WorldWideScience

Sample records for single layered composite

  1. Mechanical and tribological property of single layer graphene oxide reinforced titanium matrix composite coating

    Science.gov (United States)

    Hu, Zengrong; Li, Yue; Fan, Xueliang; Chen, Feng; Xu, Jiale

    2018-04-01

    Single layer grapheme oxide Nano sheets and Nano titanium powder were dispersed in deionized water by ultrasonic dispersion. Then the mixed solution was pre-coating on AISI4140 substrate. Using laser sintering process to fabricated grapheme oxide and Ti composite coating. Microstructures and composition of the composite coating was studied by Scanning Electron Microscopy (SEM), x-ray diffract meter (XRD) and Raman spectroscopy. Raman spectrum, XRD pattern and SEM results proved that grapheme oxide sheets were dispersed in the composite coating. The composite coating had much higher average Vickers hardness values than that of pure Ti coating. The tribological performance of the composite coatings became better while the suitable GO content was selected. For the 2.5wt. % GO content coating, the friction coefficient was reduced to near 0.1.

  2. Single-layer nano-carbon film, diamond film, and diamond/nano-carbon composite film field emission performance comparison

    International Nuclear Information System (INIS)

    Wang, Xiaoping; Wang, Jinye; Wang, Lijun

    2016-01-01

    A series of single-layer nano-carbon (SNC) films, diamond films, and diamond/nano-carbon (D/NC) composite films have been prepared on the highly doped silicon substrate by using microwave plasma chemical vapor deposition techniques. The films were characterised by scanning electron microscopy, Raman spectroscopy, and field emission I-V measurements. The experimental results indicated that the field emission maximum current density of D/NC composite films is 11.8–17.8 times that of diamond films. And the field emission current density of D/NC composite films is 2.9–5 times that of SNC films at an electric field of 3.0 V/μm. At the same time, the D/NC composite film exhibits the advantage of improved reproducibility and long term stability (both of the nano-carbon film within the D/NC composite cathode and the SNC cathode were prepared under the same experimental conditions). And for the D/NC composite sample, a high current density of 10 mA/cm"2 at an electric field of 3.0 V/μm was obtained. Diamond layer can effectively improve the field emission characteristics of nano-carbon film. The reason may be due to the diamond film acts as the electron acceleration layer.

  3. Composition determination of quaternary GaAsPN layers from single X-ray diffraction measurement of quasi-forbidden (002) reflection

    Energy Technology Data Exchange (ETDEWEB)

    Tilli, J.-M., E-mail: juha-matti.tilli@iki.fi; Jussila, H.; Huhtio, T.; Sopanen, M. [Department of Micro and Nanosciences, Aalto University, P.O. Box 13500, FI-00076 Aalto (Finland); Yu, K. M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-05-28

    GaAsPN layers with a thickness of 30 nm were grown on GaP substrates with metalorganic vapor phase epitaxy to study the feasibility of a single X-ray diffraction (XRD) measurement for full composition determination of quaternary layer material. The method is based on the peak intensity of a quasi-forbidden (002) reflection, which is shown to vary with changing arsenic content for GaAsPN. The method works for thin films with a wide range of arsenic contents and shows a clear variation in the reflection intensity as a function of changing layer composition. The obtained thicknesses and compositions of the grown layers are compared with accurate reference values obtained by Rutherford backscattering spectroscopy combined with nuclear reaction analysis measurements. Based on the comparison, the error in the XRD defined material composition becomes larger with increasing nitrogen content and layer thickness. This suggests that the dominating error source is the deteriorated crystal quality due to the nonsubstitutional incorporation of nitrogen into the crystal lattice and strain relaxation. The results reveal that the method overestimates the arsenic and nitrogen content within error margins of about 0.12 and about 0.025, respectively.

  4. Assembly of 1D nanofibers into a 2D bi-layered composite nanofibrous film with different functionalities at the two layers via layer-by-layer electrospinning.

    Science.gov (United States)

    Wang, Zijiao; Ma, Qianli; Dong, Xiangting; Li, Dan; Xi, Xue; Yu, Wensheng; Wang, Jinxian; Liu, Guixia

    2016-12-21

    A two-dimensional (2D) bi-layered composite nanofibrous film assembled by one-dimensional (1D) nanofibers with trifunctionality of electrical conduction, magnetism and photoluminescence has been successfully fabricated by layer-by-layer electrospinning. The composite film consists of a polyaniline (PANI)/Fe 3 O 4 nanoparticle (NP)/polyacrylonitrile (PAN) tuned electrical-magnetic bifunctional layer on one side and a Tb(TTA) 3 (TPPO) 2 /polyvinylpyrrolidone (PVP) photoluminescent layer on the other side, and the two layers are tightly combined face-to-face together into the novel bi-layered composite film of trifunctionality. The brand-new film has totally different characteristics at the double layers. The electrical conductivity and magnetism of the electrical-magnetic bifunctional layer can be, respectively, tunable via modulating the PANI and Fe 3 O 4 NP contents, and the highest electrical conductivity can reach up to the order of 10 -2 S cm -1 , and predominant intense green emission at 545 nm is obviously observed in the photoluminescent layer under the excitation of 357 nm single-wavelength ultraviolet light. More importantly, the luminescence intensity of the photoluminescent layer remains almost unaffected by the electrical-magnetic bifunctional layer because the photoluminescent materials have been successfully isolated from dark-colored PANI and Fe 3 O 4 NPs. By comparing with the counterpart single-layered composite nanofibrous film, it is found that the bi-layered composite nanofibrous film has better performance. The novel bi-layered composite nanofibrous film with trifunctionality has potential in the fields of nanodevices, molecular electronics and biomedicine. Furthermore, the design conception and fabrication technique for the bi-layered multifunctional film provide a new and facile strategy towards other films of multifunctionality.

  5. Single layered flexible photo-detector based on perylene/graphene composite through printed technology

    Science.gov (United States)

    Ali, Shawkat; Bae, Jinho; Lee, Chong Hyun

    2015-07-01

    In this paper, a single layered passive photo sensor based on perylene/graphene composite is proposed, which is deposited in comb type silver electrodes separated as 50 μm spacing. To increase an electrical conductivity of the proposed sensor, perylene and graphene are blended. Photo sensing layer (120nm thick) and Silver electrodes (50 μm width, 350 nm thick) are deposited on poly(ethylene terephthalate) (PET) substrate through electro-hydrodynamic (EHD) system. The proposed photo sensor detects a terminal resistance inversely varied by an incident light in the range between 78 GΩ in dark and 25 GΩ at light intensity of 400lux. The device response is maximum at 465 nm ~ 535 nm wavelength range at blue light. The device exhibited bendability up to 4mm diameter for 1000 endurance cycles. The surface morphology analysis is carried out with FE-SEM and microscope.

  6. Composite Beam Cross-Section Analysis by a Single High-Order Element Layer

    DEFF Research Database (Denmark)

    Couturier, Philippe; Krenk, Steen

    2015-01-01

    An analysis procedure of general cross-section properties is presented. The formulation is based on the stress-strain states in the classic six equilibrium modes of a beam by considering a finite thickness slice modelled by a single layer of 3D finite elements. The theory is illustrated by applic......An analysis procedure of general cross-section properties is presented. The formulation is based on the stress-strain states in the classic six equilibrium modes of a beam by considering a finite thickness slice modelled by a single layer of 3D finite elements. The theory is illustrated...

  7. Hydraulic Stability of Single-Layer Dolos and Accropode Armour Layers

    DEFF Research Database (Denmark)

    Christensen, M.; Burcharth, H. F.

    1995-01-01

    A new design for Dolos breakwater armour layers is presented: Dolos armour units are placed in a selected geometric pattern in a single layer. A series of model tests have been performed in order to determine the stability of such single-layer Dolos armour layers. The test results are presented...... and compared to the stability formula for the traditional double-layer, randomly placed Dolos armour layer design presented by Burcharth (1992). The results of a series of stability tests performed with Accropode® armour layers is presented and compared to the test results obtained with single-layer Dolos...... armour layers. Run-up and reflection are presented for both single-layer Dolos armour and Accropode armour....

  8. Scale-dependent effects on wave propagation in magnetically affected single/double-layered compositionally graded nanosize beams

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2018-04-01

    This article deals with the wave propagation analysis of single/double layered functionally graded (FG) size-dependent nanobeams in elastic medium and subjected to a longitudinal magnetic field employing nonlocal elasticity theory. Material properties of nanobeam change gradually according to the sigmoid function. Applying an analytical solution, the acoustical and optical dispersion relations are explored for various wave number, nonlocality parameter, material composition, elastic foundation constants, and magnetic field intensity. It is found that frequency and phase velocity of waves propagating in S-FGM nanobeam are significantly affected by these parameters. Also, presence of cut-off and escape frequencies in wave propagation analysis of embedded S-FGM nanobeams is investigated.

  9. Improved Mechanical Compatibility and Cytocompatibility of Ta/Ti Double-Layered Composite Coating

    Science.gov (United States)

    Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin

    2017-08-01

    In order to improve the mechanical compatibility and cytocompatibility of titanium implants, a composite coating with double layers composed of tantalum and titanium was designed and prepared using plasma spraying technology. In the composite coating, the upper tantalum layer provides a good biocompatibility, and the sublayer of titanium with a porous structure ensures the low elastic modulus. Results show that the fabricated composite coating exhibits a relatively low elastic modulus of 26.7 GPa, which is close to the elastic modulus of human cortical bone. In vitro cytocompatibility evaluation of the composite coating shows that the human bone marrow stromal cells exhibit enhanced adhesion and spreading performance on the double-layered composite coating in comparison with the single-layered titanium coating. In order to eliminate the misgivings of chemical stability of the composite coating in clinical application, electrochemical corrosion of the coating was examined. The results obtained revealed a very weak galvanic corrosion between the tantalum and titanium in the composite coating, which would ensure the safety of the coating in vivo.

  10. Multicaloric effect in bi-layer multiferroic composites

    International Nuclear Information System (INIS)

    Vopson, M. M.; Zhou, D.; Caruntu, G.

    2015-01-01

    The multicaloric effect was theoretically proposed in 2012 and, despite numerous follow up studies, the effect still awaits experimental confirmation. The main limitation is the fact that the multicaloric effect is only observed at a temperature equal to the transition temperature of the magnetic and electric phases coexisting within a multiferroic (MF) (i.e., T ≈ T c m  ≈ T c e ). Such condition is hard to fulfill in single phase MFs and a solution is to develop suitable composite MF materials. Here, we examine the multicaloric effect in a bi-layer laminated composite MF in order to determine the optimal design parameters for best caloric response. We show that magnetically induced multicaloric effect requires magnetic component of heat capacity smaller than that of the electric phase, while the layer thickness of the magnetic phase must be at least 5 times the thickness of the electric phase. The electrically induced multicaloric effect requires the magnetic layer to be 10% of the electric phase thickness, while its heat capacity must be larger than that of the electric phase. These selection rules are generally applicable to bulk as well as thin film MF composites for optimal multicaloric effect

  11. Natural melanin composites by layer-by-layer assembly

    Science.gov (United States)

    Eom, Taesik; Shim, Bong Sub

    2015-04-01

    Melanin is an electrically conductive and biocompatible material, because their conjugated backbone structures provide conducting pathways from human skin, eyes, brain, and beyond. So there is a potential of using as materials for the neural interfaces and the implantable devices. Extracted from Sepia officinalis ink, our natural melanin was uniformly dispersed in mostly polar solvents such as water and alcohols. Then, the dispersed melanin was further fabricated to nano-thin layered composites by the layer-by-layer (LBL) assembly technique. Combined with polyvinyl alcohol (PVA), the melanin nanoparticles behave as an LBL counterpart to from finely tuned nanostructured films. The LBL process can adjust the smart performances of the composites by varying the layering conditions and sandwich thickness. We further demonstrated the melanin loading degree of stacked layers, combination nanostructures, electrical properties, and biocompatibility of the resulting composites by UV-vis spectrophotometer, scanning electron microscope (SEM), multimeter, and in-vitro cell test of PC12, respectively.

  12. Gastroesophageal anastomosis: single-layer versus double-layer technique

    International Nuclear Information System (INIS)

    Aslam, V.A.; Bilal, A.; Khan, A.; Ahmed, M.

    2008-01-01

    Considerable controversy exists regarding the optimum technique for gastroesophageal anastomosis. Double layer technique has long been considered important for safe healing but there is evidence that single layer technique is also safe and can be performed in much shorter time. The purpose of this study was to compare the outcome of single layer and double layer techniques for gastroesophageal anastomosis. A prospective randomized study was conducted in cardiothoracic unit, Lady Reading Hospital from Jan 2006 to Jan 2008. Fifty patients with oesophageal carcinoma undergoing subtotal oesophagectomy were randomized to have the anastomosis by single layer continuous or double layer continuous technique (group A (n=24) and B (n=26) respectively). The demographic data, operative and anastomosis time, postoperative complications and hospital mortality were recorded on a proforma and analyzed on SPSS 10. There was no significant difference between group A and B in terms of age, gender, postoperative complications and duration of hospital stay. Anastomotic leak occurred in 4.2% patients in group A and 7.7% in group B (p=NS). Mean anastomosis time was 10.04 minutes in group A and 19.2 minutes in group B (p=0.0001). Mean operative time was 163.83 minutes and 170.96 minutes in group A and B respectively. Overall hospital mortality was 2%; no deaths occurred due to anastomotic leak. Single layer continuous technique is equally safe and can be performed in shorter time and at a lower cost than the double layer technique. (author)

  13. Investigation on corrosion and wear behaviors of nanoparticles reinforced Ni-based composite alloying layer

    International Nuclear Information System (INIS)

    Xu Jiang; Tao Jie; Jiang Shuyun; Xu Zhong

    2008-01-01

    In order to investigate the role of amorphous SiO 2 particles in corrosion and wear resistance of Ni-based metal matrix composite alloying layer, the amorphous nano-SiO 2 particles reinforced Ni-based composite alloying layer has been prepared by double glow plasma alloying on AISI 316L stainless steel surface, where Ni/amorphous nano-SiO 2 was firstly predeposited by brush plating. The composition and microstructure of the nano-SiO 2 particles reinforced Ni-based composite alloying layer were analyzed by using SEM, TEM and XRD. The results indicated that the composite alloying layer consisted of γ-phase and amorphous nano-SiO 2 particles, and under alloying temperature (1000 deg. C) condition, the nano-SiO 2 particles were uniformly distributed in the alloying layer and still kept the amorphous structure. The corrosion resistance of composite alloying layer was investigated by an electrochemical method in 3.5%NaCl solution. Compared with single alloying layer, the amorphous nano-SiO 2 particles slightly decreased the corrosion resistance of the Ni-Cr-Mo-Cu alloying layer. X-ray photoelectron spectroscopy (XPS) revealed that the passive films formed on the composite alloying consisted of Cr 2 O 3 , MoO 3 , SiO 2 and metallic Ni and Mo. The dry wear test results showed that the composite alloying layer had excellent friction-reduced property, and the wear weight loss of composite alloying layer was less than 60% of that of Ni-Cr-Mo-Cu alloying layer

  14. Layered plasma polymer composite membranes

    Science.gov (United States)

    Babcock, Walter C.

    1994-01-01

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is .gtoreq.2 and is the number of selective layers.

  15. Non-destructive Inspection of Multi-layered Composite Using Ultrasonic Signal Processing

    International Nuclear Information System (INIS)

    Ng, S C; Ismail, N; Ali, Aidy; Sahari, Barkawi; Yusof, J M; Chu, B W

    2011-01-01

    Composites exhibit higher strength and stiffness, better design practice and greater corrosion resistance compare to metal material. However, composites are susceptible to impact damage and the typical damage behaviour in the laminated composites is fibre-breakage and delamination. Detection of failure in laminated composites is complicated compared with ordinary non-destructive testing for metal materials as they are sensitive to echoes drown in noise due to the properties of the constituent materials and the multi-layered structure of the composites. In the current study, the detection of failure in multi-layered composite materials is investigated. To obtain a high probability of defect detection in composite materials, signal processing algorithms were used to resolve echoes associated with defects in glass fibre-reinforced plastics (GRP) detected by using ultrasonic testing. Pulse-echo method with single transducer was used to transmit and receive ultrasound. The obtained signals were processed to reduce noise and to extract suitable features. Results were validated on GRP with and without defects in order to demonstrate the feasibility of the method on defect detection in composites.

  16. The influence of double nested layer waviness on compression strength of carbon fiber composite materials

    International Nuclear Information System (INIS)

    Khan, Z.M.

    1997-01-01

    As advanced composite materials having superior physical and mechanical properties are being developed, optimization of their production processes in eagerly being sought. One of the most common defect in production of structural composites is layer waviness. Layer waviness is more pronounced in thick section flat and cylindrical laminates that are extensively used in missile casings, submersibles and space platforms. Layer waviness undulates the entire layers of a multidirectional laminate in through-the-thickness direction leading to gross deterioration of its compression strength. This research investigates the influence of multiple layer waviness in a double nest formation on the compression strength of a composite laminate. Different wave fractions of wave 0 degree centigrade layer fabricated in IM/85510-7 carbon - epoxy composite laminate on a steel mold using single step fabrication procedure. The laminate was cured on a heated press according to specific curing cycle. Static compression testing was performed using NASA short block compression fixture on an MTS servo Hydraulic machine. The purpose of these tests was to determine the effects of multiple layer wave regions on the compression strength of composite laminate. The experimental and analytical results revealed that up to about 35% fraction of wave 0 degree layer exceeded 35%. This analysis indicated that the percentage of 0 degree wavy layer may be used to estimate the reduction in compression strength of a composite laminate under restricted conditions. (author)

  17. Cellulose fiber-enzyme composites fabricated through layer-by-layer nanoassembly.

    Science.gov (United States)

    Xing, Qi; Eadula, Sandeep R; Lvov, Yuri M

    2007-06-01

    Cellulose microfibers were coated with enzymes, laccase and urease, through layer-by-layer assembly by alternate adsorption with oppositely charged polycations. The formation of organized polyelectrolyte and enzyme multilayer films of 15-20 nm thickness was demonstrated by quartz crystal microbalance, zeta-potential analysis, and confocal laser scanning microscopy. These biocomposites retained enzymatic catalytic activity, which was proportional to the number of coated enzyme layers. For laccase-fiber composites, around 50% of its initial activity was retained after 2 weeks of storage at 4 degrees C. The synthesis of calcium carbonate microparticles on urease-fiber composites confirmed urease functionality and demonstrated its possible applications. This strategy could be employed to fabricate fiber-based composites with novel biological functions.

  18. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength.

    Science.gov (United States)

    Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2015-02-01

    An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 μm) for water-sprayed Silorane and greatest (22.9 μm) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected. © 2014 Eur J Oral Sci.

  19. Experience with single-layer rectal anastomosis.

    OpenAIRE

    Khubchandani, M; Upson, J

    1981-01-01

    Anastomotic dehiscence following resection of the large intestine is a serious complication. Satisfactory results of single-layer anastomosis depend upon meticulous technique and a scrupulously clean colon. Out of 65 single-layer anastomoses involving the rectum, significant leakage occurred in 4 patients. The results are reported in order to draw attention to the safety and efficacy of one-layer anastomosis.

  20. Automatic settlement analysis of single-layer armour layers

    NARCIS (Netherlands)

    Hofland, B.; van gent, Marcel

    2016-01-01

    A method to quantify, analyse, and present the settlement of single-layer concrete armour layers of coastal structures is presented. The use of the image processing technique for settlement analysis is discussed based on various modelling
    studies performed over the years. The accuracy of the

  1. Single Layered Versus Double Layered Intestinal Anastomosis: A Randomized Controlled Trial

    Science.gov (United States)

    Mohapatra, Vandana; Singh, Surendra; Rath, Pratap Kumar; Behera, Tapas Ranjan

    2017-01-01

    Introduction Gastrointestinal anastomosis is one of the most common procedures being performed in oesophagogastric, hepatobiliary, bariatric, small bowel and colorectal surgery; however, the safety and efficacy of single layer or double layer anastomotic technique is still unclear. Aim To assess and compare the efficacy, safety and cost effectiveness of single layered versus double layered intestinal anastomosis. Materials and Methods This prospective, double-blind, randomized controlled comparative study comprised of patients who underwent intestinal resection and anastomosis. They were randomly assigned to undergo either single layered extra-mucosal anastomosis (Group-A) or double layered intestinal anastomosis (Group-B). Primary outcome measures included average time taken for anastomosis, postoperative complications, mean duration of hospital stay and cost of suture material used; secondary outcome measures assessed the postoperative return of bowel function. Statistical analysis was done by Chi-square test and student t-test. Results A total of 97 participants were randomized. Fifty patients were allocated to single layered extramucosal continuous anastomosis (Group-A) and 47 patients to double layered anastomosis (Group-B). The patients in each group were well matched for age, sex and diagnosis. The mean time taken for anastomosis (15.12±2.27 minutes in Group-A versus 24.38±2.26 minutes in Group-B) and the length of hospital stay (5.90±1.43 days in Group-A versus 7.29±1.89 days in Group-B) was significantly shorter in Group-A {p-value anastomosis. However, there was no significant difference in the complication rates between the two groups. Conclusion It can be concluded that single layered extramucosal continuous intestinal anastomosis is equally safe and perhaps more cost effective than the conventional double layered method and may represent the optimal choice for routine surgical practice. PMID:28764239

  2. Supercapacitance of Single-Walled Carbon Nanotubes-Polypyrrole Composites

    Directory of Open Access Journals (Sweden)

    Matei Raicopol

    2013-01-01

    Full Text Available The composites based on carbon nanotubes (CNTs and conducting polymers (CPs are promising materials for supercapacitor devices due to their unique nanostructure that combines the large pseudocapacitance of the CPs with the fast charging/discharging double-layer capacitance and excellent mechanical properties of the CNTs. Here, we report a new electrochemical method to obtain polypyrrole (PPY/single-walled carbon nanotube (SWCNT composites. In the first step, the SWCNTs are covalently functionalized with monomeric units of pyrrole by esterification of acyl chloride functionalized SWCNTs and N-(6-hydroxyhexylpyrrole. In the second step, the PPY/SWCNTs composites are obtained by copolymerizing the pyrrole monomer with the pyrrole units grafted on SWCNTs surface using controlled potential electrolysis. The composites were further characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The results showed good electrochemical charge storage properties for the synthesized composites based on PPY and SWCNTs covalently functionalized with pyrrole units making them promising electrode materials for high power supercapacitors.

  3. Microstructures and properties of ceramic particle-reinforced metal matrix composite layers produced by laser cladding

    Science.gov (United States)

    Zhang, Qingmao; He, Jingjiang; Liu, Wenjin; Zhong, Minlin

    2005-01-01

    Different weight ratio of titanium, zirconium, WC and Fe-based alloy powders were mixed, and cladded onto a medium carbon steel substrate using a 3kW continuous wave CO2 laser, aiming at producing Ceramic particles- reinforced metal matrix composites (MMCs) layers. The microstructures of the layers are typical hypoeutectic, and the major phases are Ni3Si2, TiSi2, Fe3C, FeNi, MC, Fe7Mo3, Fe3B, γ(residual austenite) and M(martensite). The microstructure morphologies of MMCs layers are dendrites/cells. The MC-type reinforcements are in situ synthesis Carbides which main compositions consist of transition elements Zr, Ti, W. The MC-type particles distributed within dendrite and interdendritic regions with different volume fractions for single and overlapping clad layers. The MMCs layers are dense and free of cracks with a good metallurgical bonding between the layer and substrate. The addition ratio of WC in the mixtures has the remarkable effect on the microhardness of clad layers.

  4. Optical properties of single-layer, double-layer, and bulk MoS2

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Sanchez, Alejandro; Wirtz, Ludger [University of Luxembourg (Luxembourg); Hummer, Kerstin [University of Vienna, Vienna (Austria)

    2013-07-01

    The rise of graphene has brought attention also to other layered materials that can complement graphene or that can be an alternative in applications as transistors. Single-layer MoS{sub 2} has shown interesting electronic and optical properties such as as high electron mobility at room temperature and an optical bandgap of 1.8 eV. This makes the material suitable for transistors or optoelectronic devices. We present a theoretical study of the optical absorption and photoluminescence spectra of single-layer, double-layer and bulk MoS{sub 2}. The excitonic states have been calculated in the framework of the Bethe-Salpeter equation, taking into account the electron-hole interaction via the screened Coulomb potential. In addition to the step-function like behaviour that is typical for the joint-density of states of 2D materials with parabolic band dispersion, we find a bound excitonic peak that is dominating the luminescence spectra. The peak is split due to spin-orbit coupling for the single-layer and split due to layer-layer interaction for few-layer and bulk MoS{sub 2}. We discuss the changes of the optical bandgap and of the exciton binding energy with the number of layers, comparing our results with the reported experimental data.

  5. Electromechanical response of (2–2) layered piezoelectric composites

    International Nuclear Information System (INIS)

    Kar-Gupta, Ronit; Venkatesh, T A

    2013-01-01

    Analytical and finite element models are developed to systematically characterize the effects of phase volume fraction and the relative orientations of the poling directions in two phases on the effective elastic, dielectric and piezoelectric properties of layered piezoelectric composites. Four classes of layered piezoelectric composites are identified based on the relative orientation of the poling directions in the two piezoelectric phases. Upon verifying that the results of the finite model compare well with that of analytical models for select layered composite systems, the finite element model is extended to characterize the electromechanical response of all four classes of piezoelectric composites. It is generally observed that the electromechanical properties of the layered composite along a direction perpendicular to the layer interface is largely influenced by the properties of the ‘softer’ phase whereas the in-plane response is modulated more by the ‘rule-of-mixtures’ theory. It is also observed that variations in the poling directions of the constituents can significantly influence the symmetry of the composite with composites that belong to Classes II and III (where the poling directions of the two phases are orthogonal to each other) exhibiting a relatively lower degree of material symmetry while the composites that belong to Classes I and IV (where the poling directions of the two phases are parallel to each other) exhibit a higher order symmetry. Furthermore, the best combination of figures of merit, i.e., enhanced coupling constant and reduced acoustic impedance, in a direction parallel to the layer interface is exhibited by Class I and Class II types of composite (where the piezoelectrically stiffer phase is poled along the layer interface). (paper)

  6. Shear wave propagation in piezoelectric-piezoelectric composite layered structure

    Directory of Open Access Journals (Sweden)

    Anshu Mli Gaur

    Full Text Available The propagation behavior of shear wave in piezoelectric composite structure is investigated by two layer model presented in this approach. The composite structure comprises of piezoelectric layers of two different materials bonded alternatively. Dispersion equations are derived for propagation along the direction normal to the layering and in direction of layering. It has been revealed that thickness and elastic constants have significant influence on propagation behavior of shear wave. The phase velocity and wave number is numerically calculated for alternative layer of Polyvinylidene Difluoride (PVDF and Lead Zirconate Titanate (PZT-5H in composite layered structure. The analysis carried out in this paper evaluates the effect of volume fraction on the phase velocity of shear wave.

  7. Breakwater stability with damaged single layer armour units

    OpenAIRE

    De Rover, R.; Verhagen, H.J.; Van den Berge, A.; Reedijk, B.

    2008-01-01

    The effect of single layer interlocking armour unit breakage on the hydraulic armour layer stability and potential damage progression is addressed in this paper. A 2-dimensional scale model of a rubble mound breakwater with an armour layer consisting of Xbloc armour units was tested. The residual armour layer stability with broken units was determined. The armour unit displacement and damage progression was assessed. According to the test series breakage of the single layer armour units has a...

  8. Anisotropic perylenediimide/polycarbonate composites produced by a single batch solution based method

    Energy Technology Data Exchange (ETDEWEB)

    Dobruchowska, Ewa, E-mail: ewa.dobruchowska@tu.koszalin.pl [Department of Molecular Physics, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz (Poland); Institute of Technology and Education, Koszalin University of Technology, Sniadeckich 2, 75-453 Koszalin (Poland); Marszalek, Tomasz; Ulanski, Jacek [Department of Molecular Physics, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz (Poland)

    2014-08-01

    The continuous anisotropic organic semiconductor/dielectric composites consisting of a top, unidirectionally oriented crystalline layer of perylenediimide derivative (2,9-di(pent-3-yl)-anthra[1,9-def:6,5,10-d′e′f′]diisoquinoline-1,3,8, 10-tetrone) (PTCDI-C5(3)) and a bottom layer of poly(bisphenol A carbonate) (PC) support were obtained in a one batch solution process, with the use of the so called the zone-casting method. Scanning electron microscopy images have shown that the top PTCDI-C5(3) layer is made of long, parallel crystallites in the form of ribbons that exhibit birefringence when placed between a pair of crossed polarisers in the optical microscope. Furthermore, the polarised UV–Vis absorbance and photoluminescence experiments revealed that the alignment of the PTCDI-C5(3) molecules is caused by π–π interactions between the conjugated perylene cores, and their stacks are parallel to the long axis of the crystallites and to the polymer surface. The high value of the calculated polarisation ratio, which equals 0.64, constitutes a confirmation of a high degree of molecular order within the semiconducting component of the zone-cast composites. - Highlights: • Bi-layer composites were produced by a single batch solution based method. • The top-layer was made of an n-type organic semiconductor — perylene derivative. • Polarised absorbance and photoluminescence were used to study optical anisotropy. • High polarisation ratio of 0.64 was obtained for the top-layer of the composite.

  9. The structure and properties of single-layer and gradient-layered coatings of the Ti–Al–Si–Cr–Mo–S–N system

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikov, Stanislav, E-mail: ovm@spti.tsu.ru; Pinzhin, Yurii, E-mail: pinzhin@phys.tsu.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    Using the method of microprobe analysis and transmission electron microscopy, the influence of obtaining conditions upon particular elemental composition and growth structure coatings of Ti–Al–Si–Mo–S–N system was studied. The possibility of formation and characteristics of the structural and elastic-stress state single-layer coatings with nanoscale columnar or equiaxed grains and gradient-layered, combining two types of selected structure, was defined. On the basis of hardness, tribological properties and coating hardness, a conclusion was made about the relative prospects of its use as wear-resistant coatings with a nanocrystalline structure.

  10. Fabrication and characterization of iron oxide dextran composite layers

    Science.gov (United States)

    Iconaru, S. L.; Predoi, S. A.; Beuran, M.; Ciobanu, C. S.; Trusca, R.; Ghita, R.; Negoi, I.; Teleanu, G.; Turculet, S. C.; Matei, M.; Badea, Monica; Prodan, A. M.

    2018-02-01

    Super paramagnetic iron oxide nanoparticles such as maghemite have been shown to exhibit antimicrobial properties [1-5]. Moreover, the iron oxide nanoparticles have been proposed as a potential magnetically controllable antimicrobial agent which could be directed to a specific infection [3-5]. The present research has focused on studies of the surface and structure of iron oxide dextran (D-IO) composite layers surface and structure. These composite layers were deposited on Si substrates. The structure of iron oxide dextran composite layers was investigated by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) while the surface morphology was evaluated by Scanning Electron Microscopy (SEM). The structural characterizations of the iron oxide dextran composite layers revealed the basic constituents of both iron and dextran structure. Furthermore, the in vitro evaluation of the antifungal effect of the complex layers, which have been shown revealed to be active against C. albicans cells at distinct intervals of time, is exhibited. Our research came to confirm the fungicidal effect of iron oxide dextran composite layers. Also, our results suggest that iron oxide dextran surface may be used for medical treatment of biofilm associated Candida infections.

  11. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    Science.gov (United States)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  12. Synthesis of single-crystalline Al layers in sapphire

    International Nuclear Information System (INIS)

    Schlosser, W.; Lindner, J.K.N.; Zeitler, M.; Stritzker, B.

    1999-01-01

    Single-crystalline, buried aluminium layers were synthesized by 180 keV high-dose Al + ion implantation into sapphire at 500 deg. C. The approximately 70 nm thick Al layers exhibit in XTEM investigations locally abrupt interfaces to the single-crystalline Al 2 O 3 top layer and bulk, while thickness and depth position are subjected to variations. The layers grow by a ripening process of oriented Al precipitates, which at low doses exist at two different orientations. With increasing dose, precipitates with one out of the two orientations are observed to exist preferentially, finally leading to the formation of a single-crystalline layer. Al outdiffusion to the surface and the formation of spherical Al clusters at the surface are found to be competing processes to buried layer formation. The formation of Al layers is described by Rutherford Backscattering Spectroscopy (RBS), Cross-section transmission electron microscopy (XTEM) and Scanning electron microscopy (SEM) studies as a function of dose, temperature and substrate orientation

  13. Development of lightweight THUNDER with fiber composite layers

    Science.gov (United States)

    Yoon, Kwang J.; Shin, Sukjoon; Kim, Jusik; Park, Hoon C.; Kwak, Moon K.

    2000-06-01

    This paper is concerned with design, manufacturing and performance test of lightweight THUNDER using a top fiber composite layer with near-zero CTE, a PZT ceramic wafer and a bottom glass/epoxy layer with high CTE. The main point of this design is to replace the heavy metal layers of THUNDER by the lightweight fiber reinforced plastic layers without losing capabilities to generate high force and displacement. It is possible to save weight up to about 30 percent if we replace the metallic backing materials by the light fiber composite layer. We can also have design flexibility by selecting the fiber direction and the size of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use epoxy resin prepreg system. Glass/epoxy prepregs, a ceramic wafer with electrode surfaces, and a graphite/epoxy prepreg were simply stacked and cured at an elevated temperature by following autoclave bagging process. It was found that the manufactured composite laminate device had a sufficient curvature after detaching form a flat mold. From experimental actuation tests, it was observed that the developed actuator could generate larger actuation displacement than THUNDER.

  14. Single layer and multilayer vacuum-arc coatings based on the nitride TiAlSiYN: composition, structure, properties

    International Nuclear Information System (INIS)

    Beresnev, V.M.; Litovchenko, S.V.; Nemchenko, U.S.; Srebnyuk, P.A.; Mazilin, B.A.; Sobol, O.V.; Mejlekhov, A.A.; Barmin, A.E.; Serenko, TA.; Pogrebnyak, A.D.; Ivanov, O.N.; Kritsyna, E.V.; Stolbovoj, V.A.; Novikov, V.Yu.; Malikov, L.V.

    2017-01-01

    Using high-technological vacuum-arc evaporation in the atmosphere of nitrogen with ion bombardment, single- and multilayer coatings based on TiAlSiYN with high mechanical characteristics were obtained: hardness of the coatings reached 49.5 GPa, resistance to wear, with the value of the critical point L_C_5 reaching 184.92 N. The peculiarities of radiation-induced effect at applying bias potential U_b were found: formation of nitride coatings based on fcc metallic lattice with the preferred orientation of crystallites with the texture axis [111], as well as simultaneous growth of hardness. Hardness of both single- and multilayer coatings increases by 40...50% at the increase of U_b from 50 to 200 V. Formation of silicon-containing layers of TiAlSiYN during the deposition contributes to reaching increased hardness, which, in the case of single-layer coating obtained at U_b = -200 V is 49.5 GPa, which corresponds to superhard state. The mechanisms of structure formation, defining the resulting mechanical characteristics of single- and multi-layer coatings based on TiAlSiYN nitride have been discussed.

  15. Layer-by-Layer technique employed to construct multitask interfaces in polymer composites

    Directory of Open Access Journals (Sweden)

    Luísa Sá Vitorino

    Full Text Available Abstract The properties of glass fiber-reinforced polymer composites are closely related to the fiber-matrix interface. Interfacial treatments to improve mechanical properties are usually limited to enhance interfacial adhesion. In this work, Layer-by-Layer (LbL technique was introduced to build a novel interface in polymer composites. Different numbers of bilayers of poly(diallyldimethylammonium chloride and poly(sodium 4-styrenesulfonate with carbon nanotubes were deposited through LbL on the surface of woven glass fibers (GFs. Polypropylene composites containing the modified GFs were prepared by compression molding. Thermogravimetric analysis, scanning electron microscopy and Raman spectroscopy proved that multilayers of polymers with carbon nanotubes could be deposited on GFs surface. Mechanical tests on composites with modified GFs revealed an increase in Flexural Modulus and toughness. The overall results attested that the LbL technique can be used to design interfaces with different compositions to perform diverse tasks, such as to improve the stiffness of composites and to encapsulate active nanocomponents.

  16. Raman study of supported molybdenum disulfide single layers

    Science.gov (United States)

    Durrer, William; Manciu, Felicia; Afanasiev, Pavel; Berhault, Gilles; Chianelli, Russell

    2008-10-01

    Owing to the increasing demand for clean transportation fuels, highly dispersed single layer transition metal sulfides such as MoS2-based catalysts play an important role in catalytic processes for upgrading and removing sulfur from heavy petroleum feed. In its crystalline bulk form, MoS2 is chemically rather inactive due to a strong tendency to form highly stacked layers, but, when dispersed as single-layer nanoclusters on a support, the MoS2 becomes catalytically active in the hydrogenolysis of sulphur and nitrogen from organic compounds (hydrotreating catalysis). In the present studies alumina-supported MoS2 samples were analyzed by confocal Raman spectroscopy. Evidence of peaks at 152 cm-1, 234 cm-1, and 336 cm-1, normally not seen in the Raman spectrum of the standard bulk crystal, confirms the formation of single layers of MoS2. Furthermore, the presence of the 383 cm-1 Raman line suggests the trigonal prismatic coordination of the formed MoS2 single layers. Depending on the sample preparation method, a restacking of MoS2 layers is also observed, mainly for ex-thiomolybdate samples sulfided at 550 C.

  17. Novel Electrospun Dual-Layered Composite Nanofibrous Membrane Endowed with Electricity-Magnetism Bifunctionality at One Layer and Photoluminescence at the Other Layer.

    Science.gov (United States)

    Wang, Zijiao; Ma, Qianli; Dong, Xiangting; Li, Dan; Xi, Xue; Yu, Wensheng; Wang, Jinxian; Liu, Guixia

    2016-10-05

    Dual-layered composite nanofibrous membrane equipped with electrical conduction, magnetism and photoluminescence trifunctionality is constructed via electrospinning. The composite membrane consists of a polyaniline (PANI)/Fe 3 O 4 nanoparticles (NPs)/polyacrylonitrile (PAN) tuned electrical-magnetic bifunctional nanofibrous layer at one side and a Eu(TTA) 3 (TPPO) 2 /polyvinylpyrrolidone (PVP) photoluminescent nanofibrous layer at the other side, and the two layers are tightly combined face-to-face together into the novel dual-layered composite membrane with trifunctionality. The electric conductivity and magnetism of electrical-magnetic bifunctionality can be respectively tunable via modulating the respective PANI and Fe 3 O 4 NPs contents, and the highest electric conductivity approaches the order of 1 × 10 -2 S cm -1 . Predominant red emission at 615 nm can be obviously observed in the photoluminescent layer under 366 nm excitation. Moreover, the luminescent intensity of photoluminescent layer is almost unaffected by the electrical-magnetic bifunctional layer because of the fact that the photoluminescent materials have been successfully isolated from dark-colored PANI and Fe 3 O 4 NPs. The novel dual-layered composite nanofibrous membrane with trifunctionality has potentials in many fields. Furthermore, the design philosophy and fabrication method for the dual-layered multifunctional membrane provide a new and facile strategy toward other membranes with multifunctionality.

  18. Composition of Surface Adsorbed Layer of TiO2 Stored in Ambient Air

    Directory of Open Access Journals (Sweden)

    Zakharenko V.S.

    2017-11-01

    Full Text Available The processes of dark, UV, and visible light promoted desorption of surface species were investigated for three different TiO2 samples: TiO2 prepared by dispersion of the titania single crystal, TiO2 prepared by combustion of a pyrotechnic mixture in air, and commercial TiO2 P25. The composition of the adsorbed layer was identified in the dark and under UV and visible light irradiation. The composition of desorption products showed the dependence of the adsorption layer state on the TiO2 nature. Methane photodesorption was detected only for the commercial TiO2 P25. Possible reasons for methane emission include the capturing of complete molecules during the TiO2 production process and photocatalytic hydrogenation of CO2 under UV-light.

  19. Analysis of Strain and Intermixing in a Single Layer Ge/Si dots using polarized Raman Spectroscopy

    OpenAIRE

    PEROVA, TANIA; MOORE, ROBERT

    2006-01-01

    PUBLISHED The built-in strain and composition of as-grown and Si-capped single layers of Ge?Si dots grown at various temperatures (460?800 ?C) are studied by a comparative analysis of the Ge-Ge and Si-Ge modes in the polarized Raman spectra of the dots. A pronounced reduction of the strain and Ge content in the dots after deposition of the cap layer at low temperatures is observed, indicating that strain-induced Si diffusion from the cap layer is occurring. For large dots grown at 700?800...

  20. Layer-by-layer self-assembled two-dimensional MXene/layered double hydroxide composites as cathode for alkaline hybrid batteries

    Science.gov (United States)

    Dong, Xiaowan; Zhang, Yadi; Ding, Bing; Hao, Xiaodong; Dou, Hui; Zhang, Xiaogang

    2018-06-01

    Multifarious layered materials have received extensive concern in the field of energy storage due to their distinctive two-dimensional (2D) structure. However, the natural tendency to be re-superimposed and the inherent disadvantages of a single 2D material significantly limit their performance. In this work, the delaminated Ti3C2Tx (d-Ti3C2Tx)/cobalt-aluminum layered double hydroxide (Ti3C2Tx/CoAl-LDH) composites are prepared by layer-by-layer self-assembly driven by electrostatic interaction. The alternate Ti3C2Tx and CoAl-LDH layers prevent each other from restacking and the obtained Ti3C2Tx/CoAl-LDH heterostructure combine the advantages of high electron conductivity of Ti3C2Tx and high electrochemical activity of CoAl-LDH, thus effectively improving the electrochemical reactivity of electrode materials and accelerating the kinetics of Faraday reaction. As a consequence, as a cathode for alkaline hybrid battery, the Ti3C2Tx/CoAl-LDH electrode exhibits a high specific capacity of 106 mAh g-1 at a current density of 0.5 A g-1 and excellent rate capability (78% at 10 A g-1), with an excellent cycling stability of 90% retention after 5000 cycles at 4 A g-1. This work provides an alternative route to design advanced 2D electrode materials, thus exploiting their full potentials for alkaline hybrid batteries.

  1. Layer by Layer Composite Membranes of Alginate-Chitosan Crosslinked by Glutaraldehyde in Pervaporation Dehydration of Ethanol

    Directory of Open Access Journals (Sweden)

    Nur Rokhati

    2016-08-01

    Full Text Available Hydrophilicity of membrane causing only water can pass through membrane. Pervaporation process using organophilic membrane has been offered as alternative for ethanol dehydration. This paper investigate pervaporation based biopolymer composite membrane from alginate-chitosan using layer by layer method prepared by glutaraldehyde as crosslinking agent and polyethersulfone (PES as supported membrane. Characterization of crosslinked of composite membrane by FTIR helped in identification of sites for interaction between layers of membrane and support layer (PES. The SEM showed a multilayer structure and a distinct interface between the chitosan layer, the sodium alginate layer and the support layer. The coating sequence of membranes had an obvious influence on the pervaporation dehydration performance of membranes. For the dehydration of 95 wt% ethanol-water mixtures, a good performance of PES-chitosan-alginate-chitosan (PES/Chi/Alg/Chi composite membrane was found in the pervaporation dehydration of ethanol. Article History: Received April 12nd , 2016; Received in revised form June 25th , 2016; Accepted July 1st , 2016; Available online How to Cite This Article: Rokhati, N., Istirokhatun, T. and Samsudin, A.M. (2016 Layer by Layer Composite Membranes of Alginate-Chitosan Crosslinked by Glutaraldehyde in Pervaporation Dehydration of Ethanol. Int. Journal of Renewable Energy Development, 5(2, 101-106. http://dx.doi.org/10.14710/ijred.5.2.101-106 

  2. Optical characterization of composite layers prepared by plasma polymerization

    International Nuclear Information System (INIS)

    Radeva, E; Hikov, T; Mitev, D; Pramatarova, L; Stroescu, H; Nicolescu, M; Gartner, M; Presker, R

    2016-01-01

    Thin composite layers from polymer/nanoparticles (Ag-nanoparticles and detonation nanodiamonds) were prepared by plasma polymerization process on the base of hexamethyldisiloxane. The variation of the layer composition was achieved by changing the type of nanoparticles. The optical measurement techniques used were UV-VIS-NIR ellipsometry (SE), Fourier-transformed infrared spectroscopy (FTIR) and Raman spectroscopy. The values of the refractive index determined are in the range 1.30 to 1.42. All samples are transparent with transmission between 85-95% and very smooth. The change in Raman and FTIR spectra of the composites verify the expected bonding between polymer and diamond nanoparticles due to the penetration of the fillers in the polymer matrix. The comparison of the spectra of the corresponding NH3 plasma treated composites revealed that the composite surface becomes more hydrophilic. The obtained results indicate that preparation of layers with desired compositions is possible at a precise control of the detonation nanodiamond materials. (paper)

  3. Experimental research on the stability of armour and secondary layer in a single layered Tetrapod breakwater

    NARCIS (Netherlands)

    De Jong, W.; Verhagen, H.J.; Olthof, J.

    2004-01-01

    Physical model tests were done on an armour of Tetrapods, placed in a single layer. The objective of the investigations was to study the stability of the secondary layer, and to see if the material of this secondary layer could be washed out through the single layer of Tetrapods. It was concluded

  4. Promoting Barrier Performance and Cathodic Protection of Zinc-Rich Epoxy Primer via Single-Layer Graphene

    Directory of Open Access Journals (Sweden)

    Jingrong Liu

    2018-05-01

    Full Text Available The effect of single-layer graphene sheets (Gr on the corrosion protection of zinc-rich epoxy primers (ZRPs was investigated. Scanning electron microscopy (SEM with an energy dispersive spectrometer (EDS were used to characterize morphology and composition of the coatings after immersion for 25 days. The cross-sectional SEM images and X-ray photoelectron spectroscopy (XPS confirmed that the addition of single-layer graphene facilitated assembling of zinc oxides on the interface between the coating and the steel. The open circuit potential (OCP, electrochemical impedance spectroscopy (EIS measurements revealed that both the cathodic protection and barrier performance of the ZRP were enhanced after addition of 0.6 wt. % Gr (Gr0.6-ZRP. In addition, the cathodic protection property of the Gr0.6-ZRP was characterized quantitatively by localized electrochemical impedance spectroscopy (LEIS in the presence of an artificial scratch on the coating. The results demonstrate that moderate amounts of single-layer graphene can significantly improve corrosion resistance of ZRP, due to the barrier protection and cathodic protection effects.

  5. Photovoltaic device comprising compositionally graded intrinsic photoactive layer

    Science.gov (United States)

    Hoffbauer, Mark A; Williamson, Todd L

    2013-04-30

    Photovoltaic devices and methods of making photovoltaic devices comprising at least one compositionally graded photoactive layer, said method comprising providing a substrate; growing onto the substrate a uniform intrinsic photoactive layer having one surface disposed upon the substrate and an opposing second surface, said intrinsic photoactive layer consisting essentially of In.sub.1-xA.sub.xN,; wherein: i. 0.ltoreq.x.ltoreq.1; ii. A is gallium, aluminum, or combinations thereof; and iii. x is at least 0 on one surface of the intrinsic photoactive layer and is compositionally graded throughout the layer to reach a value of 1 or less on the opposing second surface of the layer; wherein said intrinsic photoactive layer is isothermally grown by means of energetic neutral atom beam lithography and epitaxy at a temperature of 600.degree. C. or less using neutral nitrogen atoms having a kinetic energy of from about 1.0 eV to about 5.0 eV, and wherein the intrinsic photoactive layer is grown at a rate of from about 5 nm/min to about 100 nm/min.

  6. Producing of multicomponent and composite surface layers

    International Nuclear Information System (INIS)

    Wierzchon, T.; Bielinski, P.; Michalski, A.

    1995-01-01

    The paper presents a new method of producing multicomponent and composite layers on steel substrate. The combination of nickel plating with glow-discharge bordering or impulse-plasma deposition method gives an opportunity to obtain good properties of surface layers. The results of examinations of carbon 45 (0.45%C) steel, nickel plated and then borided under glow discharge conditions or covered with TiN layers are presented. The corrosion and friction wear resistance of such layers are markedly higher than for layer produced on non nickel plated substrates. (author). 19 refs, 5 figs

  7. Influence of Filler Alloy Composition and Process Parameters on the Intermetallic Layer Thickness in Single-Sided Cold Metal Transfer Welding of Aluminum-Steel Blanks

    Science.gov (United States)

    Silvayeh, Zahra; Vallant, Rudolf; Sommitsch, Christof; Götzinger, Bruno; Karner, Werner; Hartmann, Matthias

    2017-11-01

    Hybrid components made of aluminum alloys and high-strength steels are typically used in automotive lightweight applications. Dissimilar joining of these materials is quite challenging; however, it is mandatory in order to produce multimaterial car body structures. Since especially welding of tailored blanks is of utmost interest, single-sided Cold Metal Transfer butt welding of thin sheets of aluminum alloy EN AW 6014 T4 and galvanized dual-phase steel HCT 450 X + ZE 75/75 was experimentally investigated in this study. The influence of different filler alloy compositions and welding process parameters on the thickness of the intermetallic layer, which forms between the weld seam and the steel sheet, was studied. The microstructures of the weld seam and of the intermetallic layer were characterized using conventional optical light microscopy and scanning electron microscopy. The results reveal that increasing the heat input and decreasing the cooling intensity tend to increase the layer thickness. The silicon content of the filler alloy has the strongest influence on the thickness of the intermetallic layer, whereas the magnesium and scandium contents of the filler alloy influence the cracking tendency. The layer thickness is not uniform and shows spatial variations along the bonding interface. The thinnest intermetallic layer (mean thickness < 4 µm) is obtained using the silicon-rich filler Al-3Si-1Mn, but the layer is more than twice as thick when different low-silicon fillers are used.

  8. A novel composite alignment layer for transflective liquid crystal display

    Energy Technology Data Exchange (ETDEWEB)

    Li Shuangyao; Li Xuan [State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Tao Du; Chigrinov, Vladimir; Kwok, Hoi Sing, E-mail: eechigr@ust.h [Center for Display Research, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2010-10-20

    A novel composite photoalignment layer for transflective liquid crystal displays is explored. The key technique is to introduce a functional photo-crosslinkage into a rewritable azodye material with proper mixing. Bearing good alignment quality derived from the azodye material, the composite layer provides strong azimuthal and polar anchoring energy comparable to that of rubbed polyimide layers. The capability of dual modes fabrication in one cell exhibited by azodyes could be well retained and the new alignment film exhibits a display resolution of up to 2 {mu}m. Furthermore, after exposure to strong LED unpolarized light the composite layer shows much better stability than that with a pure azodye material.

  9. A novel composite alignment layer for transflective liquid crystal display

    International Nuclear Information System (INIS)

    Li Shuangyao; Li Xuan; Tao Du; Chigrinov, Vladimir; Kwok, Hoi Sing

    2010-01-01

    A novel composite photoalignment layer for transflective liquid crystal displays is explored. The key technique is to introduce a functional photo-crosslinkage into a rewritable azodye material with proper mixing. Bearing good alignment quality derived from the azodye material, the composite layer provides strong azimuthal and polar anchoring energy comparable to that of rubbed polyimide layers. The capability of dual modes fabrication in one cell exhibited by azodyes could be well retained and the new alignment film exhibits a display resolution of up to 2 μm. Furthermore, after exposure to strong LED unpolarized light the composite layer shows much better stability than that with a pure azodye material.

  10. Highly conductive, multi-layer composite precursor composition to fuel cell flow field plate or bipolar plate

    Science.gov (United States)

    Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH; Guo, Jiusheng [Centerville, OH

    2011-02-15

    This invention provides a moldable, multiple-layer composite composition, which is a precursor to an electrically conductive composite flow field plate or bipolar plate. In one preferred embodiment, the composition comprises a plurality of conductive sheets and a plurality of mixture layers of a curable resin and conductive fillers, wherein (A) each conductive sheet is attached to at least one resin-filler mixture layer; (B) at least one of the conductive sheets comprises flexible graphite; and (C) at least one resin-filler mixture layer comprises a thermosetting resin and conductive fillers with the fillers being present in a sufficient quantity to render the resulting flow field plate or bipolar plate electrically conductive with a conductivity no less than 100 S/cm and thickness-direction areal conductivity no less than 200 S/cm.sup.2.

  11. In vitro comparison of fracture load of implant-supported, zirconia-based, porcelain- and composite-layered restorations after artificial aging.

    Science.gov (United States)

    Komine, Futoshi; Taguchi, Kohei; Fushiki, Ryosuke; Kamio, Shingo; Iwasaki, Taro; Matsumura, Hideo

    2014-01-01

    This study evaluated fracture load of single-tooth, implant-supported, zirconia-based, porcelain- and indirect composite-layered restorations after artificial aging. Forty-four zirconia-based molar restorations were fabricated on implant abutments and divided into four groups, namely, zirconia-based all-ceramic restorations (ZAC group) and three types of zirconia-based composite-layered restorations (ZIC-P, ZIC-E, and ZIC groups). Before layering an indirect composite material, the zirconia copings in the ZIC-P and ZIC-E groups were primed with Clearfil Photo Bond and Estenia Opaque Primer, respectively. All restorations were cemented on the abutments with glass-ionomer cement and then subjected to thermal cycling and cyclic loading. All specimens survived thermal cycling and cyclic loading. The fracture load of the ZIC-P group (2.72 kN) was not significantly different from that of the ZAC group (3.05 kN). The fracture load of the zirconia-based composite-layered restoration primed with Clearfil Photo Bond (ZIC-P) was comparable to that of the zirconia-based all-ceramic restoration (ZAC) after artificial aging.

  12. Investigations of the mechanical properties of bi-layer and trilayer fiber reinforced composites

    Science.gov (United States)

    Jayakrishna, K.; Balasubramani, K.; Sultan, M. T. H.; Karthikeyan, S.

    2016-10-01

    Natural fibers are renewable raw materials with an environmental-friendly properties and they are recyclable. The mechanical properties of bi-layer and tri-layer thermoset polymer composites have been analyzed. The bi-layer composite consists of basalt and jute mats, while the tri-layer composite consists of basalt fiber, jute fiber and glass fiber mats. In both cases, the epoxy resin was used as the matrix and PTFE as a filler in the composites. The developed trilayer natural fiber composite can be used in various industrial applications such as automobile parts, construction and manufacturing. Furthermore, it also can be adopted in aircraft interior decoration and designed body parts. Flexural, impact, tensile, compression, shear and hardness tests, together with density measurement, were conducted to study the mechanical properties of both bi-layer and tri-layer composites. From the comparison, the tri-layer composite was found to perform in a better way in all tests.

  13. Vibrational analysis of single-layered graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Sakhaee-Pour, A; Ahmadian, M T [Center of Excellence in Design, Robotics and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Naghdabadi, R [Department of Mechanical Engineering and Institute for Nano Science and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of)], E-mail: sakhaee@alum.sharif.edu, E-mail: naghdabd@sharif.edu

    2008-02-27

    A molecular structural mechanics method has been implemented to investigate the vibrational behavior of single-layered graphene sheets. By adopting this approach, mode shapes and natural frequencies are obtained. Vibrational analysis is performed with different chirality and boundary conditions. Numerical results from the atomistic modeling are employed to develop predictive equations via a statistical nonlinear regression model. With the proposed equations, fundamental frequencies of single-layered graphene sheets with considered boundary conditions can be predicted within 3% difference with respect to the atomistic simulation.

  14. Breakwater stability with damaged single layer armour units

    NARCIS (Netherlands)

    De Rover, R.; Verhagen, H.J.; Van den Berge, A.; Reedijk, B.

    2008-01-01

    The effect of single layer interlocking armour unit breakage on the hydraulic armour layer stability and potential damage progression is addressed in this paper. A 2-dimensional scale model of a rubble mound breakwater with an armour layer consisting of Xbloc armour units was tested. The residual

  15. Reactive mesogen photoalignment on photopolymerizable composite layer

    International Nuclear Information System (INIS)

    Mahilny, U V; Stankevich, A I; Trofimova, A V

    2016-01-01

    The volume photoanisotropy (photoinduced birefringence) and surface photoanisotropy (LC photoalignment) of compositions of LC monomer - benzaldehyde polymer upon polarized UV radiation have been revealed and investigated. A high quality of photoalignment is confirmed by an extreme value of birefringence and low imperfection of phase plates fabricated on the basis of LC monomer on composite layer. (paper)

  16. Compositional characterization of atomic layer deposited alumina

    International Nuclear Information System (INIS)

    Philip, Anu; Thomas, Subin; Kumar, K. Rajeev

    2014-01-01

    As the microelectronic industry demands feature size in the order of few and sub nanometer regime, the film composition and other film properties become critical issues and ALD has emerged as the choice of industry. Aluminum oxide is a material with wide applications in electronic and optoelectronic devices and protective and ion barrier layers. Al 2 O 3 is an excellent dielectric because of its large band gap (8.7eV), large band offsets with silicon. We have deposited thin layers of alumina on silicon wafer (p-type) for gate dielectric applications by ALD technique and compositional characterizations of the deposited thin films were done using EDS, XPS and FTIR spectra

  17. Compositional characterization of atomic layer deposited alumina

    Energy Technology Data Exchange (ETDEWEB)

    Philip, Anu; Thomas, Subin; Kumar, K. Rajeev [Department of Instrumentation, Cochin University of Science and Technology, Cochin-22, Kerala (India)

    2014-01-28

    As the microelectronic industry demands feature size in the order of few and sub nanometer regime, the film composition and other film properties become critical issues and ALD has emerged as the choice of industry. Aluminum oxide is a material with wide applications in electronic and optoelectronic devices and protective and ion barrier layers. Al{sub 2}O{sub 3} is an excellent dielectric because of its large band gap (8.7eV), large band offsets with silicon. We have deposited thin layers of alumina on silicon wafer (p-type) for gate dielectric applications by ALD technique and compositional characterizations of the deposited thin films were done using EDS, XPS and FTIR spectra.

  18. Investigation of Tank 241-AW-104 Composite Floating Layer

    Energy Technology Data Exchange (ETDEWEB)

    Meznarich, H. K. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Bolling, S. D. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Lachut, J. S. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Cooke, G. A. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States)

    2018-02-27

    Seven grab samples and one field blank were taken from Tank 241-AW-104 (AW-104) on June 2, 2017, and received at 222-S Laboratory on June 5, 2017. A visible layer with brown solids was observed floating on the top of two surface tank waste samples (4AW-17-02 and 4AW 17 02DUP). The floating layer from both samples was collected, composited, and submitted for chemical analyses and solid phase characterization in order to understand the composition of the floating layer. Tributyl phosphate and tridecane were higher in the floating layer than in the aqueous phase. Density in the floating layer was slightly lower than the mean density of all grab samples. Sodium nitrate and sodium carbonate were major components with a trace of gibbsite and very small size agglomerates were present in the solids of the floating layer. The supernate consisted of organics, soluble salt, and particulates.

  19. Plasmon resonance in single- and double-layer CVD graphene nanoribbons

    DEFF Research Database (Denmark)

    Wang, Di; Emani, Naresh K.; Chung, Ting Fung

    2015-01-01

    Dynamic tunability of the plasmonic resonance in graphene nanoribbons is desirable in the near-infrared. We demonstrated a constant blue shift of plasmonic resonances in double-layer graphene nanoribbons with respect to single-layer graphene nanoribbons. © OSA 2015.......Dynamic tunability of the plasmonic resonance in graphene nanoribbons is desirable in the near-infrared. We demonstrated a constant blue shift of plasmonic resonances in double-layer graphene nanoribbons with respect to single-layer graphene nanoribbons. © OSA 2015....

  20. Preparation and characterization of composite membrane via layer by layer assembly for desalination

    Energy Technology Data Exchange (ETDEWEB)

    Wasim, Maria, E-mail: maria-be24@hotmail.co.uk; Sabir, Aneela; Shafiq, Muhammad; Islam, Atif; Jamil, Tahir

    2017-02-28

    Highlights: • Cellulose acetate based polymer composite membranes were formed via layer by layer assembly for nanofiltration. • Modified membranes shown improved MgSO{sub 4} salt rejection property up to 98.9%. • Surface roughness and antibacterial property of fabricated membrane were successfully studied. - Abstract: Cellulose acetate (CA) incorporated with sepiolite and Polyvinylpyrrolidone (PVP) multilayer composite on Polysulfone (PSf) substrate have been prepared by layer by layer (LbL) assembly method. Fourier TransformInfrared Spectroscopy (FTIR) results verified the hydrogen bonding among the components of composite membrane. Atomic force microscopy (AFM), scanning electron microscope (SEM) was carried out for the determination and elucidation of roughness and morphology of the fabricated membranes on PSf substrate. The AFM and SEM results showed the increased surface roughness with the porous and spongy structure. The performance results verified that the successful incorporation of sepiolite in membranes showed maximum MgSO{sub 4} rejection (98.9%) and flux of 38.7 L/m{sup 2} h. Whereas, in case of NaCl the rejection is 98.3% and flux is 34.9L/m{sup 2} h. The modification was evidenced to be effective in increasing the surface hydrophilicity that led to increase in surface roughness. The chlorine resistivity is improved by dropping the active sites for chlorine attack and protecting the underlying PSf substrate.

  1. White-light-emitting diode based on a single-layer polymer

    Science.gov (United States)

    Wang, B. Z.; Zhang, X. P.; Liu, H. M.

    2013-05-01

    A broad-band light-emitting diode was achieved in a single-layer device based on pure poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine) (PFB). Electromer emission was observed in the red with a center wavelength of about 620 nm in electroluminescence (EL) spectrum. This kind of emission exhibits strong dependence on the thickness of the PFB layer, so that the shape of the EL spectrum may be adjusted through changing the thickness of the active polymer layer to balance between the intrinsic PFB emission in the blue and the electromer emission in the red. Thus, white light emission may be achieved from such a single-layer single-material diode.

  2. Bandgap tunability at single-layer molybdenum disulphide grain boundaries

    KAUST Repository

    Huang, Yu Li

    2015-02-17

    Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05 eV for single-layer, 2.10±0.05 eV for bilayer and 1.75±0.05 eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05 eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering.

  3. Steady ablation on the surface of a two-layer composite

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wen-Shan [Chung Shan Institute of Science and Technology, P.O. Box 90008-15-3, Lung-Tan, Tao-Yuan, 32526 Taiwan (China)

    2005-12-01

    Discovered is a quasi-steady ablation phenomenon on the surface of a two-layer composite which is formed by a layer of ablative material and another layer of non-ablative substrate. Theoretical exact solutions of quasi-steady ablation rate, the associated temperature distribution and end-of-ablation time of this two-layer composite are derived. A criterion for the occurrence of quasi-steady ablation is presented also. A one-dimensional transient numerical model is developed to perform a number of numerical experiments and hence to verify the correctness of the above theoretical solutions for the current quasi-steady ablation phenomenon. Based on the current results, a new method of measuring the ablation (or sublimation) heat is also proposed. (author)

  4. Optical and Electrical Characteristics of Graphene Double Layer Formed by a Double Transfer of Graphene Single Layers.

    Science.gov (United States)

    Kim, Young Jun; Bae, Gi Yoon; Chun, Sungwoo; Park, Wanjun

    2016-03-01

    We demonstrate formation of double layer graphene by means of a double transfer using two single graphene layers grown by a chemical vapor deposition method. It is observed that shiftiness and broadness in the double-resonance of Raman scattering are much weaker than those of bilayer graphene formed naturally. Transport characteristics examined from transmission line measurements and field effect transistors show the similar behavior with those of single layer graphene. It indicates that interlayer separation, in electrical view, is large enough to avoid correlation between layers for the double layer structure. It is also observed from a transistor with the double layer graphene that molecules adsorpted on two inner graphene surfaces in the double layered structure are isolated and conserved from ambient environment.

  5. An Integrated, Layered-Spinel Composite Cathode for Energy Storage Applications

    Science.gov (United States)

    Hagh, Nader; Skandan, Ganesh

    2012-01-01

    At low operating temperatures, commercially available electrode materials for lithium-ion batteries do not fully meet the energy and power requirements for NASA fs exploration activities. The composite cathode under development is projected to provide the required energy and power densities at low temperatures and its usage will considerably reduce the overall volume and weight of the battery pack. The newly developed composite electrode material can provide superior electrochemical performance relative to a commercially available lithium cobalt system. One advantage of using a composite cathode is its higher energy density, which can lead to smaller and lighter battery packs. In the current program, different series of layered-spinel composite materials with at least two different systems in an integrated structure were synthesized, and the volumetric and gravimetric energy densities were evaluated. In an integrated network of a composite electrode, the effect of the combined structures is to enhance the capacity and power capabilities of the material to levels greater than what is possible in current state-of-the-art cathode systems. The main objective of the current program is to implement a novel cathode material that meets NASA fs low temperature energy density requirements. An important feature of the composite cathode is that it has at least two components (e.g., layered and spinel) that are structurally integrated. The layered material by itself is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated, thereby delivering a large amount of energy with stable cycling. A key aspect of the innovation has been the development of a scalable process to produce submicronand micron-scale particles of these composite materials. An additional advantage of using such a composite electrode material is its low irreversible loss (.5%), which is primarily due to the unique activation

  6. [Single-layer colonic anastomoses using polyglyconate (Maxon) vs. two-layer anastomoses using chromic catgut and silk. Experimental study].

    Science.gov (United States)

    García-Osogobio, Sandra Minerva; Takahashi-Monroy, Takeshi; Velasco, Liliana; Gaxiola, Miguel; Sotres-Vega, Avelina; Santillán-Doherty, Patricio

    2006-01-01

    The safety of an intestinal anastomosis is usually measured by its complication rate, especially the incidence of anastomotic leakage. A wide variety of methods have been described to reestablish intestinal continuity including single-layer continuous or two-layer interrupted anastomosis. To evaluate if the single-layer continuous anastomosis using polygluconate is safer and reliable than two-layer interrupted anastomosis with chromic catgut and silk. A prospective, experimental, randomized and comparative analysis was conducted in 20 dogs. They were divided in two groups; group 1 underwent two-layer interrupted anastomosis and group 2 underwent sigle-layer continuous technique. Anastomoses were timed. Both groups were under observation. Anastomotic leakage, and other complications were evaluated. The animals were sacrified and the anastomosis was taken out together with 10 cm of colon on both sides of the anastomosis. Breaking strength, histologic evaluation and hydroxyproline determination were performed. Ten two-layer anastomosis and ten single-layer anastomosis were performed. A median of 25 minutes (range: 20-30 minutes) was required to construct the anastomoses in group 1 versus 20 minutes (range: 12-25 minutes) in group 2. All animals survived and no leakage was observed. Wound infection ocurred in four dogs (20%). Median breaking strength was 230 mm Hg in group 1 and 210 mm Hg in group 2. Hydroxyproline concentration was 8.94 mg/g in group 1 (range: 5.33-16.71) and 9.94 mg/g in group 2 (range: 2.96-21.87). There was no difference among groups about the inflammatory response evaluated by pathology. There was no statistical significance in any variable evaluated. CONCLUIONS: This study demonstrates that a single-layer continuous is similar in terms of safety to the two-layer technique, but because of its facility to perform, the single-layer technique could be superior.

  7. The Effect of Single Pyramidal Neuron Firing Within Layer 2/3 and Layer 4 in Mouse V1.

    Science.gov (United States)

    Meyer, Jochen F; Golshani, Peyman; Smirnakis, Stelios M

    2018-01-01

    The influence of cortical cell spiking activity on nearby cells has been studied extensively in vitro . Less is known, however, about the impact of single cell firing on local cortical networks in vivo . In a pioneering study, Kwan and Dan (Kwan and Dan, 2012) reported that in mouse layer 2/3 (L2/3), under anesthesia , stimulating a single pyramidal cell recruits ~2.1% of neighboring units. Here we employ two-photon calcium imaging in layer 2/3 of mouse V1, in conjunction with single-cell patch clamp stimulation in layer 2/3 or layer 4, to probe, in both the awake and lightly anesthetized states , how (i) activating single L2/3 pyramidal neurons recruits neighboring units within L2/3 and from layer 4 (L4) to L2/3, and whether (ii) activating single pyramidal neurons changes population activity in local circuit. To do this, it was essential to develop an algorithm capable of quantifying how sensitive the calcium signal is at detecting effectively recruited units ("followers"). This algorithm allowed us to estimate the chance of detecting a follower as a function of the probability that an epoch of stimulation elicits one extra action potential (AP) in the follower cell. Using this approach, we found only a small fraction (layer-2/3 or layer-4 pyramidal neurons produces few (<1% of local units) reliable single-cell followers in L2/3 of mouse area V1, either under light anesthesia or in quiet wakefulness: instead, single cell stimulation was found to elevate aggregate population activity in a weak but highly distributed fashion.

  8. Incorporating Cyber Layer Failures in Composite Power System Reliability Evaluations

    Directory of Open Access Journals (Sweden)

    Yuqi Han

    2015-08-01

    Full Text Available This paper proposes a novel approach to analyze the impacts of cyber layer failures (i.e., protection failures and monitoring failures on the reliability evaluation of composite power systems. The reliability and availability of the cyber layer and its protection and monitoring functions with various topologies are derived based on a reliability block diagram method. The availability of the physical layer components are modified via a multi-state Markov chain model, in which the component protection and monitoring strategies, as well as the cyber layer topology, are simultaneously considered. Reliability indices of composite power systems are calculated through non-sequential Monte-Carlo simulation. Case studies demonstrate that operational reliability downgrades in cyber layer function failure situations. Moreover, protection function failures have more significant impact on the downgraded reliability than monitoring function failures do, and the reliability indices are especially sensitive to the change of the cyber layer function availability in the range from 0.95 to 1.

  9. Organic photovoltaic devices with a single layer geometry (Conference Presentation)

    Science.gov (United States)

    Kolesov, Vladimir A.; Fuentes-Hernandez, Canek; Aizawa, Naoya; Larrain, Felipe A.; Chou, Wen-Fang; Perrotta, Alberto; Graham, Samuel; Kippelen, Bernard

    2016-09-01

    Organic photovoltaics (OPV) can lead to a low cost and short energy payback time alternative to existing photovoltaic technologies. However, to fulfill this promise, power conversion efficiencies must be improved and simultaneously the architecture of the devices and their processing steps need to be further simplified. In the most efficient devices to date, the functions of photocurrent generation, and hole/electron collection are achieved in different layers adding complexity to the device fabrication. In this talk, we present a novel approach that yields devices in which all these functions are combined in a single layer. Specifically, we report on bulk heterojunction devices in which amine-containing polymers are first mixed in the solution together with the donor and acceptor materials that form the active layer. A single-layer coating yields a self-forming bottom electron-collection layer comprised of the amine-containing polymer (e.g. PEIE). Hole-collection is achieved by subsequent immersion of this single layer in a solution of a polyoxometalate (e.g. phosphomolybdic acid (PMA)) leading to an electrically p-doped region formed by the diffusion of the dopant molecules into the bulk. The depth of this doped region can be controlled with values up to tens of nm by varying the immersion time. Devices with a single 500 nm-thick active layer of P3HT:ICBA processed using this method yield power conversion efficiency (PCE) values of 4.8 ± 0.3% at 1 sun and demonstrate a performance level superior to that of benchmark three-layer devices with separate layers of PEIE/P3HT:ICBA/MoOx (4.1 ± 0.4%). Devices remain stable after shelf lifetime experiments carried-out at 60 °C over 280 h.

  10. Single and double-layer composite microwave absorbers with hexaferrite BaZn{sub 0.6}Zr{sub 0.3}X{sub 0.3}Fe{sub 10.8}O{sub 19} (X = Ti, Ce, Sn) powders

    Energy Technology Data Exchange (ETDEWEB)

    Afghahi, Seyyed Salman Seyyed [Department of Materials Science and Engineering, Imam Hossein University, Tehran (Iran, Islamic Republic of); Jafarian, Mojtaba, E-mail: m.jafarian@srbiau.ac.ir [Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Atassi, Yomen [Department of Applied Physics, Higher Institute for Applied Sciences and Technology, Damascus (Syrian Arab Republic); Stergiou, Charalampos A. [Lab. of Inorganic Materials, Centre for Research and Technology Hellas, 57001, Thermi (Greece)

    2017-01-15

    In the present study, substituted barium hexaferrites with the composition BaZn{sub 0.6}Zr{sub 0.3} × {sub 0.3}Fe{sub 10.8}O{sub 19} (where X = Ti, Ce, Sn) are prepared with the solid-state reaction method. X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometry (VSM) and network analysis techniques are used to analyze the crystal phases, morphology, static magnetic and microwave absorption properties, respectively. Based on the recorded results, barium hexaferrite is the major phase obtained after milling of the powders for 20 h, followed by calcination at 1000 °C for 5 h. The morphology of the particles of the substituted ferrite samples is plate-like with hexagonal shape. The microwave absorption in the X-band of epoxy composites loaded with the ferrite fillers, either separately, in pairs or all together, has been extensively investigated. Multicomponent composites filled with the new hexaferrites under study are promising candidates for electromagnetic absorbers in the 8–12 GHz range. It is found that single-layer absorbers of 5 mm thickness with 45 wt% of a binary (Sn and Ti-doped hexaferrite) or ternary filler mixture exhibit the maximum bandwidth of 2.7 GHz at the level of −10 dB or maximum losses of 26.4 dB at 10.8 GHz, respectively. - Highlights: • Preparation of substituted hexaferrites via mechanical activation. • We designed a broad band microwave absorber with mixing powders. • We designed single layer absorber with RL{sub min} = −26.4 dB and 1.6 GHz bandwidth. • We designed double layer absorbers, as monoband absorbers at a matching frequency.

  11. Tunable phase transition in single-layer TiSe2 via electric field

    Science.gov (United States)

    Liu, Lei; Zhuang, Houlong L.

    2018-06-01

    Phase transition represents an intriguing physical phenomenon that exists in a number of single-layer transition-metal dichalcogenides. This phenomenon often occurs below a critical temperature and breaks the long-range crystalline order leading to a reconstructed superstructure called the charge-density wave (CDW) structure, which can therefore be recovered by external stimuli such as temperature. Alternatively, we show here that another external stimulation, electric field can also result in the phase transition between the regular and CDW structures of a single-layer transition-metal dichalcogenide. We used single-layer TiSe2 as an example to elucidate the mechanism of the CDW followed by calculations of the electronic structure using a hybrid density functional. We found that applying electric field can tune the phase transition between the 1T and CDW phases of single-layer TiSe2. Our work opens up a route of tuning the phase transition of single-layer materials via electric field.

  12. Review of multi-layered magnetoelectric composite materials and devices applications

    Science.gov (United States)

    Chu, Zhaoqiang; PourhosseiniAsl, MohammadJavad; Dong, Shuxiang

    2018-06-01

    Multiferroic materials with the coexistence of at least two ferroic orders, such as ferroelectricity, ferromagnetism, or ferroelasticity, have recently attracted ever-increasing attention due to their potential for multifunctional device applications, including magnetic and current sensors, energy harvesters, magnetoelectric (ME) random access memory and logic devices, tunable microwave devices, and ME antenna. In this article, we provide a review of the recent and ongoing research efforts in the field of multi-layered ME composites. After a brief introduction to ME composites and ME coupling mechanisms, we review recent advances in multi-layered ME composites as well as their device applications based on the direct ME effect, magnetic sensors in particular. Finally, some remaining challenges and future perspective of ME composites and their engineering applications will be discussed.

  13. Enhancement of giant magnetoimpedance in composite wire with insulator layer

    International Nuclear Information System (INIS)

    Wang, X.Z.; Yuan, W.Z.; Li, X.D.; Ruan, J.Z.; Zhao, Z.J.; Yang, J.X.; Yang, X.L.; Sun, Z.

    2007-01-01

    CuBe/NiFeB and CuBe/Insulator/NiFeB composite wires have been prepared by electroless-deposition. The giant magnetoimpedance (GMI) effect for NiFeB layer with thickness of 3 μm on CuBe core with diameter of 100 μm has been studied. After adding an insulator layer, the maximal GMI ratio of CuBe/Insulator/NiFeB composite wire is much higher than that of CuBe/NiFeB composite wire, and can reach to about 250% at the frequency range of 500 kHz-1 MHz. The results are explained in terms of difference of magnetic structure and different frequency dependence of resistance and reactance of the two kinds of composite wires

  14. A single-layer wide-angle negative-index metamaterial at visible frequencies.

    Science.gov (United States)

    Burgos, Stanley P; de Waele, Rene; Polman, Albert; Atwater, Harry A

    2010-05-01

    Metamaterials are materials with artificial electromagnetic properties defined by their sub-wavelength structure rather than their chemical composition. Negative-index materials (NIMs) are a special class of metamaterials characterized by an effective negative index that gives rise to such unusual wave behaviour as backwards phase propagation and negative refraction. These extraordinary properties lead to many interesting functions such as sub-diffraction imaging and invisibility cloaking. So far, NIMs have been realized through layering of resonant structures, such as split-ring resonators, and have been demonstrated at microwave to infrared frequencies over a narrow range of angles-of-incidence and polarization. However, resonant-element NIM designs suffer from the limitations of not being scalable to operate at visible frequencies because of intrinsic fabrication limitations, require multiple functional layers to achieve strong scattering and have refractive indices that are highly dependent on angle of incidence and polarization. Here we report a metamaterial composed of a single layer of coupled plasmonic coaxial waveguides that exhibits an effective refractive index of -2 in the blue spectral region with a figure-of-merit larger than 8. The resulting NIM refractive index is insensitive to both polarization and angle-of-incidence over a +/-50 degree angular range, yielding a wide-angle NIM at visible frequencies.

  15. Effect of ethanethiolate spacer on morphology and optical responses of Ag nanoparticle array-single layer graphene hybrid systems

    Czech Academy of Sciences Publication Activity Database

    Sutrová, Veronika; Šloufová, I.; Melníková Komínková, Zuzana; Kalbáč, Martin; Pavlova, Ewa; Vlčková, B.

    2017-01-01

    Roč. 33, č. 50 (2017), s. 14414-14424 ISSN 0743-7463 R&D Projects: GA ČR(CZ) GA15-01953S; GA MŠk(CZ) LM2015073 Grant - others:GA MŠk(CZ) CZ.02.1.01/0.0/0.0/16_013/0001821 Institutional support: RVO:61389013 ; RVO:61388955 Keywords : Ag nanoparticle * single layer graphene * ethanethiol Subject RIV: JI - Composite Materials; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; Physical chemistry (UFCH-W) Impact factor: 3.833, year: 2016

  16. Raman spectroscopy of boron-doped single-layer graphene.

    Science.gov (United States)

    Kim, Yoong Ahm; Fujisawa, Kazunori; Muramatsu, Hiroyuki; Hayashi, Takuya; Endo, Morinobu; Fujimori, Toshihiko; Kaneko, Katsumi; Terrones, Mauricio; Behrends, Jan; Eckmann, Axel; Casiraghi, Cinzia; Novoselov, Kostya S; Saito, Riichiro; Dresselhaus, Mildred S

    2012-07-24

    The introduction of foreign atoms, such as nitrogen, into the hexagonal network of an sp(2)-hybridized carbon atom monolayer has been demonstrated and constitutes an effective tool for tailoring the intrinsic properties of graphene. Here, we report that boron atoms can be efficiently substituted for carbon in graphene. Single-layer graphene substitutionally doped with boron was prepared by the mechanical exfoliation of boron-doped graphite. X-ray photoelectron spectroscopy demonstrated that the amount of substitutional boron in graphite was ~0.22 atom %. Raman spectroscopy demonstrated that the boron atoms were spaced 4.76 nm apart in single-layer graphene. The 7-fold higher intensity of the D-band when compared to the G-band was explained by the elastically scattered photoexcited electrons by boron atoms before emitting a phonon. The frequency of the G-band in single-layer substitutionally boron-doped graphene was unchanged, which could be explained by the p-type boron doping (stiffening) counteracting the tensile strain effect of the larger carbon-boron bond length (softening). Boron-doped graphene appears to be a useful tool for engineering the physical and chemical properties of graphene.

  17. Composite layers in the high speed steels

    International Nuclear Information System (INIS)

    Koson, A.; Rutkowska, A.; Dabrowski, M.

    2002-01-01

    The production process and different properties of TiN, (TiA)(N and TiN + (TiAl)N coatings are described in this work. The coatings were obtained on fast-cutting steel 6-5-2(SW7M) after a typical heat treatment and gas nitriding. The following features were examined: thickness and hardness of produced layers as well as wearing quality (using T-0.5 tester). Composite layer of (TiAl)N has achieved the highest wearing quality in the range of wearing parameters applied. (author)

  18. Ultrasonic Guided Waves in Piezoelectric Layered Composite with Different Interfacial Properties

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2011-01-01

    Full Text Available Combining the propagation model of guided waves in a multilayered piezoelectric composite with the interfacial model of rigid, slip, and weak interfaces, the generalized dispersion characteristic equations of guided waves propagating in a piezoelectric layered composite with different interfacial properties are derived. The effects of the slip, weak, and delamination interfaces in different depths on the dispersion properties of the lowest-order mode ultrasonic guided wave are analyzed. The theory would be used to characterize the interfacial properties of piezoelectric layered composite nondestructively.

  19. Formation of an ascorbate-apatite composite layer on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Atsuo [National Institute of Advanced Industrial Science and Technology (AIST), Institute for Human Science and Biomedical Engineering, Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566 (Japan); Sogo, Yu [National Institute of Advanced Industrial Science and Technology (AIST), Institute for Human Science and Biomedical Engineering, Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566 (Japan); Ebihara, Yuko [School of Science and Technology, Waseda University, 3-4-1 Okubo, Sinjuku-ku, Tokyo 169-8050 (Japan); Onoguchi, Masahiro [School of Science and Technology, Waseda University, 3-4-1 Okubo, Sinjuku-ku, Tokyo 169-8050 (Japan); Oyane, Ayako [National Institute of Advanced Industrial Science and Technology (AIST), Nanotechnology Research Institute, Central 4, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562 (Japan); Ichinose, Noboru [School of Science and Technology, Waseda University, 3-4-1 Okubo, Sinjuku-ku, Tokyo 169-8050 (Japan)

    2007-09-15

    An ascorbate-apatite composite layer was successfully formed on NaOH- and heat-treated titanium by coprecipitating L-ascorbic acid phosphate and low-crystalline apatite in a supersaturated calcium phosphate solution at 37 {sup 0}C for 48 h. The supersaturated calcium phosphate solutions used have chemical compositions attainable by mixing infusion fluids officially approved for clinical use. The amount of immobilized L-ascorbic acid phosphate ranged from 1.0 to 2.3 {mu}g mm{sup -2}, which is most likely to be sufficient for the in vitro osteogenic differentiation of mesenchymal stem cells on titanium. Since ascorbate is important for the collagen synthesis and subsequent osteogenesis of mesenchymal stem cells, titanium coated with the ascorbate-apatite composite layer would be useful as a scaffold in bone tissue engineering and as a bone substitute.

  20. Formation of an ascorbate-apatite composite layer on titanium

    International Nuclear Information System (INIS)

    Ito, Atsuo; Sogo, Yu; Ebihara, Yuko; Onoguchi, Masahiro; Oyane, Ayako; Ichinose, Noboru

    2007-01-01

    An ascorbate-apatite composite layer was successfully formed on NaOH- and heat-treated titanium by coprecipitating L-ascorbic acid phosphate and low-crystalline apatite in a supersaturated calcium phosphate solution at 37 0 C for 48 h. The supersaturated calcium phosphate solutions used have chemical compositions attainable by mixing infusion fluids officially approved for clinical use. The amount of immobilized L-ascorbic acid phosphate ranged from 1.0 to 2.3 μg mm -2 , which is most likely to be sufficient for the in vitro osteogenic differentiation of mesenchymal stem cells on titanium. Since ascorbate is important for the collagen synthesis and subsequent osteogenesis of mesenchymal stem cells, titanium coated with the ascorbate-apatite composite layer would be useful as a scaffold in bone tissue engineering and as a bone substitute

  1. Efficacy of Hydrophobic Layer On Sealing Ability of Dentin Adhesive Systems in Class V Composite Resin Restorations

    Directory of Open Access Journals (Sweden)

    Fatemeh Maleknejad

    2011-03-01

    Full Text Available Background and aims. Adhesive permeability is hindered by application of an additional layer of hydrophobic resin, which increases its concentration within the hydrophilic layer, reduces its affinity to water, and enhances its physical properties. The aim of the present study was to evaluate the effect of a hydrophobic layer on the microleakage of class V composite restorations using different adhesives. Materials and methods. The adhesives including total-etch Scotchbond MP and Single Bond, and the self-etch Clearfil SE Bond and Clearfil S3 Bond were applied to 80 class V cavities in vitro on the buccal surface in CEJ and then were followed by hydrophobic resin (Margin Bond in half of the cavities in each group (n=10. After restoration with microhybrid composite, Z100 and immersion in fuchsine, the degree of microleakage was assessed. Data were analyzed using the Kruskal-Wallis, Man-Whitney, and Wilcoxon tests. Results. The hydrophobic layer significantly reduced the microleakage of Clearfil SE Bond and Clearfil S3 Bond only in dentin (p0.05. Conclusion. Within the limitation of this study, only Clearfil S3 Bond could demonstrate the identical values of microleakage in enamel and dentinal margins.

  2. Single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides as promising photocatalysts.

    Science.gov (United States)

    Bai, Yujie; Luo, Gaixia; Meng, Lijuan; Zhang, Qinfang; Xu, Ning; Zhang, Haiyang; Wu, Xiuqiang; Kong, Fanjie; Wang, Baolin

    2018-05-30

    Searching for two-dimensional semiconductor materials that are suitable for visible-light photocatalytic water splitting provides a sustainable solution to deal with the future energy crisis and environmental problems. Herein, based on first-principles calculations, single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides are proposed as efficient photocatalysts for water splitting. Stability analyses show that the single-layer ZnMN2 zinc nitrides exhibit energetic and dynamical stability. The electronic properties reveal that all of the single-layer ZnMN2 zinc nitrides are semiconductors. Interestingly, single-layer ZnSnN2 is a direct band gap semiconductor with a desirable band gap (1.74 eV), and the optical adsorption spectrum confirms its optical absorption in the visible light region. The hydrogen evolution reaction (HER) calculations show that the catalytic activity for single-layer ZnMN2 (M = Ge, Sn) is better than that of single-layer ZnSiN2. Furthermore, the band gaps and band edge positions for the single-layer ZnMN2 zinc nitrides can be effectively tuned by biaxial strain. Especially, single-layer ZnGeN2 can be effectively tuned to match better with the redox potentials of water and enhance the light absorption in the visible light region at a tensile strain of 5%, which is confirmed by the corresponding optical absorption spectrum. Our results provide guidance for experimental synthesis efforts and future searches for single-layer materials suitable for photocatalytic water splitting.

  3. Ceramic nanostructure materials, membranes and composite layers

    NARCIS (Netherlands)

    Burggraaf, A.J.; Keizer, Klaas; van Hassel, B.A.

    1989-01-01

    Synthesis methods to obtain nanoscale materials will be briefly discussed with a focus on sol-gel methods. Three types of nanoscale composites (powders, membranes and ion implanted layers) will be discussed and exemplified with recent original research results. Ceramic membranes with a thickness of

  4. Synthesis of PbI(2) single-layered inorganic nanotubes encapsulated within carbon nanotubes.

    Science.gov (United States)

    Cabana, Laura; Ballesteros, Belén; Batista, Eudar; Magén, César; Arenal, Raúl; Oró-Solé, Judith; Rurali, Riccardo; Tobias, Gerard

    2014-04-02

    The template assisted growth of single-layered inorganic nanotubes is reported. Single-crystalline lead iodide single-layered nanotubes have been prepared using the inner cavities of carbon nanotubes as hosting templates. The diameter of the resulting inorganic nanotubes is merely dependent on the diameter of the host. This facile method is highly versatile opening up new horizons in the preparation of single-layered nanostructures. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Penetration of a Small Caliber Projectile into Single and Multi-layered Targets

    Directory of Open Access Journals (Sweden)

    Riad A.M.

    2010-06-01

    Full Text Available The normal penetration of armor-piercing projectiles into single and multi-layered steel plates has been investigated. An experimental program has been conducted to study the effect of spaced and in-contact layered targets on their ballistic resistance. Armor piercing projectiles with caliber of 7.62 mm were fired against a series of single and multi-layered steel targets. The projectile impact velocities were ranged from 300-600 m/s, whereas the total thicknesses of the tested single, spaced and in-contact layered steel targets were 3 mm. The penetration process of different tested target configurations has been simulated using Autodayn-2D hydrocode. The experimental measurements of the present work were used to discuss the effect of impact velocity, target configurations and number of layers of different spaced and in-contact layered steel targets on their ballistic resistance. In addition, the post-firing examination of the tested targets over the used impact velocity range showed that the single and each layer of spaced and in-contact laminated steel targets were failed by petalling. Finally, the obtained experimental measurements were compared with the corresponding numerical results of Autodyn-2D hydrocode, good agreement was generally obtained.

  6. Effect of resin-modified glass-ionomer cement lining and composite layering technique on the adhesive interface of lateral wall

    Directory of Open Access Journals (Sweden)

    Larissa Marinho AZEVEDO

    2015-06-01

    Full Text Available Interface integrity can be maintained by setting the composite in a layering technique and using liners. Objective The aim of this in vitro study was to verify the effect of resin-modified glass-ionomer cement (RMGIC lining and composite layering technique on the bond strength of the dentin/resin adhesive interface of lateral walls of occlusal restorations. Material and Methods Occlusal cavities were prepared in 52 extracted sound human molars, randomly assigned into 4 groups: Group 2H (control – no lining + two horizontal layers; Group 4O: no lining + four oblique layers; Group V-2H: RMGIC lining (Vitrebond + two horizontal layers; and Group V-4O: RMGIC lining (Vitrebond + four oblique layers. Resin composite (Filtek Z250, 3M ESPE was placed after application of an adhesive system (Adper™ Single Bond 2, 3M ESPE dyed with a fluorescent reagent (Rhodamine B to allow confocal microscopy analysis. The teeth were stored in deionized water at 37oC for 24 hours before being sectioned into 0.8 mm slices. One slice of each tooth was randomly selected for Confocal Laser Scanning Microscopy (CLSM analysis. The other slices were sectioned into 0.8 mm x 0.8 mm sticks to microtensile bond strength test (MPa. Data were analyzed by two-way ANOVA and Fisher's test. Results There was no statistical difference on bond strength among groups (p>0.05. CLSM analysis showed no significant statistical difference regarding the presence of gap at the interface dentin/resin among groups. Conclusions RMGIC lining and composite layering techniques showed no effect on the microtensile bond strength and gap formation at the adhesive interface of lateral walls of high C-factor occlusal restorations.

  7. Nano-soldering to single atomic layer

    Science.gov (United States)

    Girit, Caglar O [Berkeley, CA; Zettl, Alexander K [Kensington, CA

    2011-10-11

    A simple technique to solder submicron sized, ohmic contacts to nanostructures has been disclosed. The technique has several advantages over standard electron beam lithography methods, which are complex, costly, and can contaminate samples. To demonstrate the soldering technique graphene, a single atomic layer of carbon, has been contacted, and low- and high-field electronic transport properties have been measured.

  8. MAPLE deposition of polypyrrole-based composite layers for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Paun, Irina Alexandra, E-mail: irina.paun@physics.pub.ro [Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 (Romania); National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest RO-077125 (Romania); Acasandrei, Adriana Maria [Horia Hulubei National Institute for Physics and Nuclear Engineering IFIN-HH, Magurele, Bucharest RO-077125 (Romania); Luculescu, Catalin Romeo, E-mail: catalin.luculescu@inflpr.ro [National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest RO-077125 (Romania); Mustaciosu, Cosmin Catalin [Horia Hulubei National Institute for Physics and Nuclear Engineering IFIN-HH, Magurele, Bucharest RO-077125 (Romania); Ion, Valentin [National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest RO-077125 (Romania); Mihailescu, Mona; Vasile, Eugenia [Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 (Romania); Dinescu, Maria, E-mail: dinescum@nipne.ro [National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest RO-077125 (Romania)

    2015-12-01

    Highlights: • PPy-based composite layers for bone regeneration were produced by MAPLE. • Conductive PPy nanograins were embedded in insulating PLGA and PU matrices. • PLGA was chosen for providing biodegradability and PU for toughness and elasticity. • The layers conductivities reached 10{sup −2} S/cm for PPy loadings of 1:10 weight ratios. • The layers promoted osteoblast viability, proliferation and mineralization. - Abstract: We report on biocompatible, electrically conductive layers of polypyrrole (PPy)-based composites obtained by Matrix Assisted Pulsed Laser Evaporation (MAPLE) for envisioned bone regeneration. In order to preserve the conductivity of the PPy while overcoming its lack of biodegradability and low mechanical resilience, conductive PPy nanograins were embedded in two biocompatible, insulating polymeric matrices, i.e. poly(lactic-co-glycolic)acid (PLGA) and polyurethane (PU). PLGA offers the advantage of full biodegradability into non-toxic products, while PU provides toughness and elasticity. The PPy nanograins formed micro-domains and networks within the PLGA and PU matrices, in a compact spatial arrangement favorable for electrical percolation. The proposed approach allowed us to obtain PPy-based composite layers with biologically meaningful conductivities up to 10{sup −2} S/cm for PPy loadings as low as 1:10 weight ratios. Fluorescent staining and viability assays showed that the MG63 osteoblast-like cells cultured on the PPy-based layers deposited by MAPLE were viable and retained their capacity to proliferate. The performance of the proposed method was demonstrated by quantitative evaluation of the calcium phosphate deposits from the cultured cells, as indicative for cell mineralization. Electrical stimulation using 200 μA currents passing through the PPy-based layers, during a time interval of 4 h, enhanced the osteogenesis in the cultured cells. Despite their lowest conductivity, the PPy/PU layers showed the best

  9. Single-layer graphene-assembled 3D porous carbon composites with PVA and Fe₃O₄ nano-fillers: an interface-mediated superior dielectric and EMI shielding performance.

    Science.gov (United States)

    Rao, B V Bhaskara; Yadav, Prasad; Aepuru, Radhamanohar; Panda, H S; Ogale, Satishchandra; Kale, S N

    2015-07-28

    In this study, a novel composite of Fe3O4 nanofiller-decorated single-layer graphene-assembled porous carbon (SLGAPC) with polyvinyl alcohol (PVA) having flexibility and a density of 0.75 g cm(-3) is explored for its dielectric and electromagnetic interference (EMI) response properties. The composite is prepared by the solution casting method and its constituents are optimized as 15 wt% SLGAPC and 20 wt% Fe3O4 through a novel solvent relaxation nuclear magnetic resonance experiment. The PVA-SLGAPC-Fe3O4 composite shows high dielectric permittivity in the range of 1 Hz-10 MHz, enhanced by a factor of 4 as compared to that of the PVA-SLGAPC composite, with a reduced loss by a factor of 2. The temperature dependent dielectric properties reveal the activation energy behaviour with reference to the glass transition temperature (80 °C) of PVA. The dielectric hysteresis with the temperature cycle reveals a remnant polarization. The enhanced dielectric properties are suggested to be the result of improvement in the localized polarization of the integrated interface system (Maxwell-Wagner-Sillars (MWS) polarization) formed by the uniform adsorption of Fe3O4 on the surface of SLGAPC conjugated with PVA. The EMI shielding property of the composite with a low thickness of 0.3 mm in the X-band (8.2-12.4 GHz) shows a very impressive shielding efficiency of ∼15 dB and a specific shielding effectiveness of 20 dB (g cm(-3))(-1), indicating the promising character of this material for flexible EMI shielding applications.

  10. Effect of Dental Restorative Material Type and Shade on Characteristics of Two-Layer Dental Composite Systems

    Directory of Open Access Journals (Sweden)

    Atefeh Karimzadeh

    Full Text Available Abstract The purpose of this study was to investigate the effects of shade and material type and shape in dental polymer composites on the hardness and shrinkage stress of bulk and two-layered restoration systems. For this purpose, some bulk and layered specimens from three different shades of dental materials were prepared and light-cured. The experiments were carried out on three types of materials: conventional restorative composite, nanohybrid composite and nanocomposite. Micro-indentation experiment was performed on the bulk and also on each layer of layered restoration specimens using a Vicker's indenter. The interface between the two layers was studied by scanning electron microscopy (SEM. The results revealed significant differences between the values of hardness for different shades in the conventional composite and also in the nanohybrid composite. However, no statistically significant difference was observed between the hardness values for different shades in the nanocomposite samples. The layered restoration specimens of different restorative materials exhibited lower hardness values with respect to their bulk specimens. The reduction in the hardness value of the layered conventional composite samples was higher than those of the nanocomposite and nanohybrid composite specimens indicating more shrinkage stresses generated in the conventional composite restorations. According to the SEM images, a gap was observed between the two layers in the layered restorations.

  11. Morphological effects of single-layer graphene oxide in the formation of covalently bonded polypyrrole composites using intermediate diisocyanate chemistry

    International Nuclear Information System (INIS)

    Whitby, Raymond L. D.; Korobeinyk, Alina; Mikhalovsky, Sergey V.; Fukuda, Takahiro; Maekawa, Toru

    2011-01-01

    Single-layer graphene oxide (SLGO) possesses carboxylic and hydroxyl groups suitable for reactions with aliphatic or aromatic diisocyanate molecules. TEM analysis reveals that aliphatic diisocyanate molecules caused SLGO to scroll into star-like formations, whereas aromatic diisocyanate molecules retained SGLO in a flat-sheet morphology. TGA confirms the stabilisation of the formed urea and urethane groups on SLGO, but the onset of sheet pyrolysis occurs at a lower temperature due to isocyanate reactions with anhydride and epoxide groups embedded in the sheet. Pendant isocyanate groups act as bridging units to facilitate the attachment of pyrrole molecules, which are then used as anchor sites for the covalent polymerisation of pyrrole to polypyrrole (PPy). The use of FeCl 3 as the polymerisation catalyst generated both covalent and free PPy, but also iron hydroxide nanoparticles were observed decorating the SLGO surface. When using ammonium persulfate as a catalyst and dodecylbenzenesulfonate as a dopant, free PPy could be removed under treatment with solvents to leave a purely covalent system. Discrete regions of SLGO were observed decorated with nanoparticles of PPy along the edge or across the surface of individual sheets. It was found that the flexibility of the SLGO sheet and the type of diisocyanate used directly affected the electrical resistance of the final composite.

  12. Density functional theory study of bulk and single-layer magnetic semiconductor CrPS4

    Science.gov (United States)

    Zhuang, Houlong L.; Zhou, Jia

    2016-11-01

    Searching for two-dimensional (2D) materials with multifunctionality is one of the main goals of current research in 2D materials. Magnetism and semiconducting are certainly two desirable functional properties for a single 2D material. In line with this goal, here we report a density functional theory (DFT) study of bulk and single-layer magnetic semiconductor CrPS4. We find that the ground-state magnetic structure of bulk CrPS4 exhibits the A-type antiferromagnetic ordering, which transforms to ferromagnetic (FM) ordering in single-layer CrPS4. The calculated formation energy and phonon spectrum confirm the stability of single-layer CrPS4. The band gaps of FM single-layer CrPS4 calculated with a hybrid density functional are within the visible-light range. We also study the effects of FM ordering on the optical absorption spectra and band alignments for water splitting, indicating that single-layer CrPS4 could be a potential photocatalyst. Our work opens up ample opportunities of energy-related applications of single-layer CrPS4.

  13. First-principles analysis of phase stability in layered-layered composite cathodes for lithium-ion batteries

    Science.gov (United States)

    Iddir, Hakim; Benedek, Roy; Voltage Fade Team

    2014-03-01

    The atomic order in layered-layered composites with composition xLi2MnO3 .(1-x)LiCoO2 is investigated with first-principles calculations at the GGA +U level. This material, and others in its class, are often regarded as solid solutions, however, only a minute solubility of Li2MnO3 in a LiCoO2 host is predicted. Calculations of Co-vacancy formation and migration energies in LiCoO2 are presented, to elucidate the rate of vacancy-mediated ordering in the transition-metal-layer, and thus determine whether low vacancy mobility could result in slow equilibration. The Co-vacancy formation energy can be predicted only to within a range, because of uncertainty in the chemical potentials. Predicted migration energies, however, are approximately 1 eV, small enough to be consistent with rapid ordering in the transition metal layer, and therefore separated Li2MnO3 and LiCoO2 phases. The relatively small (of the order of a few nm) Li2MnO3 domain sizes observed with TEM in some xLi2MnO3 .(1-x)LiMO2 composites may result from other factors, such as coherency strain, which perhaps block further domain coarsening in these materials. Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  14. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    International Nuclear Information System (INIS)

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing; Liu, Xiaoya

    2014-01-01

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet–visible absorption spectrum (UV–vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10 −4 to 1.2×10 −3 M with the detect limit of 5×10 −6 M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor. - Graphical abstract: A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. - Highlights: • A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. • The water dispersible and negatively charged graphene (CCG) was used as building block. • CCG was achieved through partly reduced graphene oxide with carboxyl group on its surface. • CCG/PANI film kept electroactivity in

  15. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Allec, N; Abbaszadeh, S; Karim, K S, E-mail: nallec@uwaterloo.ca [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1 (Canada)

    2011-09-21

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml{sup -1} in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  16. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    Science.gov (United States)

    Allec, N.; Abbaszadeh, S.; Karim, K. S.

    2011-09-01

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml-1 in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  17. Polyaniline–titania solid electrolyte for new generation photovoltaic single-layer devices

    International Nuclear Information System (INIS)

    Ibrahim, Michael; Bassil, Maria; Demirci, Umit B.; Khoury, Tony; El Haj Moussa, Georges; El Tahchi, Mario; Miele, Philippe

    2012-01-01

    Highlights: ► Strong interaction between polyaniline and TiO 2 and the formation of a core/shell structure. ► Enhancement of the absorption of TiO 2 in the visible range. ► Diode-like behavior with low polyaniline content. ► Single layer photovoltaic device based on solid polyaniline–TiO 2 composite. - Abstract: In this study, in situ chemical oxidative polymerization of very low quantities of aniline doped with HCl using ammonium persulfate inside an aqueous solution of 10 wt.% of titanium dioxide was used to prepare a novel photovoltaic paint. Photoelectrical properties of the composite have been observed and the operating principle of the photovoltaic device is presented. We report an enhancement of the absorption of TiO 2 powder in the visible range due to the sensitization by conductive polyaniline. Under illumination an open circuit voltage of 593 mV and a short circuit current density of 0.502 A m −2 were recorded. The surface conductivity of PANI–TiO 2 pellets is measured using the four-point probe technique. The percolation theory together with variable range hopping explained the behavior of the surface conductivity of the composites. Morphological analysis using Transmission Electron Microscope showed the core/shell structure of the composites and energy dispersive X-ray showed the homogeneity of the composite. Fourier transform infrared spectroscopy confirmed the chemical adsorption of polyaniline at the surface of TiO 2 . UV–visible spectroscopy showed a shift of the polaron energy inside the polyaniline energy gap. The proposed morphology is showed to be responsible for the photoactivity of the composite.

  18. Synthesis of Epitaxial Single-Layer MoS2 on Au(111).

    Science.gov (United States)

    Grønborg, Signe S; Ulstrup, Søren; Bianchi, Marco; Dendzik, Maciej; Sanders, Charlotte E; Lauritsen, Jeppe V; Hofmann, Philip; Miwa, Jill A

    2015-09-08

    We present a method for synthesizing large area epitaxial single-layer MoS2 on the Au(111) surface in ultrahigh vacuum. Using scanning tunneling microscopy and low energy electron diffraction, the evolution of the growth is followed from nanoscale single-layer MoS2 islands to a continuous MoS2 layer. An exceptionally good control over the MoS2 coverage is maintained using an approach based on cycles of Mo evaporation and sulfurization to first nucleate the MoS2 nanoislands and then gradually increase their size. During this growth process the native herringbone reconstruction of Au(111) is lifted as shown by low energy electron diffraction measurements. Within the MoS2 islands, we identify domains rotated by 60° that lead to atomically sharp line defects at domain boundaries. As the MoS2 coverage approaches the limit of a complete single layer, the formation of bilayer MoS2 islands is initiated. Angle-resolved photoemission spectroscopy measurements of both single and bilayer MoS2 samples show a dramatic change in their band structure around the center of the Brillouin zone. Brief exposure to air after removing the MoS2 layer from vacuum is not found to affect its quality.

  19. Structure and chemical composition of layers adsorbed at interfaces with champagne.

    Science.gov (United States)

    Aguié-Béghin, V; Adriaensen, Y; Péron, N; Valade, M; Rouxhet, P; Douillard, R

    2009-11-11

    The structure and the chemical composition of the layer adsorbed at interfaces involving champagne have been investigated using native champagne, as well as ultrafiltrate (UFch) and ultraconcentrate (UCch) obtained by ultrafiltration with a 10(4) nominal molar mass cutoff. The layer adsorbed at the air/liquid interface was examined by surface tension and ellipsometry kinetic measurements. Brewster angle microscopy demonstrated that the layer formed on polystyrene by adsorption or drop evaporation was heterogeneous, with a domain structure presenting similarities with the layer adsorbed at the air/liquid interface. The surface chemical composition of polystyrene with the adlayer was determined by X-ray photoelectron spectroscopy (XPS). The contribution of champagne constituents varied according to the liquid (native, UFch, and UCch) and to the procedure of adlayer formation (evaporation, adsorption, and adsorption + rinsing). However, their chemical composition was not significantly influenced either by ultrafiltration or by the procedure of deposition on polystyrene. Modeling this composition in terms of classes of model compounds gave approximately 35% (w/w) of proteins and 65% (w/w) of polysaccharides. In the adlayer, the carboxyl groups or esters represent about 18% of carbon due to nonpolypeptidic compounds, indicating the presence of either uronic acids in the complex structure of pectic polysaccharides or of polyphenolic esters. This structural and chemical information and its relationship with the experimental procedures indicate that proteins alone cannot be used as a realistic model for the macromolecules forming the adsorption layer of champagne. Polysaccharides, the other major macromolecular components of champagne wine, are assembled with proteins at the interfaces, in agreement with the heterogeneous character of the adsorbed layer at interfaces.

  20. Magnetic moment of single layer graphene rings

    Science.gov (United States)

    Margulis, V. A.; Karpunin, V. V.; Mironova, K. I.

    2018-01-01

    Magnetic moment of single layer graphene rings is investigated. An analytical expression for the magnetic moment as a function of the magnetic field flux through the one-dimensional quantum rings is obtained. This expression has the oscillation character. The oscillation period is equal to one flux quanta.

  1. Apparatus and method of manufacture for depositing a composite anti-reflection layer on a silicon surface

    Science.gov (United States)

    Pain, Bedabrata (Inventor)

    2012-01-01

    An apparatus and associated method are provided. A first silicon layer having at least one of an associated passivation layer and barrier is included. Also included is a composite anti-reflection layer including a stack of layers each with a different thickness and refractive index. Such composite anti-reflection layer is disposed adjacent to the first silicon layer.

  2. Compositional control of continuously graded anode functional layer

    Science.gov (United States)

    McCoppin, J.; Barney, I.; Mukhopadhyay, S.; Miller, R.; Reitz, T.; Young, D.

    2012-10-01

    In this work, solid oxide fuel cells (SOFC's) are fabricated with linear-compositionally graded anode functional layers (CGAFL) using a computer-controlled compound aerosol deposition (CCAD) system. Cells with different CGAFL thicknesses (30 um and 50 um) are prepared with a continuous compositionally graded interface deposited between the electrolyte and anode support current collecting regions. The compositional profile was characterized using energy dispersive X-ray spectroscopic mapping. An analytical model of the compound aerosol deposition was developed. The model predicted compositional profiles for both samples that closely matched the measured profiles, suggesting that aerosol-based deposition methods are capable of creating functional gradation on length scales suitable for solid oxide fuel cell structures. The electrochemical performances of the two cells are analyzed using electrochemical impedance spectroscopy (EIS).

  3. Methods of improvement in hardness of composite surface layer on cast steel

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2008-08-01

    Full Text Available The paper presents a method of usable properties of surface layers improvement of cast carbon steel 200–450, by put directly in founding process a composite surface layer on the basis of Fe-Cr-C alloy and next its remelting with use of welding technology TIG – Tungsten Inert Gas. Technology of composite surface layer guarantee mainly increase in hardness and abrasive wear resistance of cast steel castings on machine elements. This technology can be competition for generally applied welding technology (surfacing by welding and thermal spraying. However the results of studies show, that is possible to connection of both methods founding and welding of surface hardening of cast steel castings. In range of experimental plan was made test castings with composite surface layer, which next were remelted with energy 0,8 and 1,6 kJ/cm. Usability for industrial applications of test castings was estimated by criterion of hardness and abrasive wear resistance of type metal-mineral.

  4. Learning rate and attractor size of the single-layer perceptron

    International Nuclear Information System (INIS)

    Singleton, Martin S.; Huebler, Alfred W.

    2007-01-01

    We study the simplest possible order one single-layer perceptron with two inputs, using the delta rule with online learning, in order to derive closed form expressions for the mean convergence rates. We investigate the rate of convergence in weight space of the weight vectors corresponding to each of the 14 out of 16 linearly separable rules. These vectors follow zigzagging lines through the piecewise constant vector field to their respective attractors. Based on our studies, we conclude that a single-layer perceptron with N inputs will converge in an average number of steps given by an Nth order polynomial in (t/l), where t is the threshold, and l is the size of the initial weight distribution. Exact values for these averages are provided for the five linearly separable classes with N=2. We also demonstrate that the learning rate is determined by the attractor size, and that the attractors of a single-layer perceptron with N inputs partition R N +R N

  5. Optimal design of damping layers in SMA/GFRP laminated hybrid composites

    Science.gov (United States)

    Haghdoust, P.; Cinquemani, S.; Lo Conte, A.; Lecis, N.

    2017-10-01

    This work describes the optimization of the shape profiles for shape memory alloys (SMA) sheets in hybrid layered composite structures, i.e. slender beams or thinner plates, designed for the passive attenuation of flexural vibrations. The paper starts with the description of the material and architecture of the investigated hybrid layered composite. An analytical method, for evaluating the energy dissipation inside a vibrating cantilever beam is developed. The analytical solution is then followed by a shape profile optimization of the inserts, using a genetic algorithm to minimize the SMA material layer usage, while maintaining target level of structural damping. Delamination problem at SMA/glass fiber reinforced polymer interface is discussed. At the end, the proposed methodology has been applied to study the hybridization of a wind turbine layered structure blade with SMA material, in order to increase its passive damping.

  6. Thermal vibration of a rectangular single-layered graphene sheet with quantum effects

    International Nuclear Information System (INIS)

    Wang, Lifeng; Hu, Haiyan

    2014-01-01

    The thermal vibration of a rectangular single-layered graphene sheet is investigated by using a rectangular nonlocal elastic plate model with quantum effects taken into account when the law of energy equipartition is unreliable. The relation between the temperature and the Root of Mean Squared (RMS) amplitude of vibration at any point of the rectangular single-layered graphene sheet in simply supported case is derived first from the rectangular nonlocal elastic plate model with the strain gradient of the second order taken into consideration so as to characterize the effect of microstructure of the graphene sheet. Then, the RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet simply supported on an elastic foundation is derived. The study shows that the RMS amplitude of the rectangular single-layered graphene sheet predicted from the quantum theory is lower than that predicted from the law of energy equipartition. The maximal relative difference of RMS amplitude of thermal vibration appears at the sheet corners. The microstructure of the graphene sheet has a little effect on the thermal vibrations of lower modes, but exhibits an obvious effect on the thermal vibrations of higher modes. The quantum effect is more important for the thermal vibration of higher modes in the case of smaller sides and lower temperature. The relative difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet decreases monotonically with an increase of temperature. The absolute difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet increases slowly with the rising of Winkler foundation modulus.

  7. Design, simulation and characterization of a MEMS inertia switch with flexible CNTs/Cu composite array layer between electrodes for prolonging contact time

    International Nuclear Information System (INIS)

    Wang, Yang; Yang, Zhuoqing; Xu, Qiu; Chen, Wenguo; Ding, Guifu; Zhao, Xiaolin

    2015-01-01

    This paper reports an inertia switch with a flexible carbon nanotubes/copper (CNTs/Cu) composite array layer between movable and fixed electrodes, which achieves a longer contact time compared to the traditional design using rigid-to-rigid impact between electrodes. The CNTs/Cu layer is fabricated using the composite electroplating method, and the whole device is completed by multi-layer metal electroplating based on the micro-electro-mechanical systems (MEMS) process. The dynamic responses of the designed inertia switch and the contact impact between a single CNT and a fixed electrode/another CNT have both been simulated by the ANSYS finite-element-method (FEM). It is shown that the contact time of the designed inertia switch is about 100 µs under the applied 80 g half-sine-shaped acceleration in the sensing direction. Finally, the fabricated MEMS inertia switch with the flexible CNTs/Cu composite array layer between electrodes has been evaluated by a dropping hammer system. The test contact time is about112 µs, which has a good agreement with the simulation and is much longer than that of the traditional design. (paper)

  8. Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf–aramid hybrid laminated composites

    International Nuclear Information System (INIS)

    Yahaya, R.; Sapuan, S.M.; Jawaid, M.; Leman, Z.; Zainudin, E.S.

    2015-01-01

    Highlights: • The mechanical properties of woven kenaf/Kevlar hybrid composites were analysed. • The layering sequences affect the mechanical properties of hybrid composites. • Treated kenaf improves the mechanical properties of hybrid composites. - Abstract: This work aims to evaluate the effect of layering sequence and chemical treatment on mechanical properties of woven kenaf–Kevlar composites. Woven kenaf–aramid hybrid laminated composites fabricated through hand lay-up techniques by arranging woven kenaf and Kevlar fabrics in different layering sequences and by using treated kenaf mat. To evaluate the effect of chemical treatment on hybrid composites, the woven kenaf mat was treated with 6% sodium hydroxide (NaOH) diluted solution and compared mechanical properties with untreated kenaf hybrid composites. Results shows that the tensile properties of hybrid composites improved in 3-layer composites compared to 4-layer composites. Hybrid composite with Kevlar as outer layers display a better mechanical properties as compared to other hybrid composites. Tensile and flexural properties of treated hybrid composites are better than non-treated hybrid composites. The fractured surface of hybrid composites was investigated by scanning electron microscopy. This study is a part of exploration of potential application of the hybrid composite in high velocity impact application

  9. Predictions and Experimental Microstructural Characterization of High Strain Rate Failure Modes in Layered Aluminum Composites

    Science.gov (United States)

    Khanikar, Prasenjit

    Different aluminum alloys can be combined, as composites, for tailored dynamic applications. Most investigations pertaining to metallic alloy layered composites, however, have been based on quasi-static approaches. The dynamic failure of layered metallic composites, therefore, needs to be characterized in terms of strength, toughness, and fracture response. A dislocation-density based crystalline plasticity formulation, finite-element techniques, rational crystallographic orientation relations and a new fracture methodology were used to predict the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary (GB) distributions. The new fracture methodology, based on an overlap method and phantom nodes, is used with a fracture criteria specialized for fracture on different cleavage planes. One of the objectives of this investigation, therefore, was to determine the optimal arrangements of the 2139 and 2195 aluminum alloys for a metallic layered composite that would combine strength, toughness and fracture resistance for high strain-rate applications. Different layer arrangements were investigated for high strain-rate applications, and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance. The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-boned interface and the potential delamination of the layers. Shear strain localization, dynamic cracking and delamination were the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be optimized for high strain

  10. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing, E-mail: jingluo19801007@126.com; Liu, Xiaoya

    2014-10-15

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet–visible absorption spectrum (UV–vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10{sup −4} to 1.2×10{sup −3} M with the detect limit of 5×10{sup −6} M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor. - Graphical abstract: A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. - Highlights: • A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. • The water dispersible and negatively charged graphene (CCG) was used as building block. • CCG was achieved through partly reduced graphene oxide with carboxyl group on its surface. • CCG/PANI film kept

  11. Optimization of SMA layers in composite structures to enhance damping

    Science.gov (United States)

    Haghdoust, P.; Cinquemani, S.; Lecis, N.; Bassani, P.

    2016-04-01

    The performance of lightweight structures can be severely affected by vibration. New design concepts leading to lightweight, slender structural components can increase the vulnerability of the components to failure due to excessive vibration. The intelligent approach to address the problem would be the use of materials which are more capable in dissipating the energy due to their high value of loss factor. Among the different materials available to achieve damping, much attention has been attached to the use of shape memory alloys (SMAs) because of their unique microstructure, leading to good damping capacity. This work describes the design and optimization of a hybrid layered composite structure for the passive suppression of flexural vibrations in slender and light structures. Embedding the SMA layers in composite structure allows to combine different properties: the lightness of the base composite (e.g. fiber glass), the mechanical strength of the insert of metallic material and the relevant damping properties of SMA, in the martensitic phase. In particular, we put our attention on embedding the CuZnAl in the form of thin sheet in a layered composite made by glass fiber reinforced epoxy. By appropriately positioning of the SMA sheets so that they are subjected to the maximum curvature, the damping of the hybrid system can be considerably enhanced. Accordingly analytical method for evaluating the energy dissipation of the thin sheets with different shapes and patterns is developed and is followed by a shape optimization based on genetic algorithm. Eventually different configurations of the hybrid beam structure with different patterns of SMA layer are proposed and compared in the term of damping capacity.

  12. A nonlinear magnetoelectric model for magnetoelectric layered composite with coupling stress

    International Nuclear Information System (INIS)

    Shi, Yang; Gao, Yuanwen

    2014-01-01

    Based on a linear piezoelectric relation and a nonlinear magnetostrictive constitutive relation, A nonlinear magnetoelectric (ME) effect model for flexural layered ME composites is established in in-plane magnetic field. In the proposed model, the true coupling stress and the equivalent piezomagnetic coefficient are taken into account and obtained through an iterative approach. Some calculations on nonlinear ME coefficient are conducted and discussed. Our results show that for both the flexural bilayer and trilayer composites, the true coupling stress in the composites first increase and then approach to a constant value with the increase of applied magnetic fields, affecting the nonlinear ME effect significantly. With consideration of the true coupling stress, the ME effect is smaller than that without consideration of the true coupling stress. Moreover, the proposed theoretical model predicts that the ME coefficient of the trilayer composite (does not generate the bending deflection) is much larger than that of bilayer composite (generates the bending deflection), which is in well agreement with the previous works. The influences of the applied magnetic field on the true coupling stress and fraction ratio corresponding to the extreme ME coefficients of layered structures are also investigated. - Highlights: • This paper develops a nonlinear model for layered ME composite. • The true coupling stress is obtained through an iterative approach. • The influences of coupling stress and flexural deformation are discussed. • The dependence of ME coefficient on magnetic field is studied

  13. Fabrication of Ni-Al/diamond composite based on layered and gradient structures of SHS system

    Directory of Open Access Journals (Sweden)

    Lu Jiafeng

    2017-01-01

    Full Text Available In this paper layered and gradient structures of Ni-Al SHS system were adopted to manufacture Ni-Al/diamond composites. The effect of the layered and the diamond mesh gradient structures of Ni-Al/diamond on the SHS process and the microstructure of the composites were investigated. It is found that with the increasing of the number of layers, the combustion wave velocity is decreased. The combustion wave velocity for diamond mesh size gradient structure of Ni-Al SHS is faster than that for the layered structure. A well bonding can be formed between diamond and the matrix in layered and gradient structure Ni-Al/diamond composites due to the melt of Ni-Cr brazing alloy.

  14. Composition modulation analysis of In{sub x}Ga{sub 1-x}P layers grown on (0 0 1) germanium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Pastore, C.E.; Araujo, D. [Departamento de Ciencia de los Materiales e IM y QI, Universidad de Cadiz, 11510 Puerto Real (Spain); Gutierrez, M., E-mail: marina.gutierrez@uca.es [Departamento de Ciencia de los Materiales e IM y QI, Universidad de Cadiz, 11510 Puerto Real (Spain); Miguel-Sanchez, J.; Rodriguez-Messmer, E. [Isofoton, C/ Severo Ochoa 50, 29590 Malaga (Spain)

    2010-07-01

    The development of new photovoltaic approach to improve costs and efficiencies is focused on the new materials and new technologies. InGaP is, in this sense, a key material for solar conversion. In particular, in the solar concentration approach, this material is part of multiple junction solar cells. Its low lattice mismatch with germanium and its adequate bandgap make it very promising. This paper shows how compositional modulation can affect the InGaP emitter and the AlGaAs tunnel junctions. The influence of the growth conditions, on the compositional modulation and misfit and threading dislocations, in In{sub 0.49}Ga{sub 0.51}P layers is demonstrated by TEM on purposely grown single InGaP layers. High resolution electron microscopy (HREM) intensity profiles showed no elastic lattice related modulation.

  15. A COMPARATIVE STUDY OF SINGLE VERSUS DOUBLE LAYER CLOSURE ON LOWER SEGMENT CAESAREAN SCAR

    Directory of Open Access Journals (Sweden)

    Kirtirekha Mohapatra

    2016-10-01

    Full Text Available BACKGROUND There are few issues in modern obstetrics that have been as controversial as management of a woman with a prior caesarean delivery. Hence, it is required to have evidence based correct practice of this surgical procedure. Healing of the uterine incision and the strength of the scar should be the most important consideration. The aim of the study is to compare the effect of technique of uterine closure (Single Layer vs. Double Layer on subsequent pregnancies and to find out, which technique has a better maternal and neonatal outcome by strengthening the scar. MATERIALS AND METHODS 500 cases of previous caesarean section pregnancies were taken, 250 from single layer closure group and 250 from double layer closure group. The mode of delivery during present pregnancy was noted. Integrity of scar, thickness of scar, presence of adhesion were documented. The neonates were observed. Results were compared so as to draw an inference about the better method. RESULTS Mean age between the two groups were similar. Majority did not have history of premature rupture of membrane during previous pregnancy. Postoperative complications were more when double layer closure of uterine scar was done in index surgery. Interpregnancy gap of <3 years was more commonly present in double layer closure group (52.8% in double layer versus 34.8% in single layer. Single layer had more scar tenderness (21.2%, thinned out scars (34.6%, incomplete ruptures (7.1% and complete ruptures (2.8% than double layer closure group. Neonatal outcomes were not statistically different in both the groups. CONCLUSION Double layer uterine closure seems to have better impact on scar integrity as compared to single layer uterine closure.

  16. Comparison of single and dual layer detector blocks for pre-clinical MRI–PET

    International Nuclear Information System (INIS)

    Thompson, Christopher; Stortz, Greg; Goertzen, Andrew; Berg, Eric; Retière, Fabrice; Kozlowski, Piotr; Ryner, Lawrence; Sossi, Vesna; Zhang, Xuezhu

    2013-01-01

    Dual or multi-layer crystal blocks have been proposed to minimise the radial blurring effect in PET scanners with small ring diameters. We measured two potential PET detector blocks' performance in a configuration which would allow 16 blocks in a ring which could be inserted in a small animal 7T MRI scanner. Two crystal sizes, 1.60×1.60 mm 2 and 1.20×1.20 mm 2 , were investigated. Single layer blocks had 10 or 12 mm deep crystals, the dual layer blocks had 4 mm deep crystals on the top layer and 6 mm deep crystals on the bottom layer. The crystals in the dual layer blocks are offset by ½ of the crystal pitch to allow for purely geometric crystal identification. Both were read out with SensL 4×4 SiPM arrays. The software identifies 64 crystals in the single layer and either 85 or 113 crystals in the dual layer array, (either 49 or 64 in the lower layers and 36 or 49 in the upper layers). All the crystals were clearly visible in the crystal identification images and their resolvability indexes (average FWHM/crystal separation) were shown to range from 0.29 for the best single layer block to 0.33 for the densest dual layer block. The best coincidence response FWHM was 0.95 mm for the densest block at the centre of the field. This degraded to 1.83 mm at a simulated radial offset of 16 mm from the centre, while the single layer crystals blurred this result to 3.4 mm. The energy resolution was 16.4±2.2% averaged over the 113 crystals of the densest block

  17. Layer-by-layer assembly of nanostructured composites: Mechanics and applications

    Science.gov (United States)

    Podsiadlo, Paul

    The development of efficient methods for preparation of nanometer-sized materials and our evolving ability to manipulate the nanoscale objects have brought about a scientific and technological revolution called: nanotechnology. This revolution has been especially driven by discovery of unique nanoscale properties of the nanomaterials which are governed by their inherent size. Today, the total societal impact of nanotechnology is expected to be greater than the combined influences that the silicon integrated circuit, medical imaging, computer-aided engineering, and man-made polymers have had in the last century. Many nanomaterials were also found to possess exceptional mechanical properties. This led to tremendous interest into developing composite materials by exploiting the mechanical properties of these building blocks. In spite of a tremendous volume of work done in the field, preparation of such nanocomposites (NCs) has proven to be elusive due to inability of traditional "top-down" fabrication approaches to effectively harness properties of the nano-scale building blocks. This thesis focuses on preparation of organic/inorganic and solely organic NCs via a bottom-up nano-manufacturing approach called the layer-by-layer (LBL) assembly. Two natural and inexpensive nanoscale building blocks are explored: nanosheets of Na+-montmorillonite clay (MTM) and rod-shaped nanocrystals of cellulose (CNRs). In the first part of the thesis, we present results from systematic study of mechanics of MTM-based NCs. Different compositions are explored with a goal of understanding the nanoscale mechanics. Ultimately, development of a transparent composite with record-high strength and stiffness is presented. In the second part, we present results from LBL assembly of the CNRs. We demonstrate feasibility of assembly and mechanical properties of the resulting films. We also demonstrate preparation of LBL films with anti- reflective properties from tunicate (a sea animal) CNRs. In the

  18. Formation of anodic layers on InAs (111)III. Study of the chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Valisheva, N. A., E-mail: valisheva@thermo.isp.nsc.ru; Tereshchenko, O. E. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Prosvirin, I. P.; Kalinkin, A. V. [Russian Academy of Sciences, Boreskov Institute of Catalysis, Siberian Branch (Russian Federation); Goljashov, V. A. [Novosibirsk State University (Russian Federation); Levtzova, T. A. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Bukhtiyarov, V. I. [Russian Academy of Sciences, Boreskov Institute of Catalysis, Siberian Branch (Russian Federation)

    2012-04-15

    The chemical composition of {approx}20-nm-thick anodic layers grown on InAs (111)III in alkaline and acid electrolytes containing or not containing NH{sub 4}F is studied by X-ray photoelectron spectroscopy. It is shown that the composition of fluorinated layers is controlled by the relation between the concentrations of fluorine and hydroxide ions in the electrolyte and by diffusion processes in the growing layer. Fluorine accumulates at the (anodic layer)/InAs interface. Oxidation of InAs in an acid electrolyte with a low oxygen content and a high NH{sub 4}F content brings about the formation of anodic layers with a high content of fluorine and elemental arsenic and the formation of an oxygen-free InF{sub x}/InAs interface. Fluorinated layers grown in an alkaline electrolyte with a high content of O{sup 2-} and/or OH{sup -} groups contain approximately three times less fluorine and consist of indium and arsenic oxyfluorides. No distinction between the compositions of the layers grown in both types of fluorine-free electrolytes is established.

  19. Predicting Magnetoelectric Coupling in Layered and Graded Composites

    Directory of Open Access Journals (Sweden)

    Mirza Bichurin

    2017-07-01

    Full Text Available Magnetoelectric (ME interaction in magnetostrictive-piezoelectric multiferroic structures consists in inducing the electric field across the structure in an applied magnetic field and is a product property of magnetostriction and piezoelectricity in components. ME voltage coefficient that is the ratio of induced electric field to applied magnetic field is the key parameter of ME coupling strength. It has been known that the ME coupling strength is dictated by the product of the piezoelectric and piezomagnetic coefficients of initial phases. As a result, using the laminates with graded piezoelectric and piezomagnetic parameters are a new pathway to the increase in the ME coupling strength. Recently developed models predict stronger ME interactions in composites based on graded components compared to homogeneous ones. We discuss predicting the ME coupling strength for layered structures of homogeneous and compositionally graded magnetostrictive and piezoelectric components based on the graphs of ME voltage coefficients against composite parameters. For obtaining the graphs, we developed equations for ME output in applied magnetic field for possible modes of operation and layered structure configurations. In particular, our studies have been performed on low-frequency ME coupling, enhanced ME effect in electromechanical resonance (EMR region for longitudinal and bending modes. Additionally, ME coupling at magnetic resonance in magnetostrictive component and at overlapping the EMR and magnetic resonance is investigated. We considered symmetric trilayers and asymmetric bilayers of magnetostrictive and piezoelectric components and multilayered structures based on compositionally stepped initial components.

  20. Titanium dioxide, single-walled carbon nanotube composites

    Science.gov (United States)

    Yao, Yuan; Li, Gonghu; Gray, Kimberly; Lueptow, Richard M.

    2015-07-14

    The present invention provides titanium dioxide/single-walled carbon nanotube composites (TiO.sub.2/SWCNTs), articles of manufacture, and methods of making and using such composites. In certain embodiments, the present invention provides membrane filters and ceramic articles that are coated with TiO.sub.2/SWCNT composite material. In other embodiments, the present invention provides methods of using TiO.sub.2/SWCNT composite material to purify a sample, such as a water or air sample.

  1. Single-layer MoS2 electronics.

    Science.gov (United States)

    Lembke, Dominik; Bertolazzi, Simone; Kis, Andras

    2015-01-20

    CONSPECTUS: Atomic crystals of two-dimensional materials consisting of single sheets extracted from layered materials are gaining increasing attention. The most well-known material from this group is graphene, a single layer of graphite that can be extracted from the bulk material or grown on a suitable substrate. Its discovery has given rise to intense research effort culminating in the 2010 Nobel Prize in physics awarded to Andre Geim and Konstantin Novoselov. Graphene however represents only the proverbial tip of the iceberg, and increasing attention of researchers is now turning towards the veritable zoo of so-called "other 2D materials". They have properties complementary to graphene, which in its pristine form lacks a bandgap: MoS2, for example, is a semiconductor, while NbSe2 is a superconductor. They could hold the key to important practical applications and new scientific discoveries in the two-dimensional limit. This family of materials has been studied since the 1960s, but most of the research focused on their tribological applications: MoS2 is best known today as a high-performance dry lubricant for ultrahigh-vacuum applications and in car engines. The realization that single layers of MoS2 and related materials could also be used in functional electronic devices where they could offer advantages compared with silicon or graphene created a renewed interest in these materials. MoS2 is currently gaining the most attention because the material is easily available in the form of a mineral, molybdenite, but other 2D transition metal dichalcogenide (TMD) semiconductors are expected to have qualitatively similar properties. In this Account, we describe recent progress in the area of single-layer MoS2-based devices for electronic circuits. We will start with MoS2 transistors, which showed for the first time that devices based on MoS2 and related TMDs could have electrical properties on the same level as other, more established semiconducting materials. This

  2. Single-layer graphene on silicon nitride micromembrane resonators

    DEFF Research Database (Denmark)

    Schmid, Silvan; Bagci, Tolga; Zeuthen, Emil

    2014-01-01

    Due to their low mass, high quality factor, and good optical properties, silicon nitride (SiN) micromembrane resonators are widely used in force and mass sensing applications, particularly in optomechanics. The metallization of such membranes would enable an electronic integration with the prospect...... for exciting new devices, such as optoelectromechanical transducers. Here, we add a single-layer graphene on SiN micromembranes and compare electromechanical coupling and mechanical properties to bare dielectric membranes and to membranes metallized with an aluminium layer. The electrostatic coupling...

  3. Surface role in reorientation of internal layers of molybdenum single crystal during rolling

    International Nuclear Information System (INIS)

    Antsiforov, P.N.; Gorordetskij, S.D.; Markashova, A.I.; Martynenko, S.I.

    1991-01-01

    Structure, orientations and chemical composition of surface and internal layers of molybdenum rolled monocrystals are studied using electron microscopy, X-ray and Auger-analyses. Model of reorientation allowing to determine relation of deformation mechanism localized in surface layer with reorientation of internal layers, is described to explain the results

  4. Kernel Function Tuning for Single-Layer Neural Networks

    Czech Academy of Sciences Publication Activity Database

    Vidnerová, Petra; Neruda, Roman

    -, accepted 28.11. 2017 (2018) ISSN 2278-0149 R&D Projects: GA ČR GA15-18108S Institutional support: RVO:67985807 Keywords : single-layer neural networks * kernel methods * kernel function * optimisation Subject RIV: IN - Informatics, Computer Science http://www.ijmerr.com/

  5. Nonlinear viscoelasticity of pre-compressed layered polymeric composite under oscillatory compression

    KAUST Repository

    Xu, Yangguang

    2018-05-03

    Describing nonlinear viscoelastic properties of polymeric composites when subjected to dynamic loading is essential for development of practical applications of such materials. An efficient and easy method to analyze nonlinear viscoelasticity remains elusive because the dynamic moduli (storage modulus and loss modulus) are not very convenient when the material falls into nonlinear viscoelastic range. In this study, we utilize two methods, Fourier transform and geometrical nonlinear analysis, to quantitatively characterize the nonlinear viscoelasticity of a pre-compressed layered polymeric composite under oscillatory compression. We discuss the influences of pre-compression, dynamic loading, and the inner structure of polymeric composite on the nonlinear viscoelasticity. Furthermore, we reveal the nonlinear viscoelastic mechanism by combining with other experimental results from quasi-static compressive tests and microstructural analysis. From a methodology standpoint, it is proved that both Fourier transform and geometrical nonlinear analysis are efficient tools for analyzing the nonlinear viscoelasticity of a layered polymeric composite. From a material standpoint, we consequently posit that the dynamic nonlinear viscoelasticity of polymeric composites with complicated inner structures can also be well characterized using these methods.

  6. A microfluidic galvanic cell on a single layer of paper

    Science.gov (United States)

    Purohit, Krutarth H.; Emrani, Saina; Rodriguez, Sandra; Liaw, Shi-Shen; Pham, Linda; Galvan, Vicente; Domalaon, Kryls; Gomez, Frank A.; Haan, John L.

    2016-06-01

    Paper microfluidics is used to produce single layer galvanic and hybrid cells to produce energy that could power paper-based analytical sensors. When two aqueous streams are absorbed onto paper to establish co-laminar flow, the streams stay in contact with each other with limited mixing. The interface at which mixing occurs acts as a charge-transfer region, eliminating the need for a salt bridge. We designed a Cusbnd Zn galvanic cell that powers an LED when two are placed in series. We also used more powerful redox couples (formate and silver, formate and permanganate) to produce higher power density (18 and 3.1 mW mg-1 Pd). These power densities are greater than previously reported paper microfluidic fuel cells using formate or methanol. The single layer design is much more simplified than previous reports of multi-layer galvanic cells on paper.

  7. Performance characterization of geopolymer composites for hot sodium exposed sacrificial layer in fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Haneefa, K. Mohammed, E-mail: mhkolakkadan@gmail.com [Department of Civil Engineering, IIT Madras, Chennai (India); Santhanam, Manu [Department of Civil Engineering, IIT Madras, Chennai (India); Parida, F. C. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2013-12-15

    Highlights: • Performance evaluation of geopolymers subjected to hot liquid sodium is performed. • Apart from mechanical properties, micro-analytical techniques are used for material characterization. • The geopolymer composite showed comparatively lesser damage than conventional cement composites. • Geopolymer technology can emerge as a new choice for sacrificial layer in SCFBRs. - Abstract: A sacrificial layer of concrete is used in sodium cooled fast breeder reactors (SCFBRs) to mitigate thermo-chemical effect of accidentally spilled sodium at and above 550 °C on structural concrete. Performance of this layer is governed by thermo-chemical stability of the ingredients of sacrificial layer concrete. Concrete with limestone aggregate is generally used as a sacrificial layer. Conventional cement based systems exhibit instability in hot liquid sodium environment. Geo-polymer composites are well known to perform excellently at elevated temperatures compared to conventional cement systems. This paper discusses performance of such composites subjected to exposure of hot liquid sodium in air. The investigation includes comprehensive evaluation of various geo-polymer composites before any exposure, after heating to 550 °C in air, and after immersing in hot liquid sodium initially heated to 550 °C in air. Results from the current study indicate that hot liquid sodium produces less damage to geopolymer composites than to the existing conventional cement based system. Hence, the geopolymer technology has potential application in mitigating the degrading effects of sodium fires and can emerge as a new choice for sodium exposed sacrificial layer in SCFBRs.

  8. On the processing, microstructure, mechanical and wear properties of cermet/stainless steel layer composites

    International Nuclear Information System (INIS)

    Farid, Akhtar; Guo Shiju

    2007-01-01

    This study deals with layer composites of carbide reinforcements and stainless steel prepared successfully by powder technology. The layer material consisted of two layers. The top layer consisted of reinforcements (TiC and NbC) and 465 stainless steel as the binder material for the carbides. The bottom layer was entirely of binder material (465 stainless steel). The microstructure of the composite was characterized by scanning electron microscopy. The microstructural study revealed that the top layer (TiC-NbC/465 stainless steel) showed the typical core-rim microstructure of conventional steel bonded cermets and the bottom layer showed the structure of sintered steel. An intermediate layer was found with a gradient microstructure, having a higher carbide content towards the cermet layer and lower carbide content towards the stainless steel layer. The bending strength of the layered material measured in the direction perpendicular to the layer alignment was remarkably high. The variation of strength as a function of the thickness of the bottom layer revealed that the character of the material changed from the cermet, to a layer composite and then towards metallic materials. The wear resistance of the top layer was studied against high speed steel. The wear mechanisms were discussed by means of microscopical observations on the worn surfaces. The wear was severe at higher wear loads and lower TiC content. Microploughing of the stainless steel matrix was found to be the dominant wear mechanism. Heavy microploughing and rapid removal of material from the wear surface was observed at high wear load. The fracture morphologies of the top, bottom and intermediate layers are reported

  9. Improved mechanical and corrosion properties of nickel composite coatings by incorporation of layered silicates

    Energy Technology Data Exchange (ETDEWEB)

    Tientong, J. [University of North Texas, Department of Chemistry, 1155 Union Circle #305070, Denton, TX 76203 (United States); Ahmad, Y.H. [Center for Advanced Materials, P.O. Box 2713, Qatar University, Doha (Qatar); Nar, M.; D' Souza, N. [University of North Texas, Department of Mechanical and Energy Engineering, Denton, TX 76207 (United States); Mohamed, A.M.A. [Center for Advanced Materials, P.O. Box 2713, Qatar University, Doha (Qatar); Golden, T.D., E-mail: tgolden@unt.edu [University of North Texas, Department of Chemistry, 1155 Union Circle #305070, Denton, TX 76203 (United States)

    2014-05-01

    Layered silicates as exfoliated montmorillonite are incorporated into nickel films by electrodeposition, enhancing both corrosion resistance and hardness. Films were deposited onto stainless steel from a plating solution adjusted to pH 9 containing nickel sulfate, sodium citrate, and various concentrations of exfoliated montmorillonite. The presence of the incorporated layered silicate was confirmed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The composite films were also compact and smooth like the pure nickel films deposited under the same conditions as shown by scanning electron microscopy. X-ray diffraction results showed that incorporation of layered silicates into the film do not affect the nickel crystalline fcc structure. The nanocomposite films exhibited improved stability and adhesion. Pure nickel films cracked and peeled from the substrate when immersed in 3.5% NaCl solution within 5 days, while the nanocomposite films remained attached even after 25 days. The corrosion resistance of the nickel nanocomposites was also improved compared to nickel films. Nickel-layered silicate composites showed a 25% increase in Young's modulus and a 20% increase in hardness over pure nickel films. - Highlights: • 0.05–2% of layered silicates are incorporated into crystalline nickel films. • Resulting composite films had improved stability and adhesion. • Corrosion resistance improved for the composite films. • Hardness improved 20% and young's modulus improved 25% for the composite films.

  10. Impact damage response of natural stitched single lap-joint in composite structures

    International Nuclear Information System (INIS)

    Ghasemnejad, H.; Argentiero, Y.; Tez, T.A.; Barrington, P.E.

    2013-01-01

    Highlights: • To study the impact resistance of single lap-joints in composite structures. • To improve the impact resistance of stitched single lap joints using natural Flax yarn. • To investigate the effect of stitching on the damage process of composite materials. • To develop FE techniques to model the impact process of composite structures using LSDYNA. - Abstract: In this paper the damage behaviour of natural stitched composite single lap-joints are investigated under low velocity impact loading conditions. For this study, the laminated hybrid composite beams were pinned using Flax yarns before curing process. The Charpy impact test was chosen to study the energy absorbing capability of single lap composite joints. Composite beams were fabricated from combination of glass/epoxy and carbon/epoxy composites. It was shown that composite beams which are stitched through the thickness are able to absorb more energy in comparison with adhesive bonded composite joints in the hybrid composite beams. The Charpy impact test of stitched composite single lap joint was also simulated by finite element analysis using software LS-DYNA and the results verified with relevant experimental data

  11. Selective exfoliation of single-layer graphene from non-uniform graphene grown on Cu

    International Nuclear Information System (INIS)

    Lim, Jae-Young; Lee, Jae-Hyun; Jang, Hyeon-Sik; Whang, Dongmok; Joo, Won-Jae; Hwang, SungWoo

    2015-01-01

    Graphene growth on a copper surface via metal-catalyzed chemical vapor deposition has several advantages in terms of providing high-quality graphene with the potential for scale-up, but the product is usually inhomogeneous due to the inability to control the graphene layer growth. The non-uniform regions strongly affect the reliability of the graphene in practical electronic applications. Herein, we report a novel graphene transfer method that allows for the selective exfoliation of single-layer graphene from non-uniform graphene grown on a Cu foil. Differences in the interlayer bonding energy are exploited to mechanically separate only the top single-layer graphene and transfer this to an arbitrary substrate. The dry-transferred single-layer graphene showed electrical characteristics that were more uniform than those of graphene transferred using conventional wet-etching transfer steps. (paper)

  12. Thickness and composition of ultrathin SiO2 layers on Si

    NARCIS (Netherlands)

    van der Marel, C; Verheijen, M.A.; Tamminga, Y; Pijnenburg, RHW; Tombros, N; Cubaynes, F

    2004-01-01

    Ultrathin SiO2 layers are of importance for the semiconductor industry. One of the techniques that can be used to determine the chemical composition and thickness of this type of layers is x-ray photoelectron spectroscopy (XPS). As shown by Seah and Spencer [Surf. Interface Anal. 33, 640 (2002)], it

  13. LENA Conversion Foils Using Single-Layer Graphene, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Our key innovation will be the use of single-layer graphene as LENA conversion foils, with appropriate microgrids and nanogrids to support the foils. Phase I...

  14. Electrically Anisotropic Layered Perovskite Single Crystal

    KAUST Repository

    Li, Ting-You

    2016-04-01

    Organic-inorganic hybrid perovskites (OIHPs), which are promising materials for electronic and optoelectronic applications (1-10), have made into layered organic-inorganic hybrid perovskites (LOIHPs). These LOIHPs have been applied to thin-film transistors, solar cells and tunable wavelength phosphors (11-18). It is known that devices fabricated with single crystal exhibit the superior performance, which makes the growth of large-sized single crystals critical for future device applications (19-23). However, the difficulty in growing large-sized LOIHPs single crystal with superior electrical properties limits their practical applications. Here, we report a method to grow the centimeter-scaled LOIHP single crystal of [(HOC2H4NH3)2PbI4], demonstrating the potentials in mass production. After that, we reveal anisotropic electrical and optoelectronic properties which proved the carrier propagating along inorganic framework. The carrier mobility of in-inorganic-plane (in-plane) devices shows the average value of 45 cm2 V–1 s–1 which is about 100 times greater than the record of LOIHP devices (15), showing the importance of single crystal in device application. Moreover, the LOIHP single crystals show its ultra-short carrier lifetime of 42.7 ps and photoluminescence quantum efficiency (PLQE) of 25.4 %. We expect this report to be a start of LOIHPs for advanced applications in which the anisotropic properties are needed (24-25), and meets the demand of high-speed applications and fast-response applications.

  15. Electrochemistry at the edge of a single graphene layer in a nanopore

    DEFF Research Database (Denmark)

    Banerjee, Sutanuka; Shim, Jeong; Rivera, J.

    2013-01-01

    We study the electrochemistry of single layer graphene edges using a nanopore-based structure consisting of stacked graphene and AlO dielectric layers. Nanopores, with diameters ranging from 5 to 20 nm, are formed by an electron beam sculpting process on the stacked layers. This leads to a unique...

  16. Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels

    Science.gov (United States)

    Huang, Liang; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2013-04-01

    Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets.Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets. Electronic supplementary information (ESI) available: XPS spectrum of the SF-GO hybrid film, SEM images of lyophilized GO dispersion and the failure surface of GO film. See DOI: 10.1039/c3nr00196b

  17. Diverse and tunable electronic structures of single-layer metal phosphorus trichalcogenides for photocatalytic water splitting

    International Nuclear Information System (INIS)

    Liu, Jian; Li, Xi-Bo; Wang, Da; Liu, Li-Min; Lau, Woon-Ming; Peng, Ping

    2014-01-01

    The family of bulk metal phosphorus trichalcogenides (APX 3 , A = M II , M 0.5 I M 0.5 III ; X = S, Se; M I , M II , and M III represent Group-I, Group-II, and Group-III metals, respectively) has attracted great attentions because such materials not only own magnetic and ferroelectric properties, but also exhibit excellent properties in hydrogen storage and lithium battery because of the layered structures. Many layered materials have been exfoliated into two-dimensional (2D) materials, and they show distinct electronic properties compared with their bulks. Here we present a systematical study of single-layer metal phosphorus trichalcogenides by density functional theory calculations. The results show that the single layer metal phosphorus trichalcogenides have very low formation energies, which indicates that the exfoliation of single layer APX 3 should not be difficult. The family of single layer metal phosphorus trichalcogenides exhibits a large range of band gaps from 1.77 to 3.94 eV, and the electronic structures are greatly affected by the metal or the chalcogenide atoms. The calculated band edges of metal phosphorus trichalcogenides further reveal that single-layer ZnPSe 3 , CdPSe 3 , Ag 0.5 Sc 0.5 PSe 3 , and Ag 0.5 In 0.5 PX 3 (X = S and Se) have both suitable band gaps for visible-light driving and sufficient over-potentials for water splitting. More fascinatingly, single-layer Ag 0.5 Sc 0.5 PSe 3 is a direct band gap semiconductor, and the calculated optical absorption further convinces that such materials own outstanding properties for light absorption. Such results demonstrate that the single layer metal phosphorus trichalcogenides own high stability, versatile electronic properties, and high optical absorption, thus such materials have great chances to be high efficient photocatalysts for water-splitting

  18. Drying of a tape-cast layer: Numerical modelling of the evaporation process in a graded/layered material

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Jambhekar, V. A.; Hattel, Jesper Henri

    2016-01-01

    -phase compositional porous-media flow — for the ceramic layer — and single-phase compositional laminar free flow — for the air above it. The preliminary results show the typical expected evaporation behaviour from a porous medium initially saturated with water, and water–vapour transport to the free-flow region...

  19. Preparation and characterization of single-crystal multiferroic nanofiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhaohui; Xiao, Zhen; Yin, Simin; Mai, Jiangquan; Liu, Zhenya; Xu, Gang; Li, Xiang; Shen, Ge [State Key Lab of Silicon Materials, Department of Material Science and Engineering, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); Han, Gaorong, E-mail: hgr@zju.edu.cn [State Key Lab of Silicon Materials, Department of Material Science and Engineering, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China)

    2013-03-05

    Graphical abstract: One-dimensional single-crystal multiferroic composites composed of PbTiO{sub 3} nanofiber-CoFe{sub 2}O{sub 4} nanodot have been prepared for the first time by a facile in situ solid state sintering method. The composites demonstrate ferroelectricity and ferromagnetism as well as strong coupling between them. Highlights: ► 1D single-crystal multiferroic PTO-CFO was prepared via in situ solid state sintering method. ► A simple epitaxial growth relation has been found between the PTO–CFO composites. ► The composites reveal ferroelectricity and ferromagnetism as well as coupling between them. -- Abstract: One-dimensional single-crystal multiferroic composites consisting of PbTiO{sub 3} (PTO) nanofiber-CoFe{sub 2}O{sub 4} (CFO) nanodot were prepared using an in situ solid state sintering method, where pre-perovskite PTO nanofibers and CFO nanodots were used as precursors. Structural analyses by using transmission electron microscopy, scanning electron microscopy and X-ray diffraction determined a epitaxial growth relation between the PTO nanofiber and the CFO nanodot. Ferromagnetism and ferroelectricity of the nanofiber composites were investigated by using vibarting sample magnetometer (VSM) and piezoresponse force microscopy (PFM)

  20. Searching for Next Single-Phase High-Entropy Alloy Compositions

    Directory of Open Access Journals (Sweden)

    David E. Alman

    2013-10-01

    Full Text Available There has been considerable technological interest in high-entropy alloys (HEAs since the initial publications on the topic appeared in 2004. However, only several of the alloys investigated are truly single-phase solid solution compositions. These include the FCC alloys CoCrFeNi and CoCrFeMnNi based on 3d transition metals elements and BCC alloys NbMoTaW, NbMoTaVW, and HfNbTaTiZr based on refractory metals. The search for new single-phase HEAs compositions has been hindered by a lack of an effective scientific strategy for alloy design. This report shows that the chemical interactions and atomic diffusivities predicted from ab initio molecular dynamics simulations which are closely related to primary crystallization during solidification can be used to assist in identifying single phase high-entropy solid solution compositions. Further, combining these simulations with phase diagram calculations via the CALPHAD method and inspection of existing phase diagrams is an effective strategy to accelerate the discovery of new single-phase HEAs. This methodology was used to predict new single-phase HEA compositions. These are FCC alloys comprised of CoFeMnNi, CuNiPdPt and CuNiPdPtRh, and HCP alloys of CoOsReRu.

  1. Efficient removal of arsenic by strategically designed and layer-by-layer assembled PS@+rGO@GO@Fe3O4 composites.

    Science.gov (United States)

    Kang, Bong Kyun; Lim, Byeong Seok; Yoon, Yeojoon; Kwag, Sung Hoon; Park, Won Kyu; Song, Young Hyun; Yang, Woo Seok; Ahn, Yong-Tae; Kang, Joon-Wun; Yoon, Dae Ho

    2017-10-01

    The PS@+rGO@GO@Fe 3 O 4 (PG-Fe 3 O 4 ) hybrid composites for Arsenic removal were successfully fabricated and well dispersed using layer-by-layer assembly and a hydrothermal method. The PG-Fe 3 O 4 hybrid composites were composed of uniformly coated Fe 3 O 4 nanoparticles on graphene oxide layers with water flow space between 3D structures providing many contact area and adsorption sites for Arsenic adsorption. The PG-Fe 3 O 4 hybrid composite has large surface adsorption sites and exhibits high adsorption capacities of 104 mg/g for As (III) and 68 mg/g for As (V) at 25 °C and pH 7 comparison with pure Fe 3 O 4 and P-Fe 3 O 4 samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Area-Specific Cell Stimulation via Surface-Mediated Gene Transfer Using Apatite-Based Composite Layers

    Directory of Open Access Journals (Sweden)

    Yushin Yazaki

    2015-04-01

    Full Text Available Surface-mediated gene transfer systems using biocompatible calcium phosphate (CaP-based composite layers have attracted attention as a tool for controlling cell behaviors. In the present study we aimed to demonstrate the potential of CaP-based composite layers to mediate area-specific dual gene transfer and to stimulate cells on an area-by-area basis in the same well. For this purpose we prepared two pairs of DNA–fibronectin–apatite composite (DF-Ap layers using a pair of reporter genes and pair of differentiation factor genes. The results of the area-specific dual gene transfer successfully demonstrated that the cells cultured on a pair of DF-Ap layers that were adjacently placed in the same well showed specific gene expression patterns depending on the gene that was immobilized in theunderlying layer. Moreover, preliminary real-time PCR results indicated that multipotential C3H10T1/2 cells may have a potential to change into different types of cells depending on the differentiation factor gene that was immobilized in the underlying layer, even in the same well. Because DF-Ap layers have a potential to mediate area-specific cell stimulation on their surfaces, they could be useful in tissue engineering applications.

  3. Buried Porous Silicon-Germanium Layers in Monocrystalline Silicon Lattices

    Science.gov (United States)

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1998-01-01

    Monocrystalline semiconductor lattices with a buried porous semiconductor layer having different chemical composition is discussed and monocrystalline semiconductor superlattices with a buried porous semiconductor layers having different chemical composition than that of its monocrystalline semiconductor superlattice are discussed. Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si-Ge layers followed by patterning into mesa structures. The mesa structures are strain etched resulting in porosification of the Si-Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si-Ge layers produced in a similar manner emitted visible light at room temperature.

  4. Performance improvement of charge trap flash memory by using a composition-modulated high-k trapping layer

    International Nuclear Information System (INIS)

    Tang Zhen-Jie; Li Rong; Yin Jiang

    2013-01-01

    A composition-modulated (HfO 2 ) x (Al 2 O3) 1−x charge trapping layer is proposed for charge trap flash memory by controlling the Al atom content to form a peak and valley shaped band gap. It is found that the memory device using the composition-modulated (HfO 2 ) x (Al 2 O 3 ) 1−x as the charge trapping layer exhibits a larger memory window of 11.5 V, improves data retention even at high temperature, and enhances the program/erase speed. Improvements of the memory characteristics are attributed to the special band-gap structure resulting from the composition-modulated trapping layer. Therefore, the composition-modulated charge trapping layer may be useful in future nonvolatile flash memory device application. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. A study of an influence of a fiber arrangement of a laminate ply on the distribution and values of stresses in the multi-layered composite material

    Directory of Open Access Journals (Sweden)

    Herbuś Krzysztof

    2017-01-01

    Full Text Available In the work are presented studies related with the influence of a fiber arrangement of a laminate ply on the distribution and values of stresses in the multi-layered composite material. For this purpose, the characteristics of the three-point bending test, according to the standard PN-EN ISO 7438, of specimens made from the composite material, where a single ply is a composition of epoxy resin and glass fibres, was mapped. The modelling process of the multi-layered composite material and its strength verification was performed in the PLM Siemens NX system. Based on the results of performed numerical studies, the relation between the value of the main angle of an arrangement of fibers in each plies of the laminate, and the distribution and values of stresses, occurring in the examined specimens has been determined.

  6. Fabrication of a single layer graphene by copper intercalation on a SiC(0001) surface

    International Nuclear Information System (INIS)

    Yagyu, Kazuma; Tochihara, Hiroshi; Tomokage, Hajime; Suzuki, Takayuki; Tajiri, Takayuki; Kohno, Atsushi; Takahashi, Kazutoshi

    2014-01-01

    Cu atoms deposited on a zero layer graphene grown on a SiC(0001) substrate, intercalate between the zero layer graphene and the SiC substrate after the thermal annealing above 600 °C, forming a Cu-intercalated single layer graphene. On the Cu-intercalated single layer graphene, a graphene lattice with superstructure due to moiré pattern is observed by scanning tunneling microscopy, and specific linear dispersion at the K ¯ point as well as a characteristic peak in a C 1s core level spectrum, which is originated from a free-standing graphene, is confirmed by photoemission spectroscopy. The Cu-intercalated single layer graphene is found to be n-doped

  7. Compact Single-Layer Traveling-Wave Antenna DesignUsing Metamaterial Transmission Lines

    Science.gov (United States)

    Alibakhshikenari, Mohammad; Virdee, Bal Singh; Limiti, Ernesto

    2017-12-01

    This paper presents a single-layer traveling-wave antenna (TWA) that is based on composite right/left-handed (CRLH)-metamaterial (MTM) transmission line (TL) structure, which is implemented by using a combination of interdigital capacitors and dual-spiral inductive slots. By embedding dual-spiral inductive slots inside the CRLH MTM-TL results in a compact TWA. Dimensions of the proposed CRLH MTM-TL TWA is 21.5 × 30.0 mm2 or 0.372λ0 × 0.520λ0 at 5.2 GHz (center frequency). The fabricated TWA operates over 1.8-8.6 GHz with a fractional bandwidth greater than 120%, and it exhibits a peak gain and radiation efficiency of 4.2 dBi and 81%, respectively, at 5 GHz. By avoiding the use of lumped components, via-holes or defected ground structures, the proposed TWA design is economic for mass production as well as easy to integrate with wireless communication systems.

  8. Hydrothermal synthesis of layer-controlled MoS_2/graphene composite aerogels for lithium-ion battery anode materials

    International Nuclear Information System (INIS)

    Zhao, Bing; Wang, Zhixuan; Gao, Yang; Chen, Lu; Lu, Mengna; Jiao, Zheng; Jiang, Yong; Ding, Yuanzhang; Cheng, Lingli

    2016-01-01

    Highlights: • Layer-controlled MoS_2/GA composites are synthesized by a facile hydrothermal route. • Few-layer (5–15 layers) MoS_2 nanosheets are decorated on the surface of GNS homogeneously and tightly. • The growth mechanism of the lay-controlled MoS_2/GA composites is proposed. • The composite delivers high specific capacity of 1085.0 mAh g"−"1 at 0.1 A g"−"1. - Abstract: Layer-controlled MoS_2/graphene aerogels (MoS_2/GA) composites are synthesized by a facile hydrothermal route, in which few-layer (5–15 layers) MoS_2 nanosheets with high crystalline are decorated on the surface of graphene nanosheets homogeneously and tightly. The number of the MoS_2 layers can be easily controlled through adjusting the amount of molybdenum source in the reaction system. Moreover, the growth mechanism of the lay-controlled MoS_2/GA composites is proposed. The three-dimensional MoS_2/GA with macroporous micro-structure not only shortens the transportation length of electrons and ions, but also restrains the re-stacking of MoS_2 effectively, stabilizing the electrode structure during repeated charging/discharging processes. Electrochemical tests demonstrate that this few-layer MoS_2/GA composite exhibits a high reversible capacity of 1085.0 mAh g"−"1 at current density of 100 mA g"−"1, as well as extraordinarily high cycling stability and rate capability.

  9. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Luping [Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zhan, Qingfeng, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Li, Run-Wei, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Tan, Xiaohua [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China)

    2016-03-15

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  10. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    International Nuclear Information System (INIS)

    Liu, Luping; Zhan, Qingfeng; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Li, Run-Wei; Tan, Xiaohua

    2016-01-01

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  11. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Science.gov (United States)

    Liu, Luping; Zhan, Qingfeng; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Tan, Xiaohua; Li, Run-Wei

    2016-03-01

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  12. Protecting nickel with graphene spin-filtering membranes: A single layer is enough

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M.-B.; Dlubak, B.; Piquemal-Banci, M.; Collin, S.; Petroff, F.; Anane, A.; Fert, A.; Seneor, P. [Unité Mixte de Physique CNRS/Thales, 1 Avenue Augustin Fresnel, 91767 Palaiseau, France and Université Paris Sud, 91405 Orsay (France); Weatherup, R. S.; Hofmann, S.; Robertson, J. [Department of Engineering, University of Cambridge, Cambridge CB21PZ (United Kingdom); Yang, H. [IBS Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Blume, R. [Helmholtz-Zentrum Berlin fur Materialien und Energie, 12489 Berlin (Germany); Schloegl, R. [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany)

    2015-07-06

    We report on the demonstration of ferromagnetic spin injectors for spintronics which are protected against oxidation through passivation by a single layer of graphene. The graphene monolayer is directly grown by catalytic chemical vapor deposition on pre-patterned nickel electrodes. X-ray photoelectron spectroscopy reveals that even with its monoatomic thickness, monolayer graphene still efficiently protects spin sources against oxidation in ambient air. The resulting single layer passivated electrodes are integrated into spin valves and demonstrated to act as spin polarizers. Strikingly, the atom-thick graphene layer is shown to be sufficient to induce a characteristic spin filtering effect evidenced through the sign reversal of the measured magnetoresistance.

  13. Review on failure prediction techniques of composite single lap joint

    Energy Technology Data Exchange (ETDEWEB)

    Ab Ghani, A.F., E-mail: ahmadfuad@utem.edu.my; Rivai, Ahmad, E-mail: ahmadrivai@utem.edu.my [Faculty of Mechanical Engineering, Locked Bag 1200, Hang Tuah Jaya, 75450 Ayer Keroh, Melaka (Malaysia)

    2016-03-29

    Adhesive bonding is the most appropriate joining method in construction of composite structures. The use of reliable design and prediction technique will produce better performance of bonded joints. Several papers from recent papers and journals have been reviewed and synthesized to understand the current state of the art in this area. It is done by studying the most relevant analytical solutions for composite adherends with start of reviewing the most fundamental ones involving beam/plate theory. It is then extended to review single lap joint non linearity and failure prediction and finally on the failure prediction on composite single lap joint. The review also encompasses the finite element modelling part as tool to predict the elastic response of composite single lap joint and failure prediction numerically.

  14. Review on failure prediction techniques of composite single lap joint

    International Nuclear Information System (INIS)

    Ab Ghani, A.F.; Rivai, Ahmad

    2016-01-01

    Adhesive bonding is the most appropriate joining method in construction of composite structures. The use of reliable design and prediction technique will produce better performance of bonded joints. Several papers from recent papers and journals have been reviewed and synthesized to understand the current state of the art in this area. It is done by studying the most relevant analytical solutions for composite adherends with start of reviewing the most fundamental ones involving beam/plate theory. It is then extended to review single lap joint non linearity and failure prediction and finally on the failure prediction on composite single lap joint. The review also encompasses the finite element modelling part as tool to predict the elastic response of composite single lap joint and failure prediction numerically.

  15. Laser borided composite layer produced on austenitic 316L steel

    Directory of Open Access Journals (Sweden)

    Mikołajczak Daria

    2016-12-01

    Full Text Available Abstract Austenitic 316L steel is well-known for its good resistance to corrosion and oxidation. Therefore, this material is often used wherever corrosive media or high temperatures are to be expected. The main drawback of this material is very low hardness and low resistance to mechanical wear. In this study, the laser boriding was used in order to improve the wear behavior of this material. As a consequence, a composite surface layer was produced. The microstructure of laser-borided steel was characterized by only two zones: re-melted zone and base material. In the re-melted zone, a composite microstructure, consisting of hard ceramic phases (borides and a soft austenitic matrix, was observed. A significant increase in hardness and wear resistance of such a layer was obtained.

  16. Study of Organosilicon Plasma Polymer Used in Composite Layers with Biomedical Application

    International Nuclear Information System (INIS)

    Radeva, E.; Pramatarova, L.; Pecheva, E.; Hikov, T.; Fingarova, D.; Iacob, E.; Vanzetti, L.; Dimitrova, R.; Krasteva, N.; Spassov, T.

    2010-01-01

    In this work we study the ability of plasma polymer (PP) films obtained from hexamethyldisiloxane (HMDS) on silica glass (SG) to induce hydroxyapatite (HA)-based composite layers from a mixture of simulated body fluid (SBF) and clear solution of detonation nanodiamond (DND) by a biomimetic process. The grown composites (PPHMDS/HADND) were studied by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and Rutherford backscattering (RBS) techniques. FTIR spectra of the PPHMDS indicated diminishing of the polymer characteristic bands when the polymer is immersed in DND clear solution. Furthermore, after sample immersion in the SBF-DND mixture, the FTIR spectra showed the presence of carbonate-containing HA through the characteristic vibration modes of P-O in the phosphate group and C-O in the carbonate group. The formation of HA layers, rich in silica and/or carbon was confirmed by RBS and SEM. The cell viability measured after 7 days on the polymer surface is more then 95% for all samples. The results show that the PPHMDS is promising as a substrate for growing HA/DND layers and that the materials obtained are biocompatible. The variations of plasma polymerization conditions and modification of the composite layers will aid in using such materials for biomedical applications.

  17. High performance GaN-based LEDs on patterned sapphire substrate with patterned composite SiO2/Al2O3 passivation layers and TiO2/Al2O3 DBR backside reflector.

    Science.gov (United States)

    Guo, Hao; Zhang, Xiong; Chen, Hongjun; Zhang, Peiyuan; Liu, Honggang; Chang, Hudong; Zhao, Wei; Liao, Qinghua; Cui, Yiping

    2013-09-09

    GaN-based light-emitting diodes (LEDs) on patterned sapphire substrate (PSS) with patterned composite SiO(2)/Al(2)O(3) passivation layers and TiO(2)/Al(2)O(3) distributed Bragg reflector (DBR) backside reflector have been proposed and fabricated. Highly passivated Al(2)O(3) layer deposited on indium tin oxide (ITO) layer with excellent uniformity and quality has been achieved with atomic layer deposition (ALD) technology. With a 60 mA current injection, an enhancement of 21.6%, 59.7%, and 63.4% in the light output power (LOP) at 460 nm wavelength was realized for the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers, the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers and Ag mirror + 3-pair TiO(2)/SiO(2) DBR backside reflector, and the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layer and Ag mirror + 3-pair ALD-grown TiO(2)/Al(2)O(3) DBR backside reflector as compared with the conventional LED only with a single SiO(2) passivation layer, respectively.

  18. Fabrication and comparison of PMN-PT single crystal, PZT and PZT-based 1-3 composite ultrasonic transducers for NDE applications.

    Science.gov (United States)

    Kim, Ki-Bok; Hsu, David K; Ahn, Bongyoung; Kim, Young-Gil; Barnard, Daniel J

    2010-08-01

    This paper describes fabrication and comparison of PMN-PT single crystal, PZT, and PZT-based 1-3 composite ultrasonic transducers for NDE applications. As a front matching layer between test material (Austenite stainless steel, SUS316) and piezoelectric materials, alumina ceramics was selected. The appropriate acoustic impedance of the backing materials for each transducer was determined based on the results of KLM model simulation. Prototype ultrasonic transducers with the center frequencies of approximately 2.25 and 5MHz for contact measurement were fabricated and compared to each other. The PMN-PT single crystal ultrasonic transducer shows considerably improved performance in sensitivity over the PZT and PZT-based 1-3 composite ultrasonic transducers. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  19. Pervaporation dehydration of ethanol by hyaluronic acid/sodium alginate two-active-layer composite membranes.

    Science.gov (United States)

    Gao, Chengyun; Zhang, Minhua; Ding, Jianwu; Pan, Fusheng; Jiang, Zhongyi; Li, Yifan; Zhao, Jing

    2014-01-01

    The composite membranes with two-active-layer (a capping layer and an inner layer) were prepared by sequential spin-coatings of hyaluronic acid (HA) and sodium alginate (NaAlg) on the polyacrylonitrile (PAN) support layer. The SEM showed a mutilayer structure and a distinct interface between the HA layer and the NaAlg layer. The coating sequence of two-active-layer had an obvious influence on the pervaporation dehydration performance of membranes. When the operation temperature was 80 °C and water concentration in feed was 10 wt.%, the permeate fluxes of HA/Alg/PAN membrane and Alg/HA/PAN membrane were similar, whereas the separation factor were 1130 and 527, respectively. It was found that the capping layer with higher hydrophilicity and water retention capacity, and the inner layer with higher permselectivity could increase the separation performance of the composite membranes. Meanwhile, effects of operation temperature and water concentration in feed on pervaporation performance as well as membrane properties were studied. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Phonon-limited mobility in n-type single-layer MoS2 from first principles

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Thygesen, Kristian S.; Jacobsen, Karsten W.

    2012-01-01

    We study the phonon-limited mobility in intrinsic n-type single-layer MoS2 for temperatures T > 100 K. The materials properties including the electron-phonon interaction are calculated from first principles and the deformation potentials and Frohlich interaction in single-layer MoS2 are established...... to recent experimental findings for the mobility in single-layer MoS2 (similar to 200 cm(2)V(-1)s(-1)), our results indicate that mobilities close to the intrinsic phonon-limited mobility can be achieved in two-dimensional materials via dielectric engineering that effectively screens static Coulomb...

  1. Enhanced ionic conductivity in composite materials due to interfacial space charge layers

    International Nuclear Information System (INIS)

    Dudney, N.J.

    1985-01-01

    The ionic conductivity of a number of salts (e.g., β-AgI, LiI, CuCl, HgI 2 , etc.) can be enhanced by one to three orders of magnitude with the addition of fine particles of an insoluble and nonconducting material such as Al 2 O 3 or SiO 2 . Typically the conductivity increases with addition of the inert particles and reaches a peak at 10-40 vol % of the particles. The mechanism responsible for the enhanced conductivity of the composite is not understood at this time. Some claim that this effect is due to an increased concentration of charge carriers in a diffuse space charge layer near the charged surface of the particle. The goal of the present study is to test this proposed mechanism by calculating the maximum space charge layer effect and then using this result to estimate the conductivity of a composite with a random distribution of Al 2 O 3 particles. Also, the conductivity of composite systems has been investigated assuming an ordered distribution of particles which are surrounded by a high conductivity layer

  2. Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates.

    Science.gov (United States)

    da Cunha Rodrigues, Gonçalo; Zelenovskiy, Pavel; Romanyuk, Konstantin; Luchkin, Sergey; Kopelevich, Yakov; Kholkin, Andrei

    2015-06-25

    Electromechanical response of materials is a key property for various applications ranging from actuators to sophisticated nanoelectromechanical systems. Here electromechanical properties of the single-layer graphene transferred onto SiO2 calibration grating substrates is studied via piezoresponse force microscopy and confocal Raman spectroscopy. The correlation of mechanical strains in graphene layer with the substrate morphology is established via Raman mapping. Apparent vertical piezoresponse from the single-layer graphene supported by underlying SiO2 structure is observed by piezoresponse force microscopy. The calculated vertical piezocoefficient is about 1.4 nm V(-1), that is, much higher than that of the conventional piezoelectric materials such as lead zirconate titanate and comparable to that of relaxor single crystals. The observed piezoresponse and achieved strain in graphene are associated with the chemical interaction of graphene's carbon atoms with the oxygen from underlying SiO2. The results provide a basis for future applications of graphene layers for sensing, actuating and energy harvesting.

  3. The influence of canopy-layer composition on understory plant diversity in southern temperate forests

    Directory of Open Access Journals (Sweden)

    Luciana Mestre

    2017-05-01

    Full Text Available Background Understory plants represents the largest component of biodiversity in most forest ecosystems and plays a key role in forest functioning. Despite their importance, the influence of overstory-layer composition on understory plant diversity is relatively poorly understood within deciduous-evergreen broadleaved mixed forests. The aim of this work was to evaluate how tree overstory-layer composition influences on understory-layer diversity in three forest types (monospecific deciduous Nothofagus pumilio (Np, monospecific evergreen Nothofagus betuloides (Nb, and mixed N. pumilio-N. betuloides (M forests, comparing also between two geographical locations (coast and mountain to estimate differences at landscape level. Results We recorded 46 plant species: 4 ferns, 12 monocots, and 30 dicots. Canopy-layer composition influences the herb-layer structure and diversity in two different ways: while mixed forests have greater similarity to evergreen forests in the understory structural features, deciduous and mixed were similar in terms of the specific composition of plant assemblage. Deciduous pure stands were the most diverse, meanwhile evergreen stands were least diverse. Lack of exclusive species of mixed forest could represent a transition where evergreen and deciduous communities meet and integrate. Moreover, landscape has a major influence on the structure, diversity and richness of understory vegetation of pure and mixed forests likely associated to the magnitude and frequency of natural disturbances, where mountain forest not only had highest herb-layer diversity but also more exclusive species. Conclusions Our study suggests that mixed Nothofagus forest supports coexistence of both pure deciduous and pure evergreen understory plant species and different assemblages in coastal and mountain sites. Maintaining the mixture of canopy patch types within mixed stands will be important for conserving the natural patterns of understory plant

  4. Layer-by-layer composite film of nickel phthalocyanine and montmorillonite clay for synergistic effect on electrochemical detection of dopamine

    Science.gov (United States)

    de Lucena, Nathalia C.; Miyazaki, Celina M.; Shimizu, Flávio M.; Constantino, Carlos J. L.; Ferreira, Marystela

    2018-04-01

    Dopamine (DA) abnormal levels are related to diseases which makes important the development of fast, reliable, low-cost and sensitive devices for diagnosis and pharmaceutical controls. Nanostructured film composite of sodium montmorillonite clay (Na+MMT) and nickel phthalocyanine (NiTsPc) was self-assembled by layer-by-layer (LbL) technique and applied as electrochemical sensor for DA in the presence of common natural interferents as ascorbic acid (AA) and uric acid (UA). Three different LbL architecture films were investigated: LbL films of clay (PEI/Na+MMT) and phthalocyanine (PEI/NiTsPc) in a bilayer structure with a conventional polyelectrolyte (PEI) and a composite film formed by both materials to verify the synergistic effect in the LbL film in a quadri-layer assembly (PEI/Na+MMT/PEI/NiTsPc). Structural characterization indicated molecular level interactions between the layers forming the LbL films. The ITO/(PEI/Na+MMT/PEI/NiTsPc)10 electrode exhibited a LOD of 1.0 μmol L-1 and linear range 5-150 μmol L-1.

  5. Pushing the Limits: 3D Layer-by-Layer-Assembled Composites for Cathodes with 160 C Discharge Rates.

    Science.gov (United States)

    Mo, Runwei; Tung, Siu On; Lei, Zhengyu; Zhao, Guangyu; Sun, Kening; Kotov, Nicholas A

    2015-05-26

    Deficiencies of cathode materials severely limit cycling performance and discharge rates of Li batteries. The key problem is that cathode materials must combine multiple properties: high lithium ion intercalation capacity, electrical/ionic conductivity, porosity, and mechanical toughness. Some materials revealed promising characteristics in a subset of these properties, but attaining the entire set of often contrarian characteristics requires new methods of materials engineering. In this paper, we report high surface area 3D composite from reduced graphene oxide loaded with LiFePO4 (LFP) nanoparticles made by layer-by-layer assembly (LBL). High electrical conductivity of the LBL composite is combined with high ionic conductivity, toughness, and low impedance. As a result of such materials properties, reversible lithium storage capacity and Coulombic efficiency were as high as 148 mA h g(-1) and 99%, respectively, after 100 cycles at 1 C. Moreover, these composites enabled unusually high reversible charge-discharge rates up to 160 C with a storage capacity of 56 mA h g(-1), exceeding those of known LFP-based cathodes, some of them by several times while retaining high content of active cathode material. The study demonstrates that LBL-assembled composites enable resolution of difficult materials engineering tasks.

  6. Longevity of Compositionally Stratified Layers in Ice Giants

    Science.gov (United States)

    Friedson, A. J.

    2017-12-01

    In the hydrogen-rich atmospheres of gas giants, a decrease with radius in the mixing ratio of a heavy species (e.g. He, CH4, H2O) has the potential to produce a density stratification that is convectively stable if the heavy species is sufficiently abundant. Formation of stable layers in the interiors of these planets has important implications for their internal structure, chemical mixing, dynamics, and thermal evolution, since vertical transport of heat and constituents in such layers is greatly reduced in comparison to that in convecting layers. Various processes have been suggested for creating compositionally stratified layers. In the interiors of Jupiter and Saturn, these include phase separation of He from metallic hydrogen and dissolution of dense core material into the surrounding metallic-H envelope. Condensation of methane and water has been proposed as a mechanism for producing stable zones in the atmospheres of Saturn and the ice giants. However, if a stably stratified layer is formed adjacent to an active region of convection, it may be susceptible to progressive erosion as the convection intrudes and entrains fluid into the unstable envelope. We discuss the principal factors that control the rate of entrainment and associated erosion and present a specific example concerning the longevity of stable layers formed by condensation of methane and water in Uranus and Neptune. We also consider whether the temporal variability of such layers may engender episodic behavior in the release of the internal heat of these planets. This research is supported by a grant from the NASA Solar System Workings Program.

  7. Anisotropic carrier mobility in single- and bi-layer C3N sheets

    Science.gov (United States)

    Wang, Xueyan; Li, Qingfang; Wang, Haifeng; Gao, Yan; Hou, Juan; Shao, Jianxin

    2018-05-01

    Based on the density functional theory combined with the Boltzmann transport equation with relaxation time approximation, we investigate the electronic structure and predict the carrier mobility of single- and bi-layer newly fabricated 2D carbon nitrides C3N. Although C3N sheets possess graphene-like planar hexagonal structure, the calculated carrier mobility is remarkably anisotropic, which is found mainly induced by the anisotropic effective masses and deformation potential constants. Importantly, we find that both the electron and hole mobilities are considerable high, for example, the hole mobility along the armchair direction of single-layer C3N sheets can arrive as high as 1.08 ×104 cm2 V-1 s-1, greatly larger than that of C2N-h2D and many other typical 2D materials. Owing to the high and anisotropic carrier mobility and appropriate band gap, single- and bi-layer semiconducting C3N sheets may have great potential applications in high performance electronic and optoelectronic devices.

  8. A mechanical model for surface layer formation on self-lubricating ceramic composites

    NARCIS (Netherlands)

    Song, Jiupeng; Valefi, Mahdiar; de Rooij, Matthias B.; Schipper, Dirk J.

    2010-01-01

    To predict the thickness of a self-lubricating layer on the contact surface of ceramic composite material containing a soft phase during dry sliding test, a mechanical model was built to calculate the material transfer of the soft second phase in the composite to the surface. The tribological test,

  9. Using thin metal layers on composite structures for shielding the electromagnetic pulse caused by nearby lightning

    NARCIS (Netherlands)

    Blaj, M.A.; Buesink, Frederik Johannes Karel; Damstra, G.C.; Leferink, Frank Bernardus Johannes

    2011-01-01

    Electronic systems in composite structures could be vulnerable to the (dominant magnetic) field caused by a lightning strike, because only thin layers of metal can be used on composite structures. Thin layers result in a very low shielding effectiveness against magnetic fields. Many experiments

  10. Surface characteristics of hydroxyapatite/titanium composite layer on the Ti-35Ta-xZr surface by RF and DC sputtering

    International Nuclear Information System (INIS)

    Kim, Won-Gi; Choe, Han-Cheol

    2011-01-01

    The purpose of this study was to investigate the surface characteristics of hydroxyapatite (HA)/titanium (Ti) composite layer on the Ti-35Ta-xZr alloy surface by radio frequency (RF) and direct current (DC) sputtering for dental application. The magnetron sputtered deposition for the HA was performed in the RF mode and for the Ti in the DC mode. Microstructures of the alloys were examined by optical microscopy (OM) and x-ray diffractometer (XRD). Surface characteristics of coated film was investigated by field-emission scanning electron microscope (FE-SEM) equipped with an energy dispersive x-ray spectrometer (EDS), and XRD. Microstructures of the Ti-35Ta-xZr alloys were changed from α'' phase to β phase, and changed from a needle-like structure to an equiaxed structure with increasing Zr content. From the results of polarization behavior in the Ti-35Ta-15Zr alloy, HA/Ti composite layer showed the good corrosion resistance compared to Ti single layer. The results of alternating current (AC) impedance test indicated that the presence of ha coating acted as a stable barrier in increasing the corrosion resistance.

  11. Study of the mechanical properties of single- layer and multi-layer metallic coatings with protective-decorative applications

    Directory of Open Access Journals (Sweden)

    Cherneva Sabina

    2018-01-01

    Full Text Available Single thin coating of matt nickel (Nimat, a mirror bright copper (Cubright, a mirror bright nickel (Nibright and their combinations were electrochemically deposited on brass substrate with thickness 500 μm. The basic aim was electrodeposition of two-layer Cubright/Nimat and Nibright/Cubright systems, and three-layer Nibright Cubrigh/Nimat system, which are among the most widely applied protective and decorative systems in light and medium operating conditions of corrosion. The thicknesses of the obtained films varied from 1 μm to 3.25 μm. They were investigated via nanoindentation experiments, in order to characterize their basic physical and mechanical characteristics, related with their good adhesion and corrosion protective ability, as well as ensuring the integrity of the system “protective coating/substrate” to possible mechanical, dynamic and/or thermal stresses. As a result, load-displacement curves were obtained and indentation hardness and indentation modulus were calculated using the Oliver & Pharr approximation method. The dependence of the indentation modulus and the indentation hardness on the depth of the indentation, surface morphology and structure of the obtained coatings, their texture and surface roughness were investigated too. The obtained results showed that the three-layer Nibright/Cubright /Niimat/CuZn37 system has highest indentation modulus and indentation hardness, following by two-layer Nibright/Cubright system and single layer coatings.

  12. Wave propagation in layered anisotropic media with application to composites

    CERN Document Server

    Nayfeh, AH

    1995-01-01

    Recent advances in the study of the dynamic behavior of layered materials in general, and laminated fibrous composites in particular, are presented in this book. The need to understand the microstructural behavior of such classes of materials has brought a new challenge to existing analytical tools. This book explores the fundamental question of how mechanical waves propagate and interact with layered anisotropic media. The chapters are organized in a logical sequence depending upon the complexity of the physical model and its mathematical treatment.

  13. Gap opening and tuning in single-layer graphene with combined electric and magnetic field modulation

    Institute of Scientific and Technical Information of China (English)

    Lin Xin; Wang Hai-Long; Pan Hui; Xu Huai-Zhe

    2011-01-01

    The energy band structure of single-layer graphene under one-dimensional electric and magnetic field modulation is theoretically investigated. The criterion for bandgap opening at the Dirac point is analytically derived with a two-fold degeneracy second-order perturbation method. It is shown that a direct or an indirect bandgap semiconductor could be realized in a single-layer graphene under some specific configurations of the electric and magnetic field arrangement. Due to the bandgap generated in the single-layer graphene, the Klein tunneling observed in pristine graphene is completely suppressed.

  14. Synthesis of few layer single crystal graphene grains on platinum by chemical vapour deposition

    Directory of Open Access Journals (Sweden)

    S. Karamat

    2015-08-01

    Full Text Available The present competition of graphene electronics demands an efficient route which produces high quality and large area graphene. Chemical vapour deposition technique, where hydrocarbons dissociate in to active carbon species and form graphene layer on the desired metal catalyst via nucleation is considered as the most suitable method. In this study, single layer graphene with the presence of few layer single crystal graphene grains were grown on Pt foil via chemical vapour deposition. The higher growth temperature changes the surface morphology of the Pt foil so a delicate process of hydrogen bubbling was used to peel off graphene from Pt foil samples with the mechanical support of photoresist and further transferred to SiO2/Si substrates for analysis. Optical microscopy of the graphene transferred samples showed the regions of single layer along with different oriented graphene domains. Two type of interlayer stacking sequences, Bernal and twisted, were observed in the graphene grains. The presence of different stacking sequences in the graphene layers influence the electronic and optical properties; in Bernal stacking the band gap can be tunable and in twisted stacking the overall sheet resistance can be reduced. Grain boundaries of Pt provides low energy sites to the carbon species, therefore the nucleation of grains are more at the boundaries. The stacking order and the number of layers in grains were seen more clearly with scanning electron microscopy. Raman spectroscopy showed high quality graphene samples due to very small D peak. 2D Raman peak for single layer graphene showed full width half maximum (FWHM value of 30 cm−1. At points A, B and C, Bernal stacked grain showed FWHM values of 51.22, 58.45 and 64.72 cm−1, while twisted stacked grain showed the FWHM values of 27.26, 28.83 and 20.99 cm−1, respectively. FWHM values of 2D peak of Bernal stacked grain showed an increase of 20–30 cm−1 as compare to single layer graphene

  15. Valley polarization in magnetically doped single-layer transition-metal dichalcogenides

    KAUST Repository

    Cheng, Yingchun; Zhang, Q. Y.; Schwingenschlö gl, Udo

    2014-01-01

    We demonstrate that valley polarization can be induced and controlled in semiconducting single-layer transition-metal dichalcogenides by magnetic doping, which is important for spintronics, valleytronics, and photonics devices. As an example, we

  16. The structures of passivated layers on the single crystals of austenitic steels

    International Nuclear Information System (INIS)

    Glownia, J.; Banas, J.

    1995-01-01

    In this work, the conditions of passivation and structure of passive layers on the single crystals in Fe-Cr18-Ni9 alloys are presented. The data shown the differences in the rate of passivation and in stability of passive layers on the (001), (011) and (111) surfaces. The passive layers are composed with the mixture of Fe +2 and Cr +3 oxides and hydroxides. On the (001) surface, the depth of passive layer is greater than on the (111) surface. (author)

  17. The Layer of Kevlar Angle-interlock Woven Fabric Effect on the Tensile Properties of Composite Materials

    Science.gov (United States)

    Xie, Wan-Chen; Guo, Xu-Yi; Yan, Tao; Zhang, Shang-Yong

    2017-09-01

    This article is based on the structure of three-dimensional angle-interlock longitudinal.The 3-layer, 5-layer, 7-layer and 9-layer of angle-interlock 3D fabrics are woven on sample weaving machine respectively with the 1500D Kevlar fiber twist filament produced by United States DuPont. At the same time, Kevlar plain weave fabric is woven, and three, five, seven and nine layers’ fabric are to be compared. In the process of VARTM composite technology, epoxy resin is matrix material, acetone is diluent, triethylene tetramine is curing agent and the five different fabrics are the reinforced materials respectively. Finally, eight different three-dimensional woven fabric composites were prepared. In this paper, the tensile properties of eight kinds of three-dimensional woven fabric composites were tested respectively.Finally, it is concluded that the five-layer angle-interlock woven fabric prepared by Kevlar fiber shows the best tensile property.

  18. Single-layer skull approximations perform well in transcranial direct current stimulation modeling

    NARCIS (Netherlands)

    Rampersad, S.M.; Stegeman, D.F.; Oostendorp, T.F.

    2013-01-01

    In modeling the effect of transcranial direct current stimulation, the representation of the skull is an important factor. In a spherical model, we compared a realistic skull modeling approach, in which the skull consisted of three isotropic layers, to anisotropic and isotropic single-layer

  19. Single-layer closure of typhoid enteric perforation: Our experience ...

    African Journals Online (AJOL)

    Materials and Methods: We retrospectively studied the effects of single versus double layer intestinal closure after typhoid enteric perforation with peritonitis in 902 pediatric patients from September 2007 to April 2012. All the patients underwent laparotomy after resuscitation and antibiotic cover. The patients were divided ...

  20. Transfer-free batch fabrication of single layer graphene transistors.

    Science.gov (United States)

    Levendorf, Mark P; Ruiz-Vargas, Carlos S; Garg, Shivank; Park, Jiwoong

    2009-12-01

    Full integration of graphene into conventional device circuitry would require a reproducible large scale graphene synthesis that is compatible with conventional thin film technology. We report the synthesis of large scale single layer graphene directly onto an evaporated copper film. A novel fabrication method was used to directly pattern these graphene sheets into devices by simply removing the underlying copper film. Raman and conductance measurements show that the mechanical and electrical properties of our single layer graphene are uniform over a large area, ( Ferrari, A. C. et al. Phys. Rev. Lett. 2006, 97, 187401.) which leads to a high device yield and successful fabrication of ultra long (>0.5 mm) graphene channels. Our graphene based devices present excellent electrical properties including a promising carrier mobility of 700 cm(2)/V.s and current saturation characteristics similar to devices based on exfoliated graphene ( Meric, I.. et al. Nat Nanotechnol. 2008, 3, 654-659).

  1. Rapid growth of single-layer graphene on the insulating substrates by thermal CVD

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.Y. [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Dai, D.; Chen, G.X.; Yu, J.H. [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Nishimura, K. [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Advanced Nano-processing Engineering Lab, Mechanical Systems Engineering, Kogakuin University (Japan); Lin, C.-T. [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Jiang, N., E-mail: jiangnan@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhan, Z.L., E-mail: zl_zhan@sohu.com [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2015-08-15

    Highlights: • A rapid thermal CVD process has been developed to directly grow graphene on the insulating substrates. • The treating time consumed is ≈25% compared to conventional CVD procedure. • Single-layer and few-layer graphene can be formed on quartz and SiO{sub 2}/Si substrates, respectively. • The formation of thinner graphene at the interface is due to the fast precipitation rate of carbon atoms during cooling. - Abstract: The advance of CVD technique to directly grow graphene on the insulating substrates is particularly significant for further device fabrication. As graphene is catalytically grown on metal foils, the degradation of the sample properties is unavoidable during transfer of graphene on the dielectric layer. Moreover, shortening the treatment time as possible, while achieving single-layer growth of graphene, is worthy to be investigated for promoting the efficiency of mass production. Here we performed a rapid heating/cooling process to grow graphene films directly on the insulating substrates by thermal CVD. The treating time consumed is ≈25% compared to conventional CVD procedure. In addition, we found that high-quality, single-layer graphene can be formed on quartz, but on SiO{sub 2}/Si substrate only few-layer graphene can be obtained. The pronounced substrate effect is attributed to the different dewetting behavior of Ni films on the both substrates at 950 °C.

  2. Nanoscale gadolinium oxide capping layers on compositionally variant gate dielectrics

    KAUST Repository

    Alshareef, Husam N.

    2010-11-19

    Metal gate work function enhancement using nanoscale (1.0 nm) Gd2O3 interfacial layers has been evaluated as a function of silicon oxide content in the HfxSiyOz gate dielectric and process thermal budget. It is found that the effective work function tuning by the Gd2O3 capping layer varied by nearly 400 mV as the composition of the underlying dielectric changed from 0% to 100% SiO2, and by nearly 300 mV as the maximum process temperature increased from ambient to 1000 °C. A qualitative model is proposed to explain these results, expanding the existing models for the lanthanide capping layer effect.

  3. Nanoscale gadolinium oxide capping layers on compositionally variant gate dielectrics

    KAUST Repository

    Alshareef, Husam N.; Caraveo-Frescas, J. A.; Cha, D. K.

    2010-01-01

    Metal gate work function enhancement using nanoscale (1.0 nm) Gd2O3 interfacial layers has been evaluated as a function of silicon oxide content in the HfxSiyOz gate dielectric and process thermal budget. It is found that the effective work function tuning by the Gd2O3 capping layer varied by nearly 400 mV as the composition of the underlying dielectric changed from 0% to 100% SiO2, and by nearly 300 mV as the maximum process temperature increased from ambient to 1000 °C. A qualitative model is proposed to explain these results, expanding the existing models for the lanthanide capping layer effect.

  4. Composite Layers “MgAl Intermetalic Layer / PVD Coating” Obtained On The AZ91D Magnesium Alloy By Different Hybrid Surface Treatment Methods

    Directory of Open Access Journals (Sweden)

    Smolik J.

    2015-06-01

    Full Text Available Magnesium alloys have very interesting physical properties which make them ‘materials of the future’ for tools and machine components in many industry areas. However, very low corrosion and tribological resistance of magnesium alloys hampers the implementation of this material in the industry. One of the methods to improve the properties of magnesium alloys is the application of the solutions of surface engineering like hybrid technologies. In this paper, the authors compare the tribological and corrosion properties of two types of “MgAlitermetalic / PVD coating” composite layers obtained by two different hybrid surface treatment technologies. In the first configuration, the “MgAlitermetalic / PVD coating” composite layer was obtained by multisource hybrid surface treatment technology combining magnetron sputtering (MS, arc evaporation (AE and vacuum heating methods. The second type of a composite layer was prepared using a hybrid technology combined with a diffusion treatment process in Al-powder and the electron beam evaporation (EB method. The authors conclude, that even though the application of „MgAlitermetalic / PVD coating” composite layers can be an effective solution to increase the abrasive wear resistance of magnesium alloys, it is not a good solution to increase its corrosion resistance.

  5. Hydrothermal synthesis of layer-controlled MoS{sub 2}/graphene composite aerogels for lithium-ion battery anode materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Bing; Wang, Zhixuan [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Gao, Yang; Chen, Lu [Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800 (China); Lu, Mengna [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Jiao, Zheng [Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800 (China); Jiang, Yong, E-mail: jiangyong@shu.edu.cn [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Ding, Yuanzhang [Jiangsu Aoxin New Energy Automobile Ltd., Jiangsu 224007 (China); Cheng, Lingli, E-mail: chenglingli@shu.edu.cn [Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800 (China)

    2016-12-30

    Highlights: • Layer-controlled MoS{sub 2}/GA composites are synthesized by a facile hydrothermal route. • Few-layer (5–15 layers) MoS{sub 2} nanosheets are decorated on the surface of GNS homogeneously and tightly. • The growth mechanism of the lay-controlled MoS{sub 2}/GA composites is proposed. • The composite delivers high specific capacity of 1085.0 mAh g{sup −1} at 0.1 A g{sup −1}. - Abstract: Layer-controlled MoS{sub 2}/graphene aerogels (MoS{sub 2}/GA) composites are synthesized by a facile hydrothermal route, in which few-layer (5–15 layers) MoS{sub 2} nanosheets with high crystalline are decorated on the surface of graphene nanosheets homogeneously and tightly. The number of the MoS{sub 2} layers can be easily controlled through adjusting the amount of molybdenum source in the reaction system. Moreover, the growth mechanism of the lay-controlled MoS{sub 2}/GA composites is proposed. The three-dimensional MoS{sub 2}/GA with macroporous micro-structure not only shortens the transportation length of electrons and ions, but also restrains the re-stacking of MoS{sub 2} effectively, stabilizing the electrode structure during repeated charging/discharging processes. Electrochemical tests demonstrate that this few-layer MoS{sub 2}/GA composite exhibits a high reversible capacity of 1085.0 mAh g{sup −1} at current density of 100 mA g{sup −1}, as well as extraordinarily high cycling stability and rate capability.

  6. Structural and electronic properties of single molecules and organic layers on surfaces

    NARCIS (Netherlands)

    Sotthewes, Kai

    2016-01-01

    Single molecules and organic layers on well-defined solid surfaces have attracted tremendous attention owing to their interesting physical and chemical properties. The ultimate utility of single molecules or self-assembled monolayers (SAMs) for potential applications is critically dependent on the

  7. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films

    Science.gov (United States)

    Ge, Jun; Cheng, Guanghui; Chen, Liwei

    2011-08-01

    Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm-2 and 59 wt% PANI gives a specific capacitance of 55.0 F g-1 at a current density of 2.6 A g-1, showing its possibility for transparent and flexible energy storage.

  8. Clinical performance of a hybrid resin composite with and without an intermediate layer of flowable resin composite: a 7-year evaluation

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2011-01-01

    The objective of this prospective clinical follow up was to evaluate the long term clinical performance of a hybrid resin composite in Class II restorations with and without intermediate layer of flowable resin composite....

  9. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    Science.gov (United States)

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing; Liu, Xiaoya

    2014-10-01

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet-visible absorption spectrum (UV-vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10-4 to 1.2×10-3 M with the detect limit of 5×10-6 M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor.

  10. Hierarchical Composite Membranes with Robust Omniphobic Surface Using Layer-By-Layer Assembly Technique

    KAUST Repository

    Woo, Yun Chul

    2018-01-17

    In this study, composite membranes were fabricated via layer-by-layer (LBL) assembly of negatively-charged silica aerogel (SiA) and 1H, 1H, 2H, 2H – Perfluorodecyltriethoxysilane (FTCS) on a polyvinylidene fluoride phase inversion membrane, and interconnecting them with positively-charged poly(diallyldimethylammonium chloride) (PDDA) via electrostatic interaction. The results showed that the PDDA-SiA-FTCS coated membrane had significantly enhanced the membrane structure and properties. New trifluoromethyl and tetrafluoroethylene bonds appeared at the surface of the coated membrane, which led to lower surface free energy of the composite membrane. Additionally, the LBL membrane showed increased surface roughness. The improved structure and property gave the LBL membrane an omniphobic property, as indicated by its good wetting resistance. The membrane performed a stable air gap membrane distillation (AGMD) flux of 11.22 L/m2h with very high salt rejection using reverse osmosis brine from coal seam gas produced water as feed with the addition of up to 0.5 mM SDS solution. This performance was much better compared to those of the neat membrane. The present study suggests that the enhanced membrane properties with good omniphobicity via LBL assembly make the porous membranes suitable for long-term AGMD operation with stable permeation flux when treating challenging saline wastewater containing low surface tension organic contaminants.

  11. Thermoelectric Response in Single Quintuple Layer Bi2Te3

    KAUST Repository

    Sharma, S.; Schwingenschlö gl, Udo

    2016-01-01

    of single quintuple layer Bi2Te3 by considering both the electron and phonon transport. On the basis of first-principles density functional theory, the electronic and phononic contributions are calculated by solving Boltzmann transport equations

  12. Numerical studies of shear damped composite beams using a constrained damping layer

    DEFF Research Database (Denmark)

    Kristensen, R.F.; Nielsen, Kim Lau; Mikkelsen, Lars Pilgaard

    2008-01-01

    Composite beams containing one or more damping layers are studied numerically. The work is based on a semi-analytical model using a Timoshenko beam theory and a full 2D finite element model. The material system analysed, is inspired by a train wagon suspension system used in a EUREKA project Sigma......!1841. For the material system, the study shows that the effect of the damping layer is strongly influenced by the presence of a stiff constraining layer, that enforces large shear strain amplitudes. The thickness of the damping rubber layer itself has only a minor influence on the overall damping....... In addition, a large influence of ill positioned cuts in the damping layer is observed....

  13. Persistent Charge-Density-Wave Order in Single-Layer TaSe2.

    Science.gov (United States)

    Ryu, Hyejin; Chen, Yi; Kim, Heejung; Tsai, Hsin-Zon; Tang, Shujie; Jiang, Juan; Liou, Franklin; Kahn, Salman; Jia, Caihong; Omrani, Arash A; Shim, Ji Hoon; Hussain, Zahid; Shen, Zhi-Xun; Kim, Kyoo; Min, Byung Il; Hwang, Choongyu; Crommie, Michael F; Mo, Sung-Kwan

    2018-02-14

    We present the electronic characterization of single-layer 1H-TaSe 2 grown by molecular beam epitaxy using a combined angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy, and density functional theory calculations. We demonstrate that 3 × 3 charge-density-wave (CDW) order persists despite distinct changes in the low energy electronic structure highlighted by the reduction in the number of bands crossing the Fermi energy and the corresponding modification of Fermi surface topology. Enhanced spin-orbit coupling and lattice distortion in the single-layer play a crucial role in the formation of CDW order. Our findings provide a deeper understanding of the nature of CDW order in the two-dimensional limit.

  14. Diffusion of Supercritical Fluids through Single-Layer Nanoporous Solids: Theory and Molecular Simulations.

    Science.gov (United States)

    Oulebsir, Fouad; Vermorel, Romain; Galliero, Guillaume

    2018-01-16

    With the advent of graphene material, membranes based on single-layer nanoporous solids appear as promising devices for fluid separation, be it liquid or gaseous mixtures. The design of such architectured porous materials would greatly benefit from accurate models that can predict their transport and separation properties. More specifically, there is no universal understanding of how parameters such as temperature, fluid loading conditions, or the ratio of the pore size to the fluid molecular diameter influence the permeation process. In this study, we address the problem of pure supercritical fluids diffusing through simplified models of single-layer porous materials. Basically, we investigate a toy model that consists of a single-layer lattice of Lennard-Jones interaction sites with a slit gap of controllable width. We performed extensive equilibrium and biased molecular dynamics simulations to document the physical mechanisms involved at the molecular scale. We propose a general constitutive equation for the diffusional transport coefficient derived from classical statistical mechanics and kinetic theory, which can be further simplified in the ideal gas limit. This transport coefficient relates the molecular flux to the fluid density jump across the single-layer membrane. It is found to be proportional to the accessible surface porosity of the single-layer porous solid and to a thermodynamic factor accounting for the inhomogeneity of the fluid close to the pore entrance. Both quantities directly depend on the potential of mean force that results from molecular interactions between solid and fluid atoms. Comparisons with the simulations data show that the kinetic model captures how narrowing the pore size below the fluid molecular diameter lowers dramatically the value of the transport coefficient. Furthermore, we demonstrate that our general constitutive equation allows for a consistent interpretation of the intricate effects of temperature and fluid loading

  15. High efficiency rubrene based inverted top-emission organic light emitting devices with a mixed single layer

    International Nuclear Information System (INIS)

    Wang, Zhaokui; Lou, Yanhui; Naka, Shigeki; Okada, Hiroyuki

    2010-01-01

    Inverted top-emission organic light emitting devices (TEOLEDs) with a mixed single layer by mixing of electron transport materials (PyPySPyPy and Alq 3 ), hole transport material (α-NPD) and dope material (rubrene) were investigated. Maximum power efficiency of 3.5 lm/W and maximum luminance of 7000 cd/m 2 were obtained by optimizing the mixing ratio of PyPySPyPy:Alq 3 :α-NPD:rubrene=25:50:25:1. Luminance and power efficiency of mixed single layer device were two times improved compared to bi-layer heterojunction device and tri-layer heterojunction device. Lifetime test also shows that the mixed single layer device exhibits longer operational lifetimes of 343 h, which is three times longer than the 109 h for tri-layer device, and two times longer than the 158 h for bi-layer device. In addition, the maximum luminance and power efficiency were obtained at 20,000 cd/m 2 and 7.5 lm/W, respectively, when a TPD layer of 45 nm was capped onto the top metal electrode.

  16. Light propagation in composite materials with gain layers

    International Nuclear Information System (INIS)

    Dorofeenko, Aleksandr V; Zyablovsky, A A; Pukhov, Aleksandr A; Lisyansky, A A; Vinogradov, Aleksei P

    2012-01-01

    Light propagation through a single gain layer and a multilayer system with gain layers is studied. Results obtained using the Fresnel formulas, Airy's series summation, and the numerical solution of the nonlinear Maxwell-Bloch equations by the finite difference time domain (FDTD) method are analyzed and compared. Normal and oblique propagation of a wave through a gain layer and a slab of a photonic crystal are examined. For the latter problem, the gain line may be situated in either the pass or stop band of the photonic crystal. It is shown that the monochromatic plane-wave approximation is generally inapplicable for active media, because it leads to results that violate causality. But the problem becomes physically meaningful and correct results can be obtained for all three approaches once the structure of the wavefront and the finite aperture of the beam are taken into account. (reviews of topical problems)

  17. Thermoelectric Response in Single Quintuple Layer Bi2Te3

    KAUST Repository

    Sharma, S.

    2016-10-05

    Because Bi2Te3 belongs to the most important thermoelectric materials, the successful exfoliation of a single quintuple layer has opened access to an interesting two-dimensional material. For this reason, we study the thermoelectric properties of single quintuple layer Bi2Te3 by considering both the electron and phonon transport. On the basis of first-principles density functional theory, the electronic and phononic contributions are calculated by solving Boltzmann transport equations. The dependence of the lattice thermal conductivity on the phonon mean free path is evaluated along with the contributions of the acoustic and optical branches. We find that the thermoelectric response is significantly better for p- than for n-doping. By optimizing the carrier concentration, at 300 K, a ZT value of 0.77 is achieved, which increases to 2.42 at 700 K.

  18. Feasibility of X-ray analysis of multi-layer thin films at a single beam voltage

    International Nuclear Information System (INIS)

    Statham, P J

    2010-01-01

    Multi-layer analysis using electron beam excitation and X-ray spectrometry is a powerful tool for characterising layers down to 1 nm thickness and with typically 1 μm lateral resolution but does not always work. Most published applications have used WDS with many measurements at different beam voltages and considerable experience has been needed to choose lines and voltages particularly for complex multi-layer problems. A new objective mathematical approach is described which demonstrates whether X-ray analysis can obtain reliable results for an arbitrary multi-layer problem. A new algorithm embodied in 'ThinFilmID' software produces a single plot that shows feasibility of achieving results with a single EDS spectrum and suggests the optimal beam voltage. Synthesis of EDS spectra allows the precision in results to be estimated and acquisition conditions modified before wasting valuable instrument time. Thus, practicality of multi-layer thin film analysis at a single beam voltage can now be established without the extensive experimentation that was previously required by a microanalysis expert. Examples are shown where the algorithm discovers viable single-voltage conditions for applications that experts previously thought could only be addressed using measurements at more than one beam voltage.

  19. Single-particle thermal diffusion of charged colloids: Double-layer theory in a temperature gradient

    NARCIS (Netherlands)

    Dhont, J.K.G.; Briels, Willem J.

    2008-01-01

    The double-layer contribution to the single-particle thermal diffusion coefficient of charged, spherical colloids with arbitrary double-layer thickness is calculated and compared to experiments. The calculation is based on an extension of the Debye-Hückel theory for the double-layer structure that

  20. Pressure estimation from single-snapshot tomographic PIV in a turbulent boundary layer

    NARCIS (Netherlands)

    Schneiders, J.F.G.; Pröbsting, S.; Dwight, R.P.; Van Oudheusden, B.W.; Scarano, F.

    2016-01-01

    A method is proposed to determine the instantaneous pressure field from a single tomographic PIV velocity snapshot and is applied to a flat-plate turbulent boundary layer. The main concept behind the single-snapshot pressure evaluation method is to approximate the flow acceleration using the

  1. Magneto-transport in the zero-energy Landau level of single-layer and bilayer graphene

    International Nuclear Information System (INIS)

    Zeitler, U; Giesbers, A J M; Elferen, H J van; Kurganova, E V; McCollam, A; Maan, J C

    2011-01-01

    We present recent low-temperature magnetotransport experiments on single-layer and bilayer graphene in high magnetic field up to 33 T. In single layer graphene the fourfold degeneracy of the zero-energy Landau level is lifted by a gap opening at filling factor ν = 0. In bilayer graphene, we observe a partial lifting of the degeneracy of the eightfold degenerate zero-energy Landau level.

  2. Composite three-layer closure of oral antral communication with 10 months follow-up-a case study.

    Science.gov (United States)

    Weinstock, Robert J; Nikoyan, Levon; Dym, Harry

    2014-02-01

    We propose a 3-layer composite closure technique for an oral antral communication (OAC) while avoiding secondary donor site morbidity. A patient had developed a 1-cm OAC after extraction of right maxillary first molar. The patient subsequently developed acute maxillary sinusitis. The patient was taken to the operating room, and a Caldwell-Luc procedure was performed. The bony window from the Caldwell-Luc was "press fit" over the bony OAC defect. Soft tissue closure was then achieved with a buccal fat pad flap and a buccal mucosal advancement flap. The patient was examined on postoperative day 5 and 1, 2, 3, 6, and 10 months postoperatively. The acute sinusitis had resolved. The soft tissue closure was successful. The bone graft remained intact, prevented sinus pneumatization, and restored continuity to the floor of the maxillary sinus. The presented technique for 3-layer closure of OACs allows for the stability of a double-layer closure of OAC with the added benefit of bone grafting from single operative site, achieving stable oral antral closure, bone grafting, and the avoidance of secondary donor site morbidity. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review

    Directory of Open Access Journals (Sweden)

    Zhongde Dai

    2016-07-01

    Full Text Available The development of multilayer composite membranes for CO2 separation has gained increasing attention due to the desire for energy efficient technologies. Multilayer composite membranes have many advantages, including the possibility to optimize membrane materials independently by layers according to their different functions and to reduce the overall transport resistance by using ultrathin selective layers, and less limitations on the material mechanical properties and processability. A comprehensive review is required to capture details of the progresses that have already been achieved in developing multilayer composite membranes with improved CO2 separation performance in the past 15–20 years. In this review, various composite membrane preparation methods were compared, advances in composite membranes for CO2/CH4 separation, CO2/N2 and CO2/H2 separation were summarized with detailed data, and challenges facing for the CO2 separation using composite membranes, such as aging, plasticization and long-term stability, were discussed. Finally the perspectives and future research directions for composite membranes were presented. Keywords: Composite membrane, CO2 separation, Membrane fabrication, Membrane aging, Long-term stability

  4. Graphene: Polymer composites as moisture barrier and charge transport layer toward solar cell applications

    Science.gov (United States)

    Sakorikar, Tushar; Kavitha, M. K.; Tong, Shi Wun; Vayalamkuzhi, Pramitha; Loh, Kian Ping; Jaiswal, Manu

    2018-05-01

    Graphene: polymer composite based electrically conducting films are realized by a facile solution processable method. Ultraviolet Photoelectron Spectroscopy (UPS) measurements on the composite films, reveal a low work function of reduced graphene oxide (rGO) obtained from hydrazine hydrate reduction of graphene oxide (GO). We suggest that the low work function could potentially make rGO: PMMA composite suitable for electron conducting layer in perovskite solar cells in place of traditionally used expensive PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) layer. Further, we demonstrate from the gravimetric experiments conducted on rGO: PMMA films, that the same coating is also resistant to moisture permeation. This latter property can be used to realize a protective coating layer for perovskite films, which are prone to moisture induced degradation. Thus, dual functionality of rGO-PMMA films is demonstrated towards integration with perovskite solar cells. Architecture of perovskite solar cell based on these concepts is proposed.

  5. The effect of the phase composition of compound layer on the growth kinetics of the nitrided layer

    International Nuclear Information System (INIS)

    Ratajski, J.; Olik, R.; Suszko, T.; Tacikowski, J.

    2001-01-01

    This paper presents a part of research work on the kinetics of formation and growth of nitrided layers on 40HM steel that was conducted within the research project devoted to the control of gaseous nitriding processes. The purpose of the research was to find answers to still opened questions connected with the optimization of the growth kinetics of nitrided layer. It has been demonstrated in particular how important in diffusion layer kinetics of growth on steel is the role-played by compound layer phase composition. Mainly, this refers to designing changes of parameters in processes where accurate formation of layer on precise parts with required tolerance of size changes is demanded. It comes out of the presented research that proper diffusion layer growth kinetics can be achieved when phase ε dominates in the compound layer. This domination of the phase ε influences speed of growth of the compound layer and first of all growth of diffusion layer. The obtained results are also a starting point of for working-out of good functional relations which could create good basis for design of algorithms of potential values changes in the function of the process time which provides the optimal kinetics of the growth of the layers. In this respect it has been achieved very good qualitative relation between the simulated distribution of nitrogen concentration in the layer and experimentally established distribution of hardness. (author)

  6. Tunneling spin injection into single layer graphene.

    Science.gov (United States)

    Han, Wei; Pi, K; McCreary, K M; Li, Yan; Wong, Jared J I; Swartz, A G; Kawakami, R K

    2010-10-15

    We achieve tunneling spin injection from Co into single layer graphene (SLG) using TiO₂ seeded MgO barriers. A nonlocal magnetoresistance (ΔR(NL)) of 130  Ω is observed at room temperature, which is the largest value observed in any material. Investigating ΔR(NL) vs SLG conductivity from the transparent to the tunneling contact regimes demonstrates the contrasting behaviors predicted by the drift-diffusion theory of spin transport. Furthermore, tunnel barriers reduce the contact-induced spin relaxation and are therefore important for future investigations of spin relaxation in graphene.

  7. Application of evolution strategy algorithm for optimization of a single-layer sound absorber

    Directory of Open Access Journals (Sweden)

    Morteza Gholamipoor

    2014-12-01

    Full Text Available Depending on different design parameters and limitations, optimization of sound absorbers has always been a challenge in the field of acoustic engineering. Various methods of optimization have evolved in the past decades with innovative method of evolution strategy gaining more attention in the recent years. Based on their simplicity and straightforward mathematical representations, single-layer absorbers have been widely used in both engineering and industrial applications and an optimized design for these absorbers has become vital. In the present study, the method of evolution strategy algorithm is used for optimization of a single-layer absorber at both a particular frequency and an arbitrary frequency band. Results of the optimization have been compared against different methods of genetic algorithm and penalty functions which are proved to be favorable in both effectiveness and accuracy. Finally, a single-layer absorber is optimized in a desired range of frequencies that is the main goal of an industrial and engineering optimization process.

  8. MULTILAYER POROUS COMPOSITE FROM WASTE GLASS FOR WATER FILTRATION

    Directory of Open Access Journals (Sweden)

    M. P. Aji

    2015-07-01

    Full Text Available Multilayer porous composite have been produced through the heating process at temperature T=700oC for 2.5 h. Single layered porous composite was made with a varied mass percentage of from PEG polymer  1% to 10%. Double-layered porous composite were made by the arrangement of porosity (4:3%, (4:2% and (3:2%, while the three-layers porous composite have an arrangement (4:3:2%. Performance of multilayer porous composite for water filtration with pollutants of methylene blue 100 ppm was estimated from the absorbance spectrum. Rejection of methylene blue pollutants from single layered porous composite increases when the fraction of PEG polymer tend to be smaller in the matrix. Meanwhile, the double layered porous composite has a degradation of methylene blue pollutants are better than one layer. Triple layered porous composite have good performance for the water filtration where all the pollutants of methylene blue be able to be filtered.   Komposit pori berlapis telah dihasilkan dengan proses pemanasan pada temperatur T=700oC selama 2.5 jam. Komposit pori satu lapis dibuat dengan variasi persen massa polimer PEG 1% hingga 10%. Komposit pori dua lapis dibuat dengan susunan porositas (4:3%, (4:2% dan (3:2%, sedangkan komposit pori tiga lapis memiliki susunan porositas (4:3:2%. Kinerja komposit pori berlapis untuk filter air dengan polutan methylene blue 100 ppm diestimasi dari spektrum absorbansi. Rejeksi polutan methylene blue dari komposit pori satu lapis meningkat saat fraksi polimer PEG cenderung lebih kecil dalam matrik komposit. Sedangkan, komposit pori dua lapis memiliki kemampuan untuk degradasi polutan methylene blue yang lebih baik dari satu lapis. Komposit pori tiga lapis memiliki kinerja yang baik untuk filter air dimana seluruh polutan methylene blue mampu disaring. 

  9. Plasticity and fracture modeling of three-layer steel composite Tribond® 1200 for crash simulation

    NARCIS (Netherlands)

    Eller, Tom; Ramaker, Kenny; Greve, Lars; Andres, M.T.; Hazrati Marangalou, Javad; van den Boogaard, Antonius H.

    2017-01-01

    A constitutive model is presented for the three-layer steel composite Tribond® 1200. Tribond® is a hot forming steel which consists of three layers: a high strength steel core between two outer layers of ductile low strength steel. The model is designed to provide an accurate prediction of the

  10. Improving the corrosion wear resistance of AISI 316L stainless steel by particulate reinforced Ni matrix composite alloying layer

    Science.gov (United States)

    Xu, Jiang; Zhuo, Chengzhi; Tao, Jie; Jiang, Shuyun; Liu, Linlin

    2009-01-01

    In order to overcome the problem of corrosion wear of AISI 316L stainless steel (SS), two kinds of composite alloying layers were prepared by a duplex treatment, consisting of Ni/nano-SiC and Ni/nano-SiO2 predeposited by brush plating, respectively, and subsequent surface alloying with Ni-Cr-Mo-Cu by a double glow process. The microstructure of the two kinds of nanoparticle reinforced Ni-based composite alloying layers was investigated by means of SEM and TEM. The electrochemical corrosion behaviour of composite alloying layers compared with the Ni-based alloying layer and 316L SS under different conditions was characterized by potentiodynamic polarization test and electrochemical impedance spectroscopy. Results showed that under alloying temperature (1000 °C) conditions, amorphous nano-SiO2 particles still retained the amorphous structure, whereas nano-SiC particles were decomposed and Ni, Cr reacted with SiC to form Cr6.5Ni2.5Si and Cr23C6. In static acidic solution, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO2 particles interlayer is lower than that of the Ni-based alloying layer. However, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO2 particles interlayer is prominently superior to that of the Ni-based alloying layer under acidic flow medium condition and acidic slurry flow condition. The corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiC particles interlayer is evidently lower than that of the Ni-based alloying layer, but higher than that of 316L SS under all test conditions. The results show that the highly dispersive nano-SiO2 particles are helpful in improving the corrosion wear resistance of the Ni-based alloying layer, whereas carbides and silicide phase are deleterious to that of the Ni-based alloying layer due to the fact that the preferential removal of the matrix around the precipitated phase takes place by the chemical

  11. An investigation into the effect of equal channel angular extrusion process on mechanical and microstructural properties of middle layer in copper clad aluminum composite

    International Nuclear Information System (INIS)

    Tolaminejad, B.; Karimi Taheri, A.; Arabi, H.; Shahmiri, M.

    2009-01-01

    Equal channel angular extrusion is a promising technique for production of ultra fine-grain materials of few hundred nanometers size. In this research, the grain refinement of aluminium strip is accelerated by sandwiching it between two copper strips and then subjecting the three strips to Equal channel angular extrusion process simultaneously. The loosely packed copper-aluminium-copper laminated billet was passed through Equal channel angular extrusion die up to 8 passes using the Bc route. Then, tensile properties and some microstructural characteristics of the aluminium layer were evaluated. The scanning and transmission electron microscopes, and X-ray diffraction were used to characterize the microstructure. The results show that the yield stress of middle layer (Al) is increased significantly by about four times after application of Equal channel angular extrusion throughout the four consecutive passes and then it is slightly decreased when more Equal channel angular extrusion passes are applied. An ultra fine grain within the range of 500 to 600 nm was obtained in the Al layer by increasing the thickness of the copper layers. lt was observed that the reduction of grain size in the aluminium layer is nearly 55% more than that of a equal channel angular-extruded single layer aluminium billet, i.e. extruding a single aluminium strip or a billet without any clad for the same amount of deformation. This behaviour was attributed to the higher rates of dislocations interaction and cell formation and texture development during the Equal channel angular extrusion of the laminated composite compared to those of a single billet.

  12. Study on electrical defects level in single layer two-dimensional Ta2O5

    Science.gov (United States)

    Dahai, Li; Xiongfei, Song; Linfeng, Hu; Ziyi, Wang; Rongjun, Zhang; Liangyao, Chen; David, Wei Zhang; Peng, Zhou

    2016-04-01

    Two-dimensional atomic-layered material is a recent research focus, and single layer Ta2O5 used as gate dielectric in field-effect transistors is obtained via assemblies of Ta2O5 nanosheets. However, the electrical performance is seriously affected by electronic defects existing in Ta2O5. Therefore, spectroscopic ellipsometry is used to calculate the transition energies and corresponding probabilities for two different charged oxygen vacancies, whose existence is revealed by x-ray photoelectron spectroscopy analysis. Spectroscopic ellipsometry fitting also calculates the thickness of single layer Ta2O5, exhibiting good agreement with atomic force microscopy measurement. Nondestructive and noncontact spectroscopic ellipsometry is appropriate for detecting the electrical defects level of single layer Ta2O5. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174058 and 61376093), the Fund from Shanghai Municipal Science and Technology Commission (Grant No. 13QA1400400), the National Science and Technology Major Project, China (Grant No. 2011ZX02707), and the Innovation Program of Shanghai Municipal Education Commission (Grant No. 12ZZ010).

  13. Composition of single-step media used for human embryo culture.

    Science.gov (United States)

    Morbeck, Dean E; Baumann, Nikola A; Oglesbee, Devin

    2017-04-01

    To determine compositions of commercial single-step culture media and test with a murine model whether differences in composition are biologically relevant. Experimental laboratory study. University-based laboratory. Inbred female mice were superovulated and mated with outbred male mice. Amino acid, organic acid, and ions content were determined for single-step culture media: CSC, Global, G-TL, and 1-Step. To determine whether differences in composition of these media are biologically relevant, mouse one-cell embryos were cultured for 96 hours in each culture media at 5% and 20% oxygen in a time-lapse incubator. Compositions of four culture media were analyzed for concentrations of 30 amino acids, organic acids, and ions. Blastocysts at 96 hours of culture and cell cycle timings were calculated, and experiments were repeated in triplicate. Of the more than 30 analytes, concentrations of glucose, lactate, pyruvate, amino acids, phosphate, calcium, and magnesium varied in concentrations. Mouse embryos were differentially affected by oxygen in G-TL and 1-Step. Four single-step culture media have compositions that vary notably in pyruvate, lactate, and amino acids. Blastocyst development was affected by culture media and its interaction with oxygen concentration. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Sliding wear resistance of metal matrix composite layers prepared by high power laser

    NARCIS (Netherlands)

    Ocelik, Vaclav; Matthews, D; de Hosson, Jeff

    2005-01-01

    Two laser surface engineering techniques, Laser Cladding and Laser Melt Injection (LMI), were used to prepare three different metal matrix composite layers with a thickness of about 1 mm and approximately 25-30% volume fraction of ceramic particles. SiC/Al-8Si, WC/Ti-6Al-4V and TiB2/Ti-6Al-4V layers

  15. Micro-buckling of periodically layered composites in regions of stress concentration

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2016-01-01

    -buckling related failure in regions of stress concentrations. A series of parametric studies show the effect of non-uniform stress distributions due to bending loads and the presence of geometrical features such as notches and holes on the initiation of micro-buckling. The contribution of the bending stiffness...... of the reinforcing layers on the resistance against micro-buckling introduces a dependence on the layer thickness, resulting in size-scale dependent strength limits. Therefore, both the shape and dimensions of the considered geometrical features and the layering thickness of the micro-structure are varied as part...... of the parametric studies. Moreover, the impact of imperfections in the composite micro-structure on the strength of the considered specimens is investigated....

  16. Tribological Properties of AlSi12-Al₂O₃ Interpenetrating Composite Layers in Comparison with Unreinforced Matrix Alloy.

    Science.gov (United States)

    Dolata, Anna Janina

    2017-09-06

    Alumina-Aluminum composites with interpenetrating network structures are a new class of advanced materials with potentially better properties than composites reinforced by particles or fibers. Local casting reinforcement was proposed to take into account problems with the machinability of this type of materials and the shaping of the finished products. The centrifugal infiltration process fabricated composite castings in the form of locally reinforced shafts. The main objective of the research presented in this work was to compare the tribological properties (friction coefficient, wear resistance) of AlSi12/Al₂O₃ interpenetrating composite layers with unreinforced AlSi12 matrix areas. Profilometric tests enabled both quantitative and qualitative analyses of the wear trace that formed on investigated surfaces. It has been shown that interpenetrating composite layers are characterized by lower and more stable coefficients of friction (μ), as well as higher wear resistance than unreinforced matrix areas. At the present stage, the study confirmed that the tribological properties of the composite layers depend on the spatial structure of the ceramic reinforcement, and primarily the volume and size of alumina foam cells.

  17. Carbon nanotubes/ceria composite layers deposited on surface acoustic wave devices for gas detection at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    David, M., E-mail: marjorie.david@univ-tln.fr [Universite du Sud Toulon, Var, IM2NP, UMR CNRS 6242, BP 20132. F 83 957 LA GARDE (France); Arab, M.; Martino, C. [Universite du Sud Toulon, Var, IM2NP, UMR CNRS 6242, BP 20132. F 83 957 LA GARDE (France); Delmas, L. [SENSeOR, Sophia Antipolis, 06250 Mougins (France); Guinneton, F.; Gavarri, J.-R. [Universite du Sud Toulon, Var, IM2NP, UMR CNRS 6242, BP 20132. F 83 957 LA GARDE (France)

    2012-05-01

    Surface acoustic wave (SAW) sensor on ATquartz piezoelectric substrate has been designed and fabricated. Test devices were based on asynchronous single-port resonators operating near the 434-MHz-centered industrial, scientific, and medical band. Multi-Walled Carbon Nanotubes/Ceria (MWNTs/CeO{sub 2}) nanocomposites were used as sensitive layers. The MWNTs were synthesized by catalytic chemical vapor deposition method and coated with nanosized ceria oxide. The composites were deposited on SAW quartz resonator using air-brush technique. MWNTs/CeO{sub 2} nanocomposites were characterized using X-ray diffraction, transmission electron and atomic force microscopy. The sensor responses were tested under acetone (C{sub 3}H{sub 5}OH) and ethanol (C{sub 2}H{sub 5}OH) gases. The output signal was done by S{sub 11} parameter of the SAW device and was monitored using a network analyzer. Frequency changes were observed under acetone and ethanol vapors. These changes depended on the surface conductivity of the nanocomposites deposited on the sensor. The single-port SAW gas sensor coated with the MWNTs/CeO{sub 2} presented the highest sensitivity in the case of acetone vapor interacting with these layers, with a frequency shift of 200 kHz at room temperature.

  18. Corrosion behaviour in saline environments of single-layer titanium and aluminium coatings, and of Ti/Al alternated multi-layers elaborated by a multi-beam PVD technique

    International Nuclear Information System (INIS)

    Merati, Abdenacer

    1994-01-01

    This research thesis reports the characterization of anti-corrosion titanium and aluminium coatings deposited on a 35CD4 steel under the form of mono-metallic layers or alternated Ti/Al multi-layers, and obtained by a multibeam PVD technique. The influence of different parameters is studied: single-layer thickness (5, 15 or 30 micro-metres), multi-layer distribution (5 to 6) and substrate (smooth or threaded). Layer nature and microstructure are studied by optical microscopy and scanning electron microscopy (SEM), as well as corrosion toughness in aqueous saline environments. Coated threaded samples have been studied after tightening tests. It appears that titanium layers are denser and more uniform than aluminium layers, and that multi-layer coatings provide a better protection than single-layer coatings. The best behaviour is obtained when titanium is in contact with steel, and aluminium is the outer layer in contact with the corroding environment [fr

  19. Observing the morphology of single-layered embedded silicon nanocrystals by using temperature-stable TEM membranes

    Directory of Open Access Journals (Sweden)

    Sebastian Gutsch

    2015-04-01

    Full Text Available We use high-temperature-stable silicon nitride membranes to investigate single layers of silicon nanocrystal ensembles by energy filtered transmission electron microscopy. The silicon nanocrystals are prepared from the precipitation of a silicon-rich oxynitride layer sandwiched between two SiO2 diffusion barriers and subjected to a high-temperature annealing. We find that such single layers are very sensitive to the annealing parameters and may lead to a significant loss of excess silicon. In addition, these ultrathin layers suffer from significant electron beam damage that needs to be minimized in order to image the pristine sample morphology. Finally we demonstrate how the silicon nanocrystal size distribution develops from a broad to a narrow log-normal distribution, when the initial precipitation layer thickness and stoichiometry are below a critical value.

  20. The chemical composition and band gap of amorphous Si:C:N:H layers

    Energy Technology Data Exchange (ETDEWEB)

    Swatowska, Barbara, E-mail: swatow@agh.edu.pl [AGH University of Science and Technology, Department of Electronics, Mickiewicza Av. 30, 30-059 Krakow (Poland); Kluska, Stanislawa; Jurzecka-Szymacha, Maria [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza Av. 30, 30-059 Krakow (Poland); Stapinski, Tomasz [AGH University of Science and Technology, Department of Electronics, Mickiewicza Av. 30, 30-059 Krakow (Poland); Tkacz-Smiech, Katarzyna [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza Av. 30, 30-059 Krakow (Poland)

    2016-05-15

    Highlights: • Six type of amorphous hydrogenated films were obtained and analysed. • Investigated chemical bondings strongly influenced energy gap values. • Analysed layers could be applied as semiconductors and also as dielectrics. - Abstract: In this work we presented the correlation between the chemical composition of amorphous Si:C:N:H layers of various content of silicon, carbon and nitrogen, and their band gap. The series of amorphous Si:C:N:H layers were obtained by plasma assisted chemical vapour deposition method in which plasma was generated by RF (13.56 MHz, 300 W) and MW (2.45 GHz, 2 kW) onto monocrystalline silicon Si(001) and borosilicate glass. Structural studies were based on FTIR transmission spectrum registered within wavenumbers 400–4000 cm{sup −1}. The presence of Si−C, Si−N, C−N, C=N, C=C, C≡N, Si−H and C−H bonds was shown. The values band gap of the layers have been determined from spectrophotometric and ellipsometric measurements. The respective values are contained in the range between 1.64 eV – characteristic for typical semiconductor and 4.21 eV – for good dielectric, depending on the chemical composition and atomic structure of the layers.

  1. Critical fields of an exchange coupled two-layer composite particle

    International Nuclear Information System (INIS)

    Goll, D.; Kronmueller, H.

    2008-01-01

    High-density recording systems require magnetic bits with perpendicular easy axis and large magnetocrystalline anisotropy to guarantee thermal stability. However, the large magnetic fields up to 10 T for the reversal of magnetization cannot be afforded by conventional write heads. Therefore, composite exchange coupled spring systems of soft and hard magnetic layers may be used to reduce the switching field. In this case the reversal of magnetization in general takes place in two steps: a nucleation process in the soft layer and a depinning process for the displacement of the domain wall at the phase boundary of the soft and the hard magnetic layer. The nucleation and depinning fields are determined on the basis of the continuum theory of micromagnetism. It is shown that the nucleation fields decrease according to a 1/L 2 law with increasing thickness L of the soft layer and the depinning field of the charged Neel wall may be reduced by factors of 3-6 in comparison with the ideal nucleation field of the hard magnetic phase. One-step rectangular hysteresis loops are obtained for thicknesses of the soft layer smaller than the exchange length of the magnetostatic field

  2. Modeling of 1-D nitrate transport in single layer soils | Dike | Journal ...

    African Journals Online (AJOL)

    The transport of nitrate in laboratory single soil columns of sand, laterite and clay were investigated after 21 days. The 1-D contaminant transport model by Notodarmojo et al (1991) for single layer soils were calibrated and verified using field data collected from a refuse dump site at avu, owerri, Imo state. The experimental ...

  3. Performance of palladium nanoparticle–graphene composite as an efficient electrode material for electrochemical double layer capacitors

    International Nuclear Information System (INIS)

    Dar, Riyaz A.; Giri, Lily; Karna, Shashi P.; Srivastava, Ashwini K.

    2016-01-01

    Highlights: • Single step synthesis of palladium nanoparticles decorated-graphene nanocomposite. • Improved electron transfer kinetics and superior capacitive performance. • High specific capacitance of 637 F g −1 at a current density of 1.25 A g −1 . • Retention of 91.4% of its initial capacitance after 10000 cycles of testing. - Abstract: Palladium nanoparticle–graphene nanosheet composite (PdNP–GN) is demonstrated as an efficient electrode material in energy storage applications in supercapacitors. Palladium nanoparticle (PdNP) decorated graphene nanosheet (GN) composite was synthesized via a chemical approach in a single step by the simultaneous reduction of graphene oxide (GO) and palladium chloride from the aqueous phase using ascorbic acid as reducing agent. The materials were characterized by scanning and high resolution transmission electron microscopy, Raman, X-ray diffraction and energy dispersive X-ray spectroscopy which demonstrate that the metal nanoparticles have been uniformly deposited on the surface of graphene nanosheets. The synthesized material has been analyzed by cyclic voltammetry, electrochemical impedance spectrometry and chronopotentiometry using 1 M KCl as the supporting electrolyte for its application in electrochemical double layer supercapacitors. PdNPs-GN composite showed improved electron transfer kinetics and superior capacitive performance with large specific capacitance of 637 F g −1 , excellent cyclic performance and maximum energy and power densities of 56 Wh kg −1 and 1166 W kg −1 , respectively at a current density of 1.25 A g −1 . This highlights the importance of the synergetic effects of electrochemically efficient Pd nanoparticles and graphene for energy storage applications in supercapacitors.

  4. Flexible single-layer ionic organic-inorganic frameworks towards precise nano-size separation

    Science.gov (United States)

    Yue, Liang; Wang, Shan; Zhou, Ding; Zhang, Hao; Li, Bao; Wu, Lixin

    2016-02-01

    Consecutive two-dimensional frameworks comprised of molecular or cluster building blocks in large area represent ideal candidates for membranes sieving molecules and nano-objects, but challenges still remain in methodology and practical preparation. Here we exploit a new strategy to build soft single-layer ionic organic-inorganic frameworks via electrostatic interaction without preferential binding direction in water. Upon consideration of steric effect and additional interaction, polyanionic clusters as connection nodes and cationic pseudorotaxanes acting as bridging monomers connect with each other to form a single-layer ionic self-assembled framework with 1.4 nm layer thickness. Such soft supramolecular polymer frameworks possess uniform and adjustable ortho-tetragonal nanoporous structure in pore size of 3.4-4.1 nm and exhibit greatly convenient solution processability. The stable membranes maintaining uniform porous structure demonstrate precisely size-selective separation of semiconductor quantum dots within 0.1 nm of accuracy and may hold promise for practical applications in selective transport, molecular separation and dialysis systems.

  5. Identification of excitons, trions and biexcitons in single-layer WS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Plechinger, Gerd; Nagler, Philipp; Kraus, Julia; Paradiso, Nicola; Strunk, Christoph; Schueller, Christian; Korn, Tobias [Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg, 93040, Regensburg (Germany)

    2015-08-15

    Single-layer WS{sub 2} is a direct-gap semiconductor showing strong excitonic photoluminescence features in the visible spectral range. Here, we present temperature-dependent photoluminescence measurements on mechanically exfoliated single-layer WS{sub 2}, revealing the existence of neutral and charged excitons at low temperatures as well as at room temperature. By applying a gate voltage, we can electrically control the ratio of excitons and trions and assert a residual n-type doping of our samples. At high excitation densities and low temperatures, an additional peak at energies below the trion dominates the photoluminescence, which we identify as biexciton emission. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Nanostructured composite layers for electromagnetic shielding in the GHz frequency range

    Science.gov (United States)

    Suchea, M.; Tudose, I. V.; Tzagkarakis, G.; Kenanakis, G.; Katharakis, M.; Drakakis, E.; Koudoumas, E.

    2015-10-01

    We report on preliminary results regarding the applicability of nanostructured composite layers for electromagnetic shielding in the frequency range of 4-20 GHz. Various combinations of materials were employed including poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), polyaniline, graphene nanoplatelets, carbon nanotubes, Cu nanoparticles and Poly(vinyl alcohol). As shown, paint-like nanocomposite layers consisting of graphene nanoplatelets, polyaniline PEDOT:PSS and Poly(vinyl alcohol) can offer quite effective electromagnetic shielding, similar or even better than that of commercial products, the response strongly depending on their thickness and resistivity.

  7. Nanomembrane structures having mixed crystalline orientations and compositions

    Science.gov (United States)

    Lagally, Max G.; Scott, Shelley A.; Savage, Donald E.

    2014-08-12

    The present nanomembrane structures include a multilayer film comprising a single-crystalline layer of semiconductor material disposed between two other single-crystalline layers of semiconductor material. A plurality of holes extending through the nanomembrane are at least partially, and preferably entirely, filled with a filler material which is also a semiconductor, but which differs from the nanomembrane semiconductor materials in composition, crystal orientation, or both.

  8. Resonant magnetoelectric response of composite cantilevers: Theory of short vs. open circuit operation and layer sequence effects

    Directory of Open Access Journals (Sweden)

    Matthias C. Krantz

    2015-11-01

    Full Text Available The magnetoelectric effect in layered composite cantilevers consisting of strain coupled layers of magnetostrictive (MS, piezoelectric (PE, and substrate materials is investigated for magnetic field excitation at bending resonance. Analytic theories are derived for the transverse magnetoelectric (ME response in short and open circuit operation for three different layer sequences and results presented and discussed for the FeCoBSi-AlN-Si and the FeCoBSi-PZT-Si composite systems. Response optimized PE-MS layer thickness ratios are found to greatly change with operation mode shifting from near equal MS and PE layer thicknesses in the open circuit mode to near vanishing PE layer thicknesses in short circuit operation for all layer sequences. In addition the substrate layer thickness is found to differently affect the open and short circuit ME response producing shifts and reversal between ME response maxima depending on layer sequence. The observed rich ME response behavior for different layer thicknesses, sequences, operating modes, and PE materials can be explained by common neutral plane effects and different elastic compliance effects in short and open circuit operation.

  9. Atomic-scale structure of single-layer MoS2 nanoclusters

    DEFF Research Database (Denmark)

    Helveg, S.; Lauritsen, J. V.; Lægsgaard, E.

    2000-01-01

    We have studied using scanning tunneling microscopy (STM) the atomic-scale realm of molybdenum disulfide (MoS2) nanoclusters, which are of interest as a model system in hydrodesulfurization catalysis. The STM gives the first real space images of the shape and edge structure of single-layer MoS2...

  10. Towards single step production of multi-layer inorganic hollow fibers

    NARCIS (Netherlands)

    de Jong, J.; Benes, Nieck Edwin; Koops, G.H.; Wessling, Matthias

    2004-01-01

    In this work we propose a generic synthesis route for the single step production of multi-layer inorganic hollow fibers, based on polymer wet spinning combined with a heat treatment. With this new method, membranes with a high surface area per unit volume ratio can be produced, while production time

  11. Fatigue behavior of thick composite single lap joints

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.H.; Sridhar, I.; Srikanth, N. [Nanyang Technological Univ., Singapore (Singapore)

    2012-07-01

    In consideration of bondline thickness variability, in bonded joints where thick adherend is adopted, relative thick adhesive layer (2-5 mm) is preferable. This paper aims to give some insight in fatigue strength of adhesively bonded structures involving thick adherend coupled with thick adhesive layer. Single lap joints with nominal adherend thickness of 8 mm and two different nominal thicknesses (2.5 mm and 5.5 mm) were made and tested under fatigue loading. The failure mode exhibits always a tendency for interfacial initiation, followed by interlaminar separation. Fatigue strength for higher adhesive thickness is found to be lower. (Author)

  12. High frequency spin torque oscillators with composite free layer spin valve

    International Nuclear Information System (INIS)

    Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda

    2016-01-01

    We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.

  13. High frequency spin torque oscillators with composite free layer spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda

    2016-07-15

    We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.

  14. Single-layer graphene on silicon nitride micromembrane resonators

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Silvan; Guillermo Villanueva, Luis; Amato, Bartolo; Boisen, Anja [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, 2800 Kongens Lyngby (Denmark); Bagci, Tolga; Zeuthen, Emil; Sørensen, Anders S.; Usami, Koji; Polzik, Eugene S. [QUANTOP, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Taylor, Jacob M. [Joint Quantum Institute/NIST, College Park, Maryland 20899 (United States); Herring, Patrick K.; Cassidy, Maja C. [School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138 (United States); Marcus, Charles M. [Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Cheol Shin, Yong; Kong, Jing [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-02-07

    Due to their low mass, high quality factor, and good optical properties, silicon nitride (SiN) micromembrane resonators are widely used in force and mass sensing applications, particularly in optomechanics. The metallization of such membranes would enable an electronic integration with the prospect for exciting new devices, such as optoelectromechanical transducers. Here, we add a single-layer graphene on SiN micromembranes and compare electromechanical coupling and mechanical properties to bare dielectric membranes and to membranes metallized with an aluminium layer. The electrostatic coupling of graphene covered membranes is found to be equal to a perfectly conductive membrane, without significantly adding mass, decreasing the superior mechanical quality factor or affecting the optical properties of pure SiN micromembranes. The concept of graphene-SiN resonators allows a broad range of new experiments both in applied physics and fundamental basic research, e.g., for the mechanical, electrical, or optical characterization of graphene.

  15. Metal-semiconductor, composite radiation detectors

    International Nuclear Information System (INIS)

    Orvis, W.J.; Yee, J.H.; Fuess, D.

    1992-12-01

    In 1989, Naruse and Hatayama of Toshiba published a design for an increased efficiency x-ray detector. The design increased the efficiency of a semiconductor detector by interspersing layers of high-z metal within it. Semiconductors such as silicon make good, high-resolution radiation detectors, but they have low efficiency because they are low-z materials (z = 14). High-z metals, on the other hand, are good absorbers of high-energy photons. By interspersing high-z metal layers with semiconductor layers, Naruse and Hatayama combined the high absorption efficiency of the high-z metals with the good detection capabilities of a semiconductor. This project is an attempt to use the same design to produce a high-efficiency, room temperature gamma ray detector. By their nature, gamma rays require thicker metal layers to efficiently absorb them. These thicker layers change the behavior of the detector by reducing the resolution, compared to a solid state detector, and shifting the photopeak by a predictable amount. During the last year, the authors have procured and tested a commercial device with operating characteristics similar to those of a single layer of the composite device. They have modeled the radiation transport in a multi-layered device, to verify the initial calculations of layer thickness and composition. They have modeled the electrostatic field in different device designs to locate and remove high-field regions that can cause device breakdown. They have fabricated 14 single layer prototypes

  16. Study of energy transfer in single and multi-emissive layer using Gaussian peak fitting

    International Nuclear Information System (INIS)

    Yoon, Ju-An; Kim, You-Hyun; Kim, Nam Ho; Moon, Chang-Bum; He, Gufeng; Kim, Woo Young

    2014-01-01

    White organic light-emitting diodes(WOLEDs) were fabricated with the device structure of ITO(1800 Å)/NPB(700 Å)/emissive layer(300 Å)/Bphen(300 Å)/Liq(20 Å)/Al(1200 Å) using the two complementary colors method. Then, we investigated their electrical and optical characteristics to determine luminous efficiency, luminance and color coordinates of single, double, triple and quadruple emissive layered-WOLED. Thickness of emissive layer was fixed at 30 Å, and DPASN and BAlq were used for blue emissive host material and DCJTB was added as red dopant in the emissive layer. Then, we investigated the performance of OLEDs via its charge blocking structure and its different emissive region with emissive layers. Luminous efficiency of 5.30 cd/A at 50 mA/cm 2 of current density is obtained in WOLED device with double emissive layer of DPASN:DCJTB-0.1% (150 Å)/BAlq:DCJTB-0.1% (150 Å) and these are 80% higher than WOLED device with single emissive layer of DPASN:DCJTB-0.1% (300 Å). - Highlights: • White OLEDs with multiple-emissive layer were fabricated using p- and n-type emissive materials. • We fabricated WOLEDs only using a small quantity of fluorescent red dopant materials. • The spectroscopic analysis using multi-peak fits with a Gaussian function. • The explain electroluminescence spectra of white OLEDs with the multiple-emissive layer. • We examine changes in the number of emissive layer about white OLEDs performance

  17. Room-temperature heteroepitaxy of single-phase Al1−xInxN films with full composition range on isostructural wurtzite templates

    International Nuclear Information System (INIS)

    Hsiao, Ching-Lien; Palisaitis, Justinas; Junaid, Muhammad; Persson, Per O.Å.; Jensen, Jens; Zhao, Qing-Xiang; Hultman, Lars; Chen, Li-Chyong; Chen, Kuei-Hsien; Birch, Jens

    2012-01-01

    Al 1−x In x N heteroepitaxial layers covering the full composition range have been realized by magnetron sputter epitaxy on basal-plane AlN, GaN, and ZnO templates at room temperature (RT). Both Al 1−x In x N single layers and multilayers grown on these isostructural templates show single phase, single crystal wurtzite structure. Even at large lattice mismatch between the film and the template, for instance InN/AlN (∼ 13% mismatch), heteroepitaxy is achieved. However, RT-grown Al 1−x In x N films directly deposited on non-isostructural c-plane sapphire substrate exhibit a polycrystalline structure for all compositions, suggesting that substrate surface structure is important for guiding the initial nucleation. Degradation of Al 1−x In x N structural quality with increasing indium content is attributed to the formation of more point- and structural defects. The defects result in a prominent hydrostatic tensile stress component, in addition to the biaxial stress component introduced by lattice mismatch, in all RT-grown Al 1−x In x N films. These effects are reflected in the measured in-plane and out-of-plane strains. The effect of hydrostatic stress is negligible compared to the effects of lattice mismatch in high-temperature grown AlN layers thanks to their low amount of defects. We found that Vegard’s rule is applicable to determine x in the RT-grown Al 1−x In x N epilayers if the lattice constants of RT-sputtered AlN and InN films are used instead of those of the strain-free bulk materials. - Highlights: ► Magnetron sputter epitaxy of single-phase Al 1−x In x N(0001) at room temperature ► Growing Al 1−x In x N onto temperature sensitive substrates is desirable. ► Substrate surface structure plays a vital role at nucleation stage. ► Point and extended defects produce hydrostatic tensile stress. ► The applicability of Vegard's rule for these compounds is confirmed.

  18. Emergence of charge density waves and a pseudogap in single-layer TiTe2.

    Science.gov (United States)

    Chen, P; Pai, Woei Wu; Chan, Y-H; Takayama, A; Xu, C-Z; Karn, A; Hasegawa, S; Chou, M Y; Mo, S-K; Fedorov, A-V; Chiang, T-C

    2017-09-11

    Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermi level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.Due to reduced dimensionality, the properties of 2D materials are often different from their 3D counterparts. Here, the authors identify the emergence of a unique charge density wave (CDW) order in monolayer TiTe 2 that challenges the current understanding of CDW formation.

  19. Titan atmospheric composition by hypervelocity shock layer analysis

    International Nuclear Information System (INIS)

    Nelson, H.F.; Park, C.; Whiting, E.E.

    1989-01-01

    The Cassini Mission, a NASA/ESA cooperative project which includes a deployment of probe into the atmosphere of Titan, is described, with particular attention given to the shock radiometer experiment planned for the Titan probe for the analysis of Titan's atmosphere. Results from a shock layer analysis are presented, demonstrating that the mole fractions of the major species (N2, CH4, and, possibly Ar) in the Titan atmosphere can be successfully determined by the Titan-probe radiometer, by measuring the intensity of the CN(violet) radiation emitted in the shock layer during the high velocity portion of the probe entry between 200 and 400 km altitude. It is shown that the sensitivity of the CN(violet) radiation makes it possible to determine the mole fractions of N2, CH4, and Ar to about 0.015, 0.003, and 0.01, respectively, i.e., much better than the present uncertainties in the composition of Titan atmosphere. 29 refs

  20. Compositional effects on the formation of a calcium phosphate layer and the response of osteoblast-like cells on polymer-bioactive glass composites.

    Science.gov (United States)

    Lu, Helen H; Tang, Amy; Oh, Seong Cheol; Spalazzi, Jeffrey P; Dionisio, Kathie

    2005-11-01

    Biodegradable polymer-ceramic composites are attractive systems for bone tissue engineering applications. These composites have the combined advantages of the component phases, as well as the inherent ease in optimization where desired material properties can be tailored in a well-controlled manner. This study focuses on the optimization of a polylactide-co-glycolide (PLAGA) and 45S5 bioactive glass (BG) composite for bone tissue engineering. The first objective is to examine the effects of composition or overall BG content on the formation of a Ca-P layer on the PLAGA-BG composite. It is expected that with increasing BG content (0%, 10%, 25%, 50% by weight), the required incubation time in a simulated body fluid (SBF) for the composite to form a detectable surface Ca-P layer will decrease. Both the kinetics and the chemistry will be determined using SEM+EDAX, FTIR, and mu-CT methods. Solution phosphorous and calcium concentrations will also be measured. The second objective of the study is to determine the effects of BG content on the maturation of osteoblast-like cells on the PLAGA-BG composite. It is hypothesized that mineralization will increase with increasing BG content, and the composite will support the proliferation and differentiation of osteoblasts. Specifically, cell proliferation, alkaline phosphatase activity and mineralization will be monitored as a function of BG content (0%, 10%, 50% by weight) and culturing time. It was found that the kinetics of Ca-P layer formation and the resulting Ca-P chemistry were dependent on BG content. The response of human osteoblast-like cells to the PLAGA-BG composite was also a function of BG content. The 10% and 25% BG composite supported greater osteoblast growth and differentiation compared to the 50% BG group. The results of this study suggest that there is a threshold BG content which is optimal for osteoblast growth, and the interactions between PLAGA and BG may modulate the kinetics of Ca-P formation and the

  1. Generation of organized germ layers from a single mouse embryonic stem cell.

    Science.gov (United States)

    Poh, Yeh-Chuin; Chen, Junwei; Hong, Ying; Yi, Haiying; Zhang, Shuang; Chen, Junjian; Wu, Douglas C; Wang, Lili; Jia, Qiong; Singh, Rishi; Yao, Wenting; Tan, Youhua; Tajik, Arash; Tanaka, Tetsuya S; Wang, Ning

    2014-05-30

    Mammalian inner cell mass cells undergo lineage-specific differentiation into germ layers of endoderm, mesoderm and ectoderm during gastrulation. It has been a long-standing challenge in developmental biology to replicate these organized germ layer patterns in culture. Here we present a method of generating organized germ layers from a single mouse embryonic stem cell cultured in a soft fibrin matrix. Spatial organization of germ layers is regulated by cortical tension of the colony, matrix dimensionality and softness, and cell-cell adhesion. Remarkably, anchorage of the embryoid colony from the 3D matrix to collagen-1-coated 2D substrates of ~1 kPa results in self-organization of all three germ layers: ectoderm on the outside layer, mesoderm in the middle and endoderm at the centre of the colony, reminiscent of generalized gastrulating chordate embryos. These results suggest that mechanical forces via cell-matrix and cell-cell interactions are crucial in spatial organization of germ layers during mammalian gastrulation. This new in vitro method could be used to gain insights on the mechanisms responsible for the regulation of germ layer formation.

  2. Exposure buildup factors for a cobalt-60 point isotropic source for single and two layer slabs

    International Nuclear Information System (INIS)

    Chakarova, R.

    1992-01-01

    Exposure buildup factors for point isotropic cobalt-60 sources are calculated by the Monte Carlo method with statistical errors ranging from 1.5 to 7% for 1-5 mean free paths (mfp) thick water and iron single slabs and for 1 and 2 mfp iron layers followed by water layers 1-5 mfp thick. The computations take into account Compton scattering. The Monte Carlo data for single slab geometries are approximated by Geometric Progression formula. Kalos's formula using the calculated single slab buildup factors may be applied to reproduce the data for two-layered slabs. The presented results and discussion may help when choosing the manner in which the radiation field gamma irradiation units will be described. (author)

  3. Detection of defects in multi-layered aramid composites by ultrasonic IR thermography

    Science.gov (United States)

    Pracht, Monika; Swiderski, Waldemar

    2017-10-01

    In military applications, laminates reinforced with aramid, carbon, and glass fibers are used for the construction of protection products against light ballistics. Material layers can be very different by their physical properties. Therefore, such materials represent a difficult inspection task for many traditional techniques of non-destructive testing (NDT). Defects which can appear in this type of many-layered composite materials usually are inaccuracies in gluing composite layers and stratifications or delaminations occurring under hits of fragments and bullets. IR thermographic NDT is considered as a candidate technique to detect such defects. One of the active IR thermography methods used in nondestructive testing is vibrothermography. The term vibrothermography was created in the 1990s to determine the thermal test procedures designed to assess the hidden heterogeneity of structural materials based on surface temperature fields at cyclical mechanical loads. A similar procedure can be done with sound and ultrasonic stimulation of the material, because the cause of an increase in temperature is internal friction between the wall defect and the stimulation mechanical waves. If the cyclic loading does not exceed the flexibility of the material and the rate of change is not large, the heat loss due to thermal conductivity is small, and the test object returns to its original shape and temperature. The most commonly used method is ultrasonic stimulation, and the testing technique is ultrasonic infrared thermography. Ultrasonic IR thermography is based on two basic phenomena. First, the elastic properties of defects differ from the surroundings, and acoustic damping and heating are always larger in the damaged regions than in the undamaged or homogeneous areas. Second, the heat transfer in the sample is dependent on its thermal properties. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR

  4. Single layers and multilayers of GaN and AlN in square-octagon structure: Stability, electronic properties, and functionalization

    Science.gov (United States)

    Gürbüz, E.; Cahangirov, S.; Durgun, E.; Ciraci, S.

    2017-11-01

    Further to planar single-layer hexagonal structures, GaN and AlN can also form free-standing, single-layer structures constructed from squares and octagons. We performed an extensive analysis of dynamical and thermal stability of these structures in terms of ab initio finite-temperature molecular dynamics and phonon calculations together with the analysis of Raman and infrared active modes. These single-layer square-octagon structures of GaN and AlN display directional mechanical properties and have wide, indirect fundamental band gaps, which are smaller than their hexagonal counterparts. These density functional theory band gaps, however, increase and become wider upon correction. Under uniaxial and biaxial tensile strain, the fundamental band gaps decrease and can be closed. The electronic and magnetic properties of these single-layer structures can be modified by adsorption of various adatoms, or by creating neutral cation-anion vacancies. The single-layer structures attain magnetic moment by selected adatoms and neutral vacancies. In particular, localized gap states are strongly dependent on the type of vacancy. The energetics, binding, and resulting electronic structure of bilayer, trilayer, and three-dimensional (3D) layered structures constructed by stacking the single layers are affected by vertical chemical bonds between adjacent layers. In addition to van der Waals interaction, these weak vertical bonds induce buckling in planar geometry and enhance their binding, leading to the formation of stable 3D layered structures. In this respect, these multilayers are intermediate between van der Waals solids and wurtzite crystals, offering a wide range of tunability.

  5. A study of the electromagnetic shielding mechanisms in the GHz frequency range of graphene based composite layers

    Science.gov (United States)

    Drakakis, E.; Kymakis, E.; Tzagkarakis, G.; Louloudakis, D.; Katharakis, M.; Kenanakis, G.; Suchea, M.; Tudose, V.; Koudoumas, E.

    2017-03-01

    We report on the mechanisms of the electromagnetic interference shielding effect of graphene based paint like composite layers. In particular, we studied the absorption and reflection of electromagnetic radiation in the 4-20 GHz frequency of various dispersions employing different amounts of graphene nanoplatelets, polyaniline, and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), special attention given on the relative contribution of each process in the shielding effect. Moreover, the influence of the composition, the thickness and the conductivity of the composite layers on the electromagnetic shielding was also examined.

  6. All-solution processed composite hole transport layer for quantum dot light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoli [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Synergetic Innovation Center of Chemical Science and Engineering, Tianjin (China); Dai, Haitao, E-mail: htdai@tju.edu.cn [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Zhao, Junliang; Wang, Shuguo [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Sun, Xiaowei [Department of Electrical & Electronic Engineering, South University of Science and Technology of China, Tangchang Road 1088, Shenzhen, Guangdong 518055 (China)

    2016-03-31

    In the present work, poly-TPD and TCTA composite hole transport layer (HTL) was employed in solution processed CdSe/ZnS quantum dot light emitting diodes (QLEDs). As the doping level of TCTA can determine the carriers transport efficiency of HTL, the proper mixing ratio of TCTA and poly-TPD should be found to optimize the performance of composite HTL for QLEDs. The doping of poly-TPD by low TCTA content can make its HOMO level lower and then reduce the energy barrier height from HTL to quantum dots (QDs), whereas the doping of poly-TPD by the concentrated TCTA results in the degraded performance of QLEDs due to its decreased hole transport mobility. By using the optimized composition with poly-TPD:TCTA (3:1) as the hole transport layer, the luminescence of the device exhibits about double enhancement compared with that of poly-TPD based device. The improvement of luminescence is mainly attributed to the lower energy barrier of hole injection. The Förster resonant energy transfer (FRET) mechanism in the devices was investigated through theoretical and experimental analysis and the results indicate that the TCTA doping makes no difference on FRET. Therefore, the charge injection mechanism dominates the improved performance of the devices. - Highlights: • Quantum dot light emitting diodes (QLEDs) were fabricated by all solution method. • The performance of QLEDs was optimized by varying the composite hole transport layer. • The blend HTL could promote hole injection by optimizing HOMO levels. • The energy transfer mechanism was analyzed by studying Förster resonant energy transfer process.

  7. Effect of the structure and mechanical properties of the near-surface layer of lithium niobate single crystals on the manufacture of integrated optic circuits

    Science.gov (United States)

    Sosunov, A. V.; Ponomarev, R. S.; Yur'ev, V. A.; Volyntsev, A. B.

    2017-01-01

    This paper shows that the near-surface layer of a lithium niobate single layer 15 μm in depth is essentially different from the rest of the volume of the material from the standpoint of composition, structure, and mechanical properties. The pointed out differences are due to the effect of cutting, polishing, and smoothing of the lithium niobate plates, which increase the density of point defects and dislocations. The increasing density of the structural defects leads to uncontrollable changes in the conditions of the formations of waveguides and the drifting of characteristics of integrated optical circuits. The results obtained are very important for the manufacture of lithium niobate based integrated optical circuits.

  8. Edge structures and properties of triangular antidots in single-layer MoS2

    International Nuclear Information System (INIS)

    Gan, Li-Yong; Cheng, Yingchun; Huang, Wei; Schwingenschlögl, Udo; Yao, Yingbang; Zhao, Yong; Zhang, Xi-xiang

    2016-01-01

    Density functional theory and experiments are employed to shed light on the edge structures of antidots in O etched single-layer MoS 2 . The equilibrium morphology is found to be the zigzag Mo edge with each Mo atom bonded to two O atoms, in a wide range of O chemical potentials. Scanning electron microscopy shows that the orientation of the created triangular antidots is opposite to the triangular shape of the single-layer MoS 2 samples, in agreement with the theoretical predictions. Furthermore, edges induced by O etching turn out to be p-doped, suggesting an effective strategy to realize p-type MoS 2 devices.

  9. Whole field strain measurement in critical thin adhesive layer of single- and double-sided repaired CFRP panel using DIC

    Science.gov (United States)

    Kashfuddoja, Mohammad; Ramji, M.

    2015-03-01

    In the present work, the behavior of thin adhesively layer in patch repaired carbon fiber reinforced polymer (CFRP) panel under tensile load is investigated experimentally using digital image correlation (DIC) technique. The panel is made of Carbon/epoxy composite laminate and the stacking sequence in the panel is [0º]4. A circular hole of 10 mm diameter (d) is drilled at the center of the panel to mimic the case of low velocity impact damage removal. The panel with open hole is repaired with double sided (symmetrical) and single sided (unsymmetrical) rectangular patch made of same panel material having stacking sequence of [0º]3. Araldite 2011 is used for bonding the patch onto the panel over the damaged area. The global behavior of thin adhesive layer is examined by analyzing whole field strain distribution using DIC. Longitudinal, peel and shear strain field in both double and single sided repair configuration is studied and a compression is made between them. An estimate of shear transfer length which is an essential parameter in arriving at an appropriate overlap length in patch design is proposed from DIC and FEA. Damage development, failure mechanism and load displacement behavior is also investigated. The experimental results are compared with the numerical predictions.

  10. Single-layer group IV-V and group V-IV-III-VI semiconductors: Structural stability, electronic structures, optical properties, and photocatalysis

    Science.gov (United States)

    Lin, Jia-He; Zhang, Hong; Cheng, Xin-Lu; Miyamoto, Yoshiyuki

    2017-07-01

    Recently, single-layer group III monochalcogenides have attracted both theoretical and experimental interest at their potential applications in photonic devices, electronic devices, and solar energy conversion. Excited by this, we theoretically design two kinds of highly stable single-layer group IV-V (IV =Si ,Ge , and Sn; V =N and P) and group V-IV-III-VI (IV =Si ,Ge , and Sn; V =N and P; III =Al ,Ga , and In; VI =O and S) compounds with the same structures with single-layer group III monochalcogenides via first-principles simulations. By using accurate hybrid functional and quasiparticle methods, we show the single-layer group IV-V and group V-IV-III-VI are indirect bandgap semiconductors with their bandgaps and band edge positions conforming to the criteria of photocatalysts for water splitting. By applying a biaxial strain on single-layer group IV-V, single-layer group IV nitrides show a potential on mechanical sensors due to their bandgaps showing an almost linear response for strain. Furthermore, our calculations show that both single-layer group IV-V and group V-IV-III-VI have absorption from the visible light region to far-ultraviolet region, especially for single-layer SiN-AlO and SnN-InO, which have strong absorption in the visible light region, resulting in excellent potential for solar energy conversion and visible light photocatalytic water splitting. Our research provides valuable insight for finding more potential functional two-dimensional semiconductors applied in optoelectronics, solar energy conversion, and photocatalytic water splitting.

  11. Metal-Insulator-Metal Single Electron Transistors with Tunnel Barriers Prepared by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Golnaz Karbasian

    2017-03-01

    Full Text Available Single electron transistors are nanoscale electron devices that require thin, high-quality tunnel barriers to operate and have potential applications in sensing, metrology and beyond-CMOS computing schemes. Given that atomic layer deposition is used to form CMOS gate stacks with low trap densities and excellent thickness control, it is well-suited as a technique to form a variety of tunnel barriers. This work is a review of our recent research on atomic layer deposition and post-fabrication treatments to fabricate metallic single electron transistors with a variety of metals and dielectrics.

  12. Efficient and bright organic light-emitting diodes on single-layer graphene electrodes

    Science.gov (United States)

    Li, Ning; Oida, Satoshi; Tulevski, George S.; Han, Shu-Jen; Hannon, James B.; Sadana, Devendra K.; Chen, Tze-Chiang

    2013-08-01

    Organic light-emitting diodes are emerging as leading technologies for both high quality display and lighting. However, the transparent conductive electrode used in the current organic light-emitting diode technologies increases the overall cost and has limited bendability for future flexible applications. Here we use single-layer graphene as an alternative flexible transparent conductor, yielding white organic light-emitting diodes with brightness and efficiency sufficient for general lighting. The performance improvement is attributed to the device structure, which allows direct hole injection from the single-layer graphene anode into the light-emitting layers, reducing carrier trapping induced efficiency roll-off. By employing a light out-coupling structure, phosphorescent green organic light-emitting diodes exhibit external quantum efficiency >60%, while phosphorescent white organic light-emitting diodes exhibit external quantum efficiency >45% at 10,000 cd m-2 with colour rendering index of 85. The power efficiency of white organic light-emitting diodes reaches 80 lm W-1 at 3,000 cd m-2, comparable to the most efficient lighting technologies.

  13. Single-hidden-layer feed-forward quantum neural network based on Grover learning.

    Science.gov (United States)

    Liu, Cheng-Yi; Chen, Chein; Chang, Ching-Ter; Shih, Lun-Min

    2013-09-01

    In this paper, a novel single-hidden-layer feed-forward quantum neural network model is proposed based on some concepts and principles in the quantum theory. By combining the quantum mechanism with the feed-forward neural network, we defined quantum hidden neurons and connected quantum weights, and used them as the fundamental information processing unit in a single-hidden-layer feed-forward neural network. The quantum neurons make a wide range of nonlinear functions serve as the activation functions in the hidden layer of the network, and the Grover searching algorithm outstands the optimal parameter setting iteratively and thus makes very efficient neural network learning possible. The quantum neuron and weights, along with a Grover searching algorithm based learning, result in a novel and efficient neural network characteristic of reduced network, high efficient training and prospect application in future. Some simulations are taken to investigate the performance of the proposed quantum network and the result show that it can achieve accurate learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A single hidden layer feedforward network with only one neuron in the hidden layer can approximate any univariate function

    OpenAIRE

    Guliyev , Namig; Ismailov , Vugar

    2016-01-01

    The possibility of approximating a continuous function on a compact subset of the real line by a feedforward single hidden layer neural network with a sigmoidal activation function has been studied in many papers. Such networks can approximate an arbitrary continuous function provided that an unlimited number of neurons in a hidden layer is permitted. In this paper, we consider constructive approximation on any finite interval of $\\mathbb{R}$ by neural networks with only one neuron in the hid...

  15. Ultraviolet weathering of HDPE/wood-flour composites coextruded with a clear HDPE cap layer

    Science.gov (United States)

    Laurent M. Matuana; Shan Jin; Nicole M. Stark

    2011-01-01

    This study examined the effect coextruding a clear HDPE cap layer onto HDPE/wood-flour composites has on the discoloration of coextruded composites exposed to accelerated UV tests. Chroma meter, FTIRATR, XPS, SEM, and UV vis measurements accounted for the analysis of discoloration, functional groups, and degree of oxidation of both uncapped (control) and coextruded...

  16. Residual stresses and mechanical properties of Si3N4/SiC multilayered composites with different SiC layers

    International Nuclear Information System (INIS)

    Liua, S.; Lia, Y.; Chena, P.; Lia, W.; Gaoa, S.; Zhang, B.; Yeb, F.

    2017-01-01

    The effect of residual stresses on the strength, toughness and work of fracture of Si3N4/SiC multilayered composites with different SiC layers has been investigated. It may be an effective way to design and optimize the mechanical properties of Si3N4/SiC multilayered composites by controlling the properties of SiC layers. Si3N4/SiC multilayered composites with different SiC layers were fabricated by aqueous tape casting and pressureless sintering. Residual stresses were calculated by using ANSYS simulation, the maximum values of tensile and compressive stresses were 553.2MPa and −552.1MPa, respectively. Step-like fracture was observed from the fracture surfaces. Fraction of delamination layers increased with the residual stress, which can improve the reliability of the materials. Tensile residual stress was benefit to improving toughness and work of fracture, but the strength of the composites decreased. [es

  17. Numerical test for single concrete armour layer on breakwaters

    OpenAIRE

    Anastasaki, E; Latham, J-P; Xiang, J

    2016-01-01

    The ability of concrete armour units for breakwaters to interlock and form an integral single layer is important for withstanding severe wave conditions. In reality, displacements take place under wave loading, whether they are small and insignificant or large and representing serious structural damage. In this work, a code that combines finite- and discrete-element methods which can simulate motion and interaction among units was used to conduct a numerical investigation. Various concrete ar...

  18. Giant magnetoimpedance effect in sputtered single layered NiFe film and meander NiFe/Cu/NiFe film

    International Nuclear Information System (INIS)

    Chen, L.; Zhou, Y.; Lei, C.; Zhou, Z.M.; Ding, W.

    2010-01-01

    Giant magnetoimpedance (GMI) effect on NiFe thin film is very promising due to its application in developing the magnetic field sensors with highly sensitivity and low cost. In this paper, the single layered NiFe thin film and NiFe/Cu/NiFe thin film with a meander structure are prepared by the MEMS technology. The influences of sputtering parameters, film structure and conductor layer width on GMI effect in NiFe single layer and meander NiFe/Cu/NiFe film are investigated. Maximum of the GMI ratio in single layer and sandwich film is 5% and 64%, respectively. The results obtained are useful for developing the high-performance magnetic sensors based on NiFe thin film.

  19. Single-crystal-material-based induced-shear actuation for vibration reduction of helicopters with composite rotor system

    International Nuclear Information System (INIS)

    Pawar, Prashant M; Jung, Sung Nam

    2008-01-01

    In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. Special focus is given to the feasibility of implementing the benefits of the shear actuation mechanism along with elastic couplings of composite blades for achieving maximum vibration reduction. The governing equations of motion for composite rotor blades with surface bonded piezoceramic actuators are obtained using Hamilton's principle. The equations are then solved for dynamic response using finite element discretization in the spatial and time domains. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. A newly developed single-crystal piezoceramic material is introduced as an actuator material to exploit its superior shear actuation authority. Seven rotor blades with different elastic couplings representing stiffness properties similar to stiff-in-plane rotor blades are used to investigate the hub vibration characteristics. The rotor blades are modeled as a box beam with actuator layers bonded on the outer surface of the top and bottom of the box section. Numerical results show that a notable vibration reduction can be achieved for all the combinations of composite rotor blades. This investigation also brings out the effect of different elastic couplings on various vibration-reduction-related parameters which could be useful for the optimal design of composite helicopter blades

  20. Single-crystal-material-based induced-shear actuation for vibration reduction of helicopters with composite rotor system

    Science.gov (United States)

    Pawar, Prashant M.; Jung, Sung Nam

    2008-12-01

    In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. Special focus is given to the feasibility of implementing the benefits of the shear actuation mechanism along with elastic couplings of composite blades for achieving maximum vibration reduction. The governing equations of motion for composite rotor blades with surface bonded piezoceramic actuators are obtained using Hamilton's principle. The equations are then solved for dynamic response using finite element discretization in the spatial and time domains. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. A newly developed single-crystal piezoceramic material is introduced as an actuator material to exploit its superior shear actuation authority. Seven rotor blades with different elastic couplings representing stiffness properties similar to stiff-in-plane rotor blades are used to investigate the hub vibration characteristics. The rotor blades are modeled as a box beam with actuator layers bonded on the outer surface of the top and bottom of the box section. Numerical results show that a notable vibration reduction can be achieved for all the combinations of composite rotor blades. This investigation also brings out the effect of different elastic couplings on various vibration-reduction-related parameters which could be useful for the optimal design of composite helicopter blades.

  1. Epitaxial TiN(001) wetting layer for growth of thin single-crystal Cu(001)

    Energy Technology Data Exchange (ETDEWEB)

    Chawla, J. S.; Zhang, X. Y.; Gall, D. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2011-08-15

    Single-crystal Cu(001) layers, 4-1400 nm thick, were deposited on MgO(001) with and without a 2.5-nm-thick TiN(001) buffer layer. X-ray diffraction and reflection indicate that the TiN(001) surface suppresses Cu-dewetting, yielding a 4 x lower defect density and a 9 x smaller surface roughness than if grown on MgO(001) at 25 deg. C. In situ and low temperature electron transport measurements indicate that ultra-thin (4 nm) Cu(001) remains continuous and exhibits partial specular scattering at the Cu-vacuum boundary with a Fuchs-Sondheimer specularity parameter p = 0.6 {+-} 0.2, suggesting that the use of epitaxial wetting layers is a promising approach to create low-resistivity single-crystal Cu nanoelectronic interconnects.

  2. Effect of Sn Composition in Ge1- x Sn x Layers Grown by Using Rapid Thermal Chemical Vapor Deposition

    Science.gov (United States)

    Kil, Yeon-Ho; Kang, Sukill; Jeong, Tae Soo; Shim, Kyu-Hwan; Kim, Dae-Jung; Choi, Yong-Dae; Kim, Mi Joung; Kim, Taek Sung

    2018-05-01

    The Ge1- x Sn x layers were grown by using rapid thermal chemical-vapor deposition (RTCVD) on boron-doped p-type Si (100) substrates with Sn compositions up to x = 0.83%. In order to obtain effect of the Sn composition on the structural and the optical characteristics, we utilized highresolution X-ray diffraction (HR-XRD), etch pit density (EPD), atomic force microscopy (AFM), Raman spectroscopy, and photocurrent (PC) spectra. The Sn compositions in the Ge1- x Sn x layers were found to be of x = 0.00%, 0.51%, 0.65%, and 0.83%. The root-mean-square (RMS) of the surface roughness of the Ge1- x Sn x layer increased from 2.02 nm to 3.40 nm as the Sn composition was increased from 0.51% to 0.83%, and EPD was on the order of 108 cm-2. The Raman spectra consist of only one strong peak near 300 cm-1, which is assigned to the Ge-Ge LO peaks and the Raman peaks shift to the wave number with increasing Sn composition. Photocurrent spectra show near energy band gap peaks and their peak energies decrease with increasing Sn composition due to band-gap bowing in the Ge1- x Sn x layer. An increase in the band gap bowing parameter was observed with increasing Sn composition.

  3. High-permeance crosslinked PTMSP thin-film composite membranes as supports for CO2 selective layer formation

    Directory of Open Access Journals (Sweden)

    Stepan D. Bazhenov

    2016-10-01

    Full Text Available In the development of the composite gas separation membranes for post-combustion CO2 capture, little attention is focused on the optimization of the membrane supports, which satisfy the conditions of this technology. The primary requirements to the membrane supports are concerned with their high CO2 permeance. In this work, the membrane supports with desired characteristics were developed as high-permeance gas separation thin film composite (TFC membranes with the thin defect-free layer from the crosslinked highly permeable polymer, poly[1-(trimethylsilyl-1-propyne] (PTMSP. This layer is insoluble in chloroform and can be used as a gutter layer for the further deposition of the СО2-selective materials from the organic solvents. Crosslinking of PTMSP was performed using polyethyleneimine (PEI and poly (ethyleneglycol diglycidyl ether (PEGDGE as crosslinking agents. Optimal concentrations of PEI in PTMSP and PEGDGE in methanol were selected in order to diminish the undesirable effect on the final membrane gas transport characteristics. The conditions of the kiss-coating technique for the deposition of the thin defect-free PTMSP-based layer, namely, composition of the casting solution and the speed of movement of the porous commercial microfiltration-grade support, were optimized. The procedure of post-treatment with alcohols and alcohol solutions was shown to be crucial for the improvement of gas permeance of the membranes with the crosslinked PTMSP layer having thickness ranging within 1–2.5 μm. The claimed membranes showed the following characteristics: CO2 permeance is equal to 50–54 m3(STP/(m2 h bar (18,500–20,000 GPU, ideal CO2/N2 selectivity is 3.6–3.7, and their selective layers are insoluble in chloroform. Thus, the developed high-permeance TFC membranes are considered as a promising supports for further modification by enhanced CO2 selective layer formation. Keywords: Thin-film composite membrane

  4. Critical current density for spin transfer torque switching with composite free layer structure

    OpenAIRE

    You, Chun-Yeol

    2009-01-01

    Critical current density of composite free layer (CFL) in magnetic tunneling junction is investigated. CFL consists of two exchange coupled ferromagnetic layers, where the coupling is parallel or anti-parallel. Instability condition of the CFL under the spin transfer torque, which is related with critical current density, is obtained by analytic spin wave excitation model and confirmed by macro-spin Landau-Lifshitz-Gilbert equation. The critical current densities for the coupled two identical...

  5. FORMATION AND RESEARCH OF MULTI-LAYER COMPOSITE PLASMA OXIDE COATINGS BASED ON ELEMENTS OF SCREEN METEROID PTOTECTION

    Directory of Open Access Journals (Sweden)

    V. A. Okovity

    2016-01-01

    Full Text Available The paper presents results of research for influence of plasma jet parameters (current, spraying distance, plasmasupporting nitrogen gas consumption, fractional composition of an initial powder and cooling degree by compressed air on characteristics of anti-meteorite coatings, subsequent processing modes by pulsed plasma. Properties of the obtained coatings and results of ballistic tests have been given in the paper. The proposed methodology has been based on complex metallographic, X-ray diffraction and electron microscopic investigations of anti-meteorite aluminum oxide coating. Optimization of air plasma spraying parameters for NiAl and Al2O3 materials has been carried out in the paper. The spraying parameters optimization has been executed on the basis of obtaining maximum materials utilization factor. Surface treatment of model screen elements with a double-layer composite coating (adhesive metal NiAl layer and hard ceramic oxide Al2O3 layer has been fulfilled while using compression plasma stream. Nitrogen has been used as working gas. Composite hard ceramic oxide Al2O3 coating is represented by porous structure consisting of 10–15 µm-size fused Al2O3 particles. Metallic inclusions formed due to erosion of plasmatron electrodes have been observed in the space between the particles. Surface of bilayer composite coatings has been processed by a compression plasma stream and due to nonsteady processes of melting and recrystallization high strength polycrystalline layer has been formed on their surface. In this context, those areas of the polycrystalline layer which had metal inclusions have appeared to be painted in various colors depending on chemical composition of the inclusions.

  6. Single-layer dispersions of transition metal dichalcogenides in the synthesis of intercalation compounds

    International Nuclear Information System (INIS)

    Golub, Alexander S; Zubavichus, Yan V; Slovokhotov, Yurii L; Novikov, Yurii N

    2003-01-01

    Chemical methods for the exfoliation of transition metal dichalcogenides in a liquid medium to give single-layer dispersions containing quasi-two-dimensional layers of these compounds are surveyed. Data on the structure of dispersions and their use in the synthesis of various types of heterolayered intercalation compounds are discussed and described systematically. Structural features, the electronic structure and the physicochemical properties of the resulting intercalation compounds are considered. The potential of this method of synthesis is compared with that of traditional solid-state methods for the intercalation of layered crystals.

  7. Layer-by-layer construction of graphene/cobalt phthalocyanine composite film on activated GCE for application as a nitrite sensor

    International Nuclear Information System (INIS)

    Cui, Lili; Pu, Tao; Liu, Ying; He, Xingquan

    2013-01-01

    Graphical abstract: A novel nitrite sensor was prepared by using LBL technique which for the first time used the activated positively charged glassy carbon electrode (A-GCE) as the substrate. The nitrite sensor shows super stability for consecutive CV testing and rather low detection limit. -- Abstract: In this paper, a novel graphene/cobalt phthalocyanine composite film was prepared by layer-by-layer (LBL) technique which for the first time used the activated positively charged glassy carbon electrode (A-GCE) as the substrate. The surface morphology of graphene/cobalt phthalocyanine composite film was characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM). It is found that graphene/cobalt phthalocyanine composite film modified GCE exhibits good catalytic activity toward the oxidation of nitrite. The oxidation current barely decreases in consecutive CV test. Furthermore, the modified GCE shows long-term stability after 70 days. The super good stability can be attributed to the immobilization and dispersion of electroactive cobalt phthalocyanine by graphene, and using A-GCE as substrate which can enhance the interaction force between GCE and electroactive cobalt phthalocyanine. The nitrite sensor shows rather low detection limit of 0.084 μM at a signal-to-noise ratio = 3 (S/N = 3)

  8. Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework

    KAUST Repository

    Chen, Chen; Joshi, Trinity; Li, Huifang; Chavez, Anton D.; Pedramrazi, Zahra; Liu, Pei-Nian; Li, Hong; Dichtel, William R.; Bredas, Jean-Luc; Crommie, Michael F.

    2017-01-01

    We have characterized the local electronic structure of a porphyrin-containing single-layer covalent organic framework (COF) exhibiting a square lattice. The COF monolayer was obtained by the deposition of 2,5-dimethoxybenzene-1,4-dicarboxaldehyde

  9. Edge structures and properties of triangular antidots in single-layer MoS2

    KAUST Repository

    Gan, Li Yong; Cheng, Yingchun; Schwingenschlö gl, Udo; Yao, Yingbang; Zhao, Yong; Zhang, Xixiang; Huang, Wei

    2016-01-01

    Density functional theory and experiments are employed to shed light on the edge structures of antidots in O etched single-layer MoS2. The equilibrium morphology is found to be the zigzag Mo edge with each Mo atom bonded to two O atoms, in a wide range of O chemical potentials. Scanning electron microscopy shows that the orientation of the created triangular antidots is opposite to the triangular shape of the single-layer MoS2 samples, in agreement with the theoretical predictions. Furthermore, edges induced by O etching turn out to be p-doped, suggesting an effective strategy to realize p-type MoS2 devices. Published by AIP Publishing.

  10. Edge structures and properties of triangular antidots in single-layer MoS2

    KAUST Repository

    Gan, Li Yong

    2016-08-30

    Density functional theory and experiments are employed to shed light on the edge structures of antidots in O etched single-layer MoS2. The equilibrium morphology is found to be the zigzag Mo edge with each Mo atom bonded to two O atoms, in a wide range of O chemical potentials. Scanning electron microscopy shows that the orientation of the created triangular antidots is opposite to the triangular shape of the single-layer MoS2 samples, in agreement with the theoretical predictions. Furthermore, edges induced by O etching turn out to be p-doped, suggesting an effective strategy to realize p-type MoS2 devices. Published by AIP Publishing.

  11. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene.

    Science.gov (United States)

    Okhrimchuk, Andrey G; Obraztsov, Petr A

    2015-06-08

    We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires-Tournois interferometer.

  12. Single-Layer Limit of Metallic Indium Overlayers on Si(111).

    Science.gov (United States)

    Park, Jae Whan; Kang, Myung Ho

    2016-09-09

    Density-functional calculations are used to identify one-atom-thick metallic In phases grown on the Si(111) surface, which have long been sought in quest of the ultimate two-dimensional (2D) limit of metallic properties. We predict two metastable single-layer In phases, one sqrt[7]×sqrt[3] phase with a coverage of 1.4 monolayer (ML; here 1 ML refers to one In atom per top Si atom) and the other sqrt[7]×sqrt[7] phase with 1.43 ML, which indeed agree with experimental evidences. Both phases reveal quasi-1D arrangements of protruded In atoms, leading to 2D-metallic but anisotropic band structures and Fermi surfaces. This directional feature contrasts with the free-electron-like In-overlayer properties that are known to persist up to the double-layer thickness, implying that the ultimate 2D limit of In overlayers may have been achieved in previous studies of double-layer In phases.

  13. Anomalous photoluminescence thermal quenching of sandwiched single layer MoS_2

    KAUST Repository

    Tangi, Malleswararao

    2017-09-22

    We report an unusual thermal quenching of the micro-photoluminescence (µ-PL) intensity for a sandwiched single-layer (SL) MoS2. For this study, MoS2 layers were chemical vapor deposited on molecular beam epitaxial grown In0.15Al0.85N lattice matched templates. Later, to accomplish air-stable sandwiched SL-MoS2, a thin In0.15Al0.85N cap layer was deposited on the MoS2/In0.15Al0.85N heterostructure. We confirm that the sandwiched MoS2 is a single layer from optical and structural analyses using µ-Raman spectroscopy and scanning transmission electron microscopy, respectively. By using high-resolution X-ray photoelectron spectroscopy, no structural phase transition of MoS2 is noticed. The recombination processes of bound and free excitons were analyzed by the power-dependent µ-PL studies at 77 K and room temperature (RT). The temperature-dependent micro photoluminescence (TDPL) measurements were carried out in the temperature range of 77 – 400 K. As temperature increases, a significant red-shift is observed for the free-exciton PL peak, revealing the delocalization of carriers. Further, we observe unconventional negative thermal quenching behavior, the enhancement of the µ-PL intensity with increasing temperatures up to 300K, which is explained by carrier hopping transitions that take place between shallow localized states to the band-edges. Thus, this study renders a fundamental insight into understanding the anomalous thermal quenching of µ-PL intensity of sandwiched SL-MoS2.

  14. Anomalous photoluminescence thermal quenching of sandwiched single layer MoS_2

    KAUST Repository

    Tangi, Malleswararao; Shakfa, Mohammad Khaled; Mishra, Pawan; Li, Ming-Yang; Chiu, Ming-Hui; Ng, Tien Khee; Li, Lain-Jong; Ooi, Boon S.

    2017-01-01

    We report an unusual thermal quenching of the micro-photoluminescence (µ-PL) intensity for a sandwiched single-layer (SL) MoS2. For this study, MoS2 layers were chemical vapor deposited on molecular beam epitaxial grown In0.15Al0.85N lattice matched templates. Later, to accomplish air-stable sandwiched SL-MoS2, a thin In0.15Al0.85N cap layer was deposited on the MoS2/In0.15Al0.85N heterostructure. We confirm that the sandwiched MoS2 is a single layer from optical and structural analyses using µ-Raman spectroscopy and scanning transmission electron microscopy, respectively. By using high-resolution X-ray photoelectron spectroscopy, no structural phase transition of MoS2 is noticed. The recombination processes of bound and free excitons were analyzed by the power-dependent µ-PL studies at 77 K and room temperature (RT). The temperature-dependent micro photoluminescence (TDPL) measurements were carried out in the temperature range of 77 – 400 K. As temperature increases, a significant red-shift is observed for the free-exciton PL peak, revealing the delocalization of carriers. Further, we observe unconventional negative thermal quenching behavior, the enhancement of the µ-PL intensity with increasing temperatures up to 300K, which is explained by carrier hopping transitions that take place between shallow localized states to the band-edges. Thus, this study renders a fundamental insight into understanding the anomalous thermal quenching of µ-PL intensity of sandwiched SL-MoS2.

  15. Images of interlayer Josephson vortices in single-layer cuprates

    International Nuclear Information System (INIS)

    Moler, K. A.; Kirtley, J. R.; Liang, R.; Bonn, D. A.; Hardy, W. N.; Williams, J. M.; Schlueter, J. A.; Hinks, D.; Villard, G.; Maignan, A.; Nohara, M.; Takagi, H.

    2000-01-01

    The interlayer penetration depth in layered superconductors may be determined from scanning Superconducting QUantum Interference Device (SQUID) microscope images of interlayer Josephson vortices. The authors compare their findings at 4 K for single crystals of the organic superconductor κ-(BEDT-TTF) 2 Cu(NCS) 2 and three near-optimally doped cuprate superconductors: La 2-x Sr x CuO 4 , (Hg, Cu)Ba 2 CuO 4+δ , and Tl 2 Ba 2 CuO 6+δ

  16. Diffusion barrier and adhesion properties of SiO(x)N(y) and SiO(x) layers between Ag/polypyrrole composites and Si substrates.

    Science.gov (United States)

    Horváth, Barbara; Kawakita, Jin; Chikyow, Toyohiro

    2014-06-25

    This paper describes the interface reactions and diffusion between silver/polypyrrole (Ag/PPy) composite and silicon substrate. This composite material can be used as a novel technique for 3D-LSI (large-scale integration) by the fast infilling of through-silicon vias (TSV). By immersion of the silicon wafer with via holes into the dispersed solution of Ag/PPy composite, the holes are filled with the composite. It is important to develop a layer between the composite and the Si substrate with good diffusion barrier and adhesion characteristics. In this paper, SiOx and two types of SiOxNy barrier layers with various thicknesses were investigated. The interface structure between the Si substrate, the barrier, and the Ag/PPy composite was characterized by transmission electron microscopy. The adhesion and diffusion properties of the layers were established for Ag/PPy composite. Increasing thickness of SiOx proved to permit less Ag to transport into the Si substrate. SiOxNy barrier layers showed very good diffusion barrier characteristics; however, their adhesion depended strongly on their composition. A barrier layer composition with good adhesion and Ag barrier properties has been identified in this paper. These results are useful for filling conductive metal/polymer composites into TSV.

  17. Catastrophe in the stochastic layer due to dipole perturbation for a single-null divertor Tokamak

    International Nuclear Information System (INIS)

    Ali, H.; Watson, M.; Punjabi, A.; Boozer, A.

    1996-01-01

    We use the method of maps developed by Punjabi and Boozer to investigate the motion of magnetic field lines in stochastic scrape-off layer in the presence of dipole perturbation of a single-null divertor Tokamak. This method is based on the idea that the magnetic field line trajectories in a divertor tokamak are mathematically equivalent to a single degree of freedom, time dependent Hamiltonian System, and that the basic features of motion near a separatrix broadened by asymmetric perturbations are generic for such Hamiltonian and near-Hamiltonian systems. The magnetic topology of a single-null divertor tokamak with the effects on dipole perturbations is represented by the Symmetric Simple Map followed by Dipole Map. We have found that as the amplitude of the dipole perturbation increases, the width of the stochastic layer also increases. At some critical value of the amplitude is reached, there is a catastrophic increase in the width of stochastic layer. This may have significant implications for tokamak divertor physics

  18. Secretion of wound healing mediators by single and bi-layer skin substitutes.

    Science.gov (United States)

    Maarof, Manira; Law, Jia Xian; Chowdhury, Shiplu Roy; Khairoji, Khairul Anuar; Saim, Aminuddin Bin; Idrus, Ruszymah Bt Hj

    2016-10-01

    Limitations of current treatments for skin loss caused by major injuries leads to the use of skin substitutes. It is assumed that secretion of wound healing mediators by these skin substitutes plays a role in treating skin loss. In our previous study, single layer keratinocytes (SK), single layer fibroblast (SF) and bilayer (BL; containing keratinocytes and fibroblasts layers) skin substitutes were fabricated using fibrin that had shown potential to heal wounds in preclinical studies. This study aimed to quantify the secretion of wound healing mediators, and compare between single and bi-layer skin substitutes. Skin samples were digested to harvest fibroblasts and keratinocytes, and expanded to obtain sufficient cells for the construction of skin substitutes. Acellular fibrin (AF) construct was used as control. Substitutes i.e. AF, SK, SF and BL were cultured for 2 days, and culture supernatant was collected to analyze secretion of wound healing mediators via multiplex ELISA. Among 19 wound healing mediators tested, BL substitute secreted significantly higher amounts of CXCL1 and GCSF compared to SF and AF substitute but this was not significant with respect to SK substitute. The BL substitute also secreted significantly higher amounts of CXCL5 and IL-6 compared to other substitutes. In contrast, the SK substitute secreted significantly higher amounts of VCAM-1 compared to other substitutes. However, all three skin substitutes also secreted CCL2, CCL5, CCL11, GM-CSF, IL8, IL-1α, TNF-α, ICAM-1, FGF-β, TGF-β, HGF, VEGF-α and PDGF-BB factors, but no significant difference was seen. Secretion of these mediators after transplantation may play a significant role in promoting wound healing process for the treatment of skin loss.

  19. High quality single atomic layer deposition of hexagonal boron nitride on single crystalline Rh(111) four-inch wafers

    Energy Technology Data Exchange (ETDEWEB)

    Hemmi, A.; Bernard, C.; Cun, H.; Roth, S.; Klöckner, M.; Kälin, T.; Osterwalder, J.; Greber, T., E-mail: greber@physik.uzh.ch [Physik-Institut, Universität Zürich, CH-8057 Zürich (Switzerland); Weinl, M.; Gsell, S.; Schreck, M. [Institut für Physik, Universität Augsburg, D-86135 Augsburg (Germany)

    2014-03-15

    The setup of an apparatus for chemical vapor deposition (CVD) of hexagonal boron nitride (h-BN) and its characterization on four-inch wafers in ultra high vacuum (UHV) environment is reported. It provides well-controlled preparation conditions, such as oxygen and argon plasma assisted cleaning and high temperature annealing. In situ characterization of a wafer is accomplished with target current spectroscopy. A piezo motor driven x-y stage allows measurements with a step size of 1 nm on the complete wafer. To benchmark the system performance, we investigated the growth of single layer h-BN on epitaxial Rh(111) thin films. A thorough analysis of the wafer was performed after cutting in atmosphere by low energy electron diffraction, scanning tunneling microscopy, and ultraviolet and X-ray photoelectron spectroscopies. The apparatus is located in a clean room environment and delivers high quality single layers of h-BN and thus grants access to large area UHV processed surfaces, which had been hitherto restricted to expensive, small area single crystal substrates. The facility is versatile enough for customization to other UHV-CVD processes, e.g., graphene on four-inch wafers.

  20. Single walled carbon nanotube network—Tetrahedral amorphous carbon composite film

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Ajai, E-mail: ajai.iyer@aalto.fi; Liu, Xuwen; Koskinen, Jari [Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, POB 16200, 00076 Espoo (Finland); Kaskela, Antti; Kauppinen, Esko I. [NanoMaterials Group, Department of Applied Physics, School of Science, Aalto University, POB 15100, 00076 Espoo (Finland); Johansson, Leena-Sisko [Department of Forest Products Technology, School of Chemical Technology, Aalto University, POB 16400, 00076 Espoo (Finland)

    2015-06-14

    Single walled carbon nanotube network (SWCNTN) was coated by tetrahedral amorphous carbon (ta-C) using a pulsed Filtered Cathodic Vacuum Arc system to form a SWCNTN—ta-C composite film. The effects of SWCNTN areal coverage density and ta-C coating thickness on the composite film properties were investigated. X-Ray photoelectron spectroscopy measurements prove the presence of high quality sp{sup 3} bonded ta-C coating on the SWCNTN. Raman spectroscopy suggests that the single wall carbon nanotubes (SWCNTs) forming the network survived encapsulation in the ta-C coating. Nano-mechanical testing suggests that the ta-C coated SWCNTN has superior wear performance compared to uncoated SWCNTN.

  1. On the approximation by single hidden layer feedforward neural networks with fixed weights

    OpenAIRE

    Guliyev, Namig J.; Ismailov, Vugar E.

    2017-01-01

    International audience; Feedforward neural networks have wide applicability in various disciplines of science due to their universal approximation property. Some authors have shown that single hidden layer feedforward neural networks (SLFNs) with fixed weights still possess the universal approximation property provided that approximated functions are univariate. But this phenomenon does not lay any restrictions on the number of neurons in the hidden layer. The more this number, the more the p...

  2. Electrical investigations of layer-by-layer films of carbon nanotubes

    International Nuclear Information System (INIS)

    Palumbo, M; Lee, K U; Ahn, B T; Suri, A; Coleman, K S; Zeze, D; Wood, D; Pearson, C; Petty, M C

    2006-01-01

    Single-wall carbon nanotubes (SWNTs) with anionic or cationic coatings have been prepared by exploiting the ability of certain surfactants to form a monolayer shell around the nanotube. The presence of electrically charged functional groups on the surface of the SWNT allows thin film deposition to proceed via the electrostatic layer-by-layer method. This self-assembly process was monitored using the quartz microbalance technique and Raman spectroscopy, while the morphology of the resulting thin layers was studied with atomic force microscopy. A variety of different architectures has been built up. In one arrangement, a single species of a modified SWNT (anionic or cationic) was alternated with a passive polymer to form a composite structure. A 'superlattice' architecture comprising alternating anionic and cationic modified nanotubes was also fabricated. The in-plane and out-of-plane dc conductivities of the films were measured at room temperature and contrasted with reference architectures (i.e. those containing no nanotubes). The results showed clearly that the incorporation of SWNTs into the multilayer assemblies provided electrically conductive thin films. It is suggested that the current versus voltage behaviour, particularly in the out-of-plane direction, is controlled by quantum mechanical tunnelling of carriers between the nanotubes

  3. Single-layer Ultralight, Flexible, Shielding Tension Shell System for Extreme Heat and Radiation

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to develop a flexible thermal protection system (FTPS) with a Boron Nitride Nanotube (BNNT)-based single-layer, lightweight,...

  4. Single-layer model for surface roughness.

    Science.gov (United States)

    Carniglia, C K; Jensen, D G

    2002-06-01

    Random roughness of an optical surface reduces its specular reflectance and transmittance by the scattering of light. The reduction in reflectance can be modeled by a homogeneous layer on the surface if the refractive index of the layer is intermediate to the indices of the media on either side of the surface. Such a layer predicts an increase in the transmittance of the surface and therefore does not provide a valid model for the effects of scatter on the transmittance. Adding a small amount of absorption to the layer provides a model that predicts a reduction in both reflectance and transmittance. The absorbing layer model agrees with the predictions of a scalar scattering theory for a layer with a thickness that is twice the rms roughness of the surface. The extinction coefficient k for the layer is proportional to the thickness of the layer.

  5. The role of molecular architecture and layer composition on the properties and performance of CuPc-C6 photovoltaic devices

    International Nuclear Information System (INIS)

    Schultes, S.M.; Sullivan, P.; Heutz, S.; Sanderson, B.M.; Jones, T.S.

    2005-01-01

    We have studied the effects of molecular architecture, co-deposition and annealing on the properties and performance of photovoltaic cells based on copper phthalocyanine (CuPc)-fullerene (C 6 ) heterojunctions. Significant improvements in performance are achieved when mixed CuPc:C 6 layers are incorporated into the device structure due to the creation of an intermolecularly mixed donor (D)-acceptor (A) blend that favours efficient exciton dissociation. We utilise the control afforded by organic molecular beam deposition to show that the mixed-layer composition plays an important role in determining device performance and correlate device efficiency to the morphological and spectroscopic properties of the organic layers. A maximum power conversion efficiency of η p = 1.17% is achieved for devices containing a mixed layer of ratio 75:25 CuPc:C 6 surrounded by thin continuous layers of pure organic material at the electrode interfaces. A structure containing a compositional gradient where the CuPc:C 6 composition is varied from purely D to purely A via three mixed layers of increasing A composition leads to a further improvements in efficiency (η p = 1.36%). Finally, we use thermal annealing to show how structural defects and morphological templating of organic thin films reduces the interfacial area for exciton separation and yields poor device performance

  6. Simulation study on single event burnout in linear doping buffer layer engineered power VDMOSFET

    International Nuclear Information System (INIS)

    Jia Yunpeng; Su Hongyuan; Hu Dongqing; Wu Yu; Jin Rui

    2016-01-01

    The addition of a buffer layer can improve the device's secondary breakdown voltage, thus, improving the single event burnout (SEB) threshold voltage. In this paper, an N type linear doping buffer layer is proposed. According to quasi-stationary avalanche simulation and heavy ion beam simulation, the results show that an optimized linear doping buffer layer is critical. As SEB is induced by heavy ions impacting, the electric field of an optimized linear doping buffer device is much lower than that with an optimized constant doping buffer layer at a given buffer layer thickness and the same biasing voltages. Secondary breakdown voltage and the parasitic bipolar turn-on current are much higher than those with the optimized constant doping buffer layer. So the linear buffer layer is more advantageous to improving the device's SEB performance. (paper)

  7. Preparation and characterization of 6-layered functionally graded nickel-alumina (Ni-Al2O3) composites

    Science.gov (United States)

    Latiff, M. I. A.; Nuruzzaman, D. M.; Basri, S.; Ismail, N. M.; Jamaludin, S. N. S.; Kamaruzaman, F. F.

    2018-04-01

    The present research study deals with the preparation of 6-layered functionally graded (FG) metal-ceramic composite materials through powder metallurgy technique. Using a cylindrical die-punch set made of steel, the nickel-alumina (Ni-Al2O3) graded composite structure was fabricated. The samples consist of four gradual inter layers of varied nickel composition (80wt.%, 60wt.%, 40wt.%, 20wt.%) sandwiched with pure Ni and Al2O3 powders at the ends (100wt.% and 0wt.% nickel) were fabricated under 30 ton compaction load using a hydraulic press. After that, two-step sintering was carried out at sintering temperature 1200ºC and soaking time 3 hours was maintained in a tube furnace. The properties of the prepared samples were characterized by radial shrinkage, optical microscopy and hardness testing. Results showed that larger shrinkage occurred within the ceramic phase which proves that more porosities were eliminated in the ceramic rich layers. From the microstructural analysis, it was observed that alumina particles are almost uniformly distributed in nickel matrix, so as nickel particles in the ceramic matrix of alumina-dominant layers. From interfacial analyses, it was observed that a smooth transition in microstructure from one layer to the next confirms a good interfacial solid state bonding between metal-ceramic constituents and good compaction process. On the other hand, microhardness test results suggest that there might be increasing percentage of porosities in the graded structure as the ceramic content rises.

  8. Microstructure and wear of in-situ Ti/(TiN + TiB) hybrid composite layers produced using liquid phase process

    Energy Technology Data Exchange (ETDEWEB)

    Yazdi, R., E-mail: ryazdi@ut.ac.ir; Kashani-Bozorg, S.F.

    2015-02-15

    Tungsten inert gas (TIG) technique was conducted on commercially pure (CP)-Ti substrate, which was coated with h-BN-based powder mixture prior to the treatment. The treated surfaces were evaluated and characterized by means of scanning electron microscope (SEM), X-ray diffraction analysis, and electron dispersive spectrometry (EDS). The microhardness and wear experiment were also performed by using a microhardness machine and pin-on-disk tribometer. As h-BN reacted with titanium, an in-situ hybrid composite layer was formed showing near stoichiometric dendrites of TiN, platelets of TiB and interdendritic regions of α′-Ti martensite crystal structures. The population level of TiN and TiB regions were found to increase using a pre-placed powder mixture with greater h-BN content. However, the fabricated layers exhibited cracking and porosity; these were minimized by adjusting arc energy density and h-BN content of powder mixture. The microhardness value of the fabricated hybrid composite layers was found to be in the range of ∼650 HV{sub 0.2}–1000 HV{sub 0.2}; this is three to five times higher than that of the untreated CP-Ti substrate. In addition, the in-situ hybrid composite layers exhibited superior wear behavior over CP-Ti substrate; this is attributed to the formation of newly formed ceramic phases in the solidified surface layers and good coherent interface between the composite layer and CP-substrate. Meanwhile, severe adhesive wear mechanism of CP-titanium surface changed to mild abrasive one as a result of surface treatment. - Highlights: • In-situ Ti/(TiN + TiB) hybrid composite layers were synthesized by TIG processing on commercially pure titanium. • The microstructure features were characterized by several methods. • Microhardness enhanced three to five times higher than that of the CP-Ti substrate after surface modification. • The fabricated composite layers improved wear resistance of CP-titanium. • Severe adhesive wear mechanism of

  9. The study of hydrogen electrosorption in layered nickel foam/palladium/carbon nanofibers composite electrodes

    International Nuclear Information System (INIS)

    Skowronski, J.M.; Czerwinski, A.; Rozmanowski, T.; Rogulski, Z.; Krawczyk, P.

    2007-01-01

    In the present work, the process of hydrogen electrosorption occurring in alkaline KOH solution on the nickel foam/palladium/carbon nanofibers (Ni/Pd/CNF) composite electrodes is examined. The layered Ni/Pd/CNF electrodes were prepared by a two-step method consisting of chemical deposition of a thin layer of palladium on the nickel foam support to form Ni/Pd electrode followed by coating the palladium layer with carbon nanofibers layer by means of the CVD method. The scanning electron microscope was used for studying the morphology of both the palladium and carbon layer. The process of hydrogen sorption/desorption into/from Ni/Pd as well as Ni/Pd/CNF electrode was examined using the cyclic voltammetry method. The amount of hydrogen stored in both types of composite electrodes was shown to increase on lowering the potential of hydrogen sorption. The mechanism of the anodic desorption of hydrogen changes depending on whether or not CNF layer is present on the Pd surface. The anodic peak corresponding to the removal of hydrogen from palladium is lower for Ni/Pd/CNF electrode as compared to that measured for Ni/Pd one due to a partial screening of the Pd surface area by CNF layer. The important feature of Ni/Pd/CNF electrode is anodic peak appearing on voltammetric curves at potential ca. 0.4 V more positive than the peak corresponding to hydrogen desorption from palladium. The obtained results showed that upon storing the hydrogen saturated Ni/Pd/CNF electrode at open circuit potential, diffusion of hydrogen from carbon to palladium phase occurs due to interaction between carbon fibers and Pd sites on the nickel foam support

  10. Edge structures and properties of triangular antidots in single-layer MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Li-Yong, E-mail: ganly@swjtu.edu.cn, E-mail: iamyccheng@njtech.edu.cn, E-mail: udo.schwingenschlogl@kaust.edu.sa [Key Laboratory of Advanced Technology of Materials (Ministry of Education), Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, Yingchun, E-mail: ganly@swjtu.edu.cn, E-mail: iamyccheng@njtech.edu.cn, E-mail: udo.schwingenschlogl@kaust.edu.sa; Huang, Wei [Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials - SICAM, Nanjing Tech University - NanjingTech, 30 South Puzhu Road, Nanjing 211816 (China); Schwingenschlögl, Udo, E-mail: ganly@swjtu.edu.cn, E-mail: iamyccheng@njtech.edu.cn, E-mail: udo.schwingenschlogl@kaust.edu.sa [Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Yao, Yingbang [Advanced Nanofabrication and Imaging Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); School of Materials and Energy, Guangdong University of Technology, Guangdong 510006 (China); Zhao, Yong [Key Laboratory of Advanced Technology of Materials (Ministry of Education), Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031 Sichuan (China); Zhang, Xi-xiang [Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Advanced Nanofabrication and Imaging Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia)

    2016-08-29

    Density functional theory and experiments are employed to shed light on the edge structures of antidots in O etched single-layer MoS{sub 2}. The equilibrium morphology is found to be the zigzag Mo edge with each Mo atom bonded to two O atoms, in a wide range of O chemical potentials. Scanning electron microscopy shows that the orientation of the created triangular antidots is opposite to the triangular shape of the single-layer MoS{sub 2} samples, in agreement with the theoretical predictions. Furthermore, edges induced by O etching turn out to be p-doped, suggesting an effective strategy to realize p-type MoS{sub 2} devices.

  11. Layer-by-layer cell membrane assembly

    Science.gov (United States)

    Matosevic, Sandro; Paegel, Brian M.

    2013-11-01

    Eukaryotic subcellular membrane systems, such as the nuclear envelope or endoplasmic reticulum, present a rich array of architecturally and compositionally complex supramolecular targets that are as yet inaccessible. Here we describe layer-by-layer phospholipid membrane assembly on microfluidic droplets, a route to structures with defined compositional asymmetry and lamellarity. Starting with phospholipid-stabilized water-in-oil droplets trapped in a static droplet array, lipid monolayer deposition proceeds as oil/water-phase boundaries pass over the droplets. Unilamellar vesicles assembled layer-by-layer support functional insertion both of purified and of in situ expressed membrane proteins. Synthesis and chemical probing of asymmetric unilamellar and double-bilayer vesicles demonstrate the programmability of both membrane lamellarity and lipid-leaflet composition during assembly. The immobilized vesicle arrays are a pragmatic experimental platform for biophysical studies of membranes and their associated proteins, particularly complexes that assemble and function in multilamellar contexts in vivo.

  12. Single-unit-cell layer established Bi 2 WO 6 3D hierarchical architectures: Efficient adsorption, photocatalysis and dye-sensitized photoelectrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hongwei; Cao, Ranran; Yu, Shixin; Xu, Kang; Hao, Weichang; Wang, Yonggang; Dong, Fan; Zhang, Tierui; Zhang, Yihe

    2017-12-01

    Single-layer catalysis sparks huge interests and gains widespread attention owing to its high activity. Simultaneously, three-dimensional (3D) hierarchical structure can afford large surface area and abundant reactive sites, contributing to high efficiency. Herein, we report an absorbing single-unit-cell layer established Bi2WO6 3D hierarchical architecture fabricated by a sodium dodecyl benzene sulfonate (SDBS)-assisted assembled strategy. The DBS- long chains can adsorb on the (Bi2O2)2+ layers and hence impede stacking of the layers, resulting in the single-unit-cell layer. We also uncovered that SDS with a shorter chain is less effective than SDBS. Due to the sufficient exposure of surface O atoms, single-unit-cell layer 3D Bi2WO6 shows strong selectivity for adsorption on multiform organic dyes with different charges. Remarkably, the single-unit-cell layer 3D Bi2WO6 casts profoundly enhanced photodegradation activity and especially a superior photocatalytic H2 evolution rate, which is 14-fold increase in contrast to the bulk Bi2WO6. Systematic photoelectrochemical characterizations disclose that the substantially elevated carrier density and charge separation efficiency take responsibility for the strengthened photocatalytic performance. Additionally, the possibility of single-unit-cell layer 3D Bi2WO6 as dye-sensitized solar cells (DSSC) has also been attempted and it was manifested to be a promising dye-sensitized photoanode for oxygen evolution reaction (ORR). Our work not only furnish an insight into designing single-layer assembled 3D hierarchical architecture, but also offer a multi-functional material for environmental and energy applications.

  13. Hydrogen intercalation of single and multiple layer graphene synthesized on Si-terminated SiC(0001) surface

    International Nuclear Information System (INIS)

    Sołtys, Jakub; Piechota, Jacek; Ptasinska, Maria; Krukowski, Stanisław

    2014-01-01

    Ab initio density functional theory simulations were used to investigate the influence of hydrogen intercalation on the electronic properties of single and multiple graphene layers deposited on the SiC(0001) surface (Si-face). It is shown that single carbon layer, known as a buffer layer, covalently bound to the SiC substrate, is liberated after hydrogen intercalation, showing characteristic Dirac cones in the band structure. This is in agreement with the results of angle resolved photoelectron spectroscopy measurements of hydrogen intercalation of SiC-graphene samples. In contrast to that hydrogen intercalation has limited impact on the multiple sheet graphene, deposited on Si-terminated SiC surface. The covalently bound buffer layer is liberated attaining its graphene like structure and dispersion relation typical for multilayer graphene. Nevertheless, before and after intercalation, the four layer graphene preserved the following dispersion relations in the vicinity of K point: linear for (AAAA) stacking, direct parabolic for Bernal (ABAB) stacking and “wizard hat” parabolic for rhombohedral (ABCA) stacking

  14. Corrosion Performance of Composite Galvanic Coatings with Variable Concentration of Polymeric Nanoaggregates and/or Cr(III) Conversion Layers

    NARCIS (Netherlands)

    Koleva, D.A.; Taheri, P.; Tsvetkova, N.; Boshkov, N.; Van Breugel, K.; De Wit, J.H.W.; Mol, J.M.C.

    2011-01-01

    This paper reports on the corrosion performance of composite zinc layers (~ 8µm) on a steel substrate, considering the influence of nano-aggregates and Cr(III) conversion layers, compared to control (only Zn layers) conditions. The main factors, influencing the corrosion performance of Zn in this

  15. Thermographic analysis of the effect of composite type, layering method, and curing light on the temperature rise of photo-cured composites in tooth cavities.

    Science.gov (United States)

    Kim, Min-Jung; Kim, Ryan Jin-Young; Ferracane, Jack; Lee, In-Bog

    2017-10-01

    The purpose of this study was to investigate temperature rise in the composite and dentin of a class I cavity in extracted human molars under different restoration conditions, including the use of different composite types, layering methods, and curing lights. Open occlusal cavities were prepared on 28 extracted human molars. A conventional (Filtek Z250) and a bulk-fill (Filtek Bulk Fill Posterior; BFP) composite were used to restore the preparations. BFP was incrementally layered or bulk-filled. Bulk-filled BFP was cured with two different lights, the Elipar S10 and the BeLite. Each layer was illuminated for 20s, while thermograms of the specimens were recorded for 100s using an infrared thermal camera. Temperature changes on the composite and dentin surfaces were obtained at points of interest (POI) pertaining to successive incremental distances of 0.75mm from the top of the cavity to the pulp. The polymerization kinetics of each composite was determined using photo-differential scanning calorimetry. The greatest temperature rise was observed 0.75mm apical from the top of the cavity. All groups showed over 6°C maximum temperature rise (ΔT max ) at the pulpal side of the dentin. Upon curing, Z250 reached ΔT=5°C faster than BFP; however, ΔT max of the two composites were comparable at any POI. Bulk filling showed greater ΔT max than incremental filling at 0.75mm apical from the top and in the middle of the cavity. The Elipar S10 light generated faster temperature changes in the curing composite at all recorded positions throughout the depth of the cavity and greater ΔT max in all POIs compared to BeLite. Real-time thermographic analysis demonstrated that the composite type and layering method did not influence the temperature rise at the pulpal side of dentin during composite restoration of an occlusal preparation in a tooth. The amount and initial rate of temperature increase was most affected by the radiant exposure of the light curing unit. Within the

  16. Layered Composite of TiC-TiB2 to Ti-6Al-4V in Graded Composition by Combustion Synthesis in High-gravity Field

    International Nuclear Information System (INIS)

    Huang Xuegang; Zhao Zhongmin; Zhang Long

    2013-01-01

    By taking combustion synthesis to prepare solidified TiB 2 matrix ceramic in high-gravity field, the layered composite of TiC-TiB 2 ceramic to Ti-6Al-4V substrate in graded composition was achieved. XRD, FESEM and EDS results showed that the bulk full-density solidified TiC-TiB 2 composite was composed of fine TiB 2 platelets, TiC irregular grains, a few of α-Al 2 O 3 inclusions and Cr alloy phases, and α'-Ti phases alternating with Ti-enriched carbides constituted the matrix of the joint in which fine TiB platelets were embedded, whereas some C, B atoms were also detected at the heat-affected zone of Ti-6A1-4V substrate. The layered composite of the solidified ceramic to Ti-6Al-4V substrate in graded composition with continuous microstructure was considered a result of fused joint and inter-diffusion between liquid ceramic and surface-molten Ti alloy, followed by TiB 2 -Ti peritectic reaction and subsequent eutectic reaction in TiC-TiB-Ti ternary system.

  17. Influence of the stacking sequence of layers on the mechanical behavior of polymeric composite cylinders

    International Nuclear Information System (INIS)

    Carvalho, Osni de

    2006-01-01

    This work evaluated experimentally the influence of the stacking sequence of layers symmetrical and asymmetrical on the mechanical behavior of polymeric composite cylinders. For so much, two open-ended cylinders groups were manufactured by filament winding process, which had different stacking sequence related to the laminate midplane, characterizing symmetrical and asymmetrical laminates. The composite cylinders were made with epoxy matrix and carbon fiber as reinforcement. For evaluation of the mechanical strength, the cylinders were tested hydrostatically, which consisted of internal pressurization in a hydrostatic device through the utilization of a fluid until the cylinders burst. Additionally, were compared the strains and failure modes between the cylinders groups. The utilization of a finite element program allowed to conclude that this tool, very used in design, does not get to identify tensions in the fiber direction in each composite layer, as well as interlaminar shear stress, that appears in the cylinders with asymmetrical stacking sequence. The tests results showed that the stacking sequence had influence in the mechanical behavior of the composite cylinders, favoring the symmetrical construction. (author)

  18. A study of the electromagnetic shielding mechanisms in the GHz frequency range of graphene based composite layers

    Energy Technology Data Exchange (ETDEWEB)

    Drakakis, E. [Electrical Engineering Department, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Kymakis, E. [Electrical Engineering Department, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Tzagkarakis, G.; Louloudakis, D.; Katharakis, M. [Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Kenanakis, G. [Institute of Electronic Structure & Laser (IESL), Foundation for Research and Technology (FORTH) Hellas, Heraklion (Greece); Suchea, M.; Tudose, V. [Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Chemistry Faculty, “Al.I.Cuza” University of Iasi, Iasi (Romania); Koudoumas, E., E-mail: koudoumas@staff.teicrete.gr [Electrical Engineering Department, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece)

    2017-03-15

    Highlights: • Optimum paint contents should be chosen so that homogeneous and uniform nanocomposite layers exist exhibiting effective electromagnetic shielding. • The electromagnetic shielding in the frequency range studied comes mainly from absorption and increases with frequency. • Reflection reduces with increasing frequency, the decrease rate being smaller than that of the increase in absorption. • The shielding efficiency depends on both conductivity and thickness, the first dependence being more pronounced. - Abstract: We report on the mechanisms of the electromagnetic interference shielding effect of graphene based paint like composite layers. In particular, we studied the absorption and reflection of electromagnetic radiation in the 4–20 GHz frequency of various dispersions employing different amounts of graphene nanoplatelets, polyaniline, and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), special attention given on the relative contribution of each process in the shielding effect. Moreover, the influence of the composition, the thickness and the conductivity of the composite layers on the electromagnetic shielding was also examined.

  19. A study of the electromagnetic shielding mechanisms in the GHz frequency range of graphene based composite layers

    International Nuclear Information System (INIS)

    Drakakis, E.; Kymakis, E.; Tzagkarakis, G.; Louloudakis, D.; Katharakis, M.; Kenanakis, G.; Suchea, M.; Tudose, V.; Koudoumas, E.

    2017-01-01

    Highlights: • Optimum paint contents should be chosen so that homogeneous and uniform nanocomposite layers exist exhibiting effective electromagnetic shielding. • The electromagnetic shielding in the frequency range studied comes mainly from absorption and increases with frequency. • Reflection reduces with increasing frequency, the decrease rate being smaller than that of the increase in absorption. • The shielding efficiency depends on both conductivity and thickness, the first dependence being more pronounced. - Abstract: We report on the mechanisms of the electromagnetic interference shielding effect of graphene based paint like composite layers. In particular, we studied the absorption and reflection of electromagnetic radiation in the 4–20 GHz frequency of various dispersions employing different amounts of graphene nanoplatelets, polyaniline, and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), special attention given on the relative contribution of each process in the shielding effect. Moreover, the influence of the composition, the thickness and the conductivity of the composite layers on the electromagnetic shielding was also examined.

  20. Single-layer centrifugation through colloid selects improved quality of epididymal cat sperm.

    Science.gov (United States)

    Chatdarong, K; Thuwanut, P; Morrell, J M

    2010-06-01

    The objectives were to determine the: 1) extent of epithelial and red blood cell contamination in epididymal cat sperm samples recovered by the cutting method; 2) efficacy of simple washing, single-layer centrifugation (SLC), and swim-up for selecting epididymal cat sperm; and 3) effects of freezing and thawing on cat sperm selected by various techniques. Ten unit samples were studied; each contained sperm from the cauda epididymides of four cats (total, approximately 200 x 10(6) sperm) and was equally allocated into four treatments: 1) simple washing, 2) single-layer centrifugation through colloid prior to cryopreservation (SLC-PC), 3) single-layer centrifugation through colloid after cryopreservation (SLC-AC), and 4) swim-up. Centrifugation (300 x g for 20 min) was done for all methods. The SLC-PC had a better recovery rate than the SLC-AC and swim-up methods (mean+/-SD of 16.4+/-8.7, 10.7+/-8.9, and 2.3+/-1.7%, respectively; Pblood cell contamination than simple washed samples (0.02+/-0.01, 0.02+/-0.04, 0.03+/-0.04, and 0.44+/-0.22 x 10(6) cells/mL, respectively; P0.05), SLC-PC yielded the highest percentage of sperm with normal midpieces and tails (P0.05). In conclusion, both SLC-PC and swim-up improved the quality of epididymal cat sperm, including better morphology, membrane and DNA integrity, and removal of cellular contamination. However, SLC had a better sperm recovery rate than swim-up. 2010 Elsevier Inc. All rights reserved.

  1. A retrospective study comparing the outcome of horses undergoing small intestinal resection and anastomosis with a single layer (Lembert) or double layer (simple continuous and Cushing) technique.

    Science.gov (United States)

    Close, Kristyn; Epstein, Kira L; Sherlock, Ceri E

    2014-05-01

    To (1) compare postoperative complications and survival in horses after small intestinal resection and anastomosis using 2 anastomosis techniques (single layer Lembert; double layer simple continuous oversewn with Cushing), and (2) to compare outcome by anastomosis type (jejunoileostomy; jejunojejunostomy). Retrospective case series. Horses (n = 53). Medical records (July 2006-July 2010) of all horses that had small intestinal resection and anastomosis. Horses were divided into groups based on technique and type of anastomosis. Comparisons of pre- and intraoperative findings (disease severity), postoperative complications, and survival rates were made between groups. There were no differences in disease severity, postoperative complications, or survival between single layer (n = 23) or double layer (n = 31) anastomoses. There were no differences in disease severity or survival between jejunoileostomy (n = 16) or jejunojejunostomy (n = 38). There was a higher incidence of postoperative colic in hospital after jejunoileostomy (13/16) compared with jejunojejunostomy (18/38) (P = .0127). Postoperative complications and survival are comparable between horses undergoing single layer and double layer small intestinal end-to-end anastomoses. With the exception of increased postoperative colic in the hospital, postoperative complications and survival after jejunoileostomy and jejunojejunostomy are also comparable. © Copyright 2014 by The American College of Veterinary Surgeons.

  2. Retinal single-layer analysis with optical coherence tomography shows inner retinal layer thinning in Huntington's disease as a potential biomarker.

    Science.gov (United States)

    Gulmez Sevim, Duygu; Unlu, Metin; Gultekin, Murat; Karaca, Cagatay

    2018-02-12

    There have been ongoing clinical trials of therapeutic agents in Huntington's disease (HD) which requires development of reliable biomarkers of disease progression. There have been studies in the literature with conflicting results on the involvement of retina in HD, and up to date there is not a study evaluating the single retinal layers in HD. We aimed to evaluate the specific retinal changes in HD and their usability as potential disease progression markers. This cross-sectional study used spectral-domain optical coherence tomography with automatic segmentation to measure peripapillary retinal nerve fiber layer (pRNFL) thickness and the thickness and volume of retinal layers in foveal scans of 15 patients with HD and 15 age- and sex-matched controls. Genetic testing results, disease duration, HD disease burden scores and Unified HD Rating Scales motor scores were acquired for the patients. Temporal pRNFL, macular RNFL (mRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer and outer plexiform layer thicknesses and IPL, retinal pigment epithelium and outer macular volume were found lower in HD compared to controls, while outer nuclear layer and outer retinal layer thickness were increased (p layer thicknesses, most significantly with mRNFL and GCL and disease progression markers. The outcomes of this study points out that retinal layers, most significantly mRNFL and GCL, are strongly correlated with the disease progression in HD and could serve as useful biomarkers for disease progression.

  3. Structure and Electronic Properties of In Situ Synthesized Single-Layer MoS2 on a Gold Surface

    DEFF Research Database (Denmark)

    Sørensen, Signe Grønborg; Füchtbauer, Henrik Gøbel; Tuxen, Anders Kyrme

    2014-01-01

    When transition metal sulfides such as MoS2 are present in the single-layer form, the electronic properties change in fundamental ways, enabling them to be used, e.g., in two-dimensional semiconductor electronics, optoelectronics, and light harvesting. The change is related to a subtle modification...... with scanning tunneling microscopy and X-ray photoelectron spectroscopy characterization of two-dimensional single-layer islands of MoS2 synthesized directly on a gold single crystal substrate. Thanks to a periodic modulation of the atom stacking induced by the lattice mismatch, we observe a structural buckling...

  4. SiC/SiC composite fabricated with carbon nanotube interface layer and a novel precursor LPVCS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shuang, E-mail: zhsh6007@126.com [Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073 (China); School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Zhou, Xingui; Yu, Jinshan [Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073 (China); Mummery, Paul [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-02-15

    Highlights: • The CNTs were distributed uniformly on the SiC fibers in the fabric by CVD process. • The microstructural evolution of the CNTs interface coating was studied. • The closed porosity was investigated by X-ray tomography. • The liquid precursor LPVCS exhibited high densification efficiency. - Abstract: Continuous SiC fiber reinforced SiC matrix composites (SiC/SiC) have been studied as promising candidate materials for nuclear applications. Three-dimensional SiC/SiC composite was fabricated via polymer impregnation and pyrolysis (PIP) process using carbon nanotubes (CNTs) as the interface layer and LPVCS as the polymer precursor. The microstructural evolution of the fiber/matrix interface was studied. The porosity, mechanical properties, thermal and electrical conductivities of the SiC/SiC composite were investigated. The results indicated that the high densification efficiency of the liquid precursor LPVCS resulted in a low porosity of the SiC/SiC composite. The SiC/SiC composite exhibited non-brittle fracture behavior, however, bending strength and fracture toughness of the composite were relatively low because of the absence of CNTs as the interface layer. The thermal and electrical conductivities of the SiC/SiC composite were low enough to meet the requirements desired for flow channel insert (FCI) applications.

  5. Nanostructured composite layers for electromagnetic shielding in the GHz frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Suchea, M. [Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Chemistry and Physics, “Al.I. Cuza” University of Iasi, Iasi (Romania); Tudose, I.V. [Chemistry and Physics, “Al.I. Cuza” University of Iasi, Iasi (Romania); Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Tzagkarakis, G. [Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Electrical Engineering Department, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Kenanakis, G. [Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Institute of Electronic Structure & Laser (IESL), Foundation for Research and Technology (FORTH) Hellas, Heraklion (Greece); Katharakis, M. [Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Drakakis, E. [Electrical Engineering Department, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Koudoumas, E., E-mail: koudoumas@staff.teicrete.gr [Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Electrical Engineering Department, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece)

    2015-10-15

    Graphical abstract: - Highlights: • Paint-like nanocomposite layers consisting of graphene nanoplatelets, PANI:HCl and PEDOT:PSS present very effective attenuation of electromagnetic radiation in the frequency range 4–20 GHz. • The shielding performance is based mostly on the graphene nanoplatelets and supported by PANI:HCl. In contrast, PEDOT:PSS plays mainly the role of the binder. • Increasing resistivity was observed to reduce the shielding effect, while increasing thickness to favor it. - Abstract: We report on preliminary results regarding the applicability of nanostructured composite layers for electromagnetic shielding in the frequency range of 4–20 GHz. Various combinations of materials were employed including poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), polyaniline, graphene nanoplatelets, carbon nanotubes, Cu nanoparticles and Poly(vinyl alcohol). As shown, paint-like nanocomposite layers consisting of graphene nanoplatelets, polyaniline PEDOT:PSS and Poly(vinyl alcohol) can offer quite effective electromagnetic shielding, similar or even better than that of commercial products, the response strongly depending on their thickness and resistivity.

  6. Nanostructured composite layers for electromagnetic shielding in the GHz frequency range

    International Nuclear Information System (INIS)

    Suchea, M.; Tudose, I.V.; Tzagkarakis, G.; Kenanakis, G.; Katharakis, M.; Drakakis, E.; Koudoumas, E.

    2015-01-01

    Graphical abstract: - Highlights: • Paint-like nanocomposite layers consisting of graphene nanoplatelets, PANI:HCl and PEDOT:PSS present very effective attenuation of electromagnetic radiation in the frequency range 4–20 GHz. • The shielding performance is based mostly on the graphene nanoplatelets and supported by PANI:HCl. In contrast, PEDOT:PSS plays mainly the role of the binder. • Increasing resistivity was observed to reduce the shielding effect, while increasing thickness to favor it. - Abstract: We report on preliminary results regarding the applicability of nanostructured composite layers for electromagnetic shielding in the frequency range of 4–20 GHz. Various combinations of materials were employed including poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), polyaniline, graphene nanoplatelets, carbon nanotubes, Cu nanoparticles and Poly(vinyl alcohol). As shown, paint-like nanocomposite layers consisting of graphene nanoplatelets, polyaniline PEDOT:PSS and Poly(vinyl alcohol) can offer quite effective electromagnetic shielding, similar or even better than that of commercial products, the response strongly depending on their thickness and resistivity.

  7. The dependence of critical current density of GdFeCo layer on composition of thermally assisted STT-RAM

    Science.gov (United States)

    Dai, B.; Zhu, J.; Liu, K.; Yang, L.; Han, J.

    2017-07-01

    Amorphous rare earth-transitional metal (RETM) GdFeCo memory layer with RE- and TM-rich compositions was fabricated in stacks of GdFeCo (10 nm)/Cu (3 nm)/[Co(0.2 nm)/Pd(0.4 nm)]6. Their magnetic properties and spin transfer torque (STT) switching of magnetization were investigated. The maximum magneto-resistance (MR) was around 0.24% for the TM-rich Gd21.4 (Fe90Co10)78.6 memory layer and was -0.03% for the RE-rich Gd29.0 (Fe90Co10)71.0 memory layer. The critical current densities Jc to switch the GdFeCo memory layers are in the range of 1.4 × 107 A/cm2-4.5 × 107 A/cm2. The dependence of critical current density Jc and effective anisotropy constant Keff on Gd composition were also investigated. Both Jc and Keff have maximum values in the Gd composition range from 21-29 at.%, suitable for thermally assisted STT-RAM for storage density exceeding Gb/inch2.

  8. Wear resistance of WCp/Duplex Stainless Steel metal matrix composite layers prepared by laser melt injection

    NARCIS (Netherlands)

    Do Nascimento, A. M.; Ocelik, V.; Ierardi, M. C. F.; De Hosson, J. Th. M.

    2008-01-01

    Laser Melt Injection (LMI) was used to prepare metal matrix composite layers with a thickness of about 0.7 mm and approximately 10% volume fraction of WC particles in three kinds of Cast Duplex Stainless Steels (CDSSs). WC particles were injected into the molten surface layer using Nd:YAG high power

  9. Morphology, chemical composition , and electrochemical characteristics of colored titanium passive layers

    International Nuclear Information System (INIS)

    Jerkiewicz, G.; Hrapovic, S.; Vatankhah, G.; Luan, B.L.

    1999-01-01

    Brightly and uniformly colored passive layers on Ti are formed by application of AC polarization in aqueous NH 4 BF 4 . A wide spectrum of well-defined colors is accomplished by varying the AC voltage. The passive films are stable in the ambient and in aqueous chloride, perchlorate, sulfate solutions. Optical microscopy and SEM analyses indicate that the passive layers are compact and do not reveal fractures or cracks. XPS characterization of the colored passive layers reveals that their surface-chemical composition depends on the AC polarization voltage. The main constituents of the passive layers are Ti z+ , O 2- , and F - (z varies from 4 to 2 depending on the depth). Fluoride in the film originates form decomposition of NH 4 BF 4 and it accumulates at the inner metal/passive-film interface. XPS depth profiling shows that the higher the AC voltage applied, the thicker the passive film formed. Electrochemical properties of the colored Ti passive layers are determined by recording polarization curves in the -0.8 - 3.2 V, RHE, range and Tafel plots in the hydrogen evolution reaction (HER) region in 1.0 M aqueous H 2 SO 4 solution. The polarization curves show that the corrosion potential of the colored passive layers shifts towards less-negative potential indicating that they are more stable than Ti under the same conditions. The Tafel plots for the HER demonstrate that the passive layers have much higher activity than Ti towards the HER. The Tafel relations reveal new features that can be associated with the partial breakdown/decomposition of the passive layers and with H absorption. (author)

  10. Hydrogen-induced structural transition in single layer ReS2

    Science.gov (United States)

    Yagmurcukardes, M.; Bacaksiz, C.; Senger, R. T.; Sahin, H.

    2017-09-01

    By performing density functional theory-based calculations, we investigate how structural, electronic and mechanical properties of single layer ReS2 can be tuned upon hydrogenation of its surfaces. It is found that a stable, fully hydrogenated structure can be obtained by formation of strong S-H bonds. The optimized atomic structure of ReS2H2 is considerably different than that of the monolayer ReS2 which has a distorted-1T phase. By performing phonon dispersion calculations, we also predict that the Re2-dimerized 1T structure (called 1T {{}\\text{R{{\\text{e}}2}}} ) of the ReS2H2 is dynamically stable. Unlike the bare ReS2 the 1T {{}\\text{R{{\\text{e}}2}}} -ReS2H2 structure which is formed by breaking the Re4 clusters into separated Re2 dimers, is an indirect-gap semiconductor. Furthermore, mechanical properties of the 1T {{}\\text{R{{\\text{e}}2}}} phase in terms of elastic constants, in-plane stiffness (C) and Poisson ratio (ν) are investigated. It is found that full hydrogenation not only enhances the flexibility of the single layer ReS2 crystal but also increases anisotropy of the elastic constants.

  11. Stimulated transformation in nano-layered composites with Se0.6Te0.4

    International Nuclear Information System (INIS)

    Malyovanik, M.; Shipljak, M.; Cheresnya, V.; Ivan, I.; Csik, A.; Kokenyesi, S.; Debrecen Univ.

    2005-01-01

    Complete text of publication follows. The main types of the photo-induced structural transformations (PST) in chalcogenide glasses and amorphous layers can be systematized as i) structural transformations within amorphous phase, ii) photo-induced crystallization or amorphyzation, iii) photo-induced mass transport. These main known types of PST can be further detailed, for example concerning photo-induced anisotropy, photo- bleaching, etc., and are widely investigated. But the fundamentals of these effects even in the most known compositions like AsSe, As 2 S 3 are not clear, especially for the nanostructures, where the possible cluster formation, size restrictions and interface conditions may essentially influence the parameters of the material. Furthermore, the basic applied problem related to the PST consists of the possibility of digital or analog optical information storage, phase change memory, fabrication of elements for optics and photonics. These applications require determined spectral and temperature range of functioning, increased sensitivity, transformation rates and stability of the memory at the same time. The realization of such requirements can be expected in nanosized objects made of chalcogenides due to the suitable change of thermodynamical parameters, conductivity, optical and other characteristics. The establishment of correlations between the compositional modulation at nanoscale-dimensions (3-10 nm) in Se 0.6 Te 0.4 and the changes of the optical and electrical parameters as well as the possible improvement of optical recording process in comparison with homogeneous Se 0.6 Te 0.4 films were the aims of the present work. Two types of nano-multilayers, namely Se 0.6 Te 0.4 /SiO x and Se 0.6 Te 0.4 /As 2 S 3 were investigated with respect to the thermo- or light-stimulated structural transformations, since they strongly di r by the possibility of intermixing or crystallization in a steady-state process of heating or laser illumination. Photo

  12. Oxygen recoil implant from SiO2 layers into single-crystalline silicon

    International Nuclear Information System (INIS)

    Wang, G.; Chen, Y.; Li, D.; Oak, S.; Srivastav, G.; Banerjee, S.; Tasch, A.; Merrill, P.; Bleiler, R.

    2001-01-01

    It is important to understand the distribution of recoil-implanted atoms and the impact on device performance when ion implantation is performed at a high dose through surface materials into single crystalline silicon. For example, in ultralarge scale integration impurity ions are often implanted through a thin layer of screen oxide and some of the oxygen atoms are inevitably recoil implanted into single-crystalline silicon. Theoretical and experimental studies have been performed to investigate this phenomenon. We have modified the Monte Carlo ion implant simulator, UT-Marlowe (B. Obradovic, G. Wang, Y. Chen, D. Li, C. Snell, and A. F. Tasch, UT-MARLOWE Manual, 1999), which is based on the binary collision approximation, to follow the full cascade and to dynamically modify the stoichiometry of the Si layer as oxygen atoms are knocked into it. CPU reduction techniques are used to relieve the demand on computational power when such a full cascade simulation is involved. Secondary ion mass spectrometry (SIMS) profiles of oxygen have been carefully obtained for high dose As and BF 2 implants at different energies through oxide layers of various thicknesses, and the simulated oxygen profiles are found to agree very well with the SIMS data. [copyright] 2001 American Institute of Physics

  13. Composition of the low seismic velocity E' layer at the top of Earth's core

    Science.gov (United States)

    Badro, J.; Brodholt, J. P.

    2017-12-01

    Evidence for a layer (E') at the top of the outer core has been available since the '90s and while different studies suggest slightly different velocity contrasts and thicknesses, the common observation is that the layer has lower velocities than the bulk outer core (PREM). Although there are no direct measurements on the density of this layer, dynamic stability requires it to be less dense than the bulk outer core under those same pressure and temperature conditions. Using ab initio simulations on Fe-Ni-S-C-O-Si liquids we constrain the origin and composition of the low-velocity layer E' at the top of Earth's outer core. We find that increasing the concentration of any light-element always increases velocity and so a low-velocity and low-density layer (for stability) cannot be made by simply increasing light element concentration. This rules out barodiffusion or upwards sedimentation of a light phase for its origin. However, exchanging elements can—depending on the elements exchanged—produce such a layer. We evaluate three possibilities. Firstly, crystallization of a light phase from a core containing more than one light element may make such a layer, but only if the crystalizing phase is very Fe-rich, which is at odds with available phase diagrams at CMB conditions. Secondly, the E' layer may result from incomplete mixing of an early Earth core with a late impactor, depending on the light element compositions of the impactor and Earth's core, but such a primordial stratification is neither supported by dynamical models of the core nor thermodynamic models of core merger after the giant impact. The last and most plausible scenario is core-mantle chemical interaction; using thermodynamic models for metal-silicate partitioning of silicon and oxygen at CMB conditions, we show that a reaction between the core and an FeO-rich basal magma ocean can enrich the core in oxygen while depleting it in silicon, in relative amounts that produce a light and slow layer

  14. Effects of model layer simplification using composite hydraulic properties

    Science.gov (United States)

    Kuniansky, Eve L.; Sepulveda, Nicasio; Elango, Lakshmanan

    2011-01-01

    Groundwater provides much of the fresh drinking water to more than 1.5 billion people in the world (Clarke et al., 1996) and in the United States more that 50 percent of citizens rely on groundwater for drinking water (Solley et al., 1998). As aquifer systems are developed for water supply, the hydrologic system is changed. Water pumped from the aquifer system initially can come from some combination of inducing more recharge, water permanently removed from storage, and decreased groundwater discharge. Once a new equilibrium is achieved, all of the pumpage must come from induced recharge and decreased discharge (Alley et al., 1999). Further development of groundwater resources may result in reductions of surface water runoff and base flows. Competing demands for groundwater resources require good management. Adequate data to characterize the aquifers and confining units of the system, like hydrologic boundaries, groundwater levels, streamflow, and groundwater pumping and climatic data for recharge estimation are to be collected in order to quantify the effects of groundwater withdrawals on wetlands, streams, and lakes. Once collected, three-dimensional (3D) groundwater flow models can be developed and calibrated and used as a tool for groundwater management. The main hydraulic parameters that comprise a regional or subregional model of an aquifer system are the hydraulic conductivity and storage properties of the aquifers and confining units (hydrogeologic units) that confine the system. Many 3D groundwater flow models used to help assess groundwater/surface-water interactions require calculating ?effective? or composite hydraulic properties of multilayered lithologic units within a hydrogeologic unit. The calculation of composite hydraulic properties stems from the need to characterize groundwater flow using coarse model layering in order to reduce simulation times while still representing the flow through the system accurately. The accuracy of flow models with

  15. Field Enhancement in a Grounded Dielectric Slab by Using a Single Superstrate Layer

    OpenAIRE

    Valagiannopoulos, Constantinos A.; Tsitsas, Nikolaos L.

    2012-01-01

    The addition of a dielectric layer on a slab configuration is frequently utilized in various electromagnetic devices in order to give them certain desired operational characteristics. In this work, we consider a grounded dielectric film-slab, which is externally excited by a normally-incident Gaussian beam. On top of the film-slab, we use an additional suitably selected single isotropic superstrate layer in order to increase the field concentration inside the slab and hence achieve optimal po...

  16. To improve impact damage response of single and multi-delaminated FRP composites using natural Flax yarn

    International Nuclear Information System (INIS)

    Ghasemnejad, H.; Soroush, V.R.; Mason, P.J.; Weager, B.

    2012-01-01

    Highlights: ► To study the impact resistance of delaminated composite structures. ► To improve the impact resistance of delaminated composite structures using natural Flax yarn. ► To investigate the effect of z-pinning on the damage process of composite materials. ► To develop FE techniques to model the impact process of composite structures using LSDYNA. -- Abstract: The ply delamination which is known as a principle mode of failure of layered composites due to separation along the interfaces of the layers is one of the main concerns in designing of composite material structures. In this regard, the effect of hybrid laminate lay-up in multi-delaminated composite beam was investigated. The Charpy impact test was chosen to study the energy absorbing capability of delaminated composite beam. Hybrid composite beams were fabricated from combination of glass/epoxy and carbon/epoxy composites. To improve the impact behaviour of multi-delaminated composite beams the laminated hybrid composite beams were pinned using Flax yarns before curing process. It was shown that the multi-delaminated composite beams which are pinned in z-direction are able to arrest the crack propagation and consequently absorb more energy in comparison with simple ones in hybrid composite beams. The Charpy impact test of delaminated composite beams was also simulated by finite element software LS-DYNA and the results were verified with the relevant experimental results.

  17. Structure, composition and morphology of bioactive titanate layer on porous titanium surfaces

    Science.gov (United States)

    Li, Jinshan; Wang, Xiaohua; Hu, Rui; Kou, Hongchao

    2014-07-01

    A bioactive coating was produced on pore surfaces of porous titanium samples by an amendatory alkali-heat treatment method. Porous titanium was prepared by powder metallurgy and its porosity and average size were 45% and 135 μm, respectively. Coating morphology, coating structure and phase constituents were examined by SEM, XPS and XRD. It was found that a micro-network structure with sizes of cells, and redundant Ca ion was detected in the titanate layer. The concentration distribution of Ti, O, Ca and Na in the coating showed a compositional gradient from the intermediate layer toward the outer surface. These compositional gradients indicate that the coating bonded to Ti substrate without a distinct interface. After immersion into the SBF solution for 3 days, a bone-like carbonate-hydroxylapatite showing a good biocompatibility was detected on the coating surface. And the redundant Ca advanced the bioactivity of the coating. Thus, the present modification is expected to allow the use of the bioactive porous titanium as artificial bones even under load-bearing conditions.

  18. Atomic layer deposition grown composite dielectric oxides and ZnO for transparent electronic applications

    International Nuclear Information System (INIS)

    Gieraltowska, S.; Wachnicki, L.; Witkowski, B.S.; Godlewski, M.; Guziewicz, E.

    2012-01-01

    In this paper, we report on transparent transistor obtained using laminar structure of two high-k dielectric oxides (hafnium dioxide, HfO 2 and aluminum oxide, Al 2 O 3 ) and zinc oxide (ZnO) layer grown at low temperature (60 °C–100 °C) using Atomic Layer Deposition (ALD) technology. Our research was focused on the optimization of technological parameters for composite layers Al 2 O 3 /HfO 2 /Al 2 O 3 for thin film transistor structures with ZnO as a channel and a gate layer. We elaborate on the ALD growth of these oxides, finding that the 100 nm thick layers of HfO 2 and Al 2 O 3 exhibit fine surface flatness and required amorphous microstructure. Growth parameters are optimized for the monolayer growth mode and maximum smoothness required for gating.

  19. Interfacial characterization of CVI-SiC/SiC composites

    International Nuclear Information System (INIS)

    Yang, W.; Kohyama, A.; Noda, T.; Katoh, Y.; Hinoki, T.; Araki, H.; Yu, J.

    2002-01-01

    The mechanical properties of the interfaces of two families of chemical vapor infiltration SiC/SiC composites, advanced Tyranno-SA and Hi-Nicalon fibers reinforced SiC/SiC composites with various carbon and SiC/C interlayers, were investigated by single fiber push-out/push-back tests. Interfacial debonding and fibers sliding mainly occurred adjacent to the first carbon layer on the fibers. The interfacial debonding strengths and frictional stresses for both Tyranno-SA/SiC and Hi-Nicalon/SiC composites were correlated with the first carbon layer thickness. Tyranno-SA/SiC composites exhibited much larger interfacial frictional stresses compared to Hi-Nicalon/SiC composites. This was assumed to be mainly contributed by the rather rough surface of the Tyranno-SA fiber

  20. Self-healing in single and multiple fiber(s reinforced polymer composites

    Directory of Open Access Journals (Sweden)

    Woldesenbet E.

    2010-06-01

    Full Text Available You Polymer composites have been attractive medium to introduce the autonomic healing concept into modern day engineering materials. To date, there has been significant research in self-healing polymeric materials including several studies specifically in fiber reinforced polymers. Even though several methods have been suggested in autonomic healing materials, the concept of repair by bleeding of enclosed functional agents has garnered wide attention by the scientific community. A self-healing fiber reinforced polymer composite has been developed. Tensile tests are carried out on specimens that are fabricated by using the following components: hollow and solid glass fibers, healing agent, catalysts, multi-walled carbon nanotubes, and a polymer resin matrix. The test results have demonstrated that single fiber polymer composites and multiple fiber reinforced polymer matrix composites with healing agents and catalysts have provided 90.7% and 76.55% restoration of the original tensile strength, respectively. Incorporation of functionalized multi-walled carbon nanotubes in the healing medium of the single fiber polymer composite has provided additional efficiency. Healing is found to be localized, allowing multiple healing in the presence of several cracks.

  1. Multi-layer composite structure covered polytetrafluoroethylene for visible-infrared-radar spectral Compatibility

    Science.gov (United States)

    Qi, Dong; Cheng, Yongzhi; Wang, Xian; Wang, Fang; Li, Bowen; Gong, Rongzhou

    2017-12-01

    In this paper, a polytetrafluoroethylene (PTFE) top-covered multi-layer composite structure PTFE/H s/(Ge/ZnS)3 (H s represents the surface layer ZnS with various thicknesses) for spectral compatibility is proposed and investigated theoretically and experimentally. A substantial decline of glossiness from over 200 Gs to 74.2 Gs could be realized, due to high roughness and interface reflection of the 800 nm PTFE protection layer. In addition, similar to the structure of H s/(Ge/ZnS)3, the designed structure with a certain color exhibits ultra-low emissivity of average 0.196 at 8-14 µm and highly transparent performance of 96.45% in the radar frequency range of 2-18 GHz. Our design will provide an important reference for the practical applications of the spectral compatible multilayer films.

  2. Comparison of stress in single and multiple layer depositions of plasma-deposited amorphous silicon dioxide

    International Nuclear Information System (INIS)

    Au, V; Charles, C; Boswell, R W

    2006-01-01

    The stress in a single-layer continuous deposition of amorphous silicon dioxide (SiO 2 ) film is compared with the stress within multiple-layer intermittent or 'stop-start' depositions. The films were deposited by helicon activated reactive evaporation (plasma assisted deposition with electron beam evaporation source) to a 1 μm total film thickness. The relationships for stress as a function of film thickness for single, two, four and eight layer depositions have been obtained by employing the substrate curvature technique on a post-deposition etch-back of the SiO 2 film. At film thicknesses of less than 300 nm, the stress-thickness relationships clearly show an increase in stress in the multiple-layer samples compared with the relationship for the single-layer film. By comparison, there is little variation in the film stress between the samples when it is measured at 1 μm film thickness. Localized variations in stress were not observed in the regions where the 'stop-start' depositions occurred. The experimental results are interpreted as a possible indication of the presence of unstable, strained Si-O-Si bonds in the amorphous SiO 2 film. It is proposed that the subsequent introduction of a 'stop-start' deposition process places additional strain on these bonds to affect the film structure. The experimental stress-thickness relationships were reproduced independently by assuming a linear relationship between the measured bow and film thickness. The constants of the linear model are interpreted as an indication of the density of the amorphous film structure

  3. Defect characterization in compositionally graded InGaAs layers on GaAs(001) grown by MBE

    International Nuclear Information System (INIS)

    Sasaki, Takuo; Takahasi, Masamitu; Norman, Andrew G.; Romero, Manuel J.; Al-Jassim, Mowafak M.; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2013-01-01

    Defect characterization in molecular beam epitaxial (MBE) compositionally-graded In x Ga 1-x As layers on GaAs substrates consisting different thickness of overshooting (OS) layers was carried out using cathodoluminescence (CL) and transmission electron microscopy (TEM). We found that the thickness of the OS layer influences not only stress but also lattice defects generated in a top InGaAs layer. While the top InGaAs layer with a thin OS layer is under compression and has mainly threading dislocations, the top layer with a thick OS layer is under tension and exhibits inhomogeneous strain associating with phase separation. We will discuss the mechanisms of defect generation and their in-plane distribution based on strain relaxation at the top and OS layers. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Infiltrating a thin or single-layer opal with an atomic vapour: Sub-Doppler signals and crystal optics

    Science.gov (United States)

    Moufarej, Elias; Maurin, Isabelle; Zabkov, Ilya; Laliotis, Athanasios; Ballin, Philippe; Klimov, Vasily; Bloch, Daniel

    2014-10-01

    Artificial thin glass opals can be infiltrated with a resonant alkali-metal vapour, providing novel types of hybrid systems. The reflection at the interface between the substrate and the opal yields a resonant signal, which exhibits sub-Doppler structures in linear spectroscopy for a range of oblique incidences. This result is suspected to originate in an effect of the three-dimensional confinement of the vapour in the opal interstices. It is here extended to a situation where the opal is limited to a few- or even a single-layer opal film, which is a kind of bidimensional grating. We have developed a flexible one-dimensional layered optical model, well suited for a Langmuir-Blodgett opal. Once extended to the case of a resonant infiltration, the model reproduces quick variations of the lineshape with incidence angle or polarization. Alternately, for an opal limited to a single layer of identical spheres, a three-dimensional numerical calculation was developed. It predicts crystalline anisotropy, which is demonstrated through diffraction on an empty opal made of a single layer of polystyrene spheres.

  5. Preparation and characterization of tempered tungsten layers on single crystalline silicon

    International Nuclear Information System (INIS)

    Nitzsche, K.; Knedlik, C.; Tippmann, H.; Spiess, L.; Harman, R.; Vanek, O.; Tvarozek, V.

    1984-01-01

    Tungsten layers have been deposited on single crystalline silicon by sputtering and characterized by measurements of the sheet resistance by a linear four point method and the van der Pauw method. The influence of tempering under argon on the resistance has been studied. By means of the RBS spectroscopy it was found that the increase in the specific resistance is caused by interdiffusion

  6. Anisotropic magnetoelectric characteristics in five-layer magnetization-graded multiferroic composites

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2017-05-01

    Full Text Available We investigate the anisotropic magnetoelectric(ME characteristics for the five-layer magnetization-graded multiferroic composites(MGMC. The magnetic anisotropy and corresponding anisotropic magnetomechanical effect, demagnetization effect and magneto-mechanical damping’s dependence on magnetic field direction result in an obvious anisotropic ME coupling effect. The experimental results show that ME voltage coefficient in H33 mode is remarkably larger than the other ones (H11, H31 and H13 over the whole Hdc range. Correspondingly, ∂VME/∂Hdc arrives about 420mV/Oe at an optimum bias magnetic field of 46Oe, which is approximately 40 times larger than that of the previous reported composite. Furthermore, it also demonstrates an obvious angular dependence on dc magnetic field. Taking advantage of these specifications, the MGMC can be used to detect weak dc magnetic field and its spatial orientation.

  7. Highly tough and transparent layered composites of nanocellulose and synthetic silicate

    Science.gov (United States)

    Wu, Chun-Nan; Yang, Quanling; Takeuchi, Miyuki; Saito, Tsuguyuki; Isogai, Akira

    2013-12-01

    A highly tough and transparent film material was prepared from synthetic saponite (SPN) nanoplatelets of low aspect ratios and nanofibrillar cellulose. The nanofibrillar cellulose was chemically modified by topological surface oxidation using 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) as a catalyst. Both synthetic SPN nanoplatelets and TEMPO-oxidized cellulose nanofibrils (TOCNs) have abundant negative charges in high densities on their surfaces and are dispersed in water at the individual nanoelement level. Layered nanocomposite structures of the SPN nanoplatelets and TOCNs were formed through a simple cast-drying process of the mixed aqueous dispersions. The TOCN/SPN composites with 0-50% w/w SPN content were optically transparent. Mechanical properties of the TOCN/SPN composites varied depending on the SPN content. The composite with 10% w/w SPN content (5.6% volume fraction) exhibited characteristic mechanical properties: Young's modulus of 14 GPa, tensile strength of 420 MPa, and strain-to-failure of 10%. The work of fracture of the composites increased from 4 to 30 MJ m-3 - or by more than 700% - as the SPN content was increased from 0 to 10% w/w. This surprising improvement in toughness was interpreted based on a model for fracture of polymer composites reinforced with low-aspect-ratio platelets.A highly tough and transparent film material was prepared from synthetic saponite (SPN) nanoplatelets of low aspect ratios and nanofibrillar cellulose. The nanofibrillar cellulose was chemically modified by topological surface oxidation using 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) as a catalyst. Both synthetic SPN nanoplatelets and TEMPO-oxidized cellulose nanofibrils (TOCNs) have abundant negative charges in high densities on their surfaces and are dispersed in water at the individual nanoelement level. Layered nanocomposite structures of the SPN nanoplatelets and TOCNs were formed through a simple cast-drying process of the mixed aqueous dispersions. The

  8. Nano-fabricated superconducting radio-frequency composites, method for producing nano-fabricated superconducting rf composites

    Science.gov (United States)

    Norem, James H.; Pellin, Michael J.

    2013-06-11

    Superconducting rf is limited by a wide range of failure mechanisms inherent in the typical manufacture methods. This invention provides a method for fabricating superconducting rf structures comprising coating the structures with single atomic-layer thick films of alternating chemical composition. Also provided is a cavity defining the invented laminate structure.

  9. Corrosion resistance of Zn-Al layered double hydroxide/poly(lactic acid) composite coating on magnesium alloy AZ31

    Science.gov (United States)

    Zeng, Rong-Chang; Li, Xiao-Ting; Liu, Zhen-Guo; Zhang, Fen; Li, Shuo-Qi; Cui, Hong-Zhi

    2015-12-01

    A Zn-Al layered double hydroxide (ZnAl-LDH) coating consisted of uniform hexagonal nano-plates was firstly synthesized by co-precipitation and hydrothermal treatment on the AZ31 alloy, and then a poly(lactic acid) (PLA) coating was sealed on the top layer of the ZnAl-LDH coating using vacuum freeze-drying. The characteristics of the ZnAl-LDH/PLA composite coatings were investigated by means of XRD, SEM, FTIR and EDS. The corrosion resistance of the coatings was assessed by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the ZnAl-LDH coating contained a compact inner layer and a porous outer layer, and the PLA coating with a strong adhesion to the porous outer layer can prolong the service life of the ZnAl-LDH coating. The excellent corrosion resistance of this composite coating can be attributable to its barrier function, ion-exchange and self-healing ability.

  10. Creation of oxygen-enriched layers at the surface of GaAs single crystal

    International Nuclear Information System (INIS)

    Kulik, M.; Maczka, D.; Kobzev, A.P.

    1999-01-01

    The optical properties and the element depth profiles at the (100) plane high resistant and noncomposite GaAs single crystals implanted with In ions were investigated. The results have been compared with those obtained for virgin samples. The optic properties for all of the samples (implanted and not implanted, annealed and not annealed) have been measured using the ellipsometric method. The element depth profiles for the same samples have been obtained by the RBS and NRA techniques. It has been shown that the post-implantation annealing at a temperature more than 600 deg C leads to a ten time increase in contents of oxygen atoms in the implanted layer with respect to the not annealed sample. The thickness of the transparence layer at the surface of GaAs single crystal increases also after implantation with In ions and subsequent annealing

  11. Preparation and Characterization of Carbon Nanotubes-Based Composite Electrodes for Electric Double Layer Capacitors

    International Nuclear Information System (INIS)

    Seo, Min Kang; Park, Soo Jin

    2012-01-01

    In this work, we prepared activated multi-walled carbon nanotubes/polyacrylonitrile (A-MWCNTs/C) composites by film casting and activation method. Electrochemical properties of the composites were investigated in terms of serving as MWCNTs-based electrode materials for electric double layer capacitors (EDLCs). As a result, the A-MWCNTs/C composites had much higher BET specific surface area, and pore volume, and lower volume ratio of micropores than those of pristine MWCNTs/PAN ones. Furthermore, some functional groups were added on the surface of the A-MWCNTs/C composites. The specific capacitance of the A-MWCNTs/C composites was more than 4.5 times that of the pristine ones at 0.1 V discharging voltage owing to the changes of the structure and surface characteristics of the MWCNTs by activation process

  12. Low temperature synthesis and field emission characteristics of single to few layered graphene grown using PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avshish; Khan, Sunny; Zulfequar, M.; Harsh; Husain, Mushahid, E-mail: mush_reslab@rediffmail.com

    2017-04-30

    Highlights: • Graphene was synthesized by PECVD system at a low temperature of 600 °C. • From different characterization techniques, the presence of single and few layered graphene was confirmed. • X-ray diffraction pattern of the graphene showed single crystalline nature of the film. • The as-grown graphene films were observed extremely good field emitters with long term emission current stability. - Abstract: In this work, high-quality graphene has successfully been synthesized on copper (Cu) coated Silicon (Si) substrate at very large-area by plasma enhanced chemical vapor deposition system. This method is low cost and highly effective for synthesizing graphene relatively at low temperature of 600 °C. Electron microscopy images have shown that surface morphology of the grown samples is quite uniform consisting of single layered graphene (SLG) to few layered graphene (FLG). Raman spectra reveal that graphene has been grown with high-quality having negligible defects and the observation of G and G' peaks is also an indicative of stokes phonon energy shift caused due to laser excitation. Scanning probe microscopy image also depicts the synthesis of single to few layered graphene. The field emission characteristics of as-grown graphene samples were studied in a planar diode configuration at room temperature. The graphene samples were observed to be a good field emitter having low turn-on field, higher field amplification factor and long term emission current stability.

  13. Mode I fracture toughness analysis of a single-layer grapheme sheet

    Energy Technology Data Exchange (ETDEWEB)

    Ky, Minh Nguyen; Yum, Young Jin [University of Ulsan, Ulsan (Korea, Republic of)

    2014-09-15

    To predict the fracture toughness of a single-layer graphene sheet (SLGS), analytical formulations were devised for the hexagonal honeycomb lattice using a linkage equivalent discrete frame structure. Broken bonds were identified by a sharp increase in the position of the atoms. As crack propagation progressed, the crack tip position and crack path were updated from broken bonds in the molecular dynamics (MD) model. At each step in the simulation, the atomic model was centered on the crack tip to adaptively follow its path. A new formula was derived analytically from the deformation and bending mechanism of solid-state carbon-carbon bonds so as to describe the mode I fracture of SLGS. The fracture toughness of single-layer graphene is governed by a competition between bond breaking and bond rotation at a crack tip. K-field based displacements were applied on the boundary of the micromechanical model, and FEM results were obtained and compared with theoretical findings. The critical stress intensity factor for a graphene sheet was found to be K{sub IC} = 2.63 ∼ 3.2 MPa√m for the case of a zigzag crack.

  14. Longitudinal transvaginal ultrasound evaluation of cesarean scar niche incidence and depth in the first two years after single- or double-layer uterotomy closure: a randomized controlled trial.

    Science.gov (United States)

    Bamberg, Christian; Hinkson, Larry; Dudenhausen, Joachim W; Bujak, Verena; Kalache, Karim D; Henrich, Wolfgang

    2017-12-01

    Cesarean deliveries are the most common abdominal surgery procedure globally, and the optimal way to suture the hysterotomy remains a matter of debate. The aim of this study was to assess the incidence of cesarean scar niches and the depth after single- or double-layer uterine closure. We performed a randomized controlled trial in which women were allocated to three uterotomy suture techniques: continuous single-layer unlocked, continuous locked single-layer, or double-layer sutures. Transvaginal ultrasound was performed six weeks and 6-24 months after cesarean delivery [Clinicaltrials.gov (NCT02338388)]. The study included 435 women. Six weeks after delivery, the incidence of niche was not significantly different between the groups (p = 0.52): 40% for single-layer unlocked, 32% for single-layer locked and 43% for double-layer sutures. The mean ± SD niche depths were 3.0 ± 1.4 mm for single-layer unlocked, 3.6 ± 1.7 mm for single-layer locked and 3.3 ± 1.3 mm for double-layer sutures (p = 1.0). There were no significant differences (p = 0.58) in niche incidence between the three groups at the second ultrasound follow up: 30% for single-layer unlocked, 23% for single-layer locked and 29% for double-layer sutures. The mean ± SD niche depth was 3.1 ± 1.5 mm after single-layer unlocked, 2.8 ± 1.5 mm after single-layer locked and 2.5 ± 1.2 mm after double-layer sutures (p = 0.61). There was a trend (p = 0.06) for the residual myometrium thickness to be thicker after double-layer repair at the long-term follow up. The incidence of cesarean scar niche formation and the niche depth was independent of the hysterotomy closure technique. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.

  15. Optimum stacking sequence design of laminated composite circular plates with curvilinear fibres by a layer-wise optimization method

    Science.gov (United States)

    Guenanou, A.; Houmat, A.

    2018-05-01

    The optimum stacking sequence design for the maximum fundamental frequency of symmetrically laminated composite circular plates with curvilinear fibres is investigated for the first time using a layer-wise optimization method. The design variables are two fibre orientation angles per layer. The fibre paths are constructed using the method of shifted paths. The first-order shear deformation plate theory and a curved square p-element are used to calculate the objective function. The blending function method is used to model accurately the geometry of the circular plate. The equations of motion are derived using Lagrange's method. The numerical results are validated by means of a convergence test and comparison with published values for symmetrically laminated composite circular plates with rectilinear fibres. The material parameters, boundary conditions, number of layers and thickness are shown to influence the optimum solutions to different extents. The results should serve as a benchmark for optimum stacking sequences of symmetrically laminated composite circular plates with curvilinear fibres.

  16. Designing safer composite helmets to reduce rotational accelerations during oblique impacts.

    Science.gov (United States)

    Mosleh, Yasmine; Cajka, Martin; Depreitere, Bart; Vander Sloten, Jos; Ivens, Jan

    2018-05-01

    Oblique impact is the most common accident situation that occupants in traffic accidents or athletes in professional sports experience. During oblique impact, the human head is subjected to a combination of linear and rotational accelerations. Rotational movement is known to be responsible for traumatic brain injuries. In this article, composite foam with a column/matrix composite configuration is proposed for head protection applications to replace single-layer uniform foam, to better attenuate rotational movement of the head during oblique impacts. The ability of composite foam in the mitigation of rotational head movement is studied by performing finite element (FE) simulations of oblique impact on flat and helmet shape specimens. The performance of composite foam with respect to parameters such as compliance of the matrix foam and the number, size and cross-sectional shape of the foam columns is explored in detail, and subsequently an optimized structure is proposed. The simulation results show that using composite foam instead of single-layer foam, the rotational acceleration and velocity of the headform can be significantly reduced. The parametric study indicates that using a more compliant matrix foam and by increasing the number of columns in the composite foam configuration, the rotation can be further mitigated. This was confirmed by experimental results. The simulation results were also analyzed based on global head injury criteria such as head injury criterion, rotational injury criterion, brain injury criterion and generalized acceleration model for brain injury threshold which further confirmed the superior performance of composite foam versus single-layer homogeneous expanded polystyrene foam. The findings of simulations give invaluable information for design of protective helmets or, for instance, headliners for the automotive industry.

  17. Wire rod coating process of gas diffusion layers fabrication for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, A.M.; Sadananda, S.; Parker, D.; Munukutla, L. [Electronic Systems Department, Arizona State University, 7001 E Williams Field Road, Mesa, AZ 85212 (United States); Wertz, J. [Hollingsworth and Vose Co., A.K. Nicholson Research Lab, 219 Townsend Road West Groton, MA 01472 (United States); Thommes, M. [Quantachrome Instruments, 1900 Corporate Drive, Boynton Beach, FL 33426 (United States)

    2008-03-15

    Gas diffusion layers (GDLs) were fabricated using non-woven carbon paper as a macro-porous layer substrate developed by Hollingsworth and Vose Company. A commercially viable coating process was developed using wire rod for coating micro-porous layer by a single pass. The thickness as well as carbon loading in the micro-porous layer was controlled by selecting appropriate wire thickness of the wire rod. Slurry compositions with solid loading as high as 10 wt.% using nano-chain and nano-fiber type carbons were developed using dispersion agents to provide cohesive and homogenous micro-porous layer without any mud-cracking. The surface morphology, wetting characteristics and pore size distribution of the wire rod coated GDLs were examined using FESEM, Goniometer and Hg porosimetry, respectively. The GDLs were evaluated in single cell PEMFC under various operating conditions (temperature and RH) using hydrogen and air as reactants. It was observed that the wire rod coated micro-porous layer with 10 wt.% nano-fibrous carbon based GDLs showed the highest fuel cell performance at 85 C using H{sub 2} and air at 50% RH, compared to all other compositions. (author)

  18. Single track and single layer formation in selective laser melting of niobium solid solution alloy

    Directory of Open Access Journals (Sweden)

    Yueling GUO

    2018-04-01

    Full Text Available Selective laser melting (SLM was employed to fabricate Nb-37Ti-13Cr-2Al-1Si (at% alloy, using pre-alloyed powders prepared by plasma rotating electrode processing (PREP. A series of single tracks and single layers under different processing parameters was manufactured to evaluate the processing feasibility by SLM, including laser power, scanning speed, and hatch distance. Results showed that continuous single tracks could be fabricated using proper laser powers and scanning velocities. Both the width of a single track and its penetration depth into a substrate increased with an increase of the linear laser beam energy density (LED, i.e., an increase of the laser power and a decrease of the scanning speed. Nb, Ti, Si, Cr, and Al elements distributed heterogeneously over the melt pool in the form of swirl-like patterns. An excess of the hatch distance was not able to interconnect neighboring tracks. Under improper processing parameters, a balling phenomenon occurred, but could be eliminated with an increased LED. This work testified the SLM-processing feasibility of Nb-based alloy and promoted the application of SLM to the manufacture of niobium-based alloys. Keywords: Additive manufacturing, Melt pool, Niobium alloy, Powder metallurgy, Selective laser melting

  19. Genomic prediction in a nuclear population of layers using single-step models.

    Science.gov (United States)

    Yan, Yiyuan; Wu, Guiqin; Liu, Aiqiao; Sun, Congjiao; Han, Wenpeng; Li, Guangqi; Yang, Ning

    2018-02-01

    Single-step genomic prediction method has been proposed to improve the accuracy of genomic prediction by incorporating information of both genotyped and ungenotyped animals. The objective of this study is to compare the prediction performance of single-step model with a 2-step models and the pedigree-based models in a nuclear population of layers. A total of 1,344 chickens across 4 generations were genotyped by a 600 K SNP chip. Four traits were analyzed, i.e., body weight at 28 wk (BW28), egg weight at 28 wk (EW28), laying rate at 38 wk (LR38), and Haugh unit at 36 wk (HU36). In predicting offsprings, individuals from generation 1 to 3 were used as training data and females from generation 4 were used as validation set. The accuracies of predicted breeding values by pedigree BLUP (PBLUP), genomic BLUP (GBLUP), SSGBLUP and single-step blending (SSBlending) were compared for both genotyped and ungenotyped individuals. For genotyped females, GBLUP performed no better than PBLUP because of the small size of training data, while the 2 single-step models predicted more accurately than the PBLUP model. The average predictive ability of SSGBLUP and SSBlending were 16.0% and 10.8% higher than the PBLUP model across traits, respectively. Furthermore, the predictive abilities for ungenotyped individuals were also enhanced. The average improvements of prediction abilities were 5.9% and 1.5% for SSGBLUP and SSBlending model, respectively. It was concluded that single-step models, especially the SSGBLUP model, can yield more accurate prediction of genetic merits and are preferable for practical implementation of genomic selection in layers. © 2017 Poultry Science Association Inc.

  20. Fluorescent single walled nanotube/silica composite materials

    Science.gov (United States)

    Dattelbaum, Andrew M.; Gupta, Gautam; Duque, Juan G.; Doorn, Stephen K.; Hamilton, Christopher E.; DeFriend Obrey, Kimberly A.

    2013-03-12

    Fluorescent composites of surfactant-wrapped single-walled carbon nanotubes (SWNTs) were prepared by exposing suspensions of surfactant-wrapped carbon nanotubes to tetramethylorthosilicate (TMOS) vapor. Sodium deoxycholate (DOC) and sodium dodecylsulphate (SDS) were the surfactants. No loss in emission intensity was observed when the suspension of DOC-wrapped SWNTs were exposed to the TMOS vapors, but about a 50% decrease in the emission signal was observed from the SDS-wrapped SWNTs nanotubes. The decrease in emission was minimal by buffering the SDS/SWNT suspension prior to forming the composite. Fluorescent xerogels were prepared by adding glycerol to the SWNT suspensions prior to TMOS vapor exposure, followed by drying the gels. Fluorescent aerogels were prepared by replacing water in the gels with methanol and then exposing them to supercritical fluid drying conditions. The aerogels can be used for gas sensing.

  1. Polymer−metal organic framework composite films as affinity layer for capacitive sensor devices

    NARCIS (Netherlands)

    Sachdeva, S.; Gravesteijn, Dirk J; Soccol, D.; Kapteijn, F.; Sudhölter, E.J.R.; Gascon, J.; Smet, de L.C.P.M.

    2016-01-01

    We report a simple method for sensor development using polymer-MOF composite films. Nanoparticles of NH2-MIL-53(Al) dispersed in a Matrimid polyimide were applied as a thin film on top of capacitive sensor devices with planar electrodes. These drop-cast films act as an affinity layer. Sensing

  2. Polymer-metal organic framework composite films as affinity layer for capacitive sensor devices

    NARCIS (Netherlands)

    Sachdeva, Sumit; Soccol, Dimitri; Gravesteijn, Dirk J.; Kapteijn, Freek; Sudhölter, E.J.R.; Gascon, Jorge; Smet, de L.C.P.M.

    2016-01-01

    We report a simple method for sensor development using polymer-
    MOF composite films. Nanoparticles of NH2-MIL-53(Al) dispersed in a Matrimid
    polyimide were applied as a thin film on top of capacitive sensor devices with planar electrodes. These drop-cast films act as an affinity layer.

  3. A Prospective Randomized Clinical Trial of Single vs. Double Layer Closure of Hysterotomy at the Time of Cesarean Delivery: The Effect on Uterine Scar Thickness.

    Science.gov (United States)

    Bamberg, Christian; Dudenhausen, Joachim W; Bujak, Verena; Rodekamp, Elke; Brauer, Martin; Hinkson, Larry; Kalache, Karim; Henrich, Wolfgang

    2018-06-01

     We undertook a randomized clinical trial to examine the outcome of a single vs. a double layer uterine closure using ultrasound to assess uterine scar thickness.  Participating women were allocated to one of three uterotomy suture techniques: continuous single layer unlocked suturing, continuous locked single layer suturing, or double layer suturing. Transvaginal ultrasound of uterine scar thickness was performed 6 weeks and 6 - 24 months after Cesarean delivery. Sonographers were blinded to the closure technique.  An "intent-to-treat" and "as treated" ANOVA analysis included 435 patients (n = 149 single layer unlocked suturing, n = 157 single layer locked suturing, and n = 129 double layer suturing). 6 weeks postpartum, the median scar thickness did not differ among the three groups: 10.0 (8.5 - 12.3 mm) single layer unlocked vs. 10.1 (8.2 - 12.7 mm) single layer locked vs. 10.8 (8.1 - 12.8 mm) double layer; (p = 0.84). At the time of the second follow-up, the uterine scar was not significantly (p = 0.06) thicker if the uterus had been closed with a double layer closure 7.3 (5.7 - 9.1 mm), compared to single layer unlocked 6.4 (5.0 - 8.8 mm) or locked suturing techniques 6.8 (5.2 - 8.7 mm). Women who underwent primary or elective Cesarean delivery showed a significantly (p = 0.03, p = 0.02, "as treated") increased median scar thickness after double layer closure vs. single layer unlocked suture.  A double layer closure of the hysterotomy is associated with a thicker myometrium scar only in primary or elective Cesarean delivery patients. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Monitoring the composition of the Cd1-zZnzTe heteroepitaxial layers by spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Yakushev, M. V.; Shvets, V. A.; Azarov, I. A.; Rykhlytski, S. V.; Sidorov, Yu. G.; Spesivtsev, E. V.; Shamirzaev, T. S.

    2010-01-01

    A hardware-software complex based on a spectroscopic ellipsometer integrated into a molecular beam epitaxy installation and destined to monitor the composition of the Cd 1 -z Zn z Te alloy at small values of z is described. Methodical features of determination of the composition of growing layers by the spectra of ellipsometric parameters are considered. The procedure of determination of the composition by the absorption edge that allows measuring this parameter accurate to 1.2% is developed. Problems are considered the solutions of which will allow one to increase the resolution by the composition. In particular, maintaining a stable temperature during growth is required for this purpose.

  5. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics.

    Science.gov (United States)

    Wu, Wenzhuo; Wang, Lei; Li, Yilei; Zhang, Fan; Lin, Long; Niu, Simiao; Chenet, Daniel; Zhang, Xian; Hao, Yufeng; Heinz, Tony F; Hone, James; Wang, Zhong Lin

    2014-10-23

    The piezoelectric characteristics of nanowires, thin films and bulk crystals have been closely studied for potential applications in sensors, transducers, energy conversion and electronics. With their high crystallinity and ability to withstand enormous strain, two-dimensional materials are of great interest as high-performance piezoelectric materials. Monolayer MoS2 is predicted to be strongly piezoelectric, an effect that disappears in the bulk owing to the opposite orientations of adjacent atomic layers. Here we report the first experimental study of the piezoelectric properties of two-dimensional MoS2 and show that cyclic stretching and releasing of thin MoS2 flakes with an odd number of atomic layers produces oscillating piezoelectric voltage and current outputs, whereas no output is observed for flakes with an even number of layers. A single monolayer flake strained by 0.53% generates a peak output of 15 mV and 20 pA, corresponding to a power density of 2 mW m(-2) and a 5.08% mechanical-to-electrical energy conversion efficiency. In agreement with theoretical predictions, the output increases with decreasing thickness and reverses sign when the strain direction is rotated by 90°. Transport measurements show a strong piezotronic effect in single-layer MoS2, but not in bilayer and bulk MoS2. The coupling between piezoelectricity and semiconducting properties in two-dimensional nanomaterials may enable the development of applications in powering nanodevices, adaptive bioprobes and tunable/stretchable electronics/optoelectronics.

  6. Thermal expansion, anharmonicity and temperature-dependent Raman spectra of single- and few-layer MoSe₂ and WSe₂.

    Science.gov (United States)

    Late, Dattatray J; Shirodkar, Sharmila N; Waghmare, Umesh V; Dravid, Vinayak P; Rao, C N R

    2014-06-06

    We report the temperature-dependent Raman spectra of single- and few-layer MoSe2 and WSe2 in the range 77-700 K. We observed linear variation in the peak positions and widths of the bands arising from contributions of anharmonicity and thermal expansion. After characterization using atomic force microscopy and high-resolution transmission electron microscopy, the temperature coefficients of the Raman modes were determined. Interestingly, the temperature coefficient of the A(2)(2u) mode is larger than that of the A(1g) mode, the latter being much smaller than the corresponding temperature coefficients of the same mode in single-layer MoS2 and of the G band of graphene. The temperature coefficients of the two modes in single-layer MoSe2 are larger than those of the same modes in single-layer WSe2. We have estimated thermal expansion coefficients and temperature dependence of the vibrational frequencies of MoS2 and MoSe2 within a quasi-harmonic approximation, with inputs from first-principles calculations based on density functional theory. We show that the contrasting temperature dependence of the Raman-active mode A(1g) in MoS2 and MoSe2 arises essentially from the difference in their strain-phonon coupling. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Water desalination with a single-layer MoS2 nanopore

    OpenAIRE

    Heiranian, Mohammad; Farimani, Amir Barati; Aluru, Narayana R.

    2015-01-01

    Efficient desalination of water continues to be a problem facing the society. Advances in nanotechnology have led to the development of a variety of nanoporous membranes for water purification. Here we show, by performing molecular dynamics simulations, that a nanopore in a single-layer molybdenum disulfide can effectively reject ions and allow transport of water at a high rate. More than 88% of ions are rejected by membranes having pore areas ranging from 20 to 60??2. Water flux is found to ...

  8. High performance corrosion and wear resistant composite titanium nitride layers produced on the AZ91D magnesium alloy by a hybrid method

    Directory of Open Access Journals (Sweden)

    Michał Tacikowski

    2014-09-01

    Full Text Available Composite, diffusive titanium nitride layers formed on a titanium and aluminum sub-layer were produced on the AZ91D magnesium alloy. The layers were obtained using a hybrid method which combined the PVD processes with the final sealing by a hydrothermal treatment. The microstructure, resistance to corrosion, mechanical damage, and frictional wear of the layers were examined. The properties of the AZ91D alloy covered with these layers were compared with those of the untreated alloy and of some engineering materials such as 316L stainless steel, 100Cr6 bearing steel, and the AZ91D alloy subjected to commercial anodizing. It has been found that the composite diffusive nitride layer produced on the AZ91D alloy and then sealed by the hydrothermal treatment ensures the corrosion resistance comparable with that of 316L stainless steel. The layers are characterized by higher electrochemical durability which is due to the surface being overbuilt with the titanium oxides formed, as shown by the XPS examinations, from titanium nitride during the hydrothermal treatment. The composite titanium nitride layers exhibit high resistance to mechanical damage and wear, including frictional wear which is comparable with that of 100Cr6 bearing steel. The performance properties of the AZ91D magnesium alloy covered with the composite titanium nitride coating are substantially superior to those of the alloy subjected to commercial anodizing which is the dominant technique employed in industrial practice.

  9. Simulation study on single event burnout in linear doping buffer layer engineered power VDMOSFET

    Science.gov (United States)

    Yunpeng, Jia; Hongyuan, Su; Rui, Jin; Dongqing, Hu; Yu, Wu

    2016-02-01

    The addition of a buffer layer can improve the device's secondary breakdown voltage, thus, improving the single event burnout (SEB) threshold voltage. In this paper, an N type linear doping buffer layer is proposed. According to quasi-stationary avalanche simulation and heavy ion beam simulation, the results show that an optimized linear doping buffer layer is critical. As SEB is induced by heavy ions impacting, the electric field of an optimized linear doping buffer device is much lower than that with an optimized constant doping buffer layer at a given buffer layer thickness and the same biasing voltages. Secondary breakdown voltage and the parasitic bipolar turn-on current are much higher than those with the optimized constant doping buffer layer. So the linear buffer layer is more advantageous to improving the device's SEB performance. Project supported by the National Natural Science Foundation of China (No. 61176071), the Doctoral Fund of Ministry of Education of China (No. 20111103120016), and the Science and Technology Program of State Grid Corporation of China (No. SGRI-WD-71-13-006).

  10. The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet

    Science.gov (United States)

    Yuan, Wenjing; Zhou, Yu; Li, Yingru; Li, Chun; Peng, Hailin; Zhang, Jin; Liu, Zhongfan; Dai, Liming; Shi, Gaoquan

    2013-01-01

    Graphene has a unique atom-thick two-dimensional structure and excellent properties, making it attractive for a variety of electrochemical applications, including electrosynthesis, electrochemical sensors or electrocatalysis, and energy conversion and storage. However, the electrochemistry of single-layer graphene has not yet been well understood, possibly due to the technical difficulties in handling individual graphene sheet. Here, we report the electrochemical behavior at single-layer graphene-based electrodes, comparing the basal plane of graphene to its edge. The graphene edge showed 4 orders of magnitude higher specific capacitance, much faster electron transfer rate and stronger electrocatalytic activity than those of graphene basal plane. A convergent diffusion effect was observed at the sub-nanometer thick graphene edge-electrode to accelerate the electrochemical reactions. Coupling with the high conductivity of a high-quality graphene basal plane, graphene edge is an ideal electrode for electrocatalysis and for the storage of capacitive charges. PMID:23896697

  11. Single-layered graphene oxide nanosheet/polyaniline hybrids fabricated through direct molecular exfoliation.

    Science.gov (United States)

    Chen, Guan-Liang; Shau, Shi-Min; Juang, Tzong-Yuan; Lee, Rong-Ho; Chen, Chih-Ping; Suen, Shing-Yi; Jeng, Ru-Jong

    2011-12-06

    In this study, we used direct molecular exfoliation for the rapid, facile, large-scale fabrication of single-layered graphene oxide nanosheets (GOSs). Using macromolecular polyaniline (PANI) as a layered space enlarger, we readily and rapidly synthesized individual GOSs at room temperature through the in situ polymerization of aniline on the 2D GOS platform. The chemically modified GOS platelets formed unique 2D-layered GOS/PANI hybrids, with the PANI nanorods embedded between the GO interlayers and extended over the GO surface. X-ray diffraction revealed that intergallery expansion occurred in the GO basal spacing after the PANI nanorods had anchored and grown onto the surface of the GO layer. Transparent folding GOSs were, therefore, observed in transmission electron microscopy images. GOS/PANI nanohybrids possessing high conductivities and large work functions have the potential for application as electrode materials in optoelectronic devices. Our dispersion/exfoliation methodology is a facile means of preparing individual GOS platelets with high throughput, potentially expanding the applicability of nanographene oxide materials. © 2011 American Chemical Society

  12. MultiLayer solid electrolyte for lithium thin film batteries

    Science.gov (United States)

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  13. Exploring single-layered SnSe honeycomb polymorphs for optoelectronic and photovoltaic applications

    Science.gov (United States)

    Ul Haq, Bakhtiar; AlFaify, S.; Ahmed, R.; Butt, Faheem K.; Laref, A.; Shkir, Mohd.

    2018-02-01

    Single-layered tin selenide that shares the same structure with phosphorene and possesses intriguing optoelectronic properties has received great interest as a two-dimensional material beyond graphene and phosphorene. Herein, we explore the optoelectronic response of the newly discovered stable honeycomb derivatives (such as α , β , γ , δ , and ɛ ) of single-layered SnSe in the framework of density functional theory. The α , β , γ , and δ derivatives of a SnSe monolayer have been found to exhibit an indirect band gap, however, the dispersion of their band-gap edges demonstrates multiple direct band gaps at a relatively high energy. The ɛ -SnSe, however, features an intrinsic direct band gap at the high-symmetry Γ point. Their energy band gaps (0.53, 2.32, 1.52, 1.56, and 1.76 eV for α -, β -, γ -, δ -, and ɛ -SnSe, respectively), calculated at the level of the Tran-Blaha modified Becke-Johnson approach, mostly fall right in the visible range of the electromagnetic spectrum and are in good agreement with the available literature. The optical spectra of these two-dimensional (2D) SnSe polymorphs (besides β -SnSe) are highly anisotropic and possess strictly different optical band gaps along independent diagonal components. They show high absorption in the visible and UV ranges. Similarly, the reflectivity, refraction, and optical conductivities inherit strong anisotropy from the dielectric functions as well and are highly visible-UV polarized along the cartesian coordinates, showing them to be suitable for optical filters, polarizers, and shields against UV radiation. Our investigations suggest these single-layered SnSe allotropes as a promising 2D material for next-generation nanoscale optoelectronic and photovoltaic applications beyond graphene and phosphorene.

  14. Cost-Effective Double-Layer Hydrogel Composites for Wound Dressing Applications

    Directory of Open Access Journals (Sweden)

    Javad Tavakoli

    2018-03-01

    Full Text Available Although poly vinyl alcohol-poly acrylic acid (PVA-PAA composites have been widely used for biomedical applications, their incorporation into double-layer assembled thin films has been limited because the interfacial binding materials negatively influence the water uptake capacity of PVA. To minimize the effect of interfacial binding, a simple method for the fabrication of a double-layered PVA-PAA hydrogel was introduced, and its biomedical properties were evaluated in this study. Our results revealed that the addition of PAA layers on the surface of PVA significantly increased the swelling properties. Compared to PVA, the equilibrium swelling ratio of the PVA-PAA hydrogel increased (p = 0.035 and its water vapour permeability significantly decreased (p = 0.04. Statistical analysis revealed that an increase in pH value from 7 to 10 as well as the addition of PAA at pH = 7 significantly increased the adhesion force (p < 0.04. The mechanical properties—including ultimate tensile strength, modulus, and elongation at break—remained approximately untouched compared to PVA. A significant increase in biocompatibility was found after day 7 (p = 0.016. A higher release rate for tetracycline was found at pH = 8 compared to neutral pH.

  15. Layered composites of PEDOT/PSS/nanoparticles and PEDOT/PSS/phthalocyanines as electron mediators for sensors and biosensors

    Directory of Open Access Journals (Sweden)

    Celia García-Hernández

    2016-12-01

    Full Text Available The sensing properties of electrodes chemically modified with PEDOT/PSS towards catechol and hydroquinone sensing have been successfully improved by combining layers of PEDOT/PSS with layers of a secondary electrocatalytic material such as gold nanoparticles (PEDOT/PSS/AuNPs, copper phthalocyanine (PEDOT/PSS/CuPc or lutetium bisphthalocyanine (PEDOT/PSS/LuPc2. Layered composites exhibit synergistic effects that strongly enhance the electrocatalytic activity as indicated by the increase in intensity and the shift of the redox peaks to lower potentials. A remarkable improvement has been achieved using PEDOT/PSS/LuPc2, which exhibits excellent electrocatalytic activity towards the oxidation of catechol. The kinetic studies demonstrated diffusion-controlled processes at the electrode surfaces. The kinetic parameters such as Tafel slopes and charge transfer coefficient (α confirm the improved electrocatalytic activity of the layered electron mediators. The peak currents increased linearly with concentration of catechol and hydroquinone over the range of 1.5 × 10−4 to 4.0 × 10−6 mol·L−1 with a limit of detection on the scale of μmol·L−1. The layered composite hybrid systems were also found to be excellent electron mediators in biosensors containing tyrosinase and laccase, and they combine the recognition and biocatalytic properties of biomolecules with the unique catalytic features of composite materials. The observed increase in the intensity of the responses allowed detection limits of 1 × 10−7 mol·L−1 to be attained.

  16. Superconducting NbN single-photon detectors on GaAs with an AlN buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Ekkehart; Merker, Michael; Ilin, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme (IMS), Karlsruher Institut fuer Technologie, Hertzstrasse 16, 76187 Karlsruhe (Germany)

    2015-07-01

    GaAs is the material of choice for photonic integrated circuits. It allows the monolithic integration of single-photon sources like quantum dots, waveguide based optical circuits and detectors like superconducting nanowire single-photon detectors (SNSPDs) onto one chip. The growth of high quality NbN films on GaAs is challenging, due to natural occurring surface oxides and the large lattice mismatch of about 27%. In this work, we try to overcome these problems by the introduction of a 10 nm AlN buffer layer. Due to the buffer layer, the critical temperature of 6 nm thick NbN films was increased by about 1.5 K. Furthermore, the critical current density at 4.2 K of NbN flim deposited onto GaAs with AlN buffer is 50% higher than of NbN film deposited directly onto GaAs substrate. We successfully fabricated NbN SNSPDs on GaAs with a AlN buffer layer. SNSPDs were patterned using electron-beam lithography and reactive-ion etching techniques. Results on the study of detection efficiency and jitter of a NbN SNSPD on GaAs, with and without AlN buffer layer will be presented and discussed.

  17. Interactions between C and Cu atoms in single-layer graphene: direct observation and modelling.

    Science.gov (United States)

    Kano, Emi; Hashimoto, Ayako; Kaneko, Tomoaki; Tajima, Nobuo; Ohno, Takahisa; Takeguchi, Masaki

    2016-01-07

    Metal doping into the graphene lattice has been studied recently to develop novel nanoelectronic devices and to gain an understanding of the catalytic activities of metals in nanocarbon structures. Here we report the direct observation of interactions between Cu atoms and single-layer graphene by transmission electron microscopy. We document stable configurations of Cu atoms in the graphene sheet and unique transformations of graphene promoted by Cu atoms. First-principles calculations based on density functional theory reveal a reduction of energy barrier that caused rotation of C-C bonds near Cu atoms. We discuss two driving forces, electron irradiation and in situ heating, and conclude that the observed transformations were mainly promoted by electron irradiation. Our results suggest that individual Cu atoms can promote reconstruction of single-layer graphene.

  18. Quantum Hall states of atomic Bose gases: Density profiles in single-layer and multilayer geometries

    International Nuclear Information System (INIS)

    Cooper, N. R.; Lankvelt, F. J. M. van; Reijnders, J. W.; Schoutens, K.

    2005-01-01

    We describe the density profiles of confined atomic Bose gases in the high-rotation limit, in single-layer and multilayer geometries. We show that, in a local-density approximation, the density in a single layer shows a landscape of quantized steps due to the formation of incompressible liquids, which are analogous to fractional quantum Hall liquids for a two-dimensional electron gas in a strong magnetic field. In a multilayered setup we find different phases, depending on the strength of the interlayer tunneling t. We discuss the situation where a vortex lattice in the three-dimensional condensate (at large tunneling) undergoes quantum melting at a critical tunneling t c 1 . For tunneling well below t c 1 one expects weakly coupled or isolated layers, each exhibiting a landscape of quantum Hall liquids. After expansion, this gives a radial density distribution with characteristic features (cusps) that provide experimental signatures of the quantum Hall liquids

  19. Raman and electronic transport characterization of few- and single-layer-thick α-RuCl3

    Science.gov (United States)

    Zhou, Boyi; Henriksen, Erik

    The layered magnetic semiconductor α-RuCl3, having a honeycomb lattice of spin-1/2 moments, has been identified as a potential candidate material to realize the Kitaev quantum spin liquid. In particular, bulk RuCl3 crystals have been studied and found to be on the cusp of manifesting QSL behavior. As the QSL is primarily a two-dimensional phenomenon, and since the layers of RuCl3 are weakly coupled, we propose to create and study a 2D spin-1/2 honeycomb system by isolating single sheets. Here we report the exfoliation of RuCl3 down to few- and single-layer-thick samples, which we characterize by Raman spectroscopy and atomic force microscopy at room temperature. We will also report our progress on measurements of basic electronic transport properties in the 2D RuCl3 system by controlling the chemical potential via gating in a field-effect configuration.

  20. Size scale dependence of compressive instabilities in layered composites in the presence of stress gradients

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2016-01-01

    The compressive strength of unidirectionally or layer-wise reinforced composite materials in direction parallel to their reinforcement is limited by micro-buckling instabilities. Although the inherent compressive strength of a given material micro-structure can easily be determined by assessing its...... compressive stress but also on spatial stress or strain gradients, rendering failure initiation size scale dependent. The present work demonstrates and investigates the aforementioned effect through numerical simulations of periodically layered structures withnotches and holes under bending and compressive...... loads, respectively. The presented results emphasize the importance of the reinforcing layer thickness on the load carrying capacity of the investigated structures, at a constant volumetric fraction of the reinforcement. The observed strengthening at higher values of the relative layer thickness...

  1. Magneto-electroluminescence effects in the single-layer organic light-emitting devices with macrocyclic aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    S.-T. Pham

    2018-02-01

    Full Text Available Magneto-electroluminescence (MEL effects are observed in single-layer organic light-emitting devices (OLEDs comprising only macrocyclic aromatic hydrocarbons (MAHs. The fluorescence devices were prepared using synthesized MAHs, namely, [n]cyclo-meta-phenylene ([n]CMP, n = 5, 6. The MEL ratio of the resulting OLED is 1%–2% in the spectral wavelength range of 400-500 nm, whereas it becomes negative (−1.5% to −2% in the range from 650 to 700 nm. The possible physical origins of the sign change in the MEL are discussed. This wavelength-dependent sign change in the MEL ratio could be a unique function for future single-layer OLEDs capable of magnetic-field-induced color changes.

  2. Magneto-electroluminescence effects in the single-layer organic light-emitting devices with macrocyclic aromatic hydrocarbons

    Science.gov (United States)

    Pham, S.-T.; Ikemoto, K.; Suzuki, K. Z.; Izumi, T.; Taka, H.; Kita, H.; Sato, S.; Isobe, H.; Mizukami, S.

    2018-02-01

    Magneto-electroluminescence (MEL) effects are observed in single-layer organic light-emitting devices (OLEDs) comprising only macrocyclic aromatic hydrocarbons (MAHs). The fluorescence devices were prepared using synthesized MAHs, namely, [n]cyclo-meta-phenylene ([n]CMP, n = 5, 6). The MEL ratio of the resulting OLED is 1%-2% in the spectral wavelength range of 400-500 nm, whereas it becomes negative (-1.5% to -2%) in the range from 650 to 700 nm. The possible physical origins of the sign change in the MEL are discussed. This wavelength-dependent sign change in the MEL ratio could be a unique function for future single-layer OLEDs capable of magnetic-field-induced color changes.

  3. Thermal conductivities of single- and multi-layer phosphorene: a molecular dynamics study.

    Science.gov (United States)

    Zhang, Ying-Yan; Pei, Qing-Xiang; Jiang, Jin-Wu; Wei, Ning; Zhang, Yong-Wei

    2016-01-07

    As a new two-dimensional (2D) material, phosphorene has drawn growing attention owing to its novel electronic properties, such as layer-dependent direct bandgaps and high carrier mobility. Herein we investigate the in-plane and cross-plane thermal conductivities of single- and multi-layer phosphorene, focusing on geometrical (sample size, orientation and layer number) and strain (compression and tension) effects. A strong anisotropy is found in the in-plane thermal conductivity with its value along the zigzag direction being much higher than that along the armchair direction. Interestingly, the in-plane thermal conductivity of multi-layer phosphorene is insensitive to the layer number, which is in strong contrast to that of graphene where the interlayer interactions strongly influence the thermal transport. Surprisingly, tensile strain leads to an anomalous increase in the in-plane thermal conductivity of phosphorene, in particular in the armchair direction. Both the in-plane and cross-plane thermal conductivities can be modulated by external strain; however, the strain modulation along the cross-plane direction is more effective and thus more tunable than that along the in-plane direction. Our findings here are of great importance for the thermal management in phosphorene-based nanoelectronic devices and for thermoelectric applications of phosphorene.

  4. Multi-layers castings

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2010-01-01

    Full Text Available In paper is presented the possibility of making of multi-layers cast steel castings in result of connection of casting and welding coating technologies. First layer was composite surface layer on the basis of Fe-Cr-C alloy, which was put directly in founding process of cast carbon steel 200–450 with use of preparation of mould cavity method. Second layer were padding welds, which were put with use of TIG – Tungsten Inert Gas surfacing by welding technology with filler on Ni matrix, Ni and Co matrix with wolfram carbides WC and on the basis on Fe-Cr-C alloy, which has the same chemical composition with alloy, which was used for making of composite surface layer. Usability for industrial applications of surface layers of castings were estimated by criterion of hardness and abrasive wear resistance of type metal-mineral.

  5. Self-induced inverse spin-Hall effect in an iron and a cobalt single-layer films themselves under the ferromagnetic resonance

    Science.gov (United States)

    Kanagawa, Kazunari; Teki, Yoshio; Shikoh, Eiji

    2018-05-01

    The inverse spin-Hall effect (ISHE) is produced even in a "single-layer" ferromagnetic material film. Previously, the self-induced ISHE in a Ni80Fe20 film under the ferromagnetic resonance (FMR) was discovered. In this study, we observed an electromotive force (EMF) in an iron (Fe) and a cobalt (Co) single-layer films themselves under the FMR. As origins of the EMFs in the films themselves, the ISHE was main for Fe and dominant for Co, respectively 2 and 18 times larger than the anomalous Hall effect. Thus, we demonstrated the self-induced ISHE in an Fe and a Co single-layer films themselves under the FMR.

  6. Photocatalytic activity of porous multiwalled carbon nanotube-TiO{sub 2} composite layers for pollutant degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zouzelka, Radek [J. Heyrovsky Institute of Physical Chemistry, v.i.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague 8 (Czech Republic); Department of Physical Chemistry, University of Chemistry and Technology Prague, 16628 Prague (Czech Republic); Kusumawati, Yuly [Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France); Remzova, Monika [J. Heyrovsky Institute of Physical Chemistry, v.i.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague 8 (Czech Republic); Department of Physical Chemistry, University of Chemistry and Technology Prague, 16628 Prague (Czech Republic); Rathousky, Jiri [J. Heyrovsky Institute of Physical Chemistry, v.i.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague 8 (Czech Republic); Pauporté, Thierry, E-mail: thierry.pauporte@chimie-paristech.fr [Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France)

    2016-11-05

    Highlights: • A simple method for TiO{sub 2}/graphene nanocomposite layer preparation. • Stable coatings on glass substrate. • Mesoporous nanocomposite films with high internal surface area. • High photoactivity for 4-chlorophenol degradation. • Analysis of photocatalysis enhancement mechanism. - Abstract: TiO{sub 2} nanoparticles are suitable building blocks nanostructures for the synthesis of porous functional thin films. Here we report the preparation of films using brookite, P25 titania and anatase pristine nanoparticles and of nanocomposite layers combining anatase nanoparticles and multi-walled carbon nanotube (MWCNT) at various concentrations. The structure and phase composition of the layers were characterized by X-ray diffraction and Raman spectroscopy. Their morphology and texture properties were determined by scanning electron microscopy and krypton adsorption experiments, respectively. Additionally to a strong absorption in the UV range, the composites exhibited light absorption in the visible range as well. The photocatalytic performance of the layers was tested in the degradation of aqueous solutions of 4-chlorophenol serving as a model of an eco-persistent pollutant. Besides the determination of the decrease in the concentration of 4-chlorophenol, also the formation of intermediate degradation products, namely hydroquinone and benzoquinone, was followed. The presence of MWCNTs had a beneficial effect on the photocatalytic performance, a marked increase in the photocatalytic degradation rate constant being observed even at very low concentrations of MWCNTs. Compared to a P25 reference layer, the first order rate reaction constant increased by about 100% for the composite films containing MWCNTs at concentrations above 0.6 wt%. The key parameters for the enhancement of the photocatalytic performance are discussed. The presence of carbon nanotubes influences beneficially the degradation of 4-chlorophenol by an attack of the primarily

  7. MoO3–Au composite interfacial layer for high efficiency and air-stable organic solar cells

    DEFF Research Database (Denmark)

    Pan, Hongbin; Zuo, Lijian; Fu, Weifei

    2013-01-01

    Efficient and stable polymer bulk-heterojunction solar cells based on regioregular poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC61BM) blend active layer have been fabricated with a MoO3–Au co-evaporation composite film as the anode interfacial layer (AIL). The optical...

  8. Efficient organic photovoltaic cells on a single layer graphene transparent conductive electrode using MoOx as an interfacial layer.

    Science.gov (United States)

    Du, J H; Jin, H; Zhang, Z K; Zhang, D D; Jia, S; Ma, L P; Ren, W C; Cheng, H M; Burn, P L

    2017-01-07

    The large surface roughness, low work function and high cost of transparent electrodes using multilayer graphene films can limit their application in organic photovoltaic (OPV) cells. Here, we develop single layer graphene (SLG) films as transparent anodes for OPV cells that contain light-absorbing layers comprised of the evaporable molecular organic semiconductor materials, zinc phthalocyanine (ZnPc)/fullerene (C60), as well as a molybdenum oxide (MoO x ) interfacial layer. In addition to an increase in the optical transmittance, the SLG anodes had a significant decrease in surface roughness compared to two and four layer graphene (TLG and FLG) anodes fabricated by multiple transfer and stacking of SLGs. Importantly, the introduction of a MoO x interfacial layer not only reduced the energy barrier between the graphene anode and the active layer, but also decreased the resistance of the SLG by nearly ten times. The OPV cells with the structure of polyethylene terephthalate/SLG/MoO x /CuI/ZnPc/C60/bathocuproine/Al were flexible, and had a power conversion efficiency of up to 0.84%, which was only 17.6% lower than the devices with an equivalent structure but prepared on commercial indium tin oxide anodes. Furthermore, the devices with the SLG anode were 50% and 86.7% higher in efficiency than the cells with the TLG and FLG anodes. These results show the potential of SLG electrodes for flexible and wearable OPV cells as well as other organic optoelectronic devices.

  9. Self-Sensing of Single Carbon Fiber/Carbon Nanotube-Epoxy Composites Using Electro-Micromechanical Techniques and Acoustic Emission

    International Nuclear Information System (INIS)

    Park, Joung Man; Jang, Jung Hoon; Wang, Zuo Jia; Kwon, Dong Jun; Park, Jong Kyu; Lee, Woo Il

    2010-01-01

    Self-sensing on micro-failure, dispersion degree and relating properties, of carbon nanotube(CNT)/epoxy composites, were investigated using wettability, electro-micromechanical technique with acoustic emission(AE). Specimens were prepared from neat epoxy as well as composites with untreated and acid-treated CNT. Degree of dispersion was evaluated comparatively by measuring volumetric electrical resistivity and its standard deviation. Apparent modulus containing the stress transfer was higher for acid-treated CNT composite than for the untreated case. Applied cyclic loading responded well for a single carbon fiber/CNT-epoxy composite by the change in contact resistivity. The interfacial shear strength between a single carbon fiber and CNT-epoxy, determined in a fiber pullout test, was lower than that between a single carbon fiber and neat epoxy. Regarding on micro-damage sensing using electrical resistivity measurement with AE, the stepwise increment in electrical resistivity was observed for a single carbon fiber/CNT-epoxy composite. On the other hand, electrical resistivity increased infinitely right after the first carbon fiber breaks for a single carbon fiber/neat epoxy composite. The occurrence of AE events of added CNT composites was much higher than the neat epoxy case, due to microfailure at the interfaces by added CNTs

  10. Single walled carbon nanotube composites for bone tissue engineering.

    Science.gov (United States)

    Gupta, Ashim; Woods, Mia D; Illingworth, Kenneth David; Niemeier, Ryan; Schafer, Isaac; Cady, Craig; Filip, Peter; El-Amin, Saadiq F

    2013-09-01

    The purpose of this study was to develop single walled carbon nanotubes (SWCNT) and poly lactic-co-glycolic acid (PLAGA) composites for orthopedic applications and to evaluate the interaction of human stem cells (hBMSCs) and osteoblasts (MC3T3-E1 cells) via cell growth, proliferation, gene expression, extracellular matrix production and mineralization. PLAGA and SWCNT/PLAGA composites were fabricated with various amounts of SWCNT (5, 10, 20, 40, and 100 mg), characterized and degradation studies were performed. Cells were seeded and cell adhesion/morphology, growth/survival, proliferation and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated uniform incorporation of SWCNT into the PLAGA matrix and addition of SWCNT did not affect the degradation rate. Imaging studies revealed that MC3T3-E1 and hBMSCs cells exhibited normal, non-stressed morphology on the composites and all were biocompatible. Composites with 10 mg SWCNT resulted in highest rate of cell proliferation (p PLAGA composites imparted beneficial cellular growth capabilities and gene expression, and mineralization abilities were well established. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration and bone tissue engineering (BTE) and are promising for orthopedic applications. Copyright © 2013 Orthopaedic Research Society.

  11. Identification of the Viscous Superlayer on the Low-Speed Side of a Single-Stream Shear Layer

    Science.gov (United States)

    Foss, John; Peabody, Jason

    2010-11-01

    Image pairs (elevation/plan views) have been acquired of a smoke streakline originating in the irrotational region on the low-speed side of a high Re single-stream shear layer of Morris and Foss (2003). The viscous superlayer (VSL) is identified as the terminus of the streak; 1800 such images provide VSL position statistics. Hot-wire data acquired concurrently at the shear layer edge and interior are used to investigate the relationship between these velocity magnitudes and the large-scale motions. Distinctive features (plumes) along the streakline are tracked between images to provide discrete irrotational region velocity magnitudes and material trajectories. A non-diffusive marker, introduced in the separating (high speed) boundary layer and imaged at x/θo=352, has revealed an unexpected bias in the streak-defined VSL locations. The interpretation of this bias clarifies the induced flow patterns in the entrainment region. The observations are consistent with a conception of the large-scale shear layer motions as "billows" of vortical fluid separated by re-entrant "wedges" of irrotational fluid, per Phillips (1972). Morris, S.C. and Foss, J.F. (2003). "Turbulent Boundary Layer to Single Stream Shear Layer: The Transition Region." Journal of Fluid Mechanics. Vol. 494, pp. 187-221. Phillips, O. M. (1972). "The Entrainment Interface." Journal of Fluid Mechanics. Vol. 51, pp. 97-118.

  12. Layer-by-Layer Motif Architectures: Programmed Electrochemical Syntheses of Multilayer Mesoporous Metallic Films with Uniformly Sized Pores.

    Science.gov (United States)

    Jiang, Bo; Li, Cuiling; Qian, Huayu; Hossain, Md Shahriar A; Malgras, Victor; Yamauchi, Yusuke

    2017-06-26

    Although multilayer films have been extensively reported, most compositions have been limited to non-catalytically active materials (e.g. polymers, proteins, lipids, or nucleic acids). Herein, we report the preparation of binder-free multilayer metallic mesoporous films with sufficient accessibility for high electrocatalytic activity by using a programmed electrochemical strategy. By precisely tuning the deposition potential and duration, multilayer mesoporous architectures consisting of alternating mesoporous Pd layers and mesoporous PdPt layers with controlled layer thicknesses can be synthesized within a single electrolyte, containing polymeric micelles as soft templates. This novel architecture, combining the advantages of bimetallic alloys, multilayer architectures, and mesoporous structures, exhibits high electrocatalytic activity for both the methanol oxidation reaction (MOR) and the ethanol oxidation reaction (EOR). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure

    KAUST Repository

    Tiraferri, Alberto; Yip, Ngai Yin; Phillip, William A.; Schiffman, Jessica D.; Elimelech, Menachem

    2011-01-01

    the technology to the point that it is commercially viable. Here, a systematic investigation of the influence of thin-film composite membrane support layer structure on forward osmosis performance is conducted. The membranes consist of a selective polyamide

  14. Valley polarization in magnetically doped single-layer transition-metal dichalcogenides

    KAUST Repository

    Cheng, Yingchun

    2014-04-28

    We demonstrate that valley polarization can be induced and controlled in semiconducting single-layer transition-metal dichalcogenides by magnetic doping, which is important for spintronics, valleytronics, and photonics devices. As an example, we investigate Mn-doped MoS2 by first-principles calculations. We study how the valley polarization depends on the strength of the spin orbit coupling and the exchange interaction and discuss how it can be controlled by magnetic doping. Valley polarization by magnetic doping is also expected for other honeycomb materials with strong spin orbit coupling and the absence of inversion symmetry.

  15. Composition and stratigraphy of the paint layers: investigation on the Madonna dei Fusi by ion beam analysis techniques

    Science.gov (United States)

    Grassi, N.

    2005-06-01

    In the framework of the extensive study on the wood painting "Madonna dei fusi" attributed to Leonardo da Vinci, Ion Beam Analysis (IBA) techniques were used at the Florence accelerator laboratory to get information about the elemental composition of the paint layers. After a brief description of the basic principle and the general features of IBA techniques, we will illustrate in detail how the analysis allowed us to characterise the pigments of original and restored areas and the substrate composition, and to obtain information about the stratigraphy of the painting, also providing an estimate of the paint layer thickness.

  16. Spin-dependent electron-phonon coupling in the valence band of single-layer WS2

    DEFF Research Database (Denmark)

    Hinsche, Nicki Frank; Ngankeu, Arlette S.; Guilloy, Kevin

    2017-01-01

    The absence of inversion symmetry leads to a strong spin-orbit splitting of the upper valence band of semiconducting single-layer transition-metal dichalchogenides such as MoS2 or WS2. This permits a direct comparison of the electron-phonon coupling strength in states that only differ by their spin....... Here, the electron-phonon coupling in the valence band maximum of single-layer WS2 is studied by first-principles calculations and angle-resolved photoemission. The coupling strength is found to be drastically different for the two spin-split branches, with calculated values of λK=0.0021 and 0.......40 for the upper and lower spin-split valence band of the freestanding layer, respectively. This difference is somewhat reduced when including scattering processes involving the Au(111) substrate present in the experiment but it remains significant, in good agreement with the experimental results....

  17. Preparation and biological evaluation of a fibroblast growth factor-2-apatite composite layer on polymeric material

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Kenkichi; Kamitakahara, Masanobu; Ioku, Koji [Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Oyane, Ayako [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Hyodo, Koji [Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564 (Japan); Ito, Atsuo; Sogo, Yu, E-mail: a-oyane@aist.go.j [Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566 (Japan)

    2010-12-15

    A polymeric percutaneous device with good biocompatibility and resistance to bacterial infection is required clinically. In this study, a fibroblast growth factor-2 (FGF-2)-hydroxyapatite (HAp) composite layer (FHAp layer) was formed on the surfaces of ethylene-vinyl alcohol copolymer (EVOH) specimens using a coating process in a supersaturated calcium phosphate solution supplemented with FGF-2. FGF-2 in the FHAp layer retained its biological activity to promote proliferation of fibroblasts. The EVOH specimens coated with HAp and FHAp layers were percutaneously implanted in the scalp of rats. Not only the HAp layer but also the FHAp layer showed good biocompatibility, and FGF-2 showed no harmful effects on the skin tissue responses to the implanted specimen as long as 14 d. No significantly higher infection resistance was verified for the FHAp layer over the HAp layer, although an FHAp layer coated on a metallic percutaneous device for bone fixation demonstrated higher resistance to bacterial infection over an HAp layer in the previous study. The efficacy of FHAp layers coated on percutaneous implants in resistance to bacterial infection depends on physical factors including fixation condition, stiffness and movement of implants.

  18. Intrinsic Charge Carrier Mobility in Single-Layer Black Phosphorus.

    Science.gov (United States)

    Rudenko, A N; Brener, S; Katsnelson, M I

    2016-06-17

    We present a theory for single- and two-phonon charge carrier scattering in anisotropic two-dimensional semiconductors applied to single-layer black phosphorus (BP). We show that in contrast to graphene, where two-phonon processes due to the scattering by flexural phonons dominate at any practically relevant temperatures and are independent of the carrier concentration n, two-phonon scattering in BP is less important and can be considered negligible at n≳10^{13}  cm^{-2}. At smaller n, however, phonons enter in the essentially anharmonic regime. Compared to the hole mobility, which does not exhibit strong anisotropy between the principal directions of BP (μ_{xx}/μ_{yy}∼1.4 at n=10^{13} cm^{-2} and T=300  K), the electron mobility is found to be significantly more anisotropic (μ_{xx}/μ_{yy}∼6.2). Absolute values of μ_{xx} do not exceed 250 (700)  cm^{2} V^{-1} s^{-1} for holes (electrons), which can be considered as an upper limit for the mobility in BP at room temperature.

  19. Transition from single to multiple double layers

    International Nuclear Information System (INIS)

    Chan, C.; Hershkowitz, N.

    1982-01-01

    It is shown that laboratory double layers become multiple double layers when the ratio of Debye length to system length is decreased. This result exhibits characteristics described by boundary layer theory

  20. Composition Effect of the Outer Layer on the Vesicle Fusion Catalyzed by Phospholipase D

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Won [Seoul National University, Seoul (Korea, Republic of)

    2014-09-15

    Phospholipase D (PLD) catalyzed the generation of phosphatidic acid (PA) from phosphatidylcholine (PC) at the outer layer of the vesicles prepared through layer by layer via a double emulsion technique. The generation induced a curvature change in the vesicles, which eventually led them to fuse each other. The ratio of two-fattyacid-tail ethanolamine (PE) to one-fatty-acid-tail ethanolamine (PE) was found to acquire the condition where the mixed-phospholipid vesicles were stable identically with pure two-fatty-acid-tail PC. The effect of the outer-layer mixture on the PLD-induced vesicle fusion was investigated using the fluorescence intensity change. 8-Aminonaph- thalene-1,3,6-trisulfonic acid disodium salt (ANTS) and p-Xylene-bis(N-pyridinium bromide) (DPX) were encapsulated in the vesicles, respectively, for the quantification of the fusion. The fluorescence scale was calibrated with the fluorescence of a 1/1 mixture of ANTS and DPX vesicles in NaCl buffer taken as 100% fluorescence (0% fusion) and the vesicles containing both ANTS and DPX as 0% fluorescence (100% fusion), considering the leakage into the medium studied directly in a separate experiment using vesicles containing both ANTS and DPX. The fusion data for each composition were acquired with the subtraction of the leakage from the quenching. From the monitoring, the vesicle fusion caused by the PLD reaction seems dominantly to occur rather than the vesicle lysis, because the composition effect on the fusion was observed identically with that on the change in the vesicle structure. Furthermore, the diameter measurements also support the fusion dominancy.

  1. Suppression of superconductivity in a single Pb layer on Ag/Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Leon-Vanegas, Augusto; Kirschner, Juergen [Max Plank Instituet fuer Mikrostukturphysik (Germany); Martin Luther Univeristaet, Halle-Wittenberg (Germany); Caminale, Michael; Stepniak, Agnieszka; Oka, Hirofumi; Sanna, Antonio; Linscheid, Andreas; Sander, Dirk [Max Plank Instituet fuer Mikrostukturphysik (Germany)

    2015-07-01

    Recently, superconductivity was reported in a single layer of Pb on Si(111) with a critical temperature of 1.83 K. It has been proposed that the interaction of Pb with the Si substrate provides the electron phonon coupling to support superconductivity in this system. We have used a {sup 3}He-cooled STM with a vector magnetic field to study the effect of insertion of a Ag interlayer on the superconducting properties of a single Pb layer on Si(111). In contrast to the experiments on Pb/Si(111), the differential conductance of Pb/Ag/Si(111) does not show a gap indicative of superconductivity even at the lowest experimental temperature of 0.38 K. We ascribe this to the suppression of superconductivity. This result is explained by means of ab-initio calculations, showing that the effect of a chemical hybridization between Pb and Ag/Si occurring at the Fermi level dramatically reduces the strength of the electron phonon coupling. This contrasts with the case of Pb/Si(111), where no overlap between Pb and Si electronic states at the Fermi level is found in the calculations.

  2. Integrated circuits and logic operations based on single-layer MoS2.

    Science.gov (United States)

    Radisavljevic, Branimir; Whitwick, Michael Brian; Kis, Andras

    2011-12-27

    Logic circuits and the ability to amplify electrical signals form the functional backbone of electronics along with the possibility to integrate multiple elements on the same chip. The miniaturization of electronic circuits is expected to reach fundamental limits in the near future. Two-dimensional materials such as single-layer MoS(2) represent the ultimate limit of miniaturization in the vertical dimension, are interesting as building blocks of low-power nanoelectronic devices, and are suitable for integration due to their planar geometry. Because they are less than 1 nm thin, 2D materials in transistors could also lead to reduced short channel effects and result in fabrication of smaller and more power-efficient transistors. Here, we report on the first integrated circuit based on a two-dimensional semiconductor MoS(2). Our integrated circuits are capable of operating as inverters, converting logical "1" into logical "0", with room-temperature voltage gain higher than 1, making them suitable for incorporation into digital circuits. We also show that electrical circuits composed of single-layer MoS(2) transistors are capable of performing the NOR logic operation, the basis from which all logical operations and full digital functionality can be deduced.

  3. Structure and composition of layers of Ni-Co-Mn-In Heusler alloys obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wisz, Grzegorz; Sagan, Piotr; Stefaniuk, Ireneusz; Cieniek, Bogumil; Maziarz, Wojciech; Kuzma, Marian

    2017-01-01

    In present work we were analysing thin layers of Ni-Co-Mn-In alloys, grown by pulsed laser deposition method (PLD) on Si, NaCl and glass substrates. For target ablation the second harmonics of YAG:Nd 3+ laser was used. The target had the composition Ni 45 Co 5 Mn 34.5 In 14.5 . The morphology of the layers and composition were studied by electron microscopy TESCAN Vega3 equipped with microanalyzer EDS – Easy EdX system working with Esprit Bruker software. The X-ray diffraction measurements (XRD), performed on spectrometer Bruker XRD D8 Advance system, reveals Ni 2 -Mn-In cubic phase having lattice constant a = 6.02Å.

  4. Thermal barrier coatings with a double-layer bond coat on Ni{sub 3}Al based single-crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xin [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Xu, Zhenhua; Mu, Rende [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); He, Limin, E-mail: he_limin@yahoo.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Huang, Guanghong [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Cao, Xueqiang, E-mail: xcao@ciac.ac.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2014-04-05

    Highlights: • Thermal barrier coatings with a double-layer bond coat of (Ni,Pt)Al and NiCrAlYSi. • Good adherence at all interfaces within TBC system. • The underlying (Ni,Pt)Al layer can supply abundant Al content for the upper NiCrAlYSi layer. • Crack nucleation, propagation and coalescence lead to the failure of coating. -- Abstract: Electron-beam physical vapor deposited thermal barrier coatings (TBCs) with a double-layer bond coat of (Ni,Pt)Al and NiCrAlYSi were prepared on a Ni{sub 3}Al based single-crystal superalloy. Phase and cross-sectional microstructure of the developed coatings were studied by using X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The experimental results show good adherence at all interfaces within this system. Furthermore, oxidation resistance and elements interdiffusion behavior of the double-layer bond coat were also investigated. The double-layer bond coat system exhibits a better scale adherence than the single layer bond coat systems since the underlying (Ni,Pt)Al layer can supply abundant Al for the upper NiCrAlYSi layer. Finally, thermal cycling behavior of the double-layer bond coat TBC was evaluated and the failure mechanism was discussed. Crack nucleation, propagation and coalescence caused by TGO growth stress and the thermal expansion mismatch stress between TGO and bond coat can be mainly responsible for the spallation of this coating.

  5. Optical Properties of Plasmon Resonances with Ag/SiO2/Ag Multi-Layer Composite Nanoparticles

    International Nuclear Information System (INIS)

    Ye-Wan, Ma; Li-Hua, Zhang; Zhao-Wang, Wu; Jie, Zhang

    2010-01-01

    Optical properties of plasmon resonance with Ag/SiO 2 /Ag multi-layer nanoparticles are studied by numerical simulation based on Green's function theory. The results show that compared with single-layer Ag nanoparticles, the multi-layer nanoparticles exhibit several distinctive optical properties, e.g. with increasing the numbers of the multi-layer nanoparticles, the scattering efficiency red shifts, and the intensity of scattering enhances accordingly. It is interesting to find out that slicing an Ag-layer into multi-layers leads to stronger scattering intensity and more 'hot spots' or regions of stronger field enhancement. This property of plasmon resonance of surface Raman scattering has greatly broadened the application scope of Raman spectroscopy. The study of metal surface plasmon resonance characteristics is critical to the further understanding of surface enhanced Raman scattering as well as its applications. (fundamental areas of phenomenology (including applications))

  6. Characterisation of different single and multilayer films using phase modulated spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Das, N.C.; Bhattacharyya, D.; Thakur, S.

    1998-06-01

    Different single layers and multilayer coatings deposited by e-beam evaporation and r.f. sputtering techniques have been characterised by the Phase Modulated Spectroscopic Ellipsometer, installed recently in the Spectroscopy Division, B.A.R.C. The Phase Modulated technique provides a faster and more accurate data acquisition process than the conventional ellipsometry. Measurements have been done on single layers of Cu, Si and ZrO 2 films and on multilayer thin films devices e.g., high reflectivity mirror, beam combiner, beam splitter, narrow band filter etc. consisting of several bilayers of TiO 2 /SiO 2 . The measured Ellipsometry spectra is then fitted with a theoretical spectra generated assuming an appropriate model regarding the sample. The layer thickness and composition have been used as fitting parameters. The optical constants of the substrates have been supplied and a trial dispersion relation have been used for the layers. In case of inhomogeneous layers, trial compositions have been given for the individual components for each layer. The roughness of the layers has been taken into account by assuming the film to be an inhomogeneous mixture of material and voids. The fittings have been done objectively by minimising the squared difference (χ 2 ) between the measured and calculated values of the ellipsometric parameters and thus accurate information have been derived regarding the thickness and optical constants (viz, the refractive index and extinction coefficient) of the different layers, the surface roughness and the inhomogeneities present in the layers. (author)

  7. Contrasting Cloud Composition Between Coupled and Decoupled Marine Boundary Layer Clouds

    Science.gov (United States)

    WANG, Z.; Mora, M.; Dadashazar, H.; MacDonald, A.; Crosbie, E.; Bates, K. H.; Coggon, M. M.; Craven, J. S.; Xian, P.; Campbell, J. R.; AzadiAghdam, M.; Woods, R. K.; Jonsson, H.; Flagan, R. C.; Seinfeld, J.; Sorooshian, A.

    2016-12-01

    Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (E-PEACE 2011, NiCE 2013, BOAS 2015). Decoupled clouds exhibited significantly lower overall mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and sub-cloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Non-refractory sub-micrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Total cloud water mass concentration in coupled clouds was dominated by sodium and chloride, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea salt constituents (e.g., Cl, Na, Mg, K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. These results suggest that an important variable is the extent to which clouds are coupled to the surface layer when interpreting microphysical data relevant to clouds and aerosol particles.

  8. Single fibre and multifibre unit cell analysis of strength and cracking of unidirectional composites

    DEFF Research Database (Denmark)

    Wang, H.W.; Zhou, H.W.; Mishnaevsky, Leon

    2009-01-01

    damageable parts in composites (matrix cracks, fibre/matrix interface damage and fibre fracture) was observed in the simulations. The strength of interface begins to influence the deformation behaviour of the cell only after the fibre is broken. In this case, the higher interface layer strength leads...... to the higher stiffness of the damaged material. The damage in the composites begins by fibre breakage, which causes the interface damage, followed by matrix cracking....

  9. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    CERN Document Server

    Morgado, J; Charas, A; Matos, M; Alcacer, L; Cacialli, F

    2003-01-01

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide.

  10. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    International Nuclear Information System (INIS)

    Morgado, Jorge; Barbagallo, Nunzio; Charas, Ana; Matos, Manuel; Alcacer, Luis; Cacialli, Franco

    2003-01-01

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide

  11. Fabrication of GO/Cement Composites by Incorporation of Few-Layered GO Nanosheets and Characterization of Their Crystal/Chemical Structure and Properties.

    Science.gov (United States)

    Lv, Shenghua; Hu, Haoyan; Zhang, Jia; Luo, Xiaoqian; Lei, Ying; Sun, Li

    2017-12-18

    Original graphene oxide (GO) nanosheets were prepared using the Hummers method and found to easily aggregate in aqueous and cement composites. Using carboxymethyl chitosan (CCS) as a dispersant, few-layered GO nanosheets (1-2 layers) were obtained by forming CCS/GO intercalation composites. The testing results indicated that the few-layered GO nanosheets could uniformly spread, both in aqueous and cement composites. The cement composites were prepared with GO dosages of 0.03%, 0.05% and 0.07% and we found that they had a compact microstructure in the whole volume. A special feature was determined, namely that the microstructures consisted of regular-shaped crystals created by self-crosslinking. The X-ray diffraction (XRD) results indicated that there was a higher number of cement hydration crystals in GO/cement composites. Meanwhile, we also found that partially-amorphous Calcium-Silicate-Hydrate (C-S-H) gel turned into monoclinic crystals. At 28 days, the GO/cement composites reached the maximum compressive and flexural strengths at a 0.05% dosage. These strengths were 176.64 and 31.67 MPa and, compared with control samples, their increased ratios were 64.87% and 149.73%, respectively. Durability parameters, such as penetration, freeze-thaw, carbonation, drying-shrinkage value and pore structure, showed marked improvement. The results indicated that it is possible to obtain cement composites with a compact microstructure and with high performances by introducing CCS/GO intercalation composites.

  12. Growing vertical ZnO nanorod arrays within graphite: efficient isolation of large size and high quality single-layer graphene.

    Science.gov (United States)

    Ding, Ling; E, Yifeng; Fan, Louzhen; Yang, Shihe

    2013-07-18

    We report a unique strategy for efficiently exfoliating large size and high quality single-layer graphene directly from graphite into DMF dispersions by growing ZnO nanorod arrays between the graphene layers in graphite.

  13. Composition, structure and electrical properties of alumina barrier layers grown in fluoride-containing oxalic acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Jagminas, A. [Institute of Chemistry, A. Gostauto 9, LT-01108 Vilnius (Lithuania)], E-mail: jagmin@ktl.mii.lt; Vrublevsky, I. [Department of Microelectricals, Belarusian State University of Informatics and Radioelectricals, 6 Brovka Street, Minsk 220013 (Belarus); Kuzmarskyte, J.; Jasulaitiene, V. [Institute of Chemistry, A. Gostauto 9, LT-01108 Vilnius (Lithuania)

    2008-04-15

    The composition, structure and electrical properties of alumina barrier layers grown by anodic oxidation in F{sup -}-containing (FC) and F{sup -}-free (FF) oxalic acid solutions were studied using the re-anodizing/dissolution technique, Fourier-transformed infrared and X-ray photoelectron spectroscopy. These results confirmed formation in FC anodizing solutions of films structurally different from ones grown in FF oxalic acid baths. It was found that the barrier layer of FC alumina films is composed of two layers differing in the dissolution rate. These differences are related to the formation in the FC electrolyte of a barrier layer composed of a more microporous outer part and a thin, non-porous and non-scalloped inner part consisting of aluminum oxide and aluminum fluoride.

  14. Piezoelectric Performance and Hydrostatic Parameters of Novel 2-2-Type Composites.

    Science.gov (United States)

    Topolov, Vitaly Yu; Bowen, Christopher R; Krivoruchko, Andrey V

    2017-10-01

    This paper provides a detailed study of the structure-piezoelectric property relationships and the hydrostatic response of 2-2-Type composites based on relaxor-ferroelectric 0.72 Pb (Mg 1/3 Nb 2/3 )O 3 -0.28PbTiO 3 single crystal (SC) material. Type I layers in the composite system are represented by a single-domain [111]-poled SC. Changes in the orientation of the crystallographic axes in the Type I layer are undertaken to determine the maximum values of the hydrostatic piezoelectric coefficients d h ∗ , g h ∗ , and e h ∗ , and squared figure of merit d h ∗ g h ∗ of the composite. The Type II layers are a 0-3 composite whereby inclusions of modified PbTiO 3 ceramic are distributed in a polymer matrix. A new effect is described for the first time due to the impact of anisotropic elastic properties of the Type II layers on the hydrostatic piezoelectric response that is coupled with the polarization orientation effect in the Type I layers. Large hydrostatic parameters g h ∗ ≈ 300 -400 mV · m/N, e h ∗ ≈ 40 -45 C/ [Formula: see text], and d h ∗ g h ∗  ∼ 10 -11 Pa -1 are achieved in the composite based on the 0.72 Pb(Mg 1/3 Nb 2/3 )O 3 -0.28PbTiO 3 SC. Examples of the large piezoelectric anisotropy ( |d 33 ∗ /d 3f ∗ | ≥ 5 or | g 33 ∗ /g 3f ∗ | ≥ 5 ) are discussed. The hydrostatic parameters of this novel compositesystem are compared to those of conventional 2-2 piezocomposites.

  15. Geometry effect on the behaviour of single and glue-laminated glass fibre reinforced polymer composite sandwich beams loaded in four-point bending

    International Nuclear Information System (INIS)

    Awad, Ziad K.; Aravinthan, Thiru; Manalo, Allan

    2012-01-01

    Highlights: ► Investigated the behaviour of single and glue-laminated GFRP sandwich beam. ► Effect of shear span to depth was a key factor affecting the overall behaviour. ► Comparison with prediction models gave reasonable results in specific regions. ► A failure map was developed to identify the shear and flexural failures of panels. -- Abstract: The research investigated the behaviour of single and glue laminated glass fibre reinforced polymer (GFRP) composite sandwich beams considering different spans and beam cross sections. The composite sandwich beams with different thicknesses (1, 2, 3, 4, and 5 sandwich layers) have been tested in four-point static flexural test with different shear span to depth ratio (a/d). The a/d ratios showed a direct effect on the flexural and shear behaviour. The capacity of the beam decreased with increasing a/d. Various failure modes were observed including core crushing, core shear, and top skin compression failure. The failure mode map developed based on the experimental finding and analytical prediction indicated that the failure mode is affected by the a/d with the number of glue laminated panels.

  16. Shear bond strengths of an indirect composite layering material to a tribochemically silica-coated zirconia framework material.

    Science.gov (United States)

    Iwasaki, Taro; Komine, Futoshi; Fushiki, Ryosuke; Kubochi, Kei; Shinohara, Mitsuyo; Matsumura, Hideo

    2016-01-01

    This study evaluated shear bond strengths of a layering indirect composite material to a zirconia framework material treated with tribochemical silica coating. Zirconia disks were divided into two groups: ZR-PRE (airborne-particle abrasion) and ZR-PLU (tribochemical silica coating). Indirect composite was bonded to zirconia treated with one of the following primers: Clearfil Ceramic Primer (CCP), Clearfil Mega Bond Primer with Clearfil Porcelain Bond Activator (MGP+Act), ESPE-Sil (SIL), Estenia Opaque Primer, MR. Bond, Super-Bond PZ Primer Liquid A with Liquid B (PZA+PZB), and Super-Bond PZ Primer Liquid B (PZB), or no treatment. Shear bond testing was performed at 0 and 20,000 thermocycles. Post-thermocycling shear bond strengths of ZR-PLU were higher than those of ZR-PRE in CCP, MGP+Act, SIL, PZA+PZB, and PZB groups. Application of silane yielded better durable bond strengths of a layering indirect composite material to a tribochemically silica-coated zirconia framework material.

  17. Simple single-emitting layer hybrid white organic light emitting with high color stability

    Science.gov (United States)

    Nguyen, C.; Lu, Z. H.

    2017-10-01

    Simultaneously achieving a high efficiency and color quality at luminance levels required for solid-state lighting has been difficult for white organic light emitting diodes (OLEDs). Single-emitting layer (SEL) white OLEDs, in particular, exhibit a significant tradeoff between efficiency and color stability. Furthermore, despite the simplicity of SEL white OLEDs being its main advantage, the reported device structures are often complicated by the use of multiple blocking layers. In this paper, we report a highly simplified three-layered white OLED that achieves a low turn-on voltage of 2.7 V, an external quantum efficiency of 18.9% and power efficiency of 30 lm/W at 1000 cd/cm2. This simple white OLED also shows good color quality with a color rendering index of 75, CIE coordinates (0.42, 0.46), and little color shifting at high luminance. The device consists of a SEL sandwiched between a hole transport layer and an electron transport layer. The SEL comprises a thermally activated delayer fluorescent molecule having dual functions as a blue emitter and as a host for other lower energy emitters. The improved color stability and efficiency in such a simple device structure is explained as due to the elimination of significant energy barriers at various organic-organic interfaces in the traditional devices having multiple blocking layers.

  18. Modeling Transverse Cracking in Laminates With a Single Layer of Elements Per Ply

    Science.gov (United States)

    Van Der Meer, Frans P.; Davila, Carlos G.

    2012-01-01

    The objective of the present paper is to investigate the ability of mesolevel X-FEM models with a single layer of elements per ply to capture accurately all aspects of matrix cracking. In particular, we examine whether the model can predict the insitu ply thickness effect on crack initiation and propagation, the crack density as a function of strain, the strain for crack saturation, and the interaction between delamination and transverse cracks. Results reveal that the simplified model does not capture correctly the shear-lag relaxation of the stress field on either side of a crack, which leads to an overprediction of the crack density. It is also shown, however, that after onset of delamination many of the inserted matrix cracks close again, and that the density of open cracks becomes similar to the density predicted by the detailed model. The degree to which the spurious cracks affect the global response is quantified and the reliability of the mesolevel approach with a single layer of elements per ply is discussed.

  19. Multi-layer composite mechanical modeling for the inhomogeneous biofilm mechanical behavior.

    Science.gov (United States)

    Wang, Xiaoling; Han, Jingshi; Li, Kui; Wang, Guoqing; Hao, Mudong

    2016-08-01

    Experiments showed that bacterial biofilms are heterogeneous, for example, the density, the diffusion coefficient, and mechanical properties of the biofilm are different along the biofilm thickness. In this paper, we establish a multi-layer composite model to describe the biofilm mechanical inhomogeneity based on unified multiple-component cellular automaton (UMCCA) model. By using our model, we develop finite element simulation procedure for biofilm tension experiment. The failure limit and biofilm extension displacement obtained from our model agree well with experimental measurements. This method provides an alternative theory to study the mechanical inhomogeneity in biological materials.

  20. Nanotube liquid crystal elastomers: photomechanical response and flexible energy conversion of layered polymer composites

    International Nuclear Information System (INIS)

    Fan, Xiaoming; King, Benjamin C; Loomis, James; Panchapakesan, Balaji; Campo, Eva M; Hegseth, John; Cohn, Robert W; Terentjev, Eugene

    2014-01-01

    Elastomeric composites based on nanotube liquid crystals (LCs) that preserve the internal orientation of nanotubes could lead to anisotropic physical properties and flexible energy conversion. Using a simple vacuum filtration technique of fabricating nanotube LC films and utilizing a transfer process to poly (dimethyl) siloxane wherein the LC arrangement is preserved, here we demonstrate unique and reversible photomechanical response of this layered composite to excitation by near infra-red (NIR) light at ultra-low nanotube mass fractions. On excitation by NIR photons, with application of small or large pre-strains, significant expansion or contraction of the sample occurs, respectively, that is continuously reversible and three orders of magnitude larger than in pristine polymer. Schlieren textures were noted in these LC composites confirming long range macroscopic nematic order of nanotubes within the composites. Order parameters of LC films ranged from S optical  = 0.51–0.58 from dichroic measurements. Film concentrations, elastic modulus and photomechanical stress were all seen to be related to the nematic order parameter. For the same nanotube concentration, the photomechanical stress was almost three times larger for the self-assembled LC nanotube actuator compared to actuator based on randomly oriented carbon nanotubes. Investigation into the kinetics of photomechanical actuation showed variation in stretching exponent β with pre-strains, concentration and orientation of nanotubes. Maximum photomechanical stress of ∼0.5 MPa W −1 and energy conversion of ∼0.0045% was achieved for these layered composites. The combination of properties, namely, optical anisotropy, reversible mechanical response to NIR excitation and flexible energy conversion all in one system accompanied with low cost makes nanotube LC elastomers important for soft photochromic actuation, energy conversion and photo-origami applications. (paper)

  1. Dimensions and Global Twist of Single-Layer DNA Origami Measured by Small-Angle X-ray Scattering.

    Science.gov (United States)

    Baker, Matthew A B; Tuckwell, Andrew J; Berengut, Jonathan F; Bath, Jonathan; Benn, Florence; Duff, Anthony P; Whitten, Andrew E; Dunn, Katherine E; Hynson, Robert M; Turberfield, Andrew J; Lee, Lawrence K

    2018-06-04

    The rational design of complementary DNA sequences can be used to create nanostructures that self-assemble with nanometer precision. DNA nanostructures have been imaged by atomic force microscopy and electron microscopy. Small-angle X-ray scattering (SAXS) provides complementary structural information on the ensemble-averaged state of DNA nanostructures in solution. Here we demonstrate that SAXS can distinguish between different single-layer DNA origami tiles that look identical when immobilized on a mica surface and imaged with atomic force microscopy. We use SAXS to quantify the magnitude of global twist of DNA origami tiles with different crossover periodicities: these measurements highlight the extreme structural sensitivity of single-layer origami to the location of strand crossovers. We also use SAXS to quantify the distance between pairs of gold nanoparticles tethered to specific locations on a DNA origami tile and use this method to measure the overall dimensions and geometry of the DNA nanostructure in solution. Finally, we use indirect Fourier methods, which have long been used for the interpretation of SAXS data from biomolecules, to measure the distance between DNA helix pairs in a DNA origami nanotube. Together, these results provide important methodological advances in the use of SAXS to analyze DNA nanostructures in solution and insights into the structures of single-layer DNA origami.

  2. Prediction of transmittance spectra for transparent composite electrodes with ultra-thin metal layers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhao; Alford, T. L., E-mail: TA@asu.edu [School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Khorasani, Arash Elhami [ON Semiconductor Corp., Phoenix, Arizona 85005 (United States); Theodore, N. D. [CHD-Fab, Freescale Semiconductor Inc., Tempe, Arizona 85224 (United States); Dhar, A. [Intel Corp., 2501 NW 229th Ave, Hillsboro, Oregon 97124 (United States)

    2015-11-28

    Recent interest in indium-free transparent composite-electrodes (TCEs) has motivated theoretical and experimental efforts to better understand and enhance their electrical and optical properties. Various tools have been developed to calculate the optical transmittance of multilayer thin-film structures based on the transfer-matrix method. However, the factors that affect the accuracy of these calculations have not been investigated very much. In this study, two sets of TCEs, TiO{sub 2}/Au/TiO{sub 2} and TiO{sub 2}/Ag/TiO{sub 2}, were fabricated to study the factors that affect the accuracy of transmittance predictions. We found that the predicted transmittance can deviate significantly from measured transmittance for TCEs that have ultra-thin plasmonic metal layers. The ultrathin metal layer in the TCE is typically discontinuous. When light interacts with the metallic islands in this discontinuous layer, localized surface plasmons are generated. This causes extra light absorption, which then leads to the actual transmittance being lower than the predicted transmittance.

  3. Investigation of the compositional depth profile in epitaxial submicrometer layers of AIIIBV heterostructures

    International Nuclear Information System (INIS)

    Baumbach, T.; Bruehl, H.G.; Rhan, H.; Pietsch, U.

    1988-01-01

    The compositional depth profile in semiconductor heterostructures can be determined from X-ray diffraction patterns. Different grading profiles were studied through theoretical simulations with regard to their features in the rocking curve. It was found that the thickness and the grading of a particular layer cannot be determined independently of each other. A linear grading gives rise to an increased peak width of the layer diffraction peak whereas an exponential grading can be detected from the damping of high-order interference fringes. The exponential model can be applied to determine the abruptness of the heterointerfaces. The proposed evaluation method of experimental rocking curves includes the case of overlapping peaks of the layer and the substrate diffraction. The simulation results are discussed for a GaAs/Ga 1-x Al x As/GaAs[100] double heterostructure. When the experimental resolution is taken into account, the sensitivity of the interface width determination was 100-200 A. (orig.)

  4. Band Alignment at GaN/Single-Layer WSe2 Interface

    KAUST Repository

    Tangi, Malleswararao

    2017-02-21

    We study the band discontinuity at the GaN/single-layer (SL) WSe2 heterointerface. The GaN thin layer is epitaxially grown by molecular beam epitaxy on chemically vapor deposited SL-WSe2/c-sapphire. We confirm that the WSe2 was formed as an SL from structural and optical analyses using atomic force microscopy, scanning transmission electron microscopy, micro-Raman, absorbance, and microphotoluminescence spectra. The determination of band offset parameters at the GaN/SL-WSe2 heterojunction is obtained by high-resolution X-ray photoelectron spectroscopy, electron affinities, and the electronic bandgap values of SL-WSe2 and GaN. The valence band and conduction band offset values are determined to be 2.25 ± 0.15 and 0.80 ± 0.15 eV, respectively, with type II band alignment. The band alignment parameters determined here provide a route toward the integration of group III nitride semiconducting materials with transition metal dichalcogenides (TMDs) for designing and modeling of their heterojunction-based electronic and optoelectronic devices.

  5. Band Alignment at GaN/Single-Layer WSe2 Interface

    KAUST Repository

    Tangi, Malleswararao; Mishra, Pawan; Tseng, Chien-Chih; Ng, Tien Khee; Hedhili, Mohamed N.; Anjum, Dalaver H.; Alias, Mohd Sharizal; Wei, Nini; Li, Lain-Jong; Ooi, Boon S.

    2017-01-01

    We study the band discontinuity at the GaN/single-layer (SL) WSe2 heterointerface. The GaN thin layer is epitaxially grown by molecular beam epitaxy on chemically vapor deposited SL-WSe2/c-sapphire. We confirm that the WSe2 was formed as an SL from structural and optical analyses using atomic force microscopy, scanning transmission electron microscopy, micro-Raman, absorbance, and microphotoluminescence spectra. The determination of band offset parameters at the GaN/SL-WSe2 heterojunction is obtained by high-resolution X-ray photoelectron spectroscopy, electron affinities, and the electronic bandgap values of SL-WSe2 and GaN. The valence band and conduction band offset values are determined to be 2.25 ± 0.15 and 0.80 ± 0.15 eV, respectively, with type II band alignment. The band alignment parameters determined here provide a route toward the integration of group III nitride semiconducting materials with transition metal dichalcogenides (TMDs) for designing and modeling of their heterojunction-based electronic and optoelectronic devices.

  6. Single particle composition measurements of artificial Calcium Carbonate aerosols

    Science.gov (United States)

    Zorn, S. R.; Mentel, T. F.; Schwinger, T.; Croteau, P. L.; Jayne, J.; Worsnop, D. R.; Trimborn, A.

    2012-12-01

    Mineral dust, with an estimated total source from natural and anthropogenic emissions of up to 2800 Tg/yr, is one of the two largest contributors to total aerosol mass, with only Sea salt having a similar source strength (up to 2600 Tg/yr). The composition of dust particles varies strongly depending on the production process and, most importantly, the source location. Therefore, the composition of single dust particles can be used both to trace source regions of air masses as well as to identify chemical aging processes. Here we present results of laboratory studies on generating artificial calcium carbonate (CaCO3) particles, a model compound for carbonaceous mineral dust particles. Particles were generated by atomizing an aqueous hydrogen carbonate solution. Water was removed using a silica diffusion dryer., then the particles were processed in an oven at temperatures up to 900°C, converting the hydrogen carbonate to its anhydrous form. The resulting aerosol was analyzed using an on-line single particle laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF). The results confirm the conversion to calcium carbonate, and validate that the produced particles indeed can be used as a model compound for carbonaceous dust aerosols.

  7. Interfacial layers evolution during annealing in Ti-Al multi-laminated composite processed using hot press and roll bonding

    Science.gov (United States)

    Assari, A. H.; Eghbali, B.

    2016-09-01

    Ti-Al multi-laminated composites have great potential in high strength and low weight structures. In the present study, tri-layer Ti-Al composite was synthesized by hot press bonding under 40 MPa at 570 °C for 1 h and subsequent hot roll bonding at about 450 °C. This process was conducted in two accumulative passes to 30% and to 67% thickness reduction in initial and final passes, respectively. Then, the final annealing treatments were done at 550, 600, 650, 700 and 750 °C for 2, 4 and 6 h. Investigations on microstructural evolution and thickening of interfacial layers were performed by scanning electron microscopes, energy dispersive spectrometer, X-ray diffraction and micro-hardness tests. The results showed that the thickening of diffusion layers corresponds to amount of deformation. In addition to thickening of the diffusion layers, the thickness of aluminum layers decreased and after annealing treatment at 750 °C for 6 h the aluminum layers were consumed entirely, which occurred because of the enhanced interdiffusion of Ti and Al elements. Scanning electron microscope equipped with energy dispersive spectrometer showed that the sequence of interfacial layers as Ti3Al-TiAl-TiAl2-TiAl3 which are believed to be the result of thermodynamic and kinetic of phase formation. Micro-hardness results presented the variation profile in accordance with the sequence of intermetallic phases and their different structures.

  8. Single-crystal micromachining using multiple fusion-bonded layers

    Science.gov (United States)

    Brown, Alan; O'Neill, Garry; Blackstone, Scott C.

    2000-08-01

    Multi-layer structures have been fabricated using Fusion bonding. The paper shows void free layers of between 2 and 100 microns that have been bonded to form multi-layer structures. Silicon layers have been bonded both with and without interfacial oxide layers.

  9. Contrast and Raman spectroscopy study of single- and few-layered charge density wave material: 2H-TaSe2

    Science.gov (United States)

    Hajiyev, Parviz; Cong, Chunxiao; Qiu, Caiyu; Yu, Ting

    2013-01-01

    In this article, we report the first successful preparation of single- and few-layers of tantalum diselenide (2H-TaSe2) by mechanical exfoliation technique. Number of layers is confirmed by white light contrast spectroscopy and atomic force microscopy (AFM). Vibrational properties of the atomically thin layers of 2H-TaSe2 are characterized by micro-Raman spectroscopy. Room temperature Raman measurements demonstrate MoS2-like spectral features, which are reliable for thickness determination. E1g mode, usually forbidden in backscattering Raman configuration is observed in the supported TaSe2 layers while disappears in the suspended layers, suggesting that this mode may be enabled because of the symmetry breaking induced by the interaction with the substrate. A systematic in-situ low temperature Raman study, for the first time, reveals the existence of incommensurate charge density wave phase transition in single and double-layered 2H-TaSe2 as reflected by a sudden softening of the second-order broad Raman mode resulted from the strong electron-phonon coupling (Kohn anomaly). PMID:24005335

  10. The Effects of Disturbance History on Ground-Layer Plant Community Composition in British Columbia

    Directory of Open Access Journals (Sweden)

    Michael Ton

    2016-05-01

    Full Text Available Plant communities are sensitive to perturbations and may display alternative recovery pathways depending on disturbance history. In sub-boreal lodgepole pine forests of central interior British Columbia, Canada, fire and logging are two widespread landscape disturbances that overlap in many regions. We asked whether cumulative, short-interval disturbance from logging and fire resulted in different ground-layer plant communities than resulted from fire alone. Using field-collected data, we compared the taxonomic composition and functional traits of 3-year old plant communities that were either harvested 6-to-13 years prior, or not harvested prior to being burned in a large stand-replacing fire. The taxonomic composition diverged between the two treatments, driven primarily by differences in a few key indicator species such as Petasites frigidus and Vaccinium membranaceum. Analysis of individual species’ morphological traits indicated that only a few species vary in size in relation to disturbance history. Our data suggest that a history of forest harvest leaves a subtle footprint on post-fire ground-layer plant communities at early stages of succession.

  11. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure

    KAUST Repository

    Tiraferri, Alberto

    2011-02-01

    Osmotically driven membrane processes have the potential to treat impaired water sources, desalinate sea/brackish waters, and sustainably produce energy. The development of a membrane tailored for these processes is essential to advance the technology to the point that it is commercially viable. Here, a systematic investigation of the influence of thin-film composite membrane support layer structure on forward osmosis performance is conducted. The membranes consist of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation. By systematically varying the conditions used during the casting of the polysulfone layer, an array of support layers with differing structures was produced. The role that solvent quality, dope polymer concentration, fabric layer wetting, and casting blade gate height play in the support layer structure formation was investigated. Using a 1M NaCl draw solution and a deionized water feed, water fluxes ranging from 4 to 25Lm-2h-1 with consistently high salt rejection (>95.5%) were produced. The relationship between membrane structure and performance was analyzed. This study confirms the hypothesis that the optimal forward osmosis membrane consists of a mixed-structure support layer, where a thin sponge-like layer sits on top of highly porous macrovoids. Both the active layer transport properties and the support layer structural characteristics need to be optimized in order to fabricate a high performance forward osmosis membrane. © 2010 Elsevier B.V.

  12. An optical, electrical and ultrasonic layered single sensor for ingredient measurement in liquid

    International Nuclear Information System (INIS)

    Kimoto, A; Kitajima, T

    2010-01-01

    In this paper, an optical, electrical and ultrasonic layered single sensor is proposed as a new, non-invasive sensing method for the measurement of ingredients in liquid, particularly in the food industry. In the proposed sensor, the photo sensors and the PVDF films with the transparent conductive electrode are layered and the optical properties of the liquid are measured by a light emitting diode (LED) and a phototransistor (PT). In addition, the electrical properties are measured by indium tin oxide (ITO) film electrodes as the transparent conductive electrodes of PVDF films arranged on the surfaces of the LED and PT. Moreover, the ultrasonic properties are measured by PVDF films. Thus, the optical, electrical and ultrasonic properties in the same space of the liquid can be simultaneously measured at a single sensor. To test the sensor experimentally, three parameters of the liquid—such as concentrations of yellow color, sodium chloride (NaCl) and ethanol in distilled water—were estimated using the measurement values of the optical, electrical and ultrasonic properties obtained with the proposed sensor. The results suggested that it is possible to estimate the three ingredient concentrations in the same space of the liquid from the optical, electrical and ultrasonic properties measured by the proposed single sensor, although there are still some problems such as measurement accuracy that must be solved

  13. Variation in the Optical Properties of the SiC-SiO2 Composite Antireflection Layer in Crystalline Silicon Solar Cells by Annealing

    Science.gov (United States)

    Jannat, Azmira; Li, Zhen Yu; Akhter, M. Shaheer; Yang, O.-Bong

    2017-11-01

    This study showed the effects of annealing on a sol-gel-derived SiC-SiO2 composite antireflection (AR) layer and investigated the optical and photovoltaic properties of crystalline silicon (Si) solar cells. The SiC-SiO2 composite AR coating showed a considerable decrease in reflectance from 7.18% to 3.23% at varying annealing temperatures of 450-800°C. The refractive indices of the SiC-SiO2 composite AR layer were tuned from 2.06 to 2.45 with the increase in annealing temperature. The analysis of the current density-voltage characteristics indicated that the energy conversion efficiencies of the fabricated Si solar cells gradually increased from 16.99% to 17.73% with increasing annealing temperatures of 450-800°C. The annealing of the SiC-SiO2 composite AR layer in Si solar cells was crucial to improving the optical, morphological, and photovoltaic properties.

  14. Composition of Renaissance paint layers: simultaneous particle induced X-ray emission and backscattering spectrometry.

    Science.gov (United States)

    de Viguerie, L; Beck, L; Salomon, J; Pichon, L; Walter, Ph

    2009-10-01

    Particle induced X-ray emission spectroscopy (PIXE) is now routinely used in the field of cultural heritage. Various setups have been developed to investigate the elemental composition of wood/canvas paintings or of cross-section samples. However, it is not possible to obtain information concerning the quantity of organic binder. Backscattering spectrometry (BS) can be a useful complementary method to overcome this limitation. In the case of paint layers, PIXE brings the elemental composition (major elements to traces) and the BS spectrum can give access to the proportion of pigment and binder. With the use of 3 MeV protons for PIXE and BS simultaneously, it was possible to perform quantitative analysis including C and O for which the non-Rutherford cross sections are intense. Furthermore, with the use of the same conditions for PIXE and BS, the experiment time and the potential damage by the ion beam were reduced. The results obtained with the external beam of the Accélérateur Grand Louvre pour l'Analyse Elementaire (AGLAE) facility on various test painting samples and on cross sections from Italian Renaissance masterpieces are shown. Simultaneous combination of PIXE and BS leads to a complete characterization of the paint layers: elemental composition and proportion of the organic binder have been determined and thus provide useful information about ancient oil painting recipes.

  15. Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions

    NARCIS (Netherlands)

    Neggers, R.A.J.; Ackerman, Andrew S.; Angevine, W. M.; Bazile, Eric; Beau, I.; Blossey, P. N.; Boutle, I. A.; de Bruijn, C.; cheng, A; van der Dussen, J.J.; Fletcher, J.; Dal Gesso, S.; Jam, A.; Kawai, H; Cheedela, S. K.; Larson, V. E.; Lefebvre, Marie Pierre; Lock, A. P.; Meyer, N. R.; de Roode, S.R.; de Rooy, WC; Sandu, I; Xiao, H; Xu, K. M.

    2017-01-01

    Results are presented of the GASS/EUCLIPSE single-column model intercomparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate models for this cloud regime, using

  16. Residual strain evolution during the deformation of single fiber metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Hanan, J.C.; Uestuendag, E.; Clausen, B. [Dept. of Materials Science, California Inst. of Tech., Pasadena, CA (United States); Sivasambu, M.; Beyerlein, I.J. [Theoretical Div., Los Alamos National Lab., Los Alamos, NM (United States); Brown, D.W.; Bourke, M.A.M. [Materials Science and Technology Div., Los Alamos National Lab., Los Alamos, NM (United States)

    2002-07-01

    Successful application of metal matrix composites often requires strength and lifetime predictions that account for the deformation of each phase. Yet, the deformation of individual phases in composites usually differs significantly from their respective monolithic behaviors. An approach is presented that quantifies the deformation parameters of each phase using neutron diffraction measurements before, during, and after failure under tensile loading in model composites consisting of a single alumina fiber embedded in an aluminum matrix. The evolution of residual strains after loading was examined including the effects of fiber failure. (orig.)

  17. Improved lumped models for transient combined convective and radiative cooling of multi-layer composite slabs

    International Nuclear Information System (INIS)

    An Chen; Su Jian

    2011-01-01

    Improved lumped parameter models were developed for the transient heat conduction in multi-layer composite slabs subjected to combined convective and radiative cooling. The improved lumped models were obtained through two-point Hermite approximations for integrals. Transient combined convective and radiative cooling of three-layer composite slabs was analyzed to illustrate the applicability of the proposed lumped models, with respect to different values of the Biot numbers, the radiation-conduction parameter, the dimensionless thermal contact resistances, the dimensionless thickness, and the dimensionless thermal conductivity. It was shown by comparison with numerical solution of the original distributed parameter model that the higher order lumped model (H 1,1 /H 0,0 approximation) yielded significant improvement of average temperature prediction over the classical lumped model. In addition, the higher order (H 1,1 /H 0,0 ) model was applied to analyze the transient heat conduction problem of steel-concrete-steel sandwich plates. - Highlights: → Improved lumped models for convective-radiative cooling of multi-layer slabs were developed. → Two-point Hermite approximations for integrals were employed. → Significant improvement over classical lumped model was achieved. → The model can be applied to high Biot number and high radiation-conduction parameter. → Transient heat conduction in steel-concrete-steel sandwich pipes was analyzed as an example.

  18. Comparative study of hand sewn single layer anastomosis of dog's bowel Estudo comparativo das anastomoses manuais em plano único do intestino delgado de cães

    OpenAIRE

    João Luiz Moreira Coutinho Azevedo; Octávio Hypólito; Otávio Cansanção Azevedo; Otávio Monteiro Becker Jr.; Dalmer Faria Freire

    2008-01-01

    BACKGROUND: Two-layer intestinal anastomosis increases the inflammatory response while single-layer anastomosis results in a better wound healing. However the four main kinds of stitches which may be chosen in performing single layer intestinal sutures never before had been comparatively studied. AIM: To compare the four more commonly used types of single layer surgical anastomosis sutures of the digestive tract. METHODS: Six mongrel dogs were operated, each one receiving two anastomosis: one...

  19. Reversible Single-Crystal-to-Single-Crystal Structural Transformation in a Mixed-Ligand 2D Layered Metal-Organic Framework: Structural Characterization and Sorption Study

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Wang

    2017-12-01

    Full Text Available A 3D supramolecular network, [Cd(bipy(C4O4(H2O2]·3H2O (1 (bipy = 4,4′-bipyridine and C4O42− = dianion of H2C4O4, constructed by mixed-ligand two-dimensional (2D metal-organic frameworks (MOFs has been reported and structurally determined by the single-crystal X-ray diffraction method and characterized by other physicochemical methods. In 1, the C4O42− and bipy both act as bridging ligands connecting the Cd(II ions to form a 2D layered MOF, which are then extended to a 3D supramolecular network via the mutually parallel and interpenetrating arrangements among the 2D-layered MOFs. Compound 1 shows a two-step dehydration process with weight losses of 11.0% and 7.3%, corresponding to the weight-loss of three guest and two coordinated water molecules, respectively, and exhibits an interesting reversible single-crystal-to-single-crystal (SCSC structural transformation upon de-hydration and re-hydration for guest water molecules. The SCSC structural transformation have been demonstrated and monitored by single-crystal and X-ray powder diffraction, and thermogravimetic analysis studies.

  20. Learning from Natural Nacre: Constructing Layered Polymer Composites with High Thermal Conductivity.

    Science.gov (United States)

    Pan, Guiran; Yao, Yimin; Zeng, Xiaoliang; Sun, Jiajia; Hu, Jiantao; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2017-09-27

    Inspired by the microstructures of naturally layered and highly oriented materials, such as natural nacre, we report a thermally conductive polymer composite that consists of epoxy resin and Al 2 O 3 platelets deposited with silver nanoparticles (AgNPs). Owing to their unique two-dimensional structure, Al 2 O 3 platelets are stacked together via a hot-pressing technique, resulting in a brick-and-mortar structure, which is similar to the one of natural nacre. Moreover, the AgNPs deposited on the surfaces of the Al 2 O 3 platelets act as bridges that link the adjacent Al 2 O 3 platelets due to the reduced melting point of the AgNPs. As a result, the polymer composite with 50 wt % filler achieves a maximum thermal conductivity of 6.71 W m -1 K -1 . In addition, the small addition of AgNPs (0.6 wt %) minimally affects the electrical insulation of the composites. Our bioinspired approach will find uses in the design and fabrication of thermally conductive materials for thermal management in modern electronics.

  1. Double-layer Electromagnetic Wave Absorber Based on Carbon Nanotubes Doped with La(NO33 and Fe3O4 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Cuiling HOU

    2017-08-01

    Full Text Available Double-layer structure absorbing materials based on the impedance matching principle and transmission line theory can effectively improve the electromagnetic wave absorbing properties. In this paper, the electro-magnetic wave absorbing properties of double-layer absorbers (2 mm thickness, where multiwall carbon nanotube (MWCNT-La(NO33/polyvinyl chloride (PVC and MWCNT-Fe3O4/PVC composites had been taken turns as the absorption layer and matching layer, were investigated in 2 – 18 GHz range. The absorbing properties of single- and double-layer structure and different each-layer thickness with two types of combinations were compared. The results showed that the design of double-layer structure for composites could effectively broaden the absorption frequency area, and increase the absorption intensity. When MWCNT-La(NO33/PVC composite were used as absorption layers with 0.6 mm thickness, the absorption bandwidth (< – 15 dB or > 97 % of double-layer composite was the widest, reaching a maximum of about 3.36 GHz, and the absorption peak value was also the lowest about – 46.02 dB at 16.24 GHz.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16279

  2. Preparation and characterization of poly(lactic acid)/ zinc-aluminium layered double hydroxide nano composites

    International Nuclear Information System (INIS)

    Eili Mahboobeh; Wan Mohd Zin Wan Yunus; Zobir Hossein; Mansor Ahmad; Norazowa Ibrahim

    2009-01-01

    Full text: Poly (lactic acid)/ stearate - zinc aluminum layered double hydroxide/ (PLA/ SZnAl LDH) nano composites were prepared via solution intercalation process using a modified ZnAl LDH. The anionic clay Zn 3 Al-NO 3 -LDH was prepared by a co-precipitation method and then modified with stearate ions by ion exchange process. Stearate-ZnAl LDH particles were then homogeneously dispersed in PLA matrix by a solution casting method. The pristine and modified ZnAl LDH was characterized by X-ray diffraction (XRD) and Fourier transforms infrared (FTIR) spectroscopy which suggested that the modification was successful. The XRD analysis showed that during modification of LDH, the basal spacing increased from 8.83 Angstrom to 40.1 Angstrom. The PLA/ ZnAl LDH nano composites were characterized by tensile testing and XRD. The obtained nano composites showed dramatic enhancements in elongation at break as compared to those of the pure PLA. XRD results indicated that the materials formed are nano composites. (author)

  3. Effect of Fiber Layers on the Fracture Resistance of Fiber Reinforced Composite Bridges

    Directory of Open Access Journals (Sweden)

    A Fazel

    2011-08-01

    Full Text Available Introduction: The purpose of this in vitro study was to introduce the fiber reinforced composite bridges and evaluate the most suitable site and position for placement of fibers in order to get maximum strength. Methods: The study included 20 second premolars and 20 second molars selected for fabricating twenty fiber reinforced composite bridges. Twenty specimens were selected for one fiber layer and the remaining teeth for two fiber layers. In the first group, fibers were placed in the inferior third and in the second group, fibers were placed in both the middle and inferior third region. After tooth preparation, the restorations were fabricated, thermocycled and then loaded with universal testing machine in the middle of the pontics with crosshead speed of 1mm/min. Data was analyzed by Kolmogorov-Smirnov test, Independent sample t test and Kaplan-Meier test. Mode of failure was evaluated using stereomicroscope. Results: Mean fracture resistance for the first and second groups was 1416±467N and 1349±397N, respectively. No significant differences were observed between the groups (P>0.05.In the first group, 5 specimens had delamintation and 5 specimens had detachment between fibers and resin composite. In the second group, there were 4 and 6 delaminations and detachments, respectively. There was no fracture within the fiber. Conclusion: In the fiber reinforced fixed partial dentures, fibers reinforce the tensile side of the connectors but placement of additional fibers at other sites does not increase the fracture resistance of the restoration.

  4. Increasing the luminous efficiency of an MEH-PPV based PLED using salmon DNA and single walled carbon nanotube

    International Nuclear Information System (INIS)

    Madhwal, Devinder; Singh, Inderpreet; Kumar, Jitender; Bhatia, C.S.; Bhatnagar, P.K.; Mathur, P.C.

    2011-01-01

    The combined effect of a salmon deoxyribonucleic acid (DNA)-based electron blocking layer and a single walled carbon nanotube (SWCNT) composite-based electron transport layer on the performance of a poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) polymer light emitting diode (PLED) has been examined. The SWCNT network in the composite layer improves electron injection from cathode and the DNA blocks these high mobility electrons at the electron blocking layer-polymer interface, leading to high luminance from the device. The luminous efficiency of the PLED is increased ∼20 times compared to that of a PLED using only MEH-PPV. - Highlights: → We report fabrication of a high luminous efficiency MEH-PPV based polymer LED. → Salmon DNA-CTMA layer is used to block injected electrons in the polymer layer. → MEH-PPV-SWCNT composite is used to transport electrons in the polymer layer. → The luminous efficiency of the polymer LED thereby improves about 20 times.

  5. Liquid-phase exfoliation of chemical vapor deposition-grown single layer graphene and its application in solution-processed transparent electrodes for flexible organic light-emitting devices

    International Nuclear Information System (INIS)

    Wu, Chaoxing; Li, Fushan; Wu, Wei; Chen, Wei; Guo, Tailiang

    2014-01-01

    Efficient and low-cost methods for obtaining high performance flexible transparent electrodes based on chemical vapor deposition (CVD)-grown graphene are highly desirable. In this work, the graphene grown on copper foil was exfoliated into micron-size sheets through controllable ultrasonication. We developed a clean technique by blending the exfoliated single layer graphene sheets with conducting polymer to form graphene-based composite solution, which can be spin-coated on flexible substrate, forming flexible transparent conducting film with high conductivity (∼8 Ω/□), high transmittance (∼81% at 550 nm), and excellent mechanical robustness. In addition, CVD-grown-graphene-based polymer light emitting diodes with excellent bendable performances were demonstrated

  6. Facile preparation of layered double hydroxide/MoS{sub 2}/poly(vinyl alcohol) composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Keqing, E-mail: zhoukq@cug.edu.cn [Faculty of Engineering, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan, Hubei, 430074 (China); Hu, Yixin [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Liu, Jiajia [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026 (China); Gui, Zhou, E-mail: zgui@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026 (China); Jiang, Saihua [School of Mechanical and Automotive Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510641 (China); Tang, Gang [School of Architecture and Civil Engineering, Anhui University of Technology, 59 Hudong Road, Ma' anshan, Anhui, 243002 (China)

    2016-08-01

    In present study, the layered double hydroxide/MoS{sub 2} hybrids are facilely synthesized by self-assembly of exfoliated MoS{sub 2} nanosheets and layered double hydroxide nanoplates via electrostatic interaction, with the aim of combining their physical and chemical functionalities to form a promising nanofiller for flame retardancy in polymer composites. The structure and morphology of the layered double hydroxide/MoS{sub 2} hybrids are probed by X-ray diffraction and transmission electron microscopy. Subsequently, the hybrids are incorporated into poly (vinyl alcohol) to serve as reinforcements. The flame retardant efficiency of MoS{sub 2} nanosheets in poly (vinyl alcohol) is significantly enhanced after the incorporation of layered double hydroxide nanoplates, which can be explained by the forming of a compact and uniform char during combustion. - Highlights: • The LDH/MoS{sub 2} hybrids were facilely synthesized by self-assembly method. • The flame retardant efficiency of LDH/MoS{sub 2} hybrids in PVA was significantly enhanced. • It is a promising strategy for improving the flame retardant efficiency of MoS{sub 2}.

  7. Slater-Koster Tight-Binding parametrization of single and few-layer Black-Phosphorus from first-principles calculations

    Science.gov (United States)

    Menezes, Marcos; Capaz, Rodrigo

    Black Phosphorus (BP) is a promising material for applications in electronics, especially due to the tuning of its band gap by increasing the number of layers. In single-layer BP, also called Phosphorene, the P atoms form two staggered chains bonded by sp3 hybridization, while neighboring layers are bonded by Van-der-Waals interactions. In this work, we present a Tight-Binding (TB) parametrization of the electronic structure of single and few-layer BP, based on the Slater-Koster model within the two-center approximation. Our model includes all 3s and 3p orbitals, which makes this problem more complex than that of graphene, where only 2pz orbitals are needed for most purposes. The TB parameters are obtained from a least-squares fit of DFT calculations carried on the SIESTA code. We compare the results for different basis-sets used to expand the ab-initio wavefunctions and discuss their applicability. Our model can fit a larger number of bands than previously reported calculations based on Wannier functions. Moreover, our parameters have a clear physical interpretation based on chemical bonding. As such, we expect our results to be useful in a further understanding of multilayer BP and other 2D-materials characterized by strong sp3 hybridization. CNPq, FAPERJ, INCT-Nanomateriais de Carbono.

  8. Healable Composites

    Science.gov (United States)

    2012-03-28

    oriented fibers and healable polymer matrix 4. Laminate pre-preg layers to form composite panels with minimal voids & defects 5. Characterize the...composites: determine mechanical and crack healing properties (4, 5) Composite (3) Prepreg (2) Polymer (1) Furan (1) Maleimide Healable Composites...Develop pre-preg system of oriented fibers and healable polymer matrix 4. Laminate pre-preg layers to form composite panels with minimal voids & defects

  9. In situ fabrication of nickel aluminum-layered double hydroxide nanosheets/hollow carbon nanofibers composite as a novel electrode material for supercapacitors

    Science.gov (United States)

    He, Fang; Hu, Zhibiao; Liu, Kaiyu; Zhang, Shuirong; Liu, Hongtao; Sang, Shangbin

    2014-12-01

    This paper introduces a new design route to fabricate nickel aluminum-layered double hydroxide (NiAl-LDH) nanosheets/hollow carbon nanofibers (CNFs) composite through an in situ growth method. The NiAl-LDH thin layers which grow on hollow carbon nanofibers have an average thickness of 13.6 nm. The galvanostatic charge-discharge test of the NiAl-LDH/CNFs composite yields an impressive specific capacitance of 1613 F g-1 at 1 A g-1 in 6 M KOH solution, the composite shows a remarkable specific capacitance of 1110 F g-1 even at a high current density of 10 A g-1. Furthermore, the composite remains a specific capacitance of 1406 F g-1 after 1000 cycles at 2 A g-1, indicating the composite has excellent high-current capacitive behavior and good cycle stability in compared to pristine NiAl-LDH.

  10. Transparent Flash Memory using Single Ta2O5 Layer for both Charge Trapping and Tunneling Dielectrics

    KAUST Repository

    Hota, Mrinal Kanti

    2017-06-08

    We report reproducible multibit transparent flash memory in which a single solution-derived Ta2O5 layer is used simultaneously as charge trapping and tunneling layer. This is different from conventional flash cells, where two different dielectric layers are typically used. Under optimized programming/erasing operations, the memory device shows excellent programmable memory characteristics with a maximum memory window of ~10 V. Moreover, the flash memory device shows a stable 2-bit memory performance, good reliability, including data retention for more than 104 sec and endurance performance for more than 100 cycles. The use of a common charge trapping and tunneling layer can simplify advanced flash memory fabrication.

  11. Transparent Flash Memory using Single Ta2O5 Layer for both Charge Trapping and Tunneling Dielectrics

    KAUST Repository

    Hota, Mrinal Kanti; Alshammari, Fwzah H.; Salama, Khaled N.; Alshareef, Husam N.

    2017-01-01

    We report reproducible multibit transparent flash memory in which a single solution-derived Ta2O5 layer is used simultaneously as charge trapping and tunneling layer. This is different from conventional flash cells, where two different dielectric layers are typically used. Under optimized programming/erasing operations, the memory device shows excellent programmable memory characteristics with a maximum memory window of ~10 V. Moreover, the flash memory device shows a stable 2-bit memory performance, good reliability, including data retention for more than 104 sec and endurance performance for more than 100 cycles. The use of a common charge trapping and tunneling layer can simplify advanced flash memory fabrication.

  12. Interaction of single and multi-layer graphene oxide with fetal bovine serum: assessing the protein corona formation

    Energy Technology Data Exchange (ETDEWEB)

    Franqui, Lidiane Silva; Farias, Marcelo Alexandre de; Portugal, Rodrigo Villares; Costa, Carlos Alberto; Leme, Adriana Franco Paes; Martinez, Diego Stefani Teodoro, E-mail: lidiane.franqui@pos.ft.unicamp.br [Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP (Brazil); Coluci, Vitor Rafael [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2016-07-01

    Full text: When in contact with biological systems, nanomaterials surface adsorbs biomolecules present in the biological medium, mainly proteins, yielding a molecular coating 'protein corona' which affects the biological response and toxicity of the nanomaterials. Several factors can influence the protein corona formation, such as nanomaterial physicochemical properties and the nature of biological medium. In this work, we have performed a comparative study between the single and multi-layer graphene oxide nanomaterials (SL-GO and ML-GO, respectively) after their interaction with DMEM cell culture medium containing fetal bovine serum (FBS). Bare GOs and FBS protein corona-coated GOs were characterized using dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), atomic force microscopy (AFM), cryogenic transmission electron microscopy (Cryo-TEM) and X-ray photoelectron spectroscopy (XPS). The protein corona composition was characterized by gel electrophoresis (SDS-PAGE) and mass spectrometry (LC-MS/MS). Our results showed that, after interaction with FBS, GO particle size increased due to the protein corona formation. Besides, the presence of proteins also has significantly increased the dispersion stability of SLGO and ML-GO over time. Whereas the main proteins have been identified in both SL-GO and ML-GO, SL-GO has adsorbed larger amounts of proteins than ML-GO. Finally, the number of GO layers influences its interactions with FBS proteins and dispersion stability in DMEM medium. These results point out implications for in vitro cytotoxicity assessment and biomedical applications of these promising carbon nanomaterials. (author)

  13. Interaction of single and multi-layer graphene oxide with fetal bovine serum: assessing the protein corona formation

    International Nuclear Information System (INIS)

    Franqui, Lidiane Silva; Farias, Marcelo Alexandre de; Portugal, Rodrigo Villares; Costa, Carlos Alberto; Leme, Adriana Franco Paes; Martinez, Diego Stefani Teodoro; Coluci, Vitor Rafael

    2016-01-01

    Full text: When in contact with biological systems, nanomaterials surface adsorbs biomolecules present in the biological medium, mainly proteins, yielding a molecular coating 'protein corona' which affects the biological response and toxicity of the nanomaterials. Several factors can influence the protein corona formation, such as nanomaterial physicochemical properties and the nature of biological medium. In this work, we have performed a comparative study between the single and multi-layer graphene oxide nanomaterials (SL-GO and ML-GO, respectively) after their interaction with DMEM cell culture medium containing fetal bovine serum (FBS). Bare GOs and FBS protein corona-coated GOs were characterized using dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), atomic force microscopy (AFM), cryogenic transmission electron microscopy (Cryo-TEM) and X-ray photoelectron spectroscopy (XPS). The protein corona composition was characterized by gel electrophoresis (SDS-PAGE) and mass spectrometry (LC-MS/MS). Our results showed that, after interaction with FBS, GO particle size increased due to the protein corona formation. Besides, the presence of proteins also has significantly increased the dispersion stability of SLGO and ML-GO over time. Whereas the main proteins have been identified in both SL-GO and ML-GO, SL-GO has adsorbed larger amounts of proteins than ML-GO. Finally, the number of GO layers influences its interactions with FBS proteins and dispersion stability in DMEM medium. These results point out implications for in vitro cytotoxicity assessment and biomedical applications of these promising carbon nanomaterials. (author)

  14. Meso-modeling of Carbon Fiber Composite for Crash Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shih-Po; Chen, Yijung; Zeng, Danielle; Su, Xuming

    2017-04-06

    In the conventional approach, the material properties for crash safety simulations are typically obtained from standard coupon tests, where the test results only provide single layer material properties used in crash simulations. However, the lay-up effects for the failure behaviors of the real structure were not considered in numerical simulations. Hence, there was discrepancy between the crash simulations and experimental tests. Consequently, an intermediate stage is required for accurate predictions. Some component tests are required to correlate the material models in the intermediate stage. In this paper, a Mazda Tube under high-impact velocity is chosen as an example for the crash safety analysis. The tube consists of 24 layers of uni-directional (UD) carbon fiber composite materials, in which 4 layers are perpendicular to, while the other layers are parallel to the impact direction. An LS-DYNA meso-model was constructed with orthotropic material models counting for the single-layer material behaviors. Between layers, a node-based tie-break contact was used for modeling the delamination of the composite material. Since fiber directions are not single-oriented, the lay-up effects could be an important effect. From the first numerical trial, premature material failure occurred due to the use of material parameters obtained directly from the coupon tests. Some parametric studies were conducted to identify the cause of the numerical instability. The finding is that the material failure strength used in the numerical model needs to be enlarged to stabilize the numerical model. Some hypothesis was made to provide the foundation for enlarging the failure strength and the corresponding experiments will be conducted to validate the hypothesis.

  15. Towards single photon generation using NV centers in diamond coupled to thin layer optical waveguides

    International Nuclear Information System (INIS)

    Toshiyuki Tashima

    2014-01-01

    Single photon emitters like the nitrogen-vacancy (NV) center in diamond are important for quantum communication such as quantum cryptography and quantum metrology. In this context, e.g. tapered optical nano-fibers are a promising approach as they allow efficient coupling of single photons into a single spatial mode. Yet, integration of such fibers in a compact integrated quantum circuit is demanding. Here we propose a NV defect center in diamond as a single photon emitter coupled to a thin layer photonic waveguide. The benefit is to allow smaller size devices while having a similar strong evanescent field like tapered nano-optical fibers. We present numerical simulations and fabrication steps of such structures. (author)

  16. Automatic identification of single- and/or few-layer thin-film material

    DEFF Research Database (Denmark)

    2014-01-01

    One or more digital representations of single- (101) and/or few-layer (102) thin- film material are automatically identified robustly and reliably in a digital image (100), the digital image (100) having a predetermined number of colour components, by - determining (304) a background colour...... component of the digital image (100) for each colour component, and - determining or estimating (306) a colour component of thin-film material to be identified in the digital image (100) for each colour component by obtaining a pre-determined contrast value (C R; C G; C B) for each colour component...

  17. Behavior of single lap composite bolted joint under traction loading: Experimental investigation

    Science.gov (United States)

    Awadhani, L. V.; Bewoor, Anand

    2018-04-01

    Composite bolted joints are preferred connection in the composite structures to facilitate the dismantling for the replacements/ maintenance work. The joint behavior under tractive forces has been studied in order to understand the safety of the structure designed. The main objective of this paper is to investigate the behavior of single-lap joints in carbon fiber reinforced epoxy composites under traction loading conditions. The experiments were designed to identify the effect of bolt diameter, stacking sequence and loading rate on the properties of the joint. The experimental results show that the parameters influence the joint performance significantly.

  18. Magnetic properties of soft layer/FePt-MgO exchange coupled composite Perpendicular recording media

    Institute of Scientific and Technical Information of China (English)

    Yin Jin-Hua; Takao Suzuki; Pan Li-Qing

    2008-01-01

    The magnetic properties of exchange coupled composite(ECC)media that are composed of perpendicular magnetic recording media FePt-MgO and two kinds of soft layers have been studied by using an x-ray diffractometer,a polar Kerr magneto-optical system(PMOKE)and a vibrating sample magnetometer(VSM).The results show that ECC media can reduce the coercivities of perpendicular magnetic recording media FePt-MgO.The ECC media with granular-type soft layers have weaker exchange couplings between magnetic grains and the magnetization process,for ECC media of this kind mainly follow the Stoner-Wohlfarth model.

  19. Polymer/Layered Silicate Nano composites

    International Nuclear Information System (INIS)

    Bakhit, M.E.E.H.

    2012-01-01

    Polymer–clay nano composites have attracted the attention of many researchers and experimental results are presented in a large number of recent papers and patents because of the outstanding mechanical properties and low gas permeabilities that are achieved in many cases. Polymer-clay nano composites are a new class of mineral-field polymer that contain relatively small amounts (<10%) of nanometer-sized clay particles. Polymer/clay nano composites have their origin in the pioneering research conducted at Toyota Central Research Laboratories and the first historical record goes back to 1987. The matrix was nylon-6 and the filler MMT. Because of its many advantages such as high mechanical properties, good gas barrier, flame retardation, etc. polymer/clay nano composites have been intensely investigated and is currently the subject of many research programs. Nano composite materials are commercially important and several types of products with different shapes and applications including food packaging films and containers, engine parts, dental materials, etc. are now available in markets. A number of synthesis routes have been developed in the recent years to prepare these materials, which include intercalation of polymers or prepolymers from solution, in-situ polymerization, melt intercalation etc. In this study, new nano composite materials were produced from the components of rubber (Nbr, SBR and EPDM) as the polymeric matrix and organically modified quaternary alkylammonium montmorillonite in different contents (3, 5, 7, and 10 phr) as the filler by using an extruder then, the rubber nano composite sheets were irradiated at a dose of 0, 50, 75, 100 and 150 KGy using Electron beam Irradiation technique as a crosslinking agent. These new materials can be characterized by using various analytical techniques including X-ray diffractometer XRD, Thermogravimetric analyzer TGA, scanning electron microscope (SEM), transmission electron microscope (TEM),Fourier transform

  20. Automated Fiber Placement of PEEK/IM7 Composites with Film Interleaf Layers

    Science.gov (United States)

    Hulcher, A. Bruce; Banks, William I., III; Pipes, R. Byron; Tiwari, Surendra N.; Cano, Roberto J.; Johnston, Norman J.; Clinton, R. G., Jr. (Technical Monitor)

    2001-01-01

    The incorporation of thin discrete layers of resin between plies (interleafing) has been shown to improve fatigue and impact properties of structural composite materials. Furthermore, interleafing could be used to increase the barrier properties of composites used as structural materials for cryogenic propellant storage. In this work, robotic heated-head tape placement of PEEK/IM7 composites containing a PEEK polymer film interleaf was investigated. These experiments were carried out at the NASA Langley Research Center automated fiber placement facility. Using the robotic equipment, an optimal fabrication process was developed for the composite without the interleaf. Preliminary interleaf processing trials indicated that a two-stage process was necessary; the film had to be tacked to the partially-placed laminate then fully melted in a separate operation. Screening experiments determined the relative influence of the various robotic process variables on the peel strength of the film-composite interface. Optimization studies were performed in which peel specimens were fabricated at various compaction loads and roller temperatures at each of three film melt processing rates. The resulting data were fitted with quadratic response surfaces. Additional specimens were fabricated at placement parameters predicted by the response surface models to yield high peel strength in an attempt to gage the accuracy of the predicted response and assess the repeatability of the process. The overall results indicate that quality PEEK/lM7 laminates having film interleaves can be successfully and repeatability fabricated by heated head automated fiber placement.

  1. Determination of the composition of surface optical layers prepared with the use of rare earth and zirconium oxides

    International Nuclear Information System (INIS)

    Mishchenko, V.T.; Shilova, L.P.; Shkol'nikova, T.M.

    1991-01-01

    Simple titrimetric and gravimetric methods for determination of optical oxide layers (rare earth and zirconium oxides), sputtered on glass or quartz sublayer, have been developed. The minimal determined oxide mass in surface layers is equal to 0.01 mg in titrimetric determination and 0.1 mg - in gravimetric one. It is shown that composition of films and pellets, used for film sputtering, is identical

  2. Seawater Durability of Nano-Montmorillonite Modified Single-Lap Joining Epoxy Composite Laminates

    OpenAIRE

    ULUS, Hasan; KAYBAL, Halil Burak; DEMİR, Okan; TATAR, Ahmet Caner; SENYURT, Muhammed Ali; AVCI, Ahmet

    2018-01-01

    The objective of this study was to investigate of nano-montmorillonite modified epoxy composite single-lap bonded joints, after being exposed to seawater immersion in order to understand the effect of seawater environment on their performance. To prepare the nano adhesives, nano montmorillonite (2 wt %) was incorporated into epoxy resin. Composite bonded specimens which manufactured with VARIM (Vacuum Assisted Resin Infusion Method) were prepared accordance with ASTM D5868-01 and immersed in ...

  3. Structure characterization of Pd/Co/Pd tri-layer films epitaxially grown on MgO single-crystal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tobari, Kousuke, E-mail: tobari@futamoto.elect.chuo-u.ac.jp; Ohtake, Mitsuru; Nagano, Katsumasa; Futamoto, Masaaki

    2011-09-30

    Pd/Co/Pd tri-layer films were prepared on MgO substrates of (001), (111), and (011) orientations at room temperature by ultra high vacuum rf magnetron sputtering. The detailed film structures around the Co/Pd and the Pd/Co interfaces are investigated by reflection high energy electron diffraction. Pd layers of (001){sub fcc}, (111){sub fcc}, and (011){sub fcc} orientations epitaxially grow on the respective MgO substrates. Strained fcc-Co(001) single-crystal layers are formed on the Pd(001){sub fcc} layers by accommodating the fairly large lattice mismatch between the Co and the Pd layers. On the Co layers,, Pd polycrystalline layers are formed. When Co films are formed on the Pd(111){sub fcc} and the Pd(011){sub fcc} layers, atomic mixing is observed around the Co/Pd interfaces and fcc-CoPd alloy phases are coexisting with Co crystals. The Co crystals formed on the Pd(111){sub fcc} layers consist of hcp(0001) + fcc(111) and Pd(111){sub fcc} epitaxial layers are formed on the Co layers. Co crystals epitaxially grow on the Pd(011){sub fcc} layers with two variants, hcp(11-bar 00) and fcc(111). On the Co layers, Pd(011){sub fcc} epitaxial layers are formed.

  4. Electron-Hole Asymmetry of Spin Injection and Transport in Single-Layer Graphene

    OpenAIRE

    Han, Wei; Wang, W. H.; Pi, K.; McCreary, K. M.; Bao, W.; Li, Yan; Miao, F.; Lau, C. N.; Kawakami, R. K.

    2009-01-01

    Spin-dependent properties of single-layer graphene (SLG) have been studied by non-local spin valve measurements at room temperature. Gate voltage dependence shows that the non-local magnetoresistance (MR) is proportional to the conductivity of the SLG, which is the predicted behavior for transparent ferromagnetic/nonmagnetic contacts. While the electron and hole bands in SLG are symmetric, gate voltage and bias dependence of the non-local MR reveal an electron-hole asymmetry in which the non-...

  5. Plasma immersion ion implantation: duplex layers from a single process

    International Nuclear Information System (INIS)

    Hutchings, R.; Collins, G.A.; Tendys, J.

    1992-01-01

    Plasma immersion ion implantation (PI 3 ) is an alternative non-line-of-sight technique for implanting ions directly from a plasma which surrounds the component to be treated. In contrast to plasma source ion implantation, the PI 3 system uses an inductively coupled r.f. plasma. It is shown that nitrogen can be retained during implantation at elevated temperatures, even for unalloyed steels. This allows controlled diffusion of nitrogen to greater depths, thereby improving the load bearing capacity of the implanted layer. Components can be heated directly, using the energy deposited by the incident ions during the pulsed implantation. The necessary temperature control can be accomplished simply by regulating the frequency and length of the high voltage pulses applied to the component. Chemical depth profiles and microstructural data obtained from H13 tool steel are used to show that PI 3 can, in a single process, effectively produce a duplex subsurface structure. This structure consists of an outer non-equilibrium layer typical of nitrogen implantation (containing in excess of 20 at.% nitrogen) backed by a substantial diffusion zone of much lower nitrogen content. The relationship between implantation temperature and the resultant subsurface microstructure is explored. (orig.)

  6. Single component Mn-doped perovskite-related CsPb2ClxBr5-x nanoplatelets with a record white light quantum yield of 49%: a new single layer color conversion material for light-emitting diodes.

    Science.gov (United States)

    Wu, Hao; Xu, Shuhong; Shao, Haibao; Li, Lang; Cui, Yiping; Wang, Chunlei

    2017-11-09

    Single component nanocrystals (NCs) with white fluorescence are promising single layer color conversion media for white light-emitting diodes (LED) because the undesirable changes of chromaticity coordinates for the mixture of blue, green and red emitting NCs can be avoided. However, their practical applications have been hindered by the relative low photoluminescence (PL) quantum yield (QY) for traditional semiconductor NCs. Though Mn-doped perovskite nanocube is a potential candidate, it has been unable to realize a white-light emission to date. In this work, the synthesis of Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets with a pure white emission from a single component is reported. Unlike Mn-doped perovskite nanocubes with insufficient energy transfer efficiency, the current reported Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets show a 10 times higher energy transfer efficiency from perovskite to Mn impurities at the required emission wavelengths (about 450 nm for perovskite emission and 580 nm for Mn emission). As a result, the Mn/perovskite dual emission intensity ratio surprisingly elevates from less than 0.25 in case of Mn-doped nanocubes to 0.99 in the current Mn-doped CsPb 2 Cl x Br 5-x nanoplatelets, giving rise to a pure white light emission with Commission Internationale de l'Eclairage (CIE) color coordinates of (0.35, 0.32). More importantly, the highest PL QY for Mn-doped perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets is up to 49%, which is a new record for white-emitting nanocrystals with single component. These highly luminescent nanoplatelets can be blended with polystyrene (PS) without changing the white light emission but dramatically improving perovskite stability. The perovskite-PS composites are available not only as a good solution processable coating material for assembling LED, but also as a superior conversion material for achieving white light LED with a single conversion layer.

  7. Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinay; Miura, Norio [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan)

    2006-12-01

    PANI/SWCNT composites were prepared by electrochemical polymerisation of polyaniline onto SWCNTs and their capacitive performance was evaluated by means of cyclic voltammetry and charge-discharge cycling in 1M H{sub 2}SO{sub 4} electrolyte. The PANI/SWCNT composites single electrode showed much higher specific capacitance, specific energy and specific power than pure PANI and SWCNTs. The highest specific capacitance, specific power and specific energy values of 485F/g, 228Wh/kg and 2250W/kg were observed for 73wt.% PANI deposited onto SWCNTs. PANI/SWCNT composites also showed long cyclic stability. Based upon the variations in the surface morphologies and specific capacitance of the composite, a mechanism is proposed to explain enhancement in the capacitive characteristics. The PANI/SWCNT composites have demonstrated the potential as excellent electrode materials for application in high performance supercapacitors. (author)

  8. Adsorption of metal adatoms on single-layer phosphorene.

    Science.gov (United States)

    Kulish, Vadym V; Malyi, Oleksandr I; Persson, Clas; Wu, Ping

    2015-01-14

    Single- or few-layer phosphorene is a novel two-dimensional direct-bandgap nanomaterial. Based on first-principles calculations, we present a systematic study on the binding energy, geometry, magnetic moment and electronic structure of 20 different adatoms adsorbed on phosphorene. The adatoms cover a wide range of valences, including s and p valence metals, 3d transition metals, noble metals, semiconductors, hydrogen and oxygen. We find that adsorbed adatoms produce a rich diversity of structural, electronic and magnetic properties. Our work demonstrates that phosphorene forms strong bonds with all studied adatoms while still preserving its structural integrity. The adsorption energies of adatoms on phosphorene are more than twice higher than on graphene, while the largest distortions of phosphorene are only ∼0.1-0.2 Å. The charge carrier type in phosphorene can be widely tuned by adatom adsorption. The unique combination of high reactivity with good structural stability is very promising for potential applications of phosphorene.

  9. Hemodynamic monitoring in different cortical layers with a single fiber optical system

    Science.gov (United States)

    Yu, Linhui; Noor, M. Sohail; Kiss, Zelma H. T.; Murari, Kartikeya

    2018-02-01

    Functional monitoring of highly-localized deep brain structures is of great interest. However, due to light scattering, optical methods have limited depth penetration or can only measure from a large volume. In this research, we demonstrate continuous measurement of hemodynamics in different cortical layers in response to thalamic deep brain stimulation (DBS) using a single fiber optical system. A 200-μm-core-diameter multimode fiber is used to deliver and collect light from tissue. The fiber probe can be stereotaxically implanted into the brain region of interest at any depth to measure the di use reflectance spectra from a tissue volume of 0.02-0.03 mm3 near the fiber tip. Oxygenation is then extracted from the reflectance spectra using an algorithm based on Monte Carlo simulations. Measurements were performed on the surface (cortical layer I) and at 1.5 mm depth (cortical layer VI) of the motor cortex in anesthetized rats with thalamic DBS. Preliminary results revealed the oxygenation changes in response to DBS. Moreover, the baseline as well as the stimulus-evoked change in oxygenation were different at the two depths of cortex.

  10. Peak divergence in the curve of magnetoelectric coefficient versus dc bias magnetic field at resonance region for bi-layer magnetostrictive/piezoelectric composites

    Directory of Open Access Journals (Sweden)

    Z. J. Zuo

    2013-12-01

    Full Text Available Magnetoelectric (ME coefficient dependence on the bias magnetic field at resonance frequencies for the bi-layered bonded Terfenol-D/Pb(Zr,TiO3 composite was investigated. The resonance frequency decreases first and then increases with the bias magnetic field (HDC, showing a “V” shape in the range of 0 ∼ 5 kOe. Below the resonance frequency, the pattern of ME coefficient dependence on the HDC shows a single peak, but splits into a double-peak pattern when the testing frequency increases into a certain region. With increasing the frequency, a divergent evolution of the HDC patterns was observed. Domain motion and ΔE effect combined with magnetostriction-piezoelectric coupling effect were employed to explain this experimental result.

  11. Eddy current and total power loss separation in the iron-phosphate-polyepoxy soft magnetic composites

    International Nuclear Information System (INIS)

    Taghvaei, A.H.; Shokrollahi, H.; Janghorban, K.; Abiri, H.

    2009-01-01

    This work investigates the magnetic properties of iron-phosphate-polyepoxy soft magnetic composite materials. FTIR spectra, EDX analysis, distribution maps, X-ray diffraction pattern and density measurements show that the particles surface layer contains a thin layer of nanocrystalline/amorphous phosphate with high coverage of powders surface. In this paper, a formula for calculating the eddy current loss and total loss components by loss separation method is presented and finally the different parts of power losses are calculated. The results show that, the contribution of eddy current in the bulk material for single coating layer (k b = 0.18) is higher in comparison with double coating layer (k b = 0.09). Moreover, iron-phosphate-polyepoxy composites (P = 0.000004f 2 ) have lower power loss in comparison with iron-phosphate composites (P = 0.00002f 2 ).

  12. Sm-doped CeO2 single buffer layer for YBCO coated conductors by polymer assisted chemical solution deposition (PACSD) method

    International Nuclear Information System (INIS)

    Li, G.; Pu, M.H.; Sun, R.P.; Wang, W.T.; Wu, W.; Zhang, X.; Yang, Y.; Cheng, C.H.; Zhao, Y.

    2008-01-01

    An over 150 nm thick Sm 0.2 Ce 0.8 O 1.9-x (SCO) single buffer layer has been deposited on bi-axially textured NiW (2 0 0) alloy substrate. Highly in-plane and out-of-plane oriented, dense, smooth and crack free SCO single layer has been obtained via a polymer-assisted chemical solution deposition (PACSD) approach. YBCO thin film has been deposited equally via a PACSD route on the SCO-buffered NiW, the as grown YBCO yielding a sharp transition at T c0 = 87 K as well as J c (0 T, 77 K) ∼ 1 MA/cm 2 . These results indicates that RE (lanthanides other than Ce) doping may be an effective approach to improve the critical thickness of solution derived CeO 2 film, which renders it a promising candidate as single buffer layer for YBCO coated conductors

  13. Sodium deoxycholate functionalized graphene and its composites with polyvinyl alcohol

    International Nuclear Information System (INIS)

    Wang Lanwei; Liao Ruijuan; Tang Zhenghai; Lei Yanda; Guo Baochun

    2011-01-01

    Sodium deoxycholate (SDC), a kind of bile derivative, is used to noncovalently functionalize graphene. Stable and high concentration (up to 20 mg ml -1 ) of graphene colloid is obtained. The stabilization mechanism is revealed to be hydrophobic interaction, electrostatic repulsion and hydrogen bonding. Single-layer and few-layer graphene are obtained in the colloid. Subsequently, the obtained graphene sheets are incorporated into a polyvinyl alcohol (PVA) matrix by solution casting to fabricate PVA/graphene composites. Morphological observations substantiate the homogeneous dispersion of graphene in the PVA matrix and strong interfacial adhesion between them. Significant improvements in tensile strength and modulus of the composite films are observed.

  14. NiO/nanoporous graphene composites with excellent supercapacitive performance produced by atomic layer deposition

    International Nuclear Information System (INIS)

    Chen, Caiying; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Qin, Yong; Huang, Peipei; Li, Ping; Fan, Jinchuan; Song, Weiguo

    2014-01-01

    Nickel oxide (NiO) is a promising electrode material for supercapacitors because of its low cost and high theoretical specific capacitance of 2573 F g −1 . However, the low electronic conductivity and poor cycling stability of NiO limit its practical applications. To overcome these limitations, an efficient atomic layer deposition (ALD) method is demonstrated here for the fabrication of NiO/nanoporous graphene (NG) composites as electrode materials for supercapacitors. ALD allows uniform deposition of NiO nanoparticles with controlled sizes on the surface of NG, thus offering a novel route to design NiO/NG composites for supercapacitor applications with high surface areas and greatly improved electrical conductivity and cycle stability. Electrochemical measurements reveal that the NiO/NG composites obtained by ALD exhibited excellent specific capacitance of up to ∼1005.8 F g −1 per mass of the composite electrode (the specific capacitance value is up to ∼1897.1 F g −1 based on the active mass of NiO), and stable performance after 1500 cycles. Furthermore, electrochemical performance of the NiO/NG composites is found to strongly depend on the size of NiO nanoparticles. (paper)

  15. Evaluating Mechanical Properties of Few Layers MoS2 Nanosheets-Polymer Composites

    Directory of Open Access Journals (Sweden)

    Muhammad Bilal Khan

    2017-01-01

    Full Text Available The reinforcement effects of liquid exfoliated molybdenum disulphide (MoS2 nanosheets, dispersed in polystyrene (PS matrix, are evaluated here. The range of composites (0~0.002 volume fraction (Vf MoS2-PS is prepared via solution casting. Size selected MoS2 nanosheets (3~4 layers, with a lateral dimension L 0.5~1 µm, have improved Young’s modulus up to 0.8 GPa for 0.0002 Vf MoS2-PS as compared to 0.2 GPa observed for PS only. The ultimate tensile strength (UTS is improved considerably (~×3 with a minute addition of MoS2 nanosheets (0.00002 Vf. The MoS2 nanosheets lateral dimension and number of layers are approximated using atomic force microscopy (AFM. The composites formation is confirmed using X-ray diffraction (XRD and scanning electron microscopy (SEM. Theoretical predicted results (Halpin-Tsai model are well below the experimental findings, especially at lower concentrations. Only at maximum concentrations, the experimental and theoretical results coincide. The high aspect ratio of MoS2 nanosheets, homogeneous dispersion inside polymer, and their probable planar orientation are the possible reasons for the effective stress transfer, resulting in enhanced mechanical characteristics. Moreover, the micro-Vickers hardness (HV of the MoS2-PS is also improved from 19 (PS to 23 (0.002 Vf MoS2-PS as MoS2 nanosheets inclusion may hinder the deformation more effectively.

  16. Electrochemical synthesis, structure and phase composition of nano structured amorphous thin layers of NiW and Ni-Mo

    International Nuclear Information System (INIS)

    Vitina, I.; Lubane, M.; Belmane, V.; Rubene, V.; Krumina, A.

    2006-01-01

    Full text: Nano structured Ni-W thin layers containing W 6-37 wt.% were electrodeposited on a copper substratum. The W content in the layer changes, and it is determined by the electrolyte pH in the range 8.0-9.6 and the cathode current density in the range 1.0-10.0 A/dm 2 . The atomic composition and thermal stability of structure of the electrodeposited thin layers depend for the most part on the conditions of the electrodeposition and less on the W content in the layer. Cracking of the Ni-W layers electrodeposited at the electrolyte pH 8.5 and containing 34-37 wt.% W and 8.5 wt.% W was observed. The cracking increases at heating at 400 deg C for 50 h. On the contrary, no cracking of the Ni-W layer electrodeposited at the electrolyte pH 9.0 and containing 25 wt.% W was observed. The atomic composition of the layer remains practically unchanged at heating at 400 deg C for 50 h. The layer binds oxygen up to 7 wt.%. According to X-ray diffraction, in spite of the W content 35-37 wt.% in the layer, nano structured layers rather than amorphous layers were obtained which at heating at 400 deg C depending on the W content crystallises as Ni or intermetallic compounds Ni x W y if the W content is approx. 25 wt.%. Amorphous Ni-Mo alloys containing 35-52 wt.% Mo was electrodeposited on copper substratum at the cathode current densities of 0.5-1.5 A/dm2 and the electrolyte pH 6.8-8.6. Formation of thin layer (∼1-2μm) of X-ray amorphous Ni-Mo alloy, the Mo content, the characteristics of structure depend on the electrodeposition process, the electrolyte pH, and the cathode current density. The Ni-Mo layer deposited at the electrolyte pH above 8.6 and below average 6.8 had a nanocrystalline structure rather than characteristics of amorphous structure. Ni- W and Ni-Mo alloys were electrodeposited from citrate electrolyte not containing ammonium ions

  17. Gold Dispersion and Activation on the Basal Plane of Single-Layer MoS2

    KAUST Repository

    Merida, Cindy S.; Le, Duy; Echeverrí a, Elena M.; Nguyen, Ariana E.; Rawal, Takat B; Naghibi Alvillar, Sahar; Kandyba, Viktor; Al-Mahboob, Abdullah; Losovyj, Yaroslav B.; Katsiev, Khabiboulakh; Valentin, Michael D.; Huang, Chun-Yu; Gomez, Michael J.; Lu, I-Hsi; Guan, Alison; Barinov, Alexei; Rahman, Talat S; Dowben, Peter A.; Bartels, Ludwig

    2017-01-01

    Gold islands are typically associated with high binding affinity to adsorbates and catalytic activity. Here we present the growth of such dispersed nanoscale gold islands on single layer MoS2, prepared on an inert SiO2/Si support by chemical vapor deposition (CVD). This study offers a combination of growth process development, optical characterization, photoelectron spectroscopy at sub-micron spatial resolution, and advanced density functional theory modeling for detailed insight into the electronic interaction between gold and single-layer MoS2. In particular, we find the gold density of states in Au/MoS2/SiO2/Si to be far less well-defined than Au islands on other 2-dimensional materials such as graphene, for which we also provide data. We attribute this effect to the presence of heterogeneous Au adatom/MoS2-support interactions within the nanometer-scale gold cluster. As a consequence, theory predicts that CO will exhibit adsorption energies in excess of 1 eV at the Au cluster edges, where the local density of states is dominated by Au 5dz2 symmetry.

  18. Gold Dispersion and Activation on the Basal Plane of Single-Layer MoS2

    KAUST Repository

    Merida, Cindy S.

    2017-12-09

    Gold islands are typically associated with high binding affinity to adsorbates and catalytic activity. Here we present the growth of such dispersed nanoscale gold islands on single layer MoS2, prepared on an inert SiO2/Si support by chemical vapor deposition (CVD). This study offers a combination of growth process development, optical characterization, photoelectron spectroscopy at sub-micron spatial resolution, and advanced density functional theory modeling for detailed insight into the electronic interaction between gold and single-layer MoS2. In particular, we find the gold density of states in Au/MoS2/SiO2/Si to be far less well-defined than Au islands on other 2-dimensional materials such as graphene, for which we also provide data. We attribute this effect to the presence of heterogeneous Au adatom/MoS2-support interactions within the nanometer-scale gold cluster. As a consequence, theory predicts that CO will exhibit adsorption energies in excess of 1 eV at the Au cluster edges, where the local density of states is dominated by Au 5dz2 symmetry.

  19. Phonon Self-Energy Corrections to Nonzero Wave-Vector Phonon Modes in Single-Layer Graphene

    Science.gov (United States)

    Araujo, P. T.; Mafra, D. L.; Sato, K.; Saito, R.; Kong, J.; Dresselhaus, M. S.

    2012-07-01

    Phonon self-energy corrections have mostly been studied theoretically and experimentally for phonon modes with zone-center (q=0) wave vectors. Here, gate-modulated Raman scattering is used to study phonons of a single layer of graphene originating from a double-resonant Raman process with q≠0. The observed phonon renormalization effects are different from what is observed for the zone-center q=0 case. To explain our experimental findings, we explored the phonon self-energy for the phonons with nonzero wave vectors (q≠0) in single-layer graphene in which the frequencies and decay widths are expected to behave oppositely to the behavior observed in the corresponding zone-center q=0 processes. Within this framework, we resolve the identification of the phonon modes contributing to the G⋆ Raman feature at 2450cm-1 to include the iTO+LA combination modes with q≠0 and also the 2iTO overtone modes with q=0, showing both to be associated with wave vectors near the high symmetry point K in the Brillouin zone.

  20. Giant magnetoimpedance in composite wires with insulator layer between non-magnetic core and soft magnetic shell

    International Nuclear Information System (INIS)

    Buznikov, N.A.; Antonov, A.S.; Granovsky, A.B.; Kim, C.G.; Kim, C.O.; Li, X.P.; Yoon, S.S.

    2006-01-01

    A method for calculation of the magnetoimpedance in composite wires having an insulator layer between non-magnetic core and soft magnetic shell is described. It is assumed that the magnetic shell has a helical anisotropy and the driving current flows through the core only. The distribution of eddy currents and expressions for the impedance are found by means of a solution of Maxwell equations taking into account the magnetization dynamics within the shell governed by the Landau-Lifshitz equation. The effect of the insulator layer on the magnetoimpedance is analyzed

  1. Giant magnetoimpedance in composite wires with insulator layer between non-magnetic core and soft magnetic shell

    Energy Technology Data Exchange (ETDEWEB)

    Buznikov, N.A. [Research Center for Advanced Magnetic Materials, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Antonov, A.S. [Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Granovsky, A.B. [Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Kim, C.G. [Research Center for Advanced Magnetic Materials, Chungnam National University, Daejeon 305-764 (Korea, Republic of)]. E-mail: cgkim@cnu.ac.kr; Kim, C.O. [Research Center for Advanced Magnetic Materials, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Li, X.P. [Department of Mechanical Engineering and Division of Bioengineering, National University of Singapore, Singapore 119260 (Singapore); Yoon, S.S. [Department of Physics, Andong National University, Andong 760-749 (Korea, Republic of)

    2006-05-15

    A method for calculation of the magnetoimpedance in composite wires having an insulator layer between non-magnetic core and soft magnetic shell is described. It is assumed that the magnetic shell has a helical anisotropy and the driving current flows through the core only. The distribution of eddy currents and expressions for the impedance are found by means of a solution of Maxwell equations taking into account the magnetization dynamics within the shell governed by the Landau-Lifshitz equation. The effect of the insulator layer on the magnetoimpedance is analyzed.

  2. Deposition of thin layer (monoatomic layer) of barium on gold single crystal surfaces and studies of its oxidation employing X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ahmad, H.; Ahmad, R.; Khalid, M.; Alvi, R.A.

    2007-01-01

    Due to the high reactivity of barium with oxygen, some oxygen diffuse into the bulk to form bulk oxide and it is very difficult to differentiate the oxide over layer and the bulk oxide. To study the oxidation of barium surface layer, a thin layer (monolayer) of barium is developed over gold single crystal surface. Gold is selected as support because it is one of the least reactive metal in transition metal group and have very low probability of reaction with oxygen at room temperature (300K). Nitrous oxide (N/sub 2/O) was used as oxidant. Thin layer of barium was deposited on Au(100) surface. The barium coverage on gold surface was calculated that varied from 0.4 to 1.4 monolayer (ML). Photoelectron spectra for O(ls), N(ls), Ba (3d), and Au (4f) have been recorded on X-ray photoelectron spectrometer at different binding energy region specific for each element. The decomposition of nitrous oxide has been observed in all cases. It has found that nitrogen is evolved in the gaseous state and oxygen is adsorbed/chemisorbed on barium over layer. (author)

  3. The interfacial strength of carbon nanofiber epoxy composite using single fiber pullout experiments.

    Science.gov (United States)

    Manoharan, M P; Sharma, A; Desai, A V; Haque, M A; Bakis, C E; Wang, K W

    2009-07-22

    Carbon nanotubes and nanofibers are extensively researched as reinforcing agents in nanocomposites for their multifunctionality, light weight and high strength. However, it is the interface between the nanofiber and the matrix that dictates the overall properties of the nanocomposite. The current trend is to measure elastic properties of the bulk nanocomposite and then compare them with theoretical models to extract the information on the interfacial strength. The ideal experiment is single fiber pullout from the matrix because it directly measures the interfacial strength. However, the technique is difficult to apply to nanocomposites because of the small size of the fibers and the requirement for high resolution force and displacement sensing. We present an experimental technique for measuring the interfacial strength of nanofiber-reinforced composites using the single fiber pullout technique and demonstrate the technique for a carbon nanofiber-reinforced epoxy composite. The experiment is performed in situ in a scanning electron microscope and the interfacial strength for the epoxy composite was measured to be 170 MPa.

  4. Multiparameter structural optimization of single-walled carbon nanotube composites: toward record strength, stiffness, and toughness.

    Science.gov (United States)

    Shim, Bong Sup; Zhu, Jian; Jan, Edward; Critchley, Kevin; Ho, Szushen; Podsiadlo, Paul; Sun, Kai; Kotov, Nicholas A

    2009-07-28

    Efficient coupling of mechanical properties of SWNTs with the matrix leading to the transfer of unique mechanical properties of SWNTs to the macroscopic composites is a tremendous challenge of today's materials science. The typical mechanical properties of known SWNT composites, such as strength, stiffness, and toughness, are assessed in an introductory survey where we focused on concrete numerical parameters characterizing mechanical properties. Obtaining ideal stress transfer will require fine optimization of nanotube-polymer interface. SWNT nanocomposites were made here by layer-by-layer (LBL) assembly with poly(vinyl alcohol) (PVA), and the first example of optimization in respect to key parameters determining the connectivity at the graphene-polymer interface, namely, degree of SWNT oxidation and cross-linking chemistry, was demonstrated. The resulting SWNT-PVA composites demonstrated tensile strength (σ(ult)) = 504.5 ± 67.3 MPa, stiffness (E) = 15.6 ± 3.8 GPa, and toughness (K) = 121.2 ± 19.2 J/g with maximum values recorded at σ(ult) = 600.1 MPa, E = 20.6 GPa, and K = 152.1 J/g. This represents the strongest and stiffest nonfibrous SWNT composites made to date outperforming other bulk composites by 2-10 times. Its high performance is attributed to both high nanotube content and efficient stress transfer. The resulting LBL composite is also one of the toughest in this category of materials and exceeding the toughness of Kevlar by 3-fold. Our observation suggests that the strengthening and toughening mechanism originates from the synergistic combination of high degree of SWNT exfoliation, efficient SWNT-PVA binding, crack surface roughening, and fairly efficient distribution of local stress over the SWNT network. The need for a multiscale approach in designing SWNT composites is advocated.

  5. Indirect optical crosstalk reduction by highly-doped backside layer in single-photon avalanche diode arrays

    NARCIS (Netherlands)

    Osrečki, Željko; Knežević, Tihomir; Nanver, Lis K.; Suligoj, Tomislav

    2018-01-01

    A method of reducing indirect optical crosstalk in single-photon avalanche diode arrays is investigated by TCAD simulations. The reduction is accomplished by taking advantage of an enhanced optical absorption in a highly-doped Si layer on the backside of the wafer. A simulation environment was

  6. Mechanical Behaviour of 3D Multi-layer Braided Composites: Experimental, Numerical and Theoretical Study

    Science.gov (United States)

    Deng, Jian; Zhou, Guangming; Ji, Le; Wang, Xiaopei

    2017-12-01

    Mechanical properties and failure mechanisms of a newly designed 3D multi-layer braided composites are evaluated by experimental, numerical and theoretical studies. The microstructure of the composites is introduced. The unit cell technique is employed to address the periodic arrangement of the structure. The volume averaging method is used in theoretical solutions while FEM with reasonable periodic boundary conditions and meshing technique in numerical simulations. Experimental studies are also conducted to verify the feasibility of the proposed models. Predicted elastic properties agree well with the experimental data, indicating the feasibility of the proposed models. Numerical evaluation is more accurate than theoretical assessment. Deformations and stress distributions of the unit cell under tension shows displacement and traction continuity, guaranteeing the rationality of the applied periodic boundary conditions. Although compression and tension modulus are close, the compressive strength only reaches 70% of the tension strength. This indicates that the composites can be weakened in compressive loading. Additionally, by analysing the micrograph of fracture faces and strain-stress curves, a brittle failure mechanism is observed both in composites under tension and compression.

  7. Formation of structure, phase composition and properties of electro explosion resistant coatings using electron-beam processing

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, Denis A., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru; Sosnin, Kirill V., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru; Budovskikh, Evgenij A., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru; Gromov, Viktor E., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru; Semin, Alexander P., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru [Siberian State Industrial University, Novokuznetsk, 654007 (Russian Federation)

    2014-11-14

    For the first time, the high intensity electron beam modification of electroexplosion composite coatings of MoSingle-Bond' name='Single-Bond' value='Single-Bond'/>Cu, MoSingle-Bond' name='Single-Bond' value='Single-Bond'/>CSingle-Bond' name='Single-Bond' value='Single-Bond'/>Cu, WSingle-Bond' name='Single-Bond' value='Single-Bond'/>Cu, WSingle-Bond' name='Single-Bond' value='Single-Bond'/>CSingle-Bond' name='Single-Bond' value='Single-Bond'/>Cu and TiB{sub 2}Single-Bond' name='Single-Bond' value='Single-Bond'/>Cu systems was done. The studies of phase and elemental composition, defective structure conditions of these coatings were carried out. The regimes of electron-beam processing making possible to form the dense, specular luster surface layers having a submicrocrystalline structure were revealed. It was established that electron-beam processing of elecroexplosion spraying of layer of elecroexplosion spraying carried out in the regime of melting results in the formation of structurally and contrationally homogeneous surface layer. Investigation of the effect of electron-beam processing of electroexplosion electroerosion resistant coatings on their tribological properties (wear resistanse and coefficient of friction) and electroerosion resistance was done. It was shown that all the examined costings demonstrate the increase of electroerosion resistance in spark erosion up to 10 times.

  8. Formation of structure, phase composition and properties of electro explosion resistant coatings using electron-beam processing

    International Nuclear Information System (INIS)

    Romanov, Denis A.; Sosnin, Kirill V.; Budovskikh, Evgenij A.; Gromov, Viktor E.; Semin, Alexander P.

    2014-01-01

    For the first time, the high intensity electron beam modification of electroexplosion composite coatings of MoSingle-Bond' name='Single-Bond' value='Single-Bond'/>Cu, MoSingle-Bond' name='Single-Bond' value='Single-Bond'/>CSingle-Bond' name='Single-Bond' value='Single-Bond'/>Cu, WSingle-Bond' name='Single-Bond' value='Single-Bond'/>Cu, WSingle-Bond' name='Single-Bond' value='Single-Bond'/>CSingle-Bond' name='Single-Bond' value='Single-Bond'/>Cu and TiB 2 Single-Bond' name='Single-Bond' value='Single-Bond'/>Cu systems was done. The studies of phase and elemental composition, defective structure conditions of these coatings were carried out. The regimes of electron-beam processing making possible to form the dense, specular luster surface layers having a submicrocrystalline structure were revealed. It was established that electron-beam processing of elecroexplosion spraying of layer of elecroexplosion spraying carried out in the regime of melting results in the formation of structurally and contrationally homogeneous surface layer. Investigation of the effect of electron-beam processing of electroexplosion electroerosion resistant coatings on their tribological properties (wear resistanse and coefficient of friction) and electroerosion resistance was done. It was shown that all the examined costings demonstrate the increase of electroerosion resistance in spark erosion up to 10 times

  9. Layer-by-layer assembly of thin film oxygen barrier

    International Nuclear Information System (INIS)

    Jang, Woo-Sik; Rawson, Ian; Grunlan, Jaime C.

    2008-01-01

    Thin films of sodium montmorillonite clay and cationic polyacrylamide were grown on a polyethylene terephthalate film using layer-by-layer assembly. After 30 clay-polymer layers are deposited, with a thickness of 571 nm, the resulting transparent film has an oxygen transmission rate (OTR) below the detection limit of commercial instrumentation ( 2 /day/atm). This low OTR, which is unprecedented for a clay-filled polymer composite, is believed to be due to a brick wall nanostructure comprised of completely exfoliated clay in polymeric mortar. With an optical transparency greater than 90% and potential for microwaveability, this thin composite is a good candidate for foil replacement in food packaging and may also be useful for flexible electronics packaging

  10. Impact of adding a second-layer to a single unlocked closure of Cesarean uterine incision: a randomized controlled trial

    DEFF Research Database (Denmark)

    Rudnicki, Martin; Bennich, G; Wilken-Jensen, C

    2016-01-01

    the criteria and accepted participation. Thirty-eight women were assigned to single-layer and 38 to double-layer unlocked closure technique. Groups were comparable regarding gestational age at delivery, duration of surgery and peroperative blood loss. RMT was without difference between the two groups, both......The purpose of the present study was to investigate short- and long term effects on residual myometrial thickness (RMT) by adding a second-layer to a single unlocked closure of caesarean uterine incision. METHOD: he study was a randomized double-blind controlled trial. Healthy nulliparous scheduled...... for first-time elective Caesarean delivery were operated using a modified version of the Misgav-Ladach surgical technique. The women were examined by abdominal ultrasound before discharge from the maternity ward and by hysterosonography five months post partum. RESULTS: Seventy-six nulliparous met...

  11. Influence of cutting parameters on the depth of subsurface deformed layer in nano-cutting process of single crystal copper.

    Science.gov (United States)

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Su, Hao; Wang, Zhiguo; Xie, Wenkun

    2015-12-01

    Large-scale molecular dynamics simulation is performed to study the nano-cutting process of single crystal copper realized by single-point diamond cutting tool in this paper. The centro-symmetry parameter is adopted to characterize the subsurface deformed layers and the distribution and evolution of the subsurface defect structures. Three-dimensional visualization and measurement technology are used to measure the depth of the subsurface deformed layers. The influence of cutting speed, cutting depth, cutting direction, and crystallographic orientation on the depth of subsurface deformed layers is systematically investigated. The results show that a lot of defect structures are formed in the subsurface of workpiece during nano-cutting process, for instance, stair-rod dislocations, stacking fault tetrahedron, atomic clusters, vacancy defects, point defects. In the process of nano-cutting, the depth of subsurface deformed layers increases with the cutting distance at the beginning, then decreases at stable cutting process, and basically remains unchanged when the cutting distance reaches up to 24 nm. The depth of subsurface deformed layers decreases with the increase in cutting speed between 50 and 300 m/s. The depth of subsurface deformed layer increases with cutting depth, proportionally, and basically remains unchanged when the cutting depth reaches over 6 nm.

  12. Single versus double-layer uterine closure at cesarean: impact on lower uterine segment thickness at next pregnancy.

    Science.gov (United States)

    Vachon-Marceau, Chantale; Demers, Suzanne; Bujold, Emmanuel; Roberge, Stephanie; Gauthier, Robert J; Pasquier, Jean-Charles; Girard, Mario; Chaillet, Nils; Boulvain, Michel; Jastrow, Nicole

    2017-07-01

    Uterine rupture is a potential life-threatening complication during a trial of labor after cesarean delivery. Single-layer closure of the uterus at cesarean delivery has been associated with an increased risk of uterine rupture compared with double-layer closure. Lower uterine segment thickness measurement by ultrasound has been used to evaluate the quality of the uterine scar after cesarean delivery and is associated with the risk of uterine rupture. To estimate the impact of previous uterine closure on lower uterine segment thickness. Women with a previous single low-transverse cesarean delivery were recruited at 34-38 weeks' gestation. Transabdominal and transvaginal ultrasound evaluation of the lower uterine segment thickness was performed by a sonographer blinded to clinical data. Previous operative reports were reviewed to obtain the type of previous uterine closure. Third-trimester lower uterine segment thickness at the next pregnancy was compared according to the number of layers sutured and according to the type of thread for uterine closure, using weighted mean differences and multivariate logistic regression analyses. Of 1613 women recruited, with operative reports available, 495 (31%) had a single-layer and 1118 (69%) had a double-layer closure. The mean third-trimester lower uterine segment thickness was 3.3 ± 1.3 mm and the proportion with lower uterine segment thickness cesarean delivery is associated with a thicker third-trimester lower uterine segment and a reduced risk of lower uterine segment thickness <2.0 mm in the next pregnancy. The type of thread for uterine closure has no significant impact on lower uterine segment thickness. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The effect of fibre layering pattern in resisting bending loads of natural fibre-based hybrid composite materials

    Directory of Open Access Journals (Sweden)

    Jusoh Muhamad Shahirul Mat

    2016-01-01

    Full Text Available The effect of fibre layering pattern and hybridization on the flexural properties of composite hybrid laminates between natural fibres of basalt, jute and flax with synthetic fibre of E-glass reinforced epoxy have been investigated experimentally. Results showed that the effect fibre layering pattern was highly significant on the flexural strength and modulus, which were strongly dependent on the hybrid configuration between sandwich-like (SL and intercalation (IC sequence of fibre layers. In addition, specific modulus based on the variation densities of the hybrid laminates was used to discover the best combination either basalt, jute or flax with E-glass exhibits superior properties concerning on the strength to weight-ratio. Generally, SL sequence of glass/basalt exhibited superior strength and stiffness compared with glass/jute and glass/flax in resisting bending loads. In terms of hybridization effect, glass/jute was found to be the best combination with E-glass compared to the rest of natural fibres investigated in the present study. Hence, the proper stacking sequences and material selection are among predominant factors that influence on mechanical properties and very crucial in designing composite hybrid system to meet the desired requirements.

  14. Organic layer sampling for SST 241-C-103 background, and Data Quality Objectives, and analytical plan

    International Nuclear Information System (INIS)

    Wood, T.W.; Willingham, C.E.; Campbell, J.A.

    1993-08-01

    A layer of organic material floating on the surface of the high level radioactive waste in single-shell tank 241-C-103 has been declared an Unreviewed Safety Question (USQ). This designation is motivated by concern that a ''pool fire'' in this layer could release radioactive material from the tank. This layer is believed to consist largely of Tri-Butyl Phosphate (TBP) and Normal Paraffin Hydrocarbon (NPH), but its composition is not known definitively. Resolution of this USQ hinges on a more complete and detailed understanding of the flammability potential of this layer and vapors that could evolve from it, and to a lesser extent on the propagation and energetics of such a pool ire if initiated, and the source-term associated with a release event following a pool fire. This increased understanding of the risk posed by this layer in turn requires better information on its composition. This report documents a Data Quality Objectives (DQO) study conducted to define this information in detail

  15. Synthesis of Poly(3,4-Ethylenedioxy thiophene)-Poly(Styrene-4-Sulfonate) Composites for Support Fuel Cell Catalyst Layer

    International Nuclear Information System (INIS)

    Eko Sulistiyono; Murni Handayani

    2009-01-01

    Synthesis of poly(3,4-ethylenedioxy thiophene)-poly(styrene-4-sulfonate) composites for support fuel cell catalyst layer are synthesis composites which become fuel cell catalyst support so that catalyst has optimal performance. Main function of composites is support platinum particle for application in fuel cell. This article explains the result of composites production process from ( 3,4 Ethylenedioxy thiophene) and Sodium poly( styrene - 4-sulfonate) using two methods Jingning Shan method (method 1) and Zhigang Qi and Peter G.Pickup method (method 2). Analysis of the synthesis results used Scanning Electron Microscopic –Electron Dispersive X – Ray Spectrophotometer (SEM-EDS ). The analysis result show that both methods produce polymer agglomerate into a sponge-like morphology. Composite from method 1 has morphology, pores and proton transport better than composite produced by method 2. (author)

  16. Strain evolution after fiber failure in a single-fiber metal matrix composite under cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Hanan, Jay C. [Department of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States)]. E-mail: jay.hanan@okstate.edu; Mahesh, Sivasambu [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Uestuendag, Ersan [Department of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States)]. E-mail: ersan@caltech.edu; Beyerlein, Irene J. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Swift, Geoffrey A. [Department of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States); Clausen, Bjorn [Department of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States); Brown, Donald W. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bourke, Mark A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-06-15

    The evolution of in situ elastic strain with cyclic tensile loading in each phase of a single Al{sub 2}O{sub 3}-fiber/aluminum-matrix composite was studied using neutron diffraction (ND). An analytical model appropriate for metal matrix composites (MMCs) was developed to connect the measured axial strain evolution in each phase with the possible micromechanical events that could occur during loading at room temperature: fiber fracture, interfacial slipping, and matrix plastic deformation. Model interpretation showed that the elastic strain evolution in the fiber and matrix was governed by fiber fracture and interface slipping and not by plastic deformation of the matrix, whereas the macroscopic stress-strain response of the composite was influenced by all three. The combined single-fiber composite model and ND experiment introduces a new and quick engineering approach for qualifying the micromechanical response in MMCs due to cyclic loading and fiber fracture.

  17. Strain evolution after fiber failure in a single-fiber metal matrix composite under cyclic loading

    International Nuclear Information System (INIS)

    Hanan, Jay C.; Mahesh, Sivasambu; Uestuendag, Ersan; Beyerlein, Irene J.; Swift, Geoffrey A.; Clausen, Bjorn; Brown, Donald W.; Bourke, Mark A.M.

    2005-01-01

    The evolution of in situ elastic strain with cyclic tensile loading in each phase of a single Al 2 O 3 -fiber/aluminum-matrix composite was studied using neutron diffraction (ND). An analytical model appropriate for metal matrix composites (MMCs) was developed to connect the measured axial strain evolution in each phase with the possible micromechanical events that could occur during loading at room temperature: fiber fracture, interfacial slipping, and matrix plastic deformation. Model interpretation showed that the elastic strain evolution in the fiber and matrix was governed by fiber fracture and interface slipping and not by plastic deformation of the matrix, whereas the macroscopic stress-strain response of the composite was influenced by all three. The combined single-fiber composite model and ND experiment introduces a new and quick engineering approach for qualifying the micromechanical response in MMCs due to cyclic loading and fiber fracture

  18. Temporal and spatial evolution characteristics of disturbance wave in a hypersonic boundary layer due to single-frequency entropy disturbance.

    Science.gov (United States)

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing; Shi, Jianqiang

    2014-01-01

    By using a high-order accurate finite difference scheme, direct numerical simulation of hypersonic flow over an 8° half-wedge-angle blunt wedge under freestream single-frequency entropy disturbance is conducted; the generation and the temporal and spatial nonlinear evolution of boundary layer disturbance waves are investigated. Results show that, under the freestream single-frequency entropy disturbance, the entropy state of boundary layer is changed sharply and the disturbance waves within a certain frequency range are induced in the boundary layer. Furthermore, the amplitudes of disturbance waves in the period phase are larger than that in the response phase and ablation phase and the frequency range in the boundary layer in the period phase is narrower than that in these two phases. In addition, the mode competition, dominant mode transformation, and disturbance energy transfer exist among different modes both in temporal and in spatial evolution. The mode competition changes the characteristics of nonlinear evolution of the unstable waves in the boundary layer. The development of the most unstable mode along streamwise relies more on the motivation of disturbance waves in the upstream than that of other modes on this motivation.

  19. Construction of a 21-Component Layered Mixture Experiment Design

    International Nuclear Information System (INIS)

    Piepel, Gregory F.; Cooley, Scott K.; Jones, Bradley

    2004-01-01

    This paper describes the solution to a unique and challenging mixture experiment design problem involving: (1) 19 and 21 components for two different parts of the design, (2) many single-component and multi-component constraints, (3) augmentation of existing data, (4) a layered design developed in stages, and (5) a no-candidate-point optimal design approach. The problem involved studying the liquidus temperature of spinel crystals as a function of nuclear waste glass composition. The statistical objective was to develop an experimental design by augmenting existing glasses with new nonradioactive and radioactive glasses chosen to cover the designated nonradioactive and radioactive experimental regions. The existing 144 glasses were expressed as 19-component nonradioactive compositions and then augmented with 40 new nonradioactive glasses. These included 8 glasses on the outer layer of the region, 27 glasses on an inner layer, 2 replicate glasses at the centroid, and one replicate each of three existing glasses. Then, the 144 + 40 = 184 glasses were expressed as 21-component radioactive compositions and augmented with 5 radioactive glasses. A D-optimal design algorithm was used to select the new outer layer, inner layer, and radioactive glasses. Several statistical software packages can generate D-optimal experimental designs, but nearly all require a set of candidate points (e.g., vertices) from which to select design points. The large number of components (19 or 21) and many constraints made it impossible to generate the huge number of vertices and other typical candidate points. JMP(R) was used to select design points without candidate points. JMP uses a coordinate-exchange algorithm modified for mixture experiments, which is discussed in the paper

  20. Improved Gate Dielectric Deposition and Enhanced Electrical Stability for Single-Layer MoS2 MOSFET with an AlN Interfacial Layer.

    Science.gov (United States)

    Qian, Qingkai; Li, Baikui; Hua, Mengyuan; Zhang, Zhaofu; Lan, Feifei; Xu, Yongkuan; Yan, Ruyue; Chen, Kevin J

    2016-06-09

    Transistors based on MoS2 and other TMDs have been widely studied. The dangling-bond free surface of MoS2 has made the deposition of high-quality high-k dielectrics on MoS2 a challenge. The resulted transistors often suffer from the threshold voltage instability induced by the high density traps near MoS2/dielectric interface or inside the gate dielectric, which is detrimental for the practical applications of MoS2 metal-oxide-semiconductor field-effect transistor (MOSFET). In this work, by using AlN deposited by plasma enhanced atomic layer deposition (PEALD) as an interfacial layer, top-gate dielectrics as thin as 6 nm for single-layer MoS2 transistors are demonstrated. The AlN interfacial layer not only promotes the conformal deposition of high-quality Al2O3 on the dangling-bond free MoS2, but also greatly enhances the electrical stability of the MoS2 transistors. Very small hysteresis (ΔVth) is observed even at large gate biases and high temperatures. The transistor also exhibits a low level of flicker noise, which clearly originates from the Hooge mobility fluctuation instead of the carrier number fluctuation. The observed superior electrical stability of MoS2 transistor is attributed to the low border trap density of the AlN interfacial layer, as well as the small gate leakage and high dielectric strength of AlN/Al2O3 dielectric stack.

  1. Chemical composition of the humus layer, mineral soil and soil solution of 200 forest stands in the Netherlands in 1995

    NARCIS (Netherlands)

    Leeters, E.E.J.M.; Vries, de W.

    2001-01-01

    A nationwide assessment of the chemical composition of the soil solid phase and the soil solution in the humus layer and two mineral layers (0-10 cm and 10-30 cm) was made for 200 forest stands in the year 1995. The stands were part of the national forest inventory on vitality, included seven tree

  2. Epitaxial Single-Layer MoS2 on GaN with Enhanced Valley Helicity

    KAUST Repository

    Wan, Yi

    2017-12-19

    Engineering the substrate of 2D transition metal dichalcogenides can couple the quasiparticle interaction between the 2D material and substrate, providing an additional route to realize conceptual quantum phenomena and novel device functionalities, such as realization of a 12-time increased valley spitting in single-layer WSe2 through the interfacial magnetic exchange field from a ferromagnetic EuS substrate, and band-to-band tunnel field-effect transistors with a subthreshold swing below 60 mV dec−1 at room temperature based on bilayer n-MoS2 and heavily doped p-germanium, etc. Here, it is demonstrated that epitaxially grown single-layer MoS2 on a lattice-matched GaN substrate, possessing a type-I band alignment, exhibits strong substrate-induced interactions. The phonons in GaN quickly dissipate the energy of photogenerated carriers through electron–phonon interaction, resulting in a short exciton lifetime in the MoS2/GaN heterostructure. This interaction enables an enhanced valley helicity at room temperature (0.33 ± 0.05) observed in both steady-state and time-resolved circularly polarized photoluminescence measurements. The findings highlight the importance of substrate engineering for modulating the intrinsic valley carriers in ultrathin 2D materials and potentially open new paths for valleytronics and valley-optoelectronic device applications.

  3. Epitaxial Single-Layer MoS2 on GaN with Enhanced Valley Helicity

    KAUST Repository

    Wan, Yi; Xiao, Jun; Li, Jingzhen; Fang, Xin; Zhang, Kun; Fu, Lei; Li, Pan; Song, Zhigang; Zhang, Hui; Wang, Yilun; Zhao, Mervin; Lu, Jing; Tang, Ning; Ran, Guangzhao; Zhang, Xiang; Ye, Yu; Dai, Lun

    2017-01-01

    Engineering the substrate of 2D transition metal dichalcogenides can couple the quasiparticle interaction between the 2D material and substrate, providing an additional route to realize conceptual quantum phenomena and novel device functionalities, such as realization of a 12-time increased valley spitting in single-layer WSe2 through the interfacial magnetic exchange field from a ferromagnetic EuS substrate, and band-to-band tunnel field-effect transistors with a subthreshold swing below 60 mV dec−1 at room temperature based on bilayer n-MoS2 and heavily doped p-germanium, etc. Here, it is demonstrated that epitaxially grown single-layer MoS2 on a lattice-matched GaN substrate, possessing a type-I band alignment, exhibits strong substrate-induced interactions. The phonons in GaN quickly dissipate the energy of photogenerated carriers through electron–phonon interaction, resulting in a short exciton lifetime in the MoS2/GaN heterostructure. This interaction enables an enhanced valley helicity at room temperature (0.33 ± 0.05) observed in both steady-state and time-resolved circularly polarized photoluminescence measurements. The findings highlight the importance of substrate engineering for modulating the intrinsic valley carriers in ultrathin 2D materials and potentially open new paths for valleytronics and valley-optoelectronic device applications.

  4. Changes in phase composition and stress state of surface layers of VK20 hard alloy after ion bombardment

    International Nuclear Information System (INIS)

    Platonov, G.L.; Leonov, E.Yu.; Anikin, V.N.; Anikeev, A.I.

    1988-01-01

    Titanium ion bombardment of the surface of the hard VK20 alloy is studied for its effect on variations in the phase and chemical composition of its surface layers. It is stated that ion treatment results in the appearance of the η-phase of Co 6 W 6 C composition in the surface layer of the VK20 alloy, in the increase of distortions and decrease of coherent scattering blocks of the hard alloy carbide phase. Such a bombardment is found to provoke a transition of the plane-stressed state of the hard alloy surface into the volume-stressed state. It is established that ion treatment does not cause an allotropic transition of the cobalt phase α-modification, formed during grinding of the hard alloy, into the β-modification

  5. Nonvolatile memory thin film transistors using CdSe/ZnS quantum dot-poly(methyl methacrylate) composite layer formed by a two-step spin coating technique

    Science.gov (United States)

    Chen, Ying-Chih; Huang, Chun-Yuan; Yu, Hsin-Chieh; Su, Yan-Kuin

    2012-08-01

    The nonvolatile memory thin film transistors (TFTs) using a core/shell CdSe/ZnS quantum dot (QD)-poly(methyl methacrylate) (PMMA) composite layer as the floating gate have been demonstrated, with the device configuration of n+-Si gate/SiO2 insulator/QD-PMMA composite layer/pentacene channel/Au source-drain being proposed. To achieve the QD-PMMA composite layer, a two-step spin coating technique was used to successively deposit QD-PMMA composite and PMMA on the insulator. After the processes, the variation of crystal quality and surface morphology of the subsequent pentacene films characterized by x-ray diffraction spectra and atomic force microscopy was correlated to the two-step spin coating. The crystalline size of pentacene was improved from 147.9 to 165.2 Å, while the degree of structural disorder was decreased from 4.5% to 3.1% after the adoption of this technique. In pentacene-based TFTs, the improvement of the performance was also significant, besides the appearances of strong memory characteristics. The memory behaviors were attributed to the charge storage/discharge effect in QD-PMMA composite layer. Under the programming and erasing operations, programmable memory devices with the memory window (Δ Vth) = 23 V and long retention time were obtained.

  6. Using x-radiometry to count resin-bonded layers in aramid ballistic cloth composites

    International Nuclear Information System (INIS)

    Larsen, R.E.; Golis, M.J.

    1989-01-01

    The army paratroopers and support ground troops (PASGT) helmet is a composite consisting of nominally 19 layers thickness aramid ballistic cloth heat-bonded in a press with rolled-on phenolic resin. Inadvertent omission or poor fitting of layers during hot pressing can significantly weaken the helmet and thereby drastically impair its effectiveness under combat conditions. Currently, helmets are accepted or rejected on a lot basis using ballistic projectile penetration destructive tests on a statistically significant sample from each lot. A Phase I small business innovative research (SBIR) was performed to access the feasibility of nondestructively counting layers by through-transmission x-radiometry, a technique that would allow 100 percent testing of helmets for layer count if proved feasible. Tests were conducted on flat panels, crown panels containing gaps, and actual helmets using 14-18 keV Pu x-rays from a 30-mCi Cm-244 source, a sodium iodide scintillation counter, several collimators, and a multichannel analyzer. The infusing of resin into artificially produced lateral gaps in the crown specimen and into actual lateral gaps in the helmet during press-curing impaired the effectiveness of the radiometric method by introducing high radiometric density material into the beam path. It is concluded that radiometry should be combined with visual inspection to assure helmet integrity. Modified approaches are discussed

  7. Strong and anisotropic magnetoelectricity in composites of magnetostrictive Ni and solid-state grown lead-free piezoelectric BZT–BCT single crystals

    Directory of Open Access Journals (Sweden)

    Haribabu Palneedi

    2017-03-01

    Full Text Available Aimed at developing lead-free magnetoelectric (ME composites with performances as good as lead (Pb-based ones, this study employed (001 and (011 oriented 82BaTiO3-10BaZrO3-8CaTiO3 (BZT–BCT piezoelectric single crystals, fabricated by the cost-effective solid-state single crystal growth (SSCG method, in combination with inexpensive, magnetostrictive base metal Nickel (Ni. The off-resonance, direct ME coupling in the prepared Ni/BZT–BCT/Ni laminate composites was found to be strongly dependent on the crystallographic orientation of the BZT–BCT single crystals, as well as the applied magnetic field direction. Larger and anisotropic ME voltage coefficients were observed for the composite made using the (011 oriented BZT–BCT single crystal. The optimized ME coupling of 1 V/cm Oe was obtained from the Ni/(011 BZT–BCT single crystal/Ni composite, in the d32 mode of the single crystal, when a magnetic field was applied along its [100] direction. This performance is similar to that reported for the Ni/Pb(Mg1/3Nb2/3O3-Pb(Zr,TiO3 (PMN–PZT single crystal/Ni, but larger than that obtained from the Ni/Pb(Zr,TiO3 ceramic/Ni composites. The results of this work demonstrate that the use of lead-free piezoelectric single crystals with special orientations permits the selection of desired anisotropic properties, enabling the realization of customized ME effects in composites.

  8. Experimental and Theoretical Analysis for a Fluid-Loaded, Simply Supported Plate Covered by a Damping and Decoupling Composite Acoustic Coating

    Directory of Open Access Journals (Sweden)

    Baihua Yuan

    2017-01-01

    Full Text Available This work presents a vibroacoustic response model for a fluid-loaded, simply supported rectangular plate covered by a composite acoustic coating consisting of damping and decoupling layers. The model treated the damping layer and base plate as a unified whole under pure bending moments and the decoupling layer as a three-dimensional, isotropic, linear elastic solid. The validity of the model was verified by both numerical analysis and experiments and was shown to accurately extend previous studies that were limited to a plate covered by a single damping or decoupling layer with an evaluation confined solely to numerical analysis. The trends of the numerical and experimental results are generally consistent, with some differences due to the influences of water pressure and the frequency dependence of the material parameters, which are not taken into account by the numerical analysis. Both experimental and numerical results consistently show that the radiated noise reduction effect of the composite coating is superior to that of single-type coatings, which is attributed to the fact that the composite coating combines the merits of both the high vibration suppression performance of the damping layer and the superior vibration isolation performance of the decoupling layer.

  9. Breakthrough to Non-Vacuum Deposition of Single-Crystal, Ultra-Thin, Homogeneous Nanoparticle Layers: A Better Alternative to Chemical Bath Deposition and Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Yu-Kuang Liao

    2017-04-01

    Full Text Available Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new ”paradigm shift” non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD and chemical bath deposition (CBD as used by the Cu(In,GaSe2 (CIGS thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase.

  10. Chemical and morphological modifications of single layer graphene submitted to annealing in water vapor

    Science.gov (United States)

    Rolim, Guilherme Koszeniewski; Corrêa, Silma Alberton; Galves, Lauren Aranha; Lopes, João Marcelo J.; Soares, Gabriel Vieira; Radtke, Cláudio

    2018-01-01

    Modifications of single layer graphene transferred to SiO2/Si substrates resulting from annealing in water vapor were investigated. Near edge X-ray absorption fine structure spectroscopy evidenced graphene puckering between 400 and 500 °C. Synchrotron radiation based X-ray photoelectron spectroscopy showed variation of sp2 and sp3C bonding configurations specially in this same temperature range. Moreover, oxygen related functionalities are formed as a result of water vapor annealing. Based on these results and complementary Raman and nuclear reaction analysis, one distinguishes three different regimes of water interaction with graphene concerning modifications of the graphene layer. In the low temperature range (200-400 °C), no prominent modification of graphene itself is observed. At higher temperatures (400-500 °C), to accommodate newly formed oxygen functionalities, the flat and continuous sp2 bonding network of graphene is disrupted, giving rise to a puckered layer. For 600 °C and above, shrinking of graphene domains and a higher doping level take place.

  11. Mechanical behaviour of composite materials made by resin film infusion

    Directory of Open Access Journals (Sweden)

    Casavola C.

    2010-06-01

    Full Text Available Innovative composite materials are frequently used in designing aerospace, naval and automotive components. In the typical structure of composites, multiple layers are stacked together with a particular sequence in order to give specific mechanical properties. Layers are organized with different angles, different sequences and different technological process to obtain a new and innovative material. From the standpoint of engineering designer it is useful to consider the single layer of composite as macroscopically homogeneous material. However, composites are non homogeneous bodies. Moreover, layers are not often perfectly bonded together and delamination often occurs. Other violations of lamination theory hypotheses, such as plane stress and thin material, are not unusual and in many cases the transverse shear flexibility and the thickness-normal stiffness should be considered. Therefore the real behaviour of composite materials is quite different from the predictions coming from the traditional lamination theory. Due to the increasing structural performance required to innovative composites, the knowledge of the mechanical properties for different loading cases is a fundamental source of concern. Experimental characterization of materials and structures in different environmental conditions is extremely important to understand the mechanical behaviour of these new materials. The purpose of the present work is to characterize a composite material developed for aerospace applications and produced by means of the resin film infusion process (RFI. Different tests have been carried out: tensile, open-hole and filled-hole tensile, compressive, openhole and filled-hole compressive. The experimental campaign has the aim to define mechanical characteristics of this RFI composite material in different conditions: environmental temperature, Hot/Wet and Cold.

  12. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity

    Science.gov (United States)

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-05-01

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (Mw/Mn = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm-1, which is even higher than that of the highest previously reported value (16 S cm-1). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost.While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and

  13. Effect of Hybrid Talc-Basalt Fillers in the Shell Layer on Thermal and Mechanical Performance of Co-Extruded Wood Plastic Composites.

    Science.gov (United States)

    Huang, Runzhou; Mei, Changtong; Xu, Xinwu; Kärki, Timo; Lee, Sunyoung; Wu, Qinglin

    2015-12-08

    Hybrid basalt fiber (BF) and Talc filled high density polyethylene (HDPE) and co-extruded wood-plastic composites (WPCs) with different BF/Talc/HDPE composition levels in the shell were prepared and their mechanical, morphological and thermal properties were characterized. Incorporating BFs into the HDPE-Talc composite substantially enhanced the thermal expansion property, flexural, tensile and dynamic modulus without causing a significant decrease in the tensile and impact strength of the composites. Strain energy estimation suggested positive and better interfacial interactions of HDPE with BFs than that with talc. The co-extruded structure design improved the mechanical properties of WPC due to the protective shell layer. The composite flexural and impact strength properties increased, and the thermal expansion decreased as BF content increased in the hybrid BF/Talc filled shells. The cone calorimetry data demonstrated that flame resistance of co-extruded WPCs was improved with the use of combined fillers in the shell layer, especially with increased loading of BFs. The combined shell filler system with BFs and Talc could offer a balance between cost and performance for co-extruded WPCs.

  14. Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors

    Science.gov (United States)

    Wang, Ya; Dou, Hui; Wang, Jie; Ding, Bing; Xu, Yunling; Chang, Zhi; Hao, Xiaodong

    2016-09-01

    In this work, an exfoliated MXene (e-MXene) nanosheets/nickel-aluminum layered double hydroxide (MXene/LDH) composite as supercapacitor electrode material is fabricated by in situ growth of LDH on e-MXene substrate. The LDH platelets homogeneously grown on the surface of the e-MXene sheets construct a three-dimensional (3D) porous structure, which not only leads to high active sites exposure of LDH and facile liquid electrolyte penetration, but also alleviates the volume change of LDH during the charge/discharge process. Meanwhile, the e -MXene substrate forms a conductive network to facilitate the electron transport of active material. The optimized MXene/LDH composite exhibits a high specific capacitance of 1061 F g-1 at a current density of 1 A g-1, excellent capacitance retention of 70% after 4000 cycle tests at a current density of 4 A g-1 and a good rate capability with 556 F g-1 retention at 10 A g-1.

  15. Layer-by-layer composition and structure of silicon subjected to combined gallium and nitrogen ion implantation for the ion synthesis of gallium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, D. S.; Mikhaylov, A. N.; Belov, A. I.; Vasiliev, V. K.; Guseinov, D. V.; Okulich, E. V. [Nizhny Novgorod State University (Russian Federation); Shemukhin, A. A. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation); Surodin, S. I.; Nikolitchev, D. E.; Nezhdanov, A. V.; Pirogov, A. V.; Pavlov, D. A.; Tetelbaum, D. I., E-mail: tetelbaum@phys.unn.ru [Nizhny Novgorod State University (Russian Federation)

    2016-02-15

    The composition and structure of silicon surface layers subjected to combined gallium and nitrogen ion implantation with subsequent annealing have been studied by the X-ray photoelectron spectroscopy, Rutherford backscattering, electron spin resonance, Raman spectroscopy, and transmission electron microscopy techniques. A slight redistribution of the implanted atoms before annealing and their substantial migration towards the surface during annealing depending on the sequence of implantations are observed. It is found that about 2% of atoms of the implanted layer are replaced with gallium bonded to nitrogen; however, it is impossible to detect the gallium-nitride phase. At the same time, gallium-enriched inclusions containing ∼25 at % of gallium are detected as candidates for the further synthesis of gallium-nitride inclusions.

  16. Increasing low frequency sound attenuation using compounded single layer of sonic crystal

    Science.gov (United States)

    Gulia, Preeti; Gupta, Arpan

    2018-05-01

    Sonic crystals (SC) are man-made periodic structures where sound hard scatterers are arranged in a crystalline manner. SC reduces noise in a particular range of frequencies called as band gap. Sonic crystals have a promising application in noise shielding; however, the application is limited due to the size of structure. Particularly for low frequencies, the structure becomes quite bulky, restricting its practical application. This paper presents a compounded model of SC, which has the same overall area and filling fraction but with increased low frequency sound attenuation. Two cases have been considered, a three layer SC and a compounded single layer SC. Both models have been analyzed using finite element simulation and plane wave expansion method. Band gaps for periodic structures have been obtained using both methods which are in good agreement. Further, sound transmission loss has been evaluated using finite element method. The results demonstrate the use of compounded model of Sonic Crystal for low frequency sound attenuation.

  17. Seedling Composition and Facilitative Effects of the Herbaceous Layer in a Monsoon-Affected Forest in Nanjenshan, Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Su-Wei Fan

    2010-11-01

    Full Text Available Tree seedlings play an important role in forest regeneration. To understand the factors that control seedling establishment, we (1 compared the composition patterns of tree seedlings and their corresponding overstories, (2 examined the relationships between seedling composition and environmental factors and (3 evaluated the interaction (competition or facilitation between seedlings and herbaceous layer in a wind-stressed forest in Nanjenshan, southern Taiwan. In the study plot, seedling abundance of canopy, subcanopy and shrub species (with true leaves and < 1 cm diameter at breast height and coverage of herbaceous species (including herbaceous species, climbers and tree ferns ≤ ca. 1 m in height were investigated on three transects with a total of 180 contiguous 5 × 5 m quadrats. Clustering classification and ordination methods were used to reveal the tree seedling composition patterns and the relationships between seedling composition and environmental factors. Correlation coefficients were computed between herbaceous coverage and seedling abundance among herb-seedling species pairs and between tall (≥ 1 m high/short (< 0.5 m high herbs and seedlings pairs to test the herb-seedling interaction. The spatial distribution of tree seedlings presented a perfect match to the overstory vegetation pattern. There was a strong relationship among seedling composition, herbaceous composition and topographic features, especially exposure to monsoon winds. Because of the absence of strong correlations between herbaceous structure/species and seedling abundances, the strong linkage in spatial patterns between seedling and herbaceous compositions suggests that certain plant species in the study plot have similar responses to the monsoon exposure. Our results also indicated that seedlings < 1 cm in diameter were strongly influenced by wind stress, similar to the response of the overstory composition, and that the facilitative/competitive effects of the

  18. SEM and EBSD characterization of bi-layered functionally graded hard metal composites; REM- und EBSD-Charakterisierung von zweischichtigen, funktionell abgestuften Metallverbundwerkstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Prat, Orlando; Sanhueza, Felipe [Univ. de Concepcion (Chile). Dept. de Ingenieria de Materiales; Suarez, Sebastian [Saarland Univ., Saarbruecken (Germany). Chair of Functional Materials; Garcia, Jose [AB Sandvik Coromant R and D, Stockholm (Sweden)

    2016-11-15

    WC-Co bi-layer functionally graded composites were produced by powder metallurgy techniques. The influence of WC particle size and the grain growth inhibitor on the formation of the functionally graded composite was investigated. SEM images show that all sintered samples present a graded microstructure after sintering, with two side regions of extra-coarse and coarse WC-Co and a clear, dense interface without defects or other phases. EBSD results showed a change of WC particle size depending on the processing and the addition of Mo{sub 2}C. Cobalt binder distribution corresponds to WC particle size. Hardness values correlate to WC particle size and binder content. It is shown that tailored hardness/toughness can be produced by adjusting the WC particle size and binder content on both sides of the bi-layer composite.

  19. Superconductivity and electronic structure in single-layer FeSe on SrTiO{sub 3} probed by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jandke, Jasmin; Dressner, Jonas; Wulfhekel, Wulf [Physikalisches Institut, Karlsruhe Institute of Technology (Germany); Yang, Fang; Gao, Chunlei [Fudan Universitaet, Shanghai (China)

    2016-07-01

    We use high-resolution scanning tunneling spectroscopy (STS) to study single-layer FeSe on Nb-doped SrTiO{sub 3} (001). Features of bosonic excitations were observed in the measured quasiparticle density of states. Furthermore, using STS, quasiparticle interference (QPI) imaging was performed in order to map the multiband electronic structure of FeSe. Compared to previous measurements, an additional feature is visible in our measured QPI maps on a single-layer FeSe/SrTiO{sub 3}. The origin of this feature will be discussed.

  20. Efficient polymer white-light-emitting diodes with a single-emission layer of fluorescent polymer blend

    International Nuclear Information System (INIS)

    Niu Qiaoli; Xu Yunhua; Jiang Jiaxing; Peng Junbiao; Cao Yong

    2007-01-01

    Efficient polymer white-light-emitting diodes (WPLEDs) have been fabricated with a single layer of fluorescent polymer blend. The device structure consists of ITO/PEDOT/PVK/emissive layer/Ba/Al. The emissive layer is a blend of poly(9,9-dioctylfluorene) (PFO), phenyl-substituted PPV derivative (P-PPV) and a copolymer of 9,9-dioctylfluorene and 4,7-di(4-hexylthien-2-yl)-2,1,3-benzothiadiazole (PFO-DHTBT), which, respectively, emits blue, green and red light. The emission of pure and efficient white light was implemented by tuning the blend weight ratio of PFO: P-PPV: PFO-DHTBT to 96:4:0.4. The maximum current efficiency and luminance are, respectively, 7.6 cd/A at 6.7 V and 11930 cd/m 2 at 11.2 V. The CIE coordinates of white-light emission were stable with the drive voltages