WorldWideScience

Sample records for single labeled neurons

  1. Retrograde labeling of single neurons in conjunction with MALDI high-energy collision-induced dissociation MS/MS analysis for peptide profiling and structural characterization

    NARCIS (Netherlands)

    El Filali, Z.; Hornshaw, M.; Smit, A.B.; Li, K.W.

    2003-01-01

    To reveal the peptide contents of the visually nonidentifiable neurons from a neuronal circuit of interest, we combined retrograde labeling of neurons with mass spectrometric single cell analysis. We used the neuronal circuit involved in the copulation behavior of a freshwater snail, Lymnaea

  2. Single neuron computation

    CERN Document Server

    McKenna, Thomas M; Zornetzer, Steven F

    1992-01-01

    This book contains twenty-two original contributions that provide a comprehensive overview of computational approaches to understanding a single neuron structure. The focus on cellular-level processes is twofold. From a computational neuroscience perspective, a thorough understanding of the information processing performed by single neurons leads to an understanding of circuit- and systems-level activity. From the standpoint of artificial neural networks (ANNs), a single real neuron is as complex an operational unit as an entire ANN, and formalizing the complex computations performed by real n

  3. Correlating Anatomy and Function with Gene Expression in Individual Neurons by Combining in Vivo Labeling, Patch Clamp, and Single Cell RNA-seq

    Directory of Open Access Journals (Sweden)

    Carsten K. Pfeffer

    2017-11-01

    Full Text Available The classification of neurons into distinct types is an ongoing effort aimed at revealing and understanding the diversity of the components of the nervous system. Recently available methods allow us to determine the gene expression pattern of individual neurons in the mammalian cerebral cortex to generate powerful categorization schemes. For a thorough understanding of neuronal diversity such genetic categorization schemes need to be combined with traditional classification parameters like position, axonal projection or response properties to sensory stimulation. Here we describe a method to link the gene expression of individual neurons with their position, axonal projection, or sensory response properties. Neurons are labeled in vivo based on their anatomical or functional properties and, using patch clamp pipettes, their RNA individually harvested in vitro for RNAseq. We validate the methodology using multiple established molecularly and anatomically distinct cell populations and explore molecular differences between uncharacterized neurons in mouse visual cortex. Gene expression patterns between L5 neurons projecting to frontal or contralateral cortex are distinct while L2 neurons differing in position, projection, or function are molecularly similar. With this method we can determine the genetic expression pattern of functionally and anatomically identified individual neurons.

  4. Genetic labeling of neuronal subsets through enhancer trapping in mice.

    Directory of Open Access Journals (Sweden)

    Wolfgang Kelsch

    Full Text Available The ability to label, visualize, and manipulate subsets of neurons is critical for elucidating the structure and function of individual cell types in the brain. Enhancer trapping has proved extremely useful for the genetic manipulation of selective cell types in Drosophila. We have developed an enhancer trap strategy in mammals by generating transgenic mice with lentiviral vectors carrying single-copy enhancer-detector probes encoding either the marker gene lacZ or Cre recombinase. This transgenic strategy allowed us to genetically identify a wide variety of neuronal subpopulations in distinct brain regions. Enhancer detection by lentiviral transgenesis could thus provide a complementary method for generating transgenic mouse libraries for the genetic labeling and manipulation of neuronal subsets.

  5. Biomechanics of single cortical neurons.

    Science.gov (United States)

    Bernick, Kristin B; Prevost, Thibault P; Suresh, Subra; Socrate, Simona

    2011-03-01

    This study presents experimental results and computational analysis of the large strain dynamic behavior of single neurons in vitro with the objective of formulating a novel quantitative framework for the biomechanics of cortical neurons. Relying on the atomic force microscopy (AFM) technique, novel testing protocols are developed to enable the characterization of neural soma deformability over a range of indentation rates spanning three orders of magnitude, 10, 1, and 0.1 μm s(-1). Modified spherical AFM probes were utilized to compress the cell bodies of neonatal rat cortical neurons in load, unload, reload and relaxation conditions. The cell response showed marked hysteretic features, strong non-linearities, and substantial time/rate dependencies. The rheological data were complemented with geometrical measurements of cell body morphology, i.e. cross-diameter and height estimates. A constitutive model, validated by the present experiments, is proposed to quantify the mechanical behavior of cortical neurons. The model aimed to correlate empirical findings with measurable degrees of (hyper)elastic resilience and viscosity at the cell level. The proposed formulation, predicated upon previous constitutive model developments undertaken at the cortical tissue level, was implemented in a three-dimensional finite element framework. The simulated cell response was calibrated to the experimental measurements under the selected test conditions, providing a novel single cell model that could form the basis for further refinements. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. A single-neuron tracing study of arkypallidal and prototypic neurons in healthy rats.

    Science.gov (United States)

    Fujiyama, Fumino; Nakano, Takashi; Matsuda, Wakoto; Furuta, Takahiro; Udagawa, Jun; Kaneko, Takeshi

    2016-12-01

    The external globus pallidus (GP) is known as a relay nucleus of the indirect pathway of the basal ganglia. Recent studies in dopamine-depleted and healthy rats indicate that the GP comprises two main types of pallidofugal neurons: the so-called "prototypic" and "arkypallidal" neurons. However, the reconstruction of complete arkypallidal neurons in healthy rats has not been reported. Here we visualized the entire axonal arborization of four single arkypallidal neurons and six single prototypic neurons in rat brain using labeling with a viral vector expressing membrane-targeted green fluorescent protein and examined the distribution of axon boutons in the target nuclei. Results revealed that not only the arkypallidal neurons but nearly all of the prototypic neurons projected to the striatum with numerous axon varicosities. Thus, the striatum is a major target nucleus for pallidal neurons. Arkypallidal and prototypic GP neurons located in the calbindin-positive and calbindin-negative regions mainly projected to the corresponding positive and negative regions in the striatum. Because the GP and striatum calbindin staining patterns reflect the topographic organization of the striatopallidal projection, the striatal neurons in the sensorimotor and associative regions constitute the reciprocal connection with the GP neurons in the corresponding regions.

  7. Labeling of neuronal morphology using custom diolistic techniques.

    Science.gov (United States)

    Hough, Lyon H; Brown, Michael E

    2017-04-15

    Diolistic labeling is increasingly utilized in neuroscience as an efficient, reproducible method for visualization of neuronal morphology. The use of lipophilic carbocyanine dyes, combined with particle-mediated biolistic delivery allows for non-toxic fluorescent labeling of multiple neurons in both living and fixed tissue. Since first described, this labeling method has been modified to fit a variety of research goals and laboratory settings. Diolistic labeling has traditionally relied on commercially available devices for the propulsion of coated micro-particles into tissue sections. Recently, laboratory built biolistic devices have been developed which allow for increased availability and customization. Here, we discuss a custom biolistic device and provide a detailed protocol for its use. Using custom diolistic labeling we have characterized alterations in neuronal morphology of the lateral/dentate nucleus of the rat cerebellum. Comparisons were made in developing rat pups exposed to abnormally high levels of 5-methyloxytryptamine (5-MT) pre-and postnatally. Using quantitative software; dendritic morphology, architecture, and synaptic connections, were analyzed. The rapid nature of custom diolistics coupled with passive diffusion of dyes and compatibility with confocal microscopy, provides an unparalleled opportunity to examine features of neuronal cells at high spatial resolution in a three-dimensional tissue environment. While decreasing the associated costs, the laboratory-built device also overcomes many of the obstacles associated with traditional morphological labeling, to allow for reliable and reproducible neuronal labeling. The versatility of this method allows for its adaptation to a variety of laboratory settings and neuroscience related research goals. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds.

    Science.gov (United States)

    Hsu, Tzu-Chia; Liu, Kuang-Kai; Chang, Huan-Cheng; Hwang, Eric; Chao, Jui-I

    2014-05-16

    Nanodiamond is a promising carbon nanomaterial developed for biomedical applications. Here, we show fluorescent nanodiamond (FND) with the biocompatible properties that can be used for the labeling and tracking of neuronal differentiation and neuron cells derived from embryonal carcinoma stem (ECS) cells. The fluorescence intensities of FNDs were increased by treatment with FNDs in both the mouse P19 and human NT2/D1 ECS cells. FNDs were taken into ECS cells; however, FNDs did not alter the cellular morphology and growth ability. Moreover, FNDs did not change the protein expression of stem cell marker SSEA-1 of ECS cells. The neuronal differentiation of ECS cells could be induced by retinoic acid (RA). Interestingly, FNDs did not affect on the morphological alteration, cytotoxicity and apoptosis during the neuronal differentiation. Besides, FNDs did not alter the cell viability and the expression of neuron-specific marker β-III-tubulin in these differentiated neuron cells. The existence of FNDs in the neuron cells can be identified by confocal microscopy and flow cytometry. Together, FND is a biocompatible and readily detectable nanomaterial for the labeling and tracking of neuronal differentiation process and neuron cells from stem cells.

  9. Imaging Action Potential in Single Mammalian Neurons by Tracking the Accompanying Sub-Nanometer Mechanical Motion.

    Science.gov (United States)

    Yang, Yunze; Liu, Xian-Wei; Wang, Hui; Yu, Hui; Guan, Yan; Wang, Shaopeng; Tao, Nongjian

    2018-03-28

    Action potentials in neurons have been studied traditionally by intracellular electrophysiological recordings and more recently by the fluorescence detection methods. Here we describe a label-free optical imaging method that can measure mechanical motion in single cells with a sub-nanometer detection limit. Using the method, we have observed sub-nanometer mechanical motion accompanying the action potential in single mammalian neurons by averaging the repeated action potential spikes. The shape and width of the transient displacement are similar to those of the electrically recorded action potential, but the amplitude varies from neuron to neuron, and from one region of a neuron to another, ranging from 0.2-0.4 nm. The work indicates that action potentials may be studied noninvasively in single mammalian neurons by label-free imaging of the accompanying sub-nanometer mechanical motion.

  10. Lucifer yellow filling of immunohistochemically pre-labeled neurons: a new method to characterize neuronal subpopulations.

    Science.gov (United States)

    Galuske, R A; Delius, J A; Singer, W

    1993-07-01

    We describe a new technique for the morphological characterization of immunohistochemically labeled neuron populations. We demonstrate that it is possible to fill neurons iontophoretically with Lucifer Yellow (LY) in fixed slices of cat visual cortex after the respective cells have been identified by indirect immunofluorescence for the neural cell adhesion molecule N-CAM 180, with the VC1.1 antibody or with an antibody against glutamate dehydrogenase (GAD). Morphological analysis of the injected cells at the light and electron microscopic level revealed that the N-CAM 180-positive neurons share the features of neuropeptidergic cortical interneurons. Depending on the antibody applied, the immunohistochemical treatment had little or no noticeable effect on the quality of LY filling or on the preservation of morphological details of the pre-labeled cells. This makes the method described ideally suited for the light and electron microscopic examination of selected, immunologically characterized neuron subpopulations.

  11. Growth and atrophy of neurons labeled at their birth in a song nucleus of the zebra finch

    International Nuclear Information System (INIS)

    Konishi, M.; Akutagawa, E.

    1990-01-01

    The robust nucleus of the archistriatum (RA) is one of the forebrain nuclei that control song production in birds. In the zebra finch (Poephila guttata), this nucleus contains more and larger neurons in the male than in the female. A single injection of tritiated thymidine into the egg on the 6th or 7th day of incubation resulted in labeling of many RA neurons with tritium. The size of tritium-labeled neurons and the tissue volume containing them did not differ between the sexes at 15 days after hatching. In the adult brain, tritium-labeled neurons and the tissue volume containing them were much larger in the male than in the female. Also, tritium-labeled RA neurons were large in females which received an implant of estrogen immediately after hatching. The gender differences in the neuron size and nuclear volume of the zebra finch RA are, therefore, due not to the replacement of old neurons by new ones during development but to the growth and atrophy of neurons born before hatching. Similarly, the masculinizing effects of estrogen on the female RA are due not to neuronal replacement but to the prevention of atrophy and promotion of growth in preexisting neurons

  12. Current Source Density Estimation for Single Neurons

    Directory of Open Access Journals (Sweden)

    Dorottya Cserpán

    2014-03-01

    Full Text Available Recent developments of multielectrode technology made it possible to measure the extracellular potential generated in the neural tissue with spatial precision on the order of tens of micrometers and on submillisecond time scale. Combining such measurements with imaging of single neurons within the studied tissue opens up new experimental possibilities for estimating distribution of current sources along a dendritic tree. In this work we show that if we are able to relate part of the recording of extracellular potential to a specific cell of known morphology we can estimate the spatiotemporal distribution of transmembrane currents along it. We present here an extension of the kernel CSD method (Potworowski et al., 2012 applicable in such case. We test it on several model neurons of progressively complicated morphologies from ball-and-stick to realistic, up to analysis of simulated neuron activity embedded in a substantial working network (Traub et al, 2005. We discuss the caveats and possibilities of this new approach.

  13. DiOlistic labeling of neurons in tissue slices: a qualitative and quantitative analysis of methodological variations

    Directory of Open Access Journals (Sweden)

    Nancy A Staffend

    2011-03-01

    Full Text Available Fine neuronal morphology, such as dendritic spines, classically has been studied using the Golgi technique; however, Golgi staining is difficult to combine with other histological techniques. With the increasing popularity of fluorescent imaging, a number of fluorescent dyes have been developed that enable the coupling of multiple fluorescent labels in a single preparation. These fluorescent dyes include the lipophilic dialkylcarbocyanine, DiI; traditionally used for anterograde and retrograde neuronal tracing. More recently, DiI labeling has been used in combination with the Gene Gun for DiOlisitc labeling of neurons in slice preparations. DiI sequesters itself within and diffuses laterally along the neuronal membrane, however once the cell is permeablized, the DiI begins to leak from the cell membrane. A DiI derivative, Cell TrackerTM CM-DiI, increases dye stability and labeling half-life in permeablized tissue, however at much greater expense. Here, the DiI and CM-DiI DiOlistic labeling techniques were tested in side-by-side experiments evaluating dye stability and dendritic architecture in medium spiny neurons of the dorsal stratum in both non-permeablized and permeablized tissue sections. In tissue sections that were not permeablized, spine density in DiI labeled sections was higher than in CM-DiI labeling, with the greatest impact on the filapodial spine population. In contrast, tissue sections that were permeablized had higher spine densities in CM-DiI labeled neurons, again largely within in the filapodial spine population. These results suggest that for experiments involving non-permeablized tissue, traditional DiI will suffice, however for experiments involving permeablized tissue CM-DiI provides more consistent data. These data provide the first quantitative analysis of the methodological permutations presented in the literature for neuronal labeling with DiI.

  14. High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA.

    Science.gov (United States)

    Kebschull, Justus M; Garcia da Silva, Pedro; Reid, Ashlan P; Peikon, Ian D; Albeanu, Dinu F; Zador, Anthony M

    2016-09-07

    Neurons transmit information to distant brain regions via long-range axonal projections. In the mouse, area-to-area connections have only been systematically mapped using bulk labeling techniques, which obscure the diverse projections of intermingled single neurons. Here we describe MAPseq (Multiplexed Analysis of Projections by Sequencing), a technique that can map the projections of thousands or even millions of single neurons by labeling large sets of neurons with random RNA sequences ("barcodes"). Axons are filled with barcode mRNA, each putative projection area is dissected, and the barcode mRNA is extracted and sequenced. Applying MAPseq to the locus coeruleus (LC), we find that individual LC neurons have preferred cortical targets. By recasting neuroanatomy, which is traditionally viewed as a problem of microscopy, as a problem of sequencing, MAPseq harnesses advances in sequencing technology to permit high-throughput interrogation of brain circuits. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Labeling of Neuronal Receptors and Transporters with Quantum Dots

    Science.gov (United States)

    Chang, Jerry C.; Kovtun, Oleg; Blakely, Randy D.; Rosenthal, Sandra J.

    2012-01-01

    The ability to efficiently visualize protein targets in cells is a fundamental goal in biological research. Recently, quantum dots (QDots) have emerged as a powerful class of fluorescent probes for labeling membrane proteins in living cells due to breakthrough advances in QDot surface chemistry and biofunctionalization strategies. This review discusses the increasing use of QDots for fluorescence imaging of neuronal receptors and transporters. The readers are briefly introduced to QDot structure, photophysical properties, and common synthetic routes towards the generation of water-soluble QDots. The next section highlights several reports of QDot application that seek to unravel molecular aspects of neuronal receptor and transporter regulation and trafficking. We close with a prospectus of the future of derivatized QDots in neurobiological and pharmacological research. PMID:22887823

  16. Chemical labelling for visualizing native AMPA receptors in live neurons

    Science.gov (United States)

    Wakayama, Sho; Kiyonaka, Shigeki; Arai, Itaru; Kakegawa, Wataru; Matsuda, Shinji; Ibata, Keiji; Nemoto, Yuri L.; Kusumi, Akihiro; Yuzaki, Michisuke; Hamachi, Itaru

    2017-04-01

    The location and number of neurotransmitter receptors are dynamically regulated at postsynaptic sites. However, currently available methods for visualizing receptor trafficking require the introduction of genetically engineered receptors into neurons, which can disrupt the normal functioning and processing of the original receptor. Here we report a powerful method for visualizing native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) which are essential for cognitive functions without any genetic manipulation. This is based on a covalent chemical labelling strategy driven by selective ligand-protein recognition to tether small fluorophores to AMPARs using chemical AMPAR modification (CAM) reagents. The high penetrability of CAM reagents enables visualization of native AMPARs deep in brain tissues without affecting receptor function. Moreover, CAM reagents are used to characterize the diffusion dynamics of endogenous AMPARs in both cultured neurons and hippocampal slices. This method will help clarify the involvement of AMPAR trafficking in various neuropsychiatric and neurodevelopmental disorders.

  17. Neuro-Compatible Metabolic Glycan Labeling of Primary Hippocampal Neurons in Noncontact, Sandwich-Type Neuron-Astrocyte Coculture.

    Science.gov (United States)

    Choi, Ji Yu; Park, Matthew; Cho, Hyeoncheol; Kim, Mi-Hee; Kang, Kyungtae; Choi, Insung S

    2017-12-20

    Glycans are intimately involved in several facets of neuronal development and neuropathology. However, the metabolic labeling of surface glycans in primary neurons is a difficult task because of the neurotoxicity of unnatural monosaccharides that are used as a metabolic precursor, hindering the progress of metabolic engineering in neuron-related fields. Therefore, in this paper, we report a neurosupportive, neuron-astrocyte coculture system that neutralizes the neurotoxic effects of unnatural monosaccharides, allowing for the long-term observation and characterization of glycans in primary neurons in vitro. Polysialic acids in neurons are selectively imaged, via the metabolic labeling of sialoglycans with peracetylated N-azidoacetyl-d-mannosamine (Ac 4 ManNAz), for up to 21 DIV. Two-color labeling shows that neuronal activities, such as neurite outgrowth and recycling of membrane components, are highly dynamic and change over time during development. In addition, the insertion sites of membrane components are suggested to not be random, but be predominantly localized in developing neurites. This work provides a new research platform and also suggests advanced 3D systems for metabolic-labeling studies of glycans in primary neurons.

  18. Discrimination of communication vocalizations by single neurons and groups of neurons in the auditory midbrain.

    Science.gov (United States)

    Schneider, David M; Woolley, Sarah M N

    2010-06-01

    Many social animals including songbirds use communication vocalizations for individual recognition. The perception of vocalizations depends on the encoding of complex sounds by neurons in the ascending auditory system, each of which is tuned to a particular subset of acoustic features. Here, we examined how well the responses of single auditory neurons could be used to discriminate among bird songs and we compared discriminability to spectrotemporal tuning. We then used biologically realistic models of pooled neural responses to test whether the responses of groups of neurons discriminated among songs better than the responses of single neurons and whether discrimination by groups of neurons was related to spectrotemporal tuning and trial-to-trial response variability. The responses of single auditory midbrain neurons could be used to discriminate among vocalizations with a wide range of abilities, ranging from chance to 100%. The ability to discriminate among songs using single neuron responses was not correlated with spectrotemporal tuning. Pooling the responses of pairs of neurons generally led to better discrimination than the average of the two inputs and the most discriminating input. Pooling the responses of three to five single neurons continued to improve neural discrimination. The increase in discriminability was largest for groups of neurons with similar spectrotemporal tuning. Further, we found that groups of neurons with correlated spike trains achieved the largest gains in discriminability. We simulated neurons with varying levels of temporal precision and measured the discriminability of responses from single simulated neurons and groups of simulated neurons. Simulated neurons with biologically observed levels of temporal precision benefited more from pooling correlated inputs than did neurons with highly precise or imprecise spike trains. These findings suggest that pooling correlated neural responses with the levels of precision observed in the

  19. Molecular dynamics in an optical trap of glutamate receptors labeled with quantum-dots on living neurons

    Science.gov (United States)

    Kishimoto, Tatsunori; Maezawa, Yasuyo; Kudoh, Suguru N.; Taguchi, Takahisa; Hosokawa, Chie

    2017-04-01

    Molecular dynamics of glutamate receptor, which is major neurotransmitter receptor at excitatory synapse located on neuron, is essential for synaptic plasticity in the complex neuronal networks. Here we studied molecular dynamics in an optical trap of AMPA-type glutamate receptor (AMPAR) labeled with quantum-dot (QD) on living neuronal cells with fluorescence imaging and fluorescence correlation spectroscopy (FCS). When a 1064-nm laser beam for optical trapping was focused on QD-AMPARs located on neuronal cells, the fluorescence intensity of QD-AMPARs gradually increased at the focal spot. Using single-particle tracking of QD-AMPARs on neurons, the average diffusion coefficient decreased in an optical trap. Moreover, the decay time obtained from FCS analysis increased with the laser power and the initial assembling state of AMPARs depended on culturing day, suggesting that the motion of QD-AMPAR was constrained in an optical trap.

  20. In vivo Labeling of Constellations of Functionally Identified Neurons for Targeted in vitro Recordings.

    Science.gov (United States)

    Lien, Anthony D; Scanziani, Massimo

    2011-01-01

    Relating the functional properties of neurons in an intact organism with their cellular and synaptic characteristics is necessary for a mechanistic understanding of brain function. However, while the functional properties of cortical neurons (e.g., tuning to sensory stimuli) are necessarily determined in vivo, detailed cellular and synaptic analysis relies on in vitro techniques. Here we describe an approach that combines in vivo calcium imaging (for functional characterization) with photo-activation of fluorescent proteins (for neuron labeling), thereby allowing targeted in vitro recording of multiple neurons with known functional properties. We expressed photo-activatable GFP rendered non-diffusible through fusion with a histone protein (H2B-PAGFP) in the mouse visual cortex to rapidly photo-label constellations of neurons in vivo at cellular and sub-cellular resolution using two-photon excitation. This photo-labeling method was compatible with two-photon calcium imaging of neuronal responses to visual stimuli, allowing us to label constellations of neurons with specific functional properties. Photo-labeled neurons were easily identified in vitro in acute brain slices and could be targeted for whole-cell recording. We also demonstrate that in vitro and in vivo image stacks of the same photo-labeled neurons could be registered to one another, allowing the exact in vivo response properties of individual neurons recorded in vitro to be known. The ability to perform in vitro recordings from neurons with known functional properties opens up exciting new possibilities for dissecting the cellular, synaptic, and circuit mechanisms that underlie neuronal function in vivo.

  1. Single low doses of MPTP decrease tyrosine hydroxylase expression in the absence of overt neuron loss.

    Science.gov (United States)

    Alam, Gelareh; Edler, Melissa; Burchfield, Shelbie; Richardson, Jason R

    2017-05-01

    Parkinson's disease (PD) is the second most common age-related neurodegenerative disease. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a prototypical neurotoxicant used in mice to mimic primary features of PD pathology including striatal dopamine depletion and dopamine neuron loss in the substantia nigra pars compacta (SNc). In the literature, there are several experimental paradigms involving multiple doses of MPTP that are used to elicit dopamine neuron loss. However, a recent study reported that a single low dose caused significant loss of dopamine neurons. Here, we determined the effect of a single intraperitoneal injection of one of three doses of MPTP (0.1, 2 and 20mg/kg) on dopamine neurons, labeled by tyrosine hydroxylase (TH + ), and total neuron number (Nissl + ) in the SNc using unbiased stereological counting. Data reveal a significant loss of neurons in the SNc (TH + and Nissl + ) only in the group treated with 20mg/kg MPTP. Groups treated with lower dose of MPTP (0.1 and 2mg/kg) only showed significant loss of TH + neurons rather than TH + and Nissl + neurons. Striatal dopamine levels were decreased in the groups treated with 2 and 20mg/kg MPTP and striatal terminal markers including, TH and the dopamine transporter (DAT), were only decreased in the groups treated with 20mg/kg MPTP. These data demonstrate that lower doses of MPTP likely result in loss of TH expression rather than actual dopamine neuron loss in the SN. This finding reinforces the need to measure both total neuron number along with TH + cells in determining dopamine neuron loss. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Single neuron dynamics during experimentally induced anoxic depolarization

    NARCIS (Netherlands)

    Zandt, B.; Stigen, Tyler; ten Haken, Bernard; Netoff, Theoden; van Putten, Michel Johannes Antonius Maria

    2013-01-01

    We studied single neuron dynamics during anoxic depolarizations, which are often observed in cases of neuronal energy depletion. Anoxic and similar depolarizations play an important role in several pathologies, notably stroke, migraine, and epilepsy. One of the effects of energy depletion was

  3. Single particle labeling of RNA virus in live cells.

    Science.gov (United States)

    Liu, Xiaohui; Ouyang, Ting; Ouyang, Hongsheng; Ren, Linzhu

    2017-06-02

    Real-time and visual tracking of viral infection is crucial for elucidating the infectious and pathogenesis mechanisms. To track the virus successfully, an efficient labeling method is necessary. In this review, we first discuss the practical labeling techniques for virus tracking in live cells. We then describe the current knowledge of interactions between RNA viruses (especially influenza viruses, immunodeficiency viruses, and Flaviviruses) and host cellular structures, obtained using single particle labeling techniques combined with real-time fluorescence microscopy. Single particle labeling provides an easy system for understanding the RNA virus life cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Functional adaptation to loading of a single bone is neuronally regulated and involves multiple bones.

    Science.gov (United States)

    Sample, Susannah J; Behan, Mary; Smith, Lesley; Oldenhoff, William E; Markel, Mark D; Kalscheur, Vicki L; Hao, Zhengling; Miletic, Vjekoslav; Muir, Peter

    2008-09-01

    Regulation of load-induced bone formation is considered a local phenomenon controlled by osteocytes, although it has also been hypothesized that functional adaptation may be neuronally regulated. The aim of this study was to examine bone formation in multiple bones, in response to loading of a single bone, and to determine whether adaptation may be neuronally regulated. Load-induced responses in the left and right ulnas and humeri were determined after loading of the right ulna in male Sprague-Dawley rats (69 +/- 16 days of age). After a single period of loading at -760-, -2000-, or -3750-microepsilon initial peak strain, rats were given calcein to label new bone formation. Bone formation and bone neuropeptide concentrations were determined at 10 days. In one group, temporary neuronal blocking was achieved by perineural anesthesia of the brachial plexus with bupivicaine during loading. We found right ulna loading induces adaptive responses in other bones in both thoracic limbs compared with Sham controls and that neuronal blocking during loading abrogated bone formation in the loaded ulna and other thoracic limb bones. Skeletal adaptation was more evident in distal long bones compared with proximal long bones. We also found that the single period of loading modulated bone neuropeptide concentrations persistently for 10 days. We conclude that functional adaptation to loading of a single bone in young rapidly growing rats is neuronally regulated and involves multiple bones. Persistent changes in bone neuropeptide concentrations after a single loading period suggest that plasticity exists in the innervation of bone.

  5. Training a Single Sigmoidal Neuron is Hard

    Czech Academy of Sciences Publication Activity Database

    Šíma, Jiří

    2002-01-01

    Roč. 14, č. 11 (2002), s. 2709-2729 ISSN 0899-7667 R&D Projects: GA MŠk LN00A056 Keywords : sigmoidal neuron * loading problem * NP-hardness Subject RIV: BA - General Mathematics Impact factor: 2.313, year: 2002

  6. Two-photon compatibility and single-voxel, single-trial detection of subthreshold neuronal activity by a two-component optical voltage sensor.

    Science.gov (United States)

    Fink, Ann E; Bender, Kevin J; Trussell, Laurence O; Otis, Thomas S; DiGregorio, David A

    2012-01-01

    Minimally invasive measurements of neuronal activity are essential for understanding how signal processing is performed by neuronal networks. While optical strategies for making such measurements hold great promise, optical sensors generally lack the speed and sensitivity necessary to record neuronal activity on a single-trial, single-neuron basis. Here we present additional biophysical characterization and practical improvements of a two-component optical voltage sensor (2cVoS), comprised of the neuronal tracer dye, DiO, and dipicrylamine (DiO/DPA). Using laser spot illumination we demonstrate that membrane potential-dependent fluorescence changes can be obtained in a wide variety of cell types within brain slices. We show a correlation between membrane labeling and the sensitivity of the magnitude of fluorescence signal, such that neurons with the brightest membrane labeling yield the largest ΔF/F values per action potential (AP; ∼40%). By substituting a blue-shifted donor for DiO we confirm that DiO/DPA works, at least in part, via a Förster resonance energy transfer (FRET) mechanism. We also describe a straightforward iontophoretic method for labeling multiple neurons with DiO and show that DiO/DPA is compatible with two-photon (2P) imaging. Finally, exploiting the high sensitivity of DiO/DPA, we demonstrate AP-induced fluorescence transients (fAPs) recorded from single spines of hippocampal pyramidal neurons and single-trial measurements of subthreshold synaptic inputs to granule cell dendrites. Our findings suggest that the 2cVoS, DiO/DPA, enables optical measurements of trial-to-trial voltage fluctuations with very high spatial and temporal resolution, properties well suited for monitoring electrical signals from multiple neurons within intact neuronal networks.

  7. Two-photon compatibility and single-voxel, single-trial detection of subthreshold neuronal activity by a two-component optical voltage sensor.

    Directory of Open Access Journals (Sweden)

    Ann E Fink

    Full Text Available Minimally invasive measurements of neuronal activity are essential for understanding how signal processing is performed by neuronal networks. While optical strategies for making such measurements hold great promise, optical sensors generally lack the speed and sensitivity necessary to record neuronal activity on a single-trial, single-neuron basis. Here we present additional biophysical characterization and practical improvements of a two-component optical voltage sensor (2cVoS, comprised of the neuronal tracer dye, DiO, and dipicrylamine (DiO/DPA. Using laser spot illumination we demonstrate that membrane potential-dependent fluorescence changes can be obtained in a wide variety of cell types within brain slices. We show a correlation between membrane labeling and the sensitivity of the magnitude of fluorescence signal, such that neurons with the brightest membrane labeling yield the largest ΔF/F values per action potential (AP; ∼40%. By substituting a blue-shifted donor for DiO we confirm that DiO/DPA works, at least in part, via a Förster resonance energy transfer (FRET mechanism. We also describe a straightforward iontophoretic method for labeling multiple neurons with DiO and show that DiO/DPA is compatible with two-photon (2P imaging. Finally, exploiting the high sensitivity of DiO/DPA, we demonstrate AP-induced fluorescence transients (fAPs recorded from single spines of hippocampal pyramidal neurons and single-trial measurements of subthreshold synaptic inputs to granule cell dendrites. Our findings suggest that the 2cVoS, DiO/DPA, enables optical measurements of trial-to-trial voltage fluctuations with very high spatial and temporal resolution, properties well suited for monitoring electrical signals from multiple neurons within intact neuronal networks.

  8. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity

    Science.gov (United States)

    Chiu, Isaac M; Barrett, Lee B; Williams, Erika K; Strochlic, David E; Lee, Seungkyu; Weyer, Andy D; Lou, Shan; Bryman, Gregory S; Roberson, David P; Ghasemlou, Nader; Piccoli, Cara; Ahat, Ezgi; Wang, Victor; Cobos, Enrique J; Stucky, Cheryl L; Ma, Qiufu; Liberles, Stephen D; Woolf, Clifford J

    2014-01-01

    The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4 labeling to purify three major non-overlapping classes of neurons: 1) IB4+SNS-Cre/TdTomato+, 2) IB4−SNS-Cre/TdTomato+, and 3) Parv-Cre/TdTomato+ cells, encompassing the majority of nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed distinct expression patterns of ion channels, transcription factors, and GPCRs. Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the three populations demonstrated further diversity, with unbiased clustering analysis identifying six distinct subgroups. These data significantly increase our knowledge of the molecular identities of known DRG populations and uncover potentially novel subsets, revealing the complexity and diversity of those neurons underlying somatosensation. DOI: http://dx.doi.org/10.7554/eLife.04660.001 PMID:25525749

  9. Understanding metal homeostasis in primary cultured neurons. Studies using single neuron subcellular and quantitative metallomics.

    Science.gov (United States)

    Colvin, Robert A; Lai, Barry; Holmes, William R; Lee, Daewoo

    2015-07-01

    The purpose of this study was to demonstrate how single cell quantitative and subcellular metallomics inform us about both the spatial distribution and cellular mechanisms of metal buffering and homeostasis in primary cultured neurons from embryonic rat brain, which are often used as models of human disease involving metal dyshomeostasis. The present studies utilized synchrotron radiation X-ray fluorescence (SRXRF) and focused primarily on zinc and iron, two abundant metals in neurons that have been implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Total single cell contents for calcium, iron, zinc, copper, manganese, and nickel were determined. Resting steady state zinc showed a diffuse distribution in both soma and processes, best defined by the mass profile of the neuron with an enrichment in the nucleus compared with the cytoplasm. Zinc buffering and homeostasis was studied using two modes of cellular zinc loading - transporter and ionophore (pyrithione) mediated. Single neuron zinc contents were shown to statistically significantly increase by either loading method - ionophore: 160 million to 7 billion; transporter 160 million to 280 million atoms per neuronal soma. The newly acquired and buffered zinc still showed a diffuse distribution. Soma and processes have about equal abilities to take up zinc via transporter mediated pathways. Copper levels are distributed diffusely as well, but are relatively higher in the processes relative to zinc levels. Prior studies have observed iron puncta in certain cell types, but others have not. In the present study, iron puncta were characterized in several primary neuronal types. The results show that iron puncta could be found in all neuronal types studied and can account for up to 50% of the total steady state content of iron in neuronal soma. Although other metals can be present in iron puncta, they are predominantly iron containing and do not appear to be

  10. Supernova: A Versatile Vector System for Single-Cell Labeling and Gene Function Studies in vivo.

    Science.gov (United States)

    Luo, Wenshu; Mizuno, Hidenobu; Iwata, Ryohei; Nakazawa, Shingo; Yasuda, Kosuke; Itohara, Shigeyoshi; Iwasato, Takuji

    2016-10-24

    Here we describe "Supernova" series of vector systems that enable single-cell labeling and labeled cell-specific gene manipulation, when introduced by in utero electroporation (IUE) or adeno-associated virus (AAV)-mediated gene delivery. In Supernova, sparse labeling relies on low TRE leakage. In a small population of cells with over-threshold leakage, initial tTA-independent weak expression is enhanced by tTA/TRE-positive feedback along with a site-specific recombination system (e.g., Cre/loxP, Flpe/FRT). Sparse and bright labeling by Supernova with little background enables the visualization of the morphological details of individual neurons in densely packed brain areas such as the cortex and hippocampus, both during development and in adulthood. Sparseness levels are adjustable. Labeled cell-specific gene knockout was accomplished by introducing Cre/loxP-based Supernova vectors into floxed mice. Furthermore, by combining with RNAi, TALEN, and CRISPR/Cas9 technologies, IUE-based Supernova achieved labeled cell-specific gene knockdown and editing/knockout without requiring genetically altered mice. Thus, Supernova system is highly extensible and widely applicable for single-cell analyses in complex organs, such as the mammalian brain.

  11. Selective retrograde labeling of cholinergic neurons with [3H]choline

    International Nuclear Information System (INIS)

    Bagnoli, P.; Beaudet, A.; Stella, M.; Cuenod, M.

    1981-01-01

    Evidence is presented which is consistent with a specific retrograde labeling of cholinergic neurons following [ 3 H]choline application in their zone of termination. [ 3 H]Choline injection in the rat hippocampus leads to perikaryal retrograde labeling in the ipsilateral medial septal nuclease and nucleus of the diagonal band, thus delineating an established cholinergic pathway, while only diffuse presumably anterograde labeling was observed in the lateral septum, the entorhinal cortex, and the opposite hippocampus. After [ 3 H]choline injection in the pigeon visual Wulst, only the ipsilateral thalamic relay, of all inputs, showed similar perikaryal retrograde labeling, an observation supporting the suggestion that at least some thalamo-Wulst neurons are cholinergic

  12. Stochastic models for spike trains of single neurons

    CERN Document Server

    Sampath, G

    1977-01-01

    1 Some basic neurophysiology 4 The neuron 1. 1 4 1. 1. 1 The axon 7 1. 1. 2 The synapse 9 12 1. 1. 3 The soma 1. 1. 4 The dendrites 13 13 1. 2 Types of neurons 2 Signals in the nervous system 14 2. 1 Action potentials as point events - point processes in the nervous system 15 18 2. 2 Spontaneous activi~ in neurons 3 Stochastic modelling of single neuron spike trains 19 3. 1 Characteristics of a neuron spike train 19 3. 2 The mathematical neuron 23 4 Superposition models 26 4. 1 superposition of renewal processes 26 4. 2 Superposition of stationary point processe- limiting behaviour 34 4. 2. 1 Palm functions 35 4. 2. 2 Asymptotic behaviour of n stationary point processes superposed 36 4. 3 Superposition models of neuron spike trains 37 4. 3. 1 Model 4. 1 39 4. 3. 2 Model 4. 2 - A superposition model with 40 two input channels 40 4. 3. 3 Model 4. 3 4. 4 Discussion 41 43 5 Deletion models 5. 1 Deletion models with 1nd~endent interaction of excitatory and inhibitory sequences 44 VI 5. 1. 1 Model 5. 1 The basic de...

  13. Parameter estimation in neuronal stochastic differential equation models from intracellular recordings of membrane potentials in single neurons

    DEFF Research Database (Denmark)

    Ditlevsen, Susanne; Samson, Adeline

    2016-01-01

    Dynamics of the membrane potential in a single neuron can be studied by estimating biophysical parameters from intracellular recordings. Diffusion processes, given as continuous solutions to stochastic differential equations, are widely applied as models for the neuronal membrane potential evolut...

  14. Fast neuronal labeling in live tissue using a biocytin conjugated fluorescent probe

    DEFF Research Database (Denmark)

    Harsløf, Mads; Müller, Christoph Felix; Rohrberg, Julie

    2015-01-01

    of local synapses within 10min. TMR biocytin is fixable, stable during methyl salicylate clearing, and can be visualized deep in nervous tissue. COMPARISON WITH EXISTING METHODS: Retrograde labeling with TMR biocytin enables long-range neuronal visualization and concurrent calcium imaging after only a few...

  15. Responses of single neurons and neuronal ensembles in frog first- and second-order olfactory neurons

    Czech Academy of Sciences Publication Activity Database

    Rospars, J. P.; Šanda, Pavel; Lánský, Petr; Duchamp-Viret, P.

    2013-01-01

    Roč. 1536, NOV 6 (2013), s. 144-158 ISSN 0006-8993 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GAP103/11/0282 Institutional support: RVO:67985823 Keywords : olfaction * spiking activity * neuronal model Subject RIV: JD - Computer Applications, Robotics Impact factor: 2.828, year: 2013

  16. The Mesoaccumbens Pathway: A Retrograde Labeling and Single-Cell Axon Tracing Analysis in the Mouse.

    Science.gov (United States)

    Rodríguez-López, Claudia; Clascá, Francisco; Prensa, Lucía

    2017-01-01

    Neurons in the ventral tegmental area (VTA) that innervate the nucleus accumbens (Acb) constitute the so-called mesoaccumbens system. Increased activity by these neurons is correlated with the expectation and achievement of reward. The mesoaccumbens projection neurons are regarded as a central node in the brain networks that regulate drive and hedonic experience, and their dysregulation is a common pathophysiological step in addictive behaviors as well as major depression. Despite previous anatomical studies that have analyzed the origin of the mesoaccumbens axons within the VTA, regarded as a unit, the exact contributions of the various cytoarchitectural subdivisions of the VTA to this innervation is still unexplored; understanding these contributions would help further our understanding of their precise anatomical organization. With the aim of deciphering the contribution of the various VTA subdivisions to accumbal innervation, the present study has used retrograde tracer microinjections in the Acb to map the location within the various VTA subdivisions of neurons targeting either the shell or core compartments of the Acb in mice. Furthermore, the dopaminergic nature of these projections has also been analyzed using tyrosine-hydroxylase immunohistochemistry. We demonstrate here that small territories of the Acb core and shell are innervated simultaneously by many VTA subdivisions, contributing dopaminergic as well as non-dopaminergic axons to the accumbal innervation. In fact, single VTA subdivisions harbor both dopaminergic and non-dopaminergic neurons that project to the same accumbal territory. The most medial VTA subnuclei, like the caudal linear nucleus, project abundantly to medial aspects of the Acb core, whereas more lateral territories of the Acb are preferentially targeted by neurons located in the parabrachial pigmented and paranigral nuclei. Overall, about half of the mesoaccumbens neurons are putatively dopaminergic in mice. Anterograde single

  17. Transgenic labeling of parvalbumin-expressing neurons with tdTomato

    Science.gov (United States)

    Kaiser, Tobias; Ting, Jonathan T.; Monteiro, Patrícia; Feng, Guoping

    2015-01-01

    Summary Parvalbumin (PVALB)-expressing fast-spiking interneurons subserve important roles in many brain regions by modulating circuit function and dysfunction of these neurons is strongly implicated in neuropsychiatric disorders including schizophrenia and autism. To facilitate the study of PVALB neuron function we need to be able to identify PVALB neurons in vivo. We have generated a bacterial artificial chromosome (BAC) transgenic mouse line expressing the red fluorophore tdTomato under the control of endogenous regulatory elements of the Pvalb gene locus (JAX # 027395). We show that the tdTomato transgene is faithfully expressed relative to endogenous PVALB expression throughout the brain. Furthermore, targeted patch clamp recordings confirm that the labeled populations in neocortex, striatum, and hippocampus are fast-spiking interneurons based on intrinsic properties. This new transgenic mouse line provides a useful tool to study PVALB neuron function in the normal brain as well as in mouse models of psychiatric disease. PMID:26318335

  18. G gene-deficient single-round rabies viruses for neuronal circuit analysis.

    Science.gov (United States)

    Ghanem, Alexander; Conzelmann, Karl-Klaus

    2016-05-02

    Rhabdoviruses like the neurotropic rabies virus are fully amenable to pseudotyping with homologous and heterologous membrane proteins, which is being harnessed for the study of viral envelope proteins, viral retargeting, or immunization purposes. Particularly, pseudotyped delta G rabies viruses are emerging as safe and superb tools for mapping direct synaptic connections and analyzing neuronal circuits in the central and peripheral nervous system, which is a fundamental pillar of modern neuroscience. Such retrograde rabies mono-transsynaptic tracers in combination with optogenetics and modern in vivo imaging methods are opening entirely new avenues of investigation in neuroscience and help in answering major outstanding questions of connectivity and function of the nervous system. Here, we provide a brief overview on the biology and life cycle of rabies virus with emphasis on neuronal infection via axon ends, transport, and transsynaptic transmission of the virus. Pseudotyping of single-round, G-deleted virus with foreign glycoproteins allows to determine tropism and entry route, resulting in either retro- or anterograde labeling of neurons. Pseudotyping in vitro also allows specific targeting of cells that serve as starter cells for transsynaptic tracing, and pseudotyping in situ for a single (mono-transsynaptic) step of transmission to presynaptic neurons. We describe principle and experimental variations for defining "starter" cells for mono-transsynaptic tracing with ΔG rabies virus and outline open questions and limitations of the approach. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Generation and Screening of Transgenic Mice with Neuronal Labeling Controlled by Thy1 Regulatory Elements.

    Science.gov (United States)

    Marinković, Petar; Godinho, Leanne; Misgeld, Thomas

    2015-10-01

    Major progress has been made using in vivo imaging in mice to study mammalian nervous system development, plasticity, and disease. This progress has depended in part on the wide availability of two-photon microscopy, which is capable of penetrating deep into scattering tissue. Equally important, however, is the generation of suitable transgenic mouse models, which provide a "Golgi staining"-like labeling of neurons that is sparse and bright enough for in vivo imaging. Particularly prominent among such transgenic mice are the so-called Thy1-XFP mice (in which XFP stands for any fluorescent protein) that are used in numerous studies, especially to visualize spine plasticity in the cortex and remodeling in peripheral synapses. New generations of Thy1-XFP mice are now being generated at a high rate, and these have allowed previously difficult experiments to become feasible. Moreover, with easy access to core facilities or commercial providers of pronuclear injections, generating simple Thy1 transgenic mice is now a possibility even for small laboratories. In this introduction, we discuss the Thy1 regulatory elements used to generate transgenic lines with neuronal labeling. We provide a brief overview of currently available Thy1 transgenic mice, including lines labeling neuronal organelles or reporting neuronal function. © 2015 Cold Spring Harbor Laboratory Press.

  20. Long-range projection neurons of the mouse ventral tegmental area: a single-cell axon tracing analysis.

    Science.gov (United States)

    Aransay, Ana; Rodríguez-López, Claudia; García-Amado, María; Clascá, Francisco; Prensa, Lucía

    2015-01-01

    Pathways arising from the ventral tegmental area (VTA) release dopamine and other neurotransmitters during the expectation and achievement of reward, and are regarded as central links of the brain networks that create drive, pleasure, and addiction. While the global pattern of VTA projections is well-known, the actual axonal wiring of individual VTA neurons had never been investigated. Here, we labeled and analyzed the axons of 30 VTA single neurons by means of single-cell transfection with the Sindbis-pal-eGFP vector in mice. These observations were complemented with those obtained by labeling the axons of small populations of VTA cells with iontophoretic microdeposits of biotinylated dextran amine. In the single-cell labeling experiments, each entire axonal tree was reconstructed from serial sections, the length of terminal axonal arbors was estimated by stereology, and the dopaminergic phenotype was tested by double-labeling for tyrosine hydroxylase immunofluorescence. We observed two main, markedly different VTA cell morphologies: neurons with a single main axon targeting only forebrain structures (FPN cells), and neurons with multibranched axons targeting both the forebrain and the brainstem (F + BSPN cells). Dopaminergic phenotype was observed in FPN cells. Moreover, four "subtypes" could be distinguished among the FPN cells based on their projection targets: (1) "Mesocorticolimbic" FPN projecting to both neocortex and basal forebrain; (2) "Mesocortical" FPN innervating the neocortex almost exclusively; (3) "Mesolimbic" FPN projecting to the basal forebrain, accumbens and caudateputamen; and (4) "Mesostriatal" FPN targeting only the caudateputamen. While the F + BSPN cells were scattered within VTA, the mesolimbic neurons were abundant in the paranigral nucleus. The observed diversity in wiring architectures is consistent with the notion that different VTA cell subpopulations modulate the activity of specific sets of prosencephalic and brainstem structures.

  1. Stimulus-response functions of single avian olfactory bulb neurones.

    Science.gov (United States)

    McKeegan, Dorothy E F; Demmers, Theodorus G M; Wathes, Christopher M; Jones, R Bryan; Gentle, Michael J

    2002-10-25

    This study investigated olfactory processing in a functional context by examining the responses of single avian olfactory bulb neurones to two biologically important gases over relevant concentration ranges. Recordings of extracellular spike activity were made from 80 single units in the left olfactory bulb of 11 anaesthetised, freely breathing adult hens (Gallus domesticus). The units were spontaneously active, exhibiting widely variable firing rates (0.07-47.28 spikes/s) and variable temporal firing patterns. Single units were tested for their response to an ascending concentration series of either ammonia (2.5-100 ppm) or hydrogen sulphide (1-50 ppm), delivered directly to the olfactory epithelium. Stimulation with a calibrated gas delivery system resulted in modification of spontaneous activity causing either inhibition (47% of units) or excitation (53%) of firing. For ammonia, 20 of the 35 units tested exhibited a response, while for hydrogen sulphide, 25 of the 45 units tested were responsive. Approximate response thresholds for ammonia (median threshold 3.75 ppm (range 2.5-60 ppm, n=20)) and hydrogen sulphide (median threshold 1 ppm (range 1-10 ppm, n=25)) were determined with most units exhibiting thresholds near the lower end of these ranges. Stimulus response curves were constructed for 23 units; 16 (the most complete) were subjected to a linear regression analysis to determine whether they were best fitted by a linear, log or power function. No single function provided the best fit for all the curves (seven were linear, eight were log, one was power). These findings show that avian units respond to changes in stimulus concentration in a manner generally consistent with reported responses in mammalian olfactory bulb neurones. However, this study illustrates a level of fine-tuning to small step changes in concentration (<5 ppm) not previously demonstrated in vertebrate single olfactory bulb neurones.

  2. Photoinduced electron transfer in singly labeled thiouredopyrenetrisulfonate azurin derivatives

    DEFF Research Database (Denmark)

    Borovok, N; Kotlyar, A B; Pecht, I

    1999-01-01

    efficiency. TUPS derivatives of azurin, singly labeled at specific lysine residues, were prepared and purified to homogeneity by ion exchange HPLC. Transient absorption spectroscopy was used to directly monitor the rates of the electron transfer reaction from the photoexcited triplet state of TUPS to Cu......A novel method for the initiation of intramolecular electron transfer reactions in azurin is reported. The method is based on laser photoexcitation of covalently attached thiouredopyrenetrisulfonate (TUPS), the reaction that generates the low potential triplet state of the dye with high quantum......(II) and the back reaction from Cu(I) to the oxidized dye. For all singly labeled derivatives, the rate constants of copper ion reduction were one or two orders of magnitude larger than for its reoxidation, consistent with the larger thermodynamic driving force for the former process. Using 3-D coordinates...

  3. Functionalized nanopipettes: toward label-free, single cell biosensors

    OpenAIRE

    Actis, Paolo; Mak, Andy C.; Pourmand, Nader

    2010-01-01

    Nanopipette technology has been proven to be a label-free biosensor capable of identifying DNA and proteins. The nanopipette can include specific recognition elements for analyte discrimination based on size, shape, and charge density. The fully electrical read-out and the ease and low-cost fabrication are unique features that give this technology an enormous potential. Unlike other biosensing platforms, nanopipettes can be precisely manipulated with submicron accuracy and used to study singl...

  4. Double labelling immunohistochemical characterization of autonomic sympathetic neurons innervating the sow retractor clitoridis muscle

    Directory of Open Access Journals (Sweden)

    L Ragionieri

    2009-08-01

    Full Text Available Retrograde neuronal tracing and immunohistochemical methods were used to define the neurochemical content of sympathetic neurons projecting to the sow retractor clitoridis muscle (RCM. Differently from the other smooth muscles of genital organs, the RCM is an isolated muscle that is tonically contracted in the rest phase and relaxed in the active phase. This peculiarity makes it an interesting experimental model. The fluorescent tracer fast blue was injected into the RCM of three 50 kg subjects. After a one-week survival period, the ipsilateral paravertebral ganglion S1, that in a preliminary study showed the greatest number of cells projecting to the muscle, was collected from each animal. The co-existence of tyrosine hydroxylase with choline acetyltransferase, neuronal nitric oxide synthase, calcitonin gene-related peptide, leuenkephalin, neuropeptide Y, substance P and vasoactive intestinal polypeptide was studied under a fluorescent microscope on cryostat sections. Tyrosine hydroxylase was present in about 58% of the neurons projecting to the muscle and was found to be co-localized with each of the other tested substances.Within fast blue-labelled cells negative to the adrenergic marker, small populations of neurons singularly containing each of the other enzymatic markers or peptides were also observed. The present study documents the complexity of the neurochemical interactions that regulate the activity of the smooth myocytes of the RCM and their vascular components.

  5. D-[3H]aspartate retrograde labelling of callosal and association neurons of somatosensory areas I and II of cats

    International Nuclear Information System (INIS)

    Barbaresi, P.; Fabri, M.; Conti, F.; Manzoni, T.

    1987-01-01

    Experiments were carried out on cats to ascertain whether corticocortical neurons of somatosensory areas I (SI) and II (SII) could be labelled by retrograde axonal transport of D-[ 3 H]aspartate (D-[ 3 H]Asp). This tritiated enantiomer of the amino acid aspartate is (1) taken up selectively by axon terminals of neurons releasing aspartate and/or glutamate as excitatory neurotransmitter, (2) retrogradely transported and accumulated in perikarya, (3) not metabolized, and (4) visualized by autoradiography. A solution of D-[ 3 H]Asp was injected in eight cats in the trunk and forelimb zones of SI (two cats) or in the forelimb zone of SII (six cats). In order to compare the labelling patterns obtained with D-[ 3 H]Asp with those resulting after injection of a nonselective neuronal tracer, horseradish peroxidase (HRP) was delivered mixed with the radioactive tracer in seven of the eight cats. Furthermore, six additional animals received HRP injections in SI (three cats; trunk and forelimb zones) or SII (three cats; forelimb zone). D-[ 3 H]Asp retrograde labelling of perikarya was absent from the ipsilateral thalamus of all cats injected with the radioactive tracer but a dense terminal plexus of anterogradely labelled corticothalamic fibers from SI and SII was observed, overlapping the distribution area of thalamocortical neurons retrogradely labelled with HRP from the same areas. D-[ 3 H]Asp-labelled neurones were present in ipsilateral SII (SII-SI association neurones) in cats injected in SI. In these animals a bundle of radioactive fibres was observed in the rostral portion of the corpus callosum entering the contralateral hemisphere. There, neurones retrogradely labelled with silver grains were present in SI (SI-SI callosal neurons)

  6. 125I-labelled tetanus toxin as a neuronal marker in tissue cultures derived from embryonic CNS

    International Nuclear Information System (INIS)

    Dimpfel, W.; Neale, J.H.; Habermann, E.; National Inst. of Child Health and Human Development, Bethesda, Md.

    1975-01-01

    Primary cultures derived from embryonic mouse brain and spinal cord were exposed to 125 I-labelled tetanus toxin and subjected to autoradioraphy. Cells with neuronal, bur not glial, morphology selectively accumulated the toxin. The distribution of the grains over these cells and their processes was not uniform, discrete processes showing heavier labelling. (orig.) [de

  7. Spiking irregularity and frequency modulate the behavioral report of single-neuron stimulation.

    Science.gov (United States)

    Doron, Guy; von Heimendahl, Moritz; Schlattmann, Peter; Houweling, Arthur R; Brecht, Michael

    2014-02-05

    The action potential activity of single cortical neurons can evoke measurable sensory effects, but it is not known how spiking parameters and neuronal subtypes affect the evoked sensations. Here, we examined the effects of spike train irregularity, spike frequency, and spike number on the detectability of single-neuron stimulation in rat somatosensory cortex. For regular-spiking, putative excitatory neurons, detectability increased with spike train irregularity and decreasing spike frequencies but was not affected by spike number. Stimulation of single, fast-spiking, putative inhibitory neurons led to a larger sensory effect compared to regular-spiking neurons, and the effect size depended only on spike irregularity. An ideal-observer analysis suggests that, under our experimental conditions, rats were using integration windows of a few hundred milliseconds or more. Our data imply that the behaving animal is sensitive to single neurons' spikes and even to their temporal patterning. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Single-neuron diversity generated by Protocadherin-β cluster in mouse central and peripheral nervous systems

    Directory of Open Access Journals (Sweden)

    Keizo eHirano

    2012-08-01

    Full Text Available The generation of complex neural circuits depends on the correct wiring of neurons with diverse individual characteristics. To understand the complexity of the nervous system, the molecular mechanisms for specifying the identity and diversity of individual neurons must be elucidated. The clustered protocadherins (Pcdh in mammals consist of approximately 50 Pcdh genes (Pcdh-α, Pcdh-β, and Pcdh-γ that encode cadherin-family cell surface adhesion proteins. Individual neurons express a random combination of Pcdh-α and Pcdh-γ, whereas the expression patterns for the Pcdh-β genes, 22 one-exon genes in mouse, are not fully understood. Here we show that the Pcdh-β genes are expressed in a 3’-polyadenylated form in mouse brain. In situ hybridization using a pan-Pcdh-β probe against a conserved Pcdh-β sequence showed widespread labeling in the brain, with prominent signals in the olfactory bulb, hippocampus, and cerebellum. In situ hybridization with specific probes for individual Pcdh-β genes showed their expression to be scattered in Purkinje cells from P10 to P150. The scattered expression patterns were confirmed by performing a newly developed single-cell 3’-RACE analysis of Purkinje cells, which clearly demonstrated that the Pcdh-β genes are expressed monoallelically and combinatorially in individual Purkinje cells. Scattered expression patterns of individual Pcdh-β genes were also observed in pyramidal neurons in the hippocampus and cerebral cortex, neurons in the trigeminal and dorsal root ganglion, GABAergic interneurons, and cholinergic neurons. Our results extend previous observations of diversity at the single-neuron level generated by Pcdh expression and suggest that the Pcdh-β cluster genes contribute to specifying the identity and diversity of individual neurons.

  9. Different cortical projections from three subdivisions of the rat lateral posterior thalamic nucleus: a single-neuron tracing study with viral vectors.

    Science.gov (United States)

    Nakamura, Hisashi; Hioki, Hiroyuki; Furuta, Takahiro; Kaneko, Takeshi

    2015-05-01

    The lateral posterior thalamic nucleus (LP) is one of the components of the extrageniculate pathway in the rat visual system, and is cytoarchitecturally divided into three subdivisions--lateral (LPl), rostromedial (LPrm), and caudomedial (LPcm) portions. To clarify the differences in the dendritic fields and axonal arborisations among the three subdivisions, we applied a single-neuron labeling technique with viral vectors to LP neurons. The proximal dendrites of LPl neurons were more numerous than those of LPrm and LPcm neurons, and LPrm neurons tended to have wider dendritic fields than LPl neurons. We then analysed the axonal arborisations of LP neurons by reconstructing the axon fibers in the cortex. The LPl, LPrm and LPcm were different from one another in terms of the projection targets--the main target cortical regions of LPl and LPrm neurons were the secondary and primary visual areas, whereas those of LPcm neurons were the postrhinal and temporal association areas. Furthermore, the principal target cortical layers of LPl neurons in the visual areas were middle layers, but that of LPrm neurons was layer 1. This indicates that LPl and LPrm neurons can be categorised into the core and matrix types of thalamic neurons, respectively, in the visual areas. In addition, LPl neurons formed multiple axonal clusters within the visual areas, whereas the fibers of LPrm neurons were widely and diffusely distributed. It is therefore presumed that these two types of neurons play different roles in visual information processing by dual thalamocortical innervation of the visual areas. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Photoinduced electron transfer in singly labeled thiouredopyrenetrisulfonate azurin derivatives

    DEFF Research Database (Denmark)

    Borovok, N; Kotlyar, A B; Pecht, I

    1999-01-01

    A novel method for the initiation of intramolecular electron transfer reactions in azurin is reported. The method is based on laser photoexcitation of covalently attached thiouredopyrenetrisulfonate (TUPS), the reaction that generates the low potential triplet state of the dye with high quantum......(II) and the back reaction from Cu(I) to the oxidized dye. For all singly labeled derivatives, the rate constants of copper ion reduction were one or two orders of magnitude larger than for its reoxidation, consistent with the larger thermodynamic driving force for the former process. Using 3-D coordinates...... of the crystal structure of Pseudomonas aeruginosa azurin and molecular structure calculation of the TUPS modified proteins, electron transfer pathways were calculated. Analysis of the results revealed a good correlation between separation distance from donor to Cu ligating atom (His-N or Cys-S) and the observed...

