inalienability of human embryos.

    Science.gov (United States)

    McLeod, Carolyn; Baylis, Francoise

    2006-01-01

    The feminist literature against the commodification of embryos in human embryo research includes an argument to the effect that embryos are "intimately connected" to persons, or morally inalienable from them. We explore why embryos might be inalienable to persons and why feminists might find this view appealing. But, ultimately, as feminists, we reject this view because it is inconsistent with full respect for women's reproductive autonomy and with a feminist conception of persons as relational, embodied beings. Overall, feminists should avoid claims about embryos' being inalienable to persons in arguments for or against the commodification of human embryos.

  2. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus.

    Science.gov (United States)

    Wang, Fulin; He, Jiewang; Shi, Jianghua; Zheng, Tao; Xu, Fei; Wu, Guanting; Liu, Renhu; Liu, Shengyi

    2016-04-07

    Seed coat color is determined by the type of pigment deposited in the seed coat cells. It is related to important agronomic traits of seeds such as seed dormancy, longevity, oil content, protein content and fiber content. In Brassica napus, inheritance of seed coat color is related to maternal effects and pollen effects (xenia effects). In this research we isolated a mutation of yellow seeded B. napus controlled by a single Mendelian locus, which is named Embryonal Control of Yellow seed coat 1 (Ecy1). Microscopy of transverse sections of the mature seed show that pigment is deposited only in the outer layer of the seed coat. Using Illumina Hisequation 2000 sequencing technology, a total of 12 GB clean data, 116× coverage of coding sequences of B. napus, was achieved from seeds 26 d after pollination (DAP). It was assembled into 172,238 independent transcripts, and 55,637 unigenes. A total of 139 orthologous genes of Arabidopsis transparent testa (TT) genes were mapped in silico to 19 chromosomes of B. napus Only 49 of the TT orthologous genes are transcribed in seeds. However transcription of all orthologs was independent of embryonal control of seed coat color. Only 55 genes were found to be differentially expressed between brown seeds and the yellow mutant. Of these 55, 50 were upregulated and five were downregulated in yellow seeds as compared to their brown counterparts. By KEGG classification, 14 metabolic pathways were significantly enriched. Of these, five pathways: phenylpropanoid biosynthesis, cyanoamino acid metabolism, plant hormone signal transduction, metabolic pathways, and biosynthesis of secondary metabolites, were related with seed coat pigmentation. Free amino acid quantification showed that Ala and Phe were present at higher levels in the embryos of yellow seeds as compared to those of brown seeds. This increase was not observed in the seed coat. Moreover, the excess amount of free Ala was exactly twice that of Phe in the embryo. The pigment

  3. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus

    Directory of Open Access Journals (Sweden)

    Fulin Wang

    2016-04-01

    Full Text Available Seed coat color is determined by the type of pigment deposited in the seed coat cells. It is related to important agronomic traits of seeds such as seed dormancy, longevity, oil content, protein content and fiber content. In Brassica napus, inheritance of seed coat color is related to maternal effects and pollen effects (xenia effects. In this research we isolated a mutation of yellow seeded B. napus controlled by a single Mendelian locus, which is named Embryonal Control of Yellow seed coat 1 (Ecy1. Microscopy of transverse sections of the mature seed show that pigment is deposited only in the outer layer of the seed coat. Using Illumina Hisequation 2000 sequencing technology, a total of 12 GB clean data, 116× coverage of coding sequences of B. napus, was achieved from seeds 26 d after pollination (DAP. It was assembled into 172,238 independent transcripts, and 55,637 unigenes. A total of 139 orthologous genes of Arabidopsis transparent testa (TT genes were mapped in silico to 19 chromosomes of B. napus. Only 49 of the TT orthologous genes are transcribed in seeds. However transcription of all orthologs was independent of embryonal control of seed coat color. Only 55 genes were found to be differentially expressed between brown seeds and the yellow mutant. Of these 55, 50 were upregulated and five were downregulated in yellow seeds as compared to their brown counterparts. By KEGG classification, 14 metabolic pathways were significantly enriched. Of these, five pathways: phenylpropanoid biosynthesis, cyanoamino acid metabolism, plant hormone signal transduction, metabolic pathways, and biosynthesis of secondary metabolites, were related with seed coat pigmentation. Free amino acid quantification showed that Ala and Phe were present at higher levels in the embryos of yellow seeds as compared to those of brown seeds. This increase was not observed in the seed coat. Moreover, the excess amount of free Ala was exactly twice that of Phe in the

  4. Mutants induced in winter rye (Secale cereale L.): Short straw-mutant No. 2714 and late-senescence mutant

    Energy Technology Data Exchange (ETDEWEB)

    Muszynski, S; Darlewska, M [Department of Plant Breeding and Seed Science, Warsaw Agricultural University, Warsaw (Poland)

    1990-01-01

    Full text: Mutants were induced by treating dormant seeds with ionizing radiation (fast neutrons) or chemicals (N-nitroso-N-ethyl urea or sodium azide). Among several mutants obtained, of special value is the short-straw mutant No. 2714 and a late senescent mutant. (author)

  5. The L1-type cell adhesion molecule Neuroglian is necessary for maintenance of sensory axon advance in the Drosophila embryo

    Directory of Open Access Journals (Sweden)

    Martin Veronica

    2008-04-01

    Full Text Available Abstract Background Cell adhesion molecules have long been implicated in the regulation of axon growth, but the precise cellular roles played by individual cell adhesion molecules and the molecular basis for their action are still not well understood. We have used the sensory system of the Drosophila embryo to shed light on the mechanism by which the L1-type cell adhesion molecule Neuroglian regulates axon growth. Results We have found a highly penetrant sensory axon stalling phenotype in neuroglian mutant embryos. Axons stalled at a variety of positions along their normal trajectory, but most commonly in the periphery some distance along the peripheral nerve. All lateral and dorsal cluster sensory neurons examined, except for the dorsal cluster neuron dbd, showed stalling. Sensory axons were never seen to project along inappropriate pathways in neuroglian mutants and stalled axons showed normal patterns of fasciculation within nerves. The growth cones of stalled axons possessed a simple morphology, similar to their appearance in wild-type embryos when advancing along nerves. Driving expression of the wild-type form of Neuroglian in sensory neurons alone rescued the neuroglian mutant phenotype of both pioneering and follower neurons. A partial rescue was achieved by expressing the Neuroglian extracellular domain. Over/mis-expression of Neuroglian in all neurons, oenocytes or trachea had no apparent effect on sensory axon growth. Conclusion We conclude that Neuroglian is necessary to maintain axon advance along axonal substrates, but is not required for initiation of axon outgrowth, axon fasciculation or recognition of correct growth substrates. Expression of Neuroglian in sensory neurons alone is sufficient to promote axon advance and the intracellular region of the molecule is largely dispensable for this function. It is unlikely, therefore, that Nrg acts as a molecular 'clutch' to couple adhesion of F-actin within the growth cone to the

  6. Singleton Pregnancy Outcomes after In Vitro Fertilization with Fresh or Frozen-Thawed Embryo Transfer and Incidence of Placenta Praevia

    Directory of Open Access Journals (Sweden)

    Sara Korosec

    2014-01-01

    Full Text Available The aim of the study was to compare the single pregnancy and neonate outcome after fresh and frozen-thawed embryo transfer in the in vitro fertilization programme (IVF. The study focused on clinical and laboratory factors affecting the abnormal placentation, especially placenta praevia, in patients conceiving in the IVF programme. The results confirm that neonates born after frozen-thawed embryo transfer had significantly higher mean birth weight than after fresh embryo transfer (ET. Moreover, the birth weight distribution in singletons was found to shift towards “large for gestation” (LGA after frozen-thawed ET. On the other hand, the pregnancies after fresh ET were characterized by a higher incidence of placenta praevia and 3rd trimester bleeding. Placenta praevia was more common in IVF patients with fresh ET in a stimulated cycle than in patients with ET in a spontaneous cycle. It occurred more frequently in patients with transfer of 2 embryos. From this point of view, single ET and ET in a spontaneous cycle should be encouraged in good prognosis patients in the future with more than two good quality embryos developed. An important issue arose of how the ovarian hormonal stimulation relates to abnormal placentation and if the serum hormone levels interfere with in the IVF treatment results.

  7. Fibulin-1 Binds to Fibroblast Growth Factor 8 with High Affinity: EFFECTS ON EMBRYO SURVIVAL.

    Science.gov (United States)

    Fresco, Victor M; Kern, Christine B; Mohammadi, Moosa; Twal, Waleed O

    2016-09-02

    Fibulin-1 (FBLN1) is a member of a growing family of extracellular matrix glycoproteins that includes eight members and is involved in cellular functions such as adhesion, migration, and differentiation. FBLN1 has also been implicated in embryonic heart and valve development and in the formation of neural crest-derived structures, including aortic arch, thymus, and cranial nerves. Fibroblast growth factor 8 (FGF8) is a member of a large family of growth factors, and its functions include neural crest cell (NCC) maintenance, specifically NCC migration as well as patterning of structures formed from NCC such as outflow tract and cranial nerves. In this report, we sought to investigate whether FBLN1 and FGF8 have cooperative roles in vivo given their influence on the development of the same NCC-derived structures. Surface plasmon resonance binding data showed that FBLN1 binds tightly to FGF8 and prevents its enzymatic degradation by ADAM17. Moreover, overexpression of FBLN1 up-regulates FGF8 gene expression, and down-regulation of FBLN1 by siRNA inhibits FGF8 expression. The generation of a double mutant Fbln1 and Fgf8 mice (Fbln1(-/-) and Fgf8(-/-)) showed that haplo-insufficiency (Fbln1(+/-) and Fgf8(+/-)) resulted in increased embryonic mortality compared with single heterozygote crosses. The mortality of the FGF8/Fbln1 double heterozygote embryos occurred between 14.5 and 16.5 days post-coitus. In conclusion, FBLN1/FGF8 interaction plays a role in survival of vertebrate embryos, and reduced levels of both proteins resulted in added mortality in utero The FBLN1/FGF8 interaction may also be involved in the survival of neural crest cell population during development. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Non-invasive metabolomic profiling of embryo culture media and morphology grading to predict implantation outcome in frozen-thawed embryo transfer cycles.

    Science.gov (United States)

    Li, Xiong; Xu, Yan; Fu, Jing; Zhang, Wen-Bi; Liu, Su-Ying; Sun, Xiao-Xi

    2015-11-01

    Assessment of embryo viability is a crucial component of in vitro fertilization and currently relies largely on embryo morphology and cleavage rate. Because morphological assessment remains highly subjective, it can be unreliable in predicting embryo viability. This study investigated the metabolomic profiling of embryo culture media using near-infrared (NIR) spectroscopy for predicting the implantation potential of human embryos in frozen-thawed embryo transfer (FET) cycles. Spent embryo culture media was collected on day 4 after thawed embryo transfer (n = 621) and analysed using NIR spectroscopy. Viability scores were calculated using a predictive multivariate algorithm of fresh embryos with known pregnancy outcomes. The mean viability indices of embryos resulting in clinical pregnancy following FET were significantly higher than those of non-implanted embryos and differed between the 0, 50, and 100 % implantation groups. Notably, the 0 % group index was significantly lower than the 100 % implantation group index (-0.787 ± 0.382 vs. 1.064 ± 0.331, P  0.05). NIR metabolomic profiling of thawed embryo culture media is independent of morphology and correlates with embryo implantation potential in FET cycles. The viability score alone or in conjunction with morphologic grading is a more objective marker for implantation outcome in FET cycles than morphology alone.

  9. Collection of rice mutants and application studies of their agronomic characters

    International Nuclear Information System (INIS)

    Sun Shuxiang; Jin Wei; Luo Qian; Sheng Ping; Huang Rongmin

    1993-01-01

    More than 1600 accessions of rice mutant germplasm have been collected since 1980, and 1142 accessions of mutants have been identified according to their agronomy and pattern characters. A part of mutants were compared with their original cultivars in eight main agronomic characters. The results showed that the agronomic characters of mutants induced by ionizing radiations changed to both positive and negative directions compared with their original cultivars. Only 6.3% mutants varied in single agronomic character, and 91.1% mutants varied in two to six agronomic characters. Tenetic analysis and Cellular observations were carried out for two kinds of early mutants. It showed that early mutants 'Yuan Feng Zao' are controlled by two independent and incomplete dominant genes. For the dwarf, the reduction of the number of longitudinal cell layers causes the stem shorter and the increase of the number of horizontal cell layers causes the stem wall thicker. More than 100 preserved accessions of mutants were supplied to breeding units as parents or for genetic studies. Sixteen cultivars (lines) were bred from the parents which played an important role in raising the output of rice production

  10. Embryo sac formation and early embryo development in Agave tequilana (Asparagaceae).

    Science.gov (United States)

    González-Gutiérrez, Alejandra G; Gutiérrez-Mora, Antonia; Rodríguez-Garay, Benjamín

    2014-01-01

    Agave tequilana is an angiosperm species that belongs to the family Asparagaceae (formerly Agavaceae). Even though there is information regarding to some aspects related to the megagametogenesis of A. tequilana, this is the first report describing the complete process of megasporogenesis, megagametogenesis, the early embryo and endosperm development process in detail. The objective of this work was to study and characterize all the above processes and the distinctive morphological changes of the micropylar and chalazal extremes after fertilization in this species. The agave plant material for the present study was collected from commercial plantations in the state of Jalisco, Mexico. Ovules and immature seeds, previously fixed in FAA and kept in ethanol 70%, were stained based on a tissue clarification technique by using a Mayer's-Hematoxylin solution. The tissue clarification technique was successfully used for the characterization of the megasporogenesis, megagametogenesis, mature embryo sac formation, the early embryo and endosperm development processes by studying intact cells. The embryo sac of A. tequilana was confirmed to be of the monosporic Polygonum-type and an helobial endosperm formation. Also, the time-lapse of the developmental processes studied was recorded.

  11. Non-invasive analysis of bovine embryo metabolites during in vitro embryo culture using nuclear magnetic resonance

    Directory of Open Access Journals (Sweden)

    Marcello Rubessa

    2016-12-01

    Full Text Available The ability to identify embryos that have the highest developmental potential from a cohort would significantly increase the chances of achieving pregnancy. Metabolic analysis is a well-established analytical approach in biological systems. Starting from this idea, we chose to use high-resolution nuclear magnetic resonance (1H-NMR spectroscopy. The aim of this study was to determine if it is possible to select viable embryos after 48 h of culture using metabolic activity as the parameter. We evaluated embryo metabolism after the first 48 h of culture and compared the activity of cleaved embryos that became blastocysts to cleaved embryos that did not develop to blastocysts, and in vitro fertilized (IVF blastocysts and parthenogenetic-activated (PA blastocysts. Our results show that citrate, pyruvate, myo-inositol and lysine have great impact on predicting embryo development. When we compared IVF and PA blastocysts, we found that acetate and phenylalanine concentrations are excellent parameters for evaluating blastocyst quality. Combining all these results, we were able to create a formula that predicts zygote development after 2 days of culture. In conclusion, we found that it is possible predict the future development of in vitro produced bovine embryos after only 2 days of culture using 1H-NMR.

  12. Semi-dwarf mutants in triticale and wheat breeding

    International Nuclear Information System (INIS)

    Driscoll, C.J.

    1984-01-01

    The triticale lines Beagle and DR-IRA have been subjected to ionizing irradiation and chemical mutagenesis in order to produce semi-dwarf mutants. Beagle is 100 cm tall and DR-IRA 80 cm under average field conditions. A bulk then pedigree method is currently represented by 158 single plots of M 6 (or in some cases M 7 ) mutants that are from 5 to 35 cm shorter than the control variety. The shortest mutants are 65 cm in height. Forty of these mutants are also earlier flowering than the control varieties. Replicated yield testing will be conducted on confirmed mutants in 1983. Response to gibberellic acid of these mutants will also be determined. The Cornerstone male-sterility mutant (ms1c) on chromosome arm 4Aα has been combined with the GA-insensitive/reduced height gene Gai/Rht1 which is also on chromosome arm 4Aα. The ms1c mutant has also been combined with Gai/Rht2 on chromosome 4D and with both Gai/Rht1 and Gai/Rht2. The combination ms1c and Gai/Rht1 has been chosen as the basis of a composite cross. Thirteen varieties were tested with GA 3 and seven (Warigal, Aroona, Oxley, Banks, Avocet, Matipo and Toquifen) which contain Gai/Rht1 were crossed with ms1c Gai/Rht1 and entered into an interpollinating F 2 . The entire composite is homozygous for this semi-dwarf allele and selection will be practiced for increased height on a GA-insensitive background. (author)

  13. Improving embryo quality in assisted reproduction

    NARCIS (Netherlands)

    Mantikou, E.

    2013-01-01

    The goal of this thesis was to improve embryo quality in assisted reproductive technologies by gaining more insight into human preimplantation embryo development and by improving in vitro culture conditions. To do so, we investigated an intriguing feature of the human preimplantation embryo, i.e.

  14. A reduced transcriptome approach to assess environmental toxicants using zebrafish embryo tests

    Science.gov (United States)

    This paper reports on the pilot testing of a new bioassay platform that monitors expression of 1600 genes in zebrafish embryos exposed to either single chemicals or complex water samples. The method provides a more cost effective, high throughput means to broadly evaluate the pot...

  15. Two-Photon-Based Photoactivation in Live Zebrafish Embryos

    OpenAIRE

    Russek-Blum, Niva; Nabel-Rosen, Helit; Levkowitz, Gil

    2010-01-01

    Photoactivation of target compounds in a living organism has proven a valuable approach to investigate various biological processes such as embryonic development, cellular signaling and adult physiology. In this respect, the use of multi-photon microscopy enables quantitative photoactivation of a given light responsive agent in deep tissues at a single cell resolution. As zebrafish embryos are optically transparent, their development can be monitored in vivo. These traits make the zebrafish a...

  16. Productive mutants in lemongrass induced by gamma rays

    International Nuclear Information System (INIS)

    Gopinathan Nair, V.

    1980-01-01

    Seeds of the lemongrass variety O.D. 19 were irradiated with gamma rays at a dose range of 5 to 30 krad. M 1 plants with one or a few tillers differing from the standard plants of O.D. 19 were selected, split into single slips and planted as clonal progenies. Mutants were isolated in M 1 V 1 and carried forward. Forty two M 1 V 2 mutant clones differing from O.D. 19 in morphological characters such as vigour, plant height, growth habit, pigmentation and number of tillers have been established. These were evaluated for tiller number, grass yield and oil content. Six clones gave higher grass yield, the highest being 556 gm per plant per cutting as against 360 gm in the standard. Five clones gave higher oil yield, the highest being 0.42% as against 0.23% in the standard. Isolation of viable mutants with high grass yield and essential oil content indicate the scope for evolving productive mutant varieties in this perennial aromatic grass. The eleven M 1 V 2 mutant clones are being critically evaluated by estimating oil yield per hectare per year. (author)

  17. Effect of embryo age and recipient asynchrony on pregnancy rates in a commercial equine embryo transfer program.

    Science.gov (United States)

    Jacob, J C F; Haag, K T; Santos, G O; Oliveira, J P; Gastal, M O; Gastal, E L

    2012-04-01

    In the present study, 809 uterine flushes and 454 embryo transfers performed in mares over a 4-yr interval were examined to evaluate the effects of: (1) the day of embryo collection on recovery rates; (2) the degree of synchrony between donor and recipient mares on pregnancy rates; (3) the recipient day post ovulation on pregnancy rates; and (4) the age of the embryo at recovery on pregnancy rates at 60 days. Uterine flushes were performed on Days 6, 7, 8, 9, and 10 (Day 0 = ovulation) and embryos were transferred to recipients with degrees of synchrony varying between +1 to -6 (recipient ovulated 1 day before through 6 days after the donor). Recipient mares ranged from 2 to 8 days post ovulation. Embryo recovery rates were similar for flushes performed on Day 7 (61%), Day 8 (66%), Day 9 (59%), and Day 10 (56%), but the embryo recovery rate was lower (P recipient mares on Day 2 (33%) compared with mares on Day 3 (66%), Day 4 (66%), Day 5 (62%), Day 6 (55%), Day 7 (58%), and Day 8 (56%). Pregnancy rate was higher (P recipient mares does not need to be as restricted as previously reported in horses. Acceptable pregnancy rates (e.g., 70%, 99/142) were obtained even when recipient mares ovulated 4 to 5 days after the donors; (3) similar pregnancy rates were obtained when recipient mares received embryos within a large range of days post ovulation (Days 3 to 8); and (4) Day 7 embryos produced higher pregnancy rates when compared with Days 8 and 9 embryos. In clinical terms, the application of these new findings will be beneficial to large equine embryo transfer operations in producing more pregnancies per season. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Laser confers less embryo exposure than acid tyrode for embryo biopsy in preimplantation genetic diagnosis cycles: a randomized study.

    Science.gov (United States)

    Geber, Selmo; Bossi, Renata; Lisboa, Cintia B; Valle, Marcelo; Sampaio, Marcos

    2011-04-28

    We compared two methods of zona pellucida drilling. 213 embryos were biopsied with acid Tyrode. Each biopsy took 3 minutes and the entire procedure ~29 minutes. 5% of blastomeres lysed, 49% of embryos became blastocyst and 36% of patients became pregnant. 229 embryos were biopsied with laser. Each biopsy took 30 seconds and the entire procedure ~7 minutes. 2.5% of blastomeres lysed, 50.6% of embryos became blastocyst and 47% of patients became pregnant. We can conclude that laser can be used for embryo biopsy. Reduction of embryo exposure and of removed blastomeres is associated with increased blastocysts available for transfer and a better clinical outcome.

  19. Laser confers less embryo exposure than acid tyrode for embryo biopsy in preimplantation genetic diagnosis cycles: a randomized study

    Directory of Open Access Journals (Sweden)

    Valle Marcelo

    2011-04-01

    Full Text Available Abstract We compared two methods of zona pellucida drilling. 213 embryos were biopsied with acid Tyrode. Each biopsy took 3 minutes and the entire procedure ~29 minutes. 5% of blastomeres lysed, 49% of embryos became blastocyst and 36% of patients became pregnant. 229 embryos were biopsied with laser. Each biopsy took 30 seconds and the entire procedure ~7 minutes. 2.5% of blastomeres lysed, 50.6% of embryos became blastocyst and 47% of patients became pregnant. We can conclude that laser can be used for embryo biopsy. Reduction of embryo exposure and of removed blastomeres is associated with increased blastocysts available for transfer and a better clinical outcome.

  20. Identification of dominant male sterile mutants in rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Zhu Xudong; Rutger, J.N.

    2000-01-01

    Genetic male sterile mutants 1783 and 1789 were selected from US variety Orion and Kaybonnet seeds treated by gamma irradiation. Investigation of fertility characterization of pollen and spikelets of these mutants were made by progeny tests in 1783 M 7 and 1789 M 6 generations. The results showed that genetic male sterile mutants 1783 and 1789 with the fertility segregating of 1 sterile: 1 fertile were controlled by a single dominant gene. The pollen staining of mutants characterized partial sterility. Open-pollinated seed set was about 30% and bagged seed set was only 0.3%-3.5%. It is concluded that dominant genetic male sterile is a useful tool in improvement of population for rice breeding

  1. Psychological study of in vitro fertilization-embryo transfer participants' attitudes toward the destiny of their supernumerary embryos.

    Science.gov (United States)

    Laruelle, C; Englert, Y

    1995-05-01

    To study the motivations underlying IVF-ET participants' choice to donate or destroy their supernumerary embryos. Couples' opinions are studied through a questionnaire and a psychological interview. Two hundred couples about to undergo IVF-ET. The fertility unit of an academic hospital. Couples' choice for supernumerary embryos' destiny; opinions on embryo status, on importance of genetic lineage in the filial bonding, on gamete donation, and on multiple pregnancy risk. Donation is the most frequent choice but destruction is tolerated by almost all the couples (92%). Couples considering the embryo as a child choose destruction as frequently as donation but refuse experimentation on the embryo. Donation is highest among couples who stress education more than genetic lineage in parental bonding. This is confirmed by the choice of the couples requiring donor gametes. Couples express differing attitudes toward risks of twins and risks of triplets: twins are much more desired than triplets, which are frequently refused. Couples' opinions on the respective importance of genetic lineage and education in defining parental bonding are more determinant in their decision to destroy or to donate their supernumerary embryos than their opinions on the in vitro embryo status, which only determines their attitude toward experimentation.

  2. Mechanistic dissection of plant embryo initiation

    NARCIS (Netherlands)

    Radoeva, T.M.

    2016-01-01

    Land plants can reproduce sexually by developing an embryo from a fertilized egg cell, the zygote. After fertilization, the zygote undergoes several rounds of controlled cell divisions to generate a mature embryo. However, embryo formation can also be induced in a variety of other cell types in

  3. The First Human Cloned Embryo.

    Science.gov (United States)

    Cibelli, Jose B.; Lanza, Robert P.; West, Michael D.; Ezzell, Carol

    2002-01-01

    Describes a process known as parthenogenesis which produces cloned, early-stage embryos and human embryos generated only from eggs. Speculates that this technology puts therapeutic cloning within reach. (DDR)

  4. Progranulin is neurotrophic in vivo and protects against a mutant TDP-43 induced axonopathy.

    Directory of Open Access Journals (Sweden)

    Angela S Laird

    Full Text Available Mislocalization, aberrant processing and aggregation of TAR DNA-binding protein 43 (TDP-43 is found in the neurons affected by two related diseases, amyotrophic lateral sclerosis (ALS and frontotemporal lobe dementia (FTLD. These TDP-43 abnormalities are seen when TDP-43 is mutated, such as in familial ALS, but also in FTLD, caused by null mutations in the progranulin gene. They are also found in many patients with sporadic ALS and FTLD, conditions in which only wild type TDP-43 is present. The common pathological hallmarks and symptomatic cross over between the two diseases suggest that TDP-43 and progranulin may be mechanistically linked. In this study we aimed to address this link by establishing whether overexpression of mutant TDP-43 or knock-down of progranulin in zebrafish embryos results in motor neuron phenotypes and whether human progranulin is neuroprotective against such phenotypes. Mutant TDP-43 (A315T mutation induced a motor axonopathy characterized by short axonal outgrowth and aberrant branching, similar, but more severe, than that induced by mutant SOD1. Knockdown of the two zebrafish progranulin genes, grna and grnb, produced a substantial decrease in axonal length, with knockdown of grna alone producing a greater decrease in axonal length than grnb. Progranulin overexpression rescued the axonopathy induced by progranulin knockdown. Interestingly, progranulin also rescued the mutant TDP-43 induced axonopathy, whilst it failed to affect the mutant SOD1-induced phenotype. TDP-43 was found to be nuclear in all conditions described. The findings described here demonstrate that progranulin is neuroprotective in vivo and may have therapeutic potential for at least some forms of motor neuron degeneration.

  5. Trichostatin A (TSA) improves the development of rabbit-rabbit intraspecies cloned embryos, but not rabbit-human interspecies cloned embryos.

    Science.gov (United States)

    Shi, Li-Hong; Miao, Yi-Liang; Ouyang, Ying-Chun; Huang, Jun-Cheng; Lei, Zi-Li; Yang, Ji-Wen; Han, Zhi-Ming; Song, Xiang-Fen; Sun, Qing-Yuan; Chen, Da-Yuan

    2008-03-01

    The interspecies somatic cell nuclear transfer (iSCNT) technique for therapeutic cloning gives great promise for treatment of many human diseases. However, the incomplete nuclear reprogramming and the low blastocyst rate of iSCNT are still big problems. Herein, we observed the effect of TSA on the development of rabbit-rabbit intraspecies and rabbit-human interspecies cloned embryos. After treatment with TSA for 6 hr during activation, we found that the blastocyst rate of rabbit-rabbit cloned embryos was more than two times higher than that of untreated embryos; however, the blastocyst rate of TSA-treated rabbit-human interspecies cloned embryos decreased. We also found evident time-dependent histone deacetylation-reacetylation changes in rabbit-rabbit cloned embryos, but not in rabbit-human cloned embryos from fusion to 6 hr after activation. Our results suggest that TSA-treatment does not improve blastocyst development of rabbit-human iSCNT embryos and that abnormal histone deacetylation-reacetylation changes in iSCNT embryos may account for their poor blastocyst development. (c) 2008 Wiley-Liss, Inc.

  6. Production and characterization of radiation-sensitive meiotic mutants of Coprinus cinereus

    International Nuclear Information System (INIS)

    Zolan, M.E.; Tremel, C.J.; Pukkila, P.J.

    1988-01-01

    We have isolated four gamma-sensitive mutants of the basidiomycete Coprinus cinereus. When homozygous, two of these (rad 3-1 and rad 9-1) produce fruiting bodies with very few viable basidiospores, the products of meiosis in this organism. A less radiation-sensitive allele of RAD 3, rad 3-2, causes no apparent meiotic defect in homozygous strains. Quantitative measurements of oidial survival of rad 3-1;rad 9-1 double mutants compared to the single mutants indicated that rad 3-1 and rad 9-1 mutants are defective in the same DNA repair pathway. In the pew viable basidiospores that are produced by these two strains, essentially normal levels of meiotic recombination can be detected. None of the mutants exhibits increased sensitivity to UV radiation. Cytological examination of meiotic chromosomes from mutant and wild-type fruiting bodies showed that rad 3-1 homozygous strains fail to condense and pair homologous chromosomes during prophase I. Although rad 9-1 strains are successful at chromosome pairing, meiosis is usually not completed in these mutants

  7. Resurrecting embryos of the tuatara, Sphenodon punctatus, to resolve vertebrate phallus evolution.

    Science.gov (United States)

    Sanger, Thomas J; Gredler, Marissa L; Cohn, Martin J

    2015-10-01

    The breadth of anatomical and functional diversity among amniote external genitalia has led to uncertainty about the evolutionary origins of the phallus. In several lineages, including the tuatara, Sphenodon punctatus, adults lack an intromittent phallus, raising the possibility that the amniote ancestor lacked external genitalia and reproduced using cloacal apposition. Accordingly, a phallus may have evolved multiple times in amniotes. However, similarities in development across amniote external genitalia suggest that the phallus may have a single evolutionary origin. To resolve the evolutionary history of amniote genitalia, we performed three-dimensional reconstruction of Victorian era tuatara embryos to look for embryological evidence of external genital initiation. Despite the absence of an intromittent phallus in adult tuataras, our observations show that tuatara embryos develop genital anlagen. This illustrates that there is a conserved developmental stage of external genital development among all amniotes and suggests a single evolutionary origin of amniote external genitalia. © 2015 The Author(s).