  11. Single-molecule mechanics of protein-labelled DNA handles

    Directory of Open Access Journals (Sweden)

    Vivek S. Jadhav

    2016-01-01

    Full Text Available DNA handles are often used as spacers and linkers in single-molecule experiments to isolate and tether RNAs, proteins, enzymes and ribozymes, amongst other biomolecules, between surface-modified beads for nanomechanical investigations. Custom DNA handles with varying lengths and chemical end-modifications are readily and reliably synthesized en masse, enabling force spectroscopic measurements with well-defined and long-lasting mechanical characteristics under physiological conditions over a large range of applied forces. Although these chemically tagged DNA handles are widely used, their further individual modification with protein receptors is less common and would allow for additional flexibility in grabbing biomolecules for mechanical measurements. In-depth information on reliable protocols for the synthesis of these DNA–protein hybrids and on their mechanical characteristics under varying physiological conditions are lacking in literature. Here, optical tweezers are used to investigate different protein-labelled DNA handles in a microfluidic environment under different physiological conditions. Digoxigenin (DIG-dsDNA-biotin handles of varying sizes (1000, 3034 and 4056 bp were conjugated with streptavidin or neutravidin proteins. The DIG-modified ends of these hybrids were bound to surface-modified polystyrene (anti-DIG beads. Using different physiological buffers, optical force measurements showed consistent mechanical characteristics with long dissociation times. These protein-modified DNA hybrids were also interconnected in situ with other tethered biotinylated DNA molecules. Electron-multiplying CCD (EMCCD imaging control experiments revealed that quantum dot–streptavidin conjugates at the end of DNA handles remain freely accessible. The experiments presented here demonstrate that handles produced with our protein–DNA labelling procedure are excellent candidates for grasping single molecules exposing tags suitable for molecular

  12. Deep learning and shapes similarity for joint segmentation and tracing single neurons in SEM images

    Science.gov (United States)

    Rao, Qiang; Xiao, Chi; Han, Hua; Chen, Xi; Shen, Lijun; Xie, Qiwei

    2017-02-01

    Extracting the structure of single neurons is critical for understanding how they function within the neural circuits. Recent developments in microscopy techniques, and the widely recognized need for openness and standardization provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons. In order to look into the fine structure of neurons, we use the Automated Tape-collecting Ultra Microtome Scanning Electron Microscopy (ATUM-SEM) to get images sequence of serial sections of animal brain tissue that densely packed with neurons. Different from other neuron reconstruction method, we propose a method that enhances the SEM images by detecting the neuronal membranes with deep convolutional neural network (DCNN) and segments single neurons by active contour with group shape similarity. We joint the segmentation and tracing together and they interact with each other by alternate iteration that tracing aids the selection of candidate region patch for active contour segmentation while the segmentation provides the neuron geometrical features which improve the robustness of tracing. The tracing model mainly relies on the neuron geometrical features and is updated after neuron being segmented on the every next section. Our method enables the reconstruction of neurons of the drosophila mushroom body which is cut to serial sections and imaged under SEM. Our method provides an elementary step for the whole reconstruction of neuronal networks.

  13. Directional Trans-Synaptic Labeling of Specific Neuronal Connections in Live Animals.

    Science.gov (United States)

    Desbois, Muriel; Cook, Steven J; Emmons, Scott W; Bülow, Hannes E

    2015-07-01

    Understanding animal behavior and development requires visualization and analysis of their synaptic connectivity, but existing methods are laborious or may not depend on trans-synaptic interactions. Here we describe a transgenic approach for in vivo labeling of specific connections in Caenorhabditis elegans, which we term iBLINC. The method is based on BLINC (Biotin Labeling of INtercellular Contacts) and involves trans-synaptic enzymatic transfer of biotin by the Escherichia coli biotin ligase BirA onto an acceptor peptide. A BirA fusion with the presynaptic cell adhesion molecule NRX-1/neurexin is expressed presynaptically, whereas a fusion between the acceptor peptide and the postsynaptic protein NLG-1/neuroligin is expressed postsynaptically. The biotinylated acceptor peptide::NLG-1/neuroligin fusion is detected by a monomeric streptavidin::fluorescent protein fusion transgenically secreted into the extracellular space. Physical contact between neurons is insufficient to create a fluorescent signal, suggesting that synapse formation is required. The labeling approach appears to capture the directionality of synaptic connections, and quantitative analyses of synapse patterns display excellent concordance with electron micrograph reconstructions. Experiments using photoconvertible fluorescent proteins suggest that the method can be utilized for studies of protein dynamics at the synapse. Applying this technique, we find connectivity patterns of defined connections to vary across a population of wild-type animals. In aging animals, specific segments of synaptic connections are more susceptible to decline than others, consistent with dedicated mechanisms of synaptic maintenance. Collectively, we have developed an enzyme-based, trans-synaptic labeling method that allows high-resolution analyses of synaptic connectivity as well as protein dynamics at specific synapses of live animals. Copyright © 2015 by the Genetics Society of America.

  14. Label Space Reduction in MPLS Networks: How Much Can A Single Stacked Label Do?

    DEFF Research Database (Denmark)

    Solano, Fernando; Stidsen, Thomas K.; Fabregat, Ramon

    2008-01-01

    Most network operators have considered reducing LSR label spaces (number of labels used) as a way of simplifying management of underlaying virtual private networks (VPNs) and therefore reducing operational expenditure (OPEX). The IETF outlined the label merging feature in MPLS-allowing the config......Most network operators have considered reducing LSR label spaces (number of labels used) as a way of simplifying management of underlaying virtual private networks (VPNs) and therefore reducing operational expenditure (OPEX). The IETF outlined the label merging feature in MPLS...

  15. Reward-timing-dependent bidirectional modulation of cortical microcircuits during optical single-neuron operant conditioning.

    Science.gov (United States)

    Hira, Riichiro; Ohkubo, Fuki; Masamizu, Yoshito; Ohkura, Masamichi; Nakai, Junichi; Okada, Takashi; Matsuzaki, Masanori

    2014-11-24

    Animals rapidly adapt to environmental change. To reveal how cortical microcircuits are rapidly reorganized when an animal recognizes novel reward contingency, we conduct two-photon calcium imaging of layer 2/3 motor cortex neurons in mice and simultaneously reinforce the activity of a single cortical neuron with water delivery. Here we show that when the target neuron is not relevant to a pre-trained forelimb movement, the mouse increases the target neuron activity and the number of rewards delivered during 15-min operant conditioning without changing forelimb movement behaviour. The reinforcement bidirectionally modulates the activity of subsets of non-target neurons, independent of distance from the target neuron. The bidirectional modulation depends on the relative timing between the reward delivery and the neuronal activity, and is recreated by pairing reward delivery and photoactivation of a subset of neurons. Reward-timing-dependent bidirectional modulation may be one of the fundamental processes in microcircuit reorganization for rapid adaptation.

  16. Zooming Out of Single Neurons Reveals Structure in Mnemonic Representations.

    Science.gov (United States)

    Jazayeri, Mehrdad

    2017-12-20

    In this issue of Neuron, Rossi-Pool et al. (2017) show that the complex and heterogeneous response profiles of individual neurons in the dorsal premotor cortex during comparison of tactile temporal patterns can be understood in terms of two robust activity patterns that emerge across the population. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Site-specific labeling of Saccharomyces cerevisiae ribosomes for single-molecule manipulations

    Science.gov (United States)

    Petrov, Alexey; Puglisi, Joseph D.

    2010-01-01

    Site-specific labeling of Escherichia coli ribosomes has allowed application of single-molecule fluorescence spectroscopy and force methods to probe the mechanism of translation. To apply these approaches to eukaryotic translation, eukaryotic ribosomes must be specifically labeled with fluorescent labels and molecular handles. Here, we describe preparation and labeling of the small and large yeast ribosomal subunits. Phylogenetically variable hairpin loops in ribosomal RNA are mutated to allow hybridization of oligonucleotides to mutant ribosomes. We demonstrate specific labeling of the ribosomal subunits, and their use in single-molecule fluorescence and force experiments. PMID:20501598

  18. Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus.

    Directory of Open Access Journals (Sweden)

    Jae Hoon Jeong

    Full Text Available The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC, plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat.

  19. 9 CFR 381.445 - Guidelines for voluntary nutrition labeling of single-ingredient, raw products.

    Science.gov (United States)

    2010-01-01

    ... INSPECTION REGULATIONS Nutrition Labeling § 381.445 Guidelines for voluntary nutrition labeling of single-ingredient, raw products. (a) Nutrition information on the cuts of single-ingredient, raw poultry products... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Guidelines for voluntary nutrition...

  20. 9 CFR 317.345 - Guidelines for voluntary nutrition labeling of single-ingredient, raw products.

    Science.gov (United States)

    2010-01-01

    ... DEVICES, AND CONTAINERS Nutrition Labeling § 317.345 Guidelines for voluntary nutrition labeling of single-ingredient, raw products. (a) Nutrition information on the cuts of single-ingredient, raw meat products... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Guidelines for voluntary nutrition...

  1. A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity.

    Directory of Open Access Journals (Sweden)

    Julia P Brandt

    Full Text Available Many animals possess neurons specialized for the detection of carbon dioxide (CO(2, which acts as a cue to elicit behavioral responses and is also an internally generated product of respiration that regulates animal physiology. In many organisms how such neurons detect CO(2 is poorly understood. We report here a mechanism that endows C. elegans neurons with the ability to detect CO(2. The ETS-5 transcription factor is necessary for the specification of CO(2-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient to bypass a requirement for ets-5 in CO(2-detection and transforms neurons into CO(2-sensing neurons. Because ETS-5 and GCY-9 are members of gene families that are conserved between nematodes and vertebrates, a similar mechanism might act in the specification of CO(2-sensing neurons in other phyla.

  2. Computation in a single neuron: Hodgkin and Huxley revisited

    OpenAIRE

    Arcas, Blaise Aguera y; Fairhall, Adrienne L.; Bialek, William

    2002-01-01

    A spiking neuron ``computes'' by transforming a complex dynamical input into a train of action potentials, or spikes. The computation performed by the neuron can be formulated as dimensional reduction, or feature detection, followed by a nonlinear decision function over the low dimensional space. Generalizations of the reverse correlation technique with white noise input provide a numerical strategy for extracting the relevant low dimensional features from experimental data, and information t...

  3. Binaural response characteristics of single neurons in the medial superior olivary nucleus of the albino rat.

    Science.gov (United States)

    Inbody, S B; Feng, A S

    1981-04-06

    Binaural response properties of single neurons in the medial superior olivary nucleus (MSO) were investigated in the anesthetized rat. Stimulus parameters studied included interaural time difference and interaural intensity difference. In the present study, of the two cell types observed in the rat MSO nucleus, EE and EI, variations in the binaural response properties of the MSO neurons permitted further subclassifications, which may be related to the dendritic dominance of the MSO neurons.

  4. Laser capture microdissection of enriched populations of neurons or single neurons for gene expression analysis after traumatic brain injury.

    Science.gov (United States)

    Boone, Deborah R; Sell, Stacy L; Hellmich, Helen Lee

    2013-04-10

    Long-term cognitive disability after TBI is associated with injury-induced neurodegeneration in the hippocampus-a region in the medial temporal lobe that is critical for learning, memory and executive function. Hence our studies focus on gene expression analysis of specific neuronal populations in distinct subregions of the hippocampus. The technique of laser capture microdissection (LCM), introduced in 1996 by Emmert-Buck, et al., has allowed for significant advances in gene expression analysis of single cells and enriched populations of cells from heterogeneous tissues such as the mammalian brain that contains thousands of functional cell types. We use LCM and a well established rat model of traumatic brain injury (TBI) to investigate the molecular mechanisms that underlie the pathogenesis of TBI. Following fluid-percussion TBI, brains are removed at pre-determined times post-injury, immediately frozen on dry ice, and prepared for sectioning in a cryostat. The rat brains can be embedded in OCT and sectioned immediately, or stored several months at -80 °C before sectioning for laser capture microdissection. Additionally, we use LCM to study the effects of TBI on circadian rhythms. For this, we capture neurons from the suprachiasmatic nuclei that contain the master clock of the mammalian brain. Here, we demonstrate the use of LCM to obtain single identified neurons (injured and degenerating, Fluoro-Jade-positive, or uninjured, Fluoro-Jade-negative) and enriched populations of hippocampal neurons for subsequent gene expression analysis by real time PCR and/or whole-genome microarrays. These LCM-enabled studies have revealed that the selective vulnerability of anatomically distinct regions of the rat hippocampus are reflected in the different gene expression profiles of different populations of neurons obtained by LCM from these distinct regions. The results from our single-cell studies, where we compare the transcriptional profiles of dying and adjacent surviving

  5. A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity

    DEFF Research Database (Denmark)

    Brandt, Julia P; Aziz-Zaman, Sonya; Juozaityte, Vaida

    2012-01-01

    . We report here a mechanism that endows C. elegans neurons with the ability to detect CO(2). The ETS-5 transcription factor is necessary for the specification of CO(2)-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient...

  6. Single photon emission computed tomography in motor neuron disease with dementia.

    Science.gov (United States)

    Sawada, H; Udaka, F; Kishi, Y; Seriu, N; Mezaki, T; Kameyama, M; Honda, M; Tomonobu, M

    1988-01-01

    Single photon emission computed tomography with [123 I] isopropylamphetamine was carried out on a patient with motor neuron disease with dementia. [123 I] uptake was decreased in the frontal lobes. This would reflect the histopathological findings such as neuronal loss and gliosis in the frontal lobes.

  7. Stochastic optimal control of single neuron spike trains

    DEFF Research Database (Denmark)

    Iolov, Alexandre; Ditlevsen, Susanne; Longtin, Andrë

    2014-01-01

    stimulation of a neuron to achieve a target spike train under the physiological constraint to not damage tissue. Approach. We pose a stochastic optimal control problem to precisely specify the spike times in a leaky integrate-and-fire (LIF) model of a neuron with noise assumed to be of intrinsic or synaptic...... to the spike times (open-loop control). Main results. We have developed a stochastic optimal control algorithm to obtain precise spike times. It is applicable in both the supra-threshold and sub-threshold regimes, under open-loop and closed-loop conditions and with an arbitrary noise intensity; the accuracy...... into account physiological constraints on the control. A precise and robust targeting of neural activity based on stochastic optimal control has great potential for regulating neural activity in e.g. prosthetic applications and to improve our understanding of the basic mechanisms by which neuronal firing...

  8. Carbon nanotubes: artificial nanomaterials to engineer single neurons and neuronal networks.

    Science.gov (United States)

    Fabbro, Alessandra; Bosi, Susanna; Ballerini, Laura; Prato, Maurizio

    2012-08-15

    In the past decade, nanotechnology applications to the nervous system have often involved the study and the use of novel nanomaterials to improve the diagnosis and therapy of neurological diseases. In the field of nanomedicine, carbon nanotubes are evaluated as promising materials for diverse therapeutic and diagnostic applications. Besides, carbon nanotubes are increasingly employed in basic neuroscience approaches, and they have been used in the design of neuronal interfaces or in that of scaffolds promoting neuronal growth in vitro. Ultimately, carbon nanotubes are thought to hold the potential for the development of innovative neurological implants. In this framework, it is particularly relevant to document the impact of interfacing such materials with nerve cells. Carbon nanotubes were shown, when modified with biologically active compounds or functionalized in order to alter their charge, to affect neurite outgrowth and branching. Notably, purified carbon nanotubes used as scaffolds can promote the formation of nanotube-neuron hybrid networks, able per se to affect neuron integrative abilities, network connectivity, and synaptic plasticity. We focus this review on our work over several years directed to investigate the ability of carbon nanotube platforms in providing a new tool for nongenetic manipulations of neuronal performance and network signaling.

  9. 75 FR 82148 - Nutrition Labeling of Single-Ingredient Products and Ground or Chopped Meat and Poultry Products

    Science.gov (United States)

    2010-12-29

    ... poultry products inspection regulations to require nutrition labeling of the major cuts of single... cuts: This final rule requires nutrition labeling of the major cuts of single-ingredient, raw meat and... in the voluntary nutrition labeling program to provide nutrition labeling for the major cuts of...

  10. eGFP expression under the Uchl1 promoter labels corticospinal motor neurons and a subpopulation of degeneration resistant spinal motor neurons in ALS mouse models

    Science.gov (United States)

    Yasvoina, Marina V.

    Current understanding of basic cellular and molecular mechanisms for motor neuron vulnerability during motor neuron disease initiation and progression is incomplete. The complex cytoarchitecture and cellular heterogeneity of the cortex and spinal cord greatly impedes our ability to visualize, isolate, and study specific neuron populations in both healthy and diseased states. We generated a novel reporter line, the Uchl1-eGFP mouse, in which cortical and spinal components of motor neuron circuitry are genetically labeled with eGFP under the Uchl1 promoter. A series of cellular and anatomical analyses combined with retrograde labeling, molecular marker expression, and electrophysiology were employed to determine identity of eGFP expressing cells in the motor cortex and the spinal cord of novel Uchl1-eGFP reporter mice. We conclude that eGFP is expressed in corticospinal motor neurons (CSMN) in the motor cortex and a subset of S-type alpha and gamma spinal motor neurons (SMN) in the spinal cord. hSOD1G93A and Alsin-/- mice, mouse models for amyotrophic lateral sclerosis (ALS), were bred to Uchl1-eGFP reporter mouse line to investigate the pathophysiology and underlying mechanisms of CSMN degeneration in vivo. Evidence suggests early and progressive degeneration of CSMN and SMN in the hSOD1G93A transgenic mice. We show an early increase of autophagosome formation in the apical dendrites of vulnerable CSMN in hSOD1G93A-UeGFP mice, which is localized to the apical dendrites. In addition, labeling S-type alpha and gamma SMN in the hSOD1G93A-UeGFP mice provide a unique opportunity to study basis of their resistance to degeneration. Mice lacking alsin show moderate clinical phenotype and mild CSMN axon degeneration in the spinal cord, which suggests vulnerability of CSMN. Therefore, we investigated the CSMN cellular and axon defects in aged Alsin-/- mice bred to Uchl1-eGFP reporter mouse line. We show that while CSMN are preserved and lack signs of degeneration, CSMN axons

  11. Stable long-term chronic brain mapping at the single-neuron level.

    Science.gov (United States)

    Fu, Tian-Ming; Hong, Guosong; Zhou, Tao; Schuhmann, Thomas G; Viveros, Robert D; Lieber, Charles M

    2016-10-01

    Stable in vivo mapping and modulation of the same neurons and brain circuits over extended periods is critical to both neuroscience and medicine. Current electrical implants offer single-neuron spatiotemporal resolution but are limited by such factors as relative shear motion and chronic immune responses during long-term recording. To overcome these limitations, we developed a chronic in vivo recording and stimulation platform based on flexible mesh electronics, and we demonstrated stable multiplexed local field potentials and single-unit recordings in mouse brains for at least 8 months without probe repositioning. Properties of acquired signals suggest robust tracking of the same neurons over this period. This recording and stimulation platform allowed us to evoke stable single-neuron responses to chronic electrical stimulation and to carry out longitudinal studies of brain aging in freely behaving mice. Such advantages could open up future studies in mapping and modulating changes associated with learning, aging and neurodegenerative diseases.

  12. Noninvasive imaging of protein metabolic labeling in single human cells using stable isotopes and Raman microscopy

    NARCIS (Netherlands)

    van Manen, H.J.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2008-01-01

    We have combined nonresonant Raman microspectroscopy and spectral imaging with stable isotope labeling by amino acids in cell culture (SILAC) to selectively detect the incorporation of deuterium-labeled phenylalanine, tyrosine, and methionine into proteins in intact, single HeLa cells. The C−D

  13. Specific expression of channelrhodopsin-2 in single neurons of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Cornelia Schmitt

    Full Text Available Optogenetic approaches using light-activated proteins like Channelrhodopsin-2 (ChR2 enable investigating the function of populations of neurons in live Caenorhabditis elegans (and other animals, as ChR2 expression can be targeted to these cells using specific promoters. Sub-populations of these neurons, or even single cells, can be further addressed by restricting the illumination to the cell of interest. However, this is technically demanding, particularly in free moving animals. Thus, it would be helpful if expression of ChR2 could be restricted to single neurons or neuron pairs, as even wide-field illumination would photostimulate only this particular cell. To this end we adopted the use of Cre or FLP recombinases and conditional ChR2 expression at the intersection of two promoter expression domains, i.e. in the cell of interest only. Success of this method depends on precise knowledge of the individual promoters' expression patterns and on relative expression levels of recombinase and ChR2. A bicistronic expression cassette with GFP helps to identify the correct expression pattern. Here we show specific expression in the AVA reverse command neurons and the aversive polymodal sensory ASH neurons. This approach shall enable to generate strains for optogenetic manipulation of each of the 302 C. elegans neurons. This may eventually allow to model the C. elegans nervous system in its entirety, based on functional data for each neuron.

  14. Kaleido: Visualizing Big Brain Data with Automatic Color Assignment for Single-Neuron Images.

    Science.gov (United States)

    Wang, Ting-Yuan; Chen, Nan-Yow; He, Guan-Wei; Wang, Guo-Tzau; Shih, Chi-Tin; Chiang, Ann-Shyn

    2018-03-03

    Effective 3D visualization is essential for connectomics analysis, where the number of neural images easily reaches over tens of thousands. A formidable challenge is to simultaneously visualize a large number of distinguishable single-neuron images, with reasonable processing time and memory for file management and 3D rendering. In the present study, we proposed an algorithm named "Kaleido" that can visualize up to at least ten thousand single neurons from the Drosophila brain using only a fraction of the memory traditionally required, without increasing computing time. Adding more brain neurons increases memory only nominally. Importantly, Kaleido maximizes color contrast between neighboring neurons so that individual neurons can be easily distinguished. Colors can also be assigned to neurons based on biological relevance, such as gene expression, neurotransmitters, and/or development history. For cross-lab examination, the identity of every neuron is retrievable from the displayed image. To demonstrate the effectiveness and tractability of the method, we applied Kaleido to visualize the 10,000 Drosophila brain neurons obtained from the FlyCircuit database ( http://www.flycircuit.tw/modules.php?name=kaleido ). Thus, Kaleido visualization requires only sensible computer memory for manual examination of big connectomics data.

  15. Crypt neurons express a single V1R-related ora gene.

    Science.gov (United States)

    Oka, Yuichiro; Saraiva, Luis R; Korsching, Sigrun I

    2012-03-01

    Both ciliated and microvillous olfactory sensory neuron populations express large families of olfactory receptor genes. However, individual neurons generally express only a single receptor gene according to the "one neuron-one receptor" rule. We report here that crypt neurons, the third type of olfactory neurons in fish species, use an even more restricted mode of expression. We recently identified a novel olfactory receptor family of 6 highly conserved G protein-coupled receptors, the v1r-like ora genes. We show now that a single member of this family, ora4 is expressed in nearly all crypt neurons, whereas the other 5 ora genes are not found in this cell type. Consistent with these findings, ora4 is never coexpressed with any of the remaining 5 ora genes. Furthermore, several lines of evidence indicate the absence of any other olfactory receptor families in crypt neurons. These results suggest that the vast majority of the crypt neuron population may select one and the same olfactory receptor gene, a "one cell type-one receptor" mode of expression. Such an expression pattern is familiar in the visual system, with rhodopsin as the sole light receptor of rod photoreceptor cells, but unexpected in the sense of smell.

  16. Racing to learn: statistical inference and learning in a single spiking neuron with adaptive kernels.

    Science.gov (United States)

    Afshar, Saeed; George, Libin; Tapson, Jonathan; van Schaik, André; Hamilton, Tara J

    2014-01-01

    This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN), a simple spiking neuron model that performs statistical inference and unsupervised learning of spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate the effects of dynamic synapto-dendritic kernels and demonstrate their computational power even at the single neuron scale. The rule-set defining the neuron is simple: there are no complex mathematical operations such as normalization, exponentiation or even multiplication. The functionalities of SKAN emerge from the real-time interaction of simple additive and binary processes. Like a biological neuron, SKAN is robust to signal and parameter noise, and can utilize both in its operations. At the network scale neurons are locked in a race with each other with the fastest neuron to spike effectively "hiding" its learnt pattern from its neighbors. The robustness to noise, high speed, and simple building blocks not only make SKAN an interesting neuron model in computational neuroscience, but also make it ideal for implementation in digital and analog neuromorphic systems which is demonstrated through an implementation in a Field Programmable Gate Array (FPGA). Matlab, Python, and Verilog implementations of SKAN are available at: http://www.uws.edu.au/bioelectronics_neuroscience/bens/reproducible_research.

  17. Reconstruction of neuronal input through modeling single-neuron dynamics and computations

    International Nuclear Information System (INIS)

    Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin; Chan, Wai-lok

    2016-01-01

    Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.

  18. Reconstruction of neuronal input through modeling single-neuron dynamics and computations

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin, E-mail: dengbin@tju.edu.cn; Chan, Wai-lok [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2016-06-15

    Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.

  19. On the Non-Learnability of a Single Spiking Neuron

    Czech Academy of Sciences Publication Activity Database

    Šíma, Jiří; Sgall, Jiří

    2005-01-01

    Roč. 17, č. 12 (2005), s. 2635-2647 ISSN 0899-7667 R&D Projects: GA ČR GA201/02/1456; GA AV ČR 1ET100300517; GA MŠk LN00A056; GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z10190503 Keywords : spiking neuron * consistency problem * NP-completness * PAC model * robust learning * representation problem Subject RIV: BA - General Mathematics Impact factor: 2.591, year: 2005

  20. Induction of associative olfactory memory by targeted activation of single olfactory neurons in Drosophila larvae.

    Science.gov (United States)

    Honda, Takato; Lee, Chi-Yu; Yoshida-Kasikawa, Maki; Honjo, Ken; Furukubo-Tokunaga, Katsuo

    2014-04-25

    It has been postulated that associative memory is formed by at least two sets of external stimuli, CS and US, that are transmitted to the memory centers by distinctive conversing pathways. However, whether associative memory can be induced by the activation of only the olfactory CS and a biogenic amine-mediated US pathways remains to be elucidated. In this study, we substituted the reward signals with dTrpA1-mediated thermogenetic activation of octopaminergic neurons and the odor signals by ChR2-mediated optical activation of a specific class of olfactory neurons. We show that targeted activation of the olfactory receptor and the octopaminergic neurons is indeed sufficient for the formation of associative olfactory memory in the larval brain. We also show that targeted stimulation of only a single type of olfactory receptor neurons is sufficient to induce olfactory memory that is indistinguishable from natural memory induced by the activation of multiple olfactory receptor neurons.

  1. Single Ih channels in pyramidal neuron dendrites: properties, distribution, and impact on action potential output

    NARCIS (Netherlands)

    Kole, Maarten H. P.; Hallermann, Stefan; Stuart, Greg J.

    2006-01-01

    The hyperpolarization-activated cation current (Ih) plays an important role in regulating neuronal excitability, yet its native single-channel properties in the brain are essentially unknown. Here we use variance-mean analysis to study the properties of single Ih channels in the apical dendrites of

  2. Creation of defined single cell resolution neuronal circuits on microelectrode arrays

    Science.gov (United States)

    Pirlo, Russell Kirk

    2009-12-01

    The way cell-cell organization of neuronal networks influences activity and facilitates function is not well understood. Microelectrode arrays (MEAs) and advancing cell patterning technologies have enabled access to and control of in vitro neuronal networks spawning much new research in neuroscience and neuroengineering. We propose that small, simple networks of neurons with defined circuitry may serve as valuable research models where every connection can be analyzed, controlled and manipulated. Towards the goal of creating such neuronal networks we have applied microfabricated elastomeric membranes, surface modification and our unique laser cell patterning system to create defined neuronal circuits with single-cell precision on MEAs. Definition of synaptic connectivity was imposed by the 3D physical constraints of polydimethylsiloxane elastomeric membranes. The membranes had 20mum clear-through holes and 2-3mum deep channels which when applied to the surface of the MEA formed microwells to confine neurons to electrodes connected via shallow tunnels to direct neurite outgrowth. Tapering and turning of channels was used to influence neurite polarity. Biocompatibility of the membranes was increased by vacuum baking, oligomer extraction, and autoclaving. Membranes were bound to the MEA by oxygen plasma treatment and heated pressure. The MEA/membrane surface was treated with oxygen plasma, poly-D-lysine and laminin to improve neuron attachment, survival and neurite outgrowth. Prior to cell patterning the outer edge of culture area was seeded with 5x10 5 cells per cm and incubated for 2 days. Single embryonic day 7 chick forebrain neurons were then patterned into the microwells and onto the electrodes using our laser cell patterning system. Patterned neurons successfully attached to and were confined to the electrodes. Neurites extended through the interconnecting channels and connected with adjacent neurons. These results demonstrate that neuronal circuits can be

  3. Simultaneous transcranial magnetic stimulation and single neuron recording in alert non-human primates

    OpenAIRE

    Mueller, Jerel K.; Grigsby, Erinn M.; Prevosto, Vincent; Petraglia, Frank W.; Rao, Hrishikesh; Deng, Zhi-De; Peterchev, Angel V.; Sommer, Marc A.; Egner, Tobias; Platt, Michael L.; Grill, Warren M.

    2014-01-01

    Transcranial magnetic stimulation (TMS) is a widely used, noninvasive method for stimulating nervous tissue, yet its mechanisms of effect are poorly understood. Here we report novel methods for studying the influence of TMS on single neurons in the brain of alert non-human primates. We designed a TMS coil that focuses its effect near the tip of a recording electrode and recording electronics that enable direct acquisition of neuronal signals at the site of peak stimulus strength minimally per...

  4. Neurons the decision makers, Part I: The firing function of a single neuron.

    Science.gov (United States)

    Saaty, Thomas

    2017-02-01

    This paper is concerned with understanding synthesis of electric signals in the neural system based on making pairwise comparisons. Fundamentally, every person and every animal are born with the talent to compare stimuli from things that share properties in space or over time. Comparisons always need experience to distinguish among things. Pairwise comparisons are numerically reciprocal. If a value is assigned to the larger of two elements that have a given property when compared with the smaller one, then the smaller has the reciprocal of that value when compared with the larger. Because making comparisons requires the reciprocal property, we need mathematics that can cope with division. There are four division algebras that would allow us to use our reciprocals arising from comparisons: The real numbers, the complex numbers, the non-commutative quaternions and the non-associative octonions. Rather than inferring function as from electric flow in a network, in this paper we infer the flow from function. Neurons fire in response to stimuli and their firings vary relative to the intensities of the stimuli. We believe neurons use some kind of pairwise comparison mechanism to determine when to fire based on the stimuli they receive. The ideas we develop here about flows are used to deduce how a system based on this kind of firing determination works and can be described. Furthermore the firing of neurons requires continuous comparisons. To develop a formula describing the output of these pairwise comparisons requires solving Fredholm's equation of the second kind which is satisfied if and only if a simple functional equation has solutions. The Fourier transform of the real solution of this equation leads to inverse square laws like those that are common in physics. The Fourier transform applied to a complex valued solution leads to Dirac type of firings. Such firings are dense in the very general fields of functions known as Sobolev spaces and thus can be used to

  5. Integrative Single-Cell Transcriptomics Reveals Molecular Networks Defining Neuronal Maturation During Postnatal Neurogenesis.

    Science.gov (United States)

    Gao, Yu; Wang, Feifei; Eisinger, Brian E; Kelnhofer, Laurel E; Jobe, Emily M; Zhao, Xinyu

    2017-03-01

    In mammalian hippocampus, new neurons are continuously produced from neural stem cells throughout life. This postnatal neurogenesis may contribute to information processing critical for cognition, adaptation, learning, and memory, and is implicated in numerous neurological disorders. During neurogenesis, the immature neuron stage defined by doublecortin (DCX) expression is the most sensitive to regulation by extrinsic factors. However, little is known about the dynamic biology within this critical interval that drives maturation and confers susceptibility to regulatory signals. This study aims to test the hypothesis that DCX-expressing immature neurons progress through developmental stages via activity of specific transcriptional networks. Using single-cell RNA-seq combined with a novel integrative bioinformatics approach, we discovered that individual immature neurons can be classified into distinct developmental subgroups based on characteristic gene expression profiles and subgroup-specific markers. Comparisons between immature and more mature subgroups revealed novel pathways involved in neuronal maturation. Genes enriched in less mature cells shared significant overlap with genes implicated in neurodegenerative diseases, while genes positively associated with neuronal maturation were enriched for autism-related gene sets. Our study thus discovers molecular signatures of individual immature neurons and unveils potential novel targets for therapeutic approaches to treat neurodevelopmental and neurological diseases. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. The role of dendritic non-linearities in single neuron computation

    Directory of Open Access Journals (Sweden)

    Boris Gutkin

    2014-05-01

    Full Text Available Experiment has demonstrated that summation of excitatory post-synaptic protientials (EPSPs in dendrites is non-linear. The sum of multiple EPSPs can be larger than their arithmetic sum, a superlinear summation due to the opening of voltage-gated channels and similar to somatic spiking. The so-called dendritic spike. The sum of multiple of EPSPs can also be smaller than their arithmetic sum, because the synaptic current necessarily saturates at some point. While these observations are well-explained by biophysical models the impact of dendritic spikes on computation remains a matter of debate. One reason is that dendritic spikes may fail to make the neuron spike; similarly, dendritic saturations are sometime presented as a glitch which should be corrected by dendritic spikes. We will provide solid arguments against this claim and show that dendritic saturations as well as dendritic spikes enhance single neuron computation, even when they cannot directly make the neuron fire. To explore the computational impact of dendritic spikes and saturations, we are using a binary neuron model in conjunction with Boolean algebra. We demonstrate using these tools that a single dendritic non-linearity, either spiking or saturating, combined with somatic non-linearity, enables a neuron to compute linearly non-separable Boolean functions (lnBfs. These functions are impossible to compute when summation is linear and the exclusive OR is a famous example of lnBfs. Importantly, the implementation of these functions does not require the dendritic non-linearity to make the neuron spike. Next, We show that reduced and realistic biophysical models of the neuron are capable of computing lnBfs. Within these models and contrary to the binary model, the dendritic and somatic non-linearity are tightly coupled. Yet we show that these neuron models are capable of linearly non-separable computations.

  7. Gangliosides in nervous tissue cultures and binding of 125I-labelled tetanus toxin, a neuronal marker

    International Nuclear Information System (INIS)

    Dimpfel, W.; Huang, R.T.C.; Habermann, E.

    1977-01-01

    Continuous cell lines, primary cell cultures derived from embryonic CNS, and homogenates made from adult and embryonic CNS were compared with respect to their lipid pattern and their ability to bind 125 I-labelled tetanus toxin. In parallel experiments de novo synthesis of gangliosides in the cell lines was studied, using [ 14 C] glucosamine as precursor. Of the total lipid only gangliosides were specifically labelled by [ 14 C] glucosamine. The patterns of the de novo synthesized gangliosides corresponded to those present in the respective cells. Pronounced binding of 125 I-labelled toxin was only detectable in tissues containing long-chain gangliosides (ganglioside C which represents GDIb and GTI). Accordingly, hybrid (neuroblastoma x glioma) cells, due to their lack of long-chain gangliosides, bound just-discernible amounts of labelled toxin. When previously exposed to gangliosides, their binding of tetanus toxin tremendously increased. It was concluded that only the long-chain gangliosides in the neuronal cells are functionally involved in the binding of the tetanus toxin and that these acceptors of tetanus toxin can be transplanted. (author)

  8. Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal Cord Neurons and Their Activity during Behavior

    Directory of Open Access Journals (Sweden)

    Anupama Sathyamurthy

    2018-02-01

    Full Text Available To understand the cellular basis of behavior, it is necessary to know the cell types that exist in the nervous system and their contributions to function. Spinal networks are essential for sensory processing and motor behavior and provide a powerful system for identifying the cellular correlates of behavior. Here, we used massively parallel single nucleus RNA sequencing (snRNA-seq to create an atlas of the adult mouse lumbar spinal cord. We identified and molecularly characterized 43 neuronal populations. Next, we leveraged the snRNA-seq approach to provide unbiased identification of neuronal populations that were active following a sensory and a motor behavior, using a transcriptional signature of neuronal activity. This approach can be used in the future to link single nucleus gene expression data with dynamic biological responses to behavior, injury, and disease.

  9. Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal Cord Neurons and Their Activity during Behavior.

    Science.gov (United States)

    Sathyamurthy, Anupama; Johnson, Kory R; Matson, Kaya J E; Dobrott, Courtney I; Li, Li; Ryba, Anna R; Bergman, Tzipporah B; Kelly, Michael C; Kelley, Matthew W; Levine, Ariel J

    2018-02-20

    To understand the cellular basis of behavior, it is necessary to know the cell types that exist in the nervous system and their contributions to function. Spinal networks are essential for sensory processing and motor behavior and provide a powerful system for identifying the cellular correlates of behavior. Here, we used massively parallel single nucleus RNA sequencing (snRNA-seq) to create an atlas of the adult mouse lumbar spinal cord. We identified and molecularly characterized 43 neuronal populations. Next, we leveraged the snRNA-seq approach to provide unbiased identification of neuronal populations that were active following a sensory and a motor behavior, using a transcriptional signature of neuronal activity. This approach can be used in the future to link single nucleus gene expression data with dynamic biological responses to behavior, injury, and disease. Published by Elsevier Inc.

  10. Functional properties and synaptic integration of genetically labelled dopaminergic neurons in intrastriatal grafts

    DEFF Research Database (Denmark)

    Sørensen, Andreas Toft; Thompson, Lachlan; Kirik, Deniz

    2005-01-01

    , the electrophysiological properties grafted cells need to have in order to induce substantial functional recovery are poorly defined. It has not been possible to prospectively identify and record from dopaminergic neurons in fetal transplants. Here we used transgenic mice expressing green fluorescent protein under control...... of the rat tyrosine hydroxylase promoter for whole-cell patch-clamp recordings of endogenous and grafted dopaminergic neurons. We transplanted ventral mesencephalic tissue from E12.5 transgenic mice into striatum of neonatal rats with or without lesions of the nigrostriatal dopamine system. The transplanted...... in the dopamine-depleted striatum than of those in the intact striatum. Our findings define specific electrophysiological characteristics of transplanted fetal dopaminergic neurons, and we provide the first direct evidence of functional synaptic integration of these neurons into host neural circuitries....

  11. Single photon emission computed tomography in motor neuron disease with dementia

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, H.; Udaka, F.; Kishi, Y.; Seriu, N.; Ohtani, S.; Abe, K.; Mezaki, T.; Kameyama, M.; Honda, M.; Tomonobu, M.

    1988-12-01

    Single photon emission computed tomography with (123 I) isopropylamphetamine was carried out on a patient with motor neutron disease with dementia. (123 I) uptake was decreased in the frontal lobes. This would reflect the histopathological findings such as neuronal loss and gliosis in the frontal lobes.

  12. Generation of Induced Neuronal Cells by the Single Reprogramming Factor ASCL1

    Directory of Open Access Journals (Sweden)

    Soham Chanda

    2014-08-01

    Full Text Available Direct conversion of nonneural cells to functional neurons holds great promise for neurological disease modeling and regenerative medicine. We previously reported rapid reprogramming of mouse embryonic fibroblasts (MEFs into mature induced neuronal (iN cells by forced expression of three transcription factors: ASCL1, MYT1L, and BRN2. Here, we show that ASCL1 alone is sufficient to generate functional iN cells from mouse and human fibroblasts and embryonic stem cells, indicating that ASCL1 is the key driver of iN cell reprogramming in different cell contexts and that the role of MYT1L and BRN2 is primarily to enhance the neuronal maturation process. ASCL1-induced single-factor neurons (1F-iN expressed mature neuronal markers, exhibited typical passive and active intrinsic membrane properties, and formed functional pre- and postsynaptic structures. Surprisingly, ASCL1-induced iN cells were predominantly excitatory, demonstrating that ASCL1 is permissive but alone not deterministic for the inhibitory neuronal lineage.

  13. Single-cell resolution mapping of neuronal damage in acute focal cerebral ischemia using thallium autometallography.

    Science.gov (United States)

    Stöber, Franziska; Baldauf, Kathrin; Ziabreva, Iryna; Harhausen, Denise; Zille, Marietta; Neubert, Jenni; Reymann, Klaus G; Scheich, Henning; Dirnagl, Ulrich; Schröder, Ulrich H; Wunder, Andreas; Goldschmidt, Jürgen

    2014-01-01

    Neuronal damage shortly after onset or after brief episodes of cerebral ischemia has remained difficult to assess with clinical and preclinical imaging techniques as well as with microscopical methods. We here show, in rodent models of middle cerebral artery occlusion (MCAO), that neuronal damage in acute focal cerebral ischemia can be mapped with single-cell resolution using thallium autometallography (TlAMG), a histochemical technique for the detection of the K(+)-probe thallium (Tl(+)) in the brain. We intravenously injected rats and mice with thallium diethyldithiocarbamate (TlDDC), a lipophilic chelate complex that releases Tl(+) after crossing the blood-brain barrier. We found, within the territories of the affected arteries, areas of markedly reduced neuronal Tl(+) uptake in all animals at all time points studied ranging from 15 minutes to 24 hours after MCAO. In large lesions at early time points, areas with neuronal and astrocytic Tl(+) uptake below thresholds of detection were surrounded by putative penumbral zones with preserved but diminished Tl(+) uptake. At 24 hours, the areas of reduced Tl(+)uptake matched with areas delineated by established markers of neuronal damage. The results suggest the use of (201)TlDDC for preclinical and clinical single-photon emission computed tomography (SPECT) imaging of hyperacute alterations in brain K(+) metabolism and prediction of tissue viability in cerebral ischemia.

  14. Single-cell resolution mapping of neuronal damage in acute focal cerebral ischemia using thallium autometallography

    Science.gov (United States)

    Stöber, Franziska; Baldauf, Kathrin; Ziabreva, Iryna; Harhausen, Denise; Zille, Marietta; Neubert, Jenni; Reymann, Klaus G; Scheich, Henning; Dirnagl, Ulrich; Schröder, Ulrich H; Wunder, Andreas; Goldschmidt, Jürgen

    2014-01-01

    Neuronal damage shortly after onset or after brief episodes of cerebral ischemia has remained difficult to assess with clinical and preclinical imaging techniques as well as with microscopical methods. We here show, in rodent models of middle cerebral artery occlusion (MCAO), that neuronal damage in acute focal cerebral ischemia can be mapped with single-cell resolution using thallium autometallography (TlAMG), a histochemical technique for the detection of the K+-probe thallium (Tl+) in the brain. We intravenously injected rats and mice with thallium diethyldithiocarbamate (TlDDC), a lipophilic chelate complex that releases Tl+ after crossing the blood–brain barrier. We found, within the territories of the affected arteries, areas of markedly reduced neuronal Tl+ uptake in all animals at all time points studied ranging from 15 minutes to 24 hours after MCAO. In large lesions at early time points, areas with neuronal and astrocytic Tl+ uptake below thresholds of detection were surrounded by putative penumbral zones with preserved but diminished Tl+ uptake. At 24 hours, the areas of reduced Tl+uptake matched with areas delineated by established markers of neuronal damage. The results suggest the use of 201TlDDC for preclinical and clinical single-photon emission computed tomography (SPECT) imaging of hyperacute alterations in brain K+ metabolism and prediction of tissue viability in cerebral ischemia. PMID:24129748

  15. Diolistic labeling of neuronal cultures and intact tissue using a hand-held gene gun.

    Science.gov (United States)

    O'Brien, John A; Lummis, Sarah C R

    2006-01-01

    Diolistic labeling is a highly efficient method for introducing dyes into cells using biolistic techniques. The use of lipophilic carbocyanine dyes, combined with particle-mediated biolistic delivery using a hand-held gene gun, allows non-toxic labeling of multiple cells in both living and fixed tissue. The technique is rapid (labeled cells can be visualized in minutes) and technically undemanding. Here, we provide a detailed protocol for diolistic labeling of cultured human embryonic kidney 293 cells and whole brain using a hand-held gene gun. There are four major steps: (i) coating gold microcarriers with one or more dyes; (ii) transferring the microcarriers into a cartridge to make a bullet; (iii) preparation of cells or intact tissue; and (iv) firing the microcarriers into cells or tissue. The method can be readily adapted to other cell types and tissues. This protocol can be completed in less than 1 h.

  16. Automatic single- and multi-label enzymatic function prediction by machine learning

    Directory of Open Access Journals (Sweden)

    Shervine Amidi

    2017-03-01

    Full Text Available The number of protein structures in the PDB database has been increasing more than 15-fold since 1999. The creation of computational models predicting enzymatic function is of major importance since such models provide the means to better understand the behavior of newly discovered enzymes when catalyzing chemical reactions. Until now, single-label classification has been widely performed for predicting enzymatic function limiting the application to enzymes performing unique reactions and introducing errors when multi-functional enzymes are examined. Indeed, some enzymes may be performing different reactions and can hence be directly associated with multiple enzymatic functions. In the present work, we propose a multi-label enzymatic function classification scheme that combines structural and amino acid sequence information. We investigate two fusion approaches (in the feature level and decision level and assess the methodology for general enzymatic function prediction indicated by the first digit of the enzyme commission (EC code (six main classes on 40,034 enzymes from the PDB database. The proposed single-label and multi-label models predict correctly the actual functional activities in 97.8% and 95.5% (based on Hamming-loss of the cases, respectively. Also the multi-label model predicts all possible enzymatic reactions in 85.4% of the multi-labeled enzymes when the number of reactions is unknown. Code and datasets are available at https://figshare.com/s/a63e0bafa9b71fc7cbd7.

  17. Neural Plasticity: Single Neuron Models for Discrimination and Generalization and AN Experimental Ensemble Approach.

    Science.gov (United States)

    Munro, Paul Wesley

    A special form for modification of neuronal response properties is described in which the change in the synaptic state vector is parallel to the vector of afferent activity. This process is termed "parallel modification" and its theoretical and experimental implications are examined. A theoretical framework has been devised to describe the complementary functions of generalization and discrimination by single neurons. This constitutes a basis for three models each describing processes for the development of maximum selectivity (discrimination) and minimum selectivity (generalization) by neurons. Strengthening and weakening of synapses is expressed as a product of the presynaptic activity and a nonlinear modulatory function of two postsynaptic variables--namely a measure of the spatially integrated activity of the cell and a temporal integration (time-average) of that activity. Some theorems are given for low-dimensional systems and computer simulation results from more complex systems are discussed. Model neurons that achieve high selectivity mimic the development of cat visual cortex neurons in a wide variety of rearing conditions. A role for low-selectivity neurons is proposed in which they provide inhibitory input to neurons of the opposite type, thereby suppressing the common component of a pattern class and enhancing their selective properties. Such contrast-enhancing circuits are analyzed and supported by computer simulation. To enable maximum selectivity, the net inhibition to a cell must become strong enough to offset whatever excitation is produced by the non-preferred patterns. Ramifications of parallel models for certain experimental paradigms are analyzed. A methodology is outlined for testing synaptic modification hypotheses in the laboratory. A plastic projection from one neuronal population to another will attain stable equilibrium under periodic electrical stimulation of constant intensity. The perturbative effect of shifting this intensity level

  18. Single bumps in a 2-population homogenized neuronal network model

    Science.gov (United States)

    Kolodina, Karina; Oleynik, Anna; Wyller, John

    2018-05-01

    We investigate existence and stability of single bumps in a homogenized 2-population neural field model, when the firing rate functions are given by the Heaviside function. The model is derived by means of the two-scale convergence technique of Nguetseng in the case of periodic microvariation in the connectivity functions. The connectivity functions are periodically modulated in both the synaptic footprint and in the spatial scale. The bump solutions are constructed by using a pinning function technique for the case where the solutions are independent of the local variable. In the weakly modulated case the generic picture consists of two bumps (one narrow and one broad bump) for each admissible set of threshold values for firing. In addition, a new threshold value regime for existence of bumps is detected. Beyond the weakly modulated regime the number of bumps depends sensitively on the degree of heterogeneity. For the latter case we present a configuration consisting of three coexisting bumps. The linear stability of the bumps is studied by means of the spectral properties of a Fredholm integral operator, block diagonalization of this operator and the Fourier decomposition method. In the weakly modulated regime, one of the bumps is unstable for all relative inhibition times, while the other one is stable for small and moderate values of this parameter. The latter bump becomes unstable as the relative inhibition time exceeds a certain threshold. In the case of the three coexisting bumps detected in the regime of finite degree of heterogeneity, we have at least one stable bump (and maximum two stable bumps) for small and moderate values of the relative inhibition time.

  19. Single-molecule folding mechanism of an EF-hand neuronal calcium sensor

    DEFF Research Database (Denmark)

    Heiðarsson, Pétur Orri; Otazo, Mariela R.; Bellucci, Luca

    2013-01-01

    EF-hand calcium sensors respond structurally to changes in intracellular Ca2+ concentration, triggering diverse cellular responses and resulting in broad interactomes. Despite impressive advances in decoding their structure-function relationships, the folding mechanism of neuronal calcium sensors...... is still elusive. We used single-molecule optical tweezers to study the folding mechanism of the human neuronal calcium sensor 1 (NCS1). Two intermediate structures induced by Ca2+ binding to the EF-hands were observed during refolding. The complete folding of the C domain is obligatory for the folding...

  20. A Route to Chaotic Behavior of Single Neuron Exposed to External Electromagnetic Radiation.

    Science.gov (United States)

    Feng, Peihua; Wu, Ying; Zhang, Jiazhong

    2017-01-01

    Non-linear behaviors of a single neuron described by Fitzhugh-Nagumo (FHN) neuron model, with external electromagnetic radiation considered, is investigated. It is discovered that with external electromagnetic radiation in form of a cosine function, the mode selection of membrane potential occurs among periodic, quasi-periodic, and chaotic motions as increasing the frequency of external transmembrane current, which is selected as a sinusoidal function. When the frequency is small or large enough, periodic, and quasi-periodic motions are captured alternatively. Otherwise, when frequency is in interval 0.778 electromagnetic radiation. The frequency apparently plays a more important role in determining the system behavior.

  1. Axonal collateral-collateral transport of tract tracers in brain neurons: false anterograde labelling and useful tool.

    Science.gov (United States)

    Chen, S; Aston-Jones, G

    1998-02-01

    It is well established that some neuroanatomical tracers may be taken up by local axonal terminals and transported to distant axonal collaterals (e.g., transganglionic transport in dorsal root ganglion cells). However, such collateral-collateral transport of tracers has not been systematically examined in the central nervous system. We addressed this issue with four neuronal tracers--biocytin, biotinylated dextran amine, cholera toxin B subunit, and Phaseolus vulgaris-leucoagglutinin--in the cerebellar cortex. Labelling of distant axonal collaterals in the cerebellar cortex (indication of collateral-collateral transport) was seen after focal iontophoretic microinjections of each of the four tracers. However, collateral-collateral transport properties differed among these tracers. Injection of biocytin or Phaseolus vulgaris-leucoagglutinin in the cerebellar cortex yielded distant collateral labelling only in parallel fibres. In contrast, injection of biotinylated dextran amine or cholera toxin B subunit produced distant collateral labelling of climbing fibres and mossy fibres, as well as parallel fibres. The present study is the first systematic examination of collateral-collateral transport following injection of anterograde tracers in brain. Such collateral-collateral transport may produce false-positive conclusions regarding neural connections when using these tracers for anterograde transport. However, this property may also be used as a tool to determine areas that are innervated by common distant afferents. In addition, these results may indicate a novel mode of chemical communication in the nervous system.

  2. Single-Labeled Oligonucleotides Showing Fluorescence Changes upon Hybridization with Target Nucleic Acids

    Directory of Open Access Journals (Sweden)

    Gil Tae Hwang

    2018-01-01

    Full Text Available Sequence-specific detection of nucleic acids has been intensively studied in the field of molecular diagnostics. In particular, the detection and analysis of single-nucleotide polymorphisms (SNPs is crucial for the identification of disease-causing genes and diagnosis of diseases. Sequence-specific hybridization probes, such as molecular beacons bearing the fluorophore and quencher at both ends of the stem, have been developed to enable DNA mutation detection. Interestingly, DNA mutations can be detected using fluorescently labeled oligonucleotide probes with only one fluorophore. This review summarizes recent research on single-labeled oligonucleotide probes that exhibit fluorescence changes after encountering target nucleic acids, such as guanine-quenching probes, cyanine-containing probes, probes containing a fluorophore-labeled base, and microenvironment-sensitive probes.

  3. Synergistic combinations of five single drugs from Centella asiatica for neuronal differentiation.

    Science.gov (United States)

    Lin, Jinjin; Jiang, Hui; Ding, Xianting

    2017-01-01

    To identify alternatives of nerve growth factor, which could promote NF68 protein expression and contribute toward neuronal differentiation, five compounds namely: asiatic acid, madecassic, madecassoside, quercetin, and isoquercetin, obtained from Centella asiatica, were examined for their neuronal differentiation effects on PC12 cells. C. asiatica has been applied as an effective herbal medicine for the treatment of various diseases, including depression. According to a statistical design of experiments, both single compound and compound combinations were evaluated. A further statistical analysis indicated quantitative interactions between these five single compounds and led to the identification of the optimal drug combinations. Asiatic acid and madecassic appeared to show profound synergistic effects on neurofilaments expression in vitro. The optimized drug combinations were significantly more potent than single drugs and further investigation suggested that the optimal drug combination could be an analogue of nerve growth factor and could represent a potential treatment for neurodegenerative diseases.

  4. Selective retrograde labeling of lateral olivocochlear neurons in the brainstem based on preferential uptake of 3H-D-aspartic acid in the cochlea

    International Nuclear Information System (INIS)

    Ryan, A.F.; Schwartz, I.R.; Helfert, R.H.; Keithley, E.; Wang, Z.X.

    1987-01-01

    We have previously shown that perfusion of the gerbil cochlea with probe concentrations of 3 H-D-aspartic acid (D-ASP) results in immediate, selective labeling of 50-60% of the efferent terminals under the inner hair cells, presumably by high-affinity uptake. The present study was undertaken to determine the origin of these endings. Twenty-four hours after cochlear perfusion with D-ASP, labeled neurons were observed in the ipsilateral, and to a much lesser extent in the contralateral, lateral superior olivary nucleus (LSO). The cells were small, primarily fusiform, and showed fewer synaptic contacts than other LSO cells. Combined transport of D-ASP and horseradish peroxidase indicated that all olivocochlear neurons within the LSO that projected to the injected cochlea were labeled by D-ASP. Labeled fibers coursed dorsally from the LSO, joined contralateral fibers that had passed under the floor of the fourth ventricle, and entered the VIIIth nerve root at its ventromedial edge. Adjacent to the ventral cochlear nucleus (VCN), densely labeled collateral fibers crossed the nerve root to enter the VCN. Labeled fibers and terminals were prominent in the central VCN. Neither retrograde transport of D-ASP by medial olivocochlear and vestibular efferents nor anterograde transport by VIIIth nerve afferents was observed. The D-ASP-labeled cells and fibers are clearly lateral olivocochlear efferents. Retrograde transport of D-ASP thus allows the cells, axons, and collaterals of the lateral olivocochlear system to be studied, morphologically, in isolation from other cells that project to the cochlea. Since the olivocochlear neurons are almost certainly cholinergic, retrograde amino acid transport does not necessarily identify the primary neurotransmitter of a neuron. Rather, it indicates the presence of selective uptake by the processes of that neuron at the site of amino acid injection

  5. High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression.

    OpenAIRE

    Sandra J Kuhlman; Z Josh Huang

    2008-01-01

    We describe a method that combines Cre-recombinase knockin mice and viral-mediated gene transfer to genetically label and functionally manipulate specific neuron types in the mouse brain. We engineered adeno-associated viruses (AAVs) that express GFP, dsRedExpress, or channelrhodopsin (ChR2) upon Cre/loxP recombination-mediated removal of a transcription-translation STOP cassette. Fluorescent labeling was sufficient to visualize neuronal structures with synaptic resolution in vivo, and ChR2 e...

  6. Audio-vocal interaction in single neurons of the monkey ventrolateral prefrontal cortex.

    Science.gov (United States)

    Hage, Steffen R; Nieder, Andreas

    2015-05-06

    Complex audio-vocal integration systems depend on a strong interconnection between the auditory and the vocal motor system. To gain cognitive control over audio-vocal interaction during vocal motor control, the PFC needs to be involved. Neurons in the ventrolateral PFC (VLPFC) have been shown to separately encode the sensory perceptions and motor production of vocalizations. It is unknown, however, whether single neurons in the PFC reflect audio-vocal interactions. We therefore recorded single-unit activity in the VLPFC of rhesus monkeys (Macaca mulatta) while they produced vocalizations on command or passively listened to monkey calls. We found that 12% of randomly selected neurons in VLPFC modulated their discharge rate in response to acoustic stimulation with species-specific calls. Almost three-fourths of these auditory neurons showed an additional modulation of their discharge rates either before and/or during the monkeys' motor production of vocalization. Based on these audio-vocal interactions, the VLPFC might be well positioned to combine higher order auditory processing with cognitive control of the vocal motor output. Such audio-vocal integration processes in the VLPFC might constitute a precursor for the evolution of complex learned audio-vocal integration systems, ultimately giving rise to human speech. Copyright © 2015 the authors 0270-6474/15/357030-11$15.00/0.

  7. Synaptic and intrinsic homeostasis cooperate to optimize single neuron response properties and tune integrator circuits

    Science.gov (United States)

    2016-01-01

    Homeostatic processes that provide negative feedback to regulate neuronal firing rate are essential for normal brain function, and observations suggest that multiple such processes may operate simultaneously in the same network. We pose two questions: why might a diversity of homeostatic pathways be necessary, and how can they operate in concert without opposing and undermining each other? To address these questions, we perform a computational and analytical study of cell-intrinsic homeostasis and synaptic homeostasis in single-neuron and recurrent circuit models. We demonstrate analytically and in simulation that when two such mechanisms are controlled on a long time scale by firing rate via simple and general feedback rules, they can robustly operate in tandem to tune the mean and variance of single neuron's firing rate to desired goals. This property allows the system to recover desired behavior after chronic changes in input statistics. We illustrate the power of this homeostatic tuning scheme by using it to regain high mutual information between neuronal input and output after major changes in input statistics. We then show that such dual homeostasis can be applied to tune the behavior of a neural integrator, a system that is notoriously sensitive to variation in parameters. These results are robust to variation in goals and model parameters. We argue that a set of homeostatic processes that appear to redundantly regulate mean firing rate may work together to control firing rate mean and variance and thus maintain performance in a parameter-sensitive task such as integration. PMID:27306675

  8. Variations in interpulse interval of double action potentials during propagation in single neurons.

    Science.gov (United States)

    Villagran-Vargas, Edgar; Rodríguez-Sosa, Leonardo; Hustert, Reinhold; Blicher, Andreas; Laub, Katrine; Heimburg, Thomas

    2013-02-01

    In this work, we analyzed the interpulse interval (IPI) of doublets and triplets in single neurons of three biological models. Pulse trains with two or three spikes originate from the process of sensory mechanotransduction in neurons of the locust femoral nerve, as well as through spontaneous activity both in the abdominal motor neurons and the caudal photoreceptor of the crayfish. We show that the IPI for successive low-frequency single action potentials, as recorded with two electrodes at two different points along a nerve axon, remains constant. On the other hand, IPI in doublets either remains constant, increases or decreases by up to about 3 ms as the pair propagates. When IPI increases, the succeeding pulse travels at a slower speed than the preceding one. When IPI is reduced, the succeeding pulse travels faster than the preceding one and may exceed the normal value for the specific neuron. In both cases, IPI increase and reduction, the speed of the preceding pulse differs slightly from the normal value, therefore the two pulses travel at different speeds in the same nerve axon. On the basis of our results, we may state that the effect of attraction or repulsion in doublets suggests a tendency of the spikes to reach a stable configuration. We strongly suggest that the change in IPI during spike propagation of doublets opens up a whole new realm of possibilities for neural coding and may have major implications for understanding information processing in nervous systems. Copyright © 2012 Wiley Periodicals, Inc.

  9. Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity

    Science.gov (United States)

    Li, Chang-Lin; Li, Kai-Cheng; Wu, Dan; Chen, Yan; Luo, Hao; Zhao, Jing-Rong; Wang, Sa-Shuang; Sun, Ming-Ming; Lu, Ying-Jin; Zhong, Yan-Qing; Hu, Xu-Ye; Hou, Rui; Zhou, Bei-Bei; Bao, Lan; Xiao, Hua-Sheng; Zhang, Xu

    2016-01-01

    Sensory neurons are distinguished by distinct signaling networks and receptive characteristics. Thus, sensory neuron types can be defined by linking transcriptome-based neuron typing with the sensory phenotypes. Here we classify somatosensory neurons of the mouse dorsal root ganglion (DRG) by high-coverage single-cell RNA-sequencing (10 950 ± 1 218 genes per neuron) and neuron size-based hierarchical clustering. Moreover, single DRG neurons responding to cutaneous stimuli are recorded using an in vivo whole-cell patch clamp technique and classified by neuron-type genetic markers. Small diameter DRG neurons are classified into one type of low-threshold mechanoreceptor and five types of mechanoheat nociceptors (MHNs). Each of the MHN types is further categorized into two subtypes. Large DRG neurons are categorized into four types, including neurexophilin 1-expressing MHNs and mechanical nociceptors (MNs) expressing BAI1-associated protein 2-like 1 (Baiap2l1). Mechanoreceptors expressing trafficking protein particle complex 3-like and Baiap2l1-marked MNs are subdivided into two subtypes each. These results provide a new system for cataloging somatosensory neurons and their transcriptome databases. PMID:26691752

  10. Using FRAP or FRAPA to Visualize the Movement of Fluorescently Labeled Proteins or Cellular Organelles in Live Cultured Neurons Transformed with Adeno-Associated Viruses.

    Science.gov (United States)

    Tevet, Yaara; Gitler, Daniel

    2016-01-01

    Fluorescence recovery after photobleaching (FRAP) and fluorescence redistribution after photoactivation (FRAPA) are complementary methods used to gauge the movement of proteins or sub-resolution organelles within cells. Using these methods we can determine the nature of the movement of labeled particles, whether it is random, constrained, or active, the coefficient of diffusion if applicable, binding and unbinding constants, and the direction of active transport. These two techniques have been extensively utilized to probe the cell biology of neurons. A practical outline of FRAP and FRAPA in cultured neurons is presented, including the preparation of the neurons and their infection with adeno-associated viral vectors. Considerations in planning such experiments are provided.

  11. Perfusion by Arterial Spin labelling following Single dose Tadalafil In Small vessel disease (PASTIS)

    DEFF Research Database (Denmark)

    Pauls, Mathilde M H; Clarke, Natasha; Trippier, Sarah

    2017-01-01

    vascular territories. The aim of this trial is to test the hypothesis that tadalafil increases cerebral blood flow in older people with small vessel disease. METHODS/DESIGN: Perfusion by Arterial Spin labelling following Single dose Tadalafil In Small vessel disease (PASTIS) is a phase II randomised double......-blind crossover trial. In two visits, 7-30 days apart, participants undergo arterial spin labelling to measure cerebral blood flow and a battery of cognitive tests, pre- and post-dosing with oral tadalafil (20 mg) or placebo. SAMPLE SIZE: 54 participants are required to detect a 15% increase in cerebral blood...

  12. Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuron-tracing study using virus vectors.

    Science.gov (United States)

    Kuramoto, Eriko; Pan, Shixiu; Furuta, Takahiro; Tanaka, Yasuhiro R; Iwai, Haruki; Yamanaka, Atsushi; Ohno, Sachi; Kaneko, Takeshi; Goto, Tetsuya; Hioki, Hiroyuki

    2017-01-01

    The prefrontal cortex has an important role in a variety of cognitive and executive processes, and is generally defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD). The rat MD is mainly subdivided into three segments, the medial (MDm), central (MDc), and lateral (MDl) divisions, on the basis of the cytoarchitecture and chemoarchitecture. The MD segments are known to topographically project to multiple prefrontal areas at the population level: the MDm mainly to the prelimbic, infralimbic, and agranular insular areas; the MDc to the orbital and agranular insular areas; and the MDl to the prelimbic and anterior cingulate areas. However, it is unknown whether individual MD neurons project to single or multiple prefrontal cortical areas. In the present study, we visualized individual MD neurons with Sindbis virus vectors, and reconstructed whole structures of MD neurons. While the main cortical projection targets of MDm, MDc, and MDl neurons were generally consistent with those of previous results, it was found that individual MD neurons sent their axon fibers to multiple prefrontal areas, and displayed various projection patterns in the target areas. Furthermore, the axons of single MD neurons were not homogeneously spread, but were rather distributed to form patchy axon arbors approximately 1 mm in diameter. The multiple-area projections and patchy axon arbors of single MD neurons might be able to coactivate cortical neuron groups in distant prefrontal areas simultaneously. Furthermore, considerable heterogeneity of the projection patterns is likely, to recruit the different sets of cortical neurons, and thus contributes to a variety of prefrontal functions. J. Comp. Neurol. 525:166-185, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Developmental abnormalities of corticospinal tract neurons in prenatally irradiated rats: a study using retrograde labeling with Fast blue and intracellular Lucifer yellow staining.

    Science.gov (United States)

    Ochiai, H; Miyahara, S; Wakisaka, S

    1993-02-12

    The effect of prenatal X-irradiation on the ontogenesis of corticospinal tract (CST) neurons was examined in rats using retrograde labeling with Fast blue and intracellular Lucifer yellow staining. In prenatally irradiated rats, the cortical laminar architecture of the CST neurons was confused and many cells demonstrated migratory disturbances. Migratory-disordered CST neurons at deeper cortical levels resembled pyramidal cells, but their apical dendrites were oriented in various directions and the development of their dendrites was poor. Migratory-disordered CST neurons near the ependymal layer demonstrated round somata and many thin dendrites with spokewise radiation, suggesting a maturation disturbance. These results suggested that prenatal X-irradiation impeded the migration and maturation of CST neurons. These findings may form the basis for analyzing the mechanisms of radiation-induced mental retardation and behavioral changes.

  14. 76 FR 76890 - Nutrition Labeling of Single-Ingredient Products and Ground or Chopped Meat and Poultry Products...

    Science.gov (United States)

    2011-12-09

    .... FSIS-2005-0018] Nutrition Labeling of Single-Ingredient Products and Ground or Chopped Meat and Poultry... (FSIS) is delaying the effective date of the final regulations that require nutrition labeling of the major cuts of single-ingredient, raw meat and poultry products and ground or chopped meat and poultry...

  15. Effects of dynamic synapses on noise-delayed response latency of a single neuron

    Science.gov (United States)

    Uzuntarla, M.; Ozer, M.; Ileri, U.; Calim, A.; Torres, J. J.

    2015-12-01

    The noise-delayed decay (NDD) phenomenon emerges when the first-spike latency of a periodically forced stochastic neuron exhibits a maximum for a particular range of noise intensity. Here, we investigate the latency response dynamics of a single Hodgkin-Huxley neuron that is subject to both a suprathreshold periodic stimulus and a background activity arriving through dynamic synapses. We study the first-spike latency response as a function of the presynaptic firing rate f . This constitutes a more realistic scenario than previous works, since f provides a suitable biophysically realistic parameter to control the level of activity in actual neural systems. We first report on the emergence of classical NDD behavior as a function of f for the limit of static synapses. Second, we show that when short-term depression and facilitation mechanisms are included at the synapses, different NDD features can be found due to their modulatory effect on synaptic current fluctuations. For example, an intriguing double NDD (DNDD) behavior occurs for different sets of relevant synaptic parameters. Moreover, depending on the balance between synaptic depression and synaptic facilitation, single NDD or DNDD can prevail, in such a way that synaptic facilitation favors the emergence of DNDD whereas synaptic depression favors the existence of single NDD. Here we report the existence of the DNDD effect in the response latency dynamics of a neuron.

  16. Influence of quantum dot labels on single molecule movement in the plasma membrane

    DEFF Research Database (Denmark)

    Clausen, Mathias P.; Lagerholm, B. Christoffer

    2011-01-01

    a biotin ligase acceptor peptide (BLAP) or an acyl carrier protein (ACP) tag, respectively. Trajectories of the differently labeled GPI-anchored molecules were recorded simultaneously in dual-color experiments at rates of ~25 -~1500 Hz. Knowing the effect of different labels is of utmost importance......Single particle tracking results are very dependent on the probe that is used. In this study we have investigated the influence that functionalized quantum dots (QDs) have on the recorded movement in single molecule tracking experiments of plasma membrane species in live cells. Potential issues...... functionalization tag (e.g. streptavidin (sAv)) or the presence of multiple mono- or multivalent functionalization tags per QD. In this work, we have compared commercially available sAv-QDs of different sizes with custom prepared Co enzyme A (CoA)-QDs both targeting a GPI-anchored protein modified with either...

  17. Magnetic resonance imaging of single co-labeled mesenchymal stromal cells after intracardial injection in mice

    Energy Technology Data Exchange (ETDEWEB)

    Salamon, J.; Adam, G.; Peldschus, K. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Diagnostic and Interventional Radiology; Wicklein, D.; Schumacher, U. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Inst. of Anatomy II: Experimental Morphology; Didie, M. [Goettingen Univ. (Germany). Inst. of Pharmacology; Lange, C. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Bone Marrow Transplantation

    2014-04-15

    Purpose: The aim of this study was to establish co-labeling of mesenchymal stromal cells (MSC) for the detection of single MSC in-vivo by MRI and histological validation. Materials and Methods: Mouse MSC were co-labeled with fluorescent iron oxide micro-particles and carboxyfluorescein succinimidyl ester (CFSE). The cellular iron content was determined by atomic absorption spectrometry. Cell proliferation and expression of characteristic surface markers were determined by flow cytometry. The chondrogenic differentiation capacity was assessed. Different amounts of cells (n1 = 5000, n2 = 15 000, n3 = 50 000) were injected into the left heart ventricle of 12 mice. The animals underwent sequential MRI on a clinical 3.0T scanner (Intera, Philips Medical Systems, Best, The Netherlands). For histological validation cryosections were examined by fluorescent microscopy. Results: Magnetic and fluorescent labeling of MSC was established (mean cellular iron content 23.6 ± 3 pg). Flow cytometry showed similar cell proliferation and receptor expression of labeled and unlabeled MSC. Chondrogenic differentiation of labeled MSC was verified. After cell injection MRI revealed multiple signal voids in the brain and fewer signal voids in the kidneys. In the brain, an average of 4.6 ± 1.2 (n1), 9.0 ± 3.6 (n2) and 25.0 ± 1.0 (n3) signal voids were detected per MRI slice. An average of 8.7 ± 3.1 (n1), 22.0 ± 6.1 (n2) and 89.8 ± 6.5 (n3) labeled cells per corresponding stack of adjacent cryosections could be detected in the brain. Statistical correlation of the numbers of MRI signal voids in the brain and single MSC found by histology revealed a correlation coefficient of r = 0.91. Conclusion: The study demonstrates efficient magnetic and fluorescent co-labeling of MSC and their detection on a single cell level in mice by in-vivo MRI and histology. The described techniques may broaden the methods for in-vivo tracking of MSC. (orig.)

  18. Comprehensive Identification and Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq.

    Science.gov (United States)

    Pandey, Shristi; Shekhar, Karthik; Regev, Aviv; Schier, Alexander F

    2018-04-02

    The identification of cell types and marker genes is critical for dissecting neural development and function, but the size and complexity of the brain has hindered the comprehensive discovery of cell types. We combined single-cell RNA-seq (scRNA-seq) with anatomical brain registration to create a comprehensive map of the zebrafish habenula, a conserved forebrain hub involved in pain processing and learning. Single-cell transcriptomes of ∼13,000 habenular cells with 4× cellular coverage identified 18 neuronal types and dozens of marker genes. Registration of marker genes onto a reference atlas created a resource for anatomical and functional studies and enabled the mapping of active neurons onto neuronal types following aversive stimuli. Strikingly, despite brain growth and functional maturation, cell types were retained between the larval and adult habenula. This study provides a gene expression atlas to dissect habenular development and function and offers a general framework for the comprehensive characterization of other brain regions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Simultaneous transcranial magnetic stimulation and single-neuron recording in alert non-human primates.

    Science.gov (United States)

    Mueller, Jerel K; Grigsby, Erinn M; Prevosto, Vincent; Petraglia, Frank W; Rao, Hrishikesh; Deng, Zhi-De; Peterchev, Angel V; Sommer, Marc A; Egner, Tobias; Platt, Michael L; Grill, Warren M

    2014-08-01

    Transcranial magnetic stimulation (TMS) is a widely used, noninvasive method for stimulating nervous tissue, yet its mechanisms of effect are poorly understood. Here we report new methods for studying the influence of TMS on single neurons in the brain of alert non-human primates. We designed a TMS coil that focuses its effect near the tip of a recording electrode and recording electronics that enable direct acquisition of neuronal signals at the site of peak stimulus strength minimally perturbed by stimulation artifact in awake monkeys (Macaca mulatta). We recorded action potentials within ∼1 ms after 0.4-ms TMS pulses and observed changes in activity that differed significantly for active stimulation as compared with sham stimulation. This methodology is compatible with standard equipment in primate laboratories, allowing easy implementation. Application of these tools will facilitate the refinement of next generation TMS devices, experiments and treatment protocols.

  20. Simultaneous transcranial magnetic stimulation and single neuron recording in alert non-human primates

    Science.gov (United States)

    Mueller, Jerel K.; Grigsby, Erinn M.; Prevosto, Vincent; Petraglia, Frank W.; Rao, Hrishikesh; Deng, Zhi-De; Peterchev, Angel V.; Sommer, Marc A.; Egner, Tobias; Platt, Michael L.; Grill, Warren M.

    2014-01-01

    Transcranial magnetic stimulation (TMS) is a widely used, noninvasive method for stimulating nervous tissue, yet its mechanisms of effect are poorly understood. Here we report novel methods for studying the influence of TMS on single neurons in the brain of alert non-human primates. We designed a TMS coil that focuses its effect near the tip of a recording electrode and recording electronics that enable direct acquisition of neuronal signals at the site of peak stimulus strength minimally perturbed by stimulation artifact in intact, awake monkeys (Macaca mulatta). We recorded action potentials within ~1 ms after 0.4 ms TMS pulses and observed changes in activity that differed significantly for active stimulation as compared to sham stimulation. The methodology is compatible with standard equipment in primate laboratories, allowing for easy implementation. Application of these new tools will facilitate the refinement of next generation TMS devices, experiments, and treatment protocols. PMID:24974797

  1. A Route to Chaotic Behavior of Single Neuron Exposed to External Electromagnetic Radiation

    Directory of Open Access Journals (Sweden)

    Peihua Feng

    2017-10-01

    Full Text Available Non-linear behaviors of a single neuron described by Fitzhugh-Nagumo (FHN neuron model, with external electromagnetic radiation considered, is investigated. It is discovered that with external electromagnetic radiation in form of a cosine function, the mode selection of membrane potential occurs among periodic, quasi-periodic, and chaotic motions as increasing the frequency of external transmembrane current, which is selected as a sinusoidal function. When the frequency is small or large enough, periodic, and quasi-periodic motions are captured alternatively. Otherwise, when frequency is in interval 0.778 < ω < 2.208, chaotic motion characterizes the main behavior type. The mechanism of mode transition from quasi-periodic to chaotic motion is also observed when varying the amplitude of external electromagnetic radiation. The frequency apparently plays a more important role in determining the system behavior.

  2. Label-free isolation and deposition of single bacterial cells from heterogeneous samples for clonal culturing

    OpenAIRE

    J. Riba; T. Gleichmann; S. Zimmermann; R. Zengerle; P. Koltay

    2016-01-01

    The isolation and analysis of single prokaryotic cells down to 1??m and less in size poses a special challenge and requires micro-engineered devices to handle volumes in the picoliter to nanoliter range. Here, an advanced Single-Cell Printer (SCP) was applied for automated and label-free isolation and deposition of bacterial cells encapsulated in 35?pl droplets by inkjet-like printing. To achieve this, dispenser chips to generate micro droplets have been fabricated with nozzles 20??m in size....

  3. Single-Cell Transcriptional Analysis Reveals Novel Neuronal Phenotypes and Interaction Networks Involved in the Central Circadian Clock.

    Science.gov (United States)

    Park, James; Zhu, Haisun; O'Sullivan, Sean; Ogunnaike, Babatunde A; Weaver, David R; Schwaber, James S; Vadigepalli, Rajanikanth

    2016-01-01

    Single-cell heterogeneity confounds efforts to understand how a population of cells organizes into cellular networks that underlie tissue-level function. This complexity is prominent in the mammalian suprachiasmatic nucleus (SCN). Here, individual neurons exhibit a remarkable amount of asynchronous behavior and transcriptional heterogeneity. However, SCN neurons are able to generate precisely coordinated synaptic and molecular outputs that synchronize the body to a common circadian cycle by organizing into cellular networks. To understand this emergent cellular network property, it is important to reconcile single-neuron heterogeneity with network organization. In light of recent studies suggesting that transcriptionally heterogeneous cells organize into distinct cellular phenotypes, we characterized the transcriptional, spatial, and functional organization of 352 SCN neurons from mice experiencing phase-shifts in their circadian cycle. Using the community structure detection method and multivariate analytical techniques, we identified previously undescribed neuronal phenotypes that are likely to participate in regulatory networks with known SCN cell types. Based on the newly discovered neuronal phenotypes, we developed a data-driven neuronal network structure in which multiple cell types interact through known synaptic and paracrine signaling mechanisms. These results provide a basis from which to interpret the functional variability of SCN neurons and describe methodologies toward understanding how a population of heterogeneous single cells organizes into cellular networks that underlie tissue-level function.

  4. Single-cell Transcriptional Analysis Reveals Novel Neuronal Phenotypes and Interaction Networks involved In the Central Circadian Clock

    Directory of Open Access Journals (Sweden)

    James Park

    2016-10-01

    Full Text Available Single-cell heterogeneity confounds efforts to understand how a population of cells organizes into cellular networks that underlie tissue-level function. This complexity is prominent in the mammalian suprachiasmatic nucleus (SCN. Here, individual neurons exhibit a remarkable amount of asynchronous behavior and transcriptional heterogeneity. However, SCN neurons are able to generate precisely coordinated synaptic and molecular outputs that synchronize the body to a common circadian cycle by organizing into cellular networks. To understand this emergent cellular network property, it is important to reconcile single-neuron heterogeneity with network organization. In light of recent studies suggesting that transcriptionally heterogeneous cells organize into distinct cellular phenotypes, we characterized the transcriptional, spatial, and functional organization of 352 SCN neurons from mice experiencing phase-shifts in their circadian cycle. Using the community structure detection method and multivariate analytical techniques, we identified previously undescribed neuronal phenotypes that are likely to participate in regulatory networks with known SCN cell types. Based on the newly discovered neuronal phenotypes, we developed a data-driven neuronal network structure in which multiple cell types interact through known synaptic and paracrine signaling mechanisms. These results provide a basis from which to interpret the functional variability of SCN neurons and describe methodologies towards understanding how a population of heterogeneous single cells organizes into cellular networks that underlie tissue-level function.

  5. Cryo-imaging of fluorescently labeled single cells in a mouse

    Science.gov (United States)

    Steyer, Grant J.; Roy, Debashish; Salvado, Olivier; Stone, Meredith E.; Wilson, David L.

    2009-02-01

    We developed a cryo-imaging system to provide single-cell detection of fluorescently labeled cells in mouse, with particular applicability to stem cells and metastatic cancer. The Case cryoimaging system consists of a fluorescence microscope, robotic imaging positioner, customized cryostat, PC-based control system, and visualization/analysis software. The system alternates between sectioning (10-40 μm) and imaging, collecting color brightfield and fluorescent blockface image volumes >60GB. In mouse experiments, we imaged quantum-dot labeled stem cells, GFP-labeled cancer and stem cells, and cell-size fluorescent microspheres. To remove subsurface fluorescence, we used a simplified model of light-tissue interaction whereby the next image was scaled, blurred, and subtracted from the current image. We estimated scaling and blurring parameters by minimizing entropy of subtracted images. Tissue specific attenuation parameters were found [uT : heart (267 +/- 47.6 μm), liver (218 +/- 27.1 μm), brain (161 +/- 27.4 μm)] to be within the range of estimates in the literature. "Next image" processing removed subsurface fluorescence equally well across multiple tissues (brain, kidney, liver, adipose tissue, etc.), and analysis of 200 microsphere images in the brain gave 97+/-2% reduction of subsurface fluorescence. Fluorescent signals were determined to arise from single cells based upon geometric and integrated intensity measurements. Next image processing greatly improved axial resolution, enabled high quality 3D volume renderings, and improved enumeration of single cells with connected component analysis by up to 24%. Analysis of image volumes identified metastatic cancer sites, found homing of stem cells to injury sites, and showed microsphere distribution correlated with blood flow patterns. We developed and evaluated cryo-imaging to provide single-cell detection of fluorescently labeled cells in mouse. Our cryo-imaging system provides extreme (>60GB), micron

  6. A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms.

    Science.gov (United States)

    Guo, Qingsheng; Bai, Zhixiong; Liu, Yuqian; Sun, Qingjiang

    2016-03-15

    In this work, we report the application of streptavidin-coated quantum dot (strAV-QD) in molecular beacon (MB) microarray assays by using the strAV-QD to label the immobilized MB, avoiding target labeling and meanwhile obviating the use of amplification. The MBs are stem-loop structured oligodeoxynucleotides, modified with a thiol and a biotin at two terminals of the stem. With the strAV-QD labeling an "opened" MB rather than a "closed" MB via streptavidin-biotin reaction, a sensitive and specific detection of label-free target DNA sequence is demonstrated by the MB microarray, with a signal-to-background ratio of 8. The immobilized MBs can be perfectly regenerated, allowing the reuse of the microarray. The MB microarray also is able to detect single nucleotide polymorphisms, exhibiting genotype-dependent fluorescence signals. It is demonstrated that the MB microarray can perform as a 4-to-2 encoder, compressing the genotype information into two outputs. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons

    Directory of Open Access Journals (Sweden)

    Carles eBosch

    2015-05-01

    Full Text Available The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs in mice. 3D reconstruction of spines in GCs aged 3–4 and 8–9 weeks revealed two different stages of spine development and unexpected features of synapse formation, including vacant and branched spines and presynaptic terminals establishing synapses with up to 10 spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner.

  8. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons.

    Science.gov (United States)

    Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2015-01-01

    The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3-4 and 8-9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner.

  9. NONLINEAR SYSTEM MODELING USING SINGLE NEURON CASCADED NEURAL NETWORK FOR REAL-TIME APPLICATIONS

    Directory of Open Access Journals (Sweden)

    S. Himavathi

    2012-04-01

    Full Text Available Neural Networks (NN have proved its efficacy for nonlinear system modeling. NN based controllers and estimators for nonlinear systems provide promising alternatives to the conventional counterpart. However, NN models have to meet the stringent requirements on execution time for its effective use in real time applications. This requires the NN model to be structurally compact and computationally less complex. In this paper a parametric method of analysis is adopted to determine the compact and faster NN model among various neural network architectures. This work proves through analysis and examples that the Single Neuron Cascaded (SNC architecture is distinct in providing compact and simpler models requiring lower execution time. The unique structural growth of SNC architecture enables automation in design. The SNC Network is shown to combine the advantages of both single and multilayer neural network architectures. Extensive analysis on selected architectures and their models for four benchmark nonlinear theoretical plants and a practical application are tested. A performance comparison of the NN models is presented to demonstrate the superiority of the single neuron cascaded architecture for online real time applications.

  10. Application of multispectral imaging detects areas with neuronal myelin loss, without tissue labelling.

    Science.gov (United States)

    Vazgiouraki, Eleftheria; Papadakis, Vassilis M; Efstathopoulos, Paschalis; Lazaridis, Iakovos; Charalampopoulos, Ioannis; Fotakis, Costas; Gravanis, Achille

    2016-04-01

    The application of multispectral imaging to discriminate myelinated and demyelinated areas of neural tissue is herein presented. The method is applied through a custom-made, multispectral imaging monochromator, coupled to a commercially available microscope. In the present work, a series of spinal cord sections were analysed derived from mice with experimental autoimmune encephalomyelitis (EAE), an experimental model widely used to study multiple sclerosis (MS). The multispectral microscope allows imaging of local areas with loss of myelin without the need of tissue labelling. Imaging with the aforementioned method and system is compared in a parallel way with conventional methods (wide-field and confocal fluorescence microscopies). The diagnostic sensitivity of our method is 90.4% relative to the 'gold standard' method of immunofluorescence microscopy. The presented method offers a new platform for the possible future development of an in vivo, real-time, non-invasive, rapid imaging diagnostic tool of spinal cord myelin loss-derived pathologies. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Single-photon emission computed tomographic findings and motor neuron signs in amyotrophic lateral sclerosis

    International Nuclear Information System (INIS)

    Terao, Shin-ichi; Sobue, Gen; Higashi, Naoki; Takahashi, Masahiko; Suga, Hidemichi; Mitsuma, Terunori

    1995-01-01

    123 I-amphetamine-single photon emission computed tomography (SPECT) was performed on 16 patients with amyotrophic lateral sclerosis (ALS) to investigate the correlation between regional cerebral blood flow (rCBF) and upper motor neuron signs. Significant decreased blood flow less than 2 SDs below the mean of controls was observed in the frontal lobe in 4 patients (25%) and in the frontoparietal lobe including the cortical motor area in 4 patients, respectively. The severity of extermity muscular weakness was significantly correlate with decrease in blood flow through the frontal lobe (p<0.05) and through the frontoparietal lobe (p<0.001). A significant correlation was also noted to exist between the severity of bulbar paralysis and decrease in blood flow through the frontoparietal lobe. No correlation, however, was observed between rCBF and severity of spasticity, presence or absence of Babinski's sign and the duration of illness. Although muscular weakness in the limbs and bulbar paralysis are not pure upper motor neuron signs, the observed reduction in blood flow through the frontal or frontoparietal lobes appears to reflect extensive progression of functional or organic lesions of cortical neurons including the motor area. (author)

  12. Diversity of bilateral synaptic assemblies for binaural computation in midbrain single neurons.

    Science.gov (United States)

    He, Na; Kong, Lingzhi; Lin, Tao; Wang, Shaohui; Liu, Xiuping; Qi, Jiyao; Yan, Jun

    2017-11-01

    Binaural hearing confers many beneficial functions but our understanding of its underlying neural substrates is limited. This study examines the bilateral synaptic assemblies and binaural computation (or integration) in the central nucleus of the inferior colliculus (ICc) of the auditory midbrain, a key convergent center. Using in-vivo whole-cell patch-clamp, the excitatory and inhibitory postsynaptic potentials (EPSPs/IPSPs) of single ICc neurons to contralateral, ipsilateral and bilateral stimulation were recorded. According to the contralateral and ipsilateral EPSP/IPSP, 7 types of bilateral synaptic assemblies were identified. These include EPSP-EPSP (EE), E-IPSP (EI), E-no response (EO), II, IE, IO and complex-mode (CM) neurons. The CM neurons showed frequency- and/or amplitude-dependent EPSPs/IPSPs to contralateral or ipsilateral stimulation. Bilateral stimulation induced EPSPs/IPSPs that could be larger than (facilitation), similar to (ineffectiveness) or smaller than (suppression) those induced by contralateral stimulation. Our findings have allowed our group to characterize novel neural circuitry for binaural computation in the midbrain. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Overexpression of cypin alters dendrite morphology, single neuron activity, and network properties via distinct mechanisms

    Science.gov (United States)

    Rodríguez, Ana R.; O'Neill, Kate M.; Swiatkowski, Przemyslaw; Patel, Mihir V.; Firestein, Bonnie L.

    2018-02-01

    Objective. This study investigates the effect that overexpression of cytosolic PSD-95 interactor (cypin), a regulator of synaptic PSD-95 protein localization and a core regulator of dendrite branching, exerts on the electrical activity of rat hippocampal neurons and networks. Approach. We cultured rat hippocampal neurons and used lipid-mediated transfection and lentiviral gene transfer to achieve high levels of cypin or cypin mutant (cypinΔPDZ PSD-95 non-binding) expression cellularly and network-wide, respectively. Main results. Our analysis revealed that although overexpression of cypin and cypinΔPDZ increase dendrite numbers and decrease spine density, cypin and cypinΔPDZ distinctly regulate neuronal activity. At the single cell level, cypin promotes decreases in bursting activity while cypinΔPDZ reduces sEPSC frequency and further decreases bursting compared to cypin. At the network level, by using the Fano factor as a measure of spike count variability, cypin overexpression results in an increase in variability of spike count, and this effect is abolished when cypin cannot bind PSD-95. This variability is also dependent on baseline activity levels and on mean spike rate over time. Finally, our spike sorting data show that overexpression of cypin results in a more complex distribution of spike waveforms and that binding to PSD-95 is essential for this complexity. Significance. Our data suggest that dendrite morphology does not play a major role in cypin action on electrical activity.

  14. STDP allows close-to-optimal spatiotemporal spike pattern detection by single coincidence detector neurons.

    Science.gov (United States)

    Masquelier, Timothée

    2017-06-29

    Repeating spatiotemporal spike patterns exist and carry information. How this information is extracted by downstream neurons is unclear. Here we theoretically investigate to what extent a single cell could detect a given spike pattern and what the optimal parameters to do so are, in particular the membrane time constant τ. Using a leaky integrate-and-fire (LIF) neuron with homogeneous Poisson input, we computed this optimum analytically. We found that a relatively small τ (at most a few tens of ms) is usually optimal, even when the pattern is much longer. This is somewhat counter-intuitive as the resulting detector ignores most of the pattern, due to its fast memory decay. Next, we wondered if spike-timing-dependent plasticity (STDP) could enable a neuron to reach the theoretical optimum. We simulated a LIF equipped with additive STDP, and repeatedly exposed it to a given input spike pattern. As in previous studies, the LIF progressively became selective to the repeating pattern with no supervision, even when the pattern was embedded in Poisson activity. Here we show that, using certain STDP parameters, the resulting pattern detector is optimal. These mechanisms may explain how humans learn repeating sensory sequences. Long sequences could be recognized thanks to coincidence detectors working at a much shorter timescale. This is consistent with the fact that recognition is still possible if a sound sequence is compressed, played backward, or scrambled using 10-ms bins. Coincidence detection is a simple yet powerful mechanism, which could be the main function of neurons in the brain. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. Single Cigarette Sales: State Differences in FDA Advertising and Labeling Violations, 2014, United States.

    Science.gov (United States)

    Baker, Hannah M; Lee, Joseph G L; Ranney, Leah M; Goldstein, Adam O

    2016-02-01

    Single cigarettes, which are sold without warning labels and often evade taxes, can serve as a gateway for youth smoking. The Family Smoking Prevention and Tobacco Control Act of 2009 gives the US Food and Drug Administration (FDA) authority to regulate the manufacture, distribution, and marketing of tobacco products, including prohibiting the sale of single cigarettes. To enforce these regulations, the FDA conducted over 335,661 inspections between 2010 and September 30, 2014, and allocated over $115 million toward state inspections contracts. To examine differences in single cigarette violations across states and determine if likely correlates of single cigarette sales predict single cigarette violations at the state level. Cross-sectional study of publicly available FDA warning letters from January 1 to July 31, 2014. All 50 states and the District of Columbia. Tobacco retailer inspections conducted by FDA (n = 33 543). State cigarette tax, youth smoking prevalence, poverty, and tobacco production. State proportion of FDA warning letters issued for single cigarette violations. There are striking differences in the number of single cigarette violations found by state, with 38 states producing no warning letters for selling single cigarettes even as state policymakers developed legislation to address retailer sales of single cigarettes. The state proportion of warning letters issued for single cigarettes is not predicted by state cigarette tax, youth smoking, poverty, or tobacco production, P = .12. Substantial, unexplained variation exists in violations of single cigarette sales among states. These data suggest the possibility of differences in implementation of FDA inspections and the need for stronger quality monitoring processes across states implementing FDA inspections. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Influence of quantum dot labels on single molecule movement in the plasma membrane

    DEFF Research Database (Denmark)

    Clausen, Mathias P.; Lagerholm, B. Christoffer

    2011-01-01

    Single particle tracking results are very dependent on the probe that is used. In this study we have investigated the influence that functionalized quantum dots (QDs) have on the recorded movement in single molecule tracking experiments of plasma membrane species in live cells. Potential issues...... in labeling single molecules with QDs (and other particles e.g. gold particles) are induction of cross-linking of the target molecules, which can cause activation of signaling pathways or reduced mobility, and steric hindrance as a result of the probe size. Cross-linking can be a result of the multivalent...... functionalization tag (e.g. streptavidin (sAv)) or the presence of multiple mono- or multivalent functionalization tags per QD. In this work, we have compared commercially available sAv-QDs of different sizes with custom prepared Co enzyme A (CoA)-QDs both targeting a GPI-anchored protein modified with either...

  17. Label-free electrochemical immunoassay for neuron specific enolase based on 3D macroporous reduced graphene oxide/polyaniline film.

    Science.gov (United States)

    Zhang, Qi; Li, Xiaoyan; Qian, Chunhua; Dou, Li; Cui, Feng; Chen, Xiaojun

    2018-01-01

    The content of neuron specific enolase (NSE) in serum is considered to be an essential indicator of small cell lung cancer (SCLC). Here, a novel label-free electrochemical immunoassay for the detection of NSE based on the three dimensionally macroporous reduced graphene oxide/polyaniline (3DM rGO/PANI) film has been proposed. The 3DM rGO/PANI film was constructed by electrochemical co-deposition of GO and aniline into the interspaces of a sacrificial silica opal template modified Au slice. During the co-deposition, GO was successfully reduced by aniline and PANI could be deposited on the surfaces of rGO sheets. The ratio of rGO and PANI in the composite was also optimized to achieve the maximum electrochemical performance. The 3DM rGO/PANI composite provided larger specific surface area for the antibody immobilization, exhibited enhanced conductivity for electron transfer, and more important was that PANI acted as the electroactive probe for indicating the NSE concentration. Under the optimal conditions, a linear current response of PANI to NSE concentration was obtained over 0.5 pg mL -1 -10.0 ng mL -1 with a detection limit of 0.1 pg mL -1 . Moreover, the immunosensor showed excellent selectivity, good stability, satisfactory reproducibility and regeneration, and was employed to detect NSE in clinical serum specimens. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A single GABAergic neuron mediates feedback of odor-evoked signals in the mushroom body of larval Drosophila

    Directory of Open Access Journals (Sweden)

    Liria Monica Masuda-Nakagawa

    2014-04-01

    Full Text Available Inhibition has a central role in defining the selectivity of the responses of higher order neurons to sensory stimuli. However, the circuit mechanisms of regulation of these responses by inhibitory neurons are still unclear. In Drosophila, the mushroom bodies (MBs are necessary for olfactory memory, and by implication for the selectivity of learned responses to specific odors. To understand the circuitry of inhibition in the calyx (the input dendritic region of the MBs, and its relationship with MB excitatory activity, we used the simple anatomy of the Drosophila larval olfactory system to identify any inhibitory inputs that could contribute to the selectivity of MB odor responses. We found that a single neuron accounts for all detectable GABA innervation in the calyx of the MBs, and that this neuron has presynaptic terminals in the calyx and postsynaptic branches in the MB lobes (output axonal area. We call this neuron the larval anterior paired lateral (APL neuron, because of its similarity to the previously described adult APL neuron. Reconstitution of GFP partners (GRASP suggests that the larval APL makes extensive contacts with the MB intrinsic neurons, Kenyon Cells (KCs, but few contacts with incoming projection neurons. Using calcium imaging of neuronal activity in live larvae, we show that the larval APL responds to odors, in a mannner that requires output from KCs. Our data suggest that the larval APL is the sole GABAergic neuron that innervates the MB input region and carries inhibitory feedback from the MB output region, consistent with a role in modulating the olfactory selectivity of MB neurons.

  19. Orientation selectivity in inhibition-dominated networks of spiking neurons: effect of single neuron properties and network dynamics.

    Science.gov (United States)

    Sadeh, Sadra; Rotter, Stefan

    2015-01-01

    The neuronal mechanisms underlying the emergence of orientation selectivity in the primary visual cortex of mammals are still elusive. In rodents, visual neurons show highly selective responses to oriented stimuli, but neighboring neurons do not necessarily have similar preferences. Instead of a smooth map, one observes a salt-and-pepper organization of orientation selectivity. Modeling studies have recently confirmed that balanced random networks are indeed capable of amplifying weakly tuned inputs and generating highly selective output responses, even in absence of feature-selective recurrent connectivity. Here we seek to elucidate the neuronal mechanisms underlying this phenomenon by resorting to networks of integrate-and-fire neurons, which are amenable to analytic treatment. Specifically, in networks of perfect integrate-and-fire neurons, we observe that highly selective and contrast invariant output responses emerge, very similar to networks of leaky integrate-and-fire neurons. We then demonstrate that a theory based on mean firing rates and the detailed network topology predicts the output responses, and explains the mechanisms underlying the suppression of the common-mode, amplification of modulation, and contrast invariance. Increasing inhibition dominance in our networks makes the rectifying nonlinearity more prominent, which in turn adds some distortions to the otherwise essentially linear prediction. An extension of the linear theory can account for all the distortions, enabling us to compute the exact shape of every individual tuning curve in our networks. We show that this simple form of nonlinearity adds two important properties to orientation selectivity in the network, namely sharpening of tuning curves and extra suppression of the modulation. The theory can be further extended to account for the nonlinearity of the leaky model by replacing the rectifier by the appropriate smooth input-output transfer function. These results are robust and do not

  20. Anti-tubulin labeling reveals ampullary neuron ciliary bundles in opisthobranch larvae and a new putative neural structure associated with the apical ganglion.

    Science.gov (United States)

    Kempf, Stephen C; Page, Louise R

    2005-06-01

    This investigation examines tubulin labeling associated with the apical ganglion in a variety of planktotrophic and lecithotrophic opisthobranch larvae. Emphasis is on the ampullary neurons, in which ciliary bundles within the ampulla are strongly labeled. The larvae of all but one species have five ampullary neurons and their associated ciliary bundles. The anaspid Phyllaplysia taylori, a species with direct development and an encapsulated veliger stage, has only four ampullary neurons. The cilia-containing ampulla extends to the pretrochal surface via a long, narrow canal that opens to the external environment through a very small pore (0.1 microm diameter). Cilia within the canal were never observed to project beyond the opening of the apical pore. The ampullary canals extend toward and are grouped with the ciliary tuft cells and remain in this location as planktotrophic larvae feed and grow. If, as has been reported, the ciliary tuft is motile, the pores may be continually bathed in fresh seawater. Such an arrangement would increase sensitivity to environmental chemical stimuli if the suggested chemosensory function of these neurons is correct. In general, ciliary bundles of newly hatched veligers are smaller in planktotrophic larvae than in lecithotrophic larvae. In planktotrophic larvae of Melibe leonina, the ciliary bundles increase in length and width as the veligers feed and grow. This may be related to an increase in sensitivity for whatever sensory function these neurons fulfill. An unexpected tubulin-labeled structure, tentatively called the apical nerve, was also found to be associated with the apical ganglion. This putative nerve extends from the region of the visceral organs to a position either within or adjacent to the apical ganglion. One function of the apical nerve might be to convey the stimulus resulting from metamorphic induction to the visceral organs.

  1. Elucidating distinct ion channel populations on the surface of hippocampal neurons via single-particle tracking recurrence analysis

    Science.gov (United States)

    Sikora, Grzegorz; Wyłomańska, Agnieszka; Gajda, Janusz; Solé, Laura; Akin, Elizabeth J.; Tamkun, Michael M.; Krapf, Diego

    2017-12-01

    Protein and lipid nanodomains are prevalent on the surface of mammalian cells. In particular, it has been recently recognized that ion channels assemble into surface nanoclusters in the soma of cultured neurons. However, the interactions of these molecules with surface nanodomains display a considerable degree of heterogeneity. Here, we investigate this heterogeneity and develop statistical tools based on the recurrence of individual trajectories to identify subpopulations within ion channels in the neuronal surface. We specifically study the dynamics of the K+ channel Kv1.4 and the Na+ channel Nav1.6 on the surface of cultured hippocampal neurons at the single-molecule level. We find that both these molecules are expressed in two different forms with distinct kinetics with regards to surface interactions, emphasizing the complex proteomic landscape of the neuronal surface. Further, the tools presented in this work provide new methods for the analysis of membrane nanodomains, transient confinement, and identification of populations within single-particle trajectories.

  2. Quantitative analysis of axon bouton distribution of subthalamic nucleus neurons in the rat by single neuron visualization with a viral vector.

    Science.gov (United States)

    Koshimizu, Yoshinori; Fujiyama, Fumino; Nakamura, Kouichi C; Furuta, Takahiro; Kaneko, Takeshi

    2013-06-15

    The subthalamic nucleus (STN) of the basal ganglia plays a key role in motor control, and STN efferents are known to mainly target the external segment of the globus pallidus (GPe), entopeduncular nucleus (Ep), and substantia nigra (SN) with some axon collaterals to the other regions. However, it remains to be clarified how each STN neuron projects axon fibers and collaterals to those target nuclei of the STN. Here we visualized the whole axonal arborization of single STN neurons in the rat brain by using a viral vector expressing membrane-targeted green fluorescent protein, and examined the distribution of axon boutons in those target nuclei. The vast majority (8-9) of 10 reconstructed STN neurons projected to the GPe, SN, caudate-putamen (CPu), and Ep, which received, on average ± SD, 457 ± 425, 400 ± 347, 126 ± 143, and 106 ± 100 axon boutons per STN neuron, respectively. Furthermore, the density of axon boutons in the GPe was highest among these nuclei. Although these target nuclei were divided into calbindin-rich and -poor portions, STN projection showed no exclusive preference for those portions. Since STN neurons mainly projected not only to the GPe, SN, and Ep but also to the CPu, the subthalamostriatal projection might serve as a positive feedback path for the striato-GPe-subthalamic disinhibitory pathway, or work as another route of cortical inputs to the striatum through the corticosubthalamostriatal disynaptic excitatory pathway. Copyright © 2012 Wiley Periodicals, Inc.

  3. Label-free distinguishing between neurons and glial cells based on two-photon excited fluorescence signal of neuron perinuclear granules

    Science.gov (United States)

    Du, Huiping; Jiang, Liwei; Wang, Xingfu; Liu, Gaoqiang; Wang, Shu; Zheng, Liqin; Li, Lianhuang; Zhuo, Shuangmu; Zhu, Xiaoqin; Chen, Jianxin

    2016-08-01

    Neurons and glial cells are two critical cell types of brain tissue. Their accurate identification is important for the diagnosis of psychiatric disorders such as depression and schizophrenia. In this paper, distinguishing between neurons and glial cells by using the two-photon excited fluorescence (TPEF) signals of intracellular intrinsic sources was performed. TPEF microscopy combined with TUJ-1 and GFAP immunostaining and quantitative image analysis demonstrated that the perinuclear granules of neurons in the TPEF images of brain tissue and the primary cultured cortical cells were a unique characteristic of neurons compared to glial cells which can become a quantitative feature to distinguish neurons from glial cells. With the development of miniaturized TPEF microscope (‘two-photon fiberscopes’) imaging devices, TPEF microscopy can be developed into an effective diagnostic and monitoring tool for psychiatric disorders such as depression and schizophrenia.

  4. A single hidden layer feedforward network with only one neuron in the hidden layer can approximate any univariate function

    OpenAIRE

    Guliyev, Namig; Ismailov, Vugar

    2016-01-01

    The possibility of approximating a continuous function on a compact subset of the real line by a feedforward single hidden layer neural network with a sigmoidal activation function has been studied in many papers. Such networks can approximate an arbitrary continuous function provided that an unlimited number of neurons in a hidden layer is permitted. In this paper, we consider constructive approximation on any finite interval of $\\mathbb{R}$ by neural networks with only one neuron in the hid...

  5. Plasticity of marrow mesenchymal stem cells from human first-trimester fetus: from single-cell clone to neuronal differentiation.

    Science.gov (United States)

    Zhang, Yihua; Shen, Wenzheng; Sun, Bingjie; Lv, Changrong; Dou, Zhongying

    2011-02-01

    Recent results have shown that bone marrow mesenchymal stem cells (BMSCs) from human first-trimester abortus (hfBMSCs) are closer to embryonic stem cells and perform greater telomerase activity and faster propagation than mid- and late-prophase fetal and adult BMSCs. However, no research has been done on the plasticity of hfBMSCs into neuronal cells using single-cell cloned strains without cell contamination. In this study, we isolated five single cells from hfBMSCs and obtained five single-cell cloned strains, and investigated their biological property and neuronal differentiation potential. We found that four of the five strains showed similar expression profile of surface antigen markers to hfBMSCs, and most of them differentiated into neuron-like cells expressing Nestin, Pax6, Sox1, β-III Tubulin, NF-L, and NSE under induction. One strain showed different expression profile of surface antigen markers from the four strains and hfBMSCs, and did not differentiate toward neuronal cells. We demonstrated for the first time that some of single-cell cloned strains from hfBMSCs can differentiate into nerve tissue-like cell clusters under induction in vitro, and that the plasticity of each single-cell cloned strain into neuronal cells is different.

  6. High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression.

    Directory of Open Access Journals (Sweden)

    Sandra J Kuhlman

    2008-04-01

    Full Text Available We describe a method that combines Cre-recombinase knockin mice and viral-mediated gene transfer to genetically label and functionally manipulate specific neuron types in the mouse brain. We engineered adeno-associated viruses (AAVs that express GFP, dsRedExpress, or channelrhodopsin (ChR2 upon Cre/loxP recombination-mediated removal of a transcription-translation STOP cassette. Fluorescent labeling was sufficient to visualize neuronal structures with synaptic resolution in vivo, and ChR2 expression allowed light activation of neuronal spiking. The structural dynamics of a specific class of neocortical neuron, the parvalbumin-containing (Pv fast-spiking GABAergic interneuron, was monitored over the course of a week. We found that although the majority of Pv axonal boutons were stable in young adults, bouton additions and subtractions on axonal shafts were readily observed at a rate of 10.10% and 9.47%, respectively, over 7 days. Our results indicate that Pv inhibitory circuits maintain the potential for structural re-wiring in post-adolescent cortex. With the generation of an increasing number of Cre knockin mice and because viral transfection can be delivered to defined brain regions at defined developmental stages, this strategy represents a general method to systematically visualize the structure and manipulate the function of different cell types in the mouse brain.

  7. Labeling of mesenchymal stem cells for MRI with single-cell sensitivity

    Directory of Open Access Journals (Sweden)

    Ariza de Schellenberger A

    2016-04-01

    Full Text Available Angela Ariza de Schellenberger,1 Harald Kratz,1 Tracy D Farr,2,3 Norbert Löwa,4 Ralf Hauptmann,1 Susanne Wagner,1 Matthias Taupitz,1 Jörg Schnorr,1 Eyk A Schellenberger1 1Department of Radiology, 2Department of Experimental Neurology, Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany; 3School of Life Sciences, University of Nottingham, Medical School, Nottingham, UK; 4Department of Biomagnetic Signals, Physikalisch-Technische Bundesanstalt Berlin, Berlin, Germany Abstract: Sensitive cell detection by magnetic resonance imaging (MRI is an important tool for the development of cell therapies. However, clinically approved contrast agents that allow single-cell detection are currently not available. Therefore, we compared very small iron oxide nanoparticles (VSOP and new multicore carboxymethyl dextran-coated iron oxide nanoparticles (multicore particles, MCP designed by our department for magnetic particle imaging (MPI with discontinued Resovist® regarding their suitability for detection of single mesenchymal stem cells (MSC by MRI. We achieved an average intracellular nanoparticle (NP load of >10 pg Fe per cell without the use of transfection agents. NP loading did not lead to significantly different results in proliferation, colony formation, and multilineage in vitro differentiation assays in comparison to controls. MRI allowed single-cell detection using VSOP, MCP, and Resovist® in conjunction with high-resolution T2*-weighted imaging at 7 T with postprocessing of phase images in agarose cell phantoms and in vivo after delivery of 2,000 NP-labeled MSC into mouse brains via the left carotid artery. With optimized labeling conditions, a detection rate of ~45% was achieved; however, the experiments were limited by nonhomogeneous NP loading of the MSC population. Attempts should be made to achieve better cell separation for homogeneous NP loading and to thus improve NP

  8. A single-layer, planar, optofluidic Mach–Zehnder interferometer for label-free detection†

    Science.gov (United States)

    Lapsley, Michael Ian; Chiang, I.-Kao; Zheng, Yue Bing; Ding, Xiaoyun; Mao, Xiaole

    2014-01-01

    We have developed a planar, optofluidic Mach–Zehnder interferometer for the label-free detection of liquid samples. In contrast to most on-chip interferometers which require complex fabrication, our design was realized via a simple, single-layer soft lithography fabrication process. In addition, a single-wavelength laser source and a silicon photodetector were the only optical equipment used for data collection. The device was calibrated using published data for the refractive index of calcium chloride (CaCl2) in solution, and the biosensing capabilities of the device were tested by detecting bovine serum albumin (BSA). Our design enables a refractometer with a low limit of detection (1.24 × 10−4 refractive index units (RIU)), low variability (1 × 10−4 RIU), and high sensitivity (927.88 oscillations per RIU). This performance is comparable to state-of-the-art optofluidic refractometers that involve complex fabrication processes and/or expensive, bulky optics. The advantages of our device (i.e. simple fabrication process, straightforward optical equipment, low cost, and high detection sensitivity) make it a promising candidate for future mass-producible, inexpensive, highly sensitive, label-free optical detection systems. PMID:21479332

  9. A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection.

    Science.gov (United States)

    Lapsley, Michael Ian; Chiang, I-Kao; Zheng, Yue Bing; Ding, Xiaoyun; Mao, Xiaole; Huang, Tony Jun

    2011-05-21

    We have developed a planar, optofluidic Mach-Zehnder interferometer for the label-free detection of liquid samples. In contrast to most on-chip interferometers which require complex fabrication, our design was realized via a simple, single-layer soft lithography fabrication process. In addition, a single-wavelength laser source and a silicon photodetector were the only optical equipment used for data collection. The device was calibrated using published data for the refractive index of calcium chloride (CaCl(2)) in solution, and the biosensing capabilities of the device were tested by detecting bovine serum albumin (BSA). Our design enables a refractometer with a low limit of detection (1.24 × 10(-4) refractive index units (RIU)), low variability (1 × 10(-4) RIU), and high sensitivity (927.88 oscillations per RIU). This performance is comparable to state-of-the-art optofluidic refractometers that involve complex fabrication processes and/or expensive, bulky optics. The advantages of our device (i.e. simple fabrication process, straightforward optical equipment, low cost, and high detection sensitivity) make it a promising candidate for future mass-producible, inexpensive, highly sensitive, label-free optical detection systems. © The Royal Society of Chemistry 2011

  10. Auditory and audio-vocal responses of single neurons in the monkey ventral premotor cortex.

    Science.gov (United States)

    Hage, Steffen R

    2018-03-20

    Monkey vocalization is a complex behavioral pattern, which is flexibly used in audio-vocal communication. A recently proposed dual neural network model suggests that cognitive control might be involved in this behavior, originating from a frontal cortical network in the prefrontal cortex and mediated via projections from the rostral portion of the ventral premotor cortex (PMvr) and motor cortex to the primary vocal motor network in the brainstem. For the rapid adjustment of vocal output to external acoustic events, strong interconnections between vocal motor and auditory sites are needed, which are present at cortical and subcortical levels. However, the role of the PMvr in audio-vocal integration processes remains unclear. In the present study, single neurons in the PMvr were recorded in rhesus monkeys (Macaca mulatta) while volitionally producing vocalizations in a visual detection task or passively listening to monkey vocalizations. Ten percent of randomly selected neurons in the PMvr modulated their discharge rate in response to acoustic stimulation with species-specific calls. More than four-fifths of these auditory neurons showed an additional modulation of their discharge rates either before and/or during the monkeys' motor production of the vocalization. Based on these audio-vocal interactions, the PMvr might be well positioned to mediate higher order auditory processing with cognitive control of the vocal motor output to the primary vocal motor network. Such audio-vocal integration processes in the premotor cortex might constitute a precursor for the evolution of complex learned audio-vocal integration systems, ultimately giving rise to human speech. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Divisive normalization and neuronal oscillations in a single hierarchical framework of selective visual attention

    Directory of Open Access Journals (Sweden)

    Jorrit Steven Montijn

    2012-05-01

    Full Text Available In divisive normalization models of covert attention, spike rate modulations are commonly used as indicators of the effect of top-down attention. In addition, an increasing number of studies have shown that top-down attention increases the synchronization of neuronal oscillations as well, particularly those in gamma-band frequencies (25 to 100 Hz. Although modulations of spike rate and synchronous oscillations are not mutually exclusive as mechanisms of attention, there has thus far been little effort to integrate these concepts into a single framework of attention. Here, we aim to provide such a unified framework by expanding the normalization model of attention with a time dimension; allowing the simulation of a recently reported backward progression of attentional effects along the visual cortical hierarchy. A simple hierarchical cascade of normalization models simulating different cortical areas however leads to signal degradation and a loss of discriminability over time. To negate this degradation and ensure stable neuronal stimulus representations, we incorporate oscillatory phase entrainment into our model, a mechanism previously proposed as the communication-through-coherence (CTC hypothesis. Our analysis shows that divisive normalization and oscillation models can complement each other in a unified account of the neural mechanisms of selective visual attention. The resulting hierarchical normalization and oscillation (HNO model reproduces several additional spatial and temporal aspects of attentional modulation.

  12. Predicting the functional states of human iPSC-derived neurons with single-cell RNA-seq and electrophysiology.

    Science.gov (United States)

    Bardy, C; van den Hurk, M; Kakaradov, B; Erwin, J A; Jaeger, B N; Hernandez, R V; Eames, T; Paucar, A A; Gorris, M; Marchand, C; Jappelli, R; Barron, J; Bryant, A K; Kellogg, M; Lasken, R S; Rutten, B P F; Steinbusch, H W M; Yeo, G W; Gage, F H

    2016-11-01

    Human neural progenitors derived from pluripotent stem cells develop into electrophysiologically active neurons at heterogeneous rates, which can confound disease-relevant discoveries in neurology and psychiatry. By combining patch clamping, morphological and transcriptome analysis on single-human neurons in vitro, we defined a continuum of poor to highly functional electrophysiological states of differentiated neurons. The strong correlations between action potentials, synaptic activity, dendritic complexity and gene expression highlight the importance of methods for isolating functionally comparable neurons for in vitro investigations of brain disorders. Although whole-cell electrophysiology is the gold standard for functional evaluation, it often lacks the scalability required for disease modeling studies. Here, we demonstrate a multimodal machine-learning strategy to identify new molecular features that predict the physiological states of single neurons, independently of the time spent in vitro. As further proof of concept, we selected one of the potential neurophysiological biomarkers identified in this study-GDAP1L1-to isolate highly functional live human neurons in vitro.

  13. Origin and characterization of retrograde labeled neurons supplying the rat urethra using fiberoptic confocal fluorescent microscopy in vivo and immunohistochemistry.

    Science.gov (United States)

    Lee, Keon-Cheol; Sharma, Seema; Tuttle, Jeremy B; Steers, William D

    2010-10-01

    Autonomic innervation of urethral smooth muscle may influence urinary continence after prostatectomy. It is unclear whether the cavernous nerves carry fibers that influence continence. Using a retrograde axonal tracer combined with real-time in vivo imaging and ex vivo immunohistochemistry we determined the course and type of neurons supplying urethral smooth muscle distal to the prostate in the rat. We injected the retrograde axonal tracers cholera toxin B fragment-Alexa Fluor 488 and Fast Blue in the distal urethral smooth muscle in 10 rats each. Five days later the cavernous nerves and pelvic ganglion were imaged using fiberoptic confocal fluorescence microscopy (cholera toxin B fragment-Alexa Fluor 488) or harvested for immunohistochemistry (Fast Blue). Dual immunofluorescence of Fast Blue neurons with tyrosine hydroxylase or neuronal nitric oxide synthase was done to characterize neurons as noradrenergic or nitrergic. To ascertain whether the cavernous nerves contain fibers to the urethra that originate in the pelvic ganglia we cut the cavernous nerves with their ancillary branches in 3 rats and imaged them for Fast Blue. Fluorescent neurons and axons were detected in cavernous nerves and the pelvic ganglion. Few neurons were seen in rats with cavernous nerve section. Of urethral neurons 53.1% showed neuronal nitric oxide synthase positivity while 40.6% were immunoreactive for tyrosine hydroxylase. About 6.2% of urethral neurons failed to show tyrosine hydroxylase or neuronal nitric oxide synthase immunoreactivity. Most of the autonomic innervation to the urethra beyond the prostatic apex travels in the cavernous nerves. Many nerves may be parasympathetic based on neuronal nitric oxide synthase immunoreactivity. Nerves supplying the urethra outside the cavernous nerves may course posterior to the prostate. Along with afferent fibers, tyrosine hydroxylase immunoreactivity expressing neuron fibers, ie noradrenergic nerves, traveling in the cavernous nerves may

  14. Task-dependent changes in cross-level coupling between single neurons and oscillatory activity in multiscale networks.

    Directory of Open Access Journals (Sweden)

    Ryan T Canolty

    Full Text Available Understanding the principles governing the dynamic coordination of functional brain networks remains an important unmet goal within neuroscience. How do distributed ensembles of neurons transiently coordinate their activity across a variety of spatial and temporal scales? While a complete mechanistic account of this process remains elusive, evidence suggests that neuronal oscillations may play a key role in this process, with different rhythms influencing both local computation and long-range communication. To investigate this question, we recorded multiple single unit and local field potential (LFP activity from microelectrode arrays implanted bilaterally in macaque motor areas. Monkeys performed a delayed center-out reach task either manually using their natural arm (Manual Control, MC or under direct neural control through a brain-machine interface (Brain Control, BC. In accord with prior work, we found that the spiking activity of individual neurons is coupled to multiple aspects of the ongoing motor beta rhythm (10-45 Hz during both MC and BC, with neurons exhibiting a diversity of coupling preferences. However, here we show that for identified single neurons, this beta-to-rate mapping can change in a reversible and task-dependent way. For example, as beta power increases, a given neuron may increase spiking during MC but decrease spiking during BC, or exhibit a reversible shift in the preferred phase of firing. The within-task stability of coupling, combined with the reversible cross-task changes in coupling, suggest that task-dependent changes in the beta-to-rate mapping play a role in the transient functional reorganization of neural ensembles. We characterize the range of task-dependent changes in the mapping from beta amplitude, phase, and inter-hemispheric phase differences to the spike rates of an ensemble of simultaneously-recorded neurons, and discuss the potential implications that dynamic remapping from oscillatory activity to

  15. Label-free screening of single biomolecules through resistive pulse sensing technology for precision medicine applications

    Science.gov (United States)

    Harrer, S.; Kim, S. C.; Schieber, C.; Kannam, S.; Gunn, N.; Moore, S.; Scott, D.; Bathgate, R.; Skafidas, S.; Wagner, J. M.

    2015-05-01

    Employing integrated nano- and microfluidic circuits for detecting and characterizing biological compounds through resistive pulse sensing technology is a vibrant area of research at the interface of biotechnology and nanotechnology. Resistive pulse sensing platforms can be customized to study virtually any particle of choice which can be threaded through a fluidic channel and enable label-free single-particle interrogation with the primary read-out signal being an electric current fingerprint. The ability to perform label-free molecular screening with single-molecule and even single binding site resolution makes resistive pulse sensing technology a powerful tool for analyzing the smallest units of biological systems and how they interact with each other on a molecular level. This task is at the core of experimental systems biology and in particular ‘omics research which in combination with next-generation DNA-sequencing and next-generation drug discovery and design forms the foundation of a novel disruptive medical paradigm commonly referred to as personalized medicine or precision medicine. DNA-sequencing has approached the 1000-Dollar-Genome milestone allowing for decoding a complete human genome with unmatched speed and at low cost. Increased sequencing efficiency yields massive amounts of genomic data. Analyzing this data in combination with medical and biometric health data eventually enables understanding the pathways from individual genes to physiological functions. Access to this information triggers fundamental questions for doctors and patients alike: what are the chances of an outbreak for a specific disease? Can individual risks be managed and if so how? Which drugs are available and how should they be applied? Could a new drug be tailored to an individual’s genetic predisposition fast and in an affordable way? In order to provide answers and real-life value to patients, the rapid evolvement of novel computing approaches for analyzing big data in

  16. Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy.

    Science.gov (United States)

    Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Boccara, A Claude; Bourdieu, Laurent

    2011-11-01

    Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.

  17. Coordinate control of integral reactor based on single neuron PID controller

    International Nuclear Information System (INIS)

    Liu Yan; Xia Hong

    2014-01-01

    As one of the main type of reactors in the future, the development of the integral reactor has attracted worldwide attention. On the basis of understanding the background of the integral reactor, the author will be familiar with and master the power control of reactor and the feedwater flow control of steam generator, and the speed control of turbine (turbine speed control is associated with the turbine load control). According to the expectative program 'reactor power following turbine load' of the reactor, it will make coordinate control of the three and come to a overall control scheme. The author will use the supervisory learning algorithm of Hebb for single neuron PID controller with self-adaptation to study the coordinate control of integral reactor. Compared with conventional PI or PID controller, to a certain extent, it solves the problems that traditional PID controller is not easy to tune real-time parameters and lack of effective control for a number of complex processes and slow-varying parameter systems. It improves the security, reliability, stability and flexibility of control process and achieves effective control of the system. (authors)

  18. Spike Train SIMilarity Space (SSIMS): a frame-work for single neuron and ensemble data analysis

    Science.gov (United States)

    Vargas-Irwin, Carlos E.; Brandman, David M.; Zimmermann, Jonas B.; Donoghue, John P.; Black, Michael J.

    2014-01-01

    Increased emphasis on circuit level activity in the brain makes it necessary to have methods to visualize and evaluate large scale ensemble activity, beyond that revealed by raster-histograms or pairwise correlations. We present a method to evaluate the relative similarity of neural spiking patterns by combining spike train distance metrics with dimensionality reduction. Spike train distance metrics provide an estimate of similarity between activity patterns at multiple temporal resolutions. Vectors of pair-wise distances are used to represent the intrinsic relationships between multiple activity patterns at the level of single units or neuronal ensembles. Dimensionality reduction is then used to project the data into concise representations suitable for clustering analysis as well as exploratory visualization. Algorithm performance and robustness are evaluated using multielectrode ensemble activity data recorded in behaving primates. We demonstrate how Spike train SIMilarity Space (SSIMS) analysis captures the relationship between goal directions for an 8-directional reaching task and successfully segregates grasp types in a 3D grasping task in the absence of kinematic information. The algorithm enables exploration of virtually any type of neural spiking (time series) data, providing similarity-based clustering of neural activity states with minimal assumptions about potential information encoding models. PMID:25380335

  19. Single neuron recordings of bilinguals performing in a continuous recognition memory task.

    Directory of Open Access Journals (Sweden)

    Erika K Hussey

    Full Text Available We report the results of a bilingual continuous recognition memory task during which single- and multi-neuron activity was recorded in human subjects with intracranial microwire implants. Subjects (n = 5 were right-handed Spanish-English bilinguals who were undergoing evaluation prior to surgery for severe epilepsy. Subjects were presented with Spanish and English words and the task was to determine whether any given word had been seen earlier in the testing session, irrespective of the language in which it had appeared. Recordings in the left and right hippocampus revealed notable laterality, whereby both Spanish and English items that had been seen previously in the other language (switch trials triggered increased neural firing in the left hippocampus. Items that had been seen previously in the same language (repeat trials triggered increased neural firings in the right hippocampus. These results are consistent with theories that propose roles of both the left- and right-hemisphere in real-time linguistic processing. Importantly, this experiment presents the first instance of intracranial recordings in bilinguals performing a task with switching demands.

  20. Single walled carbon nanotube-based electrical biosensor for the label-free detection of pathogenic bacteria

    DEFF Research Database (Denmark)

    Yoo, S. M.; Baek, Y. K.; Shin, S.

    2016-01-01

    We herein describe the development of a single-walled carbon nanotube (SWNT)-based electrical biosensor consisting of a two-terminal resistor, and report its use for the specific, label-free detection of pathogenic bacteria via changes in conductance. The ability of this biosensor to recognize...

  1. Spontaneous Neuronal Activity in Developing Neocortical Networks: From Single Cells to Large-Scale Interactions.

    Science.gov (United States)

    Luhmann, Heiko J; Sinning, Anne; Yang, Jenq-Wei; Reyes-Puerta, Vicente; Stüttgen, Maik C; Kirischuk, Sergei; Kilb, Werner

    2016-01-01

    Neuronal activity has been shown to be essential for the proper formation of neuronal circuits, affecting developmental processes like neurogenesis, migration, programmed cell death, cellular differentiation, formation of local and long-range axonal connections, synaptic plasticity or myelination. Accordingly, neocortical areas reveal distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, when immature neurons start to develop voltage-dependent channels, spontaneous activity is highly synchronized within small neuronal networks and governed by electrical synaptic transmission. Subsequently, spontaneous activity patterns become more complex, involve larger networks and propagate over several neocortical areas. The developmental shift from local to large-scale network activity is accompanied by a gradual shift from electrical to chemical synaptic transmission with an initial excitatory action of chloride-gated channels activated by GABA, glycine and taurine. Transient neuronal populations in the subplate (SP) support temporary circuits that play an important role in tuning early neocortical activity and the formation of mature neuronal networks. Thus, early spontaneous activity patterns control the formation of developing networks in sensory cortices, and disturbances of these activity patterns may lead to long-lasting neuronal deficits.

  2. Not a single but multiple populations of GABAergic neurons control sleep.

    Science.gov (United States)

    Luppi, Pierre-Hervé; Peyron, Christelle; Fort, Patrice

    2017-04-01

    The role of gamma-amino butyric acid (GABA) in sleep induction and maintenance is well accepted since most insomnia treatments target GABAa receptors. However, the population(s) of GABAergic neurons involved in the beneficial effect of GABA on sleep remains to be identified. This is not an easy task since GABAergic neurons are widely distributed in all brain structures. A recently growing number of populations of GABAergic neurons have been involved in sleep control. We first review here possible candidates for inducing non-rapid eye movement (NREM) sleep including the GABAergic neurons of the ventrolateral preoptic area, the parafacial zone in the brainstem, the nucleus accumbens and the cortex. We also discuss the role of several populations of GABAergic neurons in rapid eye movement (REM) sleep control. Indeed, it is well accepted that muscle atonia occurring during REM sleep is due to a GABA/glycinergic hyperpolarization of motoneurons. Recent evidence strongly suggests that these neurons are located in the ventral medullary reticular formation. It has also recently been shown that neurons containing the neuropeptide melanin concentrating hormone and GABA located in the lateral hypothalamic area control REM sleep expression. Finally, a population of REM-off GABAergic neurons located in the ventrolateral periaqueductal gray has been shown to gate REM sleep by inhibiting glutamatergic neurons located in the sublaterodorsal tegmental nucleus. In summary, recent data clearly indicate that multiple populations of GABAergic neurons located throughout the brain from the cortex to the medulla oblongata control NREM and REM sleep. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Label-Free Imaging of Nanoparticle Uptake Competition in Single Cells by Hyperspectral Stimulated Raman Scattering.

    Science.gov (United States)

    Huang, Bin; Yan, Shuai; Xiao, Lin; Ji, Rong; Yang, Liuyan; Miao, Ai-Jun; Wang, Ping

    2018-03-01

    Imaging and quantification of nanoparticles in single cells in their most natural condition are expected to facilitate the biotechnological applications of nanoparticles and allow for better assessment of their biosafety risks. However, current imaging modalities either require tedious sample preparation or only apply to nanoparticles with specific physicochemical characteristics. Here, the emerging hyperspectral stimulated Raman scattering (SRS) microscopy, as a label-free and nondestructive imaging method, is used for the first time to investigate the subcellular distribution of nanoparticles in the protozoan Tetrahymena thermophila. The two frequently studied nanoparticles, polyacrylate-coated α-Fe 2 O 3 and TiO 2 , are found to have different subcellular distribution pattern as a result of their dissimilar uptake routes. Significant uptake competition between these two types of nanoparticles is further discovered, which should be paid attention to in future bioapplications of nanoparticles. Overall, this study illustrates the great promise of hyperspectral SRS as an analytical imaging tool in nanobiotechnology and nanotoxicology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Specific detection of neuronal cell bodies: in situ hybridization with a biotin-labelled neurofilament cDNA probe.

    NARCIS (Netherlands)

    P. Liesi; J-P. Julien (Jean-Pierre); P. Vilja; F.G. Grosveld (Frank); L. Rechardt

    1986-01-01

    textabstractWe have used a biotinylated, 300-nucleotide cDNA probe which encodes the 68,000 MW neurofilament protein to detect neurofilament-specific mRNA in situ. The neurofilament message specifically demonstrates the neuronal cell bodies, in contrast to the usual antibody staining which detects

  5. μ-Opioid receptor activation and noradrenaline transport inhibition by tapentadol in rat single locus coeruleus neurons.

    Science.gov (United States)

    Sadeghi, Mahsa; Tzschentke, Thomas M; Christie, MacDonald J

    2015-01-01

    Tapentadol is a novel analgesic that combines moderate μ-opioid receptor agonism and noradrenaline reuptake inhibition in a single molecule. Both mechanisms of action are involved in producing analgesia; however, the potency and efficacy of tapentadol in individual neurons has not been characterized. Whole-cell patch-clamp recordings of G-protein-coupled inwardly rectifying K(+) (KIR 3.x) currents were made from rat locus coeruleus neurons in brain slices to investigate the potency and relative efficacy of tapentadol and compare its intrinsic activity with other clinically used opioids. Tapentadol showed agonist activity at μ receptors and was approximately six times less potent than morphine with respect to KIR 3.x current modulation. The intrinsic activity of tapentadol was lower than [Met]enkephalin, morphine and oxycodone, but higher than buprenorphine and pentazocine. Tapentadol inhibited the noradrenaline transporter (NAT) with potency similar to that at μ receptors. The interaction between these two mechanisms of action was additive in individual LC neurons. Tapentadol displays similar potency for both µ receptor activation and NAT inhibition in functioning neurons. The intrinsic activity of tapentadol at the μ receptor lies between that of buprenorphine and oxycodone, potentially explaining the favourable profile of side effects, related to μ receptors. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2013 The British Pharmacological Society.

  6. DiI-labeling of DRG neurons to study axonal branching in a whole mount preparation of mouse embryonic spinal cord.

    Science.gov (United States)

    Schmidt, Hannes; Rathjen, Fritz G

    2011-12-13

    Here we present a technique to label the trajectories of small groups of DRG neurons into the embryonic spinal cord by diffusive staining using the lipophilic tracer 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI). The comparison of axonal pathways of wild-type with those of mouse lines in which genes are mutated allows testing for a functional role of candidate proteins in the control of axonal branching which is an essential mechanism in the wiring of the nervous system. Axonal branching enables an individual neuron to connect with multiple targets, thereby providing the physical basis for the parallel processing of information. Ramifications at intermediate target regions of axonal growth may be distinguished from terminal arborization. Furthermore, different modes of axonal branch formation may be classified depending on whether branching results from the activities of the growth cone (splitting or delayed branching) or from the budding of collaterals from the axon shaft in a process called interstitial branching (Fig. 1). The central projections of neurons from the DRG offer a useful experimental system to study both types of axonal branching: when their afferent axons reach the dorsal root entry zone (DREZ) of the spinal cord between embryonic days 10 to 13 (E10-E13) they display a stereotyped pattern of T- or Y-shaped bifurcation. The two resulting daughter axons then proceed in rostral or caudal directions, respectively, at the dorsolateral margin of the cord and only after a waiting period collaterals sprout from these stem axons to penetrate the gray matter (interstitial branching) and project to relay neurons in specific laminae of the spinal cord where they further arborize (terminal branching). DiI tracings have revealed growth cones at the dorsal root entry zone of the spinal cord that appeared to be in the process of splitting suggesting that bifurcation is caused by splitting of the growth cone itself (Fig. 2), however

  7. Dcc regulates asymmetric outgrowth of forebrain neurons in zebrafish.

    Directory of Open Access Journals (Sweden)

    Jingxia Gao

    Full Text Available The guidance receptor DCC (deleted in colorectal cancer ortholog UNC-40 regulates neuronal asymmetry development in Caenorhabditis elegans, but it is not known whether DCC plays a role in the specification of neuronal polarity in vertebrates. To examine the roles of DCC in neuronal asymmetry regulation in vertebrates, we studied zebrafish anterior dorsal telencephalon (ADt neuronal axons. We generated transgenic zebrafish animals expressing the photo-convertible fluorescent protein Kaede in ADt neurons and then photo-converted Kaede to label specifically the ADt neuron axons. We found that ADt axons normally project ventrally. Knock down of Dcc function by injecting antisense morpholino oligonucleotides caused the ADt neurons to project axons dorsally. To examine the axon projection pattern of individual ADt neurons, we labeled single ADt neurons using a forebrain-specific promoter to drive fluorescent protein expression. We found that individual ADt neurons projected axons dorsally or formed multiple processes after morpholino knock down of Dcc function. We further found that knock down of the Dcc ligand, Netrin1, also caused ADt neurons to project axons dorsally. Knockdown of Neogenin1, a guidance receptor closely related to Dcc, enhanced the formation of aberrant dorsal axons in embryos injected with Dcc morpholino. These experiments provide the first evidence that Dcc regulates polarized axon initiation and asymmetric outgrowth of forebrain neurons in vertebrates.

  8. Single Neurons in the Avian Auditory Cortex Encode Individual Identity and Propagation Distance in Naturally Degraded Communication Calls.

    Science.gov (United States)

    Mouterde, Solveig C; Elie, Julie E; Mathevon, Nicolas; Theunissen, Frédéric E

    2017-03-29

    One of the most complex tasks performed by sensory systems is "scene analysis": the interpretation of complex signals as behaviorally relevant objects. The study of this problem, universal to species and sensory modalities, is particularly challenging in audition, where sounds from various sources and localizations, degraded by propagation through the environment, sum to form a single acoustical signal. Here we investigated in a songbird model, the zebra finch, the neural substrate for ranging and identifying a single source. We relied on ecologically and behaviorally relevant stimuli, contact calls, to investigate the neural discrimination of individual vocal signature as well as sound source distance when calls have been degraded through propagation in a natural environment. Performing electrophysiological recordings in anesthetized birds, we found neurons in the auditory forebrain that discriminate individual vocal signatures despite long-range degradation, as well as neurons discriminating propagation distance, with varying degrees of multiplexing between both information types. Moreover, the neural discrimination performance of individual identity was not affected by propagation-induced degradation beyond what was induced by the decreased intensity. For the first time, neurons with distance-invariant identity discrimination properties as well as distance-discriminant neurons are revealed in the avian auditory cortex. Because these neurons were recorded in animals that had prior experience neither with the vocalizers of the stimuli nor with long-range propagation of calls, we suggest that this neural population is part of a general-purpose system for vocalizer discrimination and ranging. SIGNIFICANCE STATEMENT Understanding how the brain makes sense of the multitude of stimuli that it continually receives in natural conditions is a challenge for scientists. Here we provide a new understanding of how the auditory system extracts behaviorally relevant information

  9. Induction of specific neuron types by overexpression of single transcription factors.

    Science.gov (United States)

    Teratani-Ota, Yusuke; Yamamizu, Kohei; Piao, Yulan; Sharova, Lioudmila; Amano, Misa; Yu, Hong; Schlessinger, David; Ko, Minoru S H; Sharov, Alexei A

    2016-10-01

    Specific neuronal types derived from embryonic stem cells (ESCs) can facilitate mechanistic studies and potentially aid in regenerative medicine. Existing induction methods, however, mostly rely on the effects of the combined action of multiple added growth factors, which generally tend to result in mixed populations of neurons. Here, we report that overexpression of specific transcription factors (TFs) in ESCs can rather guide the differentiation of ESCs towards specific neuron lineages. Analysis of data on gene expression changes 2 d after induction of each of 185 TFs implicated candidate TFs for further ESC differentiation studies. Induction of 23 TFs (out of 49 TFs tested) for 6 d facilitated neural differentiation of ESCs as inferred from increased proportion of cells with neural progenitor marker PSA-NCAM. We identified early activation of the Notch signaling pathway as a common feature of most potent inducers of neural differentiation. The majority of neuron-like cells generated by induction of Ascl1, Smad7, Nr2f1, Dlx2, Dlx4, Nr2f2, Barhl2, and Lhx1 were GABA-positive and expressed other markers of GABAergic neurons. In the same way, we identified Lmx1a and Nr4a2 as inducers for neurons bearing dopaminergic markers and Isl1, Fezf2, and St18 for cholinergic motor neurons. A time-course experiment with induction of Ascl1 showed early upregulation of most neural-specific messenger RNA (mRNA) and microRNAs (miRNAs). Sets of Ascl1-induced mRNAs and miRNAs were enriched in Ascl1 targets. In further studies, enrichment of cells obtained with the induction of Ascl1, Smad7, and Nr2f1 using microbeads resulted in essentially pure population of neuron-like cells with expression profiles similar to neural tissues and expressed markers of GABAergic neurons. In summary, this study indicates that induction of transcription factors is a promising approach to generate cultures that show the transcription profiles characteristic of specific neural cell types.

  10. Energetics based spike generation of a single neuron: simulation results and analysis

    Directory of Open Access Journals (Sweden)

    Nagarajan eVenkateswaran

    2012-02-01

    Full Text Available Existing current based models that capture spike activity, though useful in studying information processing capabilities of neurons, fail to throw light on their internal functioning. It is imperative to develop a model that captures the spike train of a neuron as a function of its intra cellular parameters for non-invasive diagnosis of diseased neurons. This is the first ever article to present such an integrated model that quantifies the inter-dependency between spike activity and intra cellular energetics. The generated spike trains from our integrated model will throw greater light on the intra-cellular energetics than existing current models. Now, an abnormality in the spike of a diseased neuron can be linked and hence effectively analyzed at the energetics level. The spectral analysis of the generated spike trains in a time-frequency domain will help identify abnormalities in the internals of a neuron. As a case study, the parameters of our model are tuned for Alzheimer disease and its resultant spike trains are studied and presented.

  11. A single pair of neurons links sleep to memory consolidation in Drosophila melanogaster.

    Science.gov (United States)

    Haynes, Paula R; Christmann, Bethany L; Griffith, Leslie C

    2015-01-07

    Sleep promotes memory consolidation in humans and many other species, but the physiological and anatomical relationships between sleep and memory remain unclear. Here, we show the dorsal paired medial (DPM) neurons, which are required for memory consolidation in Drosophila, are sleep-promoting inhibitory neurons. DPMs increase sleep via release of GABA onto wake-promoting mushroom body (MB) α'/β' neurons. Functional imaging demonstrates that DPM activation evokes robust increases in chloride in MB neurons, but is unable to cause detectable increases in calcium or cAMP. Downregulation of α'/β' GABAA and GABABR3 receptors results in sleep loss, suggesting these receptors are the sleep-relevant targets of DPM-mediated inhibition. Regulation of sleep by neurons necessary for consolidation suggests that these brain processes may be functionally interrelated via their shared anatomy. These findings have important implications for the mechanistic relationship between sleep and memory consolidation, arguing for a significant role of inhibitory neurotransmission in regulating these processes.

  12. Diversity in the Neural Circuitry of Cold Sensing Revealed by Genetic Axonal Labeling of Transient Receptor Potential Melastatin 8 Neurons

    OpenAIRE

    Takashima, Yoshio; Daniels, Richard L.; Knowlton, Wendy; Teng, James; Liman, Emily R.; McKemy, David D.

    2007-01-01

    Sensory nerves detect an extensive array of somatosensory stimuli, including environmental temperatures. Despite activating only a small cohort of sensory neurons, cold temperatures generate a variety of distinct sensations that range from pleasantly cool to painfully aching, prickling, and burning. Psychophysical and functional data show that cold responses are mediated by both C- and Aδ-fibers with separate peripheral receptive zones, each of which likely provides one or more of these disti...

  13. Simultaneous neuron- and astrocyte-specific fluorescent marking

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Wiebke [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Hayata-Takano, Atsuko [Molecular Research Center for Children' s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kamo, Toshihiko [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nakazawa, Takanobu, E-mail: takanobunakazawa-tky@umin.ac.jp [iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nagayasu, Kazuki [iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kasai, Atsushi; Seiriki, Kaoru [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Shintani, Norihito [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ago, Yukio [Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Farfan, Camille [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); and others

    2015-03-27

    Systematic and simultaneous analysis of multiple cell types in the brain is becoming important, but such tools have not yet been adequately developed. Here, we aimed to generate a method for the specific fluorescent labeling of neurons and astrocytes, two major cell types in the brain, and we have developed lentiviral vectors to express the red fluorescent protein tdTomato in neurons and the enhanced green fluorescent protein (EGFP) in astrocytes. Importantly, both fluorescent proteins are fused to histone 2B protein (H2B) to confer nuclear localization to distinguish between single cells. We also constructed several expression constructs, including a tandem alignment of the neuron- and astrocyte-expression cassettes for simultaneous labeling. Introducing these vectors and constructs in vitro and in vivo resulted in cell type-specific and nuclear-localized fluorescence signals enabling easy detection and distinguishability of neurons and astrocytes. This tool is expected to be utilized for the simultaneous analysis of changes in neurons and astrocytes in healthy and diseased brains. - Highlights: • We develop a method for the specific fluorescent labeling of neurons and astrocytes. • Neuron-specific labeling is achieved using Scg10 and synapsin promoters. • Astrocyte-specific labeling is generated using the minimal GFAP promoter. • Nuclear localization of fluorescent proteins is achieved with histone 2B protein.

  14. Simultaneous neuron- and astrocyte-specific fluorescent marking

    International Nuclear Information System (INIS)

    Schulze, Wiebke; Hayata-Takano, Atsuko; Kamo, Toshihiko; Nakazawa, Takanobu; Nagayasu, Kazuki; Kasai, Atsushi; Seiriki, Kaoru; Shintani, Norihito; Ago, Yukio; Farfan, Camille

    2015-01-01

    Systematic and simultaneous analysis of multiple cell types in the brain is becoming important, but such tools have not yet been adequately developed. Here, we aimed to generate a method for the specific fluorescent labeling of neurons and astrocytes, two major cell types in the brain, and we have developed lentiviral vectors to express the red fluorescent protein tdTomato in neurons and the enhanced green fluorescent protein (EGFP) in astrocytes. Importantly, both fluorescent proteins are fused to histone 2B protein (H2B) to confer nuclear localization to distinguish between single cells. We also constructed several expression constructs, including a tandem alignment of the neuron- and astrocyte-expression cassettes for simultaneous labeling. Introducing these vectors and constructs in vitro and in vivo resulted in cell type-specific and nuclear-localized fluorescence signals enabling easy detection and distinguishability of neurons and astrocytes. This tool is expected to be utilized for the simultaneous analysis of changes in neurons and astrocytes in healthy and diseased brains. - Highlights: • We develop a method for the specific fluorescent labeling of neurons and astrocytes. • Neuron-specific labeling is achieved using Scg10 and synapsin promoters. • Astrocyte-specific labeling is generated using the minimal GFAP promoter. • Nuclear localization of fluorescent proteins is achieved with histone 2B protein

  15. Isotope label-aided mass spectrometry reveals the influence of environmental factors on metabolism in single eggs of fruit fly.

    Directory of Open Access Journals (Sweden)

    Te-Wei Tseng

    Full Text Available In order to investigate the influence of light/dark cycle on the biosynthesis of metabolites during oogenesis, here we demonstrate a simple experimental protocol which combines in-vivo isotopic labeling of primary metabolites with mass spectrometric analysis of single eggs of fruit fly (Drosophila melanogaster. First, fruit flies were adapted to light/dark cycle using artificial white light. Second, female flies were incubated with an isotopically labeled sugar ((13C(6-glucose for 12 h--either during the circadian day or the circadian night, at light or at dark. Third, eggs were obtained from the incubated female flies, and analyzed individually by matrix-assisted laser desorption/ionization (MALDI mass spectrometry (MS: this yielded information about the extent of labeling with carbon-13. Since the incorporation of carbon-13 to uridine diphosphate glucose (UDP-glucose in fruit fly eggs is very fast, the labeling of this metabolite was used as an indicator of the biosynthesis of metabolites flies/eggs during 12-h periods, which correspond to circadian day or circadian night. The results reveal that once the flies adapted to the 12-h-light/12-h-dark cycle, the incorporation of carbon-13 to UDP-glucose present in fruit fly eggs was not markedly altered by an acute perturbation to this cycle. This effect may be due to a relationship between biosynthesis of primary metabolites in developing eggs and an alteration to the intake of the labeled substrate - possibly related to the change of the feeding habit. Overall, the study shows the possibility of using MALDI-MS in conjunction with isotopic labeling of small metazoans to unravel the influence of environmental cues on primary metabolism.

  16. Isotope label-aided mass spectrometry reveals the influence of environmental factors on metabolism in single eggs of fruit fly.

    Science.gov (United States)

    Tseng, Te-Wei; Wu, June-Tai; Chen, Yu-Chie; Urban, Pawel L

    2012-01-01

    In order to investigate the influence of light/dark cycle on the biosynthesis of metabolites during oogenesis, here we demonstrate a simple experimental protocol which combines in-vivo isotopic labeling of primary metabolites with mass spectrometric analysis of single eggs of fruit fly (Drosophila melanogaster). First, fruit flies were adapted to light/dark cycle using artificial white light. Second, female flies were incubated with an isotopically labeled sugar ((13)C(6)-glucose) for 12 h--either during the circadian day or the circadian night, at light or at dark. Third, eggs were obtained from the incubated female flies, and analyzed individually by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS): this yielded information about the extent of labeling with carbon-13. Since the incorporation of carbon-13 to uridine diphosphate glucose (UDP-glucose) in fruit fly eggs is very fast, the labeling of this metabolite was used as an indicator of the biosynthesis of metabolites flies/eggs during 12-h periods, which correspond to circadian day or circadian night. The results reveal that once the flies adapted to the 12-h-light/12-h-dark cycle, the incorporation of carbon-13 to UDP-glucose present in fruit fly eggs was not markedly altered by an acute perturbation to this cycle. This effect may be due to a relationship between biosynthesis of primary metabolites in developing eggs and an alteration to the intake of the labeled substrate - possibly related to the change of the feeding habit. Overall, the study shows the possibility of using MALDI-MS in conjunction with isotopic labeling of small metazoans to unravel the influence of environmental cues on primary metabolism.

  17. Operant conditioning of synaptic and spiking activity patterns in single hippocampal neurons.

    Science.gov (United States)

    Ishikawa, Daisuke; Matsumoto, Nobuyoshi; Sakaguchi, Tetsuya; Matsuki, Norio; Ikegaya, Yuji

    2014-04-02

    Learning is a process of plastic adaptation through which a neural circuit generates a more preferable outcome; however, at a microscopic level, little is known about how synaptic activity is patterned into a desired configuration. Here, we report that animals can generate a specific form of synaptic activity in a given neuron in the hippocampus. In awake, head-restricted mice, we applied electrical stimulation to the lateral hypothalamus, a reward-associated brain region, when whole-cell patch-clamped CA1 neurons exhibited spontaneous synaptic activity that met preset criteria. Within 15 min, the mice learned to generate frequently the excitatory synaptic input pattern that satisfied the criteria. This reinforcement learning of synaptic activity was not observed for inhibitory input patterns. When a burst unit activity pattern was conditioned in paired and nonpaired paradigms, the frequency of burst-spiking events increased and decreased, respectively. The burst reinforcement occurred in the conditioned neuron but not in other adjacent neurons; however, ripple field oscillations were concomitantly reinforced. Neural conditioning depended on activation of NMDA receptors and dopamine D1 receptors. Acutely stressed mice and depression model mice that were subjected to forced swimming failed to exhibit the neural conditioning. This learning deficit was rescued by repetitive treatment with fluoxetine, an antidepressant. Therefore, internally motivated animals are capable of routing an ongoing action potential series into a specific neural pathway of the hippocampal network.

  18. An improved labeling strategy enables automated detection of single-virus fusion and assessment of HIV-1 protease activity in single virions.

    Science.gov (United States)

    Sood, Chetan; Francis, Ashwanth C; Desai, Tanay M; Melikyan, Gregory B

    2017-12-08

    Enveloped viruses transfer their genomes into host cells by fusing their membrane to that of the cell. To visualize single-virus fusion in living cells, researchers take advantage of the proteolytic maturation of HIV, type 1 (HIV-1), which can generate free fluorescent proteins within the viral particle. Co-labeling viruses with a content marker and a fluorescently tagged Vpr (a viral core protein) enables detection of single-virus fusions, but a major limitation of this approach is that not all viral particles incorporate both markers. Here we designed a labeling strategy based on the bifunctional mCherry-2xCL-YFP-Vpr construct, in which 2xCL denotes a tandem cleavage site for the viral protease. This bifunctional marker was efficiently cleaved during virus maturation, producing free mCherry and the core-associated YFP-Vpr. A nearly perfect colocalization of these two markers in virions and their fixed 1:1 ratio enabled automated detection of single-particle fusion in both fixed and live cells based on loss of the mCherry signal. Furthermore, a drop in FRET efficiency between YFP and mCherry because of cleavage of the bifunctional marker, which manifested as a marked shift in the normalized YFP/mCherry fluorescence ratio, reliably predicted viral protease activity in single virions. This feature could discriminate between the particles containing free mCherry, and therefore likely representing mature viruses, and immature particles whose fusion cannot be detected. In summary, our new labeling strategy offers several advantages compared with previous approaches, including increased reliability and throughput of detection of viral fusion. We anticipate that our method will have significant utility for studying viral fusion and maturation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Axially-confined in vivo single-cell labeling by primed conversion using blue and red lasers with conventional confocal microscopes.

    Science.gov (United States)

    Taniguchi, Atsushi; Kimura, Yukiko; Mori, Ikue; Nonaka, Shigenori; Higashijima, Shin-Ichi

    2017-12-01

    Green-to-red photoconvertible fluorescent proteins have been found to undergo efficient photoconversion by a new method termed primed conversion that uses dual wave-length illumination with blue and red/near-infrared light. By modifying a confocal laser-scanning microscope (CLSM) such that two laser beams only meet at the focal plane, confined photoconversion at the axial dimension has been achieved. The necessity of this custom modification to the CLSM, however, has precluded the wide-spread use of this method. Here, we investigated whether spatially-restricted primed conversion could be achieved with CLSM without any hardware modification. We found that the primed conversion of Dendra2 using a conventional CLSM with two visible lasers (473 nm and 635 nm) and a high NA objective lens (NA, 1.30) resulted in dramatic restriction of photoconversion volume: half-width half-maximum for the axial dimension was below 5 μm, which is comparable to the outcome of the original method that used the microscope modification. As a proof of this method's effectiveness, we used this technique in living zebrafish embryos and succeeded in revealing the complex anatomy of individual neurons packed between neighboring cells. Because unmodified CLSMs are widely available, this method can be widely applicable for labeling cells with single-cell resolution. © 2017 The Authors Development, Growth & Differentiation published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Developmental Biologists.

  20. Production of single superphosphate labeled with 34S Produção de superfosfato simples marcado com 34S

    Directory of Open Access Journals (Sweden)

    Alexssandra Luiza Rodrigues Molina Rossete

    2008-02-01

    Full Text Available Single superphosphate is currently one of the mostly used fertilizers as an alternative source for phosphorus and sulphur. Sulphur presents four stable isotopes (32S, 33S, 34S, and 36S with natural abundances of 95.00; 0.76; 4.22; and 0.014% in atoms, respectively. Single superphosphate labeled with the 34S isotope was obtained from a chemical reaction in stoichiometric amounts between Ca(H2PO42 and Ca34SO4.2H2O. Calcium sulphate (Ca34SO4.2H2O was enriched with 5.85 ± 0.01 atoms % of 34S. The Ca(H2PO42 reagent was obtained from a reaction between CaCl2.2H2O and H3PO4. The reaction between the Ca(H2PO42 thus produced and the labeled Ca34SO4.2H2O compound was then performed to obtain the 34S-labeled single surperphosphate. The thermal decomposition of the labeled superphosphate for the production of gaseous 34SO2 was carried out under a vacuum line at 900ºC in the presence of NaPO3. The isotopic determination of S (atoms % of 34S was carried out on an ATLAS-MAT model CH-4 mass spectrometer. The production yield of Ca(H2PO42 and labeled single superphosphate were approximately 97 and 99% respectively, and the purity level of the labeled single superphosphate was estimated as 96%. No isotopic fractionation was observed in the production process of 34S-labeled single superphosphate.O superfosfato simples é um dos fertilizantes mais utilizados atualmente como fonte de fósforo e uma alternativa para enxofre. O enxofre apresenta quatro isótopos estáveis, 32S, 33S, 34S e 36S, com abundância natural de 95,00; 0,76; 4,22 e 0,014% em átomos, respectivamente. O superfosfato simples marcado com 34S foi obtido a partir da reação química em proporção estequiométrica entre o Ca(H2PO42 e o Ca34SO4.2H2O. O Ca34SO4.2H2O foi enriquecido com 5,85 ± 0,01% em átomos de 34S. O Ca(H2PO42 foi obtido a partir da reação entre CaCl2.2H2O com o H3PO4. A decomposição térmica do superfosfato marcado para produção do 34SO2 gasoso foi realizada em linha de

  1. Stability and Hopf Bifurcation of Fractional-Order Complex-Valued Single Neuron Model with Time Delay

    Science.gov (United States)

    Wang, Zhen; Wang, Xiaohong; Li, Yuxia; Huang, Xia

    2017-12-01

    In this paper, the problems of stability and Hopf bifurcation in a class of fractional-order complex-valued single neuron model with time delay are addressed. With the help of the stability theory of fractional-order differential equations and Laplace transforms, several new sufficient conditions, which ensure the stability of the system are derived. Taking the time delay as the bifurcation parameter, Hopf bifurcation is investigated and the critical value of the time delay for the occurrence of Hopf bifurcation is determined. Finally, two representative numerical examples are given to show the effectiveness of the theoretical results.

  2. Bayesian nonparametric modeling for comparison of single-neuron firing intensities.

    Science.gov (United States)

    Kottas, Athanasios; Behseta, Sam

    2010-03-01

    We propose a fully inferential model-based approach to the problem of comparing the firing patterns of a neuron recorded under two distinct experimental conditions. The methodology is based on nonhomogeneous Poisson process models for the firing times of each condition with flexible nonparametric mixture prior models for the corresponding intensity functions. We demonstrate posterior inferences from a global analysis, which may be used to compare the two conditions over the entire experimental time window, as well as from a pointwise analysis at selected time points to detect local deviations of firing patterns from one condition to another. We apply our method on two neurons recorded from the primary motor cortex area of a monkey's brain while performing a sequence of reaching tasks.

  3. Wireless Sensor Network Congestion Control Based on Standard Particle Swarm Optimization and Single Neuron PID.

    Science.gov (United States)

    Yang, Xiaoping; Chen, Xueying; Xia, Riting; Qian, Zhihong

    2018-04-19

    Aiming at the problem of network congestion caused by the large number of data transmissions in wireless routing nodes of wireless sensor network (WSN), this paper puts forward an algorithm based on standard particle swarm⁻neural PID congestion control (PNPID). Firstly, PID control theory was applied to the queue management of wireless sensor nodes. Then, the self-learning and self-organizing ability of neurons was used to achieve online adjustment of weights to adjust the proportion, integral and differential parameters of the PID controller. Finally, the standard particle swarm optimization to neural PID (NPID) algorithm of initial values of proportion, integral and differential parameters and neuron learning rates were used for online optimization. This paper describes experiments and simulations which show that the PNPID algorithm effectively stabilized queue length near the expected value. At the same time, network performance, such as throughput and packet loss rate, was greatly improved, which alleviated network congestion and improved network QoS.

  4. Integration of Plasticity Mechanisms within a Single Sensory Neuron of C. elegans Actuates a Memory.

    Science.gov (United States)

    Hawk, Josh D; Calvo, Ana C; Liu, Ping; Almoril-Porras, Agustin; Aljobeh, Ahmad; Torruella-Suárez, María Luisa; Ren, Ivy; Cook, Nathan; Greenwood, Joel; Luo, Linjiao; Wang, Zhao-Wen; Samuel, Aravinthan D T; Colón-Ramos, Daniel A

    2018-01-17

    Neural plasticity, the ability of neurons to change their properties in response to experiences, underpins the nervous system's capacity to form memories and actuate behaviors. How different plasticity mechanisms act together in vivo and at a cellular level to transform sensory information into behavior is not well understood. We show that in Caenorhabditis elegans two plasticity mechanisms-sensory adaptation and presynaptic plasticity-act within a single cell to encode thermosensory information and actuate a temperature preference memory. Sensory adaptation adjusts the temperature range of the sensory neuron (called AFD) to optimize detection of temperature fluctuations associated with migration. Presynaptic plasticity in AFD is regulated by the conserved kinase nPKCε and transforms thermosensory information into a behavioral preference. Bypassing AFD presynaptic plasticity predictably changes learned behavioral preferences without affecting sensory responses. Our findings indicate that two distinct neuroplasticity mechanisms function together through a single-cell logic system to enact thermotactic behavior. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Induction of Associative Olfactory Memory by Targeted Activation of Single Olfactory Neurons in Drosophila Larvae

    OpenAIRE

    Honda, Takato; Lee, Chi-Yu; Yoshida-Kasikawa, Maki; Honjo, Ken; Furukubo-Tokunaga, Katsuo

    2014-01-01

    It has been postulated that associative memory is formed by at least two sets of external stimuli, CS and US, that are transmitted to the memory centers by distinctive conversing pathways. However, whether associative memory can be induced by the activation of only the olfactory CS and a biogenic amine-mediated US pathways remains to be elucidated. In this study, we substituted the reward signals with dTrpA1-mediated thermogenetic activation of octopaminergic neurons and the odor signals by C...

  6. Neural Plasticity: Single Neuron Models for Discrimination and Generalization and an Experimental Ensemble Approach.

    Science.gov (United States)

    1983-06-01

    in pamp/cm has been computed by Agin (1964) from the equations of Hodgkin and Huxley (1952) to give the response frequency (pulses/sec) of an axon...J.- Y . (1981) lumunocytochem- ical localization of glutamic acid decarboxylase in monkey striate cortex. Nature2i2.: 605-607. Hodgkin . A. L. and...used to express the output y of a neuron to its inputs zi (1). The coefficients ei i_____i___i __ i_______’____’_____,________’__’___"___i 10 are the

  7. Synthesis and evaluation of the racemate and individual enantiomers of C-11 labeled methylphenidate as radioligands for the presynaptic dopaminergic neuron

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y.S.; Fowler, J.S.; Volkow, N.D. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1994-05-01

    Methylphenidate (MP, ritalin) is a psychostimulant drug widely used to treat attention deficit hyperactivity disorder and narcolepsy. Its therapeutic properties are attributed to inhibition of the dopamine (DA) transporter enhancing synaptic DA. MP has two chiral centers and is marketed as the dl-threo racemic form. However, its pharmacological activity is believed due solely to the d-enantiomer. We have synthesized [{sup 11}C]d,l-threo-methylphenidate ([{sup 11}C]MP) in order to examine its pharmacokinetics in vivo and to examine its suitability as a radioligand for PET studies of the presynaptic DA neuron. [{sup 11}C]MP was prepared by O-{sup 11}C-alkylation of a protected derivative of ritalinic acid with labeled methyl iodide. Serial studies at baseline and after treatment with methylphenidate (0.5 mg/kg, 20 min prior); GBR 12909 (1.5 mg/kg; 30 min prior); tomoxetine (1.5 mg/kg, 20 min prior) and citalopram (2.0 mg/kg, 30 min prior) were performed to assess non-specific binding and binding to the DA, norepinephrine and serotonin transporters respectively. Only MP and GBR 12909 changed the SR/CB distribution volume ratio (decrease of 38 and 37% respectively) demonstrating selectivity for DA transporters over other monoamine transporters. We then pursued the synthesis of enantiomerically pure C-{sup 11} labeled d- and l-MP by using enantiomerically pure protected d- and l-ritalinic acids as precursors. A striking difference in SR/CB ratio (3.3 and 1.1 for d- and l-respectively at 1 hr. after i.v. injections) strongly suggests that the pharmacological specificity of MP resides entirely in the d-isomer and the binding of l-isomer was mostly non-specific. Further evaluations are underway. Radioligand reversibility, selectivity and the fact that MP is an approved drug are advantages of using [{sup 11}C]MP.

  8. [Effects of blokade of the dopaminergic D1/D2 receptors on the single and network neuronal activity in the frontal and visual cortices and behavior of cats].

    Science.gov (United States)

    Kuleshova, E P; Zaleshin, A V; Sidorina, V V; Merzhanova, G Kh

    2010-01-01

    The results obtained at the levels of single and network neuronal activity in the frontal and visual cortices of cats with different types of behavior revealed features of activity of these structures in normal conditions and after local introductions of antagonists of DI/D2 receptors (SCH23390 and raclopride) into the n. accumbens and frontal cortex. Under the influence of the antagonists, long-latency reactions were characterized by a significant increase in the average frequency of neuronal activity in the frontal cortex, whereas in the visual cortex the average frequency decreased as compared to norm. At the same time, the network activity of the same neurons in the frontal cortex did not change but weakened in the visual cortex, which was expressed in a reduction of the number of neuronal interactions within the visual cortex and between the neurons of the frontal and visual cortices. Normally, during the long-latency conditioned reactions, the average frequency of single neuronal activity and the rate of neuronal interactions in the structures under study were significantly higher as compared to the loss of conditioned reactions. Administration of the dopamine antagonists did not change these features. The results suggest different dopamine modulations of the network activity of the cortical zones under study during the conditioned performance, which is expressed in responsiveness of the cortical projection of a trigger signal (the visual cortex) and visual-frontal networks generated in the course of training.

  9. NBLAST: Rapid, Sensitive Comparison of Neuronal Structure and Construction of Neuron Family Databases.

    Science.gov (United States)

    Costa, Marta; Manton, James D; Ostrovsky, Aaron D; Prohaska, Steffen; Jefferis, Gregory S X E

    2016-07-20

    Neural circuit mapping is generating datasets of tens of thousands of labeled neurons. New computational tools are needed to search and organize these data. We present NBLAST, a sensitive and rapid algorithm, for measuring pairwise neuronal similarity. NBLAST considers both position and local geometry, decomposing neurons into short segments; matched segments are scored using a probabilistic scoring matrix defined by statistics of matches and non-matches. We validated NBLAST on a published dataset of 16,129 single Drosophila neurons. NBLAST can distinguish neuronal types down to the finest level (single identified neurons) without a priori information. Cluster analysis of extensively studied neuronal classes identified new types and unreported topographical features. Fully automated clustering organized the validation dataset into 1,052 clusters, many of which map onto previously described neuronal types. NBLAST supports additional query types, including searching neurons against transgene expression patterns. Finally, we show that NBLAST is effective with data from other invertebrates and zebrafish. VIDEO ABSTRACT. Copyright © 2016 MRC Laboratory of Molecular Biology. Published by Elsevier Inc. All rights reserved.

  10. Tetrairon(III) single-molecule magnet monolayers on gold: insights from ToF-SIMS and isotopic labeling.

    Science.gov (United States)

    Totaro, Pasquale; Poggini, Lorenzo; Favre, Annaick; Mannini, Matteo; Sainctavit, Philippe; Cornia, Andrea; Magnani, Agnese; Sessoli, Roberta

    2014-07-29

    To work as magnetic components in molecular electronics and spintronics, single-molecule magnets (SMMs) must be reliably interfaced with metals. The organization on gold of a Fe4 SMM carrying two acetyl-protected thiol groups has been studied by exploiting the surface sensitivity of time-of-flight secondary ion mass spectrometry (ToF-SIMS), additionally powered by the use of an isotopic labeling strategy. Deposition from millimolar dichloromethane solutions results in a higher surface coverage and better packed monolayers as compared with previous protocols based on more diluted solutions. Fe4 complexes are chemically tethered to the surface via a single Au-S bond while they still contain an intact SAc group.

  11. Single Molecule 3D Orientation in Time and Space: A 6D Dynamic Study on Fluorescently Labeled Lipid Membranes

    DEFF Research Database (Denmark)

    Börner, Richard; Ehrlich, Nicky; Hohlbein, Johannes

    2016-01-01

    . As the method is based on the detection of single photons, it additionally allows for performing fluorescence correlation spectroscopy (FCS) as well as dynamical anisotropy measurements thereby providing access to fast orientational dynamics down to the nanosecond time scale. The 3D orientation is particularly...... interesting in non-isotropic environments such as lipid membranes, which are of great importance in biology. We used giant unilamellar vesicles (GUVs) labeled with fluorescent dyes down to a single molecule concentration as a model system for both, assessing the robustness of the orientation determination...... simulations of the rotational dynamics of dipoles incorporated into lipid membranes. Our study offers a comprehensive view on the dye orientation behavior in a lipid membrane with high spatiotemporal resolution representing a six-dimensional fluorescence detection approach....

  12. Terminal Complement Inhibitor Eculizumab in Adult Patients With Atypical Hemolytic Uremic Syndrome: A Single-Arm, Open-Label Trial.

    Science.gov (United States)

    Fakhouri, Fadi; Hourmant, Maryvonne; Campistol, Josep M; Cataland, Spero R; Espinosa, Mario; Gaber, A Osama; Menne, Jan; Minetti, Enrico E; Provôt, François; Rondeau, Eric; Ruggenenti, Piero; Weekers, Laurent E; Ogawa, Masayo; Bedrosian, Camille L; Legendre, Christophe M

    2016-07-01

    Atypical hemolytic uremic syndrome (aHUS) is a rare genetic life-threatening disease of chronic uncontrolled complement activation leading to thrombotic microangiopathy (TMA) and severe end-organ damage. Eculizumab, a terminal complement inhibitor approved for aHUS treatment, was reported to improve hematologic and renal parameters in 2 prior prospective phase 2 studies. This is the largest prospective study of eculizumab in aHUS to date, conducted in an adult population. Open-label single-arm phase 2 trial. Patients 18 years or older with aHUS (platelet count dialysis, 5 recovered kidney function before eculizumab initiation and 15 of the remaining 19 (79%) discontinued dialysis during eculizumab treatment. No patients lost existing transplants. Quality-of-life measures were significantly improved. Two patients developed meningococcal infections; both recovered, and 1 remained on eculizumab treatment. Single-arm open-label design. Results highlight the benefits of eculizumab in adult patients with aHUS: improvement in hematologic, renal, and quality-of-life parameters; dialysis discontinuation; and transplant protection. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Label-free detection of neuronal differentiation in cell populations using high-throughput live-cell imaging of PC12 cells.

    Directory of Open Access Journals (Sweden)

    Sebastian Weber

    Full Text Available Detection of neuronal cell differentiation is essential to study cell fate decisions under various stimuli and/or environmental conditions. Many tools exist that quantify differentiation by neurite length measurements of single cells. However, quantification of differentiation in whole cell populations remains elusive so far. Because such populations can consist of both proliferating and differentiating cells, the task to assess the overall differentiation status is not trivial and requires a high-throughput, fully automated approach to analyze sufficient data for a statistically significant discrimination to determine cell differentiation. We address the problem of detecting differentiation in a mixed population of proliferating and differentiating cells over time by supervised classification. Using nerve growth factor induced differentiation of PC12 cells, we monitor the changes in cell morphology over 6 days by phase-contrast live-cell imaging. For general applicability, the classification procedure starts out with many features to identify those that maximize discrimination of differentiated and undifferentiated cells and to eliminate features sensitive to systematic measurement artifacts. The resulting image analysis determines the optimal post treatment day for training and achieves a near perfect classification of differentiation, which we confirmed in technically and biologically independent as well as differently designed experiments. Our approach allows to monitor neuronal cell populations repeatedly over days without any interference. It requires only an initial calibration and training step and is thereafter capable to discriminate further experiments. In conclusion, this enables long-term, large-scale studies of cell populations with minimized costs and efforts for detecting effects of external manipulation of neuronal cell differentiation.

  14. In Situ Peroxidase Labeling and Mass-Spectrometry Connects Alpha-Synuclein Directly to Endocytic Trafficking and mRNA Metabolism in Neurons.

    Science.gov (United States)

    Chung, Chee Yeun; Khurana, Vikram; Yi, Song; Sahni, Nidhi; Loh, Ken H; Auluck, Pavan K; Baru, Valeriya; Udeshi, Namrata D; Freyzon, Yelena; Carr, Steven A; Hill, David E; Vidal, Marc; Ting, Alice Y; Lindquist, Susan

    2017-02-22

    Synucleinopathies, including Parkinson's disease (PD), are associated with the misfolding and mistrafficking of alpha-synuclein (α-syn). Here, using an ascorbate peroxidase (APEX)-based labeling method combined with mass spectrometry, we defined a network of proteins in the immediate vicinity of α-syn in living neurons to shed light on α-syn function. This approach identified 225 proteins, including synaptic proteins, proteins involved in endocytic vesicle trafficking, the retromer complex, phosphatases and mRNA binding proteins. Many were in complexes with α-syn, and some were encoded by genes known to be risk factors for PD and other neurodegenerative diseases. Endocytic trafficking and mRNA translation proteins within this spatial α-syn map overlapped with genetic modifiers of α-syn toxicity, developed in an accompanying study (Khurana et al., this issue of Cell Systems). Our data suggest that perturbation of these particular pathways is directly related to the spatial localization of α-syn within the cell. These approaches provide new avenues to systematically examine protein function and pathology in living cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Enhanced Peptide Detection Toward Single-Neuron Proteomics by Reversed-Phase Fractionation Capillary Electrophoresis Mass Spectrometry

    Science.gov (United States)

    Choi, Sam B.; Lombard-Banek, Camille; Muñoz-LLancao, Pablo; Manzini, M. Chiara; Nemes, Peter

    2017-11-01

    The ability to detect peptides and proteins in single cells is vital for understanding cell heterogeneity in the nervous system. Capillary electrophoresis (CE) nanoelectrospray ionization (nanoESI) provides high-resolution mass spectrometry (HRMS) with trace-level sensitivity, but compressed separation during CE challenges protein identification by tandem HRMS with limited MS/MS duty cycle. Here, we supplemented ultrasensitive CE-nanoESI-HRMS with reversed-phase (RP) fractionation to enhance identifications from protein digest amounts that approximate to a few mammalian neurons. An 1 to 20 μg neuronal protein digest was fractionated on a RP column (ZipTip), and 1 ng to 500 pg of peptides were analyzed by a custom-built CE-HRMS system. Compared with the control (no fractionation), RP fractionation improved CE separation (theoretical plates 274,000 versus 412,000 maximum, resp.), which enhanced detection sensitivity (2.5-fold higher signal-to-noise ratio), minimized co-isolation spectral interferences during MS/MS, and increased the temporal rate of peptide identification by up to 57%. From 1 ng of protein digest (development of the brain, including those involved in synaptic transmission and plasticity and cytoskeletal organization. [Figure not available: see fulltext.

  16. Study of GABAergic extra-synaptic tonic inhibition in single neurons and neural populations by traversing neural scales: application to propofol-induced anaesthesia.

    Science.gov (United States)

    Hutt, Axel; Buhry, Laure

    2014-12-01

    Anaesthetic agents are known to affect extra-synaptic GABAergic receptors, which induce tonic inhibitory currents. Since these receptors are very sensitive to small concentrations of agents, they are supposed to play an important role in the underlying neural mechanism of general anaesthesia. Moreover anaesthetic agents modulate the encephalographic activity (EEG) of subjects and hence show an effect on neural populations. To understand better the tonic inhibition effect in single neurons on neural populations and hence how it affects the EEG, the work considers single neurons and neural populations in a steady-state and studies numerically and analytically the modulation of their firing rate and nonlinear gain with respect to different levels of tonic inhibition. We consider populations of both type-I (Leaky Integrate-and-Fire model) and type-II (Morris-Lecar model) neurons. To bridge the single neuron description to the population description analytically, a recently proposed statistical approach is employed which allows to derive new analytical expressions for the population firing rate for type-I neurons. In addition, the work shows the derivation of a novel transfer function for type-I neurons as considered in neural mass models and studies briefly the interaction of synaptic and extra-synaptic inhibition. We reveal a strong subtractive and divisive effect of tonic inhibition in type-I neurons, i.e. a shift of the firing rate to higher excitation levels accompanied by a change of the nonlinear gain. Tonic inhibition shortens the excitation window of type-II neurons and their populations while maintaining the nonlinear gain. The gained results are interpreted in the context of recent experimental findings under propofol-induced anaesthesia.

  17. Real-time subpixel-accuracy tracking of single mitochondria in neurons reveals heterogeneous mitochondrial motion.

    Science.gov (United States)

    Alsina, Adolfo; Lai, Wu Ming; Wong, Wai Kin; Qin, Xianan; Zhang, Min; Park, Hyokeun

    2017-11-04

    Mitochondria are essential for cellular survival and function. In neurons, mitochondria are transported to various subcellular regions as needed. Thus, defects in the axonal transport of mitochondria are related to the pathogenesis of neurodegenerative diseases, and the movement of mitochondria has been the subject of intense research. However, the inability to accurately track mitochondria with subpixel accuracy has hindered this research. Here, we report an automated method for tracking mitochondria based on the center of fluorescence. This tracking method, which is accurate to approximately one-tenth of a pixel, uses the centroid of an individual mitochondrion and provides information regarding the distance traveled between consecutive imaging frames, instantaneous speed, net distance traveled, and average speed. Importantly, this new tracking method enables researchers to observe both directed motion and undirected movement (i.e., in which the mitochondrion moves randomly within a small region, following a sub-diffusive motion). This method significantly improves our ability to analyze the movement of mitochondria and sheds light on the dynamic features of mitochondrial movement. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Proteomic signatures and aberrations of mouse embryonic stem cells containing a single human chromosome 21 in neuronal differentiation: an in vitro model of Down syndrome.

    Science.gov (United States)

    Kadota, M; Nishigaki, R; Wang, C C; Toda, T; Shirayoshi, Y; Inoue, T; Gojobori, T; Ikeo, K; Rogers, M S; Oshimura, M

    2004-01-01

    Neurodegeneration in fetal development of Down syndrome (DS) patients is proposed to result in apparent neuropathological abnormalities and to contribute to the phenotypic characteristics of mental retardation and premature development of Alzheimer disease. In order to identify the aberrant and specific genes involved in the early differentiation of DS neurons, we have utilized an in vitro neuronal differentiation system of mouse ES cells containing a single human chromosome 21 (TT2F/hChr21) with TT2F parental ES cells as a control. The paired protein extracts from TT2F and TT2F/hChr21 cells at several stages of neuronal differentiation were subjected to two-dimensional polyacrylamide gel electrophoresis protein separation followed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry to identify the proteins differentially expressed between TT2F and TT2F/hChr21 cells. We provide here a novel set of specific gene products altered in early differentiating DS neuronal cells, which differs from that identified in adult or fetal brain with DS. The aberrant protein expression in early differentiating neurons, due to the hChr21 gene dosage effects or chromosomal imbalance, may affect neuronal outgrowth, proliferation and differentiation, producing developmental abnormalities in neural patterning, which eventually leads to formation of a suboptimal functioning neuronal network in DS.

  19. Single Cell Electroporation Method for Mammalian CNS Neurons in Organotypic Slice Cultures

    Science.gov (United States)

    Uesaka, Naofumi; Hayano, Yasufumi; Yamada, Akito; Yamamoto, Nobuhiko

    Axon tracing is an essential technique to study the projection pattern of neurons in the CNS. Horse radish peroxidase and lectins have contributed to revealing many neural connection patterns in the CNS (Itaya and van Hoesen, 1982; Fabian and Coulter, 1985; Yoshihara, 2002). Moreover, a tracing method with fluorescent dye has enabled the observation of growing axons in living conditions, and demon strated a lot of developmental aspects in axon growth and guidance (Harris et al., 1987; O'Rourke and Fraser, 1990; Kaethner and Stuermer, 1992; Halloran and Kalil, 1994; Yamamoto et al., 1997). More recently, genetically encoded fluores cent proteins can be used as a powerful tool to observe various biological events. Several gene transfer techniques such as microinjection, biolistic gene gun, viral infection, lipofection and transgenic technology have been developed (Feng et al., 2000; Ehrengruber et al., 2001; O'Brien et al., 2001; Ma et al., 2002; Sahly et al., 2003). In particular, the electroporation technique was proved as a valuable tool, since it can be applied to a wide range of tissues and cell types with little toxicity and can be performed with relative technical easiness. Most methods, including a stand ard electroporation technique, are suitable for gene transfer to a large number of cells. However, this is not ideal for axonal tracing, because observation of individ ual axons is occasionally required. To overcome this problem, we have developed an electroporation method using glass micropipettes containing plasmid solutions and small current injection. Here we introduce the method in detail and exemplified results with some example applications and discuss its usefulness.

  20. Label-Free Raman Hyperspectral Imaging of Single Cells Cultured on Polymer Substrates.

    Science.gov (United States)

    Sinjab, Faris; Sicilia, Giovanna; Shipp, Dustin W; Marlow, Maria; Notingher, Ioan

    2017-12-01

    While Raman hyperspectral imaging has been widely used for label-free mapping of biomolecules in cells, these measurements require the cells to be cultured on weakly Raman scattering substrates. However, many applications in biological sciences and engineering require the cells to be cultured on polymer substrates that often generate large Raman scattering signals. Here, we discuss the theoretical limits of the signal-to-noise ratio in the Raman spectra of cells in the presence of polymer signals and how optical aberrations may affect these measurements. We show that Raman spectra of cells cultured on polymer substrates can be obtained using automatic subtraction of the polymer signals and demonstrate the capabilities of these methods in two important applications: tissue engineering and in vitro toxicology screening of drugs. Apart from their scientific and technological importance, these applications are examples of the two most common measurement configurations: (1) cells cultured on an optically thick polymer substrate measured using an immersion/dipping objective; and (2) cells cultured on a transparent polymer substrate and measured using an inverted optical microscope. In these examples, we show that Raman hyperspectral data sets with sufficient quality can be successfully acquired to map the distribution of common biomolecules in cells, such as nucleic acids, proteins, and lipids, as well as detecting the early stages of apoptosis. We also discuss strategies for further improvements that could expand the application of Raman hyperspectral imaging on polymer substrates even further in biomedical sciences and engineering.

  1. A universal and label-free impedimetric biosensing platform for discrimination of single nucleotide substitutions in long nucleic acid strands.

    Science.gov (United States)

    Mills, Dawn M; Martin, Christopher P; Armas, Stephanie M; Calvo-Marzal, Percy; Kolpashchikov, Dmitry M; Chumbimuni-Torres, Karin Y

    2018-06-30

    We report a label-free universal biosensing platform for highly selective detection of long nucleic acid strands. The sensor consists of an electrode-immobilized universal stem-loop (USL) probe and two adaptor strands that form a 4J structure in the presence of a specific DNA/RNA analyte. The sensor was characterized by electrochemical impedance spectroscopy (EIS) using K 3 [Fe(CN) 6 ]/K 4 [Fe(CN) 6 ] redox couple in solution. An increase in charge transfer resistance (R CT ) was observed upon 4J structure formation, the value of which depends on the analyte length. Cyclic voltammetry (CV) was used to further characterize the sensor and monitor the electrochemical reaction in conjunction with thickness measurements of the mixed DNA monolayer obtained using spectroscopic ellipsometry. In addition, the electron transfer was calculated at the electrode/electrolyte interface using a rotating disk electrode. Limits of detection in the femtomolar range were achieved for nucleic acid targets of different lengths (22 nt, 60 nt, 200 nt). The sensor produced only a background signal in the presence of single base mismatched analytes, even in hundred times excess in concentration. This label-free and highly selective biosensing platform is versatile and can be used for universal detection of nucleic acids of varied lengths which could revolutionize point of care diagnostics for applications such as bacterial or cancer screening. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Label-free tracking of single extracellular vesicles in a nano-fluidic optical fiber (Conference Presentation)

    Science.gov (United States)

    van der Pol, Edwin; Weidlich, Stefan; Lahini, Yoav; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk; Schmidt, Markus A.; Faez, Sanli; van Leeuwen, Ton G.

    2016-03-01

    Background: Extracellular vesicles, such as exosomes, are abundantly present in human body fluids. Since the size, concentration and composition of these vesicles change during disease, vesicles have promising clinical applications, including cancer diagnosis. However, since ~70% of the vesicles have a diameter vesicles remains challenging. Thus far, vesicles vesicles to be adhered to a surface. Consequently, the majority of vesicles have never been studied in their physiological environment. We present a novel label-free optical technique to track single vesicles vesicles were contained within a single-mode light-guiding silica fiber containing a 600 nm nano-fluidic channel. Light from a diode laser (660 nm wavelength) was coupled to the fiber, resulting in a strongly confined optical mode in the nano-fluidic channel, which continuously illuminated the freely diffusing vesicles inside the channel. The elastic light scattering from the vesicles, in the direction orthogonal to the fiber axis, was collected using a microscope objective (NA=0.95) and imaged with a home-built microscope. Results: We have tracked single urinary vesicles as small as 35 nm by elastic light scattering. Please note that vesicles are low-refractive index (nvesicles vesicle-based clinical applications.

  3. Single-Cell Optical Distortion Correction and Label-Free 3D Cell Shape Reconstruction on Lattices of Nanostructures.

    Science.gov (United States)

    Stephan, Jürgen; Keber, Felix; Stierle, Valentin; Rädler, Joachim O; Paulitschke, Philipp

    2017-12-13

    Imaging techniques can be compromised by aberrations. Especially when imaging through biological specimens, sample-induced distortions can limit localization accuracy. In particular, this phenomenon affects localization microscopy, traction force measurements, and single-particle tracking, which offer high-resolution insights into biological tissue. Here we present a method for quantifying and correcting the optical distortions induced by single, adherent, living cells. The technique uses periodically patterned gold nanostructures as a reference framework to quantify optically induced displacements with micrometer-scale sampling density and an accuracy of a few nanometers. The 3D cell shape and a simplified geometrical optics approach are then utilized to remap the microscope image. Our experiments reveal displacements of up to several hundred nanometers, and in corrected images these distortions are reduced by a factor of 3. Conversely, the relationship between cell shape and distortion provides a novel method of 3D cell shape reconstruction from a single image, enabling label-free 3D cell analysis.

  4. Identifying fluorescently labeled single molecules in image stacks using machine learning.

    Science.gov (United States)

    Rifkin, Scott A

    2011-01-01

    In the past several years, a host of new technologies have made it possible to visualize single molecules within cells and organisms (Raj et al., Nat Methods 5:877-879, 2008; Paré et al., Curr Biol 19:2037-2042, 2009; Lu and Tsourkas, Nucleic Acids Res 37:e100, 2009; Femino et al., Science 280:585-590, 1998; Rodriguez et al., Semin Cell Dev Biol 18:202-208, 2007; Betzig et al., Science 313:1642-1645, 2006; Rust et al., Nat Methods 3:793-796, 2006; Fusco et al., Curr Biol 13:161-167, 2003). Many of these are based on fluorescence, either fluorescent proteins or fluorescent dyes coupled to a molecule of interest. In many applications, the fluorescent signal is limited to a few pixels, which poses a classic signal processing problem: how can actual signal be distinguished from background noise? In this chapter, I present a MATLAB (MathWorks (2010) MATLAB. Retrieved from http://www.mathworks.com) software suite designed to work with these single-molecule visualization technologies (Rifkin (2010) spotFinding Suite. http://www.biology.ucsd.edu/labs/rifkin/software.html). It takes images or image stacks from a fluorescence microscope as input and outputs locations of the molecules. Although the software was developed for the specific application of identifying single mRNA transcripts in fixed specimens, it is more general than this and can be used and/or customized for other applications that produce localized signals embedded in a potentially noisy background. The analysis pipeline consists of the following steps: (a) create a gold-standard dataset, (b) train a machine-learning algorithm to classify image features as signal or noise depending upon user defined statistics, (c) run the machine-learning algorithm on a new dataset to identify mRNA locations, and (d) visually inspect and correct the results.

  5. Label-Free, Single Molecule Resonant Cavity Detection: A Double-Blind Experimental Study

    Directory of Open Access Journals (Sweden)

    Maria V. Chistiakova

    2015-03-01

    Full Text Available Optical resonant cavity sensors are gaining increasing interest as a potential diagnostic method for a range of applications, including medical prognostics and environmental monitoring. However, the majority of detection demonstrations to date have involved identifying a “known” analyte, and the more rigorous double-blind experiment, in which the experimenter must identify unknown solutions, has yet to be performed. This scenario is more representative of a real-world situation. Therefore, before these devices can truly transition, it is necessary to demonstrate this level of robustness. By combining a recently developed surface chemistry with integrated silica optical sensors, we have performed a double-blind experiment to identify four unknown solutions. The four unknown solutions represented a subset or complete set of four known solutions; as such, there were 256 possible combinations. Based on the single molecule detection signal, we correctly identified all solutions. In addition, as part of this work, we developed noise reduction algorithms.

  6. Single-walled carbon nanotubes based chemiresistive genosensor for label-free detection of human rheumatic heart disease

    International Nuclear Information System (INIS)

    Singh, Swati; Kumar, Ashok; Khare, Shashi; Mulchandani, Ashok; Rajesh

    2014-01-01

    A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to its complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml −1 with a limit of detection of 0.16 ng ml −1

  7. Single-walled carbon nanotubes based chemiresistive genosensor for label-free detection of human rheumatic heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Swati; Kumar, Ashok, E-mail: rajesh-csir@yahoo.com, E-mail: ashokigib@rediffmail.com [CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007 (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India); Khare, Shashi [National Centre for Disease Control, Sham Nath Marg, Delhi 110054 (India); Mulchandani, Ashok [Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521 (United States); Rajesh, E-mail: rajesh-csir@yahoo.com, E-mail: ashokigib@rediffmail.com [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India)

    2014-11-24

    A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to its complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml{sup −1} with a limit of detection of 0.16 ng ml{sup −1}.

  8. A dynamic cell entry pathway of respiratory syncytial virus revealed by tracking the quantum dot-labeled single virus.

    Science.gov (United States)

    Zheng, Lin Ling; Li, Chun Mei; Zhen, Shu Jun; Li, Yuan Fang; Huang, Cheng Zhi

    2017-06-14

    Studying the cell entry pathway at the single-particle level can provide detailed and quantitative information for the dynamic events involved in virus entry. Indeed, the viral entry dynamics cannot be monitored by static staining methods used in cell biology, and thus virus dynamic tracking could be useful in the development of effective antiviral strategies. Therefore, the aim of this work was to use a quantum dot-based single-particle tracking approach to monitor the cell entry behavior of the respiratory syncytial virus (RSV) in living cells. The time-lapse fluorescence imaging and trajectory analysis of the quantum dot-labeled RSV showed that RSV entry into HEp-2 cells consisted of a typical endocytosis trafficking process. Three critical events during RSV entry were observed according to entry dynamic and fluorescence colocalization analysis. Firstly, RSV was attached to lipid rafts of the cell membrane, and then it was efficiently delivered into the perinuclear region within 2 h post-infection, mostly moving and residing into the lysosome compartment. Moreover, the relatively slow velocity of RSV transport across the cytoplasm and the formation of the actin tail indicated actin-based RSV motility, which was also confirmed by the effects of cytoskeletal inhibitors. Taken together, these findings provided new insights into the RSV entry mechanism and virus-cell interactions in RSV infection that could be beneficial in the development of antiviral drugs and vaccines.

  9. Prefrontal Single-Neuron Responses after Changes in Task Contingencies during Trace Eyeblink Conditioning in Rabbits.

    Science.gov (United States)

    Siegel, Jennifer J

    2016-01-01

    A number of studies indicate that the medial prefrontal cortex (mPFC) plays a role in mediating the expression of behavioral responses during tasks that require flexible changes in behavior. During trace eyeblink conditioning, evidence suggests that the mPFC provides the cerebellum with a persistent input to bridge the temporal gap between conditioned and unconditioned stimuli. Therefore, the mPFC is in a position to directly mediate the expression of trace conditioned responses. However, it is unknown whether persistent neural responses are associated with the flexible expression of behavior when task contingencies are changed during trace eyeblink conditioning. To investigate this, single-unit activity was recorded in the mPFC of rabbits during extinction and reacquisition of trace eyeblink conditioning, and during training to a different conditional stimulus. Persistent responses remained unchanged after full extinction, and also did not change during reacquisition training. During training to a different tone, however, the generalization of persistent responses to the new stimulus was associated with an animal's performance-when persistent responses generalized to the new tone, performance was high (>50% response rate). When persistent responses decreased to baseline rates, performance was poor (<50% response rate). The data suggest that persistent mPFC responses do not appear to mediate flexible changes in the expression of the original learning, but do appear to play a role in the generalization of that learning when the task is modified.

  10. A highly sensitive, label-free gene sensor based on a single conducting polymer nanowire.

    Science.gov (United States)

    Kannan, Bhuvaneswari; Williams, David E; Laslau, Cosmin; Travas-Sejdic, Jadranka

    2012-05-15

    A prerequisite for exploiting sensing devices based on semiconductor nanowires is ultra-sensitive and selective direct electrical detection of biological and chemical species. Here, we constructed a transducer based on copolymer of poly(3,4,-ethylenedioxythiophene) (PEDOT) and carboxylic group functionalised PEDOT single nanowire in between gold electrodes, followed by covalent attachment of amino-modified probe oligonucleotide. The target ODNs specific to Homo sapiens Breast and ovarian cancer cells were detected at femtomolar concentration and incorporation of negative controls (non-complementary ODN) were clearly discriminated by the sensor. The ex situ measurements were performed by using two terminal device setup and the changes in the interface of the nanowire associated with the association or dissociation of ODNs were measured as change in resistance. In addition, in situ measurements were performed by utilizing scanning ion conductance microscopy to measure the change in resistance of probe modified nanowire upon addition of different concentration of target ODNs in presence of relevant buffer. The constructed, nano sensor showed highly sensitive concentration dependent resistance change. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Identification of squid species by melting temperature shifts on fluorescence melting curve analysis (FMCA) using single dual-labeled probe

    Science.gov (United States)

    Koh, Eunjung; Song, Ha Jeong; Kwon, Na Young; Kim, Gi Won; Lee, Kwang Ho; Jo, Soyeon; Park, Sujin; Park, Jihyun; Park, Eun Kyeong; Hwang, Seung Yong

    2017-06-01

    Real time PCR is a standard method for identification of species. One of limitations of the qPCR is that there would be false-positive result due to mismatched hybridization between target sequence and probe depending on the annealing temperature in the PCR condition. As an alternative, fluorescence melting curve analysis (FMCA) could be applied for species identification. FMCA is based on a dual-labeled probe. Even with subtle difference of target sequence, there are visible melting temperature (Tm) shift. One of FMCA applications is distinguishing organisms distributed and consumed globally as popular food ingredients. Their prices are set by species or country of origin. However, counterfeiting or distributing them without any verification procedure are becoming social problems and threatening food safety. Besides distinguishing them in naked eye is very difficult and almost impossible in any processed form. Therefore, it is necessary to identify species in molecular level. In this research three species of squids which have 1-2 base pair differences each are selected as samples since they have the same issue. We designed a probe which perfectly matches with one species and the others mismatches 2 and 1 base pair respectively and labeled with fluorophore and quencher. In an experiment with a single probe, we successfully distinguished them by Tm shift depending on the difference of base pair. By combining FMCA and qPCR chip, smaller-scale assay with higher sensitivity and resolution could be possible, andc furthermore, enabling results analysis with smart phone would realize point-of-care testing (POCT).

  12. Morphine dependence in single enteric neurons from the mouse colon requires deletion of β‐arrestin2

    OpenAIRE

    Smith, Tricia H.; Ngwainmbi, Joy; Hashimoto, Atsushi; Dewey, William L.; Akbarali, Hamid I.

    2014-01-01

    Abstract Chronic administration of morphine results in the development of tolerance to the analgesic effects and to inhibition of upper gastrointestinal motility but not to colonic motility, resulting in persistent constipation. In this study we examined the effect of chronic morphine in myenteric neurons from the adult mouse colon. Similar to the ileum, distinct neuronal populations exhibiting afterhyperpolarization (AHP)‐positive and AHP‐negative neurons were identified in the colon. Acute ...

  13. A single cDNA encodes two isoforms of stathmin, a developmentally regulated neuron-enriched phosphoprotein.

    Science.gov (United States)

    Doye, V; Soubrier, F; Bauw, G; Boutterin, M C; Beretta, L; Koppel, J; Vandekerckhove, J; Sobel, A

    1989-07-25

    Stathmin, a 19-kDa neuron-enriched soluble phosphoprotein, has been recently proposed as an ubiquitous intracellular relay for the diverse extracellular signals regulating cell proliferation, differentiation, and functions through various second messenger pathways (Sobel, A., Boutterin, M.C., Beretta, L., Chneiweiss, H., Doye, V., and peyro-Saint-Paul, H. (1989) J. Biol. Chem. 264, 3765-3772). Internal sequences of the protein from rat brain were determined after purification by two-dimensional polyacrylamide gel electrophoresis, electrotransfer onto Immobilon, and in situ proteolysis. Oligonucleotide mixtures based on these sequences were used to clone a cDNA for stathmin from a rat PC12 cell lambda gt 10 library. The deduced amino acid sequence reveals partial homologies with the coiled coil structural regions of several intracellular matrix phosphoproteins. Using this cDNA as a probe, we show that the expression of stathmin mRNA parallels that of the protein during brain ontogenesis, reaching a maximum at the neonatal stage. In vitro translation of the derived cRNA yielded all the known molecular forms of stathmin, namely its alpha and beta isoforms in their unphosphorylated and phosphorylated states. Thus, a single cDNA codes for both biologically relevant isoforms of the protein, indicating that they differ by co- or post-translational modifications.

  14. Attending to and remembering tactile stimuli: a review of brain imaging data and single-neuron responses.

    Science.gov (United States)

    Burton, H; Sinclair, R J

    2000-11-01

    Clinical and neuroimaging observations of the cortical network implicated in tactile attention have identified foci in parietal somatosensory, posterior parietal, and superior frontal locations. Tasks involving intentional hand-arm movements activate similar or nearby parietal and frontal foci. Visual spatial attention tasks and deliberate visuomotor behavior also activate overlapping posterior parietal and frontal foci. Studies in the visual and somatosensory systems thus support a proposal that attention to the spatial location of an object engages cortical regions responsible for the same coordinate referents used for guiding purposeful motor behavior. Tactile attention also biases processing in the somatosensory cortex through amplification of responses to relevant features of selected stimuli. Psychophysical studies demonstrate retention gradients for tactile stimuli like those reported for visual and auditory stimuli, and suggest analogous neural mechanisms for working memory across modalities. Neuroimaging studies in humans using memory tasks, and anatomic studies in monkeys support the idea that tactile information relayed from the somatosensory cortex is directed ventrally through the insula to the frontal cortex for short-term retention and to structures of the medial temporal lobe for long-term encoding. At the level of single neurons, tactile (such as visual and auditory) short-term memory appears as a persistent response during delay intervals between sampled stimuli.

  15. Motoneuronal location of the external urethral and anal sphincters : A single and double labeling study in the male and female golden hamster

    NARCIS (Netherlands)

    Gerrits, Peter O.; Sie, Judith A.M.L.; Holstege, Gerrit

    1997-01-01

    The location of external urethral (EUS) and anal sphincter (EAS) motoneurons was investigated in the golden hamster using the retrograde tracers horseradish peroxidase and cholera toxin B-subunit. Single and double labeling studies revealed that the motoneurons of the EUS and EAS were present in the

  16. Raman-Activated Droplet Sorting (RADS) for Label-Free High-Throughput Screening of Microalgal Single-Cells.

    Science.gov (United States)

    Wang, Xixian; Ren, Lihui; Su, Yetian; Ji, Yuetong; Liu, Yaoping; Li, Chunyu; Li, Xunrong; Zhang, Yi; Wang, Wei; Hu, Qiang; Han, Danxiang; Xu, Jian; Ma, Bo

    2017-11-21

    Raman-activated cell sorting (RACS) has attracted increasing interest, yet throughput remains one major factor limiting its broader application. Here we present an integrated Raman-activated droplet sorting (RADS) microfluidic system for functional screening of live cells in a label-free and high-throughput manner, by employing AXT-synthetic industrial microalga Haematococcus pluvialis (H. pluvialis) as a model. Raman microspectroscopy analysis of individual cells is carried out prior to their microdroplet encapsulation, which is then directly coupled to DEP-based droplet sorting. To validate the system, H. pluvialis cells containing different levels of AXT were mixed and underwent RADS. Those AXT-hyperproducing cells were sorted with an accuracy of 98.3%, an enrichment ratio of eight folds, and a throughput of ∼260 cells/min. Of the RADS-sorted cells, 92.7% remained alive and able to proliferate, which is equivalent to the unsorted cells. Thus, the RADS achieves a much higher throughput than existing RACS systems, preserves the vitality of cells, and facilitates seamless coupling with downstream manipulations such as single-cell sequencing and cultivation.

  17. The role of benzodiazepines in breathlessness: a single site, open label pilot of sustained release morphine together with clonazepam.

    Science.gov (United States)

    Allcroft, Peter; Margitanovic, Vera; Greene, Aine; Agar, Meera R; Clark, Katherine; Abernethy, Amy P; Currow, David C

    2013-07-01

    Breathlessness at rest or on minimal exertion despite optimal treatment of underlying cause(s) is distressing and prevalent. Opioids can reduce the intensity of chronic refractory breathlessness and an anxiolytic may be of benefit. This pilot aimed to determine the safety and feasibility of conducting a phase III study on the intensity of breathlessness by adding regular benzodiazepine to low-dose opioid. This is a single site, open label phase II study of the addition of regular clonazepam 0.5 mg nocte orally to Kapanol(R) 10 mg (sustained release morphine sulphate) orally mane together with docusate/sennosides in people with modified Medical Research Council Scale ≥2. Breathlessness intensity on day four was the efficacy outcome. Participants could extend for another 10 days if they achieved >15% reduction over their own baseline breathlessness intensity. Eleven people had trial medication (eight males, median age 78 years (68 to 89); all had COPD; median Karnofsky 70 (50 to 80); six were on long-term home oxygen. Ten people completed day four. One person withdrew because of unsteadiness on day four. Five participants reached the 15% reduction, but only three went on to the extension study, all completing without toxicity. This study was safe, feasible and there appears to be a group who derive benefits comparable to titrated opioids. Given the widespread use of benzodiazepines for the symptomatic treatment of chronic refractory breathlessness and its poor evidence base, there is justification for a definitive phase III study.

  18. Novel 1:1 labeling and purification process for C-terminal thioester and single cysteine recombinant proteins using generic peptidic toolbox reagents.

    Science.gov (United States)

    Portal, Christophe F; Seifert, Jan-Marcus; Buehler, Christof; Meisner-Kober, Nicole-Claudia; Auer, Manfred

    2014-07-16

    We developed a versatile set of chemical labeling reagents which allow dye ligation to the C-terminus of a protein or a single internal cysteine and target purification in a simple two-step process. This simple process results in a fully 1:1 labeled conjugate suitable for all quantitative fluorescence spectroscopy and imaging experiments. We refer to a "generic labeling toolbox" because of the flexibility to choose one of many available dyes, spacers of different lengths and compositions which increase the target solubility, a variety of affinity purification tags, and different cleavage chemistries to release the 1:1 labeled proteins. Studying protein function in vitro or in the context of live cells and organisms is of vital importance in biological research. Although label free detection technologies gain increasing interest in molecular recognition science, fluorescence spectroscopy is still the most often used detection technique for assays and screens both in academic as well as in industrial groups. For generations, fluorescence spectroscopists have labeled their proteins of interest with small fluorescent dyes by random chemical linking on the proteins' exposed lysines and cysteines. Chemical reactions with a certain excess of activated esters or maleimides of longer wavelength dyes hardly ever result in quantitative labeling of the target protein. Most of the time, more than one exposed amino acid side chain reacts. This results in a mixture of dye-protein complexes of different labeling stoichiometries and labeling sites. Only mass spectrometry allows resolving the precise chemical composition of the conjugates. In "classical" ensemble averaging fluorescent experiments, these labeled proteins are still useful, and quantification of, e.g., ligand binding experiments, is achieved via knowledge of the overall protein concentration and a fluorescent signal change which is proportional to the amount of complex formed. With the development of fluorescence

  19. Selective Imaging of VEGFR-1 and VEGFR-2 Using 89Zr-Labeled Single-Chain VEGF Mutants.

    Science.gov (United States)

    Meyer, Jan-Philip; Edwards, Kimberly J; Kozlowski, Paul; Backer, Marina V; Backer, Joseph M; Lewis, Jason S

    2016-11-01

    Vascular endothelial growth factor-A (VEGF-A) acts via 2 vascular endothelial growth factor receptors, VEGFR-1 and VEGFR-2, that play important and distinct roles in tumor biology. We reasoned that selective imaging of these receptors could provide unique information for diagnostics and for monitoring and optimizing responses to anticancer therapy, including antiangiogenic therapy. Herein, we report the development of 2 first-in-class 89 Zr-labeled PET tracers that enable the selective imaging of VEGFR-1 and VEGFR-2. Functionally active mutants of scVEGF (an engineered single-chain version of pan-receptor VEGF-A with an N-terminal cysteine-containing tag for site-specific conjugation), named scVR1 and scVR2 with enhanced affinity to, respectively, VEGFR-1 and VEGFR-2, were constructed. Parental scVEGF and its receptor-specific mutants were site-specifically derivatized with the 89 Zr chelator desferroxamine B via a 3.4-kDa PEG linker. 89 Zr labeling of the desferroxamine B conjugates furnished scV/Zr, scVR1/Zr, and scVR2/Zr tracers with high radiochemical yield (>87%), high specific activity (≥9.8 MBq/nmol), and purity (>99%). Tracers were tested in an orthotopic breast cancer model using 4T1luc-bearing syngeneic BALB/c mice. For testing tracer specificity, tracers were coinjected with an excess of cold proteins of the same or opposite receptor specificity or pan-receptor scVEGF. PET imaging, biodistribution, and dosimetry studies in mice, as well as immunohistochemical analysis of harvested tumors, were performed. All tracers rapidly accumulated in orthotopic 4T1luc tumors, allowing for the successful PET imaging of the tumors as early as 2 h after injection. Blocking experiments with an excess of pan-receptor or receptor-specific cold proteins indicated that more than 80% of tracer tumor uptake is VEGFR-mediated, whereas uptake in all major organs is not affected by blocking within the margin of error. Critically, blocking experiments indicated that VEGFR

  20. Single-cell FRET imaging of transferrin receptor trafficking dynamics by Sfp-catalyzed, site-specific protein labeling.

    Science.gov (United States)

    Yin, Jun; Lin, Alison J; Buckett, Peter D; Wessling-Resnick, Marianne; Golan, David E; Walsh, Christopher T

    2005-09-01

    Fluorescence imaging of living cells depends on an efficient and specific method for labeling the target cellular protein with fluorophores. Here we show that Sfp phosphopantetheinyl transferase-catalyzed protein labeling is suitable for fluorescence imaging of membrane proteins that spend at least part of their membrane trafficking cycle at the cell surface. In this study, transferrin receptor 1 (TfR1) was fused to peptide carrier protein (PCP), and the TfR1-PCP fusion protein was specifically labeled with fluorophore Alexa 488 by Sfp. The trafficking of transferrin-TfR1-PCP complex during the process of transferrin-mediated iron uptake was imaged by fluorescence resonance energy transfer between the fluorescently labeled transferrin ligand and TfR1 receptor. We thus demonstrated that Sfp-catalyzed small molecule labeling of the PCP tag represents a practical and efficient tool for molecular imaging studies in living cells.

  1. Automated microbial metabolism laboratory. [design of advanced labeled release experiment based on single addition of soil and multiple sequential additions of media into test chambers

    Science.gov (United States)

    1974-01-01

    The design and rationale of an advanced labeled release experiment based on single addition of soil and multiple sequential additions of media into each of four test chambers are outlined. The feasibility for multiple addition tests was established and various details of the methodology were studied. The four chamber battery of tests include: (1) determination of the effect of various atmospheric gases and selection of that gas which produces an optimum response; (2) determination of the effect of incubation temperature and selection of the optimum temperature for performing Martian biochemical tests; (3) sterile soil is dosed with a battery of C-14 labeled substrates and subjected to experimental temperature range; and (4) determination of the possible inhibitory effects of water on Martian organisms is performed initially by dosing with 0.01 ml and 0.5 ml of medium, respectively. A series of specifically labeled substrates are then added to obtain patterns in metabolic 14CO2 (C-14)O2 evolution.

  2. The nigrostriatal pathway in the rat: A single-axon study of the relationship between dorsal and ventral tier nigral neurons and the striosome/matrix striatal compartments.

    Science.gov (United States)

    Prensa, L; Parent, A

    2001-09-15

    Axons from dorsal/ventral tiers of substantia nigra pars compacta (SNc), ventral tegmental area (VTA), and retrorubral field (RRF) were traced after injecting their cell body with biotinylated dextran amine. Fifty-three single axons were reconstructed from serial sagittal sections with a camera lucida, and mu-opiate receptor immunostaining served to differentiate the striosome/matrix striatal compartments. Most dorsal tier SNc axons terminate within the matrix of the dorsal striatum, but their patterns of arborization vary markedly; some axons innervate one specific matriceal area, whereas others arborize in multiple discontinuous loci. Some dorsal tier SNc axons also project to both striosomes and matrix. Other dorsal tier SNc axons, as well as VTA axons, innervate the ventral striatum and send collaterals to striosomes lying ventrally in the dorsal striatum or to the ventral sector of the subcallosal streak (SS). Ventral tier SNc axons arborize principally in striosomes, but some ramify in both compartments or in striosomes and the SS. Ventral tier neurons that form deep clusters in substantia nigra pars reticulata innervate principally the matrix and the SS. The amygdala and ventral pallidum receive secondary collaterals from striatal axons of dorsal/ventral tier neurons or RRF neurons. The subthalamic nucleus receives collaterals from striatal axons of SNc clustered neurons, whereas the globus pallidus gets collaterals from striatal axons of dorsal/ventral tier SNc neurons. These findings reveal that the nigrostriatal pathway is composed of several neuronal subsystems, each endowed with a widely distributed axonal arborization that allows them to exert a multifaceted influence on striatal and/or extrastriatal structures.

  3. A single dose, randomized, open-label, cross-over bioequivalence study of sildenafil citrate tablets in healthy Chinese volunteers
.

    Science.gov (United States)

    Li, Dai; Wang, Yu-Lu; Xu, Su-Mei; Li, Dan; Li, Xiao-Min; Pan, Jing; Xu, Ping-Sheng

    2017-02-01

    The present study was designed to evaluate the bioequivalence of a newly developed sildenafil citrate tablet 50 mg (Jinge®, Test) and a marketed counterpart (Viagra®, 100 mg, Reference) in healthy adult male Chinese volunteers. This single-dose, randomized, open-label, four-period, and two-treatment self-crossover study included two parts: fasting and postprandial studies. In each part of the study, the subjects were randomly assigned to receive test or reference products (100 mg sildenafil) in a 1 : 1 ratio, and then received the alternative products, following a 1-week washout period. Plasma sildenafil concentrations were analyzed by liquid chromatography-tandem mass spectrometry. Tolerability was assessed during the entire study period. 32 healthy volunteers (aged 19 - 30) were enrolled in the study; 31 volunteers completed the fasting study, while 32 volunteers completed the postprandial study. The test formulation was bioequivalent to the marketed formulation as the 90% CIs for the ratio of geometric means of Cmax (fasting: 98.79 - 119.61%; fed: 94.47 - 119.65%), AUClast (fasting: 98.70 - 109.71%; fed: 96.39 - 112.89%), and AUC∞ (fasting: 98.45 - 108.87%; fed: 96.36 - 112.74%) were within equivalence limits (80 - 125%) under both fasting and postprandial conditions. When sildenafil was given with high-fat meals, mean Cmax was reduced by 23%, and median tmax ranged from 0.75 to 1.50 hours (p ≤ 0.05). However, both AUClast and AUC∞ were comparable between fasting and postprandial conditions. No serious adverse events were found among the subjects. This study confirmed that test and reference sildenafil citrate tablets were bioequivalent under fasting and postprandial conditions.
.

  4. Tamoxifen Forms DNA Adducts In Human Colon After Administration Of A Single [14C]-Labeled Therapeutic Dose.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K; Tompkins, E M; Boocock, D J; Martin, E A; Farmer, P B; Turteltaub, K W; Ubick, E; Hemingway, D; Horner-Glister, E; White, I H

    2007-05-23

    Tamoxifen is widely prescribed for the treatment of breast cancer and is also licensed in the U.S. for the prevention of this disease. However, tamoxifen therapy is associated with an increased occurrence of endometrial cancer in women and there is also evidence that it may elevate the risk of colorectal cancer. The underlying mechanisms responsible for tamoxifen-induced carcinogenesis in women have not yet been elucidated but much interest has focussed on the role of DNA adduct formation. We investigated the propensity of tamoxifen to bind irreversibly to colorectal DNA when given to ten women as a single [{sup 14}C]-labeled therapeutic (20 mg) dose, {approx}18 h prior to undergoing colon resections. Using the sensitive technique of accelerator mass spectrometry, coupled with HPLC separation of enzymatically digested DNA, a peak corresponding to authentic dG-N{sup 2}-tamoxifen adduct was detected in samples from three patients, at levels ranging from 1-7 adducts/10{sup 9} nucleotides. No [{sup 14}C]-radiolabel associated with tamoxifen or its major metabolites was detected. The presence of detectable CYP3A4 protein in all colon samples suggests this tissue has the potential to activate tamoxifen to {alpha}-hydroxytamoxifen, in addition to that occurring in the systemic circulation, and direct interaction of this metabolite with DNA could account for the binding observed. Although the level of tamoxifeninduced damage displayed a degree of inter-individual variability, when present it was {approx}10-100 times higher than that reported for other suspect human colon carcinogens such as PhIP. These findings provide a mechanistic basis through which tamoxifen could increase the incidence of colon cancers in women.

  5. Pharmacokinetics of serelaxin in patients with hepatic impairment: a single-dose, open-label, parallel group study.

    Science.gov (United States)

    Kobalava, Zhanna; Villevalde, Svetlana; Kotovskaya, Yulia; Hinrichsen, Holger; Petersen-Sylla, Marc; Zaehringer, Andreas; Pang, Yinuo; Rajman, Iris; Canadi, Jasna; Dahlke, Marion; Lloyd, Peter; Halabi, Atef

    2015-06-01

    Serelaxin is a recombinant form of human relaxin-2 in development for treatment of acute heart failure. This study aimed to evaluate the pharmacokinetics (PK) of serelaxin in patients with hepatic impairment. Secondary objectives included evaluation of immunogenicity, safety and tolerability of serelaxin. This was an open-label, parallel group study (NCT01433458) comparing the PK of serelaxin following a single 24 h intravenous (i.v.) infusion (30 μg kg(-1)  day(-1) ) between patients with mild, moderate or severe hepatic impairment (Child-Pugh class A, B, C) and healthy matched controls. Blood sampling and standard safety assessments were conducted. Primary non-compartmental PK parameters [including area under the serum concentration-time curve AUC(0-48 h) and AUC(0-∞) and serum concentration at 24 h post-dose (C24h )] were compared between each hepatic impairment group and healthy controls. A total of 49 subjects (including 25 patients with hepatic impairment) were enrolled, of which 48 subjects completed the study. In all groups, the serum concentration of serelaxin increased over the first few hours of infusion, reached steady-state at 12-24 h and then declined following completion of infusion, with a mean terminal half-life of 7-8 h. All PK parameter estimates were comparable between each group of patients with hepatic impairment and healthy controls. No serious adverse events, discontinuations due to adverse events or deaths were reported. No serelaxin treatment-related antibodies developed during this study. The PK and safety profile of serelaxin were not affected by hepatic impairment. No dose adjustment is needed for serelaxin treatment of 48 h i.v. infusion in patients with hepatic impairment. © 2014 The British Pharmacological Society.

  6. Genetic control of conventional labeling through the bovine meat production chain by single nucleotide polymorphisms using real-time PCR.

    Science.gov (United States)

    Capoferri, Rossana; Bongioni, Graziella; Galli, Andrea; Aleandri, Riccardo

    2006-08-01

    Since January 2002, the European Union has adopted precise guidelines aimed at protecting the safety of meat and controlling the production chain. To this purpose, the conventional traceability of livestock and meat represents the main tool, but verification of traceability requires genetic support. At present, single nucleotide polymorphisms (SNPs) represent the most innovative molecular markers in genotyping studies. The aim of this study was to verify correct labeling in a bovine meat production chain by a real-time PCR protocol based on SNP analysis. Reference hair samples from 5,000 animals were randomly collected from 22 farms. Twelve hundred meat samples were collected at different steps of the bovine meat production chain. In particular, 1,000 meat samples were collected at the slaughterhouse and 200 samples from the same animals directly at the butcher's shop. The protocol was optimized and validated by testing a set of 16 SNP markers on 95 DNA samples from bovine sires of different breeds. Thereafter, the genotyping of 2,200 samples was conducted with a set of 12 selected SNPs to verify traceability of the meat production chain at three different stages: farm, slaughterhouse, and butcher's shop. Irregularities in conventional traceability were evidenced directly in 1.87% of the samples at the slaughterhouse. This percentage increased to 3.25% when sampling was conducted at the butcher's shop. This study demonstrates that despite the precautions adopted over the meat production chain, some critical points still exist that cause the loss of a correct association between registration numbers and samples.

  7. Influence of Renal Impairment on the Pharmacokinetics of Afatinib: An Open-Label, Single-Dose Study.

    Science.gov (United States)

    Wiebe, Sabrina; Schnell, David; Külzer, Raimund; Gansser, Dietmar; Weber, Anne; Wallenstein, Gudrun; Halabi, Atef; Conrad, Anja; Wind, Sven

    2017-06-01

    Afatinib is an oral irreversible ErbB-Family Blocker indicated for treatment of patients with EGFR mutation positive advanced non-small cell lung cancer. This trial assessed whether renal impairment influences the pharmacokinetics and safety of afatinib. This was an open-label, single-dose study. Pharmacokinetic parameters after afatinib 40 mg were investigated in subjects with moderate (n = 8) or severe (n = 8) renal impairment (estimated glomerular filtration rate 30-59 mL/min/1.73 m 2 and 15-29 mL/min/1.73 m 2 , respectively) and healthy matched controls (n = 14). Plasma and urine samples were collected before and up to 14 days after dosing for pharmacokinetic and plasma protein-binding assessment. Primary endpoints were area under the plasma concentration-time curve from time zero to the last quantifiable concentration (AUC last ) and maximum plasma concentration (C max ) between subjects with renal impairment and healthy matched controls. Pharmacokinetic profiles and plasma protein binding were similar in all groups. The extent of exposure, as indicated by AUC last and C max , was generally similar between the matched treatment groups, with the exception of the geometric mean ratio of AUC last for subjects with severe renal impairment, which showed a trend towards a higher value compared with matched healthy subjects (150.0 % [90 % CI 105.3-213.7]) Inter-individual variability was moderate (geometric mean coefficient of variation 28-39 % for moderate impairment, 34-42 % for severe impairment). Afatinib was well tolerated and urinary excretion was minimal. Moderate-to-severe renal impairment had a minor influence on the pharmacokinetics of afatinib that was within the observed inter-individual variability, suggesting that afatinib treatment can be considered in this patient population. Registered at ClinicalTrials.gov as NCT02096718.

  8. Single-center open-label randomized study of anemia management improvement in ESRD patients with secondary hyperparathyroidism

    Directory of Open Access Journals (Sweden)

    Bellasi Antonio

    2016-04-01

    Full Text Available Whether anemia and mineral bone abnormalities (chronic kidney disease–mineral bone disorder [CKD-MBD] are associated still remains to be elucidated. Both anemia and CKD-MBD have been associated with adverse cardiovascular outcome and poor quality of life. However, recent evidence suggests that use of large doses of erythropoietin-stimulating agents (ESAs to correct hemoglobin (Hb may be detrimental in CKD. The Optimal Anemia Treatment in End Stage Renal Disease (ESRD (Optimal ESRD Treatment study will assess whether lowering of parathyroid hormone (PTH is associated with a reduction in ESA consumption. The Optimal ESRD Treatment study is a pilot single-center open-label study with blinded end point (a prospective randomized open blinded end-point [PROBE] design enrolling 50 patients on maintenance dialysis. Eligible patients with intact PTH (iPTH 300-540 pg/mL and Hb 10-11.5 g/dL will be randomized 1:1 to strict PTH control (150-300 pg/mL versus standard care (PTH range 300-540 pg/mL. Available drugs for CKD-MBD and anemia treatment will be managed by the attending physician to maintain the desired levels of PTH (according to study arm allocation and Hb (10-11.5 g/dL. Echocardiographic data for cardiac structure and function as well as arterial stiffness will be assessed at study inception and completion. The Optimal ESRD Treatment study should shed light on the complicated interplay of anemia and CKD-MBD and on the feasibility of clinical trials in this domain. The study results are expected in the spring of 2017.

  9. Multi-Isotope Secondary Ion Mass Spectrometry Combining Heavy Water 2H with 15N Labeling As Complementary Tracers for Metabolic Heterogeneity at the Single-Cell Level

    Science.gov (United States)

    Kopf, S.; McGlynn, S.; Cowley, E.; Green, A.; Newman, D. K.; Orphan, V. J.

    2014-12-01

    Metabolic rates of microbial communities constitute a key physiological parameter for understanding the in situ growth constraints for life in any environment. Isotope labeling techniques provide a powerful approach for measuring such biological activity, due to the use of isotopically enriched substrate tracers whose incorporation into biological materials can be detected with high sensitivity by isotope-ratio mass spectrometry. Nano-meter scale secondary ion mass spectrometry (NanoSIMS) combined with stable isotope labeling provides a unique tool for studying the spatiometabolic activity of microbial populations at the single cell level in order to assess both community structure and population diversity. However, assessing the distribution and range of microbial activity in complex environmental systems with slow-growing organisms, diverse carbon and nitrogen sources, or heterotrophic subpopulations poses a tremendous technical challenge because the introduction of isotopically labeled substrates frequently changes the nutrient availability and can inflate or bias measures of activity. Here, we present the use of hydrogen isotope labeling with deuterated water as an important new addition to the isotopic toolkit and apply it for the determination of single cell microbial activities by NanoSIMS imaging. This tool provides a labeling technique that minimally alters any aquatic chemical environment, can be administered with strong labels even in minimal addition (natural background is very low), is an equally universal substrate for all forms of life even in complex, carbon and nitrogen saturated systems, and can be combined with other isotopic tracers. The combination of heavy water labeling with the most commonly used NanoSIMS tracer, 15N, is technically challenging but opens up a powerful new set of multi-tracer experiments for the study of microbial activity in complex communities. We present the first truly simultaneous single cell triple isotope system

  10. A single exposure to alcohol during brain development induces microencephaly and neuronal losses in genetically susceptible mice, but not in wild type mice.

    Science.gov (United States)

    de Licona, Hannah Klein; Karacay, Bahri; Mahoney, Jo; McDonald, Elizabeth; Luang, Thirath; Bonthius, Daniel J

    2009-05-01

    Maternal alcohol abuse during pregnancy can damage the fetal brain and lead to fetal alcohol syndrome (FAS). Despite public warnings discouraging alcohol use during pregnancy, many pregnant women continue to drink intermittently because they do not believe that occasional exposures to alcohol can be harmful to a fetus. However, because of genetic differences, some fetuses are much more susceptible than others to alcohol-induced brain injury. Thus, a relatively low quantity of alcohol that may be innocuous to most fetuses could damage a genetically susceptible fetus. Neuronal nitric oxide synthase (nNOS) can protect developing mouse neurons against alcohol toxicity by synthesizing neuroprotective nitric oxide. This study examined whether a single exposure to alcohol, which causes no evident injury in wild type mice, can damage the brains of mice genetically deficient for nNOS (nNOS-/- mice). Wild type and nNOS-/- mice received intraperitoneal injections of alcohol (0.0, 2.2, or 4.4mg/g body weight) either as a single dose on postnatal day (PD) 4 or as repeated daily doses over PD4-9. Brain volumes and neuronal numbers within the hippocampus and cerebral cortex were determined on PD10. Alcohol exposure on PD4-9 restricted brain growth and caused neuronal death in both strains of mice, but the severity of microencephaly and neuronal loss were more severe in the nNOS-/- mice than in wild type. The 4.4 mg/g alcohol dose administered on PD4 alone caused significant neuronal loss and microencephaly in the nNOS-/- mice, while this same dose caused no evident injury in the wild type mice. Thus, during development, a single exposure to alcohol can injure a genetically vulnerable brain, while it leaves a wild type brain unaffected. Since the genes that confer alcohol resistance and vulnerability in developing humans are unknown, any particular human fetus is potentially vulnerable. Thus, women should be counseled to consume no alcohol during pregnancy.

  11. Curcumin protects dopaminergic neurons against inflammation-mediated damage and improves motor dysfunction induced by single intranigral lipopolysaccharide injection.

    Science.gov (United States)

    Sharma, Neha; Sharma, Sheetal; Nehru, Bimla

    2017-06-01

    Various studies have indicated a lower incidence and prevalence of neurological conditions in people consuming curcumin. The ability of curcumin to target multiple cascades, simultaneously, could be held responsible for its neuroprotective effects. The present study was designed to investigate the potential of curcumin in minimizing microglia-mediated damage in lipopolysaccharide (LPS) induced model of PD. Altered microglial functions and increased inflammatory profile of the CNS have severe behavioral consequences. In the current investigation, a single injection of LPS (5 ug/5 µl PBS) was injected into the substantia nigra (SN) of rats, and curcumin [40 mg/kg b.wt (i.p.)] was administered daily for a period of 21 days. LPS triggered an inflammatory response characterized by glial activation [Iba-1 and glial fibrillary acidic protein (GFAP)] and pro-inflammatory cytokine production (TNF-α and IL-1β) leading to extensive dopaminergic loss and behavioral abnormality in rats. The behavioral observations, biochemical markers, quantification of dopamine and its metabolites (DOPAC and HVA) using HPLC followed by IHC of tyrosine hydroxylase (TH) were evaluated after 21 days of LPS injection. Curcumin supplementation prevented dopaminergic degeneration in LPS-treated animals by normalizing the altered levels of biomarkers. Also, a significant improvement in TH levels as well as behavioral parameters (actophotometer, rotarod, beam walking and grid walking tests) were seen in LPS injected rats. Curcumin shielded the dopaminergic neurons against LPS-induced inflammatory response, which was associated with suppression of glial activation (microglia and astrocytes) and transcription factor NF-κB as depicted from RT-PCR and EMSA assay. Curcumin also suppressed microglial NADPH oxidase activation as observed from NADPH oxidase activity. The results suggested that one of the important mechanisms by which curcumin mediates its protective effects in the LPS-induced PD

  12. Local heat application for the treatment of Buruli ulcer : results of a phase II open label single center non comparative clinical trial

    OpenAIRE

    Vogel, Moritz; Bayi, Pierre F.; Ruf, Marie-Thérèse; Bratschi, Martin W.; Bolz, Miriam; Um Boock, Alphonse; Zwahlen, Marcel; Pluschke, Gerd; Junghanss, Thomas

    2016-01-01

    BACKGROUND Buruli ulcer (BU) is a necrotizing skin disease most prevalent among West African children. The causative organism, Mycobacterium ulcerans, is sensitive to temperatures above 37°C. We investigated the safety and efficacy of a local heat application device based on phase change material. METHODS In a phase II open label single center noncomparative clinical trial (ISRCTN 72102977) under GCP standards in Cameroon, laboratory confirmed BU patients received up to 8 weeks of...

  13. Comparison of multilabel and single-label classification applied to the prediction of the isoform specificity of cytochrome p450 substrates.

    Science.gov (United States)

    Michielan, Lisa; Terfloth, Lothar; Gasteiger, Johann; Moro, Stefano

    2009-11-01

    Each drug can potentially be metabolized by different CYP450 isoforms. In the development of new drugs, the prediction of the metabolic fate is important to prevent drug-drug interactions. In the present study, a collection of 580 CYP450 substrates is deeply analyzed by applying multi- and single-label classification strategies, after the computation and selection of suitable molecular descriptors. Cross-training with support vector machine, multilabel k-nearest-neighbor and counterpropagation neural network modeling methods were used in the multilabel approach, which allows one to classify the compounds simultaneously in multiple classes. In the single-label models, automatic variable selection was combined with various cross-validation experiments and modeling techniques. Moreover, the reliability of both multi- and single-label models was assessed by the prediction of an external test set. Finally, the predicted results of the best models were compared to show that, even if the models present similar performances, the multilabel approach more coherently reflects the real metabolism information.

  14. Patterns of spontaneous activity in single rat olfactory receptor neurons are different in normally breathing and tracheotomized animals

    Czech Academy of Sciences Publication Activity Database

    Duchamp-Viret, P.; Košťál, Lubomír; Chaput, M.; Lánský, Petr; Rospars, J. P.

    2005-01-01

    Roč. 65, č. 2 (2005), s. 97-114 ISSN 0022-3034 R&D Projects: GA AV ČR(CZ) 1ET400110401 Grant - others:Barrande(FR) 9146 QL Institutional research plan: CEZ:AV0Z50110509 Keywords : olfactory neurons * unit activity * receptors Subject RIV: ED - Physiology Impact factor: 4.170, year: 2005

  15. Challenging the neuronal MIBG uptake by pharmacological intervention: effect of a single dose of oral amitriptyline on regional cardiac MIBG uptake

    Energy Technology Data Exchange (ETDEWEB)

    Estorch, Montserrat; Carrio, Ignasi; Mena, Esther; Flotats, Albert; Camacho, Valle; Fuertes, Jordi [Autonomous University of Barcelona, Department of Nuclear Medicine, Hospital Sant Pau, Barcelona (Spain); Kulisewsky, Jaume [Autonomous University of Barcelona, Department of Neurology, Hospital Sant Pau, Barcelona (Spain); Narula, Jagat [Irvine College of Medicine, Division of Cardiology, University of California, Irvine, CA (United States)

    2004-12-01

    Imaging with metaiodobenzylguanidine (MIBG) is used for the assessment of neuronal dysfunction in various cardiovascular disorders. Although valuable information is obtained by resting MIBG imaging, it is conceivable that competitive interference with the re-uptake mechanism would exaggerate MIBG defects and might unmask subclinical neuronal dysfunction. Tricyclic antidepressants, such as amitriptyline, have been reported to significantly increase cardiac MIBG washout and inhibit uptake into presynaptic neurons. This study was undertaken to assess whether a single oral dose of amitriptyline could influence cardiac MIBG distribution. Six patients (aged 62-81 years; four males, two females) who had demonstrated a normal cardiac MIBG scan during work-up for movement disorders were studied. The patients underwent a second {sup 123}I-MIBG study after oral administration of 25 mg amitriptyline within 1 week. Single-photon emission computed tomography images were acquired at 4 h to assess the regional distribution of MIBG, after generation of polar maps and employing a 20-segment model. Mean percentage of peak activity was calculated for each segment at rest and after amitriptyline administration. After amitriptyline administration, there was a decrease in regional MIBG uptake in 10{+-}4 segments per patient [62/120 segments (52%): 37 segments with a 5-10% decrease, 25 segments with a >10% decrease]. This change was statistically significant in lateral (P=0.003), apical (P<0.0001) and inferior (P=0.03) regions. A single oral dose of amitriptyline can induce changes in the uptake and retention of cardiac MIBG, indicating the feasibility of use of pharmacological intervention in cardiac neurotransmission imaging. (orig.)

  16. Cerebellar projections to the red nucleus and inferior olive originate from separate populations of neurons in the rat: A non-fluorescent double labeling study

    NARCIS (Netherlands)

    T.M. Teune (Thea); J. van der Burg (Johannes); T.J.H. Ruigrok (Tom)

    1995-01-01

    textabstractIn the rat, the extent of collateralization of projections from the cerebellar nuclei to the red nucleus and inferior olive was investigated using a retrograde double labeling technique. The combination of tracers selected, cholera toxin-β-subunit and WGA-BSA-gold, not only enabled the

  17. Overview of Single-Molecule Speckle (SiMS) Microscopy and Its Electroporation-Based Version with Efficient Labeling and Improved Spatiotemporal Resolution

    Science.gov (United States)

    Yamashiro, Sawako; Watanabe, Naoki

    2017-01-01

    Live-cell single-molecule imaging was introduced more than a decade ago, and has provided critical information on remodeling of the actin cytoskeleton, the motion of plasma membrane proteins, and dynamics of molecular motor proteins. Actin remodeling has been the best target for this approach because actin and its associated proteins stop diffusing when assembled, allowing visualization of single-molecules of fluorescently-labeled proteins in a state specific manner. The approach based on this simple principle is called Single-Molecule Speckle (SiMS) microscopy. For instance, spatiotemporal regulation of actin polymerization and lifetime distribution of actin filaments can be monitored directly by tracking actin SiMS. In combination with fluorescently labeled probes of various actin regulators, SiMS microscopy has contributed to clarifying the processes underlying recycling, motion and remodeling of the live-cell actin network. Recently, we introduced an electroporation-based method called eSiMS microscopy, with high efficiency, easiness and improved spatiotemporal precision. In this review, we describe the application of live-cell single-molecule imaging to cellular actin dynamics and discuss the advantages of eSiMS microscopy over previous SiMS microscopy. PMID:28684722

  18. Overview of Single-Molecule Speckle (SiMS Microscopy and Its Electroporation-Based Version with Efficient Labeling and Improved Spatiotemporal Resolution

    Directory of Open Access Journals (Sweden)

    Sawako Yamashiro

    2017-07-01

    Full Text Available Live-cell single-molecule imaging was introduced more than a decade ago, and has provided critical information on remodeling of the actin cytoskeleton, the motion of plasma membrane proteins, and dynamics of molecular motor proteins. Actin remodeling has been the best target for this approach because actin and its associated proteins stop diffusing when assembled, allowing visualization of single-molecules of fluorescently-labeled proteins in a state specific manner. The approach based on this simple principle is called Single-Molecule Speckle (SiMS microscopy. For instance, spatiotemporal regulation of actin polymerization and lifetime distribution of actin filaments can be monitored directly by tracking actin SiMS. In combination with fluorescently labeled probes of various actin regulators, SiMS microscopy has contributed to clarifying the processes underlying recycling, motion and remodeling of the live-cell actin network. Recently, we introduced an electroporation-based method called eSiMS microscopy, with high efficiency, easiness and improved spatiotemporal precision. In this review, we describe the application of live-cell single-molecule imaging to cellular actin dynamics and discuss the advantages of eSiMS microscopy over previous SiMS microscopy.

  19. Single-molecule folding mechanisms of the apo- and Mg2+-bound states of human neuronal calcium sensor-1

    DEFF Research Database (Denmark)

    Naqvi, Mohsin M; Heiðarsson, Pétur Orri; Otazo, Mariela R

    2015-01-01

    Neuronal calcium sensor-1 (NCS-1) is the primordial member of a family of proteins responsible primarily for sensing changes in neuronal Ca(2+) concentration. NCS-1 is a multispecific protein interacting with a number of binding partners in both calcium-dependent and independent manners, and acting...... in a variety of cellular processes in which it has been linked to a number of disorders such as schizophrenia and autism. Despite extensive studies on the Ca(2+)-activated state of NCS proteins, little is known about the conformational dynamics of the Mg(2+)-bound and apo states, both of which are populated...... by populating one intermediate state consisting of a folded C-domain and an unfolded N-domain. The interconversion at equilibrium between the different molecular states populated by NCS-1 was monitored in real time through constant-force measurements and the energy landscapes underlying the observed transitions...

  20. A study of the diffusion dynamics and concentration distribution of gold nanospheres (GNSs) without fluorescent labeling inside live cells using fluorescence single particle spectroscopy.

    Science.gov (United States)

    Liu, Fangchao; Dong, Chaoqing; Ren, Jicun

    2018-03-15

    Colloidal gold nanospheres (GNSs) have become important nanomaterials in biomedical applications due to their special optical properties, good chemical stability, and biocompatibility. However, measuring the diffusion coefficients or concentration distribution of GNSs within live cells accurately without any extra fluorescent labeling in situ has still not been resolved. In this work, a single particle method is developed to study the concentration distribution of folic acid-modified GNSs (FA-GNSs) internalized via folate receptors, and investigates their diffusion dynamics within live cells using single particle fluorescence correlation spectroscopy (FCS). We optimized the experimental conditions and verified the feasibility of 30 nm GNSs without extra fluorescence labeling being used for single particle detection inside live cells. Then, the FCS characterization strategy was used to measure the concentration and diffusion coefficient distributions of GNSs inside live cells and the obtained results were basically in agreement with those obtained by TEM. The results demonstrate that our strategy is characterized as an in situ, nondestructive, rapid and dynamic method for the assay of live cells, and it may be widely used in the further design of GNP-based drug delivery and therapeutics.

  1. Eff ect of a single asenapine treatment on Fos expression in the brain catecholamine-synthesizing neurons: impact of a chronic mild stress preconditioning

    Directory of Open Access Journals (Sweden)

    Osacka J.

    2017-04-01

    Full Text Available Objective. Fos protein expression in catecholamine-synthesizing neurons of the substantia nigra (SN pars compacta (SNC, A8, pars reticulata (SNR, A9, and pars lateralis (SNL, the ventral tegmental area (VTA, A10, the locus coeruleus (LC, A6 and subcoeruleus (sLC, the ventrolateral pons (PON-A5, the nucleus of the solitary tract (NTS-A2, the area postrema (AP, and the ventrolateral medulla (VLM-A1 was quantitatively evaluated aft er a single administration of asenapine (ASE (designated for schizophrenia treatment in male Wistar rats preconditioned with a chronic unpredictable variable mild stress (CMS for 21 days. Th e aim of the present study was to reveal whether a single ASE treatment may 1 activate Fos expression in the brain areas selected; 2 activate tyrosine hydroxylase (TH-synthesizing cells displaying Fos presence; and 3 be modulated by CMS preconditioning.

  2. Feed-forward and feedback projections of midbrain reticular formation neurons in the cat

    Directory of Open Access Journals (Sweden)

    Eddie ePerkins

    2014-01-01

    Full Text Available Gaze changes involving the eyes and head are orchestrated by brainstem gaze centers found within the superior colliculus (SC, paramedian pontine reticular formation (PPRF, and medullary reticular formation (MdRF. The mesencephalic reticular formation (MRF also plays a role in gaze. It receives a major input from the ipsilateral SC and contains cells that fire in relation to gaze changes. Moreover, it provides a feedback projection to the SC and feed-forward projections to the PPRF and MdRF. We sought to determine whether these MRF feedback and feed-forward projections originate from the same or different neuronal populations by utilizing paired fluorescent retrograde tracers in cats. Specifically, we tested: 1. whether MRF neurons that control eye movements form a single population by injecting the SC and PPRF with different tracers, and 2. whether MRF neurons that control head movements form a single population by injecting the SC and MdRF with different tracers. In neither case were double labeled neurons observed, indicating that feedback and feed-forward projections originate from separate MRF populations. In both cases, the labeled reticulotectal and reticuloreticular neurons were distributed bilaterally in the MRF. However, neurons projecting to the MdRF were generally constrained to the medial half of the MRF, while those projecting to the PPRF, like MRF reticulotectal neurons, were spread throughout the mediolateral axis. Thus, the medial MRF may be specialized for control of head movements, with control of eye movements being more widespread in this structure.

  3. New automatic combustion method for the liquid scintillation assay of tritium and carbon-14 in singly or doubly labelled organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Gacs, I.; Dobis, E.; Dombi, S.; Payer, K.; Oetvoes, L. (Magyar Tudomanyos Akademia Koezponti Kemiai Kutato Intezete, Budapest); Vargay, Z. (CHINOIN Gyogyszer es Vegyeszeti Termekek Gyara Rt., Budapest (Hungary))

    1982-01-01

    An automatic, rapid combustion method has been developed for the determination of tritium and /sup 14/C in singly or doubly labelled organic materials by liquid scintillation counting. The sample is burned in a stream of oxygen. The water formed and its tritium content are retained from the gas stream in an absorber containing a small amount of diethylene-glycol monoethyl ether. Radioactive carbon dioxide, if included in the combustion products, is transferred into 3-methoxypropylamine. The final solutions ready for counting are obtained in less than three minutes. Quantitative collection recoveries for both tritium and /sup 14/C are achieved and no cross-contamination occurs.

  4. Mirror neurons in a New World monkey, common marmoset

    Directory of Open Access Journals (Sweden)

    Wataru eSuzuki

    2015-12-01

    Full Text Available Mirror neurons respond when executing a motor act and when observing others’ similar act. So far, mirror neurons have been found only in macaques, humans and songbirds. To investigate the degree of phylogenetic specialization of mirror neurons during the course of their evolution, we determined whether mirror neurons with similar properties to macaques occur in a New World monkey, the common marmoset (Callithrix jacchus. The ventral premotor cortex (PMv, where mirror neurons have been reported in macaques, is difficult to identify in marmosets, since no sulcal landmarks exist in the frontal cortex. We addressed this problem using in vivo connection imaging methods. That is, we first identified cells responsive to others’ grasping action in a clear landmark, the superior temporal sulcus (STS, under anesthesia, and injected fluorescent tracers into the region. By fluorescence stereomicroscopy, we identified clusters of labelled cells in the ventrolateral frontal cortex, which were confirmed to be within the ventrolateral frontal cortex including PMv after sacrifice. We next implanted electrodes into the ventrolateral frontal cortex and STS and recorded single/multi-units under an awake condition. As a result, we found neurons in the ventrolateral frontal cortex with characteristic mirror properties quite similar to those in macaques. This finding suggests that mirror neurons occur in a common ancestor of New and Old World monkeys and its common properties are preserved during the course of primate evolution.

  5. Mirror Neurons in a New World Monkey, Common Marmoset.

    Science.gov (United States)

    Suzuki, Wataru; Banno, Taku; Miyakawa, Naohisa; Abe, Hiroshi; Goda, Naokazu; Ichinohe, Noritaka

    2015-01-01

    Mirror neurons respond when executing a motor act and when observing others' similar act. So far, mirror neurons have been found only in macaques, humans, and songbirds. To investigate the degree of phylogenetic specialization of mirror neurons during the course of their evolution, we determined whether mirror neurons with similar properties to macaques occur in a New World monkey, the common marmoset (Callithrix jacchus). The ventral premotor cortex (PMv), where mirror neurons have been reported in macaques, is difficult to identify in marmosets, since no sulcal landmarks exist in the frontal cortex. We addressed this problem using "in vivo" connection imaging methods. That is, we first identified cells responsive to others' grasping action in a clear landmark, the superior temporal sulcus (STS), under anesthesia, and injected fluorescent tracers into the region. By fluorescence stereomicroscopy, we identified clusters of labeled cells in the ventrolateral frontal cortex, which were confirmed to be within the ventrolateral frontal cortex including PMv after sacrifice. We next implanted electrodes into the ventrolateral frontal cortex and STS and recorded single/multi-units under an awake condition. As a result, we found neurons in the ventrolateral frontal cortex with characteristic "mirror" properties quite similar to those in macaques. This finding suggests that mirror neurons occur in a common ancestor of New and Old World monkeys and its common properties are preserved during the course of primate evolution.

  6. High-throughput single-cell manipulation in brain tissue.

    Directory of Open Access Journals (Sweden)

    Joseph D Steinmeyer

    Full Text Available The complexity of neurons and neuronal circuits in brain tissue requires the genetic manipulation, labeling, and tracking of single cells. However, current methods for manipulating cells in brain tissue are limited to either bulk techniques, lacking single-cell accuracy, or manual methods that provide single-cell accuracy but at significantly lower throughputs and repeatability. Here, we demonstrate high-throughput, efficient, reliable, and combinatorial delivery of multiple genetic vectors and reagents into targeted cells within the same tissue sample with single-cell accuracy. Our system automatically loads nanoliter-scale volumes of reagents into a micropipette from multiwell plates, targets and transfects single cells in brain tissues using a robust electroporation technique, and finally preps the micropipette by automated cleaning for repeating the transfection cycle. We demonstrate multi-colored labeling of adjacent cells, both in organotypic and acute slices, and transfection of plasmids encoding different protein isoforms into neurons within the same brain tissue for analysis of their effects on linear dendritic spine density. Our platform could also be used to rapidly deliver, both ex vivo and in vivo, a variety of genetic vectors, including optogenetic and cell-type specific agents, as well as fast-acting reagents such as labeling dyes, calcium sensors, and voltage sensors to manipulate and track neuronal circuit activity at single-cell resolution.

  7. A self-organizing state-space-model approach for parameter estimation in hodgkin-huxley-type models of single neurons.

    Directory of Open Access Journals (Sweden)

    Dimitrios V Vavoulis

    Full Text Available Traditional approaches to the problem of parameter estimation in biophysical models of neurons and neural networks usually adopt a global search algorithm (for example, an evolutionary algorithm, often in combination with a local search method (such as gradient descent in order to minimize the value of a cost function, which measures the discrepancy between various features of the available experimental data and model output. In this study, we approach the problem of parameter estimation in conductance-based models of single neurons from a different perspective. By adopting a hidden-dynamical-systems formalism, we expressed parameter estimation as an inference problem in these systems, which can then be tackled using a range of well-established statistical inference methods. The particular method we used was Kitagawa's self-organizing state-space model, which was applied on a number of Hodgkin-Huxley-type models using simulated or actual electrophysiological data. We showed that the algorithm can be used to estimate a large number of parameters, including maximal conductances, reversal potentials, kinetics of ionic currents, measurement and intrinsic noise, based on low-dimensional experimental data and sufficiently informative priors in the form of pre-defined constraints imposed on model parameters. The algorithm remained operational even when very noisy experimental data were used. Importantly, by combining the self-organizing state-space model with an adaptive sampling algorithm akin to the Covariance Matrix Adaptation Evolution Strategy, we achieved a significant reduction in the variance of parameter estimates. The algorithm did not require the explicit formulation of a cost function and it was straightforward to apply on compartmental models and multiple data sets. Overall, the proposed methodology is particularly suitable for resolving high-dimensional inference problems based on noisy electrophysiological data and, therefore, a

  8. Neuronal-glial trafficking

    International Nuclear Information System (INIS)

    Bachelard, H.S.

    2001-01-01

    Full text: The name 'glia' originates from the Greek word for glue, because astro glia (or astrocytes) were thought only to provide an anatomical framework for the electrically-excitable neurones. However, awareness that astrocytes perform vital roles in protecting the neurones, which they surround, emerged from evidence that they act as neuroprotective K + -sinks, and that they remove potentially toxic extracellular glutamate from the vicinity of the neurones. The astrocytes convert the glutamate to non-toxic glutamine which is returned to the neurones and used to replenish transmitter glutamate. This 'glutamate-glutamine cycle' (established in the 1960s by Berl and his colleagues) also contributes to protecting the neurones against a build-up of toxic ammonia. Glial cells also supply the neurones with components for free-radical scavenging glutathione. Recent studies have revealed that glial cells play a more positive interactive role in furnishing the neurones with fuels. Studies using radioactive 14 C, 13 C-MRS and 15 N-GCMS have revealed that glia produce alanine, lactate and proline for consumption by neurones, with increased formation of neurotransmitter glutamate. On neuronal activation the release of NH 4 + and glutamate from the neurones stimulates glucose uptake and glycolysis in the glia to produce more alanine, which can be regarded as an 'alanine-glutamate cycle' Use of 14 C-labelled precursors provided early evidence that neurotransmitter GABA may be partly derived from glial glutamine, and this has been confirmed recently in vivo by MRS isotopomer analysis of the GABA and glutamine labelled from 13 C-acetate. Relative rates of intermediary metabolism in glia and neurones can be calculated using a combination of [1- 13 C] glucose and [1,2- 13 C] acetate. When glutamate is released by neurones there is a net neuronal loss of TCA intermediates which have to be replenished. Part of this is derived from carboxylation of pyruvate, (pyruvate carboxylase

  9. Bone-level implants placed in the anterior maxilla: an open-label, single-arm observational study

    OpenAIRE

    Gao, EnFeng; Hei, Wei-Hong; Park, Jong-Chul; Pang, KangMi; Kim, Sun Kyung; Kim, Bongju; Kim, Soung-Min; Lee, Jong-Ho

    2017-01-01

    Purpose This study assessed marginal bone remodeling and soft tissue esthetics after the loading of single bone-level implants in the anterior maxilla. Methods An open, single-arm observational clinical trial with 3 years of follow-up was performed, including 22 implants. The patients presented with a single tooth gap in the anterior maxilla (tooth positions 14–24), with natural or restored adjacent teeth. An implant was placed at least 8 weeks post-extraction and healed submerged for 6 weeks...

  10. Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila.

    Science.gov (United States)

    Saumweber, Timo; Rohwedder, Astrid; Schleyer, Michael; Eichler, Katharina; Chen, Yi-Chun; Aso, Yoshinori; Cardona, Albert; Eschbach, Claire; Kobler, Oliver; Voigt, Anne; Durairaja, Archana; Mancini, Nino; Zlatic, Marta; Truman, James W; Thum, Andreas S; Gerber, Bertram

    2018-03-16

    The brain adaptively integrates present sensory input, past experience, and options for future action. The insect mushroom body exemplifies how a central brain structure brings about such integration. Here we use a combination of systematic single-cell labeling, connectomics, transgenic silencing, and activation experiments to study the mushroom body at single-cell resolution, focusing on the behavioral architecture of its input and output neurons (MBINs and MBONs), and of the mushroom body intrinsic APL neuron. Our results reveal the identity and morphology of almost all of these 44 neurons in stage 3 Drosophila larvae. Upon an initial screen, functional analyses focusing on the mushroom body medial lobe uncover sparse and specific functions of its dopaminergic MBINs, its MBONs, and of the GABAergic APL neuron across three behavioral tasks, namely odor preference, taste preference, and associative learning between odor and taste. Our results thus provide a cellular-resolution study case of how brains organize behavior.

  11. Fluorescence single-molecule counting assays for protein quantification using epi-fluorescence microscopy with quantum dots labeling

    International Nuclear Information System (INIS)

    Jiang Dafeng; Liu Chunxia; Wang Lei; Jiang Wei

    2010-01-01

    A single-molecule counting approach for quantifying the antibody affixed to a surface using quantum dots and epi-fluorescence microscopy is presented. Modifying the glass substrates with carboxyl groups provides a hydrophilic surface that reacts with amine groups of an antibody to allow covalent immobilization of the antibody. Nonspecific adsorption of single molecules on the modified surfaces was first investigated. Then, quantum dots were employed to form complexes with surface-immobilized antibody molecules and used as fluorescent probes for single-molecule imaging. Epi-fluorescence microscopy was chosen as the tool for single-molecule fluorescence detection here. The generated fluorescence signals were taken by an electron multiplying charge-coupled device and were found to be proportional to the sample concentrations. Under optimal conditions, a linear response range of 5.0 x 10 -14 -3.0 x 10 -12 mol L -1 was obtained between the number of single molecules and sample concentration via a single-molecule counting approach.

  12. Profiling neuronal ion channelopathies with non-invasive brain imaging and dynamic causal models: Case studies of single gene mutations.

    Science.gov (United States)

    Gilbert, Jessica R; Symmonds, Mkael; Hanna, Michael G; Dolan, Raymond J; Friston, Karl J; Moran, Rosalyn J

    2016-01-01

    Clinical assessments of brain function rely upon visual inspection of electroencephalographic waveform abnormalities in tandem with functional magnetic resonance imaging. However, no current technology proffers in vivo assessments of activity at synapses, receptors and ion-channels, the basis of neuronal communication. Using dynamic causal modeling we compared electrophysiological responses from two patients with distinct monogenic ion channelopathies and a large cohort of healthy controls to demonstrate the feasibility of assaying synaptic-level channel communication non-invasively. Synaptic channel abnormality was identified in both patients (100% sensitivity) with assay specificity above 89%, furnishing estimates of neurotransmitter and voltage-gated ion throughput of sodium, calcium, chloride and potassium. This performance indicates a potential novel application as an adjunct for clinical assessments in neurological and psychiatric settings. More broadly, these findings indicate that biophysical models of synaptic channels can be estimated non-invasively, having important implications for advancing human neuroimaging to the level of non-invasive ion channel assays. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Single neurons with both form/color differential responses and saccade-related responses in the nonretinotopic pulvinar of the behaving macaque monkey.

    Science.gov (United States)

    Benevento, L A; Port, J D

    1995-01-01

    The nonretinotopic portion of the macaque pulvinar complex is interconnected with the occipitoparietal and occipitotemporal transcortical visual systems where information about the location and motion of a visual object or its form and color are modulated by eye movements and attention. We recorded from single cells in and about the border of the dorsal portion of the lateral pulvinar and the adjacent medial pulvinar of awake behaving Macaca mulatta in order to determine how the properties of these two functionally dichotomous cortical systems were represented. We found a class of pulvinar neurons that responded differentially to ten different patterns or broadband wavelengths (colors). Thirty-four percent of cells tested responded to the presentation of at least one of the pattern or color stimuli. These cells often discharged to several of the patterns or colors, but responded best to only one or two of them, and 86% were found to have statistically significant pattern and/or color preferences. Pattern/color preferential cells had an average latency of 79.1 +/- 46.0 ms (range 31-186 ms), responding well before most inferotemporal cortical cell responses. Visually guided and memory-guided saccade tasks showed that 58% of pattern/color preferential cells also had saccade-related properties, e.g. directional presaccadic and postsaccadic discharges, and inhibition of activity during the saccade. In the pulvinar, the mean presacadic response latency was earlier, and the mean postsaccadic response latency was later, than those reported for parietal cortex. We also discovered that the strength of response to patterns or colors changed depending upon the behavioral setting. In comparison to trials in which the monkey fixated dead ahead during passive presentations of pattern and color stimuli, 92% of the cells showed attenuated responses to the same passive presentation of patterns and colors during fixation when these trials were interleaved with trials which also

  14. Label-free characterization of vitrification-induced morphology changes in single-cell embryos with full-field optical coherence tomography

    Science.gov (United States)

    Zarnescu, Livia; Leung, Michael C.; Abeyta, Michael; Sudkamp, Helge; Baer, Thomas; Behr, Barry; Ellerbee, Audrey K.

    2015-09-01

    Vitrification is an increasingly popular method of embryo cryopreservation that is used in assisted reproductive technology. Although vitrification has high post-thaw survival rates compared to other freezing techniques, its long-term effects on embryo development are still poorly understood. We demonstrate an application of full-field optical coherence tomography (FF-OCT) to visualize the effects of vitrification on live single-cell (2 pronuclear) mouse embryos without harmful labels. Using FF-OCT, we observed that vitrification causes a significant increase in the aggregation of structures within the embryo cytoplasm, consistent with reports in literature based on fluorescence techniques. We quantify the degree of aggregation with an objective metric, the cytoplasmic aggregation (CA) score, and observe a high degree of correlation between the CA scores of FF-OCT images of embryos and of fluorescence images of their mitochondria. Our results indicate that FF-OCT shows promise as a label-free assessment of the effects of vitrification on embryo mitochondria distribution. The CA score provides a quantitative metric to describe the degree to which embryos have been affected by vitrification and could aid clinicians in selecting embryos for transfer.

  15. Single-dose pharmacokinetic properties of esomeprazole in children aged 1 - 11 years with endoscopically proven GERD: a randomized, open-label study.

    Science.gov (United States)

    Youssef, Nader N; Tron, Eduardo; Tolia, Vasundhara; Hamer-Maansson, Jennifer E; Lundborg, Per; Illueca, Marta

    2014-11-01

    To assess the overall exposure after a single dose of esomeprazole in children with gastroesophageal reflux disease (GERD). Oral esomeprazole administered as an intact capsule with 30 - 180 mL of water, or as an opened capsule mixed with as much as 1 tablespoon of applesauce followed by 30 - 180 mL of water. In this randomized, open-label study of children aged 1 - 11 years with endoscopically proven GERD, patients weighing 8 - esomeprazole, and patients weighing >= 20 kg were randomized to a single 10- or 20-mg oral dose of esomeprazole. Esomeprazole exposure (AUC(0-∞)), AUC from zero to last measurable concentration (AUC(0-t)), maximum plasma concentration (C(max)), time to C(max) (t(max)), terminal-phase half-life, apparent oral clearance, and apparent volume of distribution were determined. 28 patients were randomized to receive esomeprazole: 14 patients weighing 8 to esomeprazole 5 mg (n = 7) or 10 mg (n = 7), and 14 patients weighing ≥20 kg received esomeprazole 10 mg (n = 6) or 20 mg (n = 8). Children weighing 8 - = 20 kg). The pharmacokinetics of single-dose esomeprazole were dose-dependent in children weighing >= 20 kg but not in children weighing 8 to < 20 kg.

  16. An Open-label, Single-dose, Pharmacokinetic Study of Factor VIII Activity After Administration of Moroctocog Alfa (AF-CC) in Male Chinese Patients With Hemophilia A.

    Science.gov (United States)

    Liu, Hongzhong; Wu, Runhui; Hu, Pei; Sun, Feifei; Xu, Lihong; Liang, Yali; Nepal, Sunil; Qu, Peng Roger; Huard, Francois; Korth-Bradley, Joan M

    2017-07-01

    Hemophilia A represents up to 80% of all hemophilia cases in China. In patients with this condition, bleeding can be prevented and controlled by administering clotting factor VIII (FVIII). Since their initial availability, recombinant FVIII products have undergone several iterations to enhance their safety. Moroctocog alfa albumin-free cell culture (AF-CC) is among the third generation of recombinant FVIII products and received regulatory approval in China in August 2012. The present study characterizes the single-dose pharmacokinetic parameters of FVIII activity (FVIII:C) after administration of moroctocog alfa (AF-CC) in male Chinese patients with hemophilia A. This multicenter, open-label, single-dose study enrolled 13 male Chinese patients diagnosed with severe hemophilia A (FVIII:C hemophilia A. The pharmacokinetic profile in older patients was similar to that previously reported with recombinant FVIII products in studies with a predominantly white population; younger patients had reduced exposure to FVIII:C. The single doses of moroctocog alfa (AF-CC) were well tolerated; 2 cases of transient, low-titer FVIII inhibitor development were observed. ClinicalTrials.gov identifier: NCT02461992. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.

  17. Single-stage endoscopic treatment for mild to moderate acute cholangitis associated with choledocholithiasis: a multicenter, non-randomized, open-label and exploratory clinical trial.

    Science.gov (United States)

    Eto, Kazunori; Kawakami, Hiroshi; Haba, Shin; Yamato, Hiroaki; Okuda, Toshinori; Yane, Kei; Hayashi, Tsuyoshi; Ehira, Nobuyuki; Onodera, Manabu; Matsumoto, Ryusuke; Matsubara, Yu; Takagi, Tomofumi; Sakamoto, Naoya

    2015-12-01

    Two-stage treatment involving stone removal after drainage is recommended for mild to moderate acute cholangitis associated with choledocholithiasis. However, single-stage treatment has some advantages. We aimed to assess the efficacy and safety of single-stage endoscopic treatment for mild to moderate acute cholangitis associated with choledocholithiasis. A multicenter, non-randomized, open-label, exploratory clinical trial was performed in 12 institutions. A total of 50 patients with a naïve papilla and a body temperature ≥37 °C who were diagnosed with mild to moderate cholangitis associated with choledocholithiasis were enrolled between August 2012 and February 2014. Of the 50 patients, 15 had mild cholangitis and 35 had moderate cholangitis. The median number of common bile duct stones was 2 (range, 1-8), and the median diameter of the common bile duct stones was 7.5 mm (range, 1-18). The cure rate of acute cholangitis within 4 days after single-stage treatment was 90% (45/50) based on a body temperature choledocholithiasis (clinical trial registration number: UMIN000008494). © 2015 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  18. The DNA hybridization assay using single-walled carbon nanotubes as ultrasensitive, long-term optical labels

    International Nuclear Information System (INIS)

    Hwang, Eung-Soo; Cao, Chengfan; Hong, Sanghyun; Jung, Hye-Jin; Cha, Chang-Yong; Choi, Jae-Boong; Kim, Young-Jin; Baik, Seunghyun

    2006-01-01

    Single walled carbon nanotubes (SWNTs) exhibit strong Raman signals as well as fluorescence emissions in the near infrared region. Such signals do not blink or photobleach under prolonged excitation, which is an advantage in optical nano-biomarker applications. In this paper, we present single-stranded DNA conjugated SWNT probes to locate a particular sequence of DNA within a complex genome. Chromosomal DNAs of human fibroblasts and Escherichia coli are used as a target and a control, respectively. Southern blotting, which uses photostable Raman signals of nanotubes instead of fluorescent dyes, demonstrates excellent sensitivity and specificity of the probes. The results show that SWNTs may be used as generic nano-biomarkers for the precise detection of specific kinds of genes

  19. Bone-level implants placed in the anterior maxilla: an open-label, single-arm observational study.

    Science.gov (United States)

    Gao, EnFeng; Hei, Wei-Hong; Park, Jong-Chul; Pang, KangMi; Kim, Sun Kyung; Kim, Bongju; Kim, Soung-Min; Lee, Jong-Ho

    2017-10-01

    This study assessed marginal bone remodeling and soft tissue esthetics after the loading of single bone-level implants in the anterior maxilla. An open, single-arm observational clinical trial with 3 years of follow-up was performed, including 22 implants. The patients presented with a single tooth gap in the anterior maxilla (tooth positions 14-24), with natural or restored adjacent teeth. An implant was placed at least 8 weeks post-extraction and healed submerged for 6 weeks. After the second-stage operation, a fixed provisional prosthesis was provided. The final restoration was placed 6 months after the provisional restoration. The time of the provisional crown connection was considered to be the baseline in this study. Esthetic parameters and the marginal bone level were assessed at 6, 12, 24, and 36 months. All implants were well integrated in the bone. A statistically significant increase was found in the mean implant stability quotient between the time of the provisional prosthesis and the time of the final prosthesis. Most implants (95.5%) revealed marginal bone resorption (implant (4.5%) showed a change of 2.12 mm from baseline to 36 months (mean 0.07±0.48 mm), while the crestal bone level decreased significantly, from 2.34±0.93 mm at baseline to 1.70±1.10 mm at 36 months. The facial gingival margin and papilla were stable and the esthetic scores indicated high patient and dentist satisfaction. Platform-switching bone-level implants placed in maxillary single-tooth gaps resulted in successful osseointegration with minimal marginal bone resorption. The peri-implant soft tissue was also esthetically satisfying and stable.

  20. Bone-level implants placed in the anterior maxilla: an open-label, single-arm observational study

    Science.gov (United States)

    2017-01-01

    Purpose This study assessed marginal bone remodeling and soft tissue esthetics after the loading of single bone-level implants in the anterior maxilla. Methods An open, single-arm observational clinical trial with 3 years of follow-up was performed, including 22 implants. The patients presented with a single tooth gap in the anterior maxilla (tooth positions 14–24), with natural or restored adjacent teeth. An implant was placed at least 8 weeks post-extraction and healed submerged for 6 weeks. After the second-stage operation, a fixed provisional prosthesis was provided. The final restoration was placed 6 months after the provisional restoration. The time of the provisional crown connection was considered to be the baseline in this study. Esthetic parameters and the marginal bone level were assessed at 6, 12, 24, and 36 months. Results All implants were well integrated in the bone. A statistically significant increase was found in the mean implant stability quotient between the time of the provisional prosthesis and the time of the final prosthesis. Most implants (95.5%) revealed marginal bone resorption (<0.5 mm), and just 1 implant (4.5%) showed a change of 2.12 mm from baseline to 36 months (mean 0.07±0.48 mm), while the crestal bone level decreased significantly, from 2.34±0.93 mm at baseline to 1.70±1.10 mm at 36 months. The facial gingival margin and papilla were stable and the esthetic scores indicated high patient and dentist satisfaction. Conclusions Platform-switching bone-level implants placed in maxillary single-tooth gaps resulted in successful osseointegration with minimal marginal bone resorption. The peri-implant soft tissue was also esthetically satisfying and stable. PMID:29093988

  1. Label-free visualization of nilotinib-functionalized gold nanoparticles within single mammalian cells by C60- SIMS imaging.

    Science.gov (United States)

    Bloom, Anna N; Tian, Hua; Schoen, Christian; Winograd, Nicholas

    2017-05-01

    Obtaining a comprehensive grasp of the behavior and interaction of pharmaceutical compounds within single cells provides some of the fundamental details necessary for more effective drug development. In particular, the changes ensuing in the carrier, drug, and host environment in targeted drug therapy applications must be explored in greater detail, as these are still not well understood. Here, nilotinib-functionalized gold nanoparticles are examined within single mammalian cells with use of imaging cluster secondary ion mass spectrometry in a model study designed to enhance our understanding of what occurs to these particles once that have been internalized. Nilotinib, several types of gold nanoparticles, and the functionalized combination of the two were surveyed and successfully imaged within single cells to determine uptake and performance. Both nilotinib and the gold particle are able to be distinguished and visualized in the functionalized nanoparticle assembly within the cell. These compounds, while both internalized, do not appear to be present in the same pixels of the chemical image, indicating possible cleavage of nilotinib from the particle after cell uptake. The method provided in this work is a direct measurement of uptake and subcellular distribution of an active drug and its carrier within a framework. The results obtained from this study have the potential to be applied to future studies to provide more effective and specific cellular delivery of a relevant pharmaceutical compound.

  2. Passage and absorption of dietary and endogenous nitrogen in different regions of the digestive tract of rats given a single meal of 15N-labelled barley

    International Nuclear Information System (INIS)

    Partridge, I.G.; Simon, O.; Bergner, H.

    1985-01-01

    Young male Wistar rats (86.9 +- 0.96 g) were fasted for 24 hours and then offered a single meal (intake of 1 to 2.5 g) of 15 N-labelled barley (5.34 atom% 15 N excess). The test meal also contained Cr 2 O 3 (20 mg/g). Groups of five animals were killed 0.5; 1; 1.5; 2; 2.5; 4; 6 and 8 hours after removal of food. The contents of different regions of the digestive tract (stomach, proximal, middle and distal third of small intestine, large intestine) and feces were analyzed for Cr 2 O 3 and for N and 15 N abundance in both a TCA soluble and a TCA precipitable fraction. The distribution patterns of Cr 2 O 3 and 15 N along the digestive tract were very similar. If the disappearance of 15 N from the contents of the small and of the large intestines was expressed as a proportion of the gastric outflow of 15 N, a disappearance rate of 90% was found. On the basis of isotopic dilution the proportion of dietary nitrogen in digesta was calculated. The results illustrated the intensive dilution of dietary nitrogen by endogenous secretions in all regions of the digestive tract. In the distal small intestine endogenous nitrogen accounted for 70% of total nitrogen. 17 mg endogenous N were produced by the stomach within 8 hours after the single meal. The results show the value of the method in determining the true digestibility of nitrogen in 15 N-labelled feedstuffs more accurately than with classical methods and in providing an insight into the dynamics of nitrogen absorption and secretion in the digestive tract. (author)

  3. Sci—Fri AM: Mountain — 04: Label-free Raman spectroscopy of single tumour cells detects early radiation-induced glycogen synthesis associated with increased radiation resistance

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Q; Lum, JJ [BC Cancer Agency — Vancouver Island Centre (Canada); Isabelle, M; Harder, S; Jirasek, A [Physics and Astronomy, University of Victoria (Australia); Brolo, AG [Chemistry, University of Victoria (Australia)

    2014-08-15

    Purpose: To use label-free Raman spectroscopy (RS) for early treatment monitoring of tumour cell radioresistance. Methods: Three human tumour cell lines, two radioresistant (H460, SF{sub 2} = 0.57 and MCF7, SF{sub 2} = 0.70) and one radiosensitive (LNCaP, SF{sub 2} = 0.36), were irradiated with single fractions of 2, 4, 6, 8 or 10 Gy. In additional experiments, H460 and MCF7 cells were irradiated under co-treatment with the anti-diabetic drug metformin, a known radiosensitizing agent. Treated and control cultures were analyzed with RS daily for 3 days post-treatment. Single-cell Raman spectra were acquired from 20 live cells per sample, and experiments were repeated in triplicate. The combined data sets were analyzed with principal component analysis using standard algorithms. Cells from each culture were also subjected to standard assays for viability, proliferation, cell cycle, and radiation clonogenic survival. Results: The radioresistant cells (H460, MCF7) exhibited a RS molecular radiation response signature, detectable as early as 1 day post-treatment, of which radiation-induced glycogen synthesis is a significant contributor. The radiosensitive cells (LNCaP) exhibited negligible glycogen synthesis. Co-treatment with metformin in MCF7 cells blocked glycogen synthesis, reduced viability and proliferation, and increased radiosensitivity. Conversely, metformin co-treatment in H460 cells did not produce these same effects; importantly, both radiation-induced synthesis of glycogen and radiosensitivity were unaffected. Conclusions: Label-free RS can detect early glycogen synthesis post-irradiation, a previously undocumented metabolic mechanism associated with tumour cell radioresistance that can be targeted to increase radiosensitivity. RS monitoring of intratumoral glycogen may provide new opportunities for personalized combined modality radiotherapy treatments.

  4. High resolution imaging of calcium dynamics in single spines of CA1 pyramidal neurons in the hippocampus

    Science.gov (United States)

    Conti, Rossella

    2001-08-01

    Whole-cell recordings and confocal fluorescence imaging were used to investigate the properties of intracellular Ca2+ dynamics in CA1 hippocampal pyramidal cells in acute slices. We first measured the properties of Ca2+ entry during AP firing of a cell and synaptic stimulation. The back-propagation of a single AP into the dendrites caused [Ca2+]; to rise in dendrites and spines simultaneously and it invaded the whole dendritic tree. The measured synaptically evoked Ca2+ signals in individual spines were different depending on the intracellular solution. In K +-based solution, synaptic stimulation evoked a Ca2+ signal that was restricted to single spines (dendritic spread 4 microns). This suggests an important role for K+ channels in regulating dendritic Ca2+ signals. I also describe a result which gave us the first view of synaptic function at a single connection. In one experiment the recorded electrical responses was demonstrated to arise from a single optically identified synapse. The surprisingly high coefficient of variation of the recorded signals suggests that either vesicles have different neurotransmitter concentration or the synapse generates responses to multiple released vesicles. We then investigated the role of Ca2+ entry during the pairing protocol for UP induction. We found that the post-synaptic depolarization required for LTP induction leads to a large maintained elevation of [Ca 2+]; in all spines due to VDCC activation; the [Ca2+]; elevation was greatly reduced by intracellular application of D890, a VDCC blocker. D890 almost completely blocked LTP, suggesting that Ca2+ entry through VDCC could be essential for LTP induction. The effect of D890 is not due to L-type Ca2+ channels, since a specific blocker of these channels did not affect LTP. When tested by Tom Soderling, high concentrations of D890 (IC-50 = 1mM) inhibited CaMKII, an enzyme whose activity is required for LTP induction. These results leave the role of VDCC in LTP induction

  5. Kappe neurons, a novel population of olfactory sensory neurons.

    Science.gov (United States)

    Ahuja, Gaurav; Bozorg Nia, Shahrzad; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I

    2014-02-10

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  6. Label free imaging system for measuring blood flow speeds using a single multi-mode optical fiber (Conference Presentation)

    Science.gov (United States)

    Sigal, Iliya; Caravaca Aguirre, Antonio M.; Gad, Raanan; Piestun, Rafael; Levi, Ofer

    2016-03-01

    We demonstrate a single multi-mode fiber-based micro-endoscope for measuring blood flow speeds. We use the transmission-matrix wavefront shaping approach to calibrate the multi-mode fiber and raster-scan a focal spot across the distal fiber facet, imaging the cross-polarized back-reflected light at the proximal facet using a camera. This setup allows assessment of the backscattered photon statistics: by computing the mean speckle contrast values across the proximal fiber facet we show that spatially-resolved flow speed maps can be inferred by selecting an appropriate camera integration time. The proposed system is promising for minimally-invasive studies of neurovascular coupling in deep brain structures.

  7. Electron transfer dissociation facilitates the measurement of deuterium incorporation into selectively labeled peptides with single residue resolution

    DEFF Research Database (Denmark)

    Zehl, Martin; Rand, Kasper D; Jensen, Ole N

    2008-01-01

    Mass spectrometry is routinely applied to measure the incorporation of deuterium into proteins and peptides. The exchange of labile, heteroatom-bound hydrogens is mainly used to probe the structural dynamics of proteins in solution, e.g., by hydrogen-exchange mass spectrometry, but also to study...... the gas-phase structure and fragmentation mechanisms of polypeptide ions. Despite considerable effort in recent years, there is no widely established mass spectrometric method to localize the incorporated deuterium to single amino acid residues, and typically, only the overall deuterium content...... of peptides or proteins is obtained. The main reason for this is that CID and related techniques induce intramolecular migration of hydrogens ("hydrogen scrambling") upon vibrational excitation of the even-electron precursor ion, thus randomizing the positional distribution of the incorporated deuterium atoms...

  8. Rohon-beard cells and other large neurons in Xenopus embryos originate during gastrulation.

    Science.gov (United States)

    Lamborghini, J E

    1980-01-15

    The time of origin (birthday) of Rohon-Beard cells in Xenopus laevis was studied by 3H-thymidine autoradiography. Rohon-Beard cells were selected because they are a morphologically identifiable population of neurons in which the development of chemical and electrical excitability has been studied. A single injection of a radioactive DNA precursor was given to animals in successive stages of development from blastula to late tail bud (Nieuwkoop and Faber stages 8--33/34). The label was available throughout the stage of injection and longer. The labeling pattern was examined when animals had reached stage 42, when Rohon-Beard cells are easily recognized. All neurons including Rohon-Beard cells were labeled in animals injected with 3H-thymidine before stage 10 1/2 (early gastrula). Unlabeled Rohon-Beard cells were observed in animals injected with 3H-thymidine in and after stage 10 1/2. The percentage of unlabeled Rohon-Beard cells increased as development progressed. About 80% were born by the completion of gastrulation (stage 13). The other approximately 20% were born during neurulation and early tail bud stages. By stage 27, no Rohon-Beard neuron incorporated 3H-thymidine. In addition to Rohon-Beard neurons, five other neuronal populations begin generation during gastrulation: Mauthner neurons (Vargas-Lizardi and Lyser, '74), trigeminal ganglion cells, large basal plate cells of the medulla, extramedullary neurons, and primary motor neurons. The first birthdays in any of the six populations are temporally close to but appear to be independent of the others.

  9. A Complex Multiherbal Regimen Based on Ayurveda Medicine for the Management of Hepatic Cirrhosis Complicated by Ascites: Nonrandomized, Uncontrolled, Single Group, Open-Label Observational Clinical Study.

    Science.gov (United States)

    Patel, Manish V; Patel, Kalapi B; Gupta, Shivenarain; Michalsen, Andreas; Stapelfeldt, Elmar; Kessler, Christian S

    2015-01-01

    Hepatic cirrhosis is one of the leading causes of death worldwide, especially if complicated by ascites. This chronic condition can be related to the classical disease entity jalodara in Traditional Indian Medicine (Ayurveda). The present paper aims to evaluate the general potential of Ayurvedic therapy for overall clinical outcomes in hepatic cirrhosis complicated by ascites (HCcA). In form of a nonrandomized, uncontrolled, single group, open-label observational clinical study, 56 patients fulfilling standardized diagnostic criteria for HCcA were observed during their treatment at the P. D. Patel Ayurveda Hospital, Nadiad, India. Based on Ayurvedic tradition, a standardized treatment protocol was developed and implemented, consisting of oral administration of single and compound herbal preparations combined with purificatory measures as well as dietary and lifestyle regimens. The outcomes were assessed by measuring liver functions through specific clinical features and laboratory parameters and by evaluating the Child-Pugh prognostic grade score. After 6 weeks of treatment and a follow-up period of 18 weeks, the outcomes showed statistically significant and clinically relevant improvements. Further larger and randomized trials on effectiveness, safety, and quality of the Ayurvedic approach in the treatment of HCcA are warranted to support these preliminary findings.

  10. Effectiveness of a single application of 0·25% fipronil solution for the treatment of hirstiellosis in captive green iguanas (Iguana iguana): an open-label study.

    Science.gov (United States)

    Farmaki, Rania; Simou, Chrisa; Papadopoulos, Elias; Koutinas, Alexander F; Saridomichelakis, Manolis N

    2013-08-01

    Hirstiella spp. are common ectoparasites of captive green iguanas (Iguana iguana). Suggested treatments are empirical and some of them are of low efficacy and potentially toxic. The objective of this open-label study was to investigate the short-term efficacy and safety of a single application of 0·25% fipronil solution for the treatment of hirstiellosis. The skin of 50 green iguanas was thoroughly examined with the aid of bright light and magnifying lenses. A total of 21 iguanas were found to be infested, harbouring 1-24 mites (median: 5). All 35 mites collected from 17 iguanas were identified as Hirstiella sp. Both infested and non-infested lizards, sharing the same enclosure, were carefully wiped with 0·25% fipronil solution. The safety and the efficacy of the treatment were evaluated after 2 days in 47/50 (94%) and 7 days in 29/50 (58%) iguanas. Compared with pre-treatment levels, the parasitic load did not changed significantly on the second day but was significantly lower on day 7 (P = 0·006). No adverse reactions were noticed. Based on these results a single whole-body application of 0·25% fipronil solution can be considered a safe and effective treatment for the reduction of parasitic burden in captive green iguanas infested by Hirstiella sp. mites.

  11. Comparative Fasting Bioavailability of 2 Different Betahistine Dihydrochloride 24-mg Tablets: A Single- Dose, Randomized-Sequence, Open-Label, 2-Period Crossover Study in Healthy Thai Volunteers

    Directory of Open Access Journals (Sweden)

    Pinpilai Jutasompakorn

    2016-05-01

    Full Text Available Objective: To evaluate the bioequivalence of 24 mg betahistine dihydrochloride tablets between the test product (Stei® and the reference product (Serc® in healthy Thai volunteers. Methods: This was an open-label, randomized sequence, single-dose, two-period crossover study in 24 healthy volunteers. Half of the volunteers received a single dose of test product 24 mg and then reference product 24 mg after a minimum 7-day washout period. The remaining half of volunteers received the reference product first and then the test product with the same washout period. Blood samples were obtained at pre-dose and over 14 hours after dosing. Plasma concentrations of 2-pyridylacetic acid (2-PAA, a major metabolite of betahistine were quantified by using liquid chromatography with tandem mass spectrometry (LC-MS/MS. Tolerability in volunteers were assessed during the study. Results: Statistical comparison of the main pharmacokinetic parameters showed no significant difference between test and reference. The geometric mean ratios of 2-PAA between the test and reference products were 96.44%, 96.99%, and 94.56% for Cmax, AUC0-t, and AUC0-∞, respectively. These pharmacokinetic parameter values lie within the FDA and European Medicines Agency specified bioequivalence limit (80-125%. No serious adverse events related to the studied drugs were found. Conclusion: It can be concluded that these two betahistine dihydrochloride products were considered bioequivalent.

  12. Enzymatic labeling of a single chain variable fragment of an antibody with alkaline phosphatase by microbial transglutaminase.

    Science.gov (United States)

    Takazawa, Takeshi; Kamiya, Noriho; Ueda, Hiroshi; Nagamune, Teruyuki

    2004-05-20

    Functional cross-linking of a single chain Fv fragment of anti-hen egg-white lysozyme antibody (scFv) and alkaline phosphatase (AP) was explored using microbial transglutaminase (MTG) from Streptomyces mobaraensis. A specific peptidyl linker for MTG was genetically fused to the N-terminus of each protein and the resultant proteins were obtained separately by bacterial expression. The recombinant peptide-tagged scFv and AP were site-specifically cross-linked by MTG through the extra peptidyl linkers in vitro, which mainly yielded the heterodimer (i.e., scFv-AP conjugate). The enzymatic cross-linking reaction had little influence on either the antigen-binding ability of the scFv moiety or the enzymatic activity of the AP moiety of the conjugate, allowing use within an enzyme-linked immunosorbent assay. The results obtained suggest that the enzymatic approach with MTG facilitates the posttranslational construction of functional fusion proteins. Copyright 2004 Wiley Periodicals, Inc.

  13. A Label-Free Microfluidic Biosensor for Activity Detection of Single Microalgae Cells Based on Chlorophyll Fluorescence

    Directory of Open Access Journals (Sweden)

    Junsheng Wang

    2013-11-01

    Full Text Available Detection of living microalgae cells is very important for ballast water treatment and analysis. Chlorophyll fluorescence is an indicator of photosynthetic activity and hence the living status of plant cells. In this paper, we developed a novel microfluidic biosensor system that can quickly and accurately detect the viability of single microalgae cells based on chlorophyll fluorescence. The system is composed of a laser diode as an excitation light source, a photodiode detector, a signal analysis circuit, and a microfluidic chip as a microalgae cell transportation platform. To demonstrate the utility of this system, six different living and dead algae samples (Karenia mikimotoi Hansen, Chlorella vulgaris, Nitzschia closterium, Platymonas subcordiformis, Pyramidomonas delicatula and Dunaliella salina were tested. The developed biosensor can distinguish clearly between the living microalgae cells and the dead microalgae cells. The smallest microalgae cells that can be detected by using this biosensor are 3 μm ones. Even smaller microalgae cells could be detected by increasing the excitation light power. The developed microfluidic biosensor has great potential for in situ ballast water analysis.

  14. Label-free nanoscale characterization of red blood cell structure and dynamics using single-shot transport of intensity equation

    Science.gov (United States)

    Poola, Praveen Kumar; John, Renu

    2017-10-01

    We report the results of characterization of red blood cell (RBC) structure and its dynamics with nanometric sensitivity using transport of intensity equation microscopy (TIEM). Conventional transport of intensity technique requires three intensity images and hence is not suitable for studying real-time dynamics of live biological samples. However, assuming the sample to be homogeneous, phase retrieval using transport of intensity equation has been demonstrated with single defocused measurement with x-rays. We adopt this technique for quantitative phase light microscopy of homogenous cells like RBCs. The main merits of this technique are its simplicity, cost-effectiveness, and ease of implementation on a conventional microscope. The phase information can be easily merged with regular bright-field and fluorescence images to provide multidimensional (three-dimensional spatial and temporal) information without any extra complexity in the setup. The phase measurement from the TIEM has been characterized using polymeric microbeads and the noise stability of the system has been analyzed. We explore the structure and real-time dynamics of RBCs and the subdomain membrane fluctuations using this technique.

  15. Ultra-sensitive Single Fluorescence-labeled Probe-mediated SUP-M-ddPCR for High-throughput GMO Screening.

    Science.gov (United States)

    Niu, Chenqi; Xu, Yuancong; Zhang, Chao; Zhu, Pengyu; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2018-04-13

    As genetically modified (GM) technology develops and genetically modified organisms (GMOs) become more available, GMOs face increasing regulations and pressure to adhere to strict labeling guidelines. A singleplex detection method cannot perform the high-throughput analysis necessary for optimal GMO detection. Combining the advantages of multiplex detection and droplet digital polymerase chain reaction (ddPCR), a single universal primer-multiplex-ddPCR (SUP-M-ddPCR) strategy was proposed for accurate broad-spectrum screening and quantification. The SUP increases efficiency of the primers in PCR and plays an important role in establishing a high-throughput, multiplex detection method. Emerging ddPCR technology has been used for accurate quantification of nucleic acid molecules without a standard curve. Using maize as a reference point, four heterologous genes (35S, NOS, NPTII, and PAT) were selected to evaluate the feasibility and applicability of this strategy. Surprisingly, these four genes cover more than 93% of the transgenic maize lines and serve as preliminary screening sequences. All screening probes were labeled with FAM fluorescence, which allows the signals from the samples with GMO content and those without to be easily differentiated. This fiveplex screening method is a new development in GMO screening. Utilizing an optimal amplification assay, the specificity, limit of detection (LOD) and limit of quantitation (LOQ) were validated. The LOD and LOQ of this GMO screening method were 0.1 % and 0.01 %, respectively, with a relative standard deviation (RSD) <25 %. This method could serve as an important tool for the detection of GM maize from different processed, commercially available products. Further, this screening method could be applied to other fields that require reliable and sensitive detection of DNA targets.

  16. The influence of single neuron dynamics and network topology on time delay-induced multiple synchronous behaviors in inhibitory coupled network

    International Nuclear Information System (INIS)

    Zhao, Zhiguo; Gu, Huaguang

    2015-01-01

    Highlights: • Time delay-induced multiple synchronous behaviors was simulated in neuronal networks. • Multiple behaviors appear at time delays shorter than a bursting period of neurons. • The more spikes per burst of bursting, the more synchronous regions of time delay. • From regular to random via small-world networks, synchronous degree becomes weak. • An interpretation of the multiple behaviors and the influence of network are provided. - Abstract: Time delay induced-multiple synchronous behaviors are simulated in neuronal network composed of many inhibitory neurons and appear at different time delays shorter than a period of endogenous bursting of individual neurons. It is different from previous investigations wherein only one of multiple synchronous behaviors appears at time delay shorter than a period of endogenous firing and others appear at time delay longer than the period duration. The bursting patterns of the synchronous behaviors are identified based on the dynamics of an individual neuron stimulated by a signal similar to the inhibitory coupling current, which is applied at the decaying branch of a spike and suitable phase within the quiescent state of the endogenous bursting. If a burst of endogenous bursting contains more spikes, the synchronous behaviors appear at more regions of time delay. As the coupling strength increases, the multiple synchronous behaviors appear in a sequence because the different threshold of coupling current or strength is needed to achieve synchronous behaviors. From regular, to small-world, and to random networks, synchronous degree of the multiple synchronous behaviors becomes weak, and synchronous bursting patterns with lower spikes per burst disappear, which is properly interpreted by the difference of coupling current between neurons induced by different degree and the high threshold of coupling current to achieve synchronization for the absent synchronous bursting patterns. The results of the influence of

  17. Food Labels

    Science.gov (United States)

    ... on their food labels. When a food says "light" ("lite") or "low fat" on the label, it ... on this topic for: Teens Nutrition & Fitness Center Smart Supermarket Shopping Figuring Out Fat and Calories How ...

  18. Orexin neurons receive glycinergic innervations.

    Directory of Open Access Journals (Sweden)

    Mari Hondo

    Full Text Available Glycine, a nonessential amino-acid that acts as an inhibitory neurotransmitter in the central nervous system, is currently used as a dietary supplement to improve the quality of sleep, but its mechanism of action is poorly understood. We confirmed the effects of glycine on sleep/wakefulness behavior in mice when administered peripherally. Glycine administration increased non-rapid eye movement (NREM sleep time and decreased the amount and mean episode duration of wakefulness when administered in the dark period. Since peripheral administration of glycine induced fragmentation of sleep/wakefulness states, which is a characteristic of orexin deficiency, we examined the effects of glycine on orexin neurons. The number of Fos-positive orexin neurons markedly decreased after intraperitoneal administration of glycine to mice. To examine whether glycine acts directly on orexin neurons, we examined the effects of glycine on orexin neurons by patch-clamp electrophysiology. Glycine directly induced hyperpolarization and cessation of firing of orexin neurons. These responses were inhibited by a specific glycine receptor antagonist, strychnine. Triple-labeling immunofluorescent analysis showed close apposition of glycine transporter 2 (GlyT2-immunoreactive glycinergic fibers onto orexin-immunoreactive neurons. Immunoelectron microscopic analysis revealed that GlyT2-immunoreactive terminals made symmetrical synaptic contacts with somata and dendrites of orexin neurons. Double-labeling immunoelectron microscopy demonstrated that glycine receptor alpha subunits were localized in the postsynaptic membrane of symmetrical inhibitory synapses on orexin neurons. Considering the importance of glycinergic regulation during REM sleep, our observations suggest that glycine injection might affect the activity of orexin neurons, and that glycinergic inhibition of orexin neurons might play a role in physiological sleep regulation.

  19. Timing of dose relative to sexual intercourse attempt in previous sildenafil citrate users treated with tadalafil: a geographical comparison from a single arm, open-label study.

    Science.gov (United States)

    Rubio-Aurioles, Eusebio; Glina, Sidney; Abdo, Carmita H N; Hernandez-Serrano, Ruben; Rampazzo, Claudia; Sotomayor, Mariano; West, Teena M; Gallagher, Gabrielle L; Lenero, Enrique

    2009-10-01

    Previous research has demonstrated that sildenafil citrate users alter dosing-sexual attempt behavior when switched to tadalafil. The impact of geography and culture on sexual behavior with phosphodiesterase type 5 (PDE5) inhibitor treatment has not been fully investigated. To describe and compare the changes in dosing-sexual attempt behavior with sildenafil citrate vs. tadalafil treatment across four distinct geographies: Asia, Australia/New Zealand (ANZ), Central Eastern Europe/Middle East (CEE/ME), and Latin America (LA). Data from a single-arm, open-label clinical trial conducted in 21 countries from November 2002 to May 2004 were used in this analysis. Men with erectile dysfunction and a history of > or =6-week prior sildenafil citrate use continued sildenafil citrate treatment for 4 weeks then switched to tadalafil for 8 weeks. Dosing instructions were provided. Timing of dose and sexual intercourse was assessed through patient diaries for the final 4 weeks of each treatment period. A total of 2,760 men were enrolled: Asia 15.8%; ANZ 29.4%; CEE/ME 19.7%; LA 35.1%. The median time from dosing to intercourse was significantly increased during tadalafil treatment across all geographical regions; however, the magnitude of increase differed significantly by geography (P geography. However, the extent to which sexual behavior alters is not uniform across geographical regions, suggesting that dosing instructions and duration of drug effectiveness, in combination with personal and cultural preferences, may determine sexual behavior with PDE5 inhibitor use.

  20. USE OF SINGLE-MINUTE EXCHANGE OF DIE – SMED – AS A STRATEGY TO INCREASE PRODUCTIVITY IN A PLASTIC BOTTLE LABELER

    Directory of Open Access Journals (Sweden)

    Teonas Bartz

    2012-12-01

    Full Text Available The increase in the production and sale of food products stored in plastic containers, which serve different markets, caused the company researched departed in search of new concepts to increase the productivity of production equipment. With the increase of productivity, there is greater flexibility in planning and scheduling of production and exchange of tools. The implementation of the methodology of Single-Minute Exchange of Die – SMED reduces the setup time of equipment, maximizing the period of machine operation. With this the company more flexible production process and can reduce production batches, increasing operating rates, productivity and competitiveness of organizations. In this paper, we present the steps necessary for the implementation of the SMED in a labeling machine for plastic bottles. To this end, there were activities analysis, suggestions for improvements in machinery and procedures, timing of the steps before and after the improvements implemented and analyzes of the times obtained. After that, we obtained a significant reduction in setup time machine studied.

  1. Pharmacokinetics, safety, and tolerability of paliperidone palmitate 3-month formulation in patients with schizophrenia: A phase-1, single-dose, randomized, open-label study.

    Science.gov (United States)

    Ravenstijn, Paulien; Remmerie, Bart; Savitz, Adam; Samtani, Mahesh N; Nuamah, Isaac; Chang, Cheng-Tao; De Meulder, Marc; Hough, David; Gopal, Srihari

    2016-03-01

    This multicenter, randomized, open-label, parallel-group, phase-1 study assessed the pharmacokinetics (PK), safety, and tolerability of the investigational intramuscular paliperidone palmitate 3-month (PP3M) formulation in patients with schizophrenia or schizoaffective disorder. A total of 328 patients (men or women, aged 18-65 years) were enrolled in 1 of 4 separately conducted panels (A to D). Each panel had 2 single-dose treatment periods (period 1, 1 mg intramuscular paliperidone immediate release [IR]; period 2, intramuscular PP3M 75-525 mg eq) separated by a washout of 7-21 days. Overall, 245 of 308 (79.5%) PP3M-dosed patients completed the study. Because the PK studies of panels A and C were compromised by incomplete injection in some patients, PK data from only panels B and D are presented. Safety data from all panels are presented. Peak paliperidone plasma concentration was achieved between 23 and 34 days, and apparent half-life was ∼2-4 months. Mean plasma AUC∞ and Cmax of paliperidone appeared to be dose-proportional. Relative bioavailability in comparison with paliperidone was ∼100% independent of the dose and injection site. Headache and nasopharyngitis were the most common (>7%) treatment-emergent adverse events. Overall, safety and tolerability were similar to those of the 1-month formulation. Results support a once-every-3-months dosing interval in patients with schizophrenia or schizoaffective disorder. © 2015, The American College of Clinical Pharmacology.

  2. Average bioequivalence of single 500 mg doses of two oral formulations of levofloxacin: a randomized, open-label, two-period crossover study in healthy adult Brazilian volunteers

    Directory of Open Access Journals (Sweden)

    Eunice Kazue Kano

    2015-03-01

    Full Text Available Average bioequivalence of two 500 mg levofloxacin formulations available in Brazil, Tavanic(c (Sanofi-Aventis Farmacêutica Ltda, Brazil, reference product and Levaquin(c (Janssen-Cilag Farmacêutica Ltda, Brazil, test product was evaluated by means of a randomized, open-label, 2-way crossover study performed in 26 healthy Brazilian volunteers under fasting conditions. A single dose of 500 mg levofloxacin tablets was orally administered, and blood samples were collected over a period of 48 hours. Levofloxacin plasmatic concentrations were determined using a validated HPLC method. Pharmacokinetic parameters Cmax, Tmax, Kel, T1/2el, AUC0-t and AUC0-inf were calculated using noncompartmental analysis. Bioequivalence was determined by calculating 90% confidence intervals (90% CI for the ratio of Cmax, AUC0-t and AUC0-inf values for test and reference products, using logarithmic transformed data. Tolerability was assessed by monitoring vital signs and laboratory analysis results, by subject interviews and by spontaneous report of adverse events. 90% CIs for Cmax, AUC0-t and AUC0-inf were 92.1% - 108.2%, 90.7% - 98.0%, and 94.8% - 100.0%, respectively. Observed adverse events were nausea and headache. It was concluded that Tavanic(c and Levaquin(c are bioequivalent, since 90% CIs are within the 80% - 125% interval proposed by regulatory agencies.

  3. An open-label, single-arm study assessing the efficacy and safety of L: -menthol sprayed onto the gastric mucosa during upper gastrointestinal endoscopy.

    Science.gov (United States)

    Hiki, Naoki; Kaminishi, Michio; Tanabe, Satoshi; Fujisaki, Junko; Yoshino, Junji; Iguchi, Mikitaka; Kobayashi, Hiroyuki; Ashida, Kiyoshi; Kawabe, Takao; Kawano, Tatsuyuki; Nomura, Sachiyo; Yahagi, Naohisa; Tajiri, Hisao; Suzuki, Hiroaki

    2011-07-01

    The results of a phase III, placebo-controlled study demonstrated that endoscopic direct spraying of L: -menthol onto the gastric mucosa effectively suppressed gastric peristalsis in the study patients. The aim of the study reported here was to determine whether the anti-peristaltic effect of an L: -menthol preparation facilitates endoscopic examinations in a clinical setting. This was a multicenter, open-label, single-arm trial in which the study cohort comprised patients in whom L: -menthol was likely to be used to facilitate endoscopic examination in clinical settings. The primary outcome was the proportion of subjects with no peristalsis (Grade 1) after treatment and at the end of endoscopy (defined as the complete suppression of gastric peristalsis). This variable was assessed according to the level of anti-Helicobacter pylori immunoglobulin G (IgG) antibody, pepsinogen test results, whether sedation was performed, and whether subjects were considered unsuitable for the use of conventional antispasmodics. Of the 119 enrolled subjects, data from 112 were included in the primary efficacy analysis. Gastric peristalsis was completely suppressed in 37.5% of the patients [42/112 patients; 95% confidence interval (CI) 28.5-47.1]. Subgroup analyses revealed that the rate of peristalsis suppression was significantly higher in patients with elevated levels of anti-H. pylori IgG antibody (26/44, 59.1%; 95% CI 43.2-73.7); P peristalsis during upper gastrointestinal endoscopy.

  4. Effect of enzyme therapy and prognostic factors in 69 adults with Pompe disease: an open-label single-center study

    Directory of Open Access Journals (Sweden)

    de Vries Juna M

    2012-09-01

    Full Text Available Abstract Background Enzyme replacement therapy (ERT in adults with Pompe disease, a progressive neuromuscular disorder, is of promising but variable efficacy. We investigated whether it alters the course of disease, and also identified potential prognostic factors. Methods Patients in this open-label single-center study were treated biweekly with 20 mg/kg alglucosidase alfa. Muscle strength, muscle function, and pulmonary function were assessed every 3–6 months and analyzed using repeated-measures ANOVA. Results Sixty-nine patients (median age 52.1 years were followed for a median of 23 months. Muscle strength increased after start of ERT (manual muscle testing 1.4 percentage points per year (pp/y; hand-held dynamometry 4.0 pp/y; both p Relative to the pre-treatment period (49 patients with 14 months pre-ERT and 22 months ERT median follow-up, ERT affected muscle strength positively (manual muscle testing +3.3 pp/y, p Conclusions We conclude that ERT positively alters the natural course of Pompe disease in adult patients; muscle strength increased and upright FVC stabilized. Functional outcome is probably best when ERT intervention is timely.

  5. Psoriasis responds to intralesional injections of alefacept and may predict systemic response to intramuscular alefacept: interim results of a single-arm, open-label study.

    Science.gov (United States)

    Gattu, Shilpa; Busse, Kristine; Bhutani, Tina; Chiang, Charles; Nguyen, Thao; Becker, Emily; Koo, John Y M

    2012-04-01

    Alefacept is a remittive treatment for generalized psoriasis but is rarely used due to its erratic efficacy. To determine if psoriasis plaques will respond to intralesional alefacept and if this predicts a systemic response to intramuscular (IM) alefacept. We describe a 25-week, single-center, open-label study. Patients received weekly intralesional alefacept of increasing concentrations into target plaques for 3 weeks followed by IM injections for 12 weeks and concluded with an observation period of 9 weeks. The psoriasis area and severity index (PASI) was used to assess the efficacy of IM alefacept. Interim results are reported for the first seven patients enrolled. Two patients responded intralesionally to the most dilute 1:100 concentration of alefacept to sterile water and achieved a 59% and 100% improvement in PASI. Five patients did not respond intralesionally to the most dilute form of alefacept and none achieved PASI 75. Two of these five patients did not respond to any concentration and achieved a 26% and 38% improvement in PASI. Limitations to this study include a small sample size and being non-placebo-controlled. Alefacept is effective intralesionally and may predict a systemic response - challenging the concept that biologics must work systemically.

  6. The beta-hCG+erythropoietin in acute stroke (BETAS) study: a 3-center, single-dose, open-label, noncontrolled, phase IIa safety trial.

    Science.gov (United States)

    Cramer, Steven C; Fitzpatrick, Camille; Warren, Michael; Hill, Michael D; Brown, David; Whitaker, Laura; Ryckborst, Karla J; Plon, Lawrence

    2010-05-01

    Animal data suggest the use of beta-human chorionic gonadotropin followed by erythropoietin to promote brain repair after stroke. The current study directly translated these results by evaluating safety of this sequential growth factor therapy through a 3-center, single-dose, open-label, noncontrolled, Phase IIa trial. Patients with ischemic stroke 24 to 48 hours old and National Institutes of Health Stroke Scale score of 6 to 24 started a 9-day course of beta-human chorionic gonadotropin (once daily on Days 1, 3, and 5 of study participation) followed by erythropoietin (once daily on Days 7, 8, and 9 of study participation). This study also evaluated performance of serially measured domain-specific end points. A total of 15 patients were enrolled. Two deaths occurred, neither related to study medications. No safety concerns were noted among clinical or laboratory measures, including screening for deep vein thrombosis and serial measures of serum hemoglobin. In several instances, domain-specific end points provided greater insight into impairments as compared with global outcome measures. Results support the safety of this sequential, 2-growth factor therapy initiated 24 to 48 hours after stroke onset.

  7. A Single-Dose, Two-Way Crossover, Open-Label Bioequivalence Study of an Amphetamine Extended-Release Oral Suspension in Healthy Adults.

    Science.gov (United States)

    Sikes, Carolyn; Stark, Jeffrey G; McMahen, Russ; Engelking, Dorothy

    2017-11-01

    The purpose of this study was to compare the pharmacokinetics of a new extended-release amphetamine oral suspension (AMP XR-OS) with a standard extended-release mixed amphetamine salts product, Adderall XR®. In this single-dose, open-label, randomized, two-period, two-treatment crossover study, 42 healthy adult volunteers received 15 mL of AMP XR-OS in one period and a 30 mg Adderall XR capsule in another period (both containing 18.8 mg of amphetamine base) under fasted conditions. Blood samples were analyzed for d- and l-amphetamine concentrations, and pharmacokinetic parameters C max , AUC 0-5 , AUC 5-last , and AUC inf were calculated to determine bioequivalence. Safety was monitored throughout the study. The 90% confidence intervals (CIs) for the log-transformed C max , AUC 0-5 , AUC 5-last , and AUC inf fell within the accepted 80% to 125% range for establishing bioequivalence for d- and l-amphetamine. The most common adverse events were nausea and decreased appetite. AMP XR-OS is bioequivalent to Adderall XR in healthy adult participants.

  8. Multicomponent Aqueous Synthesis of Iodo-1,2,3-triazoles: Single-Step Models for Dual Modification of Free Peptide and Radioactive Iodo Labeling.

    Science.gov (United States)

    Li, Lingjun; Ding, Shengqiang; Yang, Yanping; Zhu, Anlian; Fan, Xincui; Cui, Mengchao; Chen, Changpo; Zhang, Guisheng

    2017-01-23

    Iodo-1,2,3-triazoles are of considerable interest for chemical and biomedical applications. However, current synthetic methods for preparing iodo-1,2,3-triazoles cannot easily be applied to the direct modification of bioactive molecules in water. Through the combination of water-compatible oxidative iodination and the copper-catalyzed alkyne-azide cycloaddition reaction, a novel copper-catalyzed aqueous multicomponent synthetic method for the preparation of 5-iodo-1,2,3-triazoles has been developed. The method is highly effective and selective for substrates including biologically relevant compounds with nucleoside, sugar, and amino acid moieties. Based on this aqueous tandem reaction, a direct single-step multicomponent dual modification of peptide is developed from readily available starting materials. Furthermore, the method could also be applied to concise and fast multicomponent radioactive 125 I labeling from an aqueous solution of commercially available sodium 125 iodide as a starting material. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Pharmacokinetic Properties and Tolerability of Cycloserine Following Oral Administration in Healthy Chinese Volunteers: A Randomized, Open-Label, Single- and Multiple-Dose 3-Way Crossover Study.

    Science.gov (United States)

    Zhou, Huili; Wu, Guolan; Hu, Xingjiang; Zhu, Meixiang; Zhai, You; Liu, Jian; Shentu, Jianzhong; Wu, Lihua

    2015-06-01

    A new generic formulation of cycloserine has been developed in China but the pharmacokinetic properties of cycloserine in the Chinese population have not been reported. The aim of our study was to evaluate the pharmacokinetic properties and tolerability of single and multiple oral administrations of cycloserine capsules in healthy Chinese volunteers. This open-label, single- and multiple-dose 3-way crossover study was conducted in healthy Chinese volunteers. Subjects were randomized to receive a single dose of cycloserine (250, 500, or 1000 mg) in separate trial periods, with a 1-week washout between periods. Those allocated to the 250-mg dose continued into the multiple-dose phase, in which they received 250 mg BID for 5 consecutive days. During the single-dose phase, blood samples were collected at regular intervals from 0 to 72 hours after drug administration and the concentrations of cycloserine were determined using LC-MS/MS. During the multiple-dose phase, blood samples were obtained before drug administration on Days 4, 5, and 6 to determine the Cmin at steady state. On Day 6, blood samples were also collected from 0 to 72 hours after drug administration. Pharmacokinetic parameters were estimated using noncompartmental methods. Tolerability was determined using clinical evaluation and monitoring of adverse events. The study enrolled 12 healthy Chinese volunteers (6 men: mean [SD] age = 23.0 [2.6] years, weight = 60.2 [6.2] kg, height = 170.0 [3.0] cm, and body mass index = 20.7 [1.7]; 6 women: mean [SD] age = 25.3 [1.4] years, weight = 51.5 [3.3] kg, height = 160.0 [4.0] cm, and body mass index = 20.1 [0.9]). After administration of a single dose, cycloserine was rapidly absorbed, reaching peak plasma concentrations approximately 0.84 hours after oral administration, and t½ in plasma was about 13.0 hours. The geometric mean (SD) Cmax value increased in proportion to cycloserine dose, from 19.42 (5.89) to 84.76 (21.74) mg/L, and the geometric mean (SD) AUC0

  10. Long-term neuronal damage and recovery after a single dose of MDMA: expression and distribution of serotonin transporter in the rat brain.

    Science.gov (United States)

    Kirilly, Eszter

    2010-09-01

    "Ecstasy", 3,4-methylenedioxymethamphetamine (MDMA), an amphetamine analogue is one of the most widely used recreational drugs. In spite of the fact that neurotoxic effects of MDMA has been found in several species from rodents to non-human primates, and results increasingly point to damage also in human MDMA users, data about the sensitivity of different brain areas and the recovery after neuronal damage are scarce. Serotonin transporter (5-HTT) mRNA in the raphe nuclei also has not been examined. Humans with genetic predisposition for the slow metabolism of MDMA, the so-called "poor metabolizers" of debrisoquin are at higher risk. Five- 9% of the Caucasian population is considered to carry this phenotype. These studies were carried out in Dark Agouti rats, a special strain that show decreased microsomal CYP2D1 isoenzyme activity, and thus may serve as a model of vulnerable human users. These works were designed to characterize MDMA-induced damage and recovery of the serotonergic system including sleep and morphological changes within 180 days. In our experiments we investigated the 5-HTT mRNA expression in the brainstem and medullary raphe nuclei, 5-HTT immunoreactive (IR) fibre densities in several brain areas, and 16 functional measures of sleep in response to a single dose of +/- MDMA (15mg\\kg). Furthermore, behavioural experiments were performed 21 days after MDMA treatment. We found similar changes in 5-HTT mRNA expression in the examined raphe nuclei, namely transient increases 7 days after MDMA treatment followed by transient decreases at 21 days. Significant (20-40%), widespread reductions in 5-HTT-IR fibre density were detected in most brain areas at 7 and 21 days after MDMA administration. All cortical, but only some brainstem areas were damaged. Parallel to the neuronal damage we observed significant reductions in rapid eye movement (REM) sleep latency, increased fragmentation of sleep and increases in delta power spectra in non-REM sleep. At 180 days

  11. Visualizing neurons one-by-one in vivo: optical dissection and reconstruction of neural networks with reversible fluorescent proteins.

    Science.gov (United States)

    Aramaki, Shinsuke; Hatta, Kohei

    2006-08-01

    A great many axons and dendrites intermingle to fasciculate, creating synapses as well as glomeruli. During live imaging in particular, it is often impossible to distinguish between individual neurons when they are contiguous spatially and labeled in the same fluorescent color. In an attempt to solve this problem, we have taken advantage of Dronpa, a green fluorescent protein whose fluorescence can be erased with strong blue light, and reversibly highlighted with violet or ultraviolet light. We first visualized a neural network with fluorescent Dronpa using the Gal4-UAS system. During the time-lapse imaging of axonal navigation, we erased the Dronpa fluorescence entirely; re-highlighted it in a single neuron anterogradely from the soma or retrogradely from the axon; then repeated this procedure for other single neurons. After collecting images of several individual neurons, we then recombined them in multiple pseudo-colors to reconstruct the network. We have also successfully re-highlighted Dronpa using two-photon excitation microscopy to label individual cells located inside of tissues and were able to demonstrate visualization of a Mauthner neuron extending an axon. These "optical dissection" techniques have the potential to be automated in the future and may provide an effective means to identify gene function in morphogenesis and network formation at the single cell level.

  12. Pharmacokinetics of a telmisartan/rosuvastatin fixed-dose combination: a single-dose, randomized, open-label, 2-period crossover study in healthy Korean subjects.

    Science.gov (United States)

    Chae, Dong Woo; Son, Mijeong; Kim, Yukyung; Son, Hankil; Jang, Seong Bok; Seo, Jeong Min; Nam, Su Youn; Park, Kyungsoo

    2015-10-01

    As hypertension and dyslipidemia are frequent comorbidities, antihypertensive drugs and lipid-lowering agents are often prescribed together for their treatment. Telmisartan and rosuvastatin are widely used together to treat hypertension and dyslipidemia. A combination formulation of these two drugs would improve patient compliance due to ease of dosing. The purpose of this study was to assess bioequivalence of single-dose administration of a newly-developed fixed-dose combination (FDC) tablet containing telmisartan/rosuvastatin 80/20 mg (test treatment) and coadministration of a telmisartan 80-mg tablet and a rosuvastatin 20-mg tablet (reference treatment) in healthy Korean male volunteers. This was a single-dose, randomized, open-label, 2-period crossover study enrolling healthy males aged 20 - 50 years with BMI between 18.5 and 25 kg/m2. Each subject received a single dose of the reference and test treatments with a 14-day washout period. Blood sampling was performed at prespecified intervals for up to 72 hours after dosing. Primary pharmacokinetic parameters were Cmax, AUClast, and AUC0-∞ of telmisartan, rosuvastatin, and N-desmethyl rosuvastatin. Bioequivalence was assessed by determining whether the 90% confidence intervals (CIs) of the geometric mean ratios (test treatment/reference treatment) of these parameters were within the standard range of 80% to 125%. Adverse events were monitored via regular interviews with the subjects and by physical examinations. 60 subjects were enrolled and 55 completed the study. The 90% CIs of the geometric mean ratios of Cmax, AUClast, and AUC00-∞ were 0.9262-1.1498, 0.9294-1.0313, and 0.9312-1.0320 for telmisartan, 0.9041-1.0428, 0.9262-1.0085, and 0.9307-1.0094 for rosuvastatin, and 0.8718-1.0022, 0.8901-0.9904, and 0.8872-0.9767 for N-desmethyl rosuvastatin, respectively. There was no statistical difference in the incidence of adverse events (AEs) (all of which were mild or moderate) between the reference and test

  13. Altered neuronal activity patterns in the visual cortex of the adult rat after partial optic nerve crush--a single-cell resolution metabolic mapping study.

    Science.gov (United States)

    Macharadze, Tamar; Pielot, Rainer; Wanger, Tim; Scheich, Henning; Gundelfinger, Eckart D; Budinger, Eike; Goldschmidt, Jürgen; Kreutz, Michael R

    2012-08-01

    Thallium autometallography (TIAMG) is a novel method for high-resolution mapping of neuronal activity. With this method, we found that a general depression of neuronal activity occurs in response to optic nerve crush (ONC) within the first 2 weeks postinjury in the contralateral dorsal lateral geniculate nucleus (dLGN) as well as in the contralateral primary visual cortex (V1). Interestingly, the neuronal activity recovered thereafter in both brain regions and reached a plateau in the tenth week postinjury in layers IV and V of V1, monocular area (V1m). Several clusters of highly active neurons in V1m were found 6 weeks after ONC in layers IV and V on the side contralateral to the lesion. We reasoned that these clusters appeared due to a reorganization of the corticocolliucular projections. Employing a combination of biotinylated dextran amine retrograde tract tracing from the superior colliculus (SC) with TIAMG in the same animal, we indeed found that the clusters of neurons with high Tl(+) uptake in V1m are spatially in register with those neuronal subpopulations that project to the SC. These data suggest that extensive reorganization plasticity exists in the adult rat visual cortex following ONC.

  14. Pharmacokinetics of armodafinil and modafinil after single and multiple doses in patients with excessive sleepiness associated with treated obstructive sleep apnea: a randomized, open-label, crossover study.

    Science.gov (United States)

    Darwish, Mona; Kirby, Mary; D'Andrea, Denise M; Yang, Ronghua; Hellriegel, Edward T; Robertson, Philmore

    2010-11-01

    Armodafinil (the R-isomer of racemic modafinil) and modafinil are wakefulness-promoting medications for excessive sleepiness associated with treated obstructive sleep apnea (OSA). The R-isomer of racemic modafinil has a half-life of approximately15 hours; the S-isomer has a half-life of 4 to 5 hours. The R-and S-isomers are equipotent, producing equivalent pharmacologic activity at equal concentrations. The aim of this work was to compare the pharmacokinetic profiles of armodafinil (R-modafinil) and modafinil (racemic mixture with equal quantities of R- and S-isomers) at equal doses in patients with residual excessive sleepiness associated with continuous positive airway pressure-treated OSA. This open-label study was conducted at 5 US centers from July 2008 to March 2009. Patients were randomized to 1 of 2 crossover administration sequences, ABCD or BADC, where A was a single armodafinil 200-mg dose, B was a single modafinil 200-mg dose, C was multiple daily modafinil 200-mg doses, and D was multiple daily armodafinil 200-mg doses. During multiple-dose administration, patients received 100 mg once daily for days 1 and 2, and 200 mg once daily for days 3 through 10. The pharmacokinetic parameters of principal interest for assessing the bioequivalence of armodafinil and modafinil were maximum concentration at 7 to 11 hours after dosing and the concentration-versus-time curve for this period. Analysis was performed via achiral high-performance liquid chromatography with ultraviolet detection using blood samples obtained over 72 hours after single-dose administration and over 24 hours after the multiple-dose regimen. For post hoc evaluation of bioequivalence, 90% CI values were also constructed for the geometric mean ratios of armodafinil to modafinil. Tolerability was assessed by the reported adverse events, clinical laboratory testing, vital sign measurements, ECGs, and physical exams. The study population was 83.3% male (35/42) and 76.2% white (32/42) with a mean

  15. Pharmacokinetic properties and safety profile of histamine dihydrochloride injection in Chinese healthy volunteers: a phase I, single-center, open-label, randomized study.

    Science.gov (United States)

    Li, Jiapeng; Huang, Xiaojun; Wang, Qian; Jing, Shan; Jiang, Hao; Wei, Zhongna; Zang, Yannan; Liu, Yang; Zhao, Libo; Fang, Yi; Feng, Wanyu

    2015-10-01

    Histamine dihydrochloride (HDC) injection has been approved in Europe for the treatment of adults with acute myeloid leukemia, used in combination therapy with the T-cell-derived cytokine interleukin-2. Despite years of clinical applications of HDC in Europe, no data are available on its tolerability and pharmacokinetic properties in Chinese patients. The objective of this study was to determine the safety profile and pharmacokinetic properties of HDC in Chinese healthy volunteers (HVs). In this Phase I, single-center, open-label, randomized study, 20 Chinese HVs were randomized to receive a single dose of 0.5 or 1.0 mg HDC via a 10-minute subcutaneous injection. Whole-blood and urine samples were collected at designated time points after dosing. Plasma and urine concentrations of histamine and metabolite N-methyl histamine were measured using a validated HPLC-MS/MS method. Pharmacokinetic parameters were estimated through noncompartmental procedures based on concentration-time data. Adverse events and evaluation of clinical laboratory tests were used to assess the safety profile. The pharmacokinetic profile for a single-dose of 1.0 mg HDC in Chinese HVs was compared with that in Western HVs. No severe adverse events occurred in this study, and the severity of all adverse events was grade I according to the Common Terminology Criteria for Adverse Events, version 4.0. For the pharmacokinetic parameters of histamine at the 0.5-mg and 1.0-mg dose levels, t½ was 0.50 and 1.02 hours; Tmax was 0.15 and 0.14 hours; mean Cmax was 26.59 and 71.01 nmol/L; AUC0-t was 8.35 and 20.43 nmol/h/L; AUC0-∞ was 9.61 and 22.69 nmol/h/L; accumulated amount excreted in urine within 24 hours was 125.93 and 145.52 nmol; and maximum urine excretion rates were 21.85 and 38.94 nmol/h, respectively. For N-methyl histamine at the 0.5-mg and 1.0-mg dose levels, t½ was 0.58 and 0.66 hours; Tmax was 0.28 and 0.26 hours; mean Cmax was 17.01 and 23.54 nmol/L; AUC0-t was 7.72 and 17.08 nmol

  16. Noisy Neurons

    Indian Academy of Sciences (India)

    IAS Admin

    Nerves are fibres that conduct electrical signals and hence pass on information from and to the brain. Nerves are made of nerve cells called neurons (Figure 1). Instructions in our body are sent via electrical signals that present themselves as variations in the potential across neuronal membranes. These potential differences ...

  17. Pharmacokinetics of Rasagiline in Healthy Adult Chinese Volunteers with Various Genotypes: A Single-Center, Open-Label, Multiple-Dose Study.

    Science.gov (United States)

    Chen, Xia; Zhao, Qian; Jiang, Ji; Liu, Jian; Hu, Pei

    2016-05-01

    Although there is evidence indicating cytochome P450 (CYP) 1A2 is responsible for the metabolism of rasagiline, the role of other CYP isoforms is unclear. This study investigated the pharmacokinetics of rasagiline in adult Chinese healthy volunteers with various CYP genotypes. This single-center, open-label study was conducted in 12 subjects. Fasted subjects received rasagiline 1 mg daily for 7 days. Blood samples were taken to determine plasma concentrations of rasagiline, its major metabolite R-1-aminoindan (AI), and the genotyping of CYP2D6 and CYP2C19. Safety was also assessed. After oral administration, rasagiline was absorbed with a median time to reach maximum concentration (tmax) of 0.5 h. Overall systemic exposure was approximately theefold on day 7 versus day 1. The mean terminal elimination half-life (t½) was nearly doubled on day 7 compared to day 1. AI was rapidly quantifiable in plasma with median t max occurring 1-1.5 h post-dose. Overall exposure to AI on day 7 was approximately twofold higher than on day 1. Overall systemic exposure to AI was approximately four- to sixfold greater than exposure to rasagiline, whereas maximum concentration (C max) was approximately half that of rasagiline. The mean t½ for AI was longer than for the parent drug, and was similar between the sexes and days. Inferred metabolic status did not appear to affect the pharmacokinetics of rasagiline or AI. All adverse events were mild to moderate in severity. Multiple oral administration of rasagiline 1 mg tablet in Chinese healthy adults resulted in similar pharmacokinetics of both rasagiline and AI compared to those previously observed in Caucasians. Rasagiline was safe and well tolerated in Chinese healthy volunteers.

  18. Tomato juice intake increases resting energy expenditure and improves hypertriglyceridemia in middle-aged women: an open-label, single-arm study.

    Science.gov (United States)

    Hirose, Asuka; Terauchi, Masakazu; Tamura, Moe; Akiyoshi, Mihoko; Owa, Yoko; Kato, Kiyoko; Kubota, Toshiro

    2015-04-08

    Tomato-based food products have health-promoting and disease-preventing effects. Some tomato juice ingredients may have health benefits for middle-aged women, including women with menopausal symptoms and cardiovascular diseases. We investigated the net effect of tomato juice intake on several health parameters in women in this age group. An open-label, single-arm study was conducted, involving 95 women (40-60-years-old) who had at least one menopausal symptom. The participants refrained from foods and drinks rich in tomato and tomato-based products for 2 weeks prior to the study and during the 8 weeks of tomato juice consumption. After the run-in period, the women were asked to consume 200 mL of unsalted tomato juice, twice daily for 8 weeks. Their menopausal symptoms were evaluated using the Menopausal Symptom Scale (MSS), Hospital Anxiety and Depression Scale (HADS), and Athens Insomnia Scale (AIS) before the study, and at 4 and 8 weeks after study commencement. At the same times, body composition; blood pressure; heart rate; resting energy expenditures (REEs); and serum levels of triglyceride (TG), cholesterol, glucose, and hemoglobin A1c were measured. Ninety-three women (98%) completed the study. The following parameters showed significant changes, compared with baseline, at study weeks 4 and 8 (mean ± standard deviation at baseline, week 4, and week 8): (1) the MSS score improved (9.9 ± 5.2, 8.5 ± 5.0, 8.3 ± 5.0; P Tomato juice intake alleviated menopausal symptoms, including anxiety, increased REEs and heart rate, and lowered high baseline serum TG levels in middle-aged women. UMIN-CTR UMIN000011877 .

  19. Local Heat Application for the Treatment of Buruli Ulcer: Results of a Phase II Open Label Single Center Non Comparative Clinical Trial.

    Science.gov (United States)

    Vogel, Moritz; Bayi, Pierre F; Ruf, Marie-Thérèse; Bratschi, Martin W; Bolz, Miriam; Um Boock, Alphonse; Zwahlen, Marcel; Pluschke, Gerd; Junghanss, Thomas

    2016-02-01

    Buruli ulcer (BU) is a necrotizing skin disease most prevalent among West African children. The causative organism, Mycobacterium ulcerans, is sensitive to temperatures above 37°C. We investigated the safety and efficacy of a local heat application device based on phase change material. In a phase II open label single center noncomparative clinical trial (ISRCTN 72102977) under GCP standards in Cameroon, laboratory confirmed BU patients received up to 8 weeks of heat treatment. We assessed efficacy based on the endpoints 'absence of clinical BU specific features' or 'wound closure' within 6 months ("primary cure"), and 'absence of clinical recurrence within 24 month' ("definite cure"). Of 53 patients 51 (96%) had ulcerative disease. 62% were classified as World Health Organization category II, 19% each as category I and III. The average lesion size was 45 cm(2). Within 6 months after completion of heat treatment 92.4% (49 of 53, 95% confidence interval [CI], 81.8% to 98.0%) achieved cure of their primary lesion. At 24 months follow-up 83.7% (41 of 49, 95% CI, 70.3% to 92.7%) of patients with primary cure remained free of recurrence. Heat treatment was well tolerated; adverse effects were occasional mild local skin reactions. Local thermotherapy is a highly effective, simple, cheap and safe treatment for M. ulcerans disease. It has in particular potential as home-based remedy for BU suspicious lesions at community level where laboratory confirmation is not available. ISRCT 72102977. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America.

  20. Effect of the Probiotic Saccharomyces boulardii on Cholesterol and Lipoprotein Particles in Hypercholesterolemic Adults: A Single-Arm, Open-Label Pilot Study.

    Science.gov (United States)

    Ryan, Jennifer Joan; Hanes, Douglas Allen; Schafer, Morgan Beth; Mikolai, Jeremy; Zwickey, Heather

    2015-05-01

    Elevated blood cholesterol levels are a major risk factor for coronary artery disease, the leading cause of death worldwide. Probiotics have been investigated as potential cholesterol-lowering therapies, but no previous studies have assessed the effect of the probiotic yeast Saccharomyces boulardii on cholesterol levels in human volunteers. The objective of this study was to examine the effect of S. boulardii on serum cholesterol and lipoprotein particles in hypercholesterolemic adults. This study was a single-arm, open-label pilot study. Twelve hypercholesterolemic participants were recruited into the study; one dropped out. Participants took 5.6×10(10) colony forming unit (CFU) encapsulated S. boulardii (Saccharomyces cerevisiae var. boulardii CNCM I-1079) twice daily for an 8-week period. Fasting concentrations of cholesterol (total cholesterol, low-density lipoprotein-cholesterol [LDL-C], high-density lipoprotein-cholesterol [HDL-C], and triglycerides), lipoprotein particles (very-low-density lipoprotein-particle [VLDL-P], remnant lipoprotein particle [RLP-P], total LDL-P, LDL III-P, LDL IV-P, total HDL-P, and HDL 2b-P), and additional cardiovascular biomarkers (apo B-100, lipoprotein [a], high-sensitivity C-reactive protein, homocysteine, fibrinogen, and insulin) were measured at baseline, after 4 weeks, and after 8 weeks. Remnant lipoprotein particles decreased by 15.5% (p=0.03) over the 8-week period. The remaining outcome measures were not significantly altered. In this pilot study, 8 weeks of daily supplementation with S. boulardii lowered remnant lipoprotein, a predictive biomarker and potential therapeutic target in the treatment and prevention of coronary artery disease.

  1. PET Imaging of VCAM-1 Expression and Monitoring Therapy Response in Tumor with a68Ga-Labeled Single Chain Variable Fragment.

    Science.gov (United States)

    Zhang, Xiao; Liu, Chunbao; Hu, Fan; Zhang, Yingying; Wang, Jing; Gao, Yongheng; Jiang, Yaqun; Zhang, Yongxue; Lan, Xiaoli

    2018-02-05

    Vascular cell adhesion molecule-1 (VCAM-1) is a transmembrane glycoprotein closely related to tumorigenicity as well as tumor metastasis. It is also a well-known candidate for detecting tumors. LY2409881, an IKKβ inhibitor, could induce apoptosis of VCAM-1 positive cells. Our purpose is to prepare a novel tracer to evaluate its feasibility of detecting VCAM-1 expression and monitoring LY2409881 tumor curative effect. The tracer was prepared by conjugating the single chain variable fragment (scFv) of VCAM-1 and NOTA-NHS-ester and then labeled with 68 Ga. 68 Ga-NOTA-VCAM-1 scFv was successfully prepared with high radiochemical yield. VCAM-1 overexpression and underexpression melanoma cell lines, B16F10 and A375m, were used in this study. The results of microPET/CT imaging in small animals indicated that the uptake of 68 Ga-NOTA-VCAM-1 scFv in B16F10 tumor was much higher than that of A375m, which was also confirmed by the biodistribution and autoradiography results. LY2409881 inhibits the growth of B16F10 melanoma in vivo by inducing dose- and time-dependent growth inhibition and apoptosis of the cells. The LY2409881 treated group and DMSO control group were established and imaged by microPET/CT. In the LY2409881 group, uptake of the tracer in tumor was decreased at the first week, and then gradually recovered to the initial level. In DMSO control, the uptake of the tracer remained at the same level during the whole time. The results suggested that LY2409881 inhibits the expression of VCAM-1 and suppresses tumor growth. 68 Ga-NOTA-VCAM-1 scFv , an easily synthesized probe, has a potential clinical application in the visual monitoring of IKKβ inhibitor intervention on VCAM-1 positive tumors.

  2. HEAD - TO - HEAD COMPARISON OF TOLERABILITY AND ACCEPTABILITY OF SINGLE DOSE OF FOUR TOPICAL NSAIDS IN PATIENTS UNDERGOING CATARACT SURGERY : A RANDOMIZED OPEN LABEL PARALLEL GROUP STUDY

    Directory of Open Access Journals (Sweden)

    Chandra Sekhar

    2015-07-01

    Full Text Available INTRODUCTION : Ophthalmic NSAIDs are used to control pain , discomfort and inflammation associated with ocular conditions and also , following ophthalmic cataract surgeries. These drugs can cause ocular discomfort following administration which lasts for a short duration. However , there exist differences in the intensity and duration of burning sensation among the c ommonly used ophthalmic NSAIDs. Hence , we evaluated the tolerability and acceptability of four topical NSAIDS i.e. , 0.3% nepafenac (N , 0.5% ketorolac (K , 0.4% ketorolac (K LS and 0.09% bromfenac (B after instilling a single drop. METHODS: This randomized , open label , parallel group study was conducted in the department of Ophthalmology in Narayana Medical College , Nellore. A total number of 80 patients participated in the study. Randomization list was computer generated in a ratio of 1:1:1:1 of N , K , K L Sand B. Each patient received one drop of the study drug either in right or left eye which was also decidedat random.Patients of either gender above21 years of age , having no ocular surface pathology and eligible for cataract surgery were include d in the study. Outcome variables included ocular burning intensity on VAS (0 - 100 mm at 0 min (immediately , 2 min and 6 min after administration of medications , time to complete pain relief and global medication performance rated by patient as 0 (bad , 1 (fair , 2(good or 3 (severe . RESULTS: The mean age of patients was 52.85±17.46 years. All groups were age matched , however there were more females than males (pN>K LS >K on global medication performance. CONCLUSION: Bromfenac had better tolerability and acceptability as compared to other tested topical NSAIDs , which was in the order of B>N> K LS >K.

  3. Bioavailability of everolimus administered as a single 5 mg tablet versus five 1 mg tablets: a randomized, open-label, two-way crossover study of healthy volunteers.

    Science.gov (United States)

    Thudium, Karen; Gallo, Jorge; Bouillaud, Emmanuel; Sachs, Carolin; Eddy, Simantini; Cheung, Wing

    2015-01-01

    The mammalian target of rapamycin (mTOR) inhibitor everolimus has a well-established pharmacokinetics profile. We conducted a randomized, single-center, open-label, two-sequence, two-period crossover study of healthy volunteers to assess the relative bioavailability of everolimus administered as one 5 mg tablet or five 1 mg tablets. Subjects were randomized 1:1 to receive everolimus dosed as one 5 mg tablet or as five 1 mg tablets on day 1, followed by a washout period on days 8-14 and then the opposite formulation on day 15. Blood sampling for pharmacokinetic evaluation was performed at prespecified time points, with 17 samples taken for each treatment period. Primary variables for evaluation of relative bioavailability were area under the concentration-time curve from time zero to infinity (AUCinf) and maximum blood concentration (Cmax). Safety was assessed by reporting the incidence of adverse events (AEs). Twenty-two participants received everolimus as one 5 mg tablet followed by five 1 mg tablets (n=11) or the opposite sequence (n=11). The Cmax of five 1 mg tablets was 48% higher than that of one 5 mg tablet (geometric mean ratio, 1.48; 90% confidence interval [CI], 1.35-1.62). AUCinf was similar (geometric mean ratio, 1.08; 90% CI, 1.02-1.16), as were the extent of absorption and the distribution and elimination kinetics. AEs, all grade 1 or 2, were observed in 54.5% of subjects. Although the extent of absorption was similar, the Cmax of five 1 mg tablets was higher than that of one 5 mg tablet, suggesting these formulations lead to different peak blood concentrations and are not interchangeable at the dose tested.

  4. β-Arrestin-2 knockout prevents development of cellular μ-opioid receptor tolerance but does not affect opioid-withdrawal-related adaptations in single PAG neurons.

    Science.gov (United States)

    Connor, M; Bagley, E E; Chieng, B C; Christie, M J

    2015-01-01

    Tolerance to the behavioural effects of morphine is blunted in β-arrestin-2 knockout mice, but opioid withdrawal is largely unaffected. The cellular mechanisms of tolerance have been studied in some neurons from β-arrestin-2 knockouts, but tolerance and withdrawal mechanisms have not been examined at the cellular level in periaqueductal grey (PAG) neurons, which are crucial for central tolerance and withdrawal phenomena. μ-Opioid receptor (MOPr) inhibition of voltage-gated calcium channel currents (ICa ) was examined by patch-clamp recordings from acutely dissociated PAG neurons from wild-type and β-arrestin-2 knockout mice treated chronically with morphine (CMT) or vehicle. Opioid withdrawal-induced activation of GABA transporter type 1 (GAT-1) currents was determined using perforated patch recordings from PAG neurons in brain slices. MOPr inhibition of ICa in PAG neurons was unaffected by β-arrestin-2 deletion. CMT impaired coupling of MOPrs to ICa in PAG neurons from wild-type mice, but this cellular tolerance was not observed in neurons from CMT β-arrestin-2 knockouts. However, β-arrestin-2 knockouts displayed similar opioid-withdrawal-induced activation of GAT-1 currents as wild-type PAG neurons. In β-arrestin-2 knockout mice, the central neurons involved in the anti-nociceptive actions of opioids also fail to develop cellular tolerance to opioids following chronic morphine. The results also provide the first cellular physiological evidence that opioid withdrawal is not disrupted by β-arrestin-2 deletion. However, the unaffected basal sensitivity to opioids in PAG neurons provides further evidence that changes in basal MOPr sensitivity cannot account for the enhanced acute nociceptive response to morphine reported in β-arrestin-2 knockouts. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The British

  5. Single-arm open-label study of Durolane (NASHA nonanimal hyaluronic acid for the treatment of osteoarthritis of the thumb

    Directory of Open Access Journals (Sweden)

    Velasco E

    2017-03-01

    Full Text Available Eloisa Velasco,1 Mª Victoria Ribera,2 Joan Pi3 1Department of Orthopedic Surgery, Hospital de Sant Joan Despí Moisés Broggi, Barcelona, Spain; 2Department of Anesthesiology, Vall d’Hebron University Hospital, Barcelona, Spain; 3Department of Orthopedics and Traumatology, Parc Taulí University Hospital, Sabadell, Barcelona, Spain Introduction: Osteoarthritis of the trapeziometacarpal (TMC joint of the thumb – also known as rhizarthrosis – is painful and has a significant impact on quality of life. Intra-articular injection of hyaluronic acid may potentially meet the need for effective, minimally invasive intervention in patients not responding adequately to initial treatment. We aimed to confirm the safety and effectiveness of viscosupplementation with Durolane (NASHA nonanimal hyaluronic acid in rhizarthrosis.Patients and methods: This was a prospective, single-arm, multicenter, open-label study with a 6-month follow-up period. Eligible patients had Eaton–Littler grade II–III rhizarthrosis in one TMC joint with pain and visual analog scale (VAS pain score ≥4 (scale: 0–10. A single injection of NASHA was administered to the affected TMC joint. The primary effectiveness variable was change from baseline in VAS pain score.Results: Thirty-five patients (mean age 60.8 years; 85.7% female received NASHA and completed the study. The least-squares mean change from baseline in VAS pain score over 6 months was –2.00, a reduction of 27.8% (p<0.001. The reduction in pain exceeded 25% as early as month 1 (26.5%, and gradual improvement was observed throughout the 6-month follow-up period. Secondary effectiveness parameters included QuickDASH (shortened version of Disabilities of the Arm, Shoulder, and Hand [DASH], Kapandji thumb opposition test, radial abduction, metacarpophalangeal (MCP joint flexion, and pinch (clamp strength. Most of these measurements showed statistically significant improvements from baseline over 6 months. Five

  6. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial.

    Science.gov (United States)

    Ormiston, John A; Serruys, Patrick W; Regar, Evelyn; Dudek, Dariusz; Thuesen, Leif; Webster, Mark W I; Onuma, Yoshinobu; Garcia-Garcia, Hector M; McGreevy, Robert; Veldhof, Susan

    2008-03-15

    A fully bioabsorbable drug-eluting coronary stent that scaffolds the vessel wall when needed and then disappears once the acute recoil and constrictive remodelling processes have subsided has theoretical advantages. The bioasorbable everolimus-eluting stent (BVS) has a backbone of poly-L-lactic acid that provides the support and a coating of poly-D,L-lactic acid that contains and controls the release of the antiproliferative agent everolimus. We assessed the feasibility and safety of this BVS stent. In this prospective, open-label study we enrolled 30 patients who had either stable, unstable, or silent ischaemia and a single de-novo lesion that was suitable for treatment with a single 3.0 x 12 mm or 3.0 x 18 mm stent. Patients were enrolled from four academic hospitals in Auckland, Rotterdam, Krakow, and Skejby. The composite endpoint was cardiac death, myocardial infarction, and ischaemia-driven target lesion revascularisation. Angiographic endpoints were available for 26 patients and intravascular-ultrasound endpoints for 24 patients. Clinical endpoints were assessed in all 30 patients at 6 and 12 months. In a subset of 13 patients, optical coherence tomography was undertaken at baseline and follow-up. Analysis was by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00300131. Procedural success was 100% (30/30 patients), and device success 94% (29/31 attempts at implantation of the stent). At 1 year, the rate of major adverse cardiac events was 3.3%, with only one patient having a non-Q wave myocardial infarction and no target lesion revascularisations. No late stent thromboses were recorded. At 6-month follow-up, the angiographic in-stent late loss was 0.44 (0.35) mm and was mainly due to a mild reduction of the stent area (-11.8%) as measured by intravascular ultrasound. The neointimal area was small (0.30 [SD 0.44] mm2), with a minimal area obstruction of 5.5%. This study shows the feasibility of implantation of the bioabsorbable

  7. Sub-cellular organization of the melanin-concentrating hormone neurons in the hypothalamus.

    Science.gov (United States)

    Jancsik, Veronika; Bene, Roland; Sótonyi, Péter; Zachar, Gergely

    2018-01-01

    Melanin-concentrating hormone (MCH) is a potent orexigenic and sleep-promoting neuropeptide in mammals produced predominately by hypothalamic neurons which project to a wide variety of brain areas. Several MCH producing neurons contain MCH as the only neuropeptide, while others comprise cocaine- and amphetamine regulated transcript (CART) as well. The intrahypothalamic localization and the projection pattern of these two subpopulations are distinct. To provide structural grounding to understand the mechanism of action of MCH neurons we show here the subcellular localization of the neuropeptides in the two subpopulations within the hypothalamus of healthy young male mice by applying single and double immunofluorescence labelling.; Thick, prominent MCH immunopositive reticulation and fine discrete granules are detected within the perikarya of both CART positive and CART-free MCH neurons. Typically, one or more immunoreactive processes emanate from the perikarya. The bulk of CART immunoreactivity is also centrally positioned, surrounded by sparse immunoreactive granules within the perikarya and in the processes. In double immunopositive neurons, the two neuropeptides seem to colocalize in the heavily labelled central area, while the immunopositive granules in the cell body periphery and in the processes apparently contain either MCH or CART. This spatial arrangement suggests that MCH and CART, after being synthetized and processed in the endoplasmic reticulum/Golgi complex, are sorted into separate dense core vesicles, which then enter into the cell processes. This mechanism allows for both concerted and independent regulation of the transport and release of MCH and CART. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Retrograde tracing of zinc-enriched (ZEN) neuronal somata in rat spinal cord

    DEFF Research Database (Denmark)

    Wang, Zhanyou; Danscher, G; Mook Jo, S

    2001-01-01

    SeAMG-labeled ZEN neurons appeared in Rexed's laminae V, VII and X while laminae I and II were void. A few scattered ZEN somata were observed in the remaining laminae. The labeled neurons differed in shape and size, and the relatively high level of labeled somata around the injection site suggests that many ZEN...

  9. Nutrition Labeling

    DEFF Research Database (Denmark)

    Grunert, Klaus G

    2013-01-01

    because consumers will avoid products that the label shows to be nutritionally deficient, but also because food producers will try to avoid marketing products that appear, according to the label, as nutritionally problematic, for example, because of a high content of saturated fat or salt. Nutrition......Nutrition labeling refers to the provision of information on a food product’s nutritional content on the package label. It can serve both public health and commercial purposes. From a public health perspective, the aim of nutrition labeling is to provide information that can enable consumers...... to make healthier choices when choosing food products. Nutrition labeling is thus closely linked to the notion of the informed consumer, that chooses products according to their aims, on the basis of the information at their disposal. Because many consumers are assumed to be interested in making healthy...

  10. Pharmacokinetics and pharmacodynamics of subcutaneous recombinant parathyroid hormone (1-84) in patients with hypoparathyroidism: an open-label, single-dose, phase I study.

    Science.gov (United States)

    Clarke, Bart L; Kay Berg, Jolene; Fox, John; Cyran, Jane A; Lagast, Hjalmar

    2014-05-01

    Impaired mineral homeostasis affecting calcium, phosphate, and magnesium is a result of parathyroid hormone (PTH) deficiency in hypoparathyroidism. The current standard of treatment with active vitamin D and oral calcium does not control levels of these major minerals. Recombinant full-length human PTH 1-84 (rhPTH[1-84]) is being developed for the treatment of hypoparathyroidism. The goal of this study was to investigate the pharmacokinetics and pharmacodynamics of a single subcutaneous injection of rhPTH(1-84) in patients with hypoparathyroidism. This was an open-label, dose-escalating study of single subcutaneous administration of 50 µg and then 100 µg of rhPTH(1-84). Enrolled patients (age range, 25-85 years) had ≥12 months of diagnosed hypoparathyroidism defined according to biochemical evidence of hypocalcemia with concomitant low-serum intact PTH and were taking doses ≥1000 mg/d of oral calcium and ≥0.25 µg/d of active vitamin D (oral calcitriol). The patient's prescribed dose of calcitriol was taken the day preceding but not on the day of or during the 24 hours after rhPTH(1-84) administration. Each patient received a single 50-µg rhPTH(1-84) dose, had at least a 7-day washout interval, and then received a single 100-µg rhPTH(1-84) dose. The following parameters were assessed: plasma PTH; serum and urine total calcium, magnesium, phosphate, and creatinine; and urine cyclic adenosine monophosphate. After administration of rhPTH(1-84) 50 µg (n = 6) and 100 µg (n = 7), the approximate t½ was 2.5 to 3 hours. Plasma PTH levels increased rapidly, then declined gradually back to predose levels at ~12 hours. The median AUC was similar with calcitriol and rhPTH(1-84) for serum 1,25-dihydroxyvitamin D (calcitriol, 123-227 pg · h/mL; rhPTH[1-84], 101-276 pg · h/mL), calcium (calcitriol, 3.3-3.7 mg · h/dL; rhPTH[1-84], 3.3-7.6 mg · h/dL), and magnesium (calcitriol, 0.7-0.9 mg · h/dL; rhPTH[1-84], 1.3-2.8 mg · h/dL). In contrast, the median AUC for

  11. Bioavailability of two single-dose oral formulations of omeprazole 20 mg: an open-label, randomized sequence, two-period crossover comparison in healthy Mexican adult volunteers.

    Science.gov (United States)

    Poo, Jorge Luis; Galán, Juan Francisco; Rosete, Alejandra; de Lago, Alberto; Oliva, Iván; González-de la Parra, Mario; Jiménez, Patricia; Burke-Fraga, Victoria; Namur, Salvador

    2008-04-01

    Omeprazole is a proton-pump inhibitor that acts to reduce acid secretion in the stomach and is used for treating various acid-related gastrointestinal disorders. There are several generic formulations of omeprazole available in Mexico; however, a literature search failed to identify published data concerning the bioavailability of these formulations in the Mexican population. The aim of this study was to compare the bioavailability of 2 oral formulations of omeprazole 20-mg capsules, marketed for use in Mexico, in healthy volunteers: Inhibitron (test formulation) and LosecA 20 mg (reference formulation). This study used a single-dose, open-label, randomized sequence, 2 x 2 crossover (2 administration periods x 2 treatments) design to compare the 2 formulations. Eligible subjects were healthy adult Mexican volunteers of both sexes. Subjects were randomly assigned in a 1:1 ratio to receive a single 20-mg dose of the test formulation followed by the reference formulation, or vice versa, with a 7-day washout period between administration periods. After a 12-hour (overnight) fast, subjects received a single, 20-mg dose of the corresponding formulation. Plasma samples were obtained over a 12-hour period after administration. Plasma omeprazole concentrations were analyzed by a nonstereospecific high-performance liquid chromatography method. For analysis of pharmacokinetic properties, including C(max), AUC from time 0 (baseline) to time t (AUC(0-t)), and AUC from baseline to infinity (AUC(0-infinity)), blood samples were drawn at baseline and 0.17, 0.33, 0.50, 0.75, 1, 1.25, 1.50, 1.75, 2, 2.50, 3, 4, 6, 8, and 12 hours after administration. The formulations were considered bioequivalent if the natural log (ln)-transformed ratios of C(max) and AUC were within the predetermined equivalence range of 80% to 125%, and if P disability, or required intervention to prevent permanent impairment or damage. Thirty-four subjects were enrolled and completed the study (25 men and 9

  12. Calcium-dependent plateau potentials in rostral ambiguus neurons in the newborn mouse brain stem in vitro

    DEFF Research Database (Denmark)

    Rekling, J C; Feldman, J L

    1997-01-01

    Calcium-dependent plateau potentials in rostral ambiguus neurons in the newborn mouse brain stem in vitro. J. Neurophysiol. 78: 2483-2492, 1997. The nucleus ambiguus contains vagal and glossopharyngeal motoneurons and preganglionic neurons involved in respiration, swallowing, vocalization......, and control of heart beat. Here we show that the rostral compact formation's ambiguus neurons, which control the esophageal phase of swallowing, display calcium-dependent plateau potentials in response to tetanic orthodromic stimulation or current injection. Whole cell recordings were made from visualized...... neurons in the rostral nucleus ambiguus using a slice preparation from the newborn mouse. Biocytin-labeling revealed dendritic trees with pronounced rostrocaudal orientations confined to the nucleus ambiguus, a morphological profile matching that of vagal motoneurons projecting to the esophagus. Single...

  13. Selective serotonergic excitation of callosal projection neurons

    Directory of Open Access Journals (Sweden)

    Daniel eAvesar

    2012-03-01

    Full Text Available Serotonin (5-HT acting as a neurotransmitter in the cerebral cortex is critical for cognitive function, yet how 5-HT regulates information processing in cortical circuits is not well understood. We tested the serotonergic responsiveness of layer 5 pyramidal neurons (L5PNs of the mouse medial prefrontal cortex (mPFC, and found 3 distinct response types: long-lasting 5-HT1A (1A receptor-dependent inhibitory responses (84% of L5PNs, 5-HT2A (2A receptor-dependent excitatory responses (9%, and biphasic responses in which 2A-dependent excitation followed brief inhibition (5%. Relative to 5-HT-inhibited neurons, those excited by 5-HT had physiological properties characteristic of callosal/commissural (COM neurons that project to the contralateral cortex. We tested whether serotonergic responses in cortical pyramidal neurons are correlated with their axonal projection pattern using retrograde fluorescent labeling of COM and corticopontine-projecting (CPn neurons. 5-HT generated excitatory or biphasic responses in all 5-HT-responsive layer 5 COM neurons. Conversely, CPn neurons were universally inhibited by 5-HT. Serotonergic excitation of COM neurons was blocked by the 2A antagonist MDL 11939, while serotonergic inhibition of CPn neurons was blocked by the 1A antagonist WAY 100635, confirming a role for these two receptor subtypes in regulating pyramidal neuron activity. Selective serotonergic excitation of COM neurons was not layer-specific, as COM neurons in layer 2/3 were also selectively excited by 5-HT relative to their non-labeled pyramidal neuron neighbors. Because neocortical 2A receptors are implicated in the etiology and pathophysiology of schizophrenia, we propose that COM neurons may represent a novel cellular target for intervention in psychiatric disease.

  14. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus.

    Science.gov (United States)

    Hernández, Vivian M; Hegeman, Daniel J; Cui, Qiaoling; Kelver, Daniel A; Fiske, Michael P; Glajch, Kelly E; Pitt, Jason E; Huang, Tina Y; Justice, Nicholas J; Chan, C Savio

    2015-08-26

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping expression of the

  15. Sirolimus in patients with clinically active systemic lupus erythematosus resistant to, or intolerant of, conventional medications: a single-arm, open-label, phase 1/2 trial.

    Science.gov (United States)

    Lai, Zhi-Wei; Kelly, Ryan; Winans, Thomas; Marchena, Ivan; Shadakshari, Ashwini; Yu, Julie; Dawood, Maha; Garcia, Ricardo; Tily, Hajra; Francis, Lisa; Faraone, Stephen V; Phillips, Paul E; Perl, Andras

    2018-03-24

    Patients with systemic lupus erythematosus have T-cell dysfunction that has been attributed to the activation of the mammalian target of rapamycin (mTOR). Rapamycin inhibits antigen-induced T-cell proliferation and has been developed as a medication under the generic designation of sirolimus. We assessed safety, tolerance, and efficacy of sirolimus in a prospective, biomarker-driven, open-label clinical trial. We did a single-arm, open-label, phase 1/2 trial of sirolimus in patients with active systemic lupus erythematosus disease unresponsive to, or intolerant of, conventional medications at the State University of New York Upstate Medical University (Syracuse, NY, USA). Eligible participants (aged ≥18 years) had active systemic lupus erythematosus fulfilling four or more of 11 diagnostic criteria defined by the American College of Rheumatology. We excluded patients with allergy or intolerance to sirolimus, patients with life-threatening manifestations of systemic lupus erythematosus, proteinuria, a urine protein to creatinine ratio higher than 0·5, anaemia, leucopenia, or thrombocytopenia. Patients received oral sirolimus at a starting dose of 2 mg per day, with dose adjusted according to tolerance and to maintain a therapeutic range of 6-15 ng/mL. Patients were treated with sirolimus for 12 months. Safety outcomes included tolerance as assessed by the occurrence of common side-effects. The primary efficacy endpoint was decrease in disease activity, assessed using the British Isles Lupus Assessment Group (BILAG) index and the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI). Blood samples of 56 matched healthy individuals were obtained as controls for immunobiological outcomes monitored at each visit. The primary efficacy endpoint was assessed in all patients who completed 12 months of treatment, and all patients who received at least one dose of treatment were included in the safety analyses. This trial is registered with Clinical

  16. A long-term, open-label safety study of single-entity hydrocodone bitartrate extended release for the treatment of moderate to severe chronic pain

    Directory of Open Access Journals (Sweden)

    Nalamachu S

    2014-11-01

    Full Text Available Srinivas Nalamachu,1,2 Richard L Rauck,3 Martin E Hale,4 Orlando G Florete Jr,5 Cynthia Y Robinson,6 Stephen J Farr,6 1International Clinical Research Institute, Overland Park, KS, USA; 2Kansas University Medical Center, Kansas City, KS, USA; 3Carolinas Pain Institute, Center for Clinical Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA; 4Gold Coast Research, LLC, Weston, FL, USA; 5Institute of Pain Management, Jacksonville, FL, USA; 6Zogenix, Inc., Emeryville, CA, USA Objective: To evaluate the long-term safety, tolerability, and effectiveness of single-entity extended-release hydrocodone in opioid-experienced subjects with moderate to severe chronic pain not receiving adequate pain relief or experiencing intolerable side effects from their current opioid. Methods: This multicenter, open-label study started with a conversion/titration phase (≤6 weeks where subjects (n=638 were converted to individualized doses (range 20–300 mg of extended-release hydrocodone dosed every 12 hours, followed by a 48-week maintenance phase (n=424. The primary objective (safety and tolerability and the secondary objective (long-term efficacy as measured by change in average pain score; 0= no pain, 10= worst imaginable pain were monitored throughout the study. Results: Subjects were treated for a range of chronic pain etiologies, including osteoarthritis, low back pain, and neuropathic and musculoskeletal conditions. The mean hydrocodone equivalent dose at screening was 68.9±62.2 mg/day and increased to 139.5±81.7 mg/day at the start of the maintenance phase. Unlimited dose adjustments were permitted at the investigator's discretion during the maintenance phase, reflecting typical clinical practice. No unexpected safety issues were reported. Common adverse events during the conversion/titration and maintenance phases, respectively, were constipation (11.3% and 12.5%, nausea (10.7% and 9.9%, vomiting (4.1% and 9.7%, and somnolence (7

  17. Localization of glycine-containing neurons in the Macaca monkey retina

    International Nuclear Information System (INIS)

    Hendrickson, A.E.; Koontz, M.A.; Pourcho, R.G.; Sarthy, P.V.; Goebel, D.J.

    1988-01-01

    Autoradiography following 3H-glycine (Gly) uptake and immunocytochemistry with a Gly-specific antiserum were used to identify neurons in Macaca monkey retina that contain a high level of this neurotransmitter. High-affinity uptake of Gly was shown to be sodium dependent whereas release of both endogenous and accumulated Gly was calcium dependent. Neurons labeling for Gly included 40-46% of the amacrine cells and nearly 40% of the bipolars. Synaptic labeling was seen throughout the inner plexiform layer (IPL) but with a preferential distribution in the inner half. Bands of labeled puncta occurred in S2, S4, and S5. Both light and postembedding electron microscopic (EM) immunocytochemistry identified different types of amacrine and bipolar cell bodies and their synaptic terminals. The most heavily labeled Gly+ cell bodies typically were amacrine cells having a single, thick, basal dendrite extending deep into the IPL and, at the EM level, electron-dense cytoplasm and prominent nuclear infoldings. This cell type may be homologous with the Gly2 cell in human retina and the AII/Gly2 of cat retina. Gly+ amacrines synapse most frequently onto Gly- amacrines and both Gly- and Gly+ bipolars. Gly+ bipolar cells appeared to be cone bipolars because their labeled dendrites could be traced only to cone pedicles. The pattern of these labeled dendritic trees indicated that both diffuse and midget types of biopolars were Gly+. The EM distribution of labeled synapses showed Gly+ amacrine synapses throughout the IPL, but these composed only 11-23% of the amacrine population. Most of the Gly+ bipolar terminals were in the inner IPL, where 70% of all bipolar terminals were labeled

  18. A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites.

    Directory of Open Access Journals (Sweden)

    Xuan Xiao

    Full Text Available Prediction of protein subcellular localization is a challenging problem, particularly when the system concerned contains both singleplex and multiplex proteins. In this paper, by introducing the "multi-label scale" and hybridizing the information of gene ontology with the sequential evolution information, a novel predictor called iLoc-Gneg is developed for predicting the subcellular localization of gram-positive bacterial proteins with both single-location and multiple-location sites. For facilitating comparison, the same stringent benchmark dataset used to estimate the accuracy of Gneg-mPLoc was adopted to demonstrate the power of iLoc-Gneg. The dataset contains 1,392 gram-negative bacterial proteins classified into the following eight locations: (1 cytoplasm, (2 extracellular, (3 fimbrium, (4 flagellum, (5 inner membrane, (6 nucleoid, (7 outer membrane, and (8 periplasm. Of the 1,392 proteins, 1,328 are each with only one subcellular location and the other 64 are each with two subcellular locations, but none of the proteins included has pairwise sequence identity to any other in a same subset (subcellular location. It was observed that the overall success rate by jackknife test on such a stringent benchmark dataset by iLoc-Gneg was over 91%, which is about 6% higher than that by Gneg-mPLoc. As a user-friendly web-server, iLoc-Gneg is freely accessible to the public at http://icpr.jci.edu.cn/bioinfo/iLoc-Gneg. Meanwhile, a step-by-step guide is provided on how to use the web-server to get the desired results. Furthermore, for the user's convenience, the iLoc-Gneg web-server also has the function to accept the batch job submission, which is not available in the existing version of Gneg-mPLoc web-server. It is anticipated that iLoc-Gneg may become a useful high throughput tool for Molecular Cell Biology, Proteomics, System Biology, and Drug Development.

  19. Viability testing and transplantation of marginal livers (VITTAL) using normothermic machine perfusion: study protocol for an open-label, non-randomised, prospective, single-arm trial.

    Science.gov (United States)

    Laing, Richard W; Mergental, Hynek; Yap, Christina; Kirkham, Amanda; Whilku, Manpreet; Barton, Darren; Curbishley, Stuart; Boteon, Yuri L; Neil, Desley A; Hübscher, Stefan G; Perera, M Thamara P R; Muiesan, Paolo; Isaac, John; Roberts, Keith J; Cilliers, Hentie; Afford, Simon C; Mirza, Darius F

    2017-11-28

    The use of marginal or extended criteria donor livers is increasing. These organs carry a greater risk of initial dysfunction and early failure, as well as inferior long-term outcomes. As such, many are rejected due to a perceived risk of use and use varies widely between centres. Ex situ normothermic machine perfusion of the liver (NMP-L) may enable the safe transplantation of organs that meet defined objective criteria denoting their high-risk status and are currently being declined for use by all the UK transplant centres. Viability testing and transplantation of marginal livers is an open-label, non-randomised, prospective, single-arm trial designed to determine whether currently unused donor livers can be salvaged and safely transplanted with equivalent outcomes in terms of patient survival. The procured rejected livers must meet predefined criteria that objectively denote their marginal condition. The liver is subjected to NMP-L following a period of static cold storage. Organs metabolising lactate to ≤2.5 mmol/L within 4 hours of the perfusion commencing in combination with two or more of the following parameters-bile production, metabolism of glucose, a hepatic arterial flow rate ≥150 mL/min and a portal venous flow rate ≥500 mL/min, a pH ≥7.30 and/or maintain a homogeneous perfusion-will be considered viable and transplanted into a suitable consented recipient. The coprimary outcome measures are the success rate of NMP-L to produce a transplantable organ and 90-day patient post-transplant survival. The protocol was approved by the National Research Ethics Service (London-Dulwich Research Ethics Committee, 16/LO/1056), the Medicines and Healthcare Products Regulatory Agency and is endorsed by the National Health Service Blood and Transplant Research, Innovation and Novel Technologies Advisory Group. The findings of this trial will be disseminated through national and international presentations and peer-reviewed publications. NCT02740608

  20. Integrated MRSA-Management (IMM with prolonged decolonization treatment after hospital discharge is effective: a single centre, non-randomised open-label trial

    Directory of Open Access Journals (Sweden)

    Bernhard Jahn

    2016-06-01

    Full Text Available Abstract Background Guidelines for the control of hospital-acquired MRSA include decolonization measures to end MRSA carrier status in colonized and infected patients. Successful decolonization typically requires up to 22 days of treatment, which is longer than the average hospital length of stay (LOS. Incomplete decolonization is therefore common, with long-term MRSA carriage as a consequence. To overcome this, we developed an integrated MRSA Management (IMM by extending MRSA decolonization to the outpatient and domestic setting. The protocol makes use of polyhexanide-based products, in view of reported qac-mediated resistance to chlorhexidine in S. aureus and MRSA. Methods This is a prospective, single centre, controlled, non-randomized, open-label study to evaluate the efficiency of the IMM concept. The outcome of guideline-approved decolonization during hospital stay only (control group; n = 201 was compared to the outcome following IMM treatment whereby decolonization was continued after discharge in the domestic setting or in a long-term care facility (study group; n = 99. As a secondary outcome, the effect of MRSA-status of skin alterations was assessed. Results The overall decolonization rate was 47 % in the IMM patient group compared to 12 % in the control group (p  0.05. For patients with skin alterations (e.g. wounds and entry sites, decolonization success was 50 % if the skin alterations were MRSA-negative at baseline, compared to 22 % success for patients entering the study with MRSA-positive skin alterations (p < 0.01. Conclusions The IMM strategy offers an MRSA decolonization protocol that is feasible in the domestic setting and is equally effective compared with inpatient decolonization treatment when hospital LOS is long enough to complete the treatment. Moreover, for patients with average LOS, decolonization rates obtained with IMM are significantly higher than for in-hospital treatment. IMM is a promising

  1. Efficacy and safety of flexibly dosed paliperidone palmitate in Chinese patients with acute schizophrenia: an open-label, single-arm, prospective, interventional study

    Directory of Open Access Journals (Sweden)

    Si TM

    2015-06-01

    Full Text Available Tianmei Si,1 Kerang Zhang,2 Jisheng Tang,3 Maosheng Fang,4 Keqing Li,5 Jianmin Zhuo,6 Yu Feng6 1Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, Beijing, People’s Republic of China; 2Shanxi Medical University First Hospital, Shanxi, People’s Republic of China; 3Mental Health Center of Shandong Province, Shandong, People’s Republic of China; 4Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People’s Republic of China; 5Mental Health Center of Hebei Province, Hebei, People’s Republic of China; 6Janssen Research and Development, Beijing, People’s Republic of China Abstract: This open-label, single-arm, multicenter, 13-week, prospective study explored the efficacy, safety, and tolerability of paliperidone palmitate (150 milligram equivalents [mg eq] [day 1], 100 mg eq [day 8], both deltoid injections; 75–150 mg eq, deltoid/gluteal injection in Chinese patients with acute schizophrenia (Positive and Negative Syndrome Scale [PANSS] total score ≥70, who previously had unsatisfactory therapeutic effect following oral antipsychotic treatment (without washout period. Primary efficacy endpoint was percentage of patients with ≥30% improvement in the PANSS total score at the end of 13 weeks. Secondary efficacy endpoints included change from baseline to end of week 13 in PANSS total score, PANSS subscale scores, Marder factor scores, Clinical Global Impressions–Severity score, and Personal and Social Performance Scale scores. Overall, 477/610 enrolled patients (full analysis set, 78.2% completed the study (men: 55.1%; women: 44.9%; mean age: 31.5 years. Total, 443/610 (72.6%, full analysis set patients achieved primary endpoint (mean [standard deviation] change from baseline: –30.9 [19.51]. All secondary endpoints demonstrated significant improvement at the end of 13 weeks. One death occurred during this acute phase. The most common (>5

  2. Improvement in social and cognitive functioning associated with paliperidone extended-release treatment in patients with schizophrenia: a 24-week, single arm, open-label study

    Directory of Open Access Journals (Sweden)

    Shi C

    2016-08-01

    Full Text Available Chuan Shi,1–4 Shu Qiao Yao,5 Yi Feng Xu,6 Jian Guo Shi,7 Xiu Feng Xu,8 Cong Pei Zhang,9 Hua Jin,10 Xin Yu1–4 1Clinical Research Center, Peking University Sixth Hospital, 2Clinical Research Center, Peking University Institute of Mental Health, 3Key Laboratory of Mental Health, Ministry of Health (Peking University, 4National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital, Beijing, 5Clinical Center of Psychology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 6Department of Psychiatry, Institute of Mental Health, Shanghai Jiao Tong University, Shanghai, 7Department of Psychiatry, Xi’an Mental Health Center, Xian, Shanxi Province, 8Department of Psychiatry, The First Affiliated Hospital of Kunming Medical School, Kunming, Yunnan Province, 9Department of Psychiatry, The First Haerbin Psychiatric Hospital, Haerbin, Heilongjiang Province, People’s Republic of China; 10Department of Psychiatry, University of California at San Diego, La Jolla, San Diego, CA, USA Purpose: This single-arm, open-label study aimed to explore the effects of extended-release paliperidone on social and cognitive function in patients with schizophrenia.Methods: Paliperidone extended-release (flexible dose ranging from 3 to 12 mg/day orally was administered for 24 weeks in patients with schizophrenia. Patient function was assessed using the personal and social performance scale, measurement and treatment research to improve cognition in schizophrenia initiative-consensus cognitive battery, positive and negative syndrome scale, and clinical global impression-severity.Results: Ninety patients were included in the full analysis set, while 72 patients were included in the per protocol set. The personal and social performance score was 54.3±14.3 at baseline, and significantly increased to 73.4±12.6 at week 24 (P<0.001. For the measurement and treatment research to improve cognition in schizophrenia

  3. Donepezil use in children and adolescents with tics and attention-deficit/hyperactivity disorder: an 18-week, single-center, dose-escalating, prospective, open-label study.

    Science.gov (United States)

    Cubo, Esther; Fernández Jaén, Alberto; Moreno, Celia; Anaya, Belén; González, Miguel; Kompoliti, Katie

    2008-01-01

    Striatal cholinergic dysfunction may be important in tics and attention-deficit/hyperactivity disorder (ADHD). The purpose of this study was to determine the safety profile of donepezil and whether it improves chronic tics in young patients with comorbid ADHD. This 18-week (14 weeks of open treatment followed by a 4-week washout period), single-center, dose-escalating, prospective, open-label trial was conducted in patients aged 7 to 17 years with tics, including chronic motor or vocal tics and Tourette's syndrome, and ADHD. Patients were treated with once-daily oral donepezil doses of 2.5 mg for 2 weeks, 5 mg for the next 6 weeks, and 10 mg for the last 6 weeks, followed by a 4-week washout period. Patients were evaluated using the Children's Global Assessment Scale; the Yale Global Tic Severity Scale (YGTSS); the Revised Conners' Parent Rating Scale; the Symbol and Digit Wisconsin Card Sorting Test; the Stroop black/white, color, and interference tests; the Rey Complex Figure Test; and the Children's Yale-Brown Obsessive Compulsive Scale at 4 visits: baseline, week 8 (5-mg dose), week 14 (10-mg dose), and week 18 (washout). Seventeen males and 3 females (mean [SD] age, 11.3 [1.9] years [range, 8-14 years]; tic duration, 5.3 [1.9] years; ADHD duration, 6.5 [1.7] years) were included in this study. Tics were significantly reduced at the 10-mg (week-14) donepezil visit compared with the baseline and washout visits based on the total mean (SD) tic score of the YGTSS (18.6 [9.3] vs 12.2 [11.0]; P = 0.006). Fifty percent of patients withdrew and 65% experienced adverse events. These preliminary results suggest that donepezil significantly reduced tics in these children and adolescents with comorbid ADHD who completed the study. No significant improvement in the symptoms of comorbid ADHD was found with the use of donepezil 10 mg. Donepezil 5 and 10 mg were not well tolerated in these children and adolescents.

  4. Efferent neurons to the labyrinth of Salamandra salamandra as revealed by retrograde transport of horseradish peroxidase.

    Science.gov (United States)

    Fritzsch, B

    1981-11-04

    Application of horseradish peroxidase to the severed VIIIth nerve of Salamandra salamandra resulted in heavy bilateral labeling of neurons of the medullary reticular formation. These neurons closely resemble the Mauthner neuron in their widespread dendritic ramification. In most preparations axon collaterals are seen to leave the medulla via the contralateral VIIIth nerve. It is suggested that these neurons are labyrinthine efferents.

  5. Neuronal avalanches and learning

    Energy Technology Data Exchange (ETDEWEB)

    Arcangelis, Lucilla de, E-mail: dearcangelis@na.infn.it [Department of Information Engineering and CNISM, Second University of Naples, 81031 Aversa (Italy)

    2011-05-01

    Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  6. Single-dose, subcutaneous recombinant phenylalanine ammonia lyase conjugated with polyethylene glycol in adult patients with phenylketonuria: an open-label, multicentre, phase 1 dose-escalation trial.

    Science.gov (United States)

    Longo, Nicola; Harding, Cary O; Burton, Barbara K; Grange, Dorothy K; Vockley, Jerry; Wasserstein, Melissa; Rice, Gregory M; Dorenbaum, Alejandro; Neuenburg, Jutta K; Musson, Donald G; Gu, Zhonghua; Sile, Saba

    2014-07-05

    Phenylketonuria is an inherited disease caused by impaired activity of phenylalanine hydroxylase, the enzyme that converts phenylalanine to tyrosine, leading to accumulation of phenylalanine and subsequent neurocognitive dysfunction. Phenylalanine ammonia lyase is a prokaryotic enzyme that converts phenylalanine to ammonia and trans-cinnamic acid. We aimed to assess the safety, tolerability, pharmacokinetic characteristics, and efficacy of recombinant Anabaena variabilis phenylalanine ammonia lyase (produced in Escherichia coli) conjugated with polyethylene glycol (rAvPAL-PEG) in reducing phenylalanine concentrations in adult patients with phenylketonuria. In this open-label, phase 1, multicentre trial, single subcutaneous injections of rAvPAL-PEG were given in escalating doses (0·001, 0·003, 0·010, 0·030, and 0·100 mg/kg) to adults with phenylketonuria. Participants aged 18 years or older with blood phenylalanine concentrations of 600 μmol/L or higher were recruited from among patients attending metabolic disease clinics in the USA. The primary endpoints were safety and tolerability of rAvPAL-PEG. Secondary endpoints were the pharmacokinetic characteristics of the drug and its effect on concentrations of phenylalanine. Participants and investigators were not masked to assigned dose group. This study is registered with ClinicalTrials.gov, number NCT00925054. 25 participants were recruited from seven centres between May 6, 2008, and April 15, 2009, with five participants assigned to each escalating dose group. All participants were included in the safety population. The most frequently reported adverse events were injection-site reactions and dizziness, which were self-limited and without sequelae. Two participants had serious adverse reactions to intramuscular medroxyprogesterone acetate, a drug that contains polyethylene glycol as an excipient. Three of five participants given the highest dose of rAvPAL-PEG (0·100 mg/kg) developed a generalised skin rash

  7. A new organellar complex in rat sympathetic neurons.

    Directory of Open Access Journals (Sweden)

    Matt S Ramer

    Full Text Available Membranous compartments of neurons such as axons, dendrites and modified primary cilia are defining features of neuronal phenotype. This is unlike organelles deep to the plasma membrane, which are for the most part generic and not related directly to morphological, neurochemical or functional specializations. However, here we use multi-label immunohistochemistry combined with confocal and electron microscopy to identify a very large (approximately 6 microns in diameter, entirely intracellular neuronal organelle which occurs singly in a ubiquitous but neurochemically distinct and morphologically simple subset of sympathetic ganglion neurons. Although usually toroidal, it also occurs as twists or rods depending on its intracellular position: tori are most often perinuclear whereas rods are often found in axons. These 'loukoumasomes' (doughnut-like bodies bind a monoclonal antibody raised against beta-III-tubulin (SDL.3D10, although their inability to bind other beta-III-tubulin monoclonal antibodies indicate that the responsible antigen is not known. Position-morphology relationships within neurons and their expression of non-muscle heavy chain myosin suggest a dynamic structure. They associate with nematosomes, enigmatic nucleolus-like organelles present in many neural and non-neural tissues, which we now show to be composed of filamentous actin. Loukoumasomes also separately interact with mother centrioles forming the basal body of primary cilia. They express gamma tubulin, a microtubule nucleator which localizes to non-neuronal centrosomes, and cenexin, a mother centriole-associated protein required for ciliogenesis. These data reveal a hitherto undescribed organelle, and depict it as an intracellular transport machine, shuttling material between the primary cilium, the nematosome, and the axon.

  8. Regulatory T Cell Responses in Participants with Type 1 Diabetes after a Single Dose of Interleukin-2: A Non-Randomised, Open Label, Adaptive Dose-Finding Trial.

    Directory of Open Access Journals (Sweden)

    John A Todd

    2016-10-01

    Full Text Available Interleukin-2 (IL-2 has an essential role in the expansion and function of CD4+ regulatory T cells (Tregs. Tregs reduce tissue damage by limiting the immune response following infection and regulate autoreactive CD4+ effector T cells (Teffs to prevent autoimmune diseases, such as type 1 diabetes (T1D. Genetic susceptibility to T1D causes alterations in the IL-2 pathway, a finding that supports Tregs as a cellular therapeutic target. Aldesleukin (Proleukin; recombinant human IL-2, which is administered at high doses to activate the immune system in cancer immunotherapy, is now being repositioned to treat inflammatory and autoimmune disorders at lower doses by targeting Tregs.To define the aldesleukin dose response for Tregs and to find doses that increase Tregs physiologically for treatment of T1D, a statistical and systematic approach was taken by analysing the pharmacokinetics and pharmacodynamics of single doses of subcutaneous aldesleukin in the Adaptive Study of IL-2 Dose on Regulatory T Cells in Type 1 Diabetes (DILT1D, a single centre, non-randomised, open label, adaptive dose-finding trial with 40 adult participants with recently diagnosed T1D. The primary endpoint was the maximum percentage increase in Tregs (defined as CD3+CD4+CD25highCD127low from the baseline frequency in each participant measured over the 7 d following treatment. There was an initial learning phase with five pairs of participants, each pair receiving one of five pre-assigned single doses from 0.04 × 106 to 1.5 × 106 IU/m2, in order to model the dose-response curve. Results from each participant were then incorporated into interim statistical modelling to target the two doses most likely to induce 10% and 20% increases in Treg frequencies. Primary analysis of the evaluable population (n = 39 found that the optimal doses of aldesleukin to induce 10% and 20% increases in Tregs were 0.101 × 106 IU/m2 (standard error [SE] = 0.078, 95% CI = -0.052, 0.254 and 0.497

  9. BlastNeuron for Automated Comparison, Retrieval and Clustering of 3D Neuron Morphologies.

    Science.gov (United States)

    Wan, Yinan; Long, Fuhui; Qu, Lei; Xiao, Hang; Hawrylycz, Michael; Myers, Eugene W; Peng, Hanchuan

    2015-10-01

    Characterizing the identity and types of neurons in the brain, as well as their associated function, requires a means of quantifying and comparing 3D neuron morphology. Presently, neuron comparison methods are based on statistics from neuronal morphology such as size and number of branches, which are not fully suitable for detecting local similarities and differences in the detailed structure. We developed BlastNeuron to compare neurons in terms of their global appearance, detailed arborization patterns, and topological similarity. BlastNeuron first compares and clusters 3D neuron reconstructions based on global morphology features and moment invariants, independent of their orientations, sizes, level of reconstruction and other variations. Subsequently, BlastNeuron performs local alignment between any pair of retrieved neurons via a tree-topology driven dynamic programming method. A 3D correspondence map can thus be generated at the resolution of single reconstruction nodes. We applied BlastNeuron to three datasets: (1) 10,000+ neuron reconstructions from a public morphology database, (2) 681 newly and manually reconstructed neurons, and (3) neurons reconstructions produced using several independent reconstruction methods. Our approach was able to accurately and efficiently retrieve morphologically and functionally similar neuron structures from large morphology database, identify the local common structures, and find clusters of neurons that share similarities in both morphology and molecular profiles.

  10. Pesticide Labels

    Science.gov (United States)

    Pesticide labels translate results of our extensive evaluations of pesticide products into conditions, directions and precautions that define parameters for use of a pesticide with the goal of ensuring protection of human health and the environment.

  11. The effect of mirtazapine in panic disorder : an open label pilot study with a single-blind placebo run-in period

    NARCIS (Netherlands)

    Boshuisen, ML; Slaap, BR; Vester-Blokland, ED; den Boer, JA

    2001-01-01

    In this open label pilot study, we studied the efficacy of mirtazapine (Remeron) in panic disorder. Twenty-eight patients with a DSM-IV diagnosis of panic disorder, with or without agoraphobia (10 males/18 females), were included and 19 patients completed the study. The 15-week trial started with a

  12. Single versus Serial Measurements of Neuron-Specific Enolase and Prediction of Poor Neurological Outcome in Persistently Unconscious Patients after Out-Of-Hospital Cardiac Arrest - A TTM-Trial Substudy

    DEFF Research Database (Denmark)

    Wiberg, Sebastian; Hassager, Christian; Stammet, Pascal

    2017-01-01

    of the biomarker neuron-specific enolase (NSE) in combination with other predictors of outcome in patients admitted after out-of-hospital cardiac arrest (OHCA). This study sought to investigate the ability of NSE to predict poor outcome in patients remaining unconscious at day three after OHCA. In addition......, this study sought to investigate if serial NSE measurements add incremental prognostic information compared to a single NSE measurement at 48 hours in this population. METHODS: This study is a post-hoc sub-study of the TTM trial, randomizing OHCA patients to a course of TTM at either 33°C or 36°C. Patients...

  13. Transneuronal retrograde dual viral labelling of central autonomic circuitry : possibilities and pitfalls

    NARCIS (Netherlands)

    Ter Horst, GJ

    2000-01-01

    Viral retrograde transneuronal labelling has become an important neuroanatomical tract-tracing tool for characterization of Limbic neuronal networks. Recently, dual viral retrograde transneuronal labelling has been introduced; a method employing differential transgene expression of two genetically

  14. Neuroprotective effects of a novel single compound 1-methoxyoctadecan-1-ol isolated from Uncaria sinensis in primary cortical neurons and a photothrombotic ischemia model.

    Directory of Open Access Journals (Sweden)

    Ji Yeon Jang

    Full Text Available We identified a novel neuroprotective compound, 1-methoxyoctadecan-1-ol, from Uncaria sinensis (Oliv. Havil and investigated its effects and mechanisms in primary cortical neurons and in a photothrombotic ischemic model. In primary rat cortical neurons against glutamate-induced neurotoxicity, pretreatment with 1-methoxyoctadecan-1-ol resulted in significantly reduced neuronal death in a dose-dependent manner. In addition, treatment with 1-methoxyoctadecan-1-ol resulted in decreased neuronal apoptotic death, as assessed by nuclear morphological approaches. To clarify the neuroprotective mechanism of 1-methoxyoctadecan-1-ol, we explored the downstream signaling pathways of N-methyl-D-aspartate receptor (NMDAR with calpain activation. Treatment with glutamate leads to early activation of NMDAR, which in turn leads to calpain-mediated cleavage of striatal-enriched protein tyrosine phosphatase (STEP and subsequent activation of p38 mitogen activated protein kinase (MAPK. However, pretreatment with 1-methoxyoctadecan-1-ol resulted in significantly attenuated activation of GluN2B-NMDAR and a decrease in calpain-mediated STEP cleavage, leading to subsequent attenuation of p38 MAPK activation. We confirmed the critical role of p38 MAPK in neuroprotective effects of 1-methoxyoctadecan-1-ol using specific inhibitor SB203580. In the photothrombotic ischemic injury in mice, treatment with 1-methoxyoctadecan-1-ol resulted in significantly reduced infarct volume, edema size, and improved neurological function. 1-methoxyoctadecan-1-ol effectively prevents cerebral ischemic damage through down-regulation of calpain-mediated STEP cleavage and activation of p38 MAPK. These results suggest that 1-methoxyoctadecan-1-ol showed neuroprotective effects through down-regulation of calpain-mediated STEP cleavage with activation of GluN2B-NMDAR, and subsequent alleviation of p38 MAPK activation. In addition, 1-methoxyoctadecan-1-ol might be a useful therapeutic agent for

  15. [Mirror neurons].

    Science.gov (United States)

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal. Some of them also respond to the emotional expression of other animals of the same species. These mirror neurons have also been found in humans. They respond to or "reflect" actions of other individuals in the brain and are thought to represent the basis for imitation and empathy and hence the neurobiological substrate for "theory of mind", the potential origin of language and the so-called moral instinct.

  16. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial.

    Science.gov (United States)

    Tawbi, Hussein A; Burgess, Melissa; Bolejack, Vanessa; Van Tine, Brian A; Schuetze, Scott M; Hu, James; D'Angelo, Sandra; Attia, Steven; Riedel, Richard F; Priebat, Dennis A; Movva, Sujana; Davis, Lara E; Okuno, Scott H; Reed, Damon R; Crowley, John; Butterfield, Lisa H; Salazar, Ruth; Rodriguez-Canales, Jaime; Lazar, Alexander J; Wistuba, Ignacio I; Baker, Laurence H; Maki, Robert G; Reinke, Denise; Patel, Shreyaskumar

    2017-11-01

    Patients with advanced sarcomas have a poor prognosis and few treatment options that improve overall survival. Chemotherapy and targeted therapies offer short-lived disease control. We assessed pembrolizumab, an anti-PD-1 antibody, for safety and activity in patients with advanced soft-tissue sarcoma or bone sarcoma. In this two-cohort, single-arm, open-label, phase 2 study, we enrolled patients with soft-tissue sarcoma or bone sarcoma from 12 academic centres in the USA that were members of the Sarcoma Alliance for Research through Collaboration (SARC). Patients with soft-tissue sarcoma had to be aged 18 years or older to enrol; patients with bone sarcoma could enrol if they were aged 12 years or older. Patients had histological evidence of metastatic or surgically unresectable locally advanced sarcoma, had received up to three previous lines of systemic anticancer therapy, had at least one measurable lesion according to the Response Evaluation Criteria In Solid Tumors version 1.1, and had at least one lesion accessible for biopsy. All patients were treated with 200 mg intravenous pembrolizumab every 3 weeks. The primary endpoint was investigator-assessed objective response. Patients who received at least one dose of pembrolizumab were included in the safety analysis and patients who progressed or reached at least one scan assessment were included in the activity analysis. Accrual is ongoing in some disease cohorts. This trial is registered with ClinicalTrials.gov, number NCT02301039. Between March 13, 2015, and Feb 18, 2016, we enrolled 86 patients, 84 of whom received pembrolizumab (42 in each disease cohort) and 80 of whom were evaluable for response (40 in each disease cohort). Median follow-up was 17·8 months (IQR 12·3-19·3). Seven (18%) of 40 patients with soft-tissue sarcoma had an objective response, including four (40%) of ten patients with undifferentiated pleomorphic sarcoma, two (20%) of ten patients with liposarcoma, and one (10%) of ten patients

  17. Noisy Neurons

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 1. Noisy Neurons: Hodgkin-Huxley Model and Stochastic Variants. Shurti Paranjape. General Article Volume 20 Issue 1 January 2015 pp 34-43. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. Subtypes of GABAergic neurons project axons in the neocortex

    Directory of Open Access Journals (Sweden)

    Shigeyoshi Higo

    2009-11-01

    Full Text Available γ-aminobutyric acid (GABAergic neurons in the neocortex have been regarded as interneurons and speculated to modulate the activity of neurons locally. Recently, however, several experiments revealed that neuronal nitric oxide synthase (nNOS-positive GABAergic neurons project cortico-cortically with long axons. In this study, we illustrate Golgi-like images of the nNOS-positive GABAergic neurons using a nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d reaction and follow the emanating axon branches in cat brain sections. These axon branches projected cortico-cortically with other non-labeled arcuate fibers, contra-laterally via the corpus callosum and anterior commissure. The labeled fibers were not limited to the neocortex but found also in the fimbria of the hippocampus. In order to have additional information on these GABAergic neuron projections, we investigated green fluorescent protein (GFP-labeled GABAergic neurons in GAD67-Cre knock-in / GFP Cre-reporter mice. GFP-labeled axons emanate densely, especially in the fimbria, a small number in the anterior commissure, and very sparsely in the corpus callosum. These two different approaches confirm that not only nNOS-positive GABAergic neurons but also other subtypes of GABAergic neurons project long axons in the cerebral cortex and are in a position to be involved in information processing.

  19. Multi-label

    Directory of Open Access Journals (Sweden)

    Neda Abdelhamid

    2015-01-01

    Full Text Available Generating multi-label rules in associative classification (AC from single label data sets is considered a challenging task making the number of existing algorithms for this task rare. Current AC algorithms produce only the largest frequency class connected with a rule in the training data set and discard all other classes even though these classes have data representation with the rule’s body. In this paper, we deal with the above problem by proposing an AC algorithm called Enhanced Multi-label Classifiers based Associative Classification (eMCAC. This algorithm discovers rules associated with a set of classes from single label data that other current AC algorithms are unable to induce. Furthermore, eMCAC minimises the number of extracted rules using a classifier building method. The proposed algorithm has been tested on a real world application data set related to website phishing and the results reveal that eMCAC’s accuracy is highly competitive if contrasted with other known AC and classic classification algorithms in data mining. Lastly, the experimental results show that our algorithm is able to derive new rules from the phishing data sets that end-users can exploit in decision making.

  20. Modeling Spike-Train Processing in the Cerebellum Granular Layer and Changes in Plasticity Reveal Single Neuron Effects in Neural Ensembles

    Directory of Open Access Journals (Sweden)

    Chaitanya Medini

    2012-01-01

    Full Text Available The cerebellum input stage has been known to perform combinatorial operations on input signals. In this paper, two types of mathematical models were used to reproduce the role of feed-forward inhibition and computation in the granular layer microcircuitry to investigate spike train processing. A simple spiking model and a biophysically-detailed model of the network were used to study signal recoding in the granular layer and to test observations like center-surround organization and time-window hypothesis in addition to effects of induced plasticity. Simulations suggest that simple neuron models may be used to abstract timing phenomenon in large networks, however detailed models were needed to reconstruct population coding via evoked local field potentials (LFP and for simulating changes in synaptic plasticity. Our results also indicated that spatio-temporal code of the granular network is mainly controlled by the feed-forward inhibition from the Golgi cell synapses. Spike amplitude and total number of spikes were modulated by LTP and LTD. Reconstructing granular layer evoked-LFP suggests that granular layer propagates the nonlinearities of individual neurons. Simulations indicate that granular layer network operates a robust population code for a wide range of intervals, controlled by the Golgi cell inhibition and is regulated by the post-synaptic excitability.

  1. Prolonged induction of c-fos in neuropeptide Y- and somatostatin-immunoreactive neurons of the rat dentate gyrus after electroconvulsive stimulation

    DEFF Research Database (Denmark)

    Woldbye, D P; Greisen, M H; Bolwig, T G

    1996-01-01

    Induction of c-fos mRNA and Fos was studied in the hilus and granular layer of the dentate gyrus at various times up to 24 h after single electroconvulsive stimulation (ECS) using in situ hybridization and immunocytochemistry. In both areas of the dentate gyrus, a prominent induction of c-fos m....../or somatostatin (SS). Using double-labelling immunocytochemistry, we examined to what extent Fos was induced in these hilar neurons after ECS. Although a minor population of non-NPY non-SS cells displayed Fos induction early after ECS, prolonged induction of Fos almost exclusively occurred in NPY or SS neurons...

  2. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... properties of this facility in the path from synaptic sites to the motor axon is reviewed with emphasis on voltage sensitive ion channels and regulatory metabotropic transmitter pathways. The catalog of the intrinsic response properties, their underlying mechanisms, and regulation obtained from motoneurons...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  3. Label-free Detection of Microcystin-LR in Waters Using Real-Time Potentiometric Biosensors Based on Single-Walled Carbon Nanotubes Imprinted Polymers

    OpenAIRE

    Queirós, Raquel B.; Noronha, João P. C.; Marques, P.V.S.; Sales, M. Goreti F.

    2012-01-01

    Microcystin-LR (MC-LR) is a dangerous toxin found in environmental waters, quantified by high performance liquid chromatography and/or enzyme-linked immunosorbent assays. Quick, low cost and on-site analysis is thus required to ensure human safety and wide screening programs. This work proposes label-free potentiometric sensors made of solid-contact electrodes coated with a surface imprinted polymer on the surface of Multi-Walled Carbon NanoTubes (CNTs) incorporated in a polyvinyl chloride me...

  4. Glutamate and GABA in vestibulo-sympathetic pathway neurons

    Directory of Open Access Journals (Sweden)

    Gay R Holstein

    2016-02-01

    Full Text Available The vestibulo-sympathetic reflex actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The vestibulo-sympathetic reflex pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively. The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the vestibulo-sympathetic reflex pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation was employed to activate these pathways. Central vestibular neurons of the vestibulo-sympathetic reflex were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified vestibulo-sympathetic reflex pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. Vestibulo-sympathetic reflex pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the

  5. Neurons other than motor neurons in motor neuron disease.

    Science.gov (United States)

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  6. Expression of dystrophin in the mouse myenteric neurones.

    Science.gov (United States)

    Vannucchi, M G; Corsani, L; Giovannini, M G; Faussone-Pellegrini, M S

    2001-03-09

    Dystrophin, a membrane-associated protein, plays relevant roles in cell functions. Its lack or trunkated expression results in Duchenne muscular dystrophy (DMD), a pathology associated with alterations in gastrointestinal motility considered to be neural in origin. No data are available on the presence of dystrophin in myenteric neurones. We labelled mouse myenteric neurones with DYS1-, DYS2-, DYS3-antibodies; staining was located on the perikarya and processes, with no differences in distribution or intensity among the antibodies; the western immunoblot analysis indicated that myenteric neurones express several dystrophin isoforms; anti-dystrophins/anti-neuronal specific enolase double-labeling confirmed that all neurones express dystrophin. Dystrophin in myenteric neurones might play a role in cytoskeletal organization, axonal transport and signal pathways; its lack might cause the intestinal motor abnormalities reported in DMD patients.

  7. Neuronal Cell Death Induced by Mechanical Percussion Trauma in Cultured Neurons is not Preceded by Alterations in Glucose, Lactate and Glutamine Metabolism

    DEFF Research Database (Denmark)

    Jayakumar, A R; Bak, L K; Rama Rao, K V

    2016-01-01

    to neurobehavioral and cognitive impairments, that usually develop months to years after single or repetitive episodes of head trauma, are major consequences of chronic TBI. The molecular mechanisms responsible for TBI-induced injury, however, are unclear. Recent studies have suggested that early mitochondrial......Traumatic brain injury (TBI) is a devastating neurological disorder that usually presents in acute and chronic forms. Brain edema and associated increased intracranial pressure in the early phase following TBI are major consequences of acute trauma. On the other hand, neuronal injury, leading...... dysfunction and subsequent energy failure play a role in the pathogenesis of TBI. We therefore examined whether oxidative metabolism of (13)C-labeled glucose, lactate or glutamine is altered early following in vitro mechanical percussion-induced trauma (5 atm) to neurons (4-24 h), and whether such events...

  8. Schwann cells promote neuronal differentiation of bone marrow ...

    African Journals Online (AJOL)

    It has been suggested that the BMSCs have the capacity to differentiate into neurons under specific experimental conditions, using chemical factors. In this study, we showed that BMSCs can be induced to differentiate into neuron-like cells when they are co-cultured with Schwann cells by Brdu pulse label technology.

  9. Characteristics of sodium currents in rat geniculate ganglion neurons.

    Science.gov (United States)

    Nakamura, Shiro; Bradley, Robert M

    2011-12-01

    Geniculate ganglion (GG) cell bodies of chorda tympani (CT), greater superficial petrosal (GSP), and posterior auricular (PA) nerves transmit orofacial sensory information to the rostral nucleus of the solitary tract. We have used whole cell recording to investigate the characteristics of the Na(+) channels in isolated Fluorogold-labeled GG neurons that innervate different peripheral receptive fields. GG neurons expressed two classes of Na(+) channels, TTX sensitive (TTX-S) and TTX resistant (TTX-R). The majority of GG neurons expressed TTX-R currents of different amplitudes. TTX-R currents were relatively small in 60% of the neurons but were large in 12% of the sampled population. In a further 28% of the neurons, TTX completely abolished all Na(+) currents. Application of TTX completely inhibited action potential generation in all CT and PA neurons but had little effect on the generation of action potentials in 40% of GSP neurons. Most CT, GSP, and PA neurons stained positively with IB(4), and 27% of the GSP neurons were capsaicin sensitive. The majority of IB(4)-positive GSP neurons with large TTX-R Na(+) currents responded to capsaicin, whereas IB(4)-positive GSP neurons with small TTX-R Na(+) currents were capsaicin insensitive. These data demonstrate the heterogeneity of GG neurons and indicate the existence of a subset of GSP neurons sensitive to capsaicin, usually associated with nociceptors. Since there are no reports of nociceptors in the GSP receptive field, the role of these capsaicin-sensitive neurons is not clear.

  10. Food labels

    DEFF Research Database (Denmark)

    Selsøe Sørensen, Henrik; Clement, Jesper; Gabrielsen, Gorm

    2012-01-01

    The food industry develops tasty and healthy food but fails to deliver the message to all consumers. The consumers’ background knowledge is essential for how they find and decode relevant elements in the cocktail of signs which fight for attention on food labels. In this exploratory study, we find...... evidence for dividing consumers into two profiles: one relying on general food knowledge and another using knowledge related to signpost labels. In a combined eyetracking and questionnaire survey we analyse the influence of background knowledge and identify different patterns of visual attention...... for the two consumer profiles. This underlines the complexity in choosing and designing the ‘right’ elements for a food package that consumers actually look at and are able to make rational use of. In spite of any regulation of food information provided by authorities, consumers will still be confronted...

  11. Emotionel Labeling

    OpenAIRE

    Andersen, Nanna Sofie Garnov; Pedersen, Mette Kofoed; de Wit, Liv Kantsø; Ørndorf, Siri; Dissing, Celina Kyrn

    2017-01-01

    This project arises from the ideas of social constructionist theorist Kenneth J. Gergen and his presentation of Emotional Labeling as presented in his work The saturated self: Dilemmas of identity in contemporary life (1991). And on that note we are examining how emotions are being dealt with in a Danish kindergarten. We investigate what might influence the issue of emotions being taught has on children’s emotional development in everyday life. In order to do so we have conducted observations...

  12. Defining POMC neurons using transgenic reagents: impact of transient Pomc expression in diverse immature neuronal populations.

    Science.gov (United States)

    Padilla, Stephanie L; Reef, Daniel; Zeltser, Lori M

    2012-03-01

    Melanocortin signaling plays a central role in the regulation of phenotypes related to body weight and energy homeostasis. To specifically target and study the function of proopiomelanocortin (POMC) neurons, Pomc promoter elements have been utilized to generate reporter and Cre recombinase transgenic reagents. Across gestation, we find that Pomc is dynamically expressed in many sites in the developing mouse forebrain, midbrain, hindbrain, spinal cord, and retina. Although Pomc expression in most embryonic brain regions is transient, it is sufficient to direct Cre-mediated recombination of floxed alleles. We visualize the populations affected by this transgene by crossing Pomc-Cre mice to ROSA reporter strains and identify 62 sites of recombination throughout the adult brain, including several nuclei implicated in energy homeostasis regulation. To compare the relationship between acute Pomc promoter activity and Pomc-Cre-mediated recombination at the single cell level, we crossed Pomc-enhanced green fluorescent protein (eGFP) and Pomc-Cre;ROSA-tdTomato lines. We detect the highest concentration of Pomc-eGFP+ cells in the arcuate nucleus of the hypothalamus and dentate gyrus but also observe smaller populations of labeled cells in the nucleus of the solitary tract, periventricular zone of the third ventricle, and cerebellum. Consistent with the dynamic nature of Pomc expression in the embryo, the vast majority of neurons marked with the tdTomato reporter do not express eGFP in the adult. Thus, recombination in off-target sites could contribute to physiological phenotypes using Pomc-Cre transgenics. For example, we find that approximately 83% of the cells in the arcuate nucleus of the hypothalamus immunoreactive for leptin-induced phosphorylated signal transducer and activator of transcription 3 are marked with Pomc-Cre;ROSA-tdTomato; only 13% of these are eGFP+ POMC neurons.

  13. Ctip2-, Satb2-, Prox1-, and GAD65-Expressing Neurons in Rat Cultures: Preponderance of Single- and Double-Positive Cells, and Cell Type-Specific Expression of Neuron-Specific Gene Family Members, Nsg-1 (NEEP21) and Nsg-2 (P19).

    Science.gov (United States)

    Digilio, Laura; Yap, Chan Choo; Winckler, Bettina

    2015-01-01

    The brain consists of many distinct neuronal cell types, but which cell types are present in widely used primary cultures of embryonic rodent brain is often not known. We characterized how abundantly four cell type markers (Ctip2, Satb2, Prox1, GAD65) were represented in cultured rat neurons, how easily neurons expressing different markers can be transfected with commonly used plasmids, and whether neuronal-enriched endosomal proteins Nsg-1 (NEEP21) and Nsg-2 (P19) are ubiquitously expressed in all types of cultured neurons. We found that cultured neurons stably maintain cell type identities that are reflective of cell types in vivo. This includes neurons maintaining simultaneous expression of two transcription factors, such as Ctip2+/Satb2+ or Prox1+/Ctip2+ double-positive cells, which have also been described in vivo. Secondly, we established the superior efficiency of CAG promoters for both Lipofectamine-mediated transfection as well as for electroporation. Thirdly, we discovered that Nsg-1 and Nsg-2 were not expressed equally in all neurons: whereas high levels of both Nsg-1 and Nsg-2 were found in Satb2-, Ctip2-, and GAD65-positive neurons, Prox1-positive neurons in hippocampal cultures expressed low levels of both. Our findings thus highlight the importance of identifying neuronal cell types for doing cell biology in cultured neurons: Keeping track of neuronal cell type might uncover effects in assays that might otherwise be masked by the mixture of responsive and non-responsive neurons in the dish.

  14. Label-free Quantification of Proteins in Single Embryonic Cells with Neural Fate in the Cleavage-Stage Frog (Xenopus laevis) Embryo using Capillary Electrophoresis Electrospray Ionization High-Resolution Mass Spectrometry (CE-ESI-HRMS).

    Science.gov (United States)

    Lombard-Banek, Camille; Reddy, Sushma; Moody, Sally A; Nemes, Peter

    2016-08-01

    Quantification of protein expression in single cells promises to advance a systems-level understanding of normal development. Using a bottom-up proteomic workflow and multiplexing quantification by tandem mass tags, we recently demonstrated relative quantification between single embryonic cells (blastomeres) in the frog (Xenopus laevis) embryo. In this study, we minimize derivatization steps to enhance analytical sensitivity and use label-free quantification (LFQ) for single Xenopus cells. The technology builds on a custom-designed capillary electrophoresis microflow-electrospray ionization high-resolution mass spectrometry platform and LFQ by MaxLFQ (MaxQuant). By judiciously tailoring performance to peptide separation, ionization, and data-dependent acquisition, we demonstrate an ∼75-amol (∼11 nm) lower limit of detection and quantification for proteins in complex cell digests. The platform enabled the identification of 438 nonredundant protein groups by measuring 16 ng of protein digest, or embryo. LFQ intensity was validated as a quantitative proxy for protein abundance. Correlation analysis was performed to compare protein quantities between the embryo and n = 3 different single D11 blastomeres, which are fated to develop into the nervous system. A total of 335 nonredundant protein groups were quantified in union between the single D11 cells spanning a 4 log-order concentration range. LFQ and correlation analysis detected expected proteomic differences between the whole embryo and blastomeres, and also found translational differences between individual D11 cells. LFQ on single cells raises exciting possibilities to study gene expression in other cells and models to help better understand cell processes on a systems biology level. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Label-free Quantification of Proteins in Single Embryonic Cells with Neural Fate in the Cleavage-Stage Frog (Xenopus laevis) Embryo using Capillary Electrophoresis Electrospray Ionization High-Resolution Mass Spectrometry (CE-ESI-HRMS)*

    Science.gov (United States)

    Lombard-Banek, Camille; Reddy, Sushma; Moody, Sally A.; Nemes, Peter

    2016-01-01

    Quantification of protein expression in single cells promises to advance a systems-level understanding of normal development. Using a bottom-up proteomic workflow and multiplexing quantification by tandem mass tags, we recently demonstrated relative quantification between single embryonic cells (blastomeres) in the frog (Xenopus laevis) embryo. In this study, we minimize derivatization steps to enhance analytical sensitivity and use label-free quantification (LFQ) for single Xenopus cells. The technology builds on a custom-designed capillary electrophoresis microflow-electrospray ionization high-resolution mass spectrometry platform and LFQ by MaxLFQ (MaxQuant). By judiciously tailoring performance to peptide separation, ionization, and data-dependent acquisition, we demonstrate an ∼75-amol (∼11 nm) lower limit of detection and quantification for proteins in complex cell digests. The platform enabled the identification of 438 nonredundant protein groups by measuring 16 ng of protein digest, or embryo. LFQ intensity was validated as a quantitative proxy for protein abundance. Correlation analysis was performed to compare protein quantities between the embryo and n = 3 different single D11 blastomeres, which are fated to develop into the nervous system. A total of 335 nonredundant protein groups were quantified in union between the single D11 cells spanning a 4 log-order concentration range. LFQ and correlation analysis detected expected proteomic differences between the whole embryo and blastomeres, and also found translational differences between individual D11 cells. LFQ on single cells raises exciting possibilities to study gene expression in other cells and models to help better understand cell processes on a systems biology level. PMID:27317400

  16. Synthesis, Characterization, and Preclinical Evaluation of (99m)Tc-Labeled Macrobicyclic and Tricyclic Chelators as Single Photon Emission Computed Tomography Tracer.

    Science.gov (United States)

    Yadav, Neelam; Chuttani, Krishna; Mishra, Anil K; Singh, Bachcha

    2016-05-01

    The novel tetraaza macrobicyclic chelator 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-2,10-dione (TBPD) and pentaaza macrotricyclic chelator 9-oxa-3,6,12,15,21-pentaazatricyclo[15,3,2,1]trieicos-1(21),17,19-triene-2,7,11,16-tetradione (OPTT) were synthesized, characterized, and radiolabeled with (99m)Tc to produce (99m)Tc-TBPD and (99m)Tc-OPTT. These radiolabeled complexes were prepared with high radiolabeling yield, radiochemical purity, and good in vitro stability up to 24 h. The labeling efficiency of (99m)Tc-TBPD and (99m)Tc-OPTT was found 98% and 97%. In vitro serum stability of (99m)Tc-TBPD was found to be 95.2%, while that of (99m)Tc-OPTT 94.2% up to 24 h. Blood kinetics experiments of (99m)Tc-labeled complexes showed biphasic pattern of blood clearance. About 99.57 ± 0.89% activity of (99m)Tc-TBPD and 99.42 ± 0.88% activity of (9m)Tc-OPTT were cleared off blood stream at 24 h postadministration. The biological half-life of (99m) Tc-TBPD was observed: t1/2(F) 1 h 5 min and t1/2(S) 12 h and biological half-life of (99m)Tc-OPTT was observed: t1/2(F) 1 h 10 min and t1/2(S) 9 h 50 min, respectively. The biodistribution studies revealed that maximum uptake of (99m)Tc-TBPD was found in liver, concluded that excretory pathway is hepatobiliary, while that of (99m)Tc-OPTT was renal as well as hepatobiliary. The negligible activity observed in stomach confirming the stability of radiolabeled complex in biological milieu. In vitro cytotoxicity study of TBPD and OPTT did not show any considerable antiproliferative activity against cancer cells of human cervical SW756, HeLa, and glioblastoma U-87, U373 cell lines. © 2015 John Wiley & Sons A/S.

  17. A natural form of learning can increase and decrease the survival of new neurons in the dentate gyrus.

    Science.gov (United States)

    Olariu, Ana; Cleaver, Kathryn M; Shore, Lauren E; Brewer, Michelle D; Cameron, Heather A

    2005-01-01

    Granule cells born in the adult dentate gyrus undergo a 4-week developmental period characterized by high susceptibility to cell death. Two forms of hippocampus-dependent learning have been shown to rescue many of the new neurons during this critical period. Here, we show that a natural form of associative learning, social transmission of food preference (STFP), can either increase or decrease the survival of young granule cells in adult rats. Increased numbers of pyknotic as well as phospho-Akt-expressing BrdU-labeled cells were seen 1 day after STFP training, indicating that training rapidly induces both cell death and active suppression of cell death in different subsets. A single day of training for STFP increased the survival of 8-day-old BrdU-labeled cells when examined 1 week later. In contrast, 2 days of training decreased the survival of BrdU-labeled cells and the density of immature neurons, identified with crmp-4. This change from increased to decreased survival could not be accounted for by the ages of the cells. Instead, we propose that training may initially increase young granule cell survival, then, if continued, cause them to die. This complex regulation of cell death could potentially serve to maintain granule cells that are actively involved in memory consolidation, while rapidly using and discarding young granule cells whose training is complete to make space for new naïve neurons. Published 2005 Wiley-Liss, Inc.

  18. Preliminary experience with thallous chloride T1 201-labeled single-photon emission computed tomography scanning in head and neck cancer

    NARCIS (Netherlands)

    Gregor, R. T.; Valdés-Olmos, R.; Koops, W.; Balm, A. J.; Hilgers, F. J.; Hoefnagel, C. A.

    1996-01-01

    To test the feasibility of single-photon emission computed tomography (SPECT) scanning with the use of thallous chloride T1 201 in patients with head and neck cancer and to decide its possible applications to improve the diagnosis and staging of head and neck cancer. Findings from SPECT with the use

  19. Effervescent N-Acetylcysteine Tablets versus Oral Solution N-Acetylcysteine in Fasting Healthy Adults: An Open-Label, Randomized, Single-Dose, Crossover, Relative Bioavailability Study

    Directory of Open Access Journals (Sweden)

    Spencer C. Greene, MD, FACEP, FACMT

    2016-01-01

    Conclusions: Data from this study of a single dose of 11 g oral NAC demonstrated that effervescent NAC tablets and oral solution NAC met the regulatory criteria for bioequivalence in fasting healthy adult subjects. Effervescent NAC tablets appear to be a more palatable alternative for treatment of acetaminophen overdose. ClinicalTrials.gov identifier: NCT02723669.

  20. Second-line pemetrexed treatment in Taiwanese patients with advanced nonsmall cell lung cancer: An open-label single-arm study

    Directory of Open Access Journals (Sweden)

    Gee-Chen Chang

    2013-09-01

    Conclusion: The objective response rate, disease control rate, and safety and tolerability profile in this population of Taiwanese patients were consistent with the published findings that were conducted using Asian and Western populations. These findings support the use of single-agent, second-line pemetrexed for the treatment of advanced nonsmall cell lung cancer in Taiwanese patients.

  1. Inventing atomic resolution scanning dielectric microscopy to see a single protein complex operation live at resonance in a neuron without touching or adulterating the cell.

    Science.gov (United States)

    Agrawal, Lokesh; Sahu, Satyajit; Ghosh, Subrata; Shiga, Takashi; Fujita, Daisuke; Bandyopadhyay, Anirban

    2016-12-01

    A substantial ion flow in a normally wet protein masks any other forms of signal transmission. We use hysteresis and linear conduction (both are artifacts) as a marker to precisely wet a protein, which restricts the ionic conduction (hysteresis disappears), and at the same time, it is not denatured (quantized conductance and Raman spectra are intact). Pure electric visualization of proteins at work by eliminating the screening of ions, electrons, would change the way we study biology. Here we discuss the technical challenges resolved for imaging a protein or live cell using nonlinear dielectric response (spatial distribution of conductance, capacitance and phase, GCP trio). We electromagnetically triggered electrical, mechanical, thermal and ionic resonant vibrations in a protein. During resonant oscillations, we imaged the protein using resonant scanning tunneling microscopy of biomaterials (Brestum) and during ionic firing we imaged live what happens inside an axon core of a neuron by using our atomic scale scanning dielectric microscopy (Asadim). Both Asadim and Brestum are housed in a homebuilt scanning tunneling microscope (bio-STM) and a special micro-grid developed by us (patent JP-5187804) for fractal supercomputing. We found the trick to turn a membrane transparent and see inside without making any physical contact. We image live that a protein molecule adopts a unique configuration for each resonance frequency, - thus far unknown to biology. "Membrane alone fires" is found to be wrong after a century, micro-neuro-filaments communicate prior to firing to decide its necessity and then regulate it suitably. We introduce a series of technologies e.g., fractal grid, point contact, micro THz antenna, to discover that from atomic structure to a living cell, the biomaterials vibrate collectively.

  2. [Neuroanatomical basis of clinical joint application of "Jinggu" (BL 64, a source-acupoint) and "Dazhong" (KI 4, a Luo-acupoint) in the rat: a double-labeling study of cholera toxin subunit B conjugated with Alexa Fluor 488 and 594].

    Science.gov (United States)

    Cui, Jing-jing; Zhu, Xin-long; Ji, Chang-fu; Jing, Xiang-hong; Bai, Wan-zhu

    2011-08-01

    To study the specific correlation between "Jinggu" (BL 64) and "Dazhong" (KI 4) in the nervous system by using a double-labeling of cholera toxin subunit B conjugated with Alexa Fluor 488 and 594 (CTB-Alexa 488, 594) in rats, so as to investigate its neuroanatomical basis for clinical joint-application of Yuan-Source and Luo acupoints. Three male SD rats were used in the present study. Under anesthesia (10% urethane), 0.1% CTB-Alexa 488 (5 microL) and CTB-Alexa 594 (5 microL) were respectively injected into the border area between the red and white flesh, distal to the tuberosity of the fifth metatarsal bone, and the depression anterior to the medial attachment of the calcaneal tendon, the corresponding sites of the acupoints Jinggu (BL 64) and Dazhong (KI 4) in the human body. After 3 surviving days, the rat's brain, spinal cord and dorsal root ganglia (DRGs) of L3-L6 were dissected following perfusion with 4% paraformaldehyde, cut into sections and observed under fluorescent microscope equipped with a digital camera. The labeled neurons were recorded and counted. It was found under fluorescent microscope that the single-labeled neurons and the dual-labeled neurons were ipsilaterally located on the injected side. Among the single-labeled neurons, the labeled sensory neurons related to "Jinggu" (BL 64) and "Dazhong" (KI 4) were found to be in the DRGs of L3-L6, with a higher concentration in the DRGs of L.4 (27/162, 102/332) and L5 (130/162, 204/332). The dual-labeled 7 neurons were found to be in DRGs of L4 and L5. In addition, the labeled motoneurons related to "Jinggu" (BL 64) and "Dazhong" (KI 4) distributed in the dorsolateral portion of lamina IX, forming a longitudianal column from L3-L6 with a higher concentration at L4 and L5. The labeled sensory and motor neurons innervating Yuan-acupoint "Jinggu" (BL 64) and Luo-acupoint "Dazhong" (KI 4) distribute in DRGs of the same spinal segments and spinal ventral horns from L3-L6.

  3. What do mirror neurons mirror?

    NARCIS (Netherlands)

    Uithol, S.; Rooij, I.J.E.I. van; Bekkering, H.; Haselager, W.F.G.

    2011-01-01

    Single cell recordings in monkeys provide strong evidence for an important role of the motor system in action understanding. This evidence is backed up by data from studies of the (human) mirror neuron system using neuroimaging or TMS techniques, and behavioral experiments. Although the data

  4. Improved Muscle Function in Duchenne Muscular Dystrophy through L-Arginine and Metformin: An Investigator-Initiated, Open-Label, Single-Center, Proof-Of-Concept-Study.

    Science.gov (United States)

    Hafner, Patricia; Bonati, Ulrike; Erne, Beat; Schmid, Maurice; Rubino, Daniela; Pohlman, Urs; Peters, Thomas; Rutz, Erich; Frank, Stephan; Neuhaus, Cornelia; Deuster, Stefanie; Gloor, Monika; Bieri, Oliver; Fischmann, Arne; Sinnreich, Michael; Gueven, Nuri; Fischer, Dirk

    2016-01-01

    Altered neuronal nitric oxide synthase function in Duchenne muscular dystrophy leads to impaired mitochondrial function which is thought to be one cause of muscle damage in this disease. The study tested if increased intramuscular nitric oxide concentration can improve mitochondrial energy metabolism in Duchenne muscular dystrophy using a novel therapeutic approach through the combination of L-arginine with metformin. Five ambulatory, genetically confirmed Duchenne muscular dystrophy patients aged between 7–10 years were treated with L-arginine (3 x 2.5 g/d) and metformin (2 x 250 mg/d) for 16 weeks. Treatment effects were assessed using mitochondrial protein expression analysis in muscular biopsies, indirect calorimetry, Dual-Energy X-Ray Absorptiometry, quantitative thigh muscle MRI, and clinical scores of muscle performance. There were no serious side effects and no patient dropped out. Muscle biopsy results showed pre-treatment a significantly reduced mitochondrial protein expression and increased oxidative stress in Duchenne muscular dystrophy patients compared to controls. Post-treatment a significant elevation of proteins of the mitochondrial electron transport chain was observed as well as a reduction in oxidative stress. Treatment also decreased resting energy expenditure rates and energy substrate use shifted from carbohydrates to fatty acids. These changes were associated with improved clinical scores. In conclusion pharmacological stimulation of the nitric oxide pathway leads to improved mitochondria function and clinically a slowing of disease progression in Duchenne muscular dystrophy. This study shall lead to further development of this novel therapeutic approach into a real alternative for Duchenne muscular dystrophy patients. ClinicalTrials.gov NCT02516085.

  5. Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices

    Science.gov (United States)

    Varela, Juan A.; Dupuis, Julien P.; Etchepare, Laetitia; Espana, Agnès; Cognet, Laurent; Groc, Laurent

    2016-03-01

    Single-molecule imaging has changed the way we understand many biological mechanisms, particularly in neurobiology, by shedding light on intricate molecular events down to the nanoscale. However, current single-molecule studies in neuroscience have been limited to cultured neurons or organotypic slices, leaving as an open question the existence of fast receptor diffusion in intact brain tissue. Here, for the first time, we targeted dopamine receptors in vivo with functionalized quantum dots and were able to perform single-molecule tracking in acute rat brain slices. We propose a novel delocalized and non-inflammatory way of delivering nanoparticles (NPs) in vivo to the brain, which allowed us to label and track genetically engineered surface dopamine receptors in neocortical neurons, revealing inherent behaviour and receptor activity regulations. We thus propose a NP-based platform for single-molecule studies in the living brain, opening new avenues of research in physiological and pathological animal models.

  6. The use of technetium-99m hexamethylpropylene amine oxime labelled granulocytes with single-photon emission tomography imaging in the detection and follow-up of recurrence of infective endocarditis complicating transvenous endocardial pacemaker

    International Nuclear Information System (INIS)

    Ramackers, J.M.; Kotzki, P.O.; Couret, I.; Messner-Pellenc, P.; Davy, J.M.; Rossi, M.

    1995-01-01

    In this case report we present a patient with a recurrence of subacute bacterial infectious endocarditis (IE) complicating a transvenous endocardial pacemaker. Technetium-99m hexamethylpropylene amine oxime ( 99m Tc-HMPAO) labelled granulocytes were used for diagnosis and follow-up under medical treatment only, since surgical removal of the pacemaker lead was ruled out because of the general condition of the patient. Single-photon emission tomography (SPET) imaging displayed the active lesion previously suspected on echography. At the end of antibiotic therapy, SPET indicated a favourable disease outcome whereas echocardiographic abnormalities remained nearly unchanged. The medical treatment had eradicated the IE, and the patient did well for more than 1 year thereafter. (orig.)

  7. The use of technetium-99m hexamethylpropylene amine oxime labelled granulocytes with single-photon emission tomography imaging in the detection and follow-up of recurrence of infective endocarditis complicating transvenous endocardial pacemaker

    Energy Technology Data Exchange (ETDEWEB)

    Ramackers, J.M. [Department of Nuclear Medicine, CHU E. Herriot, Lyon (France); Kotzki, P.O. [Department of Nuclear Medicine, CHU Lapeyronie et A. de Villeneuve, Montpellier (France); Couret, I. [Department of Nuclear Medicine, CHU Lapeyronie et A. de Villeneuve, Montpellier (France); Messner-Pellenc, P. [Department of Cardiology, CHU Lapeyronie et A. Villeneuve, Montpellier (France); Davy, J.M. [Department of Cardiology, CHU Lapeyronie et A. Villeneuve, Montpellier (France); Rossi, M. [Department of Nuclear Medicine, CHU Lapeyronie et A. de Villeneuve, Montpellier (France)

    1995-11-01

    In this case report we present a patient with a recurrence of subacute bacterial infectious endocarditis (IE) complicating a transvenous endocardial pacemaker. Technetium-99m hexamethylpropylene amine oxime ({sup 99m}Tc-HMPAO) labelled granulocytes were used for diagnosis and follow-up under medical treatment only, since surgical removal of the pacemaker lead was ruled out because of the general condition of the patient. Single-photon emission tomography (SPET) imaging displayed the active lesion previously suspected on echography. At the end of antibiotic therapy, SPET indicated a favourable disease outcome whereas echocardiographic abnormalities remained nearly unchanged. The medical treatment had eradicated the IE, and the patient did well for more than 1 year thereafter. (orig.)

  8. An open-label phase 1 dose-escalation clinical trial of a single intravenous administration of gemcitabine in dogs with advanced solid tumors.

    Science.gov (United States)

    Marconato, L; Finotello, R; Bonfanti, U; Dacasto, M; Beatrice, L; Pizzoni, S; Leone, V F; Balestra, G; Furlanello, T; Rohrer Bley, C; Aresu, L

    2015-01-01

    A broad range of gemcitabine dosages have been used in dogs. To determine maximally tolerated dose (MTD), dose-limiting toxicity (DLT), and preliminary antitumor activity of intravenous administration of gemcitabine in dogs with advanced solid tumors. Twenty-two client-owned dogs. Dogs with advanced cancer were prospectively enrolled in