  8. Isolation of new gravitropic mutants under hypergravity conditions

    Directory of Open Access Journals (Sweden)

    Akiko Mori

    2016-09-01

    Full Text Available Forward genetics is a powerful approach used to link genotypes and phenotypes, and mutant screening/analysis has provided deep insights into many aspects of plant physiology. Gravitropism is a tropistic response in plants, in which hypocotyls and stems sense the direction of gravity and grow upwards. Previous studies of gravitropic mutants have suggested that shoot endodermal cells in Arabidopsis stems and hypocotyls are capable of sensing gravity (i.e., statocytes. In the present study, we report a new screening system using hypergravity conditions to isolate enhancers of gravitropism mutants, and we also describe a rapid and efficient genome mapping method, using Next-Generation Sequencing (NGS and Single Nucleotide Polymorphism (SNP-based markers. Using the endodermal-amyloplast less 1 (eal1 mutant, which exhibits defective development of endodermal cells and gravitropism, we found that hypergravity (10 g restored the reduced gravity responsiveness in eal1 hypocotyls and could, therefore, be used to obtain mutants with further reduction in gravitropism in the eal1 background. Using the new screening system, we successfully isolated six ene (enhancer of eal1 mutants that exhibited little or no gravitropism under hypergravity conditions, and using NGS and map-based cloning with SNP markers, we narrowed down the potential causative genes, which revealed a new genetic network for shoot gravitropism in Arabidopsis.

  9. Nucleoli from two-cell embryos support the development of enucleolated germinal vesicle oocytes in the pig.

    Science.gov (United States)

    Kyogoku, Hirohisa; Ogushi, Sugako; Miyano, Takashi

    2012-11-01

    Recent research has shown that nucleoli of oocytes at the germinal vesicle (GV) stage (GV nucleoli) are not necessary for oocyte maturation but are essential for early embryonic development. Nucleoli of 2-cell embryos (2-cell nucleoli) have morphology similar to that of nucleoli in oocytes at the GV stage. In this study, we examined the ability of 2-cell nucleoli to substitute for GV nucleoli in terms of supporting early embryonic development by nucleolus aspiration (enucleolation) and transfer into metaphase II (MII) oocytes or 2-cell embryos that were derived from enucleolated oocytes at the GV stage in the pig. When 2-cell embryos were centrifuged to move the lipid droplets to one side of the blastomere, multiple nucleoli in the nucleus fused into a single nucleolus. The nucleoli were then aspirated from the 2-cell embryos by micromanipulation. The injection of 2-cell nucleoli to GV enucleolated oocytes at the MII stage rescued the embryos from the early embryonic arrest, and the resulting oocytes developed to blastocysts. However, the injection of 2-cell and GV nucleoli to 2-cell embryos derived from GV enucleolated oocytes rarely restored the development to blastocysts. These results indicate that 2-cell nucleoli support early embryonic development as GV nucleoli and that the presence of nucleoli is essential for pig embryos before the 2-cell stage.

  10. Die Behandlung menschliches Embryos und Menschenwurde

    OpenAIRE

    Matsui, Fumio

    2002-01-01

    We are confronted with an old and new problem, which has come up with the progress of modern biotechnologies: what is a life or when does a life begin? The expectation of order-made medicine has build up since the discovery of Embryo Stem cell called "a dream master cell", while there is any condemnation against the destruction of human embryo in order to gain it. It is a question whether a human embryo is a human being in the world. Human dignity(=HD) is a principle that keeps human embryos ...

  11. IVF with planned single-embryo transfer versus IUI with ovarian stimulation in couples with unexplained subfertility: an economic analysis.

    Science.gov (United States)

    van Rumste, Minouche M E; Custers, Inge M; van Wely, Madelon; Koks, Carolien A; van Weering, Hans G I; Beckers, Nicole G M; Scheffer, Gabrielle J; Broekmans, Frank J M; Hompes, Peter G A; Mochtar, Monique H; van der Veen, Fulco; Mol, Ben W J

    2014-03-01

    Couples with unexplained subfertility are often treated with intrauterine insemination (IUI) with ovarian stimulation, which carries the risk of multiple pregnancies. An explorative randomized controlled trial was performed comparing one cycle of IVF with elective single-embryo transfer (eSET) versus three cycles of IUI-ovarian stimulation in couples with unexplained subfertility and a poor prognosis for natural conception, to assess the economic burden of the treatment modalities. The main outcome measures were ongoing pregnancy rates and costs. This study randomly assigned 58 couples to IVF-eSET and 58 couples to IUI-ovarian stimulation. The ongoing pregnancy rates were 24% in with IVF-eSET versus 21% with IUI-ovarian stimulation, with two and three multiple pregnancies, respectively. The mean cost per included couple was significantly different: €2781 with IVF-eSET and €1876 with IUI-ovarian stimulation (Pcosts per ongoing pregnancy were €2456 for IVF-eSET. In couples with unexplained subfertility, one cycle of IVF-eSET cost an additional €900 per couple compared with three cycles of IUI-ovarian stimulation, for no increase in ongoing pregnancy rates or decrease in multiple pregnancies. When IVF-eSET results in higher ongoing pregnancy rates, IVF would be the preferred treatment. Couples that have been trying to conceive unsuccessfully are often treated with intrauterine insemination (IUI) and medication to improve egg production (ovarian stimulation). This treatment carries the risk of multiple pregnancies like twins. We performed an explorative study among those couples that had a poor prognosis for natural conception. One cycle of IVF with transfer of one selected embryo (elective single-embryo transfer, eSET) was compared with three cycles of IUI-ovarian stimulation. The aim of this study was to assess the economic burden of both treatments. The Main outcome measures were number of good pregnancies above 12weeks and costs. We randomly assigned 58

  12. Genetic analysis of DNA repair in Aspergillus: evidence for different types of MMS-sensitive hyperrec mutants

    International Nuclear Information System (INIS)

    Kaefer, E.; Mayor, O.

    1986-01-01

    To identify genes which affect DNA repair and possibly recombination in Aspergillus nidulans, mutants hypersensitive to methyl methanesulphonate (MMS) were induced with ultraviolet light (UV) or γ-rays. To identify functional and epistatic groups, mutants from each uvs gene were tested for effects on recombination and mutation, and double mutant uvs strains were compared for UV survival to their component single mutant strains. (Auth.)

  13. Abscisic acid biosynthesis in isolated embryos of Zea mays L

    International Nuclear Information System (INIS)

    Gage, D.A.; Fong, F.; Zeevaart, J.A.D.

    1989-01-01

    Previous labeling experiments with 18 O 2 have supported the hypothesis that stress-induced abscisic acid (ABA) is synthesized through an indirect pathway involving an oxygenated carotenoid (xanthophyll) as a precursor. To investigate ABA formation under nonstress conditions, an 18 O 2 labeling experiment was conducted with isolated embryos from in vitro grown maize (Zea mays L.) kernels. Of the ABA produced during the incubation in 18 O 2 , three-fourths contained a single 18 O atom located in the carboxyl group. Approximately one-fourth of the ABA synthesized during the experiment contained two 18 O atoms. These results suggest that ABA synthesized in maize embryos under nonstress conditions also proceeds via the indirect pathway, requiring a xanthophyll precursor. It was also found that the newly synthesized ABA was preferentially released into the surrounding medium

  14. Embryo-maternal communication during the first 4 weeks of equine pregnancy

    NARCIS (Netherlands)

    Stout, Tom A E

    2016-01-01

    The first month of equine pregnancy covers a period of rapid growth and development, during which the single-cell zygote metamorphoses into an embryo with a functional circulation and precursors of many important organs, enclosed within extraembryonic membranes responsible for nutrient uptake and

  15. Patients' Attitudes towards the Surplus Frozen Embryos in China

    Directory of Open Access Journals (Sweden)

    Xuan Jin

    2013-01-01

    Full Text Available Background. Assisted reproductive techniques have been used in China for more than 20 years. This study investigates the attitudes of surplus embryo holders towards embryos storage and donation for medical research. Methods. A total of 363 couples who had completed in vitro fertilization (IVF treatment and had already had biological children but who still had frozen embryos in storage were invited to participate. Interviews were conducted by clinics in a narrative style. Results. Family size was the major reason for participants’ (discontinuation of embryo storage; moreover, the moral status of embryos was an important factor for couples choosing embryo storage, while the storage fee was an important factor for couples choosing embryo disposal. Most couples discontinued the storage of their embryos once their children were older than 3 years. In our study, 58.8% of the couples preferred to dispose of surplus embryos rather than donate them to research, citing a lack of information and distrust in science as significant reasons for their decision. Conclusions. Interviews regarding frozen embryos, including patients’ expectations for embryo storage and information to assist them with decisions regarding embryo disposal, are beneficial for policies addressing embryo disposition and embryo donation in China.

  16. Meanings of the embryo in Japan: narratives of IVF experience and embryo ownership

    NARCIS (Netherlands)

    Kato, M.; Sleeboom-Faulkner, M.

    2011-01-01

    This article explores the sociocultural meanings of the embryo implied in the narratives of 58 women who have undergone in vitro fertilisation in Japan over a period from 2006 to 2008. We argue that a lack of sufficient analysis of the sociocultural meanings of the embryo result in a situation where

  17. Nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2 regulates axon integrity in the mouse embryo.

    Directory of Open Access Journals (Sweden)

    Amy N Hicks

    Full Text Available Using transposon-mediated gene-trap mutagenesis, we have generated a novel mouse mutant termed Blad (Bloated Bladder. Homozygous mutant mice die perinatally showing a greatly distended bladder, underdeveloped diaphragm and a reduction in total skeletal muscle mass. Wild type and heterozygote mice appear normal. Using PCR, we identified a transposon insertion site in the first intron of Nmnat2 (Nicotinamide mononucleotide adenyltransferase 2. Nmnat2 is expressed predominantly in the brain and nervous system and has been linked to the survival of axons. Expression of this gene is undetectable in Nmnat2(blad/blad mutants. Examination of the brains of E18.5 Nmnat2(blad/blad mutant embryos did not reveal any obvious morphological changes. In contrast, E18.5 Nmnat2(blad/blad homozygotes showed an approximate 60% reduction of spinal motoneurons in the lumbar region and a more than 80% reduction in the sensory neurons of the dorsal root ganglion (DRG. In addition, facial motoneuron numbers were severely reduced, and there was virtually a complete absence of axons in the hind limb. Our observations suggest that during embryogenesis, Nmnat2 plays an important role in axonal growth or maintenance. It appears that in the absence of Nmnat2, major target organs and tissues (e.g., muscle are not functionally innervated resulting in perinatal lethality. In addition, neither Nmnat1 nor 3 can compensate for the loss of Nmnat2. Whilst there have been recent suggestions that Nmnat2 may be an endogenous modulator of axon integrity, this work represents the first in vivo study demonstrating that Nmnat2 is involved in axon development or survival in a mammal.

  18. Effect of embryo density on in vitro development and gene expression in bovine in vitro-fertilized embryos cultured in a microwell system.

    Science.gov (United States)

    Sugimura, Satoshi; Akai, Tomonori; Hashiyada, Yutaka; Aikawa, Yoshio; Ohtake, Masaki; Matsuda, Hideo; Kobayashi, Shuji; Kobayashi, Eiji; Konishi, Kazuyuki; Imai, Kei

    2013-01-01

    To identify embryos individually during in vitro development, we previously developed the well-of-the-well (WOW) dish, which contains 25 microwells. Here we investigated the effect of embryo density (the number of embryos per volume of medium) on in vitro development and gene expression of bovine in vitro-fertilized embryos cultured in WOW dishes. Using both conventional droplet and WOW culture formats, 5, 15, and 25 bovine embryos were cultured in 125 μl medium for 168 h. The blastocysts at Day 7 were analyzed for number of cells and expression of ten genes (CDX2, IFN-tau, PLAC8, NANOG, OCT4, SOX2, AKR1B1, ATP5A1, GLUT1 and IGF2R). In droplet culture, the rates of formation of >4-cell cleavage embryos and blastocysts were significantly lower in embryos cultured at 5 embryos per droplet than in those cultured at 15 or 25 embryos per droplet, but not in WOW culture. In both droplet and WOW culture, developmental kinetics and blastocyst cell numbers did not differ among any groups. IFN-tau expression in embryos cultured at 25 embryos per droplet was significantly higher than in those cultured at 15 embryos per droplet and in artificial insemination (AI)-derived blastocysts. Moreover, IGF2R expression was significantly lower in the 25-embryo group than in the 5-embryo group and in AI-derived blastocysts. In WOW culture, these expressions were not affected by embryo density and were similar to those in AI-derived blastocysts. These results suggest that, as compared with conventional droplet culture, in vitro development and expression of IFN-tau and IGF2R in the microwell system may be insensitive to embryo density.

  19. The Effect of Prolonged Culture of Chromosomally Abnormal Human Embryos on The Rate of Diploid Cells

    Directory of Open Access Journals (Sweden)

    Masood Bazrgar

    2016-12-01

    Full Text Available Background: A decrease in aneuploidy rate following a prolonged co-culture of human blastocysts has been reported. As co-culture is not routinely used in assisted reproductive technology, the present study aimed to evaluate the effect of the prolonged single culture on the rate of diploid cells in human embryos with aneuploidies. Materials and Methods: In this cohort study, we used fluorescence in situ hybridization (FISH to reanalyze surplus blastocysts undergoing preimplantation genetic diagnosis (PGD on day 3 postfertilization. They were randomly studied on days 6 or 7 following fertilization. Results: Of the 30 analyzed blastocysts, mosaicism was observed in 26(86.6%, while 2(6.7% were diploid, and 2(6.7% were triploid. Of those with mosaicism, 23(88.5% were determined to be diploid-aneuploid and 3(11.5% were aneuploid mosaic. The total frequency of embryos with more than 50% diploid cells was 33.3% that was lower on day 7 in comparison with the related value on day 6 (P<0.05; however, there were no differences when the embryos were classified according to maternal age, blastocyst developmental stage, total cell number on day 3, and embryo quality. Conclusion: Although mosaicism is frequently observed in blastocysts, the prolonged single culture of blastocysts does not seem to increase the rate of normal cells.

  20. Zebrafish bandoneon mutants display behavioral defects due to a mutation in the glycine receptor β-subunit

    Science.gov (United States)

    Hirata, Hiromi; Saint-Amant, Louis; Downes, Gerald B.; Cui, Wilson W.; Zhou, Weibin; Granato, Michael; Kuwada, John Y.

    2005-01-01

    Bilateral alternation of muscle contractions requires reciprocal inhibition between the two sides of the hindbrain and spinal cord, and disruption of this inhibition should lead to simultaneous activation of bilateral muscles. At 1 day after fertilization, wild-type zebrafish respond to mechanosensory stimulation with multiple fast alternating trunk contractions, whereas bandoneon (beo) mutants contract trunk muscles on both sides simultaneously. Similar simultaneous contractions are observed in wild-type embryos treated with strychnine, a blocker of the inhibitory glycine receptor (GlyR). This result suggests that glycinergic synaptic transmission is defective in beo mutants. Muscle voltage recordings confirmed that muscles on both sides of the trunk in beo are likely to receive simultaneous synaptic input from the CNS. Recordings from motor neurons revealed that glycinergic synaptic transmission was missing in beo mutants. Furthermore, immunostaining with an antibody against GlyR showed clusters in wild-type neurons but not in beo neurons. These data suggest that the failure of GlyRs to aggregate at synaptic sites causes impairment of glycinergic transmission and abnormal behavior in beo mutants. Indeed, mutations in the GlyR β-subunit, which are thought to be required for proper localization of GlyRs, were identified as the basis for the beo mutation. These data demonstrate that GlyRβ is essential for physiologically relevant clustering of GlyRs in vivo. Because GlyR mutations in humans lead to hyperekplexia, a motor disorder characterized by startle responses, the zebrafish beo mutant should be a useful animal model for this condition. PMID:15928085

  1. A chimera embryo assay reveals a decrease in embryonic cellular proliferation induced by sperm from X-irradiated male mice

    International Nuclear Information System (INIS)

    Obasaju, M.F.; Wiley, L.M.; Oudiz, D.J.; Raabe, O.; Overstreet, J.W.

    1989-01-01

    Male mice were divided into three experimental groups and a control group. Mice in the experimental groups received one of three doses of acute X irradiation (1.73, 0.29, and 0.05 Gy) and together with the control unirradiated mice were then mated weekly to unirradiated female mice for a 9-week experimental period. Embryos were recovered from the weekly matings at the four-cell stage and examined by the chimera assay for proliferative disadvantage. Aggregation chimeras were constructed of embryos from female mice mated to irradiated males (experimental embryos) and embryos from females mated to unexposed males (control embryos) and contained either one experimental embryo and one control embryo (heterologous chimera) or two control embryos (control chimera). The control embryo in heterologous chimeras and either embryo in control chimeras were prelabeled with the vital dye fluorescein isothiocyanate (FITC), and the chimeras were cultured for 40 h and viewed under phase-contrast and epifluorescence microscopy to obtain total embryo cell number and the cellular contribution from the FITC-labeled embryo. Experimental and control embryos that were cultured singly were also examined for embryo cell number at the end of the 40-h culture period. In control chimeras, the mean ratio of the unlabeled cells:total chimera cell number (henceforth referred to as ''mean ratio'') was 0.50 with little or no weekly variation over the 9-week experimental period. During Weeks 4-7, the mean ratios of heterologous chimeras differed significantly from the mean ratio of control chimeras with the greatest differences occurring during Week 7 (0.41 for chimeras of 0.05 Gy dose group, 0.40 for chimeras of the 0.29 Gy dose group, and 0.17 for chimeras of the 1.73 Gy dose group)

  2. Xenopus pax6 mutants affect eye development and other organ systems, and have phenotypic similarities to human aniridia patients.

    Science.gov (United States)

    Nakayama, Takuya; Fisher, Marilyn; Nakajima, Keisuke; Odeleye, Akinleye O; Zimmerman, Keith B; Fish, Margaret B; Yaoita, Yoshio; Chojnowski, Jena L; Lauderdale, James D; Netland, Peter A; Grainger, Robert M

    2015-12-15

    Mutations in the Pax6 gene cause ocular defects in both vertebrate and invertebrate animal species, and the disease aniridia in humans. Despite extensive experimentation on this gene in multiple species, including humans, we still do not understand the earliest effects on development mediated by this gene. This prompted us to develop pax6 mutant lines in Xenopus tropicalis taking advantage of the utility of the Xenopus system for examining early development and in addition to establish a model for studying the human disease aniridia in an accessible lower vertebrate. We have generated mutants in pax6 by using Transcription Activator-Like Effector Nuclease (TALEN) constructs for gene editing in X. tropicalis. Embryos with putative null mutations show severe eye abnormalities and changes in brain development, as assessed by changes in morphology and gene expression. One gene that we found is downregulated very early in development in these pax6 mutants is myc, a gene involved in pluripotency and progenitor cell maintenance and likely a mediator of some key pax6 functions in the embryo. Changes in gene expression in the developing brain and pancreas reflect other important functions of pax6 during development. In mutations with partial loss of pax6 function eye development is initially relatively normal but froglets show an underdeveloped iris, similar to the classic phenotype (aniridia) seen in human patients with PAX6 mutations. Other eye abnormalities observed in these froglets, including cataracts and corneal defects, are also common in human aniridia. The frog model thus allows us to examine the earliest deficits in eye formation as a result of pax6 lesions, and provides a useful model for understanding the developmental basis for the aniridia phenotype seen in humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Expression of Aquaporins in Human Embryos and Potential Role of AQP3 and AQP7 in Preimplantation Mouse Embryo Development

    Directory of Open Access Journals (Sweden)

    Yun Xiong

    2013-05-01

    Full Text Available Background/Aims: Water channels, also named aquaporins (AQPs, play crucial roles in cellular water homeostasis. Methods: RT-PCR indicated the mRNA expression of AQPs 1-5, 7, 9, and 11-12, but not AQPs 0, 6, 8, and 10 in the 2∼8-cell stage human embryos. AQP3 and AQP7 were further analyzed for their mRNA expression and protein expression in the oocyte, zygote, 2-cell embryo, 4-cell embryo, 8-cell embryo, morula, and blastocyst from both human and mouse using RT-PCR and immunofluorescence, respectively. Results: AQP3 and AQP7 were detected in all these stages. Knockdown of either AQP3 or AQP7 by targeted siRNA injection into 2-cell mouse embryos significantly inhibited preimplantation embryo development. However, knockdown of AQP3 in JAr spheroid did not affect its attachment to Ishikawa cells. Conclusion: These data demonstrate that multiple aquaporins are expressed in the early stage human embryos and that AQP3 and AQP7 may play a role in preimplantation mouse embryo development.

  4. Embryo apoptosis identification: Oocyte grade or cleavage stage?

    Science.gov (United States)

    Bakri, Noraina Mohd; Ibrahim, Siti Fatimah; Osman, Nurul Atikah; Hasan, Nurhaslina; Jaffar, Farah Hanan Fathihah; Rahman, Zulaiha Abdul; Osman, Khairul

    2015-01-01

    Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C. This grading was based on cumulus cell thickness and compactness. All oocytes then underwent an in vitro maturation (IVM) procedure. An IVF was done 24 h after IVM culture. Prior to staining, stage of cleaved embryos was determined and classified as either 2, 4, 8 or >8-cell embryo stage. Apoptosis status of cleaved IVP embryos was determined by using annexin V-FITC staining technique at 48 and 72 h post insemination (hpi). Apoptosis status for each embryo was classified as either early or late. The result showed that there was no significant difference (p > 0.05) of apoptosis status among grade A, B and C embryos. All grades of oocytes showed embryo apoptosis where 1.5% late apoptosis for grade A, 4.5% and 10.4% of early and late apoptosis for grade B and grade C. Early apoptosis was not seen in grade A embryo. We also noted no significant difference (p > 0.05) of apoptosis status between 2, 4, 8 and >8-cell embryo stage. Early apoptosis was also not seen in >8-cell stage. Even though there were no differences in apoptosis expression between the three classes, the cleavage rate of grade A oocytes was significantly higher (p < 0.01) than grade B and grade C. In conclusion, the apoptosis expression in the embryo can occur regardless of the oocyte quality and the cleavage stage of the embryo produced. PMID:26858565

  5. Incomplete excision repair process after UV-irradiation in MUT-mutants of Proteus mirabillis

    International Nuclear Information System (INIS)

    Stoerl, K.

    1977-01-01

    MUT-mutants of P. mirabilis seem to be able to perform the incision step in the course of excision repair. In contrast to the corresponding wildtype strains with MUT-mutants the number of single-strand breaks formed after UV-irradiation is independent of the UV-dose up to about 720 erg/mm 2 . Incubation in minimal medium over a longer time does not result in completion of excision repair; about 3-6 single-strand breaks in the DNA of these mutants remain open. Likewise, the low molecular weight of the newly synthesized daughter DNA confirms an incompletely proceeding or delayed repair process. As a possible reason for the mutator phenotype an alteration of the DNA-polymerase playing a role in excision and resynthesis steps of excision repair is discussed. (author)

  6. Loss of circadian clock accelerates aging in neurodegeneration-prone mutants.

    Science.gov (United States)

    Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S; Wentzell, Jill S; Kretzschmar, Doris; Giebultowicz, Jadwiga M

    2012-03-01

    Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per(01)) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni(1)), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni(1) mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per(01)sni(1) flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per(01) mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws(1)), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Comprehensive embryo testing. Experts' opinions regarding future directions: an expert panel study on comprehensive embryo testing.

    Science.gov (United States)

    Hens, Kristien; Dondorp, Wybo J; Geraedts, Joep P M; de Wert, Guido M

    2013-05-01

    What do scientists in the field of preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS) consider to be the future direction of comprehensive embryo testing? Although there are many biological and technical limitations, as well as uncertainties regarding the meaning of genetic variation, comprehensive embryo testing will impact the IVF/PGD practice and a timely ethical reflection is needed. Comprehensive testing using microarrays is currently being introduced in the context of PGD and PGS, and it is to be expected that whole-genome sequencing will also follow. Current ethical and empirical sociological research on embryo testing focuses on PGD as it is practiced now. However, empirical research and systematic reflection regarding the impact of comprehensive techniques for embryo testing is missing. In order to understand the potential of this technology and to be able to adequately foresee its implications, we held an expert panel with seven pioneers in PGD. We conducted an expert panel in October 2011 with seven PGD pioneers from Belgium, The Netherlands, Germany and the UK. Participants expected the use of comprehensive techniques in the context of PGD. However, the introduction of these techniques in embryo testing requires timely ethical reflection as it involves a shift from choosing an embryo without a particular genetic disease (i.e. PGD) or most likely to result in a successful pregnancy (i.e. PGS) to choosing the best embryo based on a much wider set of criteria. Such ethical reflection should take account of current technical and biological limitations and also of current uncertainties with regard to the meaning of genetic variance. However, ethicists should also not be afraid to look into the future. There was a general agreement that embryo testing will be increasingly preceded by comprehensive preconception screening, thus enabling smart combinations of genetic testing. The group was composed of seven participants from

  8. Influence of the radiation (Co60) in pre-implants rabbit embryos: effect on atypic mitotic index and embryo pole development

    International Nuclear Information System (INIS)

    Approbato, Mario S.; Oliveira Moura, Katia K.V. de; Souza Florencio, Rodopiano de; Garcia, Ricardo; Faria, Renato S.; Benedetti, Leonardo N.; Goulart, Flamarion B.

    1995-01-01

    We studied the effect of ionizing irradiation on 12 New Zealand rabbits (65 embryos), at three different times: at match time (zero hour), two days after and four days after, with two different irradiation doses: five c Gy and ten c Gy. Six rabbits (36 blastocysts) were used as controls. the matching instant was the zero hour. Exactly six days after (± 60 minutes) the embryos of each rabbit was picked up by flushing the uterus with culture media. the embryos were fixed in methanol for 48 hours, and colored with acid Mayer hematoxylin. The following embryo parameters were studied: embryo pole development; percentage of abnormal mitotic figures. irradiation time was associated with lower scores of embryo pole development, but not with irradiation dose. There were no gross abnormalities of embryo pole. The abnormal mitotic cells was affected both by the time and dose of irradiation. (author)

  9. Beneficial effect of two culture systems with small groups of embryos on the development and quality of in vitro-produced bovine embryos.

    Science.gov (United States)

    Cebrian-Serrano, A; Salvador, I; Silvestre, M A

    2014-02-01

    Currently, in vitro-produced embryos derived by ovum pick up (OPU) and in vitro fertilization (IVF) technologies represent approximately one-third of the embryos worldwide in cattle. Nevertheless, the culture of small groups of embryos from an individual egg donor is an issue that OPU-IVF laboratories have to face. In this work, we tested whether the development and quality of the preimplantation embryos in vitro cultured in low numbers (five embryos) could be improved by the addition of epidermal growth factor, insulin, transferrin and selenium (EGF-ITS) or by the WOW system. With this aim, immature oocytes recovered from slaughtered heifers were in vitro matured and in vitro fertilized. Presumptive zygotes were then randomly cultured in four culture conditions: one large group (LG) (50 embryos/500 μl medium) and three smaller groups [five embryos/50 μl medium without (control) or with EGF-ITS (EGF-ITS) and five embryos per microwell in the WOW system (WOW)]. Embryos cultured in LG showed a greater ability to develop to blastocyst stage than embryos cultured in smaller groups, while the blastocyst rate of WOW group was significantly higher than in control. The number of cells/blastocyst in LG was higher than control or WOW, whereas the apoptosis rate per blastocyst was lower. On the other hand, the addition of EGF-ITS significantly improved both parameters compared to the control and resulted in similar embryo quality to LG. In conclusion, the WOW system improved embryo development, while the addition of EGF-ITS improved the embryo quality when smaller groups of embryos were cultured. © 2013 Blackwell Verlag GmbH.

  10. A chilling sensitive mutant of Arabidopsis with altered steryl-ester metabolism

    International Nuclear Information System (INIS)

    Hugly, S.; McCourt, P.; Somerville, C.; Browse, J.; Patterson, G.W.

    1990-01-01

    A chilling-sensitive mutant of Arabidopsis thaliana was isolated and subjected to genetic, physiological, and biochemical analysis. The chilling-sensitive nature of the mutant line is due to a single recessive nuclear mutation at a locus designated chs1. In contrast to wild-type plants, which are not adversely affected by low temperatures, the chs1 mutant is killed by several days of exposure to temperatures below 18 degree C. Following exposure to chilling temperatures, the mutant displays two common symptoms of chilling injury - leaf chlorosis and electrolyte leakage. In these respects, the physiological response of the mutant to low temperatures mimics the response observed in some naturally occurring chilling sensitive species. The biochemical basis of chilling sensitivity was explored by examining the pattern of incorporation of 14 CO 2 into soluble metabolites and lipids in wild-type and mutant plants. The only difference observed between the mutant and wild type was that following low temperature treatment, the mutant accumulated 10-fold more radioactivity in a specific class of neutral lipids which were identified by a variety of criteria to be steryl-esters. The accumulation of radioactivity in the steryl-ester fraction occurs 24 hours before there is any visible evidence of chilling injury

  11. Using fertile couples as embryo donors: An ethical dilemma.

    Science.gov (United States)

    Alizadeh, Leila; Omani Samani, Reza

    2014-03-01

    The use of donated embryos has offered hope for infertile couples who have no other means to have children. In Iran, fertility centers use fertile couples as embryo donors. In this paper, the advantages and disadvantages of this procedure will be discussed. We conclude that embryo-donation should be performed with frozen embryos thus preventing healthy donors from being harmed by fertility drugs. There must be guidelines for choosing the appropriate donor families. In countries where commercial egg donation is acceptable, fertile couples can be procured as embryo donors thus fulfilling the possible shortage of good quality embryos. Using frozen embryos seems to have less ethical, religious and legal problems when compared to the use of fertile embryo donors.

  12. Neural cell fate in rca1 and cycA mutants: the roles of intrinsic and extrinsic factors in asymmetric division in the Drosophila central nervous system.

    Science.gov (United States)

    Lear, B C; Skeath, J B; Patel, N H

    1999-11-01

    In the central nervous system (CNS) of Drosophila embryos lacking regulator of cyclin A (rca1) or cyclin A, we observe that several ganglion mother cells (GMCs) fail to divide. Whereas GMCs normally produce two sibling neurons that acquire different fates ('A/B'), non-dividing GMCs differentiate exclusively in the manner of one of their progeny ('B'). In zygotic numb mutants, sibling neuron fate alterations ('A/B' to 'A/A') occur infrequently or do not occur in some sibling pairs; we have determined that depletion of both maternal and zygotic numb causes sibling neurons to acquire equalized fates ('A/A') with near-complete expressivity. In rca1, numb mutant embryos, we observe binary cell fate changes ('B' to 'A') in several GMCs as well. Finally, we have demonstrated that expression of Delta in the mesoderm is sufficient to attain both sibling fates. Our results indicate that the intrinsic determinant Numb is absolutely required to attain differential sibling neuron fates. While the extrinsic factors Notch and Delta are also required to attain both fates, our results indicate that Delta signal can be received from outside the sibling pair.

  13. Detection of SEA-type α-thalassemia in embryo biopsies by digital PCR.

    Science.gov (United States)

    Lee, Ta-Hsien; Hsu, Ya-Chiung; Chang, Chia Lin

    2017-08-01

    Accurate and efficient pre-implantation genetic diagnosis (PGD) based on the analysis of single or oligo-cells is needed for timely identification of embryos that are affected by deleterious genetic traits in in vitro fertilization (IVF) clinics. Polymerase chain reaction (PCR) is the backbone of modern genetic diagnoses, and a spectrum of PCR-based techniques have been used to detect various thalassemia mutations in prenatal diagnosis (PND) and PGD. Among thalassemias, SEA-type α-thalassemia is the most common variety found in Asia, and can lead to Bart's hydrops fetalis and serious maternal complications. To formulate an efficient digital PCR for clinical diagnosis of SEA-type α-thalassemia in cultured embryos, we conducted a pilot study to detect the α-globin and SEA-type deletion alleles in blastomere biopsies with a highly sensitive microfluidics-based digital PCR method. Genomic DNA from embryo biopsy samples were extracted, and crude DNA extracts were first amplified by a conventional PCR procedure followed by a nested PCR reaction with primers and probes that are designed for digital PCR amplification. Analysis of microfluidics-based PCR reactions showed that robust signals for normal α-globin and SEA-type deletion alleles, together with an internal control gene, can be routinely generated using crude embryo biopsies after a 10 6 -fold dilution of primary PCR products. The SEA-type deletion in cultured embryos can be sensitively diagnosed with the digital PCR procedure in clinics. The adoption of this robust PGD method could prevent the implantation of IVF embryos that are destined to develop Bart's hydrops fetalis in a timely manner. The results also help inform future development of a standard digital PCR procedure for cost-effective PGD of α-thalassemia in a standard IVF clinic. Copyright © 2017. Published by Elsevier B.V.

  14. Developmental competence of porcine chimeric embryos produced by aggregation

    DEFF Research Database (Denmark)

    Li, Juan; Jakobsen, Jannik E.; Xiong, Qiang

    2015-01-01

    The purpose of our study was to compare the developmental competence and blastomere allocation of porcine chimeric embryos formed by micro-well aggregation. Chimeras were created by aggregating either two blastomeres originating from 2-cell embryos or two whole embryos, where embryos were produced...... either by parthenogenetic activation (PA) or handmade cloning (HMC). Results showed that the developmental competence of chimeric embryos, evaluated based on their blastocyst rate and total cell number per blastocyst, was increased when two whole 2-cell stage embryos (PA or HMC) were aggregated....... In comparison, when two blastomeres were aggregated, the developmental competence of the chimeric embryos decreased if the blastomeres were either from PA or from HMC embryos, but not if they were from different sources, i.e. one PA and one HMC blastomere. To evaluate the cell contribution in embryo formation...

  15. Insight into PreImplantation Factor (PIF* mechanism for embryo protection and development: target oxidative stress and protein misfolding (PDI and HSP through essential RIKP [corrected] binding site.

    Directory of Open Access Journals (Sweden)

    Eytan R Barnea

    Full Text Available Endogenous PIF, upon which embryo development is dependent, is secreted only by viable mammalian embryos, and absent in non-viable ones. Synthetic PIF (sPIF administration promotes singly cultured embryos development and protects against their demise caused by embryo-toxic serum. To identify and characterize critical sPIF-embryo protein interactions novel biochemical and bio-analytical methods were specifically devised.FITC-PIF uptake/binding by cultured murine and equine embryos was examined and compared with scrambled FITC-PIF (control. Murine embryo (d10 lysates were fractionated by reversed-phase HPLC, fractions printed onto microarray slides and probed with Biotin-PIF, IDE and Kv1.3 antibodies, using fluorescence detection. sPIF-based affinity column was developed to extract and identify PIF-protein interactions from lysates using peptide mass spectrometry (LC/MS/MS. In silico evaluation examined binding of PIF to critical targets, using mutation analysis.PIF directly targets viable cultured embryos as compared with control peptide, which failed to bind. Multistep Biotin-PIF targets were confirmed by single-step PIF-affinity column based isolation. PIF binds protein disulfide isomerases a prolyl-4-hydroxylase β-subunit, (PDI, PDIA4, PDIA6-like containing the antioxidant thioredoxin domain. PIF also binds protective heat shock proteins (70&90, co-chaperone, BAG-3. Remarkably, PIF targets a common RIKP [corrected] site in PDI and HSP proteins. Further, single PIF amino acid mutation significantly reduced peptide-protein target bonding. PIF binds promiscuous tubulins, neuron backbones and ACTA-1,2 visceral proteins. Significant anti-IDE, while limited anti-Kv1.3b antibody-binding to Biotin-PIF positive lysates HPLC fractions were documented.Collectively, data identifies PIF shared targets on PDI and HSP in the embryo. Such are known to play a critical role in protecting against oxidative stress and protein misfolding. PIF-affinity-column is a

  16. Microfluidic analysis of oocyte and embryo biomechanical properties to improve outcomes in assisted reproductive technologies.

    Science.gov (United States)

    Yanez, Livia Z; Camarillo, David B

    2017-04-01

    Measurement of oocyte and embryo biomechanical properties has recently emerged as an exciting new approach to obtain a quantitative, objective estimate of developmental potential. However, many traditional methods for probing cell mechanical properties are time consuming, labor intensive and require expensive equipment. Microfluidic technology is currently making its way into many aspects of assisted reproductive technologies (ART), and is particularly well suited to measure embryo biomechanics due to the potential for robust, automated single-cell analysis at a low cost. This review will highlight microfluidic approaches to measure oocyte and embryo mechanics along with their ability to predict developmental potential and find practical application in the clinic. Although these new devices must be extensively validated before they can be integrated into the existing clinical workflow, they could eventually be used to constantly monitor oocyte and embryo developmental progress and enable more optimal decision making in ART. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Accurate and noninvasive embryos screening during in vitro fertilization (IVF) assisted by Raman analysis of embryos culture medium

    International Nuclear Information System (INIS)

    Shen, A G; Peng, J; Su, L; Wang, X H; Hu, J M; Zhao, Q H; Yang, J

    2012-01-01

    In combination with morphological evaluation tests, we employ Raman spectroscopy to select higher potential reproductive embryos during in vitro fertilization (IVF) based on chemical composition of embryos culture medium. In this study, 57 Raman spectra are acquired from both higher and lower quality embryos culture medium (ECM) from 10 patients which have been preliminarily confirmed by clinical assay. Data are fit by using a linear combination model of least squares method in which 12 basis spectra represent the chemical features of ECM. The final fitting coefficients provide insight into the chemical compositions of culture medium samples and are subsequently used as criterion to evaluate the quality of embryos. The relative fitting coefficients ratios of sodium pyruvate/albumin and phenylalanine/albumin seem act as key roles in the embryo screening, attaining 85.7% accuracy in comparison with clinical pregnancy. The good results demonstrate that Raman spectroscopy therefore is an important candidate for an accurate and noninvasive screening of higher quality embryos, which potentially decrease the time-consuming clinical trials during IVF

  18. Caspase activity and expression of cell death genes during development of human preimplantation embryos.

    Science.gov (United States)

    Spanos, S; Rice, S; Karagiannis, P; Taylor, D; Becker, D L; Winston, R M L; Hardy, K

    2002-09-01

    It has been observed that apoptosis occurs in human blastocysts. In other types of cell, the characteristic morphological changes seen in apoptotic cells are executed by caspases, which are regulated by the BCL-2 family of proteins. This study investigated whether these components of the apoptotic cascade are present throughout human preimplantation development. Developing and arrested two pronucleate embryos at all stages were incubated with a fluorescently tagged caspase inhibitor that binds only to active caspases, fixed, counterstained with 4,6-diamidino-2-phenylindole (DAPI) to assess nuclear morphology and examined using confocal microscopy. Active caspases were detected only after compaction, at the morula and blastocyst stages, and were frequently associated with apoptotic nuclei. Occasional labelling was seen in arrested embryos. Expression of proapoptotic BAX and BAD and anti-apoptotic BCL-2 was examined in single embryos using RT-PCR and immunohistochemistry. BAX and BCL-2 mRNAs were expressed throughout development, whereas BAD mRNA was expressed mainly after compaction. Simultaneous expression of BAX and BCL-2 proteins within individual embryos was confirmed using immunohistochemistry. The onset of caspase activity and BAD expression after compaction correlates with the previously reported appearance of apoptotic nuclei. As in other types of cell, human embryos express common molecular components of the apoptotic cascade, although apoptosis appears to be suppressed before compaction and differentiation.

  19. Applications of Protein Thermodynamic Database for Understanding Protein Mutant Stability and Designing Stable Mutants.

    Science.gov (United States)

    Gromiha, M Michael; Anoosha, P; Huang, Liang-Tsung

    2016-01-01

    Protein stability is the free energy difference between unfolded and folded states of a protein, which lies in the range of 5-25 kcal/mol. Experimentally, protein stability is measured with circular dichroism, differential scanning calorimetry, and fluorescence spectroscopy using thermal and denaturant denaturation methods. These experimental data have been accumulated in the form of a database, ProTherm, thermodynamic database for proteins and mutants. It also contains sequence and structure information of a protein, experimental methods and conditions, and literature information. Different features such as search, display, and sorting options and visualization tools have been incorporated in the database. ProTherm is a valuable resource for understanding/predicting the stability of proteins and it can be accessed at http://www.abren.net/protherm/ . ProTherm has been effectively used to examine the relationship among thermodynamics, structure, and function of proteins. We describe the recent progress on the development of methods for understanding/predicting protein stability, such as (1) general trends on mutational effects on stability, (2) relationship between the stability of protein mutants and amino acid properties, (3) applications of protein three-dimensional structures for predicting their stability upon point mutations, (4) prediction of protein stability upon single mutations from amino acid sequence, and (5) prediction methods for addressing double mutants. A list of online resources for predicting has also been provided.

  20. Lack of centrioles and primary cilia in STIL(-/-) mouse embryos.

    Science.gov (United States)

    David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin

    2014-01-01

    Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL(-/-) mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL(-/-) cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL(-/-) cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development.

  1. Limited importance of pre-embryo pronuclear morphology (zygote score) in assisted reproduction outcome in the absence of embryo cryopreservation.

    Science.gov (United States)

    Nicoli, Alessia; Valli, Barbara; Di Girolamo, Roberta; Di Tommaso, Barbara; Gallinelli, Andrea; La Sala, Giovanni B

    2007-10-01

    To investigate the hypothesis that Z-score criteria represent a reliable predictor of implantation rate and pregnancy outcome in in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) cycles, excluding the possibility of embryo selection before the embryo transfer. Retrospective clinical study. Centre of Reproductive Medicine, Department of Obstetrics and Gynecology, Arcispedale S. Maria Nuova (ASMN), Reggio Emilia, Italy. We analyzed 393 pregnancies obtained by IVF or ICSI cycles. Morphologic evaluations of Z-score in pre-embryos obtained from IVF or ICSI cycles. Evaluations of Z-scores, implantation rate, and clinical pregnancy outcome. We did not find any statistically significant correlation between the Z-score of 1032 embryos transferred in 393 embryo transfers and the implantation rate or the pregnancy outcome. In particular, the best Z-score identified (Z1, 7.2%) did not seem to correlate with embryo implantation rate or pregnancy outcomes any better than those with worse scores (Z2, 6.9% and Z3, 85.9%). Our results seem to confirm that Z-score alone cannot be considered a better tool than standard morphologic criteria for identifying, controlling, or selecting embryos with a better chance of successful ongoing pregnancy.

  2. Characterization of a mutant of Escherichia coli B/R defective in mutation frequency decline

    International Nuclear Information System (INIS)

    George, D.L.

    1974-01-01

    A mutant of Escherichia coli B/r designated mfd is very deficient in the ability to exhibit mutation frequency decline (MFD), the characteristic loss of potential suppressor mutations which occurs when protein synthesis is briefly inhibited after irradiation with ultraviolet light (uv). This mutant is known to excise pyrimidine dimers very slowly, although it is as uv-resistant as its mfd + B/r parent strain. We have found that the mfd mutant performs the initial incision step of excision repair normally, but repairs the resulting single-strand breaks much more slowly than the mfd + strain. In spite of the slow dimer excision in the mfd mutant, single-strand DNA breaks do not accumulate during postirradiation incubation, implying that incision and excision are well corrdinated. the prolonged postirradiation lag in cell division and DNA synthesis which accompany slow excision in the mfd strain indicates that resumption of these processes of optimal rates is linked to the timing of excision repair. The normal uv-resistance of the mfd mutant also suggests such coordination and shows that the rate of excision repair is independent of its ultimate efficiency in the removal of potentially lethal uv-induced damage. (U.S.)

  3. Simple Genome Editing of Rodent Intact Embryos by Electroporation.

    Directory of Open Access Journals (Sweden)

    Takehito Kaneko

    Full Text Available The clustered regularly interspaced short palindromic repeat (CRISPR/CRISPR-associated (Cas system is a powerful tool for genome editing in animals. Recently, new technology has been developed to genetically modify animals without using highly skilled techniques, such as pronuclear microinjection of endonucleases. Technique for animal knockout system by electroporation (TAKE method is a simple and effective technology that produces knockout rats by introducing endonuclease mRNAs into intact embryos using electroporation. Using TAKE method and CRISPR/Cas system, the present study successfully produced knockout and knock-in mice and rats. The mice and rats derived from embryos electroporated with Cas9 mRNA, gRNA and single-stranded oligodeoxynucleotide (ssODN comprised the edited targeted gene as a knockout (67% of mice and 88% of rats or knock-in (both 33%. The TAKE method could be widely used as a powerful tool to produce genetically modified animals by genome editing.

  4. Essential role of chromatin remodeling protein Bptf in early mouse embryos and embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Joseph Landry

    2008-10-01

    Full Text Available We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor, the largest subunit of NURF (Nucleosome Remodeling Factor in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf(-/- embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf(-/- embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo.

  5. Automated high-throughput quantification of mitotic spindle positioning from DIC movies of Caenorhabditis embryos.

    Directory of Open Access Journals (Sweden)

    David Cluet

    Full Text Available The mitotic spindle is a microtubule-based structure that elongates to accurately segregate chromosomes during anaphase. Its position within the cell also dictates the future cell cleavage plan, thereby determining daughter cell orientation within a tissue or cell fate adoption for polarized cells. Therefore, the mitotic spindle ensures at the same time proper cell division and developmental precision. Consequently, spindle dynamics is the matter of intensive research. Among the different cellular models that have been explored, the one-cell stage C. elegans embryo has been an essential and powerful system to dissect the molecular and biophysical basis of spindle elongation and positioning. Indeed, in this large and transparent cell, spindle poles (or centrosomes can be easily detected from simple DIC microscopy by human eyes. To perform quantitative and high-throughput analysis of spindle motion, we developed a computer program ACT for Automated-Centrosome-Tracking from DIC movies of C. elegans embryos. We therefore offer an alternative to the image acquisition and processing of transgenic lines expressing fluorescent spindle markers. Consequently, experiments on large sets of cells can be performed with a simple setup using inexpensive microscopes. Moreover, analysis of any mutant or wild-type backgrounds is accessible because laborious rounds of crosses with transgenic lines become unnecessary. Last, our program allows spindle detection in other nematode species, offering the same quality of DIC images but for which techniques of transgenesis are not accessible. Thus, our program also opens the way towards a quantitative evolutionary approach of spindle dynamics. Overall, our computer program is a unique macro for the image- and movie-processing platform ImageJ. It is user-friendly and freely available under an open-source licence. ACT allows batch-wise analysis of large sets of mitosis events. Within 2 minutes, a single movie is processed

  6. Action of uranium on pre implanted mouse embryos

    International Nuclear Information System (INIS)

    Kundt, Miriam S.

    2001-01-01

    The cultured preimplantation embryos are normally employed to evaluate the effects of environmental pollutants specially metals. Embryos were obtained from hybrid females CBA x C57 Bl following induction of super ovulation. They were incubated from 1 cell stage during 120 hs. in M16 cultured medium. Three different experiments were carried out: A, B and C using uranyl nitrate UO 2 (NO 3 ) 2 6H 2 O as source of uranium. In experiment 'A' the embryos were cultivated in the same culture dish containing final U concentrations of 13, 26, 52, 104 and 208 μgU/ml. In experiment 'B' embryos in a one cell stage were placed in culture medium with uranyl nitrate with final U concentrations of 26, 52, 104 μgU/ml. After 24 hours those embryos which had reached the two-cell stage were transferred to another culture dish to which fresh solutions of uranyl nitrate were added, maintaining the same concentrations of the previous one. In experiment 'C' the embryos were cultivated containing final U concentrations of 26, 52 and 104 μgU/ml and they were transferred to another culture dish every day to which fresh solutions of uranyl nitrate were added. Different embryos parameters were analyzed: 1) Development grade; 2) Number of cell per embryo and metaphases index; and 3) Embryo ploidy. 1) Embryos were observed each 24 hs. to evaluate development grade: 2, 4 and 8 cell stage, morula, early -expanded- hatched blastocysts and atresic embryos. No significant differences were observed in the proportion of embryos arrested either in the one-cell or in the two cell stages in control culture medium regarding different concentrations of U, in a total of 4388 embryos analyzed. From 2 cell stage, moment that the embryo begins to synthesize its own ARNm, the delay in embryonic development increased dose dependent. On the other hand, the toxicological effects in the same concentration are increase from 'A' treatment to 'C' treatment. Embriotoxicology effects are evidenced by an increment in

  7. Influence of irradiation (Co60) in pre-implant rabbits embryos: effect on blastocyst diameters and embryos smaller than 2 mm

    International Nuclear Information System (INIS)

    Approbato, Mario S.; Oliveira Moura, Katia K.V. de; Souza Florencio, Rodopiano de; Cunha Junior, Carlos; Garcia, Ricardo; Faria, Renato S.; Benedetti, Leonardo N.; Goulart, Flamarion B.

    1995-01-01

    We studied the effect of ionizing irradiation on 12 New Zealand rabbits (65 embryos), in three different times: at match time (zero hour), two days after and four days after, with two different irradiation doses, 5 c Gy and 10 c Gy. Six rabbits (36 blastocysts) were used as controls. The matching instant was the zero hour. Exactly six days after (± 60 minutes) the embryos of each rabbit was picked up by flushing the uterus with culture media. The embryos were fixed in methanol for 48 hours, and colored with acid Mayer hematoxylin. The following embryos parameters were studied: diameter growth; percentage of embryos smaller than 2 mm. We observed that only the irradiation time influenced the blastocysts diameter (no irradiation dose). There was no relation between percentage of embryos smaller than 2 mm and the irradiation. (author)

  8. Noninvasive Metabolomic Profiling of Human Embryo Culture Media Using a Simple Spectroscopy Adjunct to Morphology for Embryo Assessment in in Vitro Fertilization (IVF

    Directory of Open Access Journals (Sweden)

    Jiming Hu

    2013-03-01

    Full Text Available Embryo quality is crucial to the outcome of in vitro fertilization (IVF; however, the ability to precisely distinguish the embryos with higher reproductive potential from others is poor. Morphologic evaluation used to play an important role in assessing embryo quality, but it is somewhat subjective. The culture medium is the immediate environment of the embryos in vitro, and a change of the substances in the culture medium is possibly related to the embryo quality. Thus, the present study aims to determine whether metabolomic profiling of the culture medium using Raman spectroscopy adjunct to morphology correlates with the reproductive potential of embryos in IVF and, thus, to look for a new method of assessing embryo quality. Fifty seven spent media samples were detected by Raman spectroscopy. Combined with embryo morphology scores, we found that embryos in culture media with less than 0.012 of sodium pyruvate and more than −0.00085 phenylalanine have a high reproductive potential, with up to 85.7% accuracy compared with clinical pregnancy. So, sodium pyruvate and phenylalanine in culture medium play an important role in the development of the embryo. Raman spectroscopy is an important tool that provides a new and accurate assessment of higher quality embryos.

  9. Serum Beta-hCG of 11 Days after Embryo Transfer to Predict Pregnancy Outcome

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To assess the clinic value of a single maternal serum beta-human chorionic gonadotropin (β-hCG) assay 11 d after embryo transfer in ART pregnancies and to predict pregnancy outcome.Methods A total of 384 pregnancies after embryo transfer were included.Inviable pregnancies were defined as biochemical pregnancies,ectopic pregnancies and first trimester abortions.Ongoing pregnancies were defined as singleton pregnancies and multiple pregnancies whose gestation were achieved more than 12 weeks.Serum β-hCG concentrations were compared among different groups.Results On the post embryo transfer d 11,the mean β-hCG concentration of the ongoing pregnancy group (323.7±285.2 mIU/ml) was significantly higher than that of the inviable pregnancy group(81.4±68.1 mmIU/ml)(P<0.001).In multiple gestations,the levels of β-hCG were significantly higher compared with singleton pregnancies.If the β-hCG level was between 10 mIU/ml and 50 mIU/ml,the positive predictive value of biochemical pregnancies and ectopic pregnancies was 81.8%,the negative predictive value was 94.4%.If the level was less than 100 mIU/ml,the positive predictive value of first trimester abortions was 80.8% the negative predictive value was 77.8%.If the level was greater than 250 mIU/ml,the positive predictive value of multiple pregnancies was 83.3%.the negative predictive value was 74.4%.Conclusions A single serum β-hCG level on d 11 after embryo transfer has good predictive valuefor clinical pregnancy outcome in controlled ovarian stimulation cycles and helps to plan the subsequent follow-up.

  10. Glassfrog embryos hatch early after parental desertion.

    Science.gov (United States)

    Delia, Jesse R J; Ramírez-Bautista, Aurelio; Summers, Kyle

    2014-06-22

    Both parental care and hatching plasticity can improve embryo survival. Research has found that parents can alter hatching time owing to a direct effect of care on embryogenesis or via forms of care that cue the hatching process. Because parental care alters conditions critical for offspring development, hatching plasticity could allow embryos to exploit variation in parental behaviour. However, this interaction of parental care and hatching plasticity remains largely unexplored. We tested the hypothesis that embryos hatch early to cope with paternal abandonment in the glassfrog Hyalinobatrachium fleischmanni (Centrolenidae). We conducted male-removal experiments in a wild population, and examined embryos' response to conditions with and without fathers. Embryos hatched early when abandoned, but extended development in the egg stage when fathers continued care. Paternal care had no effect on developmental rate. Rather, hatching plasticity was due to embryos actively hatching at different developmental stages, probably in response to deteriorating conditions without fathers. Our experimental results are supported by a significant correlation between the natural timing of abandonment and hatching in an unmanipulated population. This study demonstrates that embryos can respond to conditions resulting from parental abandonment, and provides insights into how variation in care can affect selection on egg-stage adaptations.

  11. Glassfrog embryos hatch early after parental desertion

    Science.gov (United States)

    Delia, Jesse R. J.; Ramírez-Bautista, Aurelio; Summers, Kyle

    2014-01-01

    Both parental care and hatching plasticity can improve embryo survival. Research has found that parents can alter hatching time owing to a direct effect of care on embryogenesis or via forms of care that cue the hatching process. Because parental care alters conditions critical for offspring development, hatching plasticity could allow embryos to exploit variation in parental behaviour. However, this interaction of parental care and hatching plasticity remains largely unexplored. We tested the hypothesis that embryos hatch early to cope with paternal abandonment in the glassfrog Hyalinobatrachium fleischmanni (Centrolenidae). We conducted male-removal experiments in a wild population, and examined embryos' response to conditions with and without fathers. Embryos hatched early when abandoned, but extended development in the egg stage when fathers continued care. Paternal care had no effect on developmental rate. Rather, hatching plasticity was due to embryos actively hatching at different developmental stages, probably in response to deteriorating conditions without fathers. Our experimental results are supported by a significant correlation between the natural timing of abandonment and hatching in an unmanipulated population. This study demonstrates that embryos can respond to conditions resulting from parental abandonment, and provides insights into how variation in care can affect selection on egg-stage adaptations. PMID:24789892

  12. Role of microRNAs in embryo implantation

    Directory of Open Access Journals (Sweden)

    Jingjie Liang

    2017-11-01

    Full Text Available Abstract Failure of embryo implantation is a major limiting factor in early pregnancy and assisted reproduction. Determinants of implantation include the embryo viability, the endometrial receptivity, and embryo-maternal interactions. Multiple molecules are involved in the regulation of implantation, but their specific regulatory mechanisms remain unclear. MicroRNA (miRNA, functioning as the transcriptional regulator of gene expression, has been widely reported to be involved in embryo implantation. Recent studies reveal that miRNAs not only act inside the cells, but also can be released by cells into the extracellular environment through multiple packaging forms, facilitating intercellular communication and providing indicative information associated with physiological and pathological conditions. The discovery of extracellular miRNAs shed new light on implantation studies. MiRNAs provide new mechanisms for embryo-maternal communication. Moreover, they may serve as non-invasive biomarkers for embryo selection and assessment of endometrial receptivity in assisted reproduction, which improves the accuracy of evaluation while reducing the mechanical damage to the tissue. In this review, we discuss the involvement of miRNAs in embryo implantation from several aspects, focusing on the role of extracellular miRNAs and their potential applications in assisted reproductive technologies (ART to promote fertility efficiency.

  13. Cryopreservation of preimplantation embryos of cattle, sheep, and goats.

    Science.gov (United States)

    Youngs, Curtis R

    2011-08-05

    Preimplantation embryos from cattle, sheep, and goats may be cryopreserved for short- or long-term storage. Preimplantation embryos consist predominantly of water, and the avoidance of intracellular ice crystal formation during the cryopreservation process is of paramount importance to maintain embryo viability. Embryos are placed into a hypertonic solution (1.4 - 1.5 M) of a cryoprotective agent (CPA) such as ethylene glycol (EG) or glycerol (GLYC) to create an osmotic gradient that facilitates cellular dehydration. After embryos reach osmotic equilibrium in the CPA solution, they are individually loaded in the hypertonic CPA solution into 0.25 ml plastic straws for freezing. Embryos are placed into a controlled rate freezer at a temperature of -6°C. Ice crystal formation is induced in the CPA solution surrounding the embryo, and crystallization causes an increase in the concentration of CPA outside of the embryo, causing further cellular dehydration. Embryos are cooled at a rate of 0.5°C/min, enabling further dehydration, to a temperature of -34°C before being plunged into liquid nitrogen (-196°C). Cryopreserved embryos must be thawed prior to transfer to a recipient (surrogate) female. Straws containing the embryos are removed from the liquid nitrogen dewar, held in room temperature air for 3 to 5 sec, and placed into a 37°C water bath for 25 to 30 sec. Embryos cryopreserved in GLYC are placed into a 1 M solution of sucrose for 10 min for removal of the CPA before transfer to a recipient (surrogate) female. Embryos cryopreserved in EG, however, may be directly transferred to the uterus of a recipient.

  14. Radioactive marking of proteins in cultured mouse embryos

    International Nuclear Information System (INIS)

    Nowak, J.

    1984-01-01

    The purpose of this work was to build an in vitro test system, with which on the one hand postimplantation embryos of the mouse could be cultured without morphological of physiological damage and on the other hand their protein could be as highly marked as possible. With this radioactively marked proteins were to be won, which are optimally suited for a high separation by two-dimensional electrophoresis. In addition incubation and preparation methods were found for the ages of day 10, 11 and 12 of the embryonic development. With the use of 3 H-marked amino acids in the culture medium it was determined that embryos without embryonic membranes, so-called N-embryos, built in more radioactivity into their proteins than the embryos with embryonic membranes, the so-called DAO-embryos or the DO-embryos. On the contrary, the embryos with intact blood circulation (DO-embryos) showed an even distribution of radioactive marker in their bodies. Since an even distribution of the marker in the embryo is a necessary prerequisite for a representative presentation of the proteins by 2DE, the DO-preparation was considered the best suited method. In order to increase the amount of radioactivity incorporated into the proteins of the DO-embryos, the concentration of the used isotope or the incubation length could be increased. A combination of both proved to be the best method. A 14 C-marked amino acid mixture of 20 μCi/corresponds to 20 μl instead of the usual 150 μCi 3 H-marked amino acids in a culture medium proved to be equally suitable. Notable changes which would have indicated a damaging affect of the used radioactivity or the in vitro culturing were not observed. The achieved methodical conditions were used for the presentation of the embryo proteins by two-dimensional electrophoresis and fluorography. (orig./MG) [de

  15. Cell lineage patterns in the shoot meristem of the sunflower embryo in the dry seed

    International Nuclear Information System (INIS)

    Jegla, D.E.; Sussex, I.M.

    1989-01-01

    We mapped the fate of cells in the shoot meristem of the dry-seed embryo of sunflower, Helianthus annuus L. cv. Peredovic, using irradiation-induced somatic sectors. We analyzed 249 chlorophyll-deficient or glabrous (hairless) sectors generated in 236 plants. Most sectors observed in the inflorescence extended into vegetative nodes. Thus cell lineages that ultimately gave rise to reproductive structures also contributed to vegetative structures. No single sector extended the entire length of the shoot. Thus the shoot is not derived from one or a few apical initials. Rather, the position, vertical extent, and width of the sectors at different levels of the shoot suggest that the shoot is derived from three to four circumferential populations of cells in each of three cell layers of the embryo meristem. Sectors had no common boundaries even in plants with two or three independent sectors, but varied in extent and overlapped along the length of the shoot. Thus individual cells in a single circumferential population behaved independently to contribute lineages of different vertical extents to the growing shoot. The predicted number of circumferential populations of cells as well as the apparent cell number in each population was consistent with the actual number of cells in the embryo meristem observed in histological sections

  16. Automation and Optimization of Multipulse Laser Zona Drilling of Mouse Embryos During Embryo Biopsy.

    Science.gov (United States)

    Wong, Christopher Yee; Mills, James K

    2017-03-01

    Laser zona drilling (LZD) is a required step in many embryonic surgical procedures, for example, assisted hatching and preimplantation genetic diagnosis. LZD involves the ablation of the zona pellucida (ZP) using a laser while minimizing potentially harmful thermal effects on critical internal cell structures. Develop a method for the automation and optimization of multipulse LZD, applied to cleavage-stage embryos. A two-stage optimization is used. The first stage uses computer vision algorithms to identify embryonic structures and determines the optimal ablation zone farthest away from critical structures such as blastomeres. The second stage combines a genetic algorithm with a previously reported thermal analysis of LZD to optimize the combination of laser pulse locations and pulse durations. The goal is to minimize the peak temperature experienced by the blastomeres while creating the desired opening in the ZP. A proof of concept of the proposed LZD automation and optimization method is demonstrated through experiments on mouse embryos with positive results, as adequately sized openings are created. Automation of LZD is feasible and is a viable step toward the automation of embryo biopsy procedures. LZD is a common but delicate procedure performed by human operators using subjective methods to gauge proper LZD procedure. Automation of LZD removes human error to increase the success rate of LZD. Although the proposed methods are developed for cleavage-stage embryos, the same methods may be applied to most types LZD procedures, embryos at different developmental stages, or nonembryonic cells.

  17. Cryopreservation of Embryos and Oocytes in Human Assisted Reproduction

    Directory of Open Access Journals (Sweden)

    János Konc

    2014-01-01

    Full Text Available Both sperm and embryo cryopreservation have become routine procedures in human assisted reproduction and oocyte cryopreservation is being introduced into clinical practice and is getting more and more widely used. Embryo cryopreservation has decreased the number of fresh embryo transfers and maximized the effectiveness of the IVF cycle. The data shows that women who had transfers of fresh and frozen embryos obtained 8% additional births by using their cryopreserved embryos. Oocyte cryopreservation offers more advantages compared to embryo freezing, such as fertility preservation in women at risk of losing fertility due to oncological treatment or chronic disease, egg donation, and postponing childbirth, and eliminates religious and/or other ethical, legal, and moral concerns of embryo freezing. In this review, the basic principles, methodology, and practical experiences as well as safety and other aspects concerning slow cooling and ultrarapid cooling (vitrification of human embryos and oocytes are summarized.

  18. Cryopreservation of embryos and oocytes in human assisted reproduction.

    Science.gov (United States)

    Konc, János; Kanyó, Katalin; Kriston, Rita; Somoskői, Bence; Cseh, Sándor

    2014-01-01

    Both sperm and embryo cryopreservation have become routine procedures in human assisted reproduction and oocyte cryopreservation is being introduced into clinical practice and is getting more and more widely used. Embryo cryopreservation has decreased the number of fresh embryo transfers and maximized the effectiveness of the IVF cycle. The data shows that women who had transfers of fresh and frozen embryos obtained 8% additional births by using their cryopreserved embryos. Oocyte cryopreservation offers more advantages compared to embryo freezing, such as fertility preservation in women at risk of losing fertility due to oncological treatment or chronic disease, egg donation, and postponing childbirth, and eliminates religious and/or other ethical, legal, and moral concerns of embryo freezing. In this review, the basic principles, methodology, and practical experiences as well as safety and other aspects concerning slow cooling and ultrarapid cooling (vitrification) of human embryos and oocytes are summarized.

  19. In silico screening of 393 mutants facilitates enzyme engineering of amidase activity in CalB

    DEFF Research Database (Denmark)

    Hediger, Martin Robert; De Vico, Luca; Rannes, Julie Bille

    2013-01-01

    Our previously presented method for high throughput computational screening of mutant activity (Hediger et al., 2012) is benchmarked against experimentally measured amidase activity for 22 mutants of Candida antarctica lipase B (CalB). Using an appropriate cutoff criterion for the computed barriers......, the qualitative activity of 15 out of 22 mutants is correctly predicted. The method identifies four of the six most active mutants with ≥3-fold wild type activity and seven out of the eight least active mutants with ≤0.5-fold wild type activity. The method is further used to screen all sterically possible (386......) double-, triple- and quadruple-mutants constructed from the most active single mutants. Based on the benchmark test at least 20 new promising mutants are identified....

  20. Efficiency of assisted hatching of the cryopreserved–melted embryos

    Directory of Open Access Journals (Sweden)

    V. A. Pitko

    2018-04-01

    Full Text Available Purpose. To measure outcomes of clinical research of efficiency of assisted hatching of cryopreserved embryos. Materials and methods. Patients who had un successful cycles IVF/ICSI with transfer of fresh embryos have been selected for participation in the research between 2014 and 2016 years. Patients were distributed in a random way for participation in the experiment and control groups. Results of embryos transfer of one or two cryopreserved and melted embryos were considered only. Embryos were cryopreserved at a stage of blastocyst, 5 days after extraction of oocytes by method of vitrification. Melting procedure was conducted in the morning of a day of embryos transfer following the instructions of the vitrification medium producer Cryotech (Japan. Assisted hatching was conducted with use of micropipettes of Holding Pipette Cook Medical (Australia and Assisted Hatching/Zona Drilling Pipette Cook Medical (Australia. The treated embryos were cultivated up to a repeated estimation of morphology of embryos before transfer. Transfer of embryos has been conducted by a standard method with the use of catheter for non-invasive transfer of embryo Sydney IVF Cook Medical (Australia. The quantity of the transferred embryos varied from one to two. Results. 100 cryopreserved embryos were transferred which have been distributed in a random way either to the group with the assisted hatching or to the control group (without assisted hatching. A number of parameters of patients from both groups was analyzed, i.e. age of the patient at the time of melting of embryos, duration of infertility, causes of infertility, quantity of previous unsuccessful cycles IVF/ICSI. Any essential differences between patients within two groups based on the aforementioned parameters were not revealed. Also, there were no essential differences in number of the melted embryos, survival rate of embryos, quantity of the embryos transferred to patients. However, at the same time

  1. Neural network classification of sweet potato embryos

    Science.gov (United States)

    Molto, Enrique; Harrell, Roy C.

    1993-05-01

    Somatic embryogenesis is a process that allows for the in vitro propagation of thousands of plants in sub-liter size vessels and has been successfully applied to many significant species. The heterogeneity of maturity and quality of embryos produced with this technique requires sorting to obtain a uniform product. An automated harvester is being developed at the University of Florida to sort embryos in vitro at different stages of maturation in a suspension culture. The system utilizes machine vision to characterize embryo morphology and a fluidic based separation device to isolate embryos associated with a pre-defined, targeted morphology. Two different backpropagation neural networks (BNN) were used to classify embryos based on information extracted from the vision system. One network utilized geometric features such as embryo area, length, and symmetry as inputs. The alternative network utilized polar coordinates of an embryo's perimeter with respect to its centroid as inputs. The performances of both techniques were compared with each other and with an embryo classification method based on linear discriminant analysis (LDA). Similar results were obtained with all three techniques. Classification efficiency was improved by reducing the dimension of the feature vector trough a forward stepwise analysis by LDA. In order to enhance the purity of the sample selected as harvestable, a reject to classify option was introduced in the model and analyzed. The best classifier performances (76% overall correct classifications, 75% harvestable objects properly classified, homogeneity improvement ratio 1.5) were obtained using 8 features in a BNN.

  2. Regulation of somatic embryo development in Norway spruce (Picea abies). A molecular approach to the characterization of specific developmental stages

    Energy Technology Data Exchange (ETDEWEB)

    Sabala, I. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Genetics

    1998-12-31

    Embryo development is a complex process involving a set of strictly regulated events. The regulation of these events is poorly understood especially during the early stages of embryo development. Somatic embryos go through the same developmental stages as zygotic embryos making them an ideal model system for studying the regulation of embryo development. We have used embryogenic cultures of Picea abies to study some aspects of the regulation of embryo development in gymnosperms. The bottle neck during somatic embryogenesis is the switch from the proliferation stage to the maturation stage. This switch is initiated by giving somatic embryos a maturation treatment i.e. the embryos are treated with abscisic acid (ABA). Somatic embryos which respond to ABA by forming mature somatic embryos were stimulated to secret a 70 kDa protein, AF70. The af70 gene was isolated and characterised. The expression of the af70 gene was constitutive in embryos but was highly ABA-induced in seedlings. Moreover, expression of this gene was stimulated during cold acclimation of Picea abies seedlings. A full length Picea abies cDNA clone Pa18, encoding a protein with the characteristics of plant lipid transfer proteins (LTPs), was isolated and characterised. The Pa18 gene is constitutively expressed in embryogenic cultures of Picea abies representing different stages of development as well as in nonembryogenic callus and seedlings. In situ hybridization showed that Pa18 gene is expressed in all embryonic cells of proliferating somatic embryos but the expression of the gene in mature somatic and zygotic embryos is restricted to the outer cell layer. Southern blot analysis at different stringencies was consistent with a single gene. An alteration in expression of Pa18 causes disturbance in the formation of the proper outer cell layer in the maturing somatic embryos. In addition to its influence on embryo development the Pa18 gene product also inhibits growth of Agrobacterium tumefaciens 195

  3. A dysmorphology score system for assessing embryo abnormalities in rat whole embryo culture.

    Science.gov (United States)

    Zhang, Cindy X; Danberry, Tracy; Jacobs, Mary Ann; Augustine-Rauch, Karen

    2010-12-01

    The rodent whole embryo culture (WEC) system is a well-established model for characterizing developmental toxicity of test compounds and conducting mechanistic studies. Laboratories have taken various approaches in describing type and severity of developmental findings of organogenesis-stage rodent embryos, but the Brown and Fabro morphological score system is commonly used as a quantitative approach. The associated score criteria is based upon developmental stage and growth parameters, where a series of embryonic structures are assessed and assigned respective scores relative to their gestational stage, with a Total Morphological Score (TMS) assigned to the embryo. This score system is beneficial because it assesses a series of stage-specific anatomical landmarks, facilitating harmonized evaluation across laboratories. Although the TMS provides a quantitative approach to assess growth and determine developmental delay, it is limited to its ability to identify and/or delineate subtle or structure-specific abnormalities. Because of this, the TMS may not be sufficiently sensitive for identifying compounds that induce structure or organ-selective effects. This study describes a distinct morphological score system called the "Dysmorphology Score System (DMS system)" that has been developed for assessing gestation day 11 (approximately 20-26 somite stage) rat embryos using numerical scores to differentiate normal from abnormal morphology and define the respective severity of dysmorphology of specific embryonic structures and organ systems. This method can also be used in scoring mouse embryos of the equivalent developmental stage. The DMS system enhances capabilities to rank-order compounds based upon teratogenic potency, conduct structure- relationships of chemicals, and develop statistical prediction models to support abbreviated developmental toxicity screens. © 2010 Wiley-Liss, Inc.

  4. Radiation induced early maturing mutants in barley

    International Nuclear Information System (INIS)

    Kumar, R.; Chauhan, S.V.S.; Sharma, R.P.

    1978-01-01

    In M 2 generation, two early maturing plants were screened from a single spike progeny of a plant obtained from 20 kR of gamma-ray irradiation of a six-rowed barley (Hordeum vulgare L. var. Jyoti). Their true breeding nature was confirmed in M 3 generation. These mutants flower and mature 38 and 22 days earlier than those of control. (auth.)

  5. Characteristic, inheritance and breeding application of rice mutants with greenable albino leaf

    International Nuclear Information System (INIS)

    Fang Xiantao; Ma Hongli; Zhao Fuyuan; Zhang Qingqi; Zhang Shubiao

    2009-01-01

    Inheritance and main agronomic traits of photo-thermo-sensitive genic male sterile line with green-revertible albino leaf were investigated. The results indicated that the mutants might be divided into three types: albino regreening type (W2, W3, W4 and W10), albino to kelly type (W9) and abino-regreening-albino-regreening type (W1 and W7). Genetic study indicated that green-revertible albino leaf color trait of the mutants as controlled by a single recessive gene. These mutants had similar agronomic traits and fertility characteristics to the corresponding male sterile line 'Peiai 64S'. The hybrids of these mutants had similar characteristics with original-hybrids in plant type, developing of tillers and plant height. The yield components of the mutant hybrids were different depending on different mutants. The yield potential of hybrids of W1, W2 and W3 were similar to the original-hybrid. The results also indicated that W1, W2 and W3 had breeding application value. (authors)

  6. Studies on leaf mutants of Pea. (Part) I. Morphology, performance and somatic chromosomes

    International Nuclear Information System (INIS)

    Kaul, M.L.H.; Anjali, A.

    1988-01-01

    Three recessive non-allelic mutant genes alter foliar morphology of pea when present singly and in combination. Gene acacia replaces tendrils by a terminal leaflet, afila replaces leaflets by tendrils and cochleata replaces stipules by spoon shaped appendages. In combination, these genes drastically alter leaf morphology; plants can be identified only after flowering. The mutant genes influence shoot height, floral organ number, maturity period, grain yield and seed protein production; inter- and intra-genotypic variability in certain metric traits is significant. Influence of cochleata gene over floral form and function is considerable. In terms of seed yield and protein content, breeding value of all the mutants except of acacia is low because these mutant genes represent foreign untuned genes in pea genome. Segregation deficit is maximum in triple gene mutant with highly impaired fertility and low seed production. Somatic chromosome number in all the mutants and recombinants is 14; in morphology the chromosomes do not differ from the initial line, Bonneville. (author). 9 refs., 4 tabs

  7. Single-gene testing combined with single nucleotide polymorphism microarray preimplantation genetic diagnosis for aneuploidy: a novel approach in optimizing pregnancy outcome.

    Science.gov (United States)

    Brezina, Paul R; Benner, Andrew; Rechitsky, Svetlana; Kuliev, Anver; Pomerantseva, Ekaterina; Pauling, Dana; Kearns, William G

    2011-04-01

    To describe a method of amplifying DNA from blastocyst trophectoderm cells (two or three cells) and simultaneously performing 23-chromosome single nucleotide polymorphism microarrays and single-gene preimplantation genetic diagnosis. Case report. IVF clinic and preimplantation genetic diagnostic centers. A 36-year-old woman, gravida 2, para 1011, and her husband who both were carriers of GM(1) gangliosidosis. The couple wished to proceed with microarray analysis for aneuploidy detection coupled with DNA sequencing for GM(1) gangliosidosis. An IVF cycle was performed. Ten blastocyst-stage embryos underwent trophectoderm biopsy. Twenty-three-chromosome microarray analysis for aneuploidy and specific DNA sequencing for GM(1) gangliosidosis mutations were performed. Viable pregnancy. After testing, elective single embryo transfer was performed followed by an intrauterine pregnancy with documented fetal cardiac activity by ultrasound. Twenty-three-chromosome microarray analysis for aneuploidy detection and single-gene evaluation via specific DNA sequencing and linkage analysis are used for preimplantation diagnosis for single-gene disorders and aneuploidy. Because of the minimal amount of genetic material obtained from the day 3 to 5 embryos (up to 6 pg), these modalities have been used in isolation of each other. The use of preimplantation genetic diagnosis for aneuploidy coupled with testing for single-gene disorders via trophectoderm biopsy is a novel approach to maximize pregnancy outcomes. Although further investigation is warranted, preimplantation genetic diagnosis for aneuploidy and single-gene testing seem destined to be used increasingly to optimize ultimate pregnancy success. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  8. The PR/SET Domain Zinc Finger Protein Prdm4 Regulates Gene Expression in Embryonic Stem Cells but Plays a Nonessential Role in the Developing Mouse Embryo

    Science.gov (United States)

    Bogani, Debora; Morgan, Marc A. J.; Nelson, Andrew C.; Costello, Ita; McGouran, Joanna F.; Kessler, Benedikt M.

    2013-01-01

    Prdm4 is a highly conserved member of the Prdm family of PR/SET domain zinc finger proteins. Many well-studied Prdm family members play critical roles in development and display striking loss-of-function phenotypes. Prdm4 functional contributions have yet to be characterized. Here, we describe its widespread expression in the early embryo and adult tissues. We demonstrate that DNA binding is exclusively mediated by the Prdm4 zinc finger domain, and we characterize its tripartite consensus sequence via SELEX (systematic evolution of ligands by exponential enrichment) and ChIP-seq (chromatin immunoprecipitation-sequencing) experiments. In embryonic stem cells (ESCs), Prdm4 regulates key pluripotency and differentiation pathways. Two independent strategies, namely, targeted deletion of the zinc finger domain and generation of a EUCOMM LacZ reporter allele, resulted in functional null alleles. However, homozygous mutant embryos develop normally and adults are healthy and fertile. Collectively, these results strongly suggest that Prdm4 functions redundantly with other transcriptional partners to cooperatively regulate gene expression in the embryo and adult animal. PMID:23918801

  9. Protein phosphorylation during coconut zygotic embryo development

    International Nuclear Information System (INIS)

    Islas-Flores, I.; Oropeza, C.; Hernandez-Sotomayor, S.M.T.

    1998-01-01

    Evidence was obtained on the occurrence of protein threonine, serine, and tyrosine (Tyr) kinases in developing coconut (Cocos nucifera L.) zygotic embryos, based on in vitro phosphorylation of proteins in the presence of [gamma-32P]ATP, alkaline treatment, and thin-layer chromatography analysis, which showed the presence of [32P]phosphoserine, [32P]phosphothreonine, and [32P]phosphotyrosine in [32P]-labeled protein hydrolyzates. Tyr kinase activity was further confirmed in extracts of embryos at different stages of development using antiphosphotyrosine monoclonal antibodies and the synthetic peptide derived from the amino acid sequence surrounding the phosphorylation site in pp60src (RR-SRC), which is specific for Tyr kinases. Anti-phosphotyrosine western blotting revealed a changing profile of Tyr-phosphorylated proteins during embryo development. Tyr kinase activity, as assayed using RR-SRC, also changed during embryo development, showing two peaks of activity, one during early and another during late embryo development. In addition, the use of genistein, a Tyr kinase inhibitor, diminished the ability of extracts to phosphorylate RR-SRC. Results presented here show the occurrence of threonine, serine, and Tyr kinases in developing coconut zygotic embryos, and suggest that protein phosphorylation, and the possible inference of Tyr phosphorylation in particular, may play a role in the coordination of the development of embryos in this species

  10. Screening for rice mutant of resistance to piricularia oryzae by irradiation and in vitro technique

    International Nuclear Information System (INIS)

    Wang Cailian; Xu Gang; Chen Qiufang; Jin Wei

    2001-01-01

    The ability of callus formation and green plant regeneration was very different for different rice types and varieties in mature embryo. LS-5 was optimum medium for mature embryo. Increase in plant regeneration capacity was found with 100, 150 Gy gamma rays. The differentiation and regeneration of green plants were obviously improved when the anthers on induction medium were with 30 Gy of gamma rays. The change of free amino acids in subcultured callus tissue in rice were investigated after callus were treated with cultured filtrate from Piricularia oryzae. Fourteen kinds of free amino acid could be quantitatively analysed, among which, contents of serine and glutamate were the highest and made up about 20% of total amino acids respectively. The total amino acids in callus tissue of resistant varieties before treated with cultured filtrate were higher than that of susceptible varieties. However the total amino acids were decreased in the resistant varieties and increased in the susceptible varieties after treatment with the filtrate. Arginine was found in the variety of Zhen Kong No. 13. Disease resistance of R 2 plants screened with toxin was increased. Five mutants with resistance to Piricularia oryzae were selected

  11. Identification of PNG kinase substrates uncovers interactions with the translational repressor TRAL in the oocyte-to-embryo transition.

    Science.gov (United States)

    Hara, Masatoshi; Lourido, Sebastian; Petrova, Boryana; Lou, Hua Jane; Von Stetina, Jessica R; Kashevsky, Helena; Turk, Benjamin E; Orr-Weaver, Terry L

    2018-02-26

    The Drosophila Pan Gu (PNG) kinase complex regulates hundreds of maternal mRNAs that become translationally repressed or activated as the oocyte transitions to an embryo. In a previous paper (Hara et al., 2017), we demonstrated PNG activity is under tight developmental control and restricted to this transition. Here, examination of PNG specificity showed it to be a Thr-kinase yet lacking a clear phosphorylation site consensus sequence. An unbiased biochemical screen for PNG substrates identified the conserved translational repressor Trailer Hitch (TRAL). Phosphomimetic mutation of the PNG phospho-sites in TRAL reduced its ability to inhibit translation in vitro. In vivo, mutation of tral dominantly suppressed png mutants and restored Cyclin B protein levels. The repressor Pumilio (PUM) has the same relationship with PNG, and we also show that PUM is a PNG substrate. Furthermore, PNG can phosphorylate BICC and ME31B, repressors that bind TRAL in cytoplasmic RNPs. Therefore, PNG likely promotes translation at the oocyte-to-embryo transition by phosphorylating and inactivating translational repressors. © 2018, Hara et al.

  12. Fresh embryo transfer versus frozen embryo transfer in in vitro fertilization cycles: a systematic review and meta-analysis.

    Science.gov (United States)

    Roque, Matheus; Lattes, Karinna; Serra, Sandra; Solà, Ivan; Geber, Selmo; Carreras, Ramón; Checa, Miguel Angel

    2013-01-01

    To examine the available evidence to assess if cryopreservation of all embryos and subsequent frozen embryo transfer (FET) results in better outcomes compared with fresh transfer. Systematic review and meta-analysis. Centers for reproductive care. Infertility patient(s). An exhaustive electronic literature search in MEDLINE, EMBASE, and the Cochrane Library was performed through December 2011. We included randomized clinical trials comparing outcomes of IVF cycles between fresh and frozen embryo transfers. The outcomes of interest were ongoing pregnancy rate, clinical pregnancy rate, and miscarriage. We included three trials accounting for 633 cycles in women aged 27-33 years. Data analysis showed that FET resulted in significantly higher ongoing pregnancy rates and clinical pregnancy rates. Our results suggest that there is evidence that IVF outcomes may be improved by performing FET compared with fresh embryo transfer. This could be explained by a better embryo-endometrium synchrony achieved with endometrium preparation cycles. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. Prediction of in-vitro developmental competence of early cleavage-stage mouse embryos with compact time-lapse equipment.

    Science.gov (United States)

    Pribenszky, Csaba; Losonczi, Eszter; Molnár, Miklós; Lang, Zsolt; Mátyás, Szabolcs; Rajczy, Klára; Molnár, Katalin; Kovács, Péter; Nagy, Péter; Conceicao, Jason; Vajta, Gábor

    2010-03-01

    Single blastocyst transfer is regarded as an efficient way to achieve high pregnancy rates and to avoid multiple pregnancies. Risk of cancellation of transfer due to a lack of available embryos may be reduced by early prediction of blastocyst development. Time-lapse investigation of mouse embryos shows that the time of the first and second cleavage (to the 2- and 3-cell stages, respectively) has a strong predictive value for further development in vitro, while cleavage from the 3-cell to the 4-cell stage has no predictive value. In humans, embryo fragmentation during preimplantation development has been associated with lower pregnancy rates and a higher incidence of developmental abnormalities. Analysis of time-lapse records shows that most fragmentation is reversible in the mouse and is resorbed in an average of 9 h. Daily or bi-daily microscopic checks of embryo development, applied routinely in human IVF laboratories, would fail to detect 36 or 72% of these fragmentations, respectively. Fragmentation occurring in a defined time frame has a strong predictive value for in-vitro embryo development. The practical compact system used in the present trial, based on the 'one camera per patient' principle, has eliminated the usual disadvantages of time-lapse investigations and is applicable for the routine follow-up of in-vitro embryo development. Copyright 2009 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  14. Embryos, genes, and birth defects

    National Research Council Canada - National Science Library

    Ferretti, Patrizia

    2006-01-01

    ... Structural anomalies The genesis of chromosome abnormalities Embryo survival The cause of high levels of chromosome abnormality in human embryos Relative parental risks - age, translocations, inversions, gonadal and germinal mosaics 33 33 34 35 36 44 44 45 4 Identification and Analysis of Genes Involved in Congenital Malformation Syndromes Peter J. Scambler Ge...

  15. Lethality of radioisotopes in early mouse embryos

    International Nuclear Information System (INIS)

    Macqueen, H.A.

    1979-01-01

    The development of pre-implantation mouse embryos was found to be prevented by exposure of the embryos to [ 35 S]methionine, but not to [ 3 H]methionine. Such embryos have also been shown to be highly sensitive to [ 3 H]thymidine. These observations are discussed with reference to the path lengths and energies of electrons emitted from the different radioisotopes. (author)

  16. The Effect of a GnRH Agonist Injection or Progesterone Implant at Diestrus in Cryopreserved Embryo Transferred Cows

    OpenAIRE

    KIRBAŞ, Mesut; BÜLBÜL, Bülent; KÖSE, Mehmet; DURSUN, Şükrü; ÇOLAK, Mehmet

    2014-01-01

    In this study, the effect of a single dose of GnRH on d 13 or progesterone implant for 7 days between d 13 and 20 on plasma progesterone levels and pregnancy rates on cryopreserved embryo transferred cows were investigated. Synchronized 48 Brown Swiss recipient cows were used as animal material. Seven days after estrus detection, cryopreserved cattle embryos were transferred into recipients and cows were assigned randomly into three groups. In GnRH group (n=16), cows were intramuscularly inje...

  17. Selection of Norway spruce somatic embryos by computer vision

    Science.gov (United States)

    Hamalainen, Jari J.; Jokinen, Kari J.

    1993-05-01

    A computer vision system was developed for the classification of plant somatic embryos. The embryos are in a Petri dish that is transferred with constant speed and they are recognized as they pass a line scan camera. A classification algorithm needs to be installed for every plant species. This paper describes an algorithm for the recognition of Norway spruce (Picea abies) embryos. A short review of conifer micropropagation by somatic embryogenesis is also given. The recognition algorithm is based on features calculated from the boundary of the object. Only part of the boundary corresponding to the developing cotyledons (2 - 15) and the straight sides of the embryo are used for recognition. An index of the length of the cotyledons describes the developmental stage of the embryo. The testing set for classifier performance consisted of 118 embryos and 478 nonembryos. With the classification tolerances chosen 69% of the objects classified as embryos by a human classifier were selected and 31$% rejected. Less than 1% of the nonembryos were classified as embryos. The basic features developed can probably be easily adapted for the recognition of other conifer somatic embryos.

  18. The Sequences of 1504 Mutants in the Model Rice Variety Kitaake Facilitate Rapid Functional Genomic Studies.

    Science.gov (United States)

    Li, Guotian; Jain, Rashmi; Chern, Mawsheng; Pham, Nikki T; Martin, Joel A; Wei, Tong; Schackwitz, Wendy S; Lipzen, Anna M; Duong, Phat Q; Jones, Kyle C; Jiang, Liangrong; Ruan, Deling; Bauer, Diane; Peng, Yi; Barry, Kerrie W; Schmutz, Jeremy; Ronald, Pamela C

    2017-06-01

    The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake ( Oryza sativa ssp japonica ), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportion of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. This work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations. © 2017 American Society of Plant Biologists. All rights reserved.

  19. Time to take human embryo culture seriously.

    Science.gov (United States)

    Sunde, Arne; Brison, Daniel; Dumoulin, John; Harper, Joyce; Lundin, Kersti; Magli, M Cristina; Van den Abbeel, Etienne; Veiga, Anna

    2016-10-01

    Is it important that end-users know the composition of human embryo culture media? We argue that there is as strong case for full transparency concerning the composition of embryo culture media intended for human use. Published data suggest that the composition of embryo culture media may influence the phenotype of the offspring. A review of the literature was carried out. Data concerning the potential effects on embryo development of culture media were assessed and recommendations for users made. The safety of ART procedures, especially with respect to the health of the offspring, is of major importance. There are reports from the literature indicating a possible effect of culture conditions, including culture media, on embryo and fetal development. Since the introduction of commercially available culture media, there has been a rapid development of different formulations, often not fully documented, disclosed or justified. There is now evidence that the environment the early embryo is exposed to can cause reprogramming of embryonic growth leading to alterations in fetal growth trajectory, birthweight, childhood growth and long-term disease including Type II diabetes and cardiovascular problems. The mechanism for this is likely to be epigenetic changes during the preimplantation period of development. In the present paper the ESHRE working group on culture media summarizes the present knowledge of potential effects on embryo development related to culture media, and makes recommendations. There is still a need for large prospective randomized trials to further elucidate the link between the composition of embryo culture media used and the phenotype of the offspring. We do not presently know if the phenotypic changes induced by in vitro embryo culture represent a problem for long-term health of the offspring. Published data indicate that there is a strong case for demanding full transparency concerning the compositions of and the scientific rationale behind the

  20. Embryo disposition and the new death scene

    Directory of Open Access Journals (Sweden)

    Ellison, David

    2011-01-01

    Full Text Available In the IVF clinic - a place designed principally for the production and implantation of embryos - scientists and IVF recipients are faced with decisions regarding the disposition of frozen embryos. At this time there are hundred of thousands of cryopreserved embryos awaiting such determinations. They may be thawed for transfer to the woman herself, they may be donated for research or for use by other infertile couples, they may remain in frozen storage, or they may variously be discarded by being allowed to 'succumb', or 'perish'. Where the choice is discard, some IVF clients have chosen to formalise the process through ceremony. A new language is emerging in response to the desires of the would-be-parents who might wish to characterise the discard experience as a ‘good death’. This article examines the procedure known as ‘compassionate transfer’ where the embryo to be discarded is placed in the woman’s vagina where it is clear that it will not develop further. An alternate method has the embryo transferred in the usual manner but without the benefit of fertility-enhancing hormones at a point in the cycle unreceptive to implantation. The embryo destined for disposal is thus removed from the realm of technological possibility and ‘returned’ to the female body for a homely death. While debates continue about whether or not embryos constitute life, new practices are developing in response to the emotional experience of embryo discard. We argue that compassionate transfer is a death scene taking shape. In this article, we take the measure of this new death scene’s fabrication, and consider the form, significance, and legal complexity of its ceremonies.

  1. Can a genetically-modified organism-containing diet influence embryo development? A preliminary study on pre-implantation mouse embryos

    Directory of Open Access Journals (Sweden)

    B Cisterna

    2009-08-01

    Full Text Available In eukaryotic cells, pre-mRNAs undergo several transformation steps to generate mature mRNAs. Recent studies have demonstrated that a diet containing a genetically modified (GM soybean can induce modifications of nuclear constituents involved in RNA processing in some tissues of young, adult and old mice. On this basis, we have investigated the ultrastructural and immunocytochemical features of pre-implantation embryos from mice fed either GM or non- GM soybean in order to verify whether the parental diet can affect the morpho-functional development of the embryonic ribonucleoprotein structural constituents involved in premRNA pathways. Morphological observations revealed that the general aspect of embryo nuclear components is similar in the two experimental groups. However, immunocytochemical and in situ hybridization results suggest a temporary decrease of pre-mRNA transcription and splicing in 2-cell embryos and a resumption in 4-8-cell embryos from mice fed GM soybean; moreover, pre-mRNA maturation seems to be less efficient in both 2-cell and 4-8-cell embryos from GM-fed mice than in controls. Although our results are still preliminary and limited to the pre-implantation phases, the results of this study encourage deepening on the effects of food components and/or contaminants on embryo development.

  2. Can a genetically-modified organism-containing diet influence embryo development? A preliminary study on pre-implantation mouse embryos.

    Science.gov (United States)

    Cisterna, B; Flach, F; Vecchio, L; Barabino, S M L; Battistelli, S; Martin, T E; Malatesta, M; Biggiogera, M

    2008-01-01

    In eukaryotic cells, pre-mRNAs undergo several transformation steps to generate mature mRNAs. Recent studies have demonstrated that a diet containing a genetically modified (GM) soybean can induce modifications of nuclear constituents involved in RNA processing in some tissues of young, adult and old mice. On this basis, we have investigated the ultrastructural and immunocytochemical features of pre-implantation embryos from mice fed either GM or non- GM soybean in order to verify whether the parental diet can affect the morpho-functional development of the embryonic ribonucleoprotein structural constituents involved in pre-mRNA pathways. Morphological observations revealed that the general aspect of embryo nuclear components is similar in the two experimental groups. However, immunocytochemical and in situ hybridization results suggest a temporary decrease of pre-mRNA transcription and splicing in 2-cell embryos and a resumption in 4-8-cell embryos from mice fed GM soybean; moreover, pre-mRNA maturation seems to be less efficient in both 2-cell and 4-8-cell embryos from GM-fed mice than in controls. Although our results are still preliminary and limited to the pre-implantation phases, the results of this study encourage deepening on the effects of food components and/or contaminants on embryo development.

  3. Effect of ambient light exposure of media and embryos on development and quality of porcine parthenogenetically activated embryos.

    Science.gov (United States)

    Li, Rong; Liu, Ying; Pedersen, Hanne Skovsgaard; Callesen, Henrik

    2015-06-01

    Light exposure is a common stress factor during in vitro handling of oocytes and embryos that originates from both microscope and ambient light. In the current study, the effect of two types of ambient light (daylight and laboratory light) on porcine parthenogenetically activated (PA) embryos was tested in two experiments: (1) ambient light on medium subsequently used for embryo in vitro development; and (2) ambient light exposure on activated oocytes before in vitro development. The results from Experiment 1 showed that exposure of culture medium to both types of ambient light decreased the percentage of blastocysts that showed good morphology, only after 24 h exposure. The results from Experiment 2 revealed a reduction in both blastocyst formation and quality when activated oocytes were exposed to both types of ambient light. This effect was seen after only 1 h exposure and increased with time. In conclusion, exposure to ambient light can be harmful to embryo development, both when medium is exposed for a long period of time and, to a greater extent, when the embryo itself is exposed for >1 h. In practice, it is therefore recommended to protect both culture medium and porcine embryos against ambient light during in vitro handling in the laboratory.

  4. Gestational surrogacy and the role of routine embryo screening: Current challenges and future directions for preimplantation genetic testing.

    Science.gov (United States)

    Sills, E Scott; Anderson, Robert E; McCaffrey, Mary; Li, Xiang; Arrach, Nabil; Wood, Samuel H

    2016-03-01

    Preimplantation genetic screening (PGS) is a component of IVF entailing selection of an embryo for transfer on the basis of chromosomal normalcy. If PGS were integrated with single embryo transfer (SET) in a surrogacy setting, this approach could improve pregnancy rates, minimize miscarriage risk, and limit multiple gestations. Even without PGS, pregnancy rates for IVF surrogacy cases are generally satisfactory, especially when treatment utilizes embryos derived from young oocytes and transferred to a healthy surrogate. However, there could be a more general role for PGS in surrogacy, since background aneuploidy in embryos remains a major factor driving implantation failure and miscarriage for all infertility patients. At present, the proportion of IVF cases involving GS is limited, while the number of IVF patients requesting PGS appears to be increasing. In this report, the relevance of PGS for surrogacy in the rapidly changing field of assisted fertility medicine is discussed. © 2015 Wiley Periodicals, Inc.

  5. Trophectoderm DNA fingerprinting by quantitative real-time PCR successfully distinguishes sibling human embryos.

    Science.gov (United States)

    Scott, Richard T; Su, Jing; Tao, Xin; Forman, Eric J; Hong, Kathleen H; Taylor, Deanne; Treff, Nathan R

    2014-11-01

    To validate a novel and more practical system for trophectoderm DNA fingerprinting which reliably distinguishes sibling embryos from each other. In this prospective and blinded study two-cell and 5-cell samples from commercially available sibling cell lines and excess DNA from trophectoderm biopsies of sibling human blastocysts were evaluated for accurate assignment of relationship using qPCR-based allelic discrimination from 40 single nucleotide polymorphisms (SNPs) with low allele frequency variation and high heterozygosity. Cell samples with self relationships averaged 95.1 ± 5.9 % similarity. Sibling relationships averaged 57.2 ± 5.9 % similarity for all 40 SNPs, and 40.8 ± 8.2 % similarity for the 25 informative SNPs. Assignment of relationships was accomplished with 100 % accuracy for cell lines and embryos. These data demonstrate the first trophectoderm qPCR-based DNA fingerprinting technology capable of unequivocal discrimination of sibling human embryos. This methodology will empower research and development of new markers of, and interventions that influence embryonic reproductive potential.

  6. Utilisation des mutations induites pour l'étude de l'embryogenèse chez le haricot Phaseolus vulgaris L. et deux plantes modèles Arabidopsis thaliana (L. Heynh. et Zea mays L.

    Directory of Open Access Journals (Sweden)

    Silué, S.

    2011-01-01

    Full Text Available Use of induced mutations in embryogenesis study in bean Phaseolus vulgaris L. and two model plants, Arabidopsis thaliana (L. Heynh. and Zea mays L.. Breeding of common bean, Phaseolus vulgaris L., through interspecific hybridizations with the species Phaseolus coccineus L. and Phaseolus polyanthus Greenm. as female parents leads to the abortion of immature embryos. Identification of genes required for embryo development could partly explain the abortion of hybrid embryos; induced mutations could thus be an alternative to identify key genes involved in Phaseolus embryogenesis. This paper is a review which shows a few examples of the use of induced mutations in the identification of essential genes for embryogenesis in two model plants, Arabidopsis thaliana (L. Heyhn. for dicots and Zea mays L. for monocots. In these two species, embryo development mutants have been isolated using insertional mutagenesis and chemical mutagenesis with Ethyl Methane Sulfonate (EMS. Arabidopsis embryo mutants are affected in apical-basal axis polarity, radial pattern and in post-embryonic stages. Some Arabidopsis embryo mutants are defected in auxin signalisation. In maize, defective kernel (dek mutants are affected in the embryo and the endosperm, while in embryo specific (emb mutants, only the embryo is affected. In common bean, plants deficient in seed development were isolated using EMS mutagenesis. Embryos inside the seeds fail to growth at different stages of development and show abnormalities mainly in the suspensor and the cotyledons.

  7. Cryopreservation of peach palm zygotic embryos.

    Science.gov (United States)

    Steinmacher, Douglas A; Saldanha, Cleber W; Clement, Charles R; Guerra, Miguel P

    2007-01-01

    Cryopreservation is a safe and cost-effective option for long-term germplasm conservation of non-orthodox seed species, such as peach palm (Bactris gasipaes). The objective of the present study was to establish a cryopreservation protocol for peach palm zygotic embryos based on the encapsulation-dehydration technique. After excision, zygotic embryos were encapsulated with 3 percent sodium alginate plus 2 M glycerol and 0.4 M sucrose, and pre-treated or not with 1 M sucrose during 24 h, followed by air-drying. Fresh weight water contents of beads decreased from 83 percent and 87 percent to 18 percent and 20 percent for pre-treated or non-pretreated beads, respectively, after 4 h of dehydration. Sucrose pre-treatment at 1 M caused lower zygotic embryo germination and plantlet height in contrast to non-treated beads. All the variables were statistically influenced by dehydration time. Optimal conditions for recovery of cryopreserved zygotic embryos include encapsulation and dehydration for 4 h in a forced air cabinet to 20 percent water content, followed by rapid freezing in liquid nitrogen (-196 degree C) and rapid thawing at 45 degree C. In these conditions 29 percent of the zygotic embryos germinated in vitro. However, plantlets obtained from dehydrated zygotic embryos had stunted haustoria and lower heights. Histological analysis showed that haustorium cells were large, vacuolated, with few protein bodies. In contrast, small cells with high nucleus:cytoplasm ratio formed the shoot apical meristem of the embryos, which were the cell types with favorable characteristics for survival after exposure to liquid nitrogen. Plantlets were successfully acclimatized and showed 41+/-9 percent and 88+/-4 percent survival levels after 12 weeks of acclimatization from cryopreserved and non-cryopreserved treatments, respectively.

  8. Tracing the destiny of mesenchymal stem cells from embryo to adult bone marrow and white adipose tissue via Pdgfrα expression.

    Science.gov (United States)

    Miwa, Hiroyuki; Era, Takumi

    2018-01-29

    Mesenchymal stem cells (MSCs) are somatic stem cells that can be derived from adult bone marrow (BM) and white adipose tissue (WAT), and that display multipotency and self-renewal capacity. Although MSCs are essential for tissue formation and have already been used in clinical therapy, the origins and markers of these cells remain unknown. In this study, we first investigated the developmental process of MSCs in mouse embryos using the gene encoding platelet-derived growth factor receptor α ( Pdgfra ) as a marker. We then traced cells expressing Pdgfra and other genes (brachyury, Sox1 and Pmx1 ) in various mutant mouse embryos until the adult stage. This tracing of MSC origins and destinies indicates that embryonic MSCs emerge in waves and that almost all adult BM MSCs and WAT MSCs originate from mesoderm and embryonic Pdgfrα-positive cells. Furthermore, we demonstrate that adult Pdgfrα-positive cells are involved in some pathological conditions. © 2018. Published by The Company of Biologists Ltd.

  9. Testing the embryo, testing the fetus.

    Science.gov (United States)

    Ehrich, K; Farsides, B; Williams, C; Scott, Rosamund

    2007-12-01

    This paper stems from an ethnographic, multidisciplinary study that explored the views and experiences of practitioners and scientists on social, ethical and clinical dilemmas encountered when working in the area of PGD for serious genetic disorders. We focus here on staff perceptions and experiences of working with embryos and helping women/couples to make choices that will result in selecting embryos for transfer and disposal of 'affected' embryos, compared to the termination of affected pregnancies following PND. Analysis and discussion of our data led us to consider the possible advantages of PGD and whether a gradualist account of the embryo's and fetus's moral status can account for all of these, particularly since a gradualist account concentrates on the significance of time (developmental stage) and makes no comment as to the significance of place (in-vitro, in-utero).

  10. Sex and PRNP genotype determination in preimplantation caprine embryos.

    Science.gov (United States)

    Guignot, F; Perreau, C; Cavarroc, C; Touzé, J-L; Pougnard, J-L; Dupont, F; Beckers, J-F; Rémy, B; Babilliot, J-M; Bed'Hom, B; Lamorinière, J M; Mermillod, P; Baril, G

    2011-08-01

    The objective of this study was to test the accuracy of genotype diagnosis after whole amplification of DNA extracted from biopsies obtained by trimming goat embryos and to evaluate the viability of biopsied embryos after vitrification/warming and transfer. Whole genome amplification (WGA) was performed using Multiple Displacement Amplification (MDA). Sex and prion protein (PRNP) genotypes were determined. Sex diagnosis was carried out by PCR amplification of ZFX/ZFY and Y chromosome-specific sequences. Prion protein genotype determination was performed on codons 142, 154, 211, 222 and 240. Embryos were collected at day 7 after oestrus and biopsied either immediately after collection (blastocysts and expanded blastocysts) or after 24 h of in vitro culture (compacted morulae). Biopsied embryos were frozen by vitrification. Vitrified whole embryos were kept as control. DNA of biopsies was extracted and amplified using MDA. Sex diagnosis was efficient for 97.4% of biopsies and PRNP genotyping was determined in 78.7% of biopsies. After embryo transfer, no significant difference was observed in kidding rate between biopsied and vitrified control embryos, whereas embryo survival rate was different between biopsied and whole vitrified embryos (p = 0.032). At birth, 100% of diagnosed sex and 98.2% of predetermined codons were correct. Offspring PRNP profiles were in agreement with parental genotype. Whole genome amplification with MDA kit coupled with sex diagnosis and PRNP genotype predetermination are very accurate techniques to genotype goat embryos before transfer. These novel results allow us to plan selection of scrapie-resistant genotypes and kid sex before transfer of cryopreserved embryo. © 2010 Blackwell Verlag GmbH.

  11. Nonbehavioral Selection for Pawns, Mutants of PARAMECIUM AURELIA with Decreased Excitability

    Science.gov (United States)

    Schein, Stanley J.

    1976-01-01

    The reversal response in Paramecium aurelia is mediated by calcium which carries the inward current during excitation. Electrophysiological studies indicate that strontium and barium can also carry the inward current. Exposure to high concentrations of barium rapidly paralyzes and later kills wild-type paramecia. Following mutagenesis with nitrosoguanidine, seven mutants which continued to swim in the `high-barium' solution were selected. All of the mutants show decreased reversal behavior, with phenotypes ranging from extremely non-reversing (`extreme' pawns) to nearly wild-type reversal behavior (`partial' pawns). The mutations fall into three complementation groups, identical to the pwA, pwB, and pwC genes of Kung et al. (1975). All of the pwA and pwB mutants withstand longer exposure to barium, the pwB mutants surviving longer than the pwA mutants. Among mutants of each gene, survival is correlated with loss of reversal behavior. Double mutants (A–B, A–C, B–C), identified in the exautogamous progeny of crosses between `partial' mutants, exhibited a more extreme non-reversing phenotype than either of their single-mutant (`partial' pawn) parents.———Inability to reverse could be expected from an alteration in the calcium-activated reversal mechanism or in excitation. A normal calcium-activated structure was demonstrated in all pawns by chlorpromazine treatment. In a separate report (Schein, Bennett and Katz 1976) the results of electrophysiological investigations directly demonstrate decreased excitability in all of the mutants, a decrease due to an altered calcium activation. The studies of the genetics, the survival in barium and the electro-physiology of the pawns demonstrate that the pwA and pwB genes have different effects on calcium activation. PMID:1001878

  12. A mutant of a mutant of a mutant of a ...: Irradiation of progressive radiation-induced mutants in a mutation-breeding programme with Chrysanthenum morifolium RAM

    International Nuclear Information System (INIS)

    Broertjes, C.; Koene, P.; Veen, J.W.H. van.

    1980-01-01

    Radiation-induced sports in Chrysanthemum morifolium RAM. have been reported for several years. It has become an everyday practice to produce flower-colour mutants from outstanding cross-breeding products, even before they are distributed for the commercial production of cut flowers. One of the most successful and recent examples is that of cv. Horim, of which hundreds of mutants were produced by successive use of radiation-induced mutants in the mutation-breeding programme. Over about 4 years a variety of flower-colour mutants was obtained, not only largely including the outstanding characteristics of the original cultivar but sometimes even with an appreciable improvement in quality and yield. It is expected that the latter types, the Miros group, will soon completely supersede the spontaneous or raditation-induced Horim sports and mutants and take over the leading position of the Horim group in the production of all-year-round (AYR) cut-flowers. (orig.)

  13. To transfer fresh or thawed embryos?

    DEFF Research Database (Denmark)

    Pinborg, Anja

    2012-01-01

    Worldwide freezing and thawing of embryos has been increasingly used since the first infant was born as a result of this technique in 1984. The use of frozen embryo replacement (FER) currently even exceeds the number of fresh cycles performed in some countries. This article discusses the pros...... and multiple pregnancies, thereby increasing the safety for mother and child. Finally the article describes the accumulating literature on perinatal and long-term child outcome after transfer of frozen/thawed embryos, including a discussion on the concerns regarding cryo techniques and their possible roles...

  14. A curious abnormally developed embryo of the pill millipede Glomeris marginata (Villers, 1789

    Directory of Open Access Journals (Sweden)

    Ralf Janssen

    2013-03-01

    Full Text Available This paper reports on an abnormally developed embryo (ADE of the common pill millipede Glomeris marginata. This ADE represents a modified case of Duplicitas posterior, in which two posterior ends are present, but only one anterior end. While the major posterior germ band of the embryo appears almost normally developed, the minor posterior germ band is heavily malformed, has no clear correlation to the single head, little or no ventral tissue, and a minute amount of yolk. The anterior end of the minor germ band is fused to the ventral side of the major germ band between the first and second trunk segment. At least one appendage of the second trunk segment appears to be shared by the two germ bands. Morphology and position of the minor germ band suggest that the ADE may be the result of an incorrectly established single cumulus [the later posterior segment addition zone (SAZ]. This differs from earlier reports on D. posterior type ADEs in G. marginata that are likely the result of the early formation of two separate cumuli.

  15. Pregnancy after preimplantation diagnosis for a deletion in the dystrophin gene by polymerase chain reaction in embryos obtained after intracytoplasmic sperm injection

    Energy Technology Data Exchange (ETDEWEB)

    Lissens, W.; Liu, J.; Van Broeckhoven, C. [University Hospital, Brussels (Belgium)] [and others

    1994-09-01

    Duchenne muscular dystrophy (DMD) is one of the most common X-linked recessive diseases. In order to be able to perform a DMD-specific preimplantation diagnosis (PID) in a female carrier of a deletion of exons 3 to 18 in the dystrophin gene, we have developed a PCR assay to detect the deletion based on sequences of exon 17. The efficiency of this PCR was evaluated on 50 single blastomeres from 12 normal control embryos and on 41 blastomeres for 9 male and 3 female embryos from the female DMD carrier, obtained after a first preimplantation diagnosis by sexing. The exon 17 region was amplified with 100% efficiency, except in all 21 blastomeres from 6 male embryos from the carrier where no PCR signals were observed. The negative results in these blastomeres were interpreted as being found only in male embryos carrying the deletion. Intracytoplasmic sperm injection was carried out on the carrier`s metaphase II oocytes retrieved after ovarian stimulation. Embryos were analyzed for the presence of exon 17 and 2 male embryos were found to be deleted, while 4 embryos showed normal amplification signals. Three of the latter embryos were replaced, resulting in a singleton pregnancy. Amniotic cell analysis showed a normal female karyotype and DNA analysis indicated a non-carrier.

  16. Enhancement of NMRI Mouse Embryo Development In vitro

    Directory of Open Access Journals (Sweden)

    Abedini, F.

    2013-12-01

    Full Text Available Most of the systematic studies used in the development of human embryo culture media have been done first on mouse embryos. The general use of NMRI outbred mice is a model for toxicology, teratology and pharmacology. NMRI mouse embryo exhibit the two-cell block in vitro. The objective of this study was to evaluate and compare the effects of four kinds of culture media on the development of zygotes (NMRI after embryo vitrification. One-cell mouse embryos were obtained from NMRI mice after superovulation and mating with adult male NMRI mice. And then randomly divided into 4 groups for culture in four different cultures media including: M16 (A, DMEM/Ham, F-12 (B, DMEM/Ham's F-12 co-culture with Vero cells(C and DMEM/Ham's F-12 co-culture with MEF cells (D. Afterward all of the embryos were vitrified in EFS40 solution and collected. Results of our study revealed, more blastocysts significantly were developed with co-culture with MEF cells in DMEM/Ham's F-12 medium. More research needed to understand the effect of other components of culture medium, and co-culture on NMRI embryo development.

  17. The exploit of cereal embryo structure for productive reasons by in vitro techniques

    Science.gov (United States)

    Savaskan, C.

    2017-07-01

    There are two main sides of our works exploiting embryo structure in durum wheat and some other cereals. First is haploid (or doubled haploid) embryo production using anther or microspore culture or intergeneric crosses, to ameliorate desirable characters genetically homozygote. Secondly, to develope convenient embryo culture technique in order to be stored and cultivated longer time of genotypes without being alien pollination etc. in field conditions. For that reason, two different auxin and also their combination with kinetin were used for mature embryos of wheat genotypes (hexaploid and tetraploid), to understand efficient dose for calli production and plant regeneration in plant tissue culture. Modified MS media were used adding a single dose of arabinogalactan protein (AGP) and without adding for regeneration. In further step of this study, most efficient auxin+kinetin combination which is determined previous research, it was used in the same modified MS medium to produce calli production and plant regeneration in three different genotypes (hexaploid and tetraploid wheat and diploid barley). Data were calculated in five different developmental stages of treatments. All statistical analysis of data were performed and means were compared with Duncan's test. Genetics and morphological effects of AGP on genotypes were discussed with the results of variance analysis. Simple correlation coefficient (r) was calculated base on the main values of replications.

  18. Are there optimal numbers of oocytes, spermatozoa and embryos in assisted reproduction?

    Science.gov (United States)

    Milachich, Tanya; Shterev, Atanas

    2016-08-01

    The aim of this overview is to discuss the current information about the search for the optimum yield of gametes in assisted reproduction, as one of the major pillars of IVF success. The first topic is focused on the number of male gametes and the possible impact of some genetic traits on these parameters. The number of spermatozoa did not seem to be crucial when there is no severe male factor of infertility. Genetic testing prior to using those sperm cells is very important. Different methods were applied in order to elect the "best" spermatozoa according to specific indications. The next problem discussed is the importance of the number of oocytes collected. Several studies have agreed that "15 oocytes is the perfect number," as the number of mature oocytes is more important. However, if elective single embryo transfer is performed, the optimal number of oocytes will enable a proper embryo selection. The third problem discussed concerns fertility preservation. Many educational programs promote and encourage procreation at maternal ages between 20-35 years, since assisted reproduction is unable to fully overcome the effects of female aging and fertility loss after that age. It is also strongly recommended to ensure a reasonable number of cryopreserved mature oocytes, preferably in younger ages (average of two stimulation cycles are likely required. For embryo cryopreservation, the "freeze all" strategy suggests the vitrification of good embryos, therefore quality is prior to number and patient recruitment for this strategy should be performed cautiously.

  19. Purification, gene cloning, gene expression, and mutants of Dps from the obligate anaerobe Porphyromonas gingivalis.

    Science.gov (United States)

    Ueshima, Junichi; Shoji, Mikio; Ratnayake, Dinath B; Abe, Kihachiro; Yoshida, Shinichi; Yamamoto, Kenji; Nakayama, Koji

    2003-03-01

    The periodontopathogen Porphyromonas gingivalis is an obligate anaerobe that is devoid of catalase but exhibits a relatively high degree of resistance to peroxide stress. In the present study, we demonstrate that P. gingivalis contains a Dps homologue that plays an important role in the protection of cells from peroxide stress. The Dps protein isolated from P. gingivalis displayed a ferritin-like spherical polymer consisting of 19-kDa subunits. Molecular cloning and sequencing of the gene encoding this protein revealed that it had a high similarity in nucleotide and amino acid sequences to Dps proteins from other species. The expression of Dps was significantly increased by exposure of P. gingivalis to atmospheric oxygen in an OxyR-dependent manner, indicating that it is regulated by the reactive oxygen species-regulating gene oxyR. The Dps-deficient mutants, including the dps single mutant and the ftn dps double mutant, showed no viability loss upon exposure to atmospheric oxygen for 6 h. In contrast to the wild type, however, these mutants exhibited the high susceptibility to hydrogen peroxide, thereby disrupting the viability. On the other hand, no significant difference in sensitivity to mitomycin C and metronidazole was observed between the wild type and the mutants. Furthermore, the dps single mutant, compared with the wild type, showed a lower viability in infected human umbilical vein endothelial cells.

  20. Sexing bovine pre-implantation embryos using the polymerase ...

    African Journals Online (AJOL)

    The paper aims to present a bovine model for human embryo sexing. Cows were super-ovulated, artificially inseminated and embryos were recovered 7 days later. Embryo biopsy was performed; DNA was extracted from blastomeres and amplified using bovine-specific and bovine-Y-chromosomespecific primers, followed ...

  1. Endometrial preparation methods in frozen-thawed embryo transfer

    NARCIS (Netherlands)

    Groenewoud, E.R.

    2017-01-01

    One in six couples suffer from infertility, and many undergo treatment with in-vitro fertilization (IVF). Given that IVF often results in more embryos than can be transferred during one embryo transfer cryopreservation of the supernumerary embryos has been an important addition to IVF. In recent

  2. Noninferiority, randomized, controlled trial comparing embryo development using media developed for sequential or undisturbed culture in a time-lapse setup.

    Science.gov (United States)

    Hardarson, Thorir; Bungum, Mona; Conaghan, Joe; Meintjes, Marius; Chantilis, Samuel J; Molnar, Laszlo; Gunnarsson, Kristina; Wikland, Matts

    2015-12-01

    To study whether a culture medium that allows undisturbed culture supports human embryo development to the blastocyst stage equivalently to a well-established sequential media. Randomized, double-blinded sibling trial. Independent in vitro fertilization (IVF) clinics. One hundred twenty-eight patients, with 1,356 zygotes randomized into two study arms. Embryos randomly allocated into two study arms to compare embryo development on a time-lapse system using a single-step medium or sequential media. Percentage of good-quality blastocysts on day 5. Percentage of day 5 good-quality blastocysts was 21.1% (standard deviation [SD] ± 21.6%) and 22.2% (SD ± 22.1%) in the single-step time-lapse medium (G-TL) and the sequential media (G-1/G-2) groups, respectively. The mean difference (-1.2; 95% CI, -6.0; 3.6) between the two media systems for the primary end point was less than the noninferiority margin of -8%. There was a statistically significantly lower number of good-quality embryos on day 3 in the G-TL group [50.7% (SD ± 30.6%) vs. 60.8% (SD ± 30.7%)]. Four out of the 11 measured morphokinetic parameters were statistically significantly different for the two media used. The mean levels of ammonium concentration in the media at the end of the culture period was statistically significantly lower in the G-TL group as compared with the G-2 group. We have shown that a single-step culture medium supports blastocyst development equivalently to established sequential media. The ammonium concentrations were lower in the single-step media, and the measured morphokinetic parameters were modified somewhat. NCT01939626. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Classification of embryo sacs in the Eragrostis curvula Complex

    Directory of Open Access Journals (Sweden)

    T. B. Vorster

    1984-12-01

    Full Text Available At each of 17 collecting points between Johannesburg and Brits in the Transvaal, three plants which belong to the  Eragrostis curvula Complex were collected and studied. A total o f 3 902 embryo sacs was examined in this sample. Of the embryo sacs examined, 3 306 were apomictic by means of diplospory, whereas 99 were sexual monosporic Polygonum-type embryo sacs. One hundred and nineteen embryo sacs were abnormal or divergent, and 378 were degenerated. There are indications that seasonal climatic fluctuations may be responsible for embryo sacs developing abnormally or degenerating. Simple and multiple correlations confirmed that sexual embryo sacs usually do not develop abnormally or degenerate during the later developmental stages. This finding lends credence to both the system of classification of individual embryo sacs and to the validity of the estimate of the proportion of sexuality of the plants sampled at each sampling point.

  4. Somatic Embryos in Catharanthus roseus: A Scanning Electron Microscopic Study

    Directory of Open Access Journals (Sweden)

    Junaid ASLAM

    2014-06-01

    Full Text Available Catharanthus roseus (L. G. Don is an important medicinal plant as it contains several anti-cancerous compounds, like vinblastine and vincristine. Plant tissue culture technology (organogenesis and embryogenesis has currently been used in fast mass propagating raw materials for secondary metabolite synthesis. In this present communication, scanning electron microscopic (SEM study of somatic embryos was conducted and discussed. The embryogenic callus was first induced from hypocotyls of in vitro germinated seeds on which somatic embryos, differentiated in numbers, particularly on 2,4-D (1.0 mg/L Murashige and Skoog (MS was medium. To understand more about the regeneration method and in vitro formed embryos SEM was performed. The SEM study revealed normal somatic embryo origin and development from globular to heart-, torpedo- and then into cotyledonary-stage of embryos. At early stage, the embryos were clustered together in a callus mass and could not easily be detached from the parental tissue. The embryos were often long cylindrical structure with or without typical notch at the tip. Secondary embryos were also formed on primary embryo structure. The advanced cotyledonary embryos showed prominent roots and shoot axis, which germinated into plantlets. The morphology, structure and other details of somatic embryos at various stages were presented.

  5. Rape embryogenesis. III. Embryo development in time

    Directory of Open Access Journals (Sweden)

    Teresa Tykarska

    2014-01-01

    Full Text Available It was found that the growth curve of the rape embryo axis is of triple sigmoid type. Embryo growth occurs in 3 phases corresponding to 3 different periods of development. Phase I includes growth of the apical cell up to it's division into two layers of octants. Phase II comprises the increase of the spherical proembryo to the change of its symmetry from radial to bilateral. Phase III includes, growth of the embryo from the heart stage up to the end of embryogenesis. In each phase the relative growth rate increases drastically and then diminishes. The differences in growth intensity during the same phase are several-fold. The growth intensity maximum of the embryo axis occurs in phase II. The phasic growth intensity maxima occur: in phase I during apical cell elongation, :before its division, and in phases II and III in the periods of cell division ;growth in globular and torpedo-shaped -shaped embryos.

  6. Efficacy of postal communication with patients who have cryopreserved pre-embryos.

    Science.gov (United States)

    Brzyski, R G

    1998-11-01

    To compare the characteristics of patients who did and did not respond to a request for information regarding their cryopreserved pre-embryos. Mail survey. Academic-assisted reproductive technology program. One hundred thirty-six patients with cryopreserved pre-embryos. Patients were surveyed by first-class mail regarding their plans for their cryopreserved pre-embryos and their interest in embryo donation. Age, number of stored pre-embryos, and duration of storage of responders and nonresponders at 6 weeks after mailing. Eighty-three patients (62%) did not respond to the survey. Compared with responders, nonresponders were significantly older at the time of embryo cryopreservation, had fewer pre-embryos cryopreserved, and had the pre-embryos cryopreserved for a longer duration. Five responders (9%) expressed an interest in embryo donation. Three patients requested disposal of pre-embryos. Sixteen surveys (12%) were returned as undeliverable. As a group, these patients had the fewest pre-embryos cryopreserved and had the longest duration of storage. A disturbing number of patients with cryopreserved pre-embryos ignored efforts by our program to maintain contact. Older patients with few cryopreserved pre-embryos may require special attention to avoid abandonment.

  7. Cost-effectiveness of embryo transfer strategies: : A decision analytic model using long-term costs and consequences of singletons and multiples born as a consequence of IVF

    NARCIS (Netherlands)

    van Heesch, M. M. J.; van Asselt, A. D. I.; Evers, J. L. H.; van der Hoeven, M. A. H. B. M.; Dumoulin, J. C. M.; van Beijsterveldt, C. E. M.; Bonsel, G. J.; Dykgraaf, R. H. M.; van Goudoever, J. B.; Koopman-Esseboom, C.; Nelen, W. L. D. M.; Steiner, K.; Tamminga, P.; Tonch, N.; Torrance, H. L.; Dirksen, C. D.

    2016-01-01

    STUDY QUESTION: What is the cost-effectiveness of elective single embryo transfer (eSET) versus double embryo transfer (DET) strategies from a societal perspective, when applying a time horizon of 1, 5 and 18 years? SUMMARY ANSWER: From a short-term perspective (1 year) it is cost-effective to

  8. [Assisted reproductive technologies and the embryo status].

    Science.gov (United States)

    Englert, Y

    The status of the human embryo has always be a subject of philosophical and theological thoughts with major social consequences, but, until the 19th century, it has been mainly an abstraction. The arrival of the human embryo in vitro, materialized by Louise Brown's birth in 1978 and above all by the supernumerary embryos produced by the Australian team of Trounson and Wood following the introduction of ovarian stimulation, will turn theoretical thoughts into a reality. Nobody may ignore the hidden intentions behind the debate, as to recognise a status to a few days old embryo will immediately have a major impact on the status of a few weeks old foetus and therefore on the abortion rights. We will see that the embryo status, essentially based as well on a vision on the good and evil as on social order, cannot be based on a scientific analysis of the reproduction process but comes from a society's choice, by essence " arbitrary " and always disputable. This does not preclude the collectivity right and legitimacy to give a precise status and it is remarkable to observe the law is careful not to specify which status to give to the human embryo. It is more thru handling procedures and functioning rules that the law designed the embryo position, neither with a status of a person, nor of a thing. It nevertheless remains true that there is a constant risk that the legislation gives the embryo a status that would call into question it's unique characteristic of early reproductive stage, jeopardizing at once the hard-won reproductive freedom (reproductive choice) as well as freedom of research on embryonic stem cells, one of the most promising field of medical research.

  9. Nucleolar remodeling in nuclear transfer embryos

    DEFF Research Database (Denmark)

    Laurincik, Jozef; Maddox-Hyttel, Poul

    2007-01-01

    Transcription of the ribosomal RNA (rRNA) genes occurs in the nucleolus and results in ribosome biogenesis. The rRNA gene activation and the associated nucleolus formation may be used as a marker for the activation of the embryonic genome in mammalian embryos and, thus serve to evaluate the devel......Transcription of the ribosomal RNA (rRNA) genes occurs in the nucleolus and results in ribosome biogenesis. The rRNA gene activation and the associated nucleolus formation may be used as a marker for the activation of the embryonic genome in mammalian embryos and, thus serve to evaluate...... nucleoli are not apparent until the 5th cell cycle, whereas in somatic cell nuclear transfer embryos the functional nucleoli emerge already during the 3rd cell cycle. Intergeneric reconstructed embryos produced by the fusion of bovine differentiated somatic cell to a nonactivated ovine cytoplast fail...

  10. 10 CFR 835.206 - Limits for the embryo/fetus.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Limits for the embryo/fetus. 835.206 Section 835.206... Exposure § 835.206 Limits for the embryo/fetus. (a) The equivalent dose limit for the embryo/fetus from the... provided in § 835.206(a) shall be avoided. (c) If the equivalent dose to the embryo/fetus is determined to...

  11. Cryopreservation of Arachis pintoi (leguminosae) somatic embryos.

    Science.gov (United States)

    Rey, H Y; Faloci, M; Medina, R; Dolce, N; Engelmann, F; Mroginski, L

    2013-01-01

    In this study, we successfully cryopreserved cotyledonary somatic embryos of diploid and triploid Arachis pintoi cytotypes using the encapsulation-dehydration technique. The highest survival rates were obtained when somatic embryos were encapsulated in calcium alginate beads and precultured in agitated (80 rpm) liquid establishment medium (EM) with daily increasing sucrose concentration (0.50, 0.75, and 1.0 M). The encapsulated somatic embryos were then dehydrated with silica gel for 5 h to 20% moisture content (fresh weight basis) and cooled either rapidly (direct immersion in liquid nitrogen, LN) or slowly (1 degree C per min from 25 degree C to -30 degree C followed by immersion in LN). Beads were kept in LN for a minimum of 1 h and then were rapidly rewarmed in a 30 degree C water-bath for 2 min. Finally, encapsulated somatic embryos were post-cultured in agitated (80 rpm) liquid EM with daily decreasing sucrose concentration (0.75 and 0.5 M) and transferred to solidified EM. Using this protocol, we obtained 26% and 30% plant regeneration from cryopreserved somatic embryos of diploid and triploid cytotypes. No morphological abnormalities were observed in any of the plants regenerated from cryopreserved embryos and their genetic stability was confirmed with 10 isozyme systems and nine RAPD profiles.

  12. Characterization of somatic embryo attached structures in Feijoa sellowiana Berg. (Myrtaceae).

    Science.gov (United States)

    Correia, Sandra M; Canhoto, Jorge M

    2010-06-01

    The presence of an attached organ to somatic embryos of angiosperms connecting the embryo to the supporting tissue has been a subject of controversy. This study shows that 67% of the morphologically normal somatic embryos of Feijoa sellowiana possess this type of organ and that its formation was not affected by culture media composition. Histological and ultrastructural analysis indicated that the attached structures of somatic embryos displayed a great morphological diversity ranging from a few cells to massive and columnar structures. This contrast with the simple suspensors observed in zygotic embryos which were only formed by five cells. As well as the suspensor of zygotic embryos, somatic embryo attached structures undergo a process of degeneration in later stages of embryo development. Other characteristic shared by zygotic suspensors and somatic embryo attached structures was the presence of thick cell walls surrounding the cells. Elongated thin filaments were often associated with the structures attached to somatic embryos, whereas in other cases, tubular cells containing starch grains connected the embryo to the supporting tissue. These characteristics associated with the presence of plasmodesmata in the cells of the attached structures seem to indicate a role on embryo nutrition. However, cell proliferation in the attached structures resulting into new somatic embryos may also suggest a more complex relationship between the embryo and the structures connecting it to the supporting tissue.

  13. Mouse one-cell embryos undergoing a radiation-induced G2 arrest may re-enter S-phase in the absence of cytokinesis

    International Nuclear Information System (INIS)

    Jacquet, P.; Buset, J.; Vankerkom, J.; Baatout, S.; De Saint-Georges, L.; Schoonjans, W.; Desaintes, C.

    2002-01-01

    PCC (premature chromosome condensation) can be used for visualizing and scoring damage induced by radiation in the chromatin of cells undergoing a G1 or G2 arrest. A method involving the fusion of irradiated single embryonic cells with single MI oocytes was used to induce PCC in mouse zygotes of the BALB/c strain, which suffer a drastic G2 arrest after X-irradiation (dose used 2.5 Gy). Other G2-arrested embryos were exposed in vitro to the phosphatase inhibitor calyculin A. Both methods furnished excellent chromosome preparations of the G2-arrested embryos. The mean number of chromosome fragments did not change significantly during G2 arrest, suggesting that zygotes of this strain are unable to repair DNA damage leading to such aberrations. Forty to fifty percent of the irradiated embryos were unable to cleave after G2 arrest and remained blocked at the one-cell stage for a few days before dying. PCC preparations obtained from such embryos suggested that about 30% of them had undergone a late mitosis not followed by cytokinesis and had entered a new DNA synthesis. These results are discussed in the light of recent observations in irradiated human cells deficient in the p53/14-3-3σ pathway. (author)

  14. Human embryos secrete microRNAs into culture media--a potential biomarker for implantation.

    Science.gov (United States)

    Rosenbluth, Evan M; Shelton, Dawne N; Wells, Lindsay M; Sparks, Amy E T; Van Voorhis, Bradley J

    2014-05-01

    To determine whether human blastocysts secrete microRNA (miRNAs) into culture media and whether these reflect embryonic ploidy status and can predict in vitro fertilization (IVF) outcomes. Experimental study of human embryos and IVF culture media. Academic IVF program. 91 donated, cryopreserved embryos that developed into 28 tested blastocysts, from 13 couples who had previously completed IVF cycles. None. Relative miRNA expression in IVF culture media. Blastocysts were assessed by chromosomal comparative genomic hybridization analysis, and the culture media from 55 single-embryo transfer cycles was tested for miRNA expression using an array-based quantitative real-time polymerase chain reaction analysis. The expression of the identified miRNA was correlated with pregnancy outcomes. Ten miRNA were identified in the culture media; two were specific to spent media (miR-191 and miR-372), and one was only present in media before the embryos had been cultured (miR-645). MicroRNA-191 was more highly concentrated in media from aneuploid embryos, and miR-191, miR-372, and miR-645 were more highly concentrated in media from failed IVF/non-intracytoplasmic sperm injection cycles. Additionally, miRNA were found to be more highly concentrated in ICSI and day-5 media samples when compared with regularly inseminated and day-4 samples, respectively. MicroRNA can be detected in IVF culture media. Some of these miRNA are differentially expressed according to the fertilization method, chromosomal status, and pregnancy outcome, which makes them potential biomarkers for predicting IVF success. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Genetic requirements for high constitutive SOS expression in recA730 mutants of Escherichia coli.

    Science.gov (United States)

    Vlašić, Ignacija; Šimatović, Ana; Brčić-Kostić, Krunoslav

    2011-09-01

    The RecA protein in its functional state is in complex with single-stranded DNA, i.e., in the form of a RecA filament. In SOS induction, the RecA filament functions as a coprotease, enabling the autodigestion of the LexA repressor. The RecA filament can be formed by different mechanisms, but all of them require three enzymatic activities essential for the processing of DNA double-stranded ends. These are helicase, 5'-3' exonuclease, and RecA loading onto single-stranded DNA (ssDNA). In some mutants, the SOS response can be expressed constitutively during the process of normal DNA metabolism. The RecA730 mutant protein is able to form the RecA filament without the help of RecBCD and RecFOR mediators since it better competes with the single-strand binding (SSB) protein for ssDNA. As a consequence, the recA730 mutants show high constitutive SOS expression. In the study described in this paper, we studied the genetic requirements for constitutive SOS expression in recA730 mutants. Using a β-galactosidase assay, we showed that the constitutive SOS response in recA730 mutants exhibits different requirements in different backgrounds. In a wild-type background, the constitutive SOS response is partially dependent on RecBCD function. In a recB1080 background (the recB1080 mutation retains only helicase), constitutive SOS expression is partially dependent on RecBCD helicase function and is strongly dependent on RecJ nuclease. Finally, in a recB-null background, the constitutive SOS expression of the recA730 mutant is dependent on the RecJ nuclease. Our results emphasize the importance of the 5'-3' exonuclease for high constitutive SOS expression in recA730 mutants and show that RecBCD function can further enhance the excellent intrinsic abilities of the RecA730 protein in vivo. Copyright © 2011, American Society for Microbiology. All Rights Reserved.

  16. Enhanced longevity in tau mutant Syrian hamsters, Mesocricetus auratus

    NARCIS (Netherlands)

    Oklejewicz, Malgorzata; Daan, Serge

    The single-gene mutation tau in the Syrian hamster shortens the circadian period by about 20% in the homozygous mutant and simultaneously increases the mass-specific metabolic rate by about 20%. Both effects might be expected to lead to a change in longevity. To test such expectations, the life span

  17. Use of purified FSH and LH for embryo production, cryopreservation by conventional freezing or vitrification and transfer of embryos in dairy ewes

    Directory of Open Access Journals (Sweden)

    Giovanni Martemucci

    2010-01-01

    Full Text Available Three experiments were carried out with the aim of evaluating the efficiency of techniques of in vivo production, storageand transfer of embryos in dairy sheep. Experiment I - For embryo production, thirty-one ewes were synchronized withFGA (vaginal sponges, 40 mg, 9 d and PGF2α (ICI; 50 μg, 7th d, and subdivided into three groups corresponding to thefollowing superovulatory treatments over 3 days with purified gonadotrophic preparations: A control, FSH/LH ratio = 1(250 IU p-FSH : 250 UI p-LH; B FSH/LH ratio = 2 (250 IU p-FSH : 125 IU p-LH and daily FSH/LH ratio of 3.4 – 1.7 –0.8 in the 3 days of treatment, respectively; C FSH/LH ratio = 2 (250 IU p-FSH : 125 IU p-LH and daily FSH/LH ratioof 5.0 – 1.0 – 0.3. On the 7th day after oestrus and mating, ovarian response and embryo production were evaluated.Experiment II – Three freezing methods were evaluated based upon post-thaw embryo quality: CF conventional slowfreezing by 1.5 M ethylene glycol (EG; V-1 one-step vitrification based on exposure of the embryos to one solution (EG7.15 M + ficoll 2.5 mM; V-3 vitrification in three steps, corresponding to three solutions at increasing concentration ofglycerol (GLY and EG (GLY 1.4 M; GLY 3.4 M + EG 1.4 M; GLY 4.6 M + EG 3.4 M. V-1 and V-3 frozen embryos weredirectly plunged in liquid nitrogen. At thawing, embryo viability was evaluated on the basis of morphological features.Experiment III – For embryo transfer, a total of 26 recipient ewes were synchronized with donors. On the 7th d fromoestrus, 11 recipient ewes received fresh embryos (Group FE – control and 15 recipients received vitrified-thawedembryos (Group VTE. Each recipient received 2 embryos. Superovulatory treatment B significantly advanced the onsetof oestrus compared to the control (27.3 vs 34.7 h; P10.8. Transferable embryos in Group B (7.2 resulted similar to Group A (5.3 and significantly (Pcompared to Group C (3.2. V3-method resulted in the highest (PCF- and V1-methods

  18. Depletion of cellular brassinolide decreases embryo production and disrupts the architecture of the apical meristems in Brassica napus microspore-derived embryos.

    Science.gov (United States)

    Belmonte, Mark; Elhiti, Mohamed; Waldner, Blaine; Stasolla, Claudio

    2010-06-01

    Exogenous applications of brassinolide (BL) increased the number and quality of microspore-derived embryos (MDEs) whereas treatments with brassinazole (BrZ), a BL biosynthetic inhibitor, had the opposite effect. At the optimal concentration (4x10(-6) M) BrZ decreased both embryo yield and conversion to less than half the value of control embryos. Metabolic studies revealed that BL levels had profound effects on glutathione and ascorbate metabolism by altering the amounts of their reduced forms (ASC and GSH) and oxidized forms [dehydroascorbate (DHA), ascorbate free radicals (AFRs), and GSSG]. Applications of BL switched the glutathione and ascorbate pools towards the oxidized forms, thereby lowering the ASC/ASC+DHA+AFR and GSH/GSH+GSSG ratios. These changes were ascribed to the ability of BL to increase the activity of ascorbate peroxidase (APX) and decrease that of glutathione reductase (GR). This trend was reversed in a BL-depleted environment, effected by BrZ applications. These metabolic alterations were associated with changes in embryo structure and performance. BL-treated MDEs developed zygotic-like shoot apical meristems (SAMs) whereas embryos treated with BrZ developed abnormal meristems. In the presence of BrZ, embryos either lacked a visible SAM, or formed SAMs in which the meristematic cells showed signs of differentiation, such as vacuolation and storage product accumulation. These abnormalities were accompanied by the lack or misexpression of three meristem marker genes isolated from Brassica napus (denoted as BnSTM, BnCLV1, and BnZLL-1) homologous to the Arabidopsis SHOOTMERISTEMLESS (STM), CLAVATA 1 (CLV1), and ZWILLE (ZLL). The expression of BnSTM and BnCLV1 increased after a few days in cultures in embryos treated with BL whereas an opposite tendency was observed with applications of BrZ. Compared with control embryos where these two genes exhibited abnormal localization patterns, BnSTM and BnCLV1 always localized throughout the subapical domains

  19. Preimplantation development of embryos in women of advanced maternal age

    Directory of Open Access Journals (Sweden)

    O. V. Chaplia

    2014-04-01

    Full Text Available In order to reveal the influence of genetic component on the early embryo development, the retrospective study of morphokinetic characteristics of 717 embryos subjected to preimplantation genetic testing was conducted. Blastomere biopsy for FISH-based preimplantation genetic screening of 7 chromosomes was performed on the third day of culture, while embryo developmental potential and morphological features at the cleavage and blastulation stage were studied regarding maternal age particularly in the group of younger women and patients older than 36. Results of genetic testing revealed that euploid embryos rate gradually decreased with maternal age comprising 39.9% in young women group and 25.3% of specimen belonging to elder patients. At the cleavage stage, morphological characteristics of aneuploid and euploid embryos didn’t differ significantly regardless of the age of patients that could be accounted for the transcriptional silence of embryo genome till the third day of its development. However, in case of prolonged culture chromosomally balanced embryos rarely faced developmental arrest (in 7.9% and formed blastocysts half more frequently compared to aberrant embryos (respectively 75.6 versus 49.8%. Nevertheless, no substantial difference was found between blastocyst formation rate among embryos with similar genetic component regardless of the maternal age. Taking into consideration high rate of chromosomally unbalanced embryos specific to patients of advanced maternal age, the relative proportion of aneuplouid blastocysts was significantly higher in this group of embryos. Thus, without genetic screening there is a possibility of inaccurate selection of embryos for women of advanced reproductive age for transfer procedure even in case of prolonged culture. Consequently, increase of aneuploid embryos frequency associated with permanent preimplantation natural selection effectiveness along with the postimplantation natural selection failure

  20. Endometrial signals improve embryo outcome: functional role of vascular endothelial growth factor isoforms on embryo development and implantation in mice.

    Science.gov (United States)

    Binder, N K; Evans, J; Gardner, D K; Salamonsen, L A; Hannan, N J

    2014-10-10

    Does vascular endothelial growth factor (VEGF) have important roles during early embryo development and implantation? VEGF plays key roles during mouse preimplantation embryo development, with beneficial effects on time to cavitation, blastocyst cell number and outgrowth, as well as implantation rate and fetal limb development. Embryo implantation requires synchronized dialog between maternal cells and those of the conceptus. Following ovulation, secretions from endometrial glands increase and accumulate in the uterine lumen. These secretions contain important mediators that support the conceptus during the peri-implantation phase. Previously, we demonstrated a significant reduction of VEGFA in the uterine cavity of women with unexplained infertility. Functional studies demonstrated that VEGF significantly enhanced endometrial epithelial cell adhesive properties and embryo outgrowth. Human endometrial lavages (n = 6) were obtained from women of proven fertility. Four-week old Swiss mice were superovulated and mated with Swiss males to obtain embryos for treatment with VEGF in vitro. Preimplantation embryo development was assessed prior to embryo transfer (n = 19-30/treatment group/output). Recipient F1 female mice (8-12 weeks of age) were mated with vasectomized males to induce pseudopregnancy and embryos were transferred. On Day 14.5 of pregnancy, uterine horns were collected for analysis of implantation rates as well as placental and fetal development (n = 14-19/treatment). Lavage fluid was assessed by western immunoblot analysis to determine the VEGF isoforms present. Mouse embryos were treated with either recombinant human (rh)VEGF, or VEGF isoforms 121 and 165. Preimplantation embryo development was quantified using time-lapse microscopy. Blastocysts were (i) stained for cell number, (ii) transferred to wells coated with fibronectin to examine trophoblast outgrowth or (iii) transferred to pseudo pregnant recipients to analyze implantation rates, placental and

  1. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation.

    Science.gov (United States)

    Wells, Dagan; Kaur, Kulvinder; Grifo, Jamie; Glassner, Michael; Taylor, Jenny C; Fragouli, Elpida; Munne, Santiago

    2014-08-01

    The majority of human embryos created using in vitro fertilisation (IVF) techniques are aneuploid. Comprehensive chromosome screening methods, applicable to single cells biopsied from preimplantation embryos, allow reliable identification and transfer of euploid embryos. Recently, randomised trials using such methods have indicated that aneuploidy screening improves IVF success rates. However, the high cost of testing has restricted the availability of this potentially beneficial strategy. This study aimed to harness next-generation sequencing (NGS) technology, with the intention of lowering the costs of preimplantation aneuploidy screening. Embryo biopsy, whole genome amplification and semiconductor sequencing. A rapid (cost only two-thirds that of the most widely used method for embryo aneuploidy detection. Validation involved blinded analysis of 54 cells from cell lines or biopsies from human embryos. Sensitivity and specificity were 100%. The method was applied clinically, assisting in the selection of euploid embryos in two IVF cycles, producing healthy children in both cases. The NGS approach was also able to reveal specified mutations in the nuclear or mitochondrial genomes in parallel with chromosome assessment. Interestingly, elevated mitochondrial DNA content was associated with aneuploidy (pcost diagnosis of aneuploidy in cells from human preimplantation embryos and is rapid enough to allow testing without embryo cryopreservation. The method described also has the potential to shed light on other aspects of embryo genetics of relevance to health and viability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Studies on induced partially resistant mutants of barley against powdery mildew

    International Nuclear Information System (INIS)

    Roebbelen, G.; Abdel-Hafez, A.G.; Reinhold, M.; Kwon, H.J.; Neuhaus-Steinmetz, J.P.; Heun, M.

    1983-01-01

    After mutagenic seed treatment of three partially resistant cultivars of spring barley with EMS and NaN 3 , 45 mutants in a first and 16 in a second experiment were selected in the M 2 -M 4 generations. The screening was done alternatively under natural infection in the field or controlled infection with a single pathotype in the greenhouse. These mutants exhibited a higher resistance and a higher susceptibility, respectively, than the initial cultivars Asse, Bomi and Vada. Some mutants expressed their altered resistance behaviour particularly during certain stages of development. High-level resistance was conditioned by mutation in the ml-o locus in three cases. For several Bomi mutants pathotype specificity with and without reversed ranking was proven as well as pathotype non-specificity in comparison with the reaction of the original cultivar. In 14 cases studied the inheritance of the involved mutants was monogenic recessive. The laevigatum locus responsible for the intermediate mildew resistance of Bomi was not affected by the mutations. Detection of groups of allelic mutants showed that there are at least two regions in the barley genome in which mutations for mildew resistance can occur rather frequently. In total, the past ten years of this mutation research have given convincing evidence that the strategies of mutant screening applied have yielded promising new material both for breeding and for progress in basic understanding of host-pathogen interactions. (author)

  3. Cost Implications for Subsequent Perinatal Outcomes After IVF Stratified by Number of Embryos Transferred: A Five Year Analysis of Vermont Data.

    Science.gov (United States)

    Carpinello, Olivia J; Casson, Peter R; Kuo, Chia-Ling; Raj, Renju S; Sills, E Scott; Jones, Christopher A

    2016-06-01

    In states in the USA without in vitro fertilzation coverage (IVF) insurance coverage, more embryos are transferred per cycle leading to higher risks of multi-fetal pregnancies and adverse pregnancy outcomes. To determine frequency and cost of selected adverse perinatal complications based on number of embryos transferred during IVF, and calculate incremental cost per IVF live birth. Medical records of patients who conceived with IVF (n = 116) and delivered at >20 weeks gestational age between 2007 and 2011 were evaluated. Gestational age at delivery, low birth weight (LBW) term births, and delivery mode were tabulated. Healthcare costs per cohort, extrapolated costs assuming 100 patients per cohort, and incremental costs per infant delivered were calculated. The highest prematurity and cesarean section rates were recorded after double embryo transfers (DET), while the lowest rates were found in single embryo transfers (SET). Premature singleton deliveries increased directly with number of transferred embryos [6.3 % (SET), 9.1 % (DET) and 10.0 % for ≥3 embryos transferred]. This trend was also noted for rate of cesarean delivery [26.7 % (SET), 36.6 % (DET), and 47.1 % for ≥3 embryos transferred]. The proportion of LBW infants among deliveries after DET and for ≥3 embryos transferred was 3.9 and 9.1 %, respectively. Extrapolated costs per cohort were US$718,616, US$1,713,470 and US$1,227,396 for SET, DET, and ≥3 embryos transferred, respectively. Attempting to improve IVF pregnancy rates by permitting multiple embryo transfers results in sharply increased rates of multiple gestation and preterm delivery. This practice yields a greater frequency of adverse perinatal outcomes and substantially increased healthcare spending. Better efforts to encourage SET are necessary to normalize healthcare expenditures considering the frequency of very high cost sequela associated with IVF where multiple embryo transfers occur.

  4. Ultrastructural studies of Biomphalaria glabrata (Say, 1818) embryo

    International Nuclear Information System (INIS)

    Kikuchi, O.K.; Okazaki, K.; Kawano, T.; Ribeiro, A.A.G.F.C.

    1988-09-01

    Ultrastructural studies of Biomphalaria glabrata embryos (MOllusca: Gastropoda), and important snail vector of schistosomiasis has not been explored. In the present work it was evaluated a suitable electron microscopical technique for embryos processing. Promising results was obtained with double fixation in 1% glutaraldehyde plus 1% osmium tetroxide in 0.05 M cacodylate buffer (pH 7.4), preliminary staining overnight in 1% uranyl acetate and embedding in EPON or Polylite under vacuum. It was used embryos at young trochophore stage wich is characterized by active organogenesis. Some ultrastructural aspects of B. glabrata embryos cells are presented. (author) [pt

  5. Embryo-fetal transfer of bevacizumab (Avastin) in the rat over the course of gestation and the impact of neonatal Fc receptor (FcRn) binding.

    Science.gov (United States)

    Thorn, Mitchell; Piche-Nicholas, Nicole; Stedman, Donald; Davenport, Scott W; Zhang, Ning; Collinge, Mark; Bowman, Christopher J

    2012-10-01

    There is concern about embryo-fetal exposure to antibody-based biopharmaceuticals based on the increase of such therapies being prescribed to women of childbearing potential. Therefore, there is a desire to better characterize embryo-fetal exposure of these molecules. The pregnant rat is a standard model for evaluating the potential consequences of exposure but placental transfer of antibody-based biopharmaceuticals is not well understood in this model. The relative embryo-fetal distribution of an antibody-based biopharmaceutical was evaluated in the rat. Bevacizumab (Avastin) was chosen as a tool antibody since it does not have significant target binding in the rat that might influence embryo-fetal biodistribution. Avastin was labeled with a fluorescent dye, characterized, and injected into pregnant rats at different gestation ages. Labeled Avastin in fetal tissues was visualized ex vivo using an IVIS 200 (Caliper, A PerkinElmer Company, Alameda, CA). Avastin localized to the fetus as early as 24-hr post intravenous injection of the dam, and was taken up by the fetus in a dose-dependent manner. Avastin was detectable in the developing embryo as early as gestation day 13 and continued to be transferred until the end of gestation. Fetal transfer of Avastins mutated in the portion of the antibody that binds the neonatal Fc receptor (FcRn) was tested in late gestation and was found to correlate with affinities of the mutant Avastin antibody to FcRn. The novel application of this imaging technology was used to characterize the onset and duration of Avastin maternal-fetal transfer in rats and the importance of FcRn binding. © 2012 Wiley Periodicals, Inc.

  6. Lack of centrioles and primary cilia in STIL−/− mouse embryos

    Science.gov (United States)

    David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin

    2014-01-01

    Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL−/− mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL−/− cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL−/− cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development. PMID:25486474

  7. Combined MEK and ERK inhibition overcomes therapy-mediated pathway reactivation in RAS mutant tumors.

    Directory of Open Access Journals (Sweden)

    Mark Merchant

    Full Text Available Mitogen-activated protein kinase (MAPK pathway dysregulation is implicated in >30% of all cancers, rationalizing the development of RAF, MEK and ERK inhibitors. While BRAF and MEK inhibitors improve BRAF mutant melanoma patient outcomes, these inhibitors had limited success in other MAPK dysregulated tumors, with insufficient pathway suppression and likely pathway reactivation. In this study we show that inhibition of either MEK or ERK alone only transiently inhibits the MAPK pathway due to feedback reactivation. Simultaneous targeting of both MEK and ERK nodes results in deeper and more durable suppression of MAPK signaling that is not achievable with any dose of single agent, in tumors where feedback reactivation occurs. Strikingly, combined MEK and ERK inhibition is synergistic in RAS mutant models but only additive in BRAF mutant models where the RAF complex is dissociated from RAS and thus feedback productivity is disabled. We discovered that pathway reactivation in RAS mutant models occurs at the level of CRAF with combination treatment resulting in a markedly more active pool of CRAF. However, distinct from single node targeting, combining MEK and ERK inhibitor treatment effectively blocks the downstream signaling as assessed by transcriptional signatures and phospho-p90RSK. Importantly, these data reveal that MAPK pathway inhibitors whose activity is attenuated due to feedback reactivation can be rescued with sufficient inhibition by using a combination of MEK and ERK inhibitors. The MEK and ERK combination significantly suppresses MAPK pathway output and tumor growth in vivo to a greater extent than the maximum tolerated doses of single agents, and results in improved anti-tumor activity in multiple xenografts as well as in two Kras mutant genetically engineered mouse (GEM models. Collectively, these data demonstrate that combined MEK and ERK inhibition is functionally unique, yielding greater than additive anti-tumor effects and

  8. Factors that affect infertility patients' decisions about disposition of frozen embryos.

    Science.gov (United States)

    Lyerly, Anne Drapkin; Steinhauser, Karen; Namey, Emily; Tulsky, James A; Cook-Deegan, Robert; Sugarman, Jeremy; Walmer, David; Faden, Ruth; Wallach, Edward

    2006-06-01

    To describe factors that affect infertility patients' decision making regarding their cryopreserved embryos. Forty-six semistructured in-depth interviews of individuals and couples participating in IVF programs. Two major southeastern academic medical centers. Fifty-three individuals, including 31 women, 8 men, and 7 couples. Qualitative analysis of interview transcripts. INTERVENTION (S): None. Seven broad themes informed participants' decisions about embryo disposition: family and personal issues, trust, definition of the embryo, prospective responsibility to the embryo, responsibility to society, adequacy of information, and lack of acceptable disposition options. Many wished for alternative options, such as a ceremony at the time of disposal or placement of embryos in the woman's body when pregnancy was unlikely. Recent debates regarding embryo disposition do not reflect the range of values that infertility patients consider when deciding about frozen embryos. In addition to questions about the embryo's moral status, decision making about embryos is informed by a range of factors in the lives of individuals who created them. These perspectives may have important implications for the content and timing of informed consent, facilitating embryo disposition, and advancing policy debates about the ethics of frozen embryo use.

  9. Fish embryos on land: terrestrial embryo deposition lowers oxygen uptake without altering growth or survival in the amphibious fish Kryptolebias marmoratus.

    Science.gov (United States)

    Wells, Michael W; Turko, Andy J; Wright, Patricia A

    2015-10-01

    Few teleost fishes incubate embryos out of water, but the oxygen-rich terrestrial environment could provide advantages for early growth and development. We tested the hypothesis that embryonic oxygen uptake is limited in aquatic environments relative to air using the self-fertilizing amphibious mangrove rivulus, Kryptolebias marmoratus, which typically inhabits hypoxic, water-filled crab burrows. We found that adult mangrove rivulus released twice as many embryos in terrestrial versus aquatic environments and that air-reared embryos had accelerated developmental rates. Surprisingly, air-reared embryos consumed 44% less oxygen and possessed larger yolk reserves, but attained the same mass, length and chorion thickness. Water-reared embryos moved their opercula ∼2.5 more times per minute compared with air-reared embryos at 7 days post-release, which probably contributed to the higher rates of oxygen uptake and yolk utilization we observed. Genetically identical air- and water-reared embryos from the same parent were raised to maturity, but the embryonic environment did not affect growth, reproduction or emersion ability in adults. Therefore, although aspects of early development were plastic, these early differences were not sustained into adulthood. Kryptolebias marmoratus embryos hatched out of water when exposed to aerial hypoxia. We conclude that exposure to a terrestrial environment reduces the energetic costs of development partly by reducing the necessity of embryonic movements to dispel stagnant boundary layers. Terrestrial incubation of young would be especially beneficial to amphibious fishes that occupy aquatic habitats of poor water quality, assuming low terrestrial predation and desiccation risks. © 2015. Published by The Company of Biologists Ltd.

  10. Nucleolar ultrastructure in bovine nuclear transfer embryos

    DEFF Research Database (Denmark)

    Kanka, J; Smith, S D; Soloy, E

    1999-01-01

    in nuclear morphology as a transformation of the nucleolus precursor body into a functional rRNA synthesising nucleolus with a characteristic ultrastructure. We examined nucleolar ultrastructure in bovine in vitro produced (control) embryos and in nuclear transfer embryos reconstructed from a MII phase...... at 1 hr after fusion and, by 3 hr after fusion, it was restored again. At this time, the reticulated fibrillo-granular nucleolus had an almost round shape. The nucleolar precursor body seen in the two-cell stage nuclear transfer embryos consisted of intermingled filamentous components and secondary...... time intervals after fusion. In the two-cell stage nuclear transfer embryo, the originally reticulated nucleolus of the donor blastomere had changed into a typical nucleolar precursor body consisting of a homogeneous fibrillar structure. A primary vacuole appeared in the four-cell stage nuclear...

  11. Can Chlamydia abortus be transmitted by embryo transfer in goats?

    Science.gov (United States)

    Oseikria, M; Pellerin, J L; Rodolakis, A; Vorimore, F; Laroucau, K; Bruyas, J F; Roux, C; Michaud, S; Larrat, M; Fieni, F

    2016-10-01

    The objectives of this study were to determine (i) whether Chlamydia abortus would adhere to or penetrate the intact zona pellucida (ZP-intact) of early in vivo-derived caprine embryos, after in vitro infection; and (ii) the efficacy of the International Embryo Transfer Society (IETS) washing protocol for bovine embryos. Fifty-two ZP-intact embryos (8-16 cells), obtained from 14 donors were used in this experiment. The embryos were randomly divided into 12 batches. Nine batches (ZP-intact) of five embryos were incubated in a medium containing 4 × 10(7)Chlamydia/mL of AB7 strain. After incubation for 18 hours at 37 °C in an atmosphere of 5% CO2, the embryos were washed in batches in 10 successive baths of a phosphate buffer saline and 5% fetal calf serum solution in accordance with IETS guidelines. In parallel, three batches of ZP-intact embryos were used as controls by being subjected to similar procedures but without exposure to C. abortus. The 10 wash baths were collected separately and centrifuged for 1 hour at 13,000 × g. The washed embryos and the pellets of the 10 centrifuged wash baths were frozen at -20 °C before examination for evidence of C. abortus using polymerase chain reaction. C. abortus DNA was found in all of the infected batches of ZP-intact embryos (9/9) after 10 successive washes. It was also detected in the 10th wash fluid for seven batches of embryos, whereas for the two other batches, the last positive wash bath was the eighth and the ninth, respectively. In contrast, none of the embryos or their washing fluids in the control batches were DNA positive. These results report that C. abortus adheres to and/or penetrates the ZP of in vivo caprine embryos after in vitro infection, and that the standard washing protocol recommended by the IETS for bovine embryos, failed to remove it. The persistence of these bacteria after washing makes the embryo a potential means of transmission of the bacterium during embryo transfer from

  12. Evaluation of treatments with hCG and carprofen at embryo transfer in a demi-embryo and recipient virgin heifer model.

    Science.gov (United States)

    Torres, A; Chagas E Silva, J; Diniz, P; Lopes-da-Costa, L

    2013-08-01

    An in vivo model, combining a low developmental competence embryo (demi-embryo) and a high-fertility recipient (virgin dairy heifer) was used to evaluate the effects of treatment with human chorionic gonadotropin (hCG) and carprofen at embryo transfer (ET) on plasma progesterone (P₄) concentrations of recipients and on embryonic growth and survival. Embryos were bisected and each demi-embryo was transferred to a recipient on Day 7 of the estrous cycle. At ET, heifers (n = 163) were randomly allocated to treatment with hCG (2500 IU im), carprofen (500 mg iv), hCG plus carprofen or to untreated controls. Plasma P₄ concentrations were measured on Days 0, 7, 14 and 21 of all recipients plus on Days 28, 42 and 63 of pregnant recipients. Pregnancy was presumed to be present in recipients with luteal plasma P4 concentrations until Day 21 and confirmed by using transrectal ultrasonography on Days 28, 42 and 63. Embryonic measurements (crown-rump length and width) were obtained on Day 42. Treatment with hCG induced formation of secondary corpora lutea (CL) in 97% of heifers and increased (P carprofen at ET had no significant effects on plasma P₄ concentrations and rate of embryo mortality. Treatment with hCG plus carprofen at ET induced formation of secondary CL in 90% of heifers but decreased the luteotrophic effect of hCG, resulting in no effect on embryo survival. Low developmental competence embryos showed an intrinsic deficiency in overcoming the maternal recognition of pregnancy challenge and in proceeding to further development until Day 28 of pregnancy, whereas mortality beyond this point was residual. Results on pregnancy rates should be confirmed in further experiments involving a larger sample size.

  13. The role of embryo movement in the development of the furcula.

    Science.gov (United States)

    Pollard, A S; Boyd, S; McGonnell, I M; Pitsillides, A A

    2017-03-01

    The pectoral girdle is a complex structure which varies in its morphology between species. A major component in birds is the furcula, which can be considered equivalent to a fusion of the paired clavicles found in many mammals, and the single interclavicle found in many reptiles. These elements are a remnant of the dermal skeleton and the only intramembranous bones in the trunk. Postnatally, the furcula plays important mechanical roles by stabilising the shoulder joint and acting as a mechanical spring during flight. In line with its mechanical role, previous studies indicate that, unlike many other intramembranous bones, furcula growth during development can be influenced by mechanical stimuli. This study investigated the response of individual aspects of furcula growth to both embryo immobilisation and hypermotility in the embryonic chicken. The impact of altered incubation temperature, which influences embryo motility, on crocodilian interclavicle development was also explored. We employed whole-mount bone and cartilage staining and 3D imaging by microCT to quantify the impact of rigid paralysis, flaccid paralysis and hypermobility on furcula growth in the chicken, and 3D microCT imaging to quantify the impact of reduced temperature (32-28 °C) and motility on interclavicle growth in the crocodile. This revealed that the growth rates of the clavicular and interclavicular components of the furcula differ during normal development. Total furcula area was reduced by total unloading produced by flaccid paralysis, but not by rigid paralysis which maintains static loading of embryonic bones. This suggests that dynamic loading, which is required for postnatal bone adaptation, is not a requirement for prenatal furcula growth. Embryo hypermotility also had no impact on furcula area or arm length. Furcula 3D shape did, however, differ between groups; this was marked in the interclavicular component of the furcula, the hypocleideum. Hypocleideum length was reduced by both

  14. Effects of UV-C irradiation on development of goldfish embryos

    International Nuclear Information System (INIS)

    Wu Jian; Dai Guifu; Zhang Fengqiu; Lu Lei

    2005-01-01

    Goldfish embryos at five different developmental stages, from fertilized eggs to heat beating stage, were irradiated by UV rays, and hatching rate, darkly pigmented eye rate and abnormal embryo rate of the irradiated embryos were investigated. Being subjected to very low amount (≤3 min.) of the UV irradiation, the embryos earlier than gastrula stage showed hormesis. However, the embryos at gastrula or heart beating stage were very sensitive to UV irradiation, showing just damage effect, which was very strong even at very low amount of the UV irradiation. The results also showed that development of the gastrula embryos irradiated by the UV rays stopped before darkly pigmented eye state, whereas embryos irradiated at heart beating stage by the UV rays could develop to the darkly pigmented eye stage, though they could not hatch out. (authors)

  15. No specific gene expression signature in human granulosa and cumulus cells for prediction of oocyte fertilisation and embryo implantation.

    Directory of Open Access Journals (Sweden)

    Tanja Burnik Papler

    Full Text Available In human IVF procedures objective and reliable biomarkers of oocyte and embryo quality are needed in order to increase the use of single embryo transfer (SET and thus prevent multiple pregnancies. During folliculogenesis there is an intense bi-directional communication between oocyte and follicular cells. For this reason gene expression profile of follicular cells could be an important indicator and biomarker of oocyte and embryo quality. The objective of this study was to identify gene expression signature(s in human granulosa (GC and cumulus (CC cells predictive of successful embryo implantation and oocyte fertilization. Forty-one patients were included in the study and individual GC and CC samples were collected; oocytes were cultivated separately, allowing a correlation with IVF outcome and elective SET was performed. Gene expression analysis was performed using microarrays, followed by a quantitative real-time PCR validation. After statistical analysis of microarray data, there were no significantly differentially expressed genes (FDR<0,05 between non-fertilized and fertilized oocytes and non-implanted and implanted embryos in either of the cell type. Furthermore, the results of quantitative real-time PCR were in consent with microarray data as there were no significant differences in gene expression of genes selected for validation. In conclusion, we did not find biomarkers for prediction of oocyte fertilization and embryo implantation in IVF procedures in the present study.

  16. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development.

    Science.gov (United States)

    Covassin, L D; Siekmann, A F; Kacergis, M C; Laver, E; Moore, J C; Villefranc, J A; Weinstein, B M; Lawson, N D

    2009-05-15

    In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development.

  17. Study of radio-restoration by various mineral salts and silice wich products (Tuf and Pouzzolane) of rice embryos (oryza-sativa L, Cigalon variety) exposed to cobalt 60 gamma rays

    International Nuclear Information System (INIS)

    Mouthia-Khadija.

    1981-12-01

    Mutagenic treatments produce a large number of mutants per unit time and are used for plant improvement. However these treatments cause damage to cells. To counteract this radio-induced damage 2 methods are being tried: - Protection, which consists in the supply of an active product before application of mutagenic agents; - Restoration, which tries to repair the damage after mutagenic treatment. This work is devoted to restoration processes. Technique for the isolation and culture on a suitable nutrient of rice embryos (oryza sativa L, Cigalon variety) separated from non-irradiated caryopses were developed first. By separating out the embryo in this way it is possible to study in vitro the interactions between the embryo and the rest of the caryopsis (albumin + pericarp). The effects of radiations on embryos from caryopses exposed to cobalt 60 gamma rays were measured next, then the action of certain inorganic elements contained in the caryopsis tissues was analysed. On the basis of the first results obtained the differences in response between plantlets from embryos irradiated or otherwise treated or not either by zinc sulphate or by very silice-rich volcanic products (Tuf and Pouzzolane), were examined by chemical analysis techniques. These tests have allowed the detection of ionic changes induced by irradiation during the different stages of plant development and led to a better estimate of the radio-restoration mechanisms brought about by the various chemical compounds used [fr

  18. Fusion of blastomeres in mouse embryos under the action of femtosecond laser radiation. Efficiency of blastocyst formation and embryo development

    Energy Technology Data Exchange (ETDEWEB)

    Osychenko, A A; Zalesskii, A D; Krivokharchenko, A S; Zhakhbazyan, A K; Nadtochenko, V A [N N Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow (Russian Federation); Ryabova, A V [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-05-31

    Using the method of femtosecond laser surgery we study the fusion of two-cell mouse embryos under the action of tightly focused femtosecond laser radiation with the fusion efficiency reaching 60%. The detailed statistical analysis of the efficiency of blastomere fusion and development of the embryo up to the blastocyst stage after exposure of the embryos from different mice to a femtosecond pulse is presented. It is shown that the efficiency of blastocyst formation essentially depends on the biological characteristics of the embryo, namely, the strain and age of the donor mouse. The possibility of obtaining hexaploid embryonal cells using the methods of femtosecond laser surgery is demonstrated. (extreme light fields and their applications)

  19. Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality.

    Science.gov (United States)

    Albrecht, Verónica; Ingenfeld, Anke; Apel, Klaus

    2006-03-01

    During seedling development chloroplast formation marks the transition from heterotrophic to autotrophic growth. The development and activity of chloroplasts may differ in cotyledons that initially serve as a storage organ and true leaves whose primary function is photosynthesis. A genetic screen was used for the identification of genes that affect selectively chloroplast function in cotyledons of Arabidopsis thaliana. Several mutants exhibiting pale cotyledons and green true leaves were isolated and dubbed snowy cotyledon (sco). One of the mutants, sco1, was characterized in more detail. The mutated gene was identified using map-based cloning. The mutant contains a point mutation in a gene encoding the chloroplast elongation factor G, leading to an amino acid exchange within the predicted 70S ribosome-binding domain. The mutation results in a delay in the onset of germination. At this early developmental stage embryos still contain undifferentiated proplastids, whose proper function seems necessary for seed germination. In light-grown sco1 seedlings the greening of cotyledons is severely impaired, whereas the following true leaves develop normally as in wild-type plants. Despite this apparent similarity of chloroplast development in true leaves of mutant and wild-type plants various aspects of mature plant development are also affected by the sco1 mutation such as the onset of flowering, the growth rate, and seed production. The onset of senescence in the mutant and the wild-type plants occurs, however, at the same time, suggesting that in the mutant this particular developmental step does not seem to suffer from reduced protein translation efficiency in chloroplasts.

  20. From stem cell to embryo without centrioles.

    Science.gov (United States)

    Stevens, Naomi R; Raposo, Alexandre A S F; Basto, Renata; St Johnston, Daniel; Raff, Jordan W

    2007-09-04

    Centrosome asymmetry plays a key role in ensuring the asymmetric division of Drosophila neural stem cells (neuroblasts [NBs]) and male germline stem cells (GSCs) [1-3]. In both cases, one centrosome is anchored close to a specific cortical region during interphase, thus defining the orientation of the spindle during the ensuing mitosis. To test whether asymmetric centrosome behavior is a general feature of stem cells, we have studied female GSCs, which divide asymmetrically, producing another GSC and a cystoblast. The cystoblast then divides and matures into an oocyte, a process in which centrosomes exhibit a series of complex behaviors proposed to play a crucial role in oogenesis [4-6]. We show that the interphase centrosome does not define spindle orientation in female GSCs and that DSas-4 mutant GSCs [7], lacking centrioles and centrosomes, invariably divide asymmetrically to produce cystoblasts that proceed normally through oogenesis-remarkably, oocyte specification, microtubule organization, and mRNA localization are all unperturbed. Mature oocytes can be fertilized, but embryos that cannot support centriole replication arrest very early in development. Thus, centrosomes are dispensable for oogenesis but essential for early embryogenesis. These results reveal that asymmetric centrosome behavior is not an essential feature of stem cell divisions.

  1. Blastocyst Development in a Single Medium Compared to Sequential Media: A Prospective Study With Sibling Oocytes.

    Science.gov (United States)

    Sfontouris, Ioannis A; Kolibianakis, Efstratios M; Lainas, George T; Petsas, George K; Tarlatzis, Basil C; Lainas, Trifon G

    2017-09-01

    The aim of the present study was to compare blastocyst formation rates after embryo culture in a single medium (Global) as compared to sequential media (ISM1/BlastAssist). In this prospective trial with sibling oocytes, 542 metaphase II (ΜΙΙ) oocytes from 31 women were randomly and equally divided to be fertilized and cultured to the blastocyst stage in either sequential media (ISM1/BlastAssist; n = 271 MII oocytes) or a single medium (Global; n = 271 MII oocytes). In both groups, embryos were cultured in an interrupted fashion with media changes on day 3. Embryo transfer was performed on day 5. Blastocyst formation rates on day 5 (61.7% ± 19.9% vs 37.0% ± 25.5%, P ISM1/BlastAssist, respectively. Fertilization rates, cleavage rates, and percentage of good quality embryos on day 3 were similar between Global and ISM1/BlastAssist, respectively. The percentages of good quality blastocysts (63.0% ± 24.8% vs 32.1% ± 37.2%, P ISM1/BlastAssist, respectively. In conclusion, culture in Global was associated with higher blastocyst formation rates compared to ISM1/BlastAssist, suggesting that the single medium may provide better support to the developing embryo.

  2. Purification of Escherichia coli L-asparaginase mutants by a native polyacrylamide gel electrophoresis.

    Science.gov (United States)

    Wei, Yujun; Chen, Jianhua; Jia, Ruibo; Wang, Min; Wu, Wutong

    2008-07-01

    The antigenicity of L-asaparaginase (L-ASP) has been problematic for the treatment of leukemia for many years. In order to establish a relationship between the antigenic epitope of L-asparaginase and its antigenicity, several L-asparaginase mutants (mL-ASPs) are constructed and expressed. To effectively purify these enzyme mutants for further investigation, a native preparative polyacrylamide gel electrophoresis is developed. The simplicity and reproducibility of this approach permits the purification of different mutants from the crude enzyme extracts, with a sufficient activity to perform immunological and biological studies. Furthermore, the newly developed method is efficient and cost-effective compared with other methods, such as column chromatography and affinity chromatography. As a result, the enzyme mutants with specific activity of 300 approximately 400 U/mg are obtained by the single-step purification with a high degree of purity.

  3. Construction and functional analysis of Trichoderma harzianum mutants that modulate maize resistance to the pathogen Curvularia lunata.

    Science.gov (United States)

    Fan, Lili; Fu, Kehe; Yu, Chuanjin; Ma, Jia; Li, Yaqian; Chen, Jie

    2014-01-01

    Agrobacterium tumefaciens-mediated transformation (ATMT) was used to generate an insertional mutant library of the mycelial fungus Trichoderma harzianum. From a total of 450 mutants, six mutants that showed significant influence on maize resistance to C. lunata were analyzed in detail. Maize coated with these mutants was more susceptible to C. lunata compared with those coated with a wild-type (WT) strain. Similar to other fungal ATMT libraries, all six mutants were single copy integrations, which occurred preferentially in noncoding regions (except two mutants) and were frequently accompanied by the loss of border sequences. Two mutants (T66 and T312) that were linked to resistance were characterized further. Maize seeds coated with T66 and T312 were more susceptible to C. lunata than those treated with WT. Moreover, the mutants affected the resistance of maize to C. lunata by enhancing jasmonate-responsive gene expression. T66 and T312 induced maize resistance to C. lunata infection through a jasmonic acid-dependent pathway.

  4. Is auxin involved in the induction of genetic instability in barley homeotic double mutants?

    Science.gov (United States)

    Šiukšta, Raimondas; Vaitkūnienė, Virginija; Rančelis, Vytautas

    2018-02-01

    The triggers of genetic instability in barley homeotic double mutants are tweaky spike -type mutations associated with an auxin imbalance in separate spike phytomeres. Barley homeotic tweaky spike;Hooded (tw;Hd) double mutants are characterized by an inherited instability of spike and flower development, which is absent in the single parental constituents. The aim of the present study was to show that the trigger of genetic instability in the double mutants is the tw mutations, which are associated with an auxin imbalance in the developing spikes. Their pleiotropic effects on genes related to spike/flower development may cause the genetic instability of double mutants. The study of four double-mutant groups composed of different mutant alleles showed that the instability arose only if the mutant allele tw was a constituent of the double mutants. Application of auxin inhibitors and 2,4-dichlorophenoxyacetic acid (2,4-D) demonstrated the relationship of the instability of the double mutants and the phenotype of the tw mutants to auxin imbalance. 2,4-D induced phenocopies of the tw mutation in wild-type plants and rescued the phenotypes of three allelic tw mutants. The differential display (dd-PCR) method allowed the identification of several putative candidate genes in tw that may be responsible for the initiation of instability in the double mutants by pleiotropic variations of their expression in the tw mutant associated with auxin imbalance in the developing spikes. The results of the present study linked the genetic instability of homeotic double mutants with an auxin imbalance caused by one of the constituents (tw). The genetic instability of the double mutants in relation to auxin imbalance was studied for the first time. A matrocliny on instability expression was also observed.

  5. Drosophila brakeless interacts with atrophin and is required for tailless-mediated transcriptional repression in early embryos.

    Science.gov (United States)

    Haecker, Achim; Qi, Dai; Lilja, Tobias; Moussian, Bernard; Andrioli, Luiz Paulo; Luschnig, Stefan; Mannervik, Mattias

    2007-06-01

    Complex gene expression patterns in animal development are generated by the interplay of transcriptional activators and repressors at cis-regulatory DNA modules (CRMs). How repressors work is not well understood, but often involves interactions with co-repressors. We isolated mutations in the brakeless gene in a screen for maternal factors affecting segmentation of the Drosophila embryo. Brakeless, also known as Scribbler, or Master of thickveins, is a nuclear protein of unknown function. In brakeless embryos, we noted an expanded expression pattern of the Krüppel (Kr) and knirps (kni) genes. We found that Tailless-mediated repression of kni expression is impaired in brakeless mutants. Tailless and Brakeless bind each other in vitro and interact genetically. Brakeless is recruited to the Kr and kni CRMs, and represses transcription when tethered to DNA. This suggests that Brakeless is a novel co-repressor. Orphan nuclear receptors of the Tailless type also interact with Atrophin co-repressors. We show that both Drosophila and human Brakeless and Atrophin interact in vitro, and propose that they act together as a co-repressor complex in many developmental contexts. We discuss the possibility that human Brakeless homologs may influence the toxicity of polyglutamine-expanded Atrophin-1, which causes the human neurodegenerative disease dentatorubral-pallidoluysian atrophy (DRPLA).

  6. Msx homeobox genes critically regulate embryo implantation by controlling paracrine signaling between uterine stroma and epithelium.

    Science.gov (United States)

    Nallasamy, Shanmugasundaram; Li, Quanxi; Bagchi, Milan K; Bagchi, Indrani C

    2012-01-01

    The mammalian Msx homeobox genes, Msx1 and Msx2, encode transcription factors that control organogenesis and tissue interactions during embryonic development. We observed overlapping expression of these factors in uterine epithelial and stromal compartments of pregnant mice prior to embryo implantation. Conditional ablation of both Msx1 and Msx2 in the uterus resulted in female infertility due to a failure in implantation. In these mutant mice (Msx1/2(d/d)), the uterine epithelium exhibited persistent proliferative activity and failed to attach to the embryos. Gene expression profiling of uterine epithelium and stroma of Msx1/2(d/d) mice revealed an elevated expression of several members of the Wnt gene family in the preimplantation uterus. Increased canonical Wnt signaling in the stromal cells activated β-catenin, stimulating the production of a subset of fibroblast growth factors (FGFs) in these cells. The secreted FGFs acted in a paracrine manner via the FGF receptors in the epithelium to promote epithelial proliferation, thereby preventing differentiation of this tissue and creating a non-receptive uterus refractory to implantation. Collectively, these findings delineate a unique signaling network, involving Msx1/2, Wnts, and FGFs, which operate in the uterus at the time of implantation to control the mesenchymal-epithelial dialogue critical for successful establishment of pregnancy.

  7. Adjustments in cholinergic, adrenergic and purinergic control of cardiovascular function in snapping turtle embryos (Chelydra serpentina) incubated in chronic hypoxia.

    Science.gov (United States)

    Eme, John; Rhen, Turk; Crossley, Dane A

    2014-10-01

    Adenosine is an endogenous nucleoside that acts via G-protein coupled receptors. In vertebrates, arterial or venous adenosine injection causes a rapid and large bradycardia through atrioventricular node block, a response mediated by adenosine receptors that inhibit adenylate cyclase and decrease cyclic AMP concentration. Chronic developmental hypoxia has been shown to alter cardioregulatory mechanisms in reptile embryos, but adenosine's role in mediating these responses is not known. We incubated snapping turtle embryos under chronic normoxic (N21; 21 % O2) or chronic hypoxic conditions (H10; 10 % O2) beginning at 20 % of embryonic incubation. H10 embryos at 90 % of incubation were hypotensive relative to N21 embryos in both normoxic and hypoxic conditions. Hypoxia caused a hypotensive bradycardia in both N21 and H10 embryos during the initial 30 min of exposure; however, f H and P m both trended towards increasing during the subsequent 30 min, and H10 embryos were tachycardic relative to N21 embryos in hypoxia. Following serial ≥1 h exposure to normoxic and hypoxic conditions, a single injection of adenosine (1 mg kg(-1)) was given. N21 and H10 embryos responded to adenosine injection with a rapid and large hypotensive bradycardia in both normoxia and hypoxia. Gene expression for adenosine receptors were quantified in cardiac tissue, and Adora1 mRNA was the predominant receptor subtype with transcript levels 30-82-fold higher than Adora2A or Adora2B. At 70 % of incubation, H10 embryos had lower Adora1 and Adora2B expression compared to N21 embryos. Expression of Adora1 and Adora2B decreased in N21 embryos during development and did not differ from H10 embryos at 90 % of incubation. Similar to previous results in normoxia, H10 embryos in hypoxia were chronically tachycardic compared to N21 embryos before and after complete cholinergic and adrenergic blockade. Chronic hypoxia altered the development of normal cholinergic and adrenergic tone, as well as

  8. Predator recognition in rainbowfish, Melanotaenia duboulayi, embryos.

    Directory of Open Access Journals (Sweden)

    Lois Jane Oulton

    Full Text Available Exposure to olfactory cues during embryonic development can have long term impacts on birds and amphibians behaviour. Despite the vast literature on predator recognition and responses in fishes, few researchers have determined how fish embryos respond to predator cues. Here we exposed four-day-old rainbowfish (Melanotaenia duboulayi embryos to cues emanating from a novel predator, a native predator and injured conspecifics. Their response was assessed by monitoring heart rate and hatch time. Results showed that embryos have an innate capacity to differentiate between cues as illustrated by faster heart rates relative to controls. The greatest increase in heart rate occurred in response to native predator odour. While we found no significant change in the time taken for eggs to hatch, all treatments experienced slight delays as expected if embryos are attempting to reduce exposure to larval predators.

  9. Precocious germination and its regulation in embryos of triticale caryopses

    Directory of Open Access Journals (Sweden)

    Stanisław Weidner

    2014-01-01

    Full Text Available Triticale var. Lasko embryos, isolated from grain gathered at milk ripeness, the beginning of wax ripeness and at full ripeness, were allowed to germinate for 48 h on agar with glucose. The highest incorporation of tritiated adenosine into polyribosomal RNA during germination was found in the ribosome fractions from embryos of grain gathered at full ripeness, lower incorporation was in preparations from embryos of milk ripe grain and the lowest in preparations from embryos of wax ripe grain. Different tendencies were observed in respect to the synthesis of ribosomal proteins. The highest incorporation of 14C-amino acids into ribosomal proteins was found in preparations of ribosome fractions from embryos of milk ripe grain, lower in preparations of embryos from fully ripe grain, the lowest in preparations of embryos from wax ripe grain. ABA (10-4 M completely inhibited the external symptoms of germination of immature embryos, while its inhibition of the synthesis of polyribosomal RNA and ribosomal proteins was greater the more mature the embryos that were germinated. The greatest stimulation of precocious germination by exogenous BA and GA3 was demonstrated in the least mature embryos isolated from milk ripe grain. Under the influence of both stimulators, an increase of the proportion of polyribosomes in the total ribosome fraction occurred in this sample, as did a rise in the intensity of ribosomal protein synthesis. The incorporation of 3H-adenosine into polyribosomal RNA, however, was lower than in the control sample. The results obtained suggest that the regulation of precocious germination of triticale embryos by phyto-hormones is not directly related to transcription.

  10. Culture of bovine embryos on a polydimethylsiloxane (PDMS) microwell plate.

    Science.gov (United States)

    Akagi, Satoshi; Hosoe, Misa; Matsukawa, Kazutsugu; Ichikawa, Akihiko; Tanikawa, Tamio; Takahashi, Seiya

    2010-08-01

    We fabricated a polydimethylsiloxane (PDMS)-based microwell plate (PDMS-MP) containing 100 microwells with a rounded bottom and examined whether it can be used for culture of individual in vitro fertilized (IVF) embryos or parthenogenetically activated zona-free embryos in cattle. In Experiment 1, we examined the in vitro developmental ability of IVF embryos cultured individually on PDMS-MP. After IVF, 20 embryos were transferred into 100 microl drops on PDMS-MP and cultured individually in each well of PDMS-MP (PDMS group). After 7 days of culture, the embryos in the PDMS group developed to the blastocyst stage at the same rate of those in the control group cultured in a group of 20 embryos without PDMS-MP. There were no differences in total number of cells and the ratio of inner cell mass to total cells between the PDMS and control groups. In Experiment 2, we examined the in vitro developmental ability of parthenogenetically activated zona-free bovine embryos cultured individually on PDMS-MP. The zona-free embryos were cultured individually in each well of a PDMS-MP or in each well produced by pressing a darning needle onto the bottom of a culture dish (WOW group). After 7 days of culture, the blastocyst formation rate and cell number of blastocysts in the PDMS group did not differ from those of the zona-intact embryos in the control group. Also, there were no differences in the blastocyst formation rate and cell number of blastocysts between the WOW and PDMS groups. These results suggest that the culture system using PDMS-MP is useful for individual embryos or zona-free embryos in cattle.

  11. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. | Office of Cancer Genomics

    Science.gov (United States)

    A widespread approach to modern cancer therapy is to identify a single oncogenic driver gene and target its mutant-protein product (for example, EGFR-inhibitor treatment in EGFR-mutant lung cancers). However, genetically driven resistance to targeted therapy limits patient survival. Through genomic analysis of 1,122 EGFR-mutant lung cancer cell-free DNA samples and whole-exome analysis of seven longitudinally collected tumor samples from a patient with EGFR-mutant lung cancer, we identified critical co-occurring oncogenic events present in most advanced-stage EGFR-mutant lung cancers.

  12. Ultrastructural changes in goat interspecies and intraspecies reconstructed early embryos

    DEFF Research Database (Denmark)

    Tao, Yong; Gheng, Lizi; Zhang, Meiling

    2008-01-01

    and dispered gradually from the 4-cell period. The nucleolus of GC and GG embryos changed from electron dense to a fibrillo-granular meshwork at the 16-cell stage, showing that nucleus function in the reconstructed embryos was activated. The broken nuclear envelope and multiple nucleoli in one blastomere......- and intraspecies reconstructed embryos have a similar pattern of developmental change to that of in vivo-produced embryos for ZP, rough ER, Gi and nucleolus, but differ for mitochondria, LD, vesicles, nucleus and gap junction development. In particular, the interspecies cloned embryos showed more severe...

  13. Genetic control of some morphological mutants in sunflower [Helianthus annuus L.

    International Nuclear Information System (INIS)

    Nabipour, A.; Sarrafi, A.; Yazdi-Samadi, B.

    2004-01-01

    Inheritance study of induced mutants is an important tool in genetic and breeding programs. Sunflower is one of the most important oil crops for which mutant collection is meager. Seeds of sunflower line AS-613 were irradiated with gamma rays and mutant phenotypes were traced until M4 generation. In M5 generation, the following traits were studied: dwarfing, branching, leaf shape, albinism, rosette, lack of apex and alternative leaves. In most cases, the mutated characters were controlled by a single recessive gene, while in two cases they were controlled by two recessive genes. In M5 progenies, segregation for two albino, one alternative leaves, one dwarfism, 5 branching, one rosette, 2 lacks of apex and 5 leaf shape mutants was recorded. Amongst five cases of branching, one was controlled by two recessive genes, where at least one homozygote recessive locus was necessary for branching. In one case, the lack of apex was controlled by two recessive genes and even only one dominant allele could provoke the normal plant [it

  14. Detection of programmed cell death in plant embryos.

    Science.gov (United States)

    Filonova, Lada H; Suárez, María F; Bozhkov, Peter V

    2008-01-01

    Programmed cell death (PCD) is an integral part of embryogenesis. In plant embryos, PCD functions during terminal differentiation and elimination of the temporary organ, suspensor, as well as during establishment of provascular system. Embryo abortion is another example of embryonic PCD activated at pathological situations and in polyembryonic seeds. Recent studies identified the sequence of cytological events leading to cellular self-destruction in plant embryos. As in most if not all the developmental cell deaths in plants, embryonic PCD is hallmarked by autophagic degradation of the cytoplasm and nuclear disassembly that includes breakdown of the nuclear envelope and DNA fragmentation. The optimized setup of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) allows the routine in situ analysis of nuclear DNA fragmentation in plant embryos. This chapter provides step-by-step procedure of how to process embryos for TUNEL and how to combine TUNEL with immunolocalization of the protein of interest.

  15. Synthesis, purification, and characterization of an Arg152 → Glu site-directed mutant of recombinant human blood clotting factor VII

    International Nuclear Information System (INIS)

    Wildgoose, P.; Kisiel, W.; Berkner, K.L.

    1990-01-01

    Coagulation factor VII circulates in blood as a single-chain zymogen of a serine protease and is converted to its activated two-chain form, factor VIIa, by cleavage of an internal peptide bond located at Arg 152 -Ile 153 . Previous studies using serine protease active-site inhibitors suggest that zymogen factor VII may possess sufficient proteolytic activity to initiate the extrinsic pathway of blood coagulation. In order to assess the putative intrinsic proteolytic activity of single-chain factor VII, the authors have constructed a site-specific mutant of recombinant human factor VII in which arginine-152 has been replaced with a glutamic acid residue. Mutant factor VII was purified in a single step from culture supernatants of baby hamster kidney cells transfected with a plasmid containing the sequence for Arg 152 → Glu factor VII using a calcium-dependent, murine anti-factor VII monoclonal antibody column. The clotting activity of mutant factor VII was completely inhibited following incubation with dansyl-Glu-Gly-Arg chloromethyl ketone, suggesting that the apparent clotting activity of mutant factor VII was due to a contaminating serine protease. Immunoblots of mutant factor VII with human factor IXa revealed no cleavage, whereas incubation of mutant factor VII with human factor Xa resulted in cleavage of mutant factor VII and the formation of a lower molecular weight degradation product migrating at M r ∼40 000. The results are consistent with the proposal that zymogen factor VII possesses no intrinsic proteolytic activity toward factor X or factor IX

  16. Comparison of transcriptomic landscapes of bovine embryos using RNA-Seq

    Directory of Open Access Journals (Sweden)

    Khatib Hasan

    2010-12-01

    Full Text Available Abstract Background Advances in sequencing technologies have opened a new era of high throughput investigations. Although RNA-seq has been demonstrated in many organisms, no study has provided a comprehensive investigation of the bovine transcriptome using RNA-seq. Results In this study, we provide a deep survey of the bovine embryonic transcriptomes, the first application of RNA-seq in cattle. Embryos cultured in vitro were used as models to study early embryonic development in cattle. RNA amplified from limited amounts of starting total RNA were sequenced and mapped to the reference genome to obtain digital gene expression at single base resolution. In particular, gene expression estimates from more than 1.6 million unannotated bases in 1785 novel transcribed units were obtained. We compared the transcriptomes of embryos showing distinct developmental statuses and found genes that showed differential overall expression as well as alternative splicing. Conclusion Our study demonstrates the power of RNA-seq and provides further understanding of bovine preimplantation embryonic development at a fine scale.

  17. A novel p53 mutational hotspot in skin tumors from UV-irradiated Xpc mutant mice alters transactivation functions.

    Science.gov (United States)

    Inga, Alberto; Nahari, Dorit; Velasco-Miguel, Susana; Friedberg, Errol C; Resnick, Michael A

    2002-08-22

    A mutation in codon 122 of the mouse p53 gene resulting in a T to L amino acid substitution (T122-->L) is frequently associated with skin cancer in UV-irradiated mice that are both homozygous mutant for the nucleotide excision repair (NER) gene Xpc (Xpc(-/-)) and hemizygous mutant for the p53 gene. We investigated the functional consequences of the mouse T122-->L mutation when expressed either in mammalian cells or in the yeast Saccharomyces cerevisiae. Similar to a non-functional allele, high expression of the T122-->L allele in p53(-/-) mouse embryo fibroblasts and human Saos-2 cells failed to suppress growth. However, the T122-->L mutant p53 showed wild-type transactivation levels with Bax and MDM2 promoters when expressed in either cell type and retained transactivation of the p21 and the c-Fos promoters in one cell line. Using a recently developed rheostatable p53 induction system in yeast we assessed the T122-->L transactivation capacity at low levels of protein expression using 12 different p53 response elements (REs). Compared to wild-type p53 the T122-->L protein manifested an unusual transactivation pattern comprising reduced and enhanced activity with specific REs. The high incidence of the T122-->L mutant allele in the Xpc(-/-) background suggests that both genetic and epigenetic conditions may facilitate the emergence of particular functional p53 mutations. Furthermore, the approach that we have taken also provides for the dissection of functions that may be retained in many p53 tumor alleles.

  18. Sex determination of duck embryos: observations on syrinx development

    Science.gov (United States)

    Wilson, Robert E.; Sonsthagen, Sarah A.; Franson, J. Christian

    2013-01-01

    Ducks exhibit sexual dimorphism in vocal anatomy. Asymmetrical ossification of the syrinx (bulla syringealis) is discernable at about 10 days of age in male Pekin duck (Anas platyrhynchos domestica) embryos, but information is lacking on the early development of the bulla in wild ducks. To evaluate the reliability of this characteristic for sexing developing embryos, we examined the syrinx of dead embryos and compared results with molecular sexing techniques in high arctic nesting Common Eiders (Somateria mollissima). Embryos 8 days or older were accurately (100%) sexed based on the presence/absence of a bulla, 2 days earlier than Pekin duck. The use of the tracheal bulla can be a valuable technique when sex identification of embryos or young ducklings is required.

  19. An extra early mutant of pigeonpea

    International Nuclear Information System (INIS)

    Ravikesavan, R.; Kalaimagal, T.; Rathnaswamy, R.

    2001-01-01

    The redgram (Cajanus cajan (L.) Huth) variety 'Prabhat DT' was gamma irradiated with 100, 200, 300 and 400 Gy doses. Several mutants have been identified viz., extra early mutants, monostem mutants, obcordifoliate mutants and bi-stigmatic mutants. The extra early mutant was obtained when treated with 100 Gy dose. The mutant was selfed and forwarded from M 2 to M 4 generation. In the M 4 generation the mutant line was raised along with the parental variety. Normal cultural practices were followed and the biometrical observations were recorded. It was observed that for the characters viz., total number of branches per plant, number of pods per plants, seeds per pod, 100 seed weight and seed yield per plant there was no difference between the mutant and parent variety. Whereas, regarding the days to flowering and maturity the mutants were earlier than the parents. The observation was recorded from two hundred plants each. The mutant gives the same yield in 90 days as that of the parent variety in 107 days, which make it an economic mutant

  20. Pregnancy and Multiple Births rate after Transferring 2 or 3 Embryos

    Directory of Open Access Journals (Sweden)

    F Mostajeran

    2006-05-01

    Full Text Available Background: In vitro fertilization (IVF is a progressing common reproduction method and if the number of transferred embryo increases, the pregnancy rate and multiple pregnancies will increase which may lead to higher medical costs and human suffering. We compared pregnancy and multiple pregnancies rate after two or three transferred embryo via IVF. Methods: From April 2003 to June 2004, 301 referred infertile women to Isfahan infertility center underwent IVF with transferring two or three good quality embryos. Results: From 298 patients, 2 and 3 embryos were transferred in 155 patients and in 143 patients, respectively. Pregnancy rate was 19.4% versus 24.5% in 2 and 3 embryos transferred patients, respectively. Twin gestations were found in 5(3.2% of 2 embryos transferred patients and in 11(7.7% of 3 embryos transferred patients. Discussion: Transferring two or three embryos with good quality increase the rate of twin gestations in young women, without significant improve in the chance of singleton conception. Key words: In Vitro Fertilization, Multiple gestations, Embryo transfer

  1. Self-Organization of Genome Expression from Embryo to Terminal Cell Fate: Single-Cell Statistical Mechanics of Biological Regulation

    Directory of Open Access Journals (Sweden)

    Alessandro Giuliani

    2017-12-01

    Full Text Available A statistical mechanical mean-field approach to the temporal development of biological regulation provides a phenomenological, but basic description of the dynamical behavior of genome expression in terms of autonomous self-organization with a critical transition (Self-Organized Criticality: SOC. This approach reveals the basis of self-regulation/organization of genome expression, where the extreme complexity of living matter precludes any strict mechanistic approach. The self-organization in SOC involves two critical behaviors: scaling-divergent behavior (genome avalanche and sandpile-type critical behavior. Genome avalanche patterns—competition between order (scaling and disorder (divergence reflect the opposite sequence of events characterizing the self-organization process in embryo development and helper T17 terminal cell differentiation, respectively. On the other hand, the temporal development of sandpile-type criticality (the degree of SOC control in mouse embryo suggests the existence of an SOC control landscape with a critical transition state (i.e., the erasure of zygote-state criticality. This indicates that a phase transition of the mouse genome before and after reprogramming (immediately after the late 2-cell state occurs through a dynamical change in a control parameter. This result provides a quantitative open-thermodynamic appreciation of the still largely qualitative notion of the epigenetic landscape. Our results suggest: (i the existence of coherent waves of condensation/de-condensation in chromatin, which are transmitted across regions of different gene-expression levels along the genome; and (ii essentially the same critical dynamics we observed for cell-differentiation processes exist in overall RNA expression during embryo development, which is particularly relevant because it gives further proof of SOC control of overall expression as a universal feature.

  2. Genome-scale metabolic model of the fission yeast Schizosaccharomyces pombe and the reconciliation of in silico/in vivo mutant growth

    Science.gov (United States)

    2012-01-01

    Background Over the last decade, the genome-scale metabolic models have been playing increasingly important roles in elucidating metabolic characteristics of biological systems for a wide range of applications including, but not limited to, system-wide identification of drug targets and production of high value biochemical compounds. However, these genome-scale metabolic models must be able to first predict known in vivo phenotypes before it is applied towards these applications with high confidence. One benchmark for measuring the in silico capability in predicting in vivo phenotypes is the use of single-gene mutant libraries to measure the accuracy of knockout simulations in predicting mutant growth phenotypes. Results Here we employed a systematic and iterative process, designated as Reconciling In silico/in vivo mutaNt Growth (RING), to settle discrepancies between in silico prediction and in vivo observations to a newly reconstructed genome-scale metabolic model of the fission yeast, Schizosaccharomyces pombe, SpoMBEL1693. The predictive capabilities of the genome-scale metabolic model in predicting single-gene mutant growth phenotypes were measured against the single-gene mutant library of S. pombe. The use of RING resulted in improving the overall predictive capability of SpoMBEL1693 by 21.5%, from 61.2% to 82.7% (92.5% of the negative predictions matched the observed growth phenotype and 79.7% the positive predictions matched the observed growth phenotype). Conclusion This study presents validation and refinement of a newly reconstructed metabolic model of the yeast S. pombe, through improving the metabolic model’s predictive capabilities by reconciling the in silico predicted growth phenotypes of single-gene knockout mutants, with experimental in vivo growth data. PMID:22631437

  3. Response of the pearly eye melon fly Bactrocera cucurbitae (Coquillett)(Diptera:Tephritidae) mutant to host-associated visual cues

    Science.gov (United States)

    We report on a pearly eye mutant (PEM) line generated from a single male Bactrocera cucurbitae collected in Kapoho, Hawaii. Crossing experiments with colony wild-type flies indicate that the locus controlling this trait is autosomal and the mutant allele is recessive. Experiments with females to ass...

  4. Bovine in vitro embryo production : An overview

    Directory of Open Access Journals (Sweden)

    V. S. Suthar

    Full Text Available Dairy industry perfected the application of the first reproductive biotechnology, i.e. artificial insemination (AI - a great success story and also remains the user of embryo transfer technology (ETT. In addition, recently the researchers taking interest to embraced the field of Transvaginal OocyteRecovery (TVOR and in vitro production (IVEP of embryos. IVF provides the starting point for the generation of reproductive material for a number of advanced reproduction techniques including sperm microinjection and nuclear transfer (cloning. In several countries commercial IVF facilities are already being employed by cattle ET operators. Various research groups have reported on modification of TVOR technique to give greater efficiency. Much research is still needed in domestic animal (Especially Indian species on mechanisms controlling embryo development and on development of totally in vitro system for embryo culture. [Vet World 2009; 2(12.000: 478-479`

  5. p21-ras effector domain mutants constructed by "cassette" mutagenesis

    DEFF Research Database (Denmark)

    Stone, J C; Vass, W C; Willumsen, B M

    1988-01-01

    A series of mutations encoding single-amino-acid substitutions within the v-rasH effector domain were constructed, and the ability of the mutants to induce focal transformation of NIH 3T3 cells was studied. The mutations, which spanned codons 32 to 40, were made by a "cassette" mutagenesis...

  6. The impact of preimplantation genetic diagnosis on human embryos

    Directory of Open Access Journals (Sweden)

    García-Ferreyra J.

    2016-12-01

    Full Text Available Chromosome abnormalities are extremely common in human oocytes and embryos and are associated with a variety of negative outcomes for both natural cycles and those using assisted reproduction techniques. Aneuploidies embryos may fail to implant in the uterus, miscarry, or lead to children with serious medical problems (e.g., Down syndrome. Preimplantation genetic diagnosis (PGD is a technique that allows the detection of aneuploidy in embryos and seeks to improve the clinical outcomes od assisted reproduction treatments, by ensuring that the embryos chosen for the transfer are chromosomally normal.

  7. Artificial intelligence techniques for embryo and oocyte classification.

    Science.gov (United States)

    Manna, Claudio; Nanni, Loris; Lumini, Alessandra; Pappalardo, Sebastiana

    2013-01-01

    One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally subjective. Recently, due to the rapid growth in the capacity to extract texture descriptors from a given image, a growing interest has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. This work concentrates the efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of assisted reproduction technology, starting from their images. The artificial intelligence system proposed in this work is based on a set of Levenberg-Marquardt neural networks trained using textural descriptors (the local binary patterns). The proposed system was tested on two data sets of 269 oocytes and 269 corresponding embryos from 104 women and compared with other machine learning methods already proposed in the past for similar classification problems. Although the results are only preliminary, they show an interesting classification performance. This technique may be of particular interest in those countries where legislation restricts embryo selection. One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally subjective. Recently, due to the rapid growth in our capacity to extract texture descriptors from a given image, a growing interest has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. In this work, we concentrate our efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of assisted reproduction technology

  8. Expression of proposed implantation marker genes CDX2 and HOXB7 in the blastocyst does not distinguish viable from non-viable human embryos

    DEFF Research Database (Denmark)

    Kirkegaard, Kirstine; Hindkjær, Johnny Juhl; Ingerslev, Hans Jakob

    2012-01-01

    expression differs between viable and non-viable embryos in both human and non-humans, suggesting transcriptome analysis of trophectoderm (TE) as a novel method of improving embryo selection. Potential candidate marker genes have been identified with array studies on animal blastocysts. The aim of this study...... was to investigate the expression of selected genes in human blastocysts in relation to the outcome of implantation. Materials and methods: Embryos from 10 oatients undergoing in vitro fertilization treatment were included in the project. A single blastocyst was chosen for biopsy on the morning of day 5 after oocyte...... of 15 key genes associated with developmental competence in animals were evaluated in high quality human embryos with monogenic or chromosomal disorders from a pre-implantation genetic disorder program. Triplicate cDNA amplifications for quantitative (q) RT-PCR were performed using pre-designed gene...

  9. Assessment of human embryo development using morphological criteria in an era of time-lapse, algorithms and 'OMICS': is looking good still important?

    Science.gov (United States)

    Gardner, David K; Balaban, Basak

    2016-10-01

    With the worldwide move towards single embryo transfer there has been a renewed focus on the requirement for reliable means of assessing embryo viability. In an era of 'OMICS' technologies, and algorithms created through the use of time-lapse microscopy, the actual appearance of the human embryo as it progresses through each successive developmental stage to the blastocyst appears to have been somewhat neglected in recent years. Here we review the key features of the human preimplantation embryo and consider the relationship between morphological characteristics and developmental potential. Further, the impact of the culture environment on morphological traits, how key morphological qualities reflect aspects of embryo physiology, and how computer-assisted analysis of embryo morphology may facilitate a more quantitative approach to selection are discussed. The clinical introduction of time-lapse systems has reopened our eyes and given us a new vantage point from which to view the beauty of the initial stages of human life. Rather than a future in which the morphology of the embryo is deemed irrelevant, we propose that key features, such as multinucleation, cell size and blastocyst differentiation should be included in future iterations of selection/deselection algorithms. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved.For Permissions, please email: journals.permissions@oup.com.

  10. Shaping the norms that regulate international commerce of embryos.

    Science.gov (United States)

    Gard, Julie A; Stringfellow, David A

    2014-01-01

    As various embryo technologies in livestock were developed and evolved to a state of usefulness over the past 40 years, scientists with a specific interest in infectious diseases sought to determine the epidemiologic consequences of movement, especially international movement, of increasing numbers of embryos. Many of the foundational studies in this area were reported in Theriogenology, beginning in the 1970s and especially throughout the 1980s and 1990s. Unquestionably, Theriogenology has been a widely used venue for dissemination of basic information on this subject, which ultimately led to the development of the now universally accepted techniques for certification of embryo health. Today it is well-recognized that movement in commerce of embryos, especially in vivo-derived embryos, is a very low-risk method for exchange of animal germ plasm. This paper chronicles the evolution of strategies for health certification of embryos. An overview is provided of the calculated efforts of practitioners, scientists, and regulators to organize, forge necessary partnerships, stimulate needed research, provide purposeful analysis of the results, and, through these processes, guarantee the universal acceptance of efficient protocols for certifying the health of embryos intended for movement in international commerce. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Brachyury expression in tailless Molgulid ascidian embryos.

    Science.gov (United States)

    Takada, Norio; York, Jonathan; Davis, J Muse; Schumpert, Brenda; Yasuo, Hitoyoshi; Satoh, Nori; Swalla, Billie J

    2002-01-01

    The T-box transcription factor gene Brachyury is important for the differentiation of notochord in all chordates, including the ascidians Halocynthia roretzi and Ciona intestinalis. We isolated Brachyury from molgulid ascidians, which have evolved tailless larvae multiple times independently, and found the genes appear functional by cDNA sequence analyses. We then compared the expression of Mocu-Bra in tailed Molgula oculata embryos to two tailless species, Molgula occulta (Mocc-Bra) and Molgula tectiformis (Mt-Bra). Here we show that both tailless species express Brachyury in the notochord lineage during embryogenesis. Initial expression of Mocu-Bra is normal in tailed M. oculata embryos; 10 precursor notochord cells divide twice to result in 40 notochord cells that converge and extend to make a notochord down the center of the tail. In contrast, in tailless Molgula occulta, Mocc-Bra expression disappears prematurely, and there is only one round of division, resulting in 20 cells in the final notochord lineage that never converge or extend. In M. occulta x M. oculata hybrid embryos, expression of Mocu-Bra is prolonged, and the embryos form a tail with 20 notochord cells that converge and extend normally. However, in Molgula tectiformis, a different tailless ascidian, Mt-Bra was expressed only in the 10 notochord precursor cells, which never divide, converge, or extend. In summary, neither Brachyury function nor the early establishment of the notochord lineage appears to be impaired in tailless embryos. In light of these results, we are continuing to investigate how and why notochord development is lost in tailless molgulid ascidian embryos.

  12. Cryopreservation of mouse embryos by ethylene glycol-based vitrification.

    Science.gov (United States)

    Mochida, Keiji; Hasegawa, Ayumi; Taguma, Kyuichi; Yoshiki, Atsushi; Ogura, Atsuo

    2011-11-18

    Cryopreservation of mouse embryos is a technological basis that supports biomedical sciences, because many strains of mice have been produced by genetic modifications and the number is consistently increasing year by year. Its technical development started with slow freezing methods in the 1970s(1), then followed by vitrification methods developed in the late 1980s(2). Generally, the latter technique is advantageous in its quickness, simplicity, and high survivability of recovered embryos. However, the cryoprotectants contained are highly toxic and may affect subsequent embryo development. Therefore, the technique was not applicable to certain strains of mice, even when the solutions are cooled to 4°C to mitigate the toxic effect during embryo handling. At the RIKEN BioResource Center, more than 5000 mouse strains with different genetic backgrounds and phenotypes are maintained(3), and therefore we have optimized a vitrification technique with which we can cryopreserve embryos from many different strains of mice, with the benefits of high embryo survival after vitrifying and thawing (or liquefying, more precisely) at the ambient temperature(4). Here, we present a vitrification method for mouse embryos that has been successfully used at our center. The cryopreservation solution contains ethylene glycol instead of DMSO to minimize the toxicity to embryos(5). It also contains Ficoll and sucrose for prevention of devitrification and osmotic adjustment, respectively. Embryos can be handled at room temperature and transferred into liquid nitrogen within 5 min. Because the original method was optimized for plastic straws as containers, we have slightly modified the protocol for cryotubes, which are more easily accessible in laboratories and more resistant to physical damages. We also describe the procedure of thawing vitrified embryos in detail because it is a critical step for efficient recovery of live mice. These methodologies would be helpful to researchers and

  13. Mutant heterosis in rice

    International Nuclear Information System (INIS)

    1987-01-01

    In the variety TKM6 a high yielding semidwarf mutant has been induced. This TKM6 mutant was used in test crosses with a number of other varieties and mutants to examine the extent of heterosis of dwarfs in rice and to select superior crosses. An excerpt of the published data is given. It appears from the backcross of the mutant with its original variety, that an increase in number of productive tillers occurs in the hybrid, leading to a striking grain yield increase, while the semi-dwarf culm length (the main mutant character) reverts to the normal phenotype. In the cross with IR8 on the other hand, there is only a minimal increase in tiller number but a substantial increase in TGW leading to more than 30% yield increase over the better parent

  14. Single-step selection of drug resistant Acinetobacter baylyi ADP1 mutants reveals a functional redundancy in the recruitment of multidrug efflux systems.

    Directory of Open Access Journals (Sweden)

    Anthony J Brzoska

    Full Text Available Members of the genus Acinetobacter have been the focus recent attention due to both their clinical significance and application to molecular biology. The soil commensal bacterium Acinetobacter baylyi ADP1 has been proposed as a model system for molecular and genetic studies, whereas in a clinical environment, Acinetobacter spp. are of increasing importance due to their propensity to cause serious and intractable systemic infections. Clinically, a major factor in the success of Acinetobacter spp. as opportunistic pathogens can be attributed to their ability to rapidly evolve resistance to common antimicrobial compounds. Whole genome sequencing of clinical and environmental Acinetobacter spp. isolates has revealed the presence of numerous multidrug transporters within the core and accessory genomes, suggesting that efflux is an important host defense response in this genus. In this work, we used the drug-susceptible organism A. baylyi ADP1 as a model for studies into the evolution of efflux mediated resistance in genus Acinetobacter, due to the high level of conservation of efflux determinants across four diverse Acinetobacter strains, including clinical isolates. A single exposure of therapeutic concentrations of chloramphenicol to populations of A. baylyi ADP1 cells produced five individual colonies displaying multidrug resistance. The major facilitator superfamily pump craA was upregulated in one mutant strain, whereas the resistance nodulation division pump adeJ was upregulated in the remaining four. Within the adeJ upregulated population, two different levels of adeJ mRNA transcription were observed, suggesting at least three separate mutations were selected after single-step exposure to chloramphenicol. In the craA upregulated strain, a T to G substitution 12 nt upstream of the craA translation initiation codon was observed. Subsequent mRNA stability analyses using this strain revealed that the half-life of mutant craA mRNA was significantly

  15. The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling

    Science.gov (United States)

    Barrington, Chloe L.; Katsanis, Nicholas

    2017-01-01

    The importance of primary cilia in human health is underscored by the link between ciliary dysfunction and a group of primarily recessive genetic disorders with overlapping clinical features, now known as ciliopathies. Many of the proteins encoded by ciliopathy-associated genes are components of a handful of multi-protein complexes important for the transport of cargo to the basal body and/or into the cilium. A key question is whether different complexes cooperate in cilia formation, and whether they participate in cilium assembly in conjunction with intraflagellar transport (IFT) proteins. To examine how ciliopathy protein complexes might function together, we have analyzed double mutants of an allele of the Meckel syndrome (MKS) complex protein MKS1 and the BBSome protein BBS4. We find that Mks1; Bbs4 double mutant mouse embryos exhibit exacerbated defects in Hedgehog (Hh) dependent patterning compared to either single mutant, and die by E14.5. Cells from double mutant embryos exhibit a defect in the trafficking of ARL13B, a ciliary membrane protein, resulting in disrupted ciliary structure and signaling. We also examined the relationship between the MKS complex and IFT proteins by analyzing double mutant between Mks1 and a hypomorphic allele of the IFTB component Ift172. Despite each single mutant surviving until around birth, Mks1; Ift172avc1 double mutants die at mid-gestation, and exhibit a dramatic failure of cilia formation. We also find that Mks1 interacts genetically with an allele of Dync2h1, the IFT retrograde motor. Thus, we have demonstrated that the MKS transition zone complex cooperates with the BBSome to mediate trafficking of specific trans-membrane receptors to the cilium. Moreover, the genetic interaction of Mks1 with components of IFT machinery suggests that the transition zone complex facilitates IFT to promote cilium assembly and structure. PMID:28291807

  16. The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    Sarah C Goetz

    Full Text Available The importance of primary cilia in human health is underscored by the link between ciliary dysfunction and a group of primarily recessive genetic disorders with overlapping clinical features, now known as ciliopathies. Many of the proteins encoded by ciliopathy-associated genes are components of a handful of multi-protein complexes important for the transport of cargo to the basal body and/or into the cilium. A key question is whether different complexes cooperate in cilia formation, and whether they participate in cilium assembly in conjunction with intraflagellar transport (IFT proteins. To examine how ciliopathy protein complexes might function together, we have analyzed double mutants of an allele of the Meckel syndrome (MKS complex protein MKS1 and the BBSome protein BBS4. We find that Mks1; Bbs4 double mutant mouse embryos exhibit exacerbated defects in Hedgehog (Hh dependent patterning compared to either single mutant, and die by E14.5. Cells from double mutant embryos exhibit a defect in the trafficking of ARL13B, a ciliary membrane protein, resulting in disrupted ciliary structure and signaling. We also examined the relationship between the MKS complex and IFT proteins by analyzing double mutant between Mks1 and a hypomorphic allele of the IFTB component Ift172. Despite each single mutant surviving until around birth, Mks1; Ift172avc1 double mutants die at mid-gestation, and exhibit a dramatic failure of cilia formation. We also find that Mks1 interacts genetically with an allele of Dync2h1, the IFT retrograde motor. Thus, we have demonstrated that the MKS transition zone complex cooperates with the BBSome to mediate trafficking of specific trans-membrane receptors to the cilium. Moreover, the genetic interaction of Mks1 with components of IFT machinery suggests that the transition zone complex facilitates IFT to promote cilium assembly and structure.

  17. Influence of embryo handling and transfer method on pig cloning efficiency.

    Science.gov (United States)

    Shi, Junsong; Zhou, Rong; Luo, Lvhua; Mai, Ranbiao; Zeng, Haiyu; He, Xiaoyan; Liu, Dewu; Zeng, Fang; Cai, Gengyuan; Ji, Hongmei; Tang, Fei; Wang, Qinglai; Wu, Zhenfang; Li, Zicong

    2015-03-01

    The somatic cell nuclear transfer (SCNT) technique could be used to produce genetically superior or genetically engineered cloned pigs that have wide application in agriculture and bioscience research. However, the efficiency of porcine SCNT currently is very low. Embryo transfer (ET) is a key step for the success of SCNT. In this study, the effects of several ET-related factors, including cloned embryo culture time, recipient's ovulation status, co-transferred helper embryos and ET position, on the success rate of pig cloning were investigated. The results indicated that transfer of cloned embryos cultured for a longer time (22-24h vs. 4-6h) into pre-ovulatory sows decreased recipient's pregnancy rate and farrowing rate, and use of pre-ovulatory and post-ovulatory sows as recipients for SCNT embryos cultured for 22-24h resulted in a similar porcine SCNT efficiency. Use of insemination-produced in vivo fertilized, parthenogenetically activated and in vitro fertilized embryos as helper embryos to establish and/or maintain pregnancy of SCNT embryos recipients could not improve the success rate of porcine SCNT. Transfer of cloned embryos into double oviducts of surrogates significantly increased pregnancy rate as well as farrowing rate of recipients, and the developmental rate of transferred cloned embryos, as compared to unilateral oviduct transfer. This study provided useful information for optimization of the embryo handling and transfer protocol, which will help to improve the ability to generate cloned pigs. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A new method for culture of zona-included or zona-free embryos: the Well of the Well (WOW) system

    DEFF Research Database (Denmark)

    Vajta, Gabor; Peura, T T; Holm, Peter

    2000-01-01

    (WOW) system. Small wells (WOWs) were formed in four-well dishes by melting the bottom with heated steel rods. The WOWs were then rinsed, the wells were filled with medium, and the embryos were placed into the WOWs. To test the value of the WOW system a 3 x 3 factorial experiment was performed. Bovine......Culture of mammalian zygotes individually and in small groups results in lower developmental rates than culture of large groups. Zona-free zygotes also have impaired developmental potential in current culture systems. This paper describes a new approach to resolve the problems, the Well of the Well...... embryos cultured in 400 microl medium. The WOW system resulted in higher blastocyst/oocyte rates for all three modules (single: 59 group of five: 61 single zona-digested: 53 than the culture in drops or in wells (P well...

  19. Exogenous induction of ovarian activity and ovulation and transfer of fresh embryos of domestic cat (Felis catus

    Directory of Open Access Journals (Sweden)

    Marcelo Lopes Santana

    2012-08-01

    Full Text Available The objective of the present study was the exogenous stimulation of ovarian activity and definition of embryo collection, and transfer protocols, in the domestic cat for potential application in non-domestic endangered species. Sixteen adult queens and two adult male reproducers kept in the experimental cat house at the Morphology sector at the Veterinary Department (DVT, UFV, were used in this study. All the queens received a single application of 150 IU Equine Chorionic Gonadotropin (eCG in the post estrus to induce ovarian activity and 80 to 84 hours later, received a single application of 100 UI Human Chorionic Gonadotropin (hCG to induce ovulation. After hCG application, only the donor queens were naturally mated. The receptor queens received extra stimulus for induction of ovulation through manipulation of an intravaginal swab. Five to six days after hCG application, the donor queens were subjected to a laparotomy for embryo collection that was performed by trans-horn uterine washing. On average, six embryos were surgically inovulated. They were classified as type I and III compact morula and blastocysts in four receptor queens. Three animals presented pregnancy confirmed by ultrasound at day 36 and two of these animals gave birth to litters of two and four offsprings, respectively, at 66 and 63 days after induction of ovulation. Except for one still birth, all the offspring developed normally.

  20. Heme synthesis in the lead-intoxicated mouse embryo

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, G B; Maes, J

    1978-02-01

    Incorporation of /sup 55/Fe and of (/sup 14/C) glycine was studied in control embryos and mothers and in those which had received lead in the diet from day 7 of pregnancy. Incorporation of Fe into heme of embryonic liver which increases markedly for controls on day 17 of pregnancy was depressed greatly and showed no such increase in lead-intoxicated embryos. These embryos were retarded in growth but had normal heme concentrations in body and liver. Incorporation of glycine into embryonic heme and proteins was not affected. Data on incorporation in the mothers are also presented. It is thought that the impaired synthesis of heme in lead-intoxicated embryos limits their body growth during the late phase of pregnancy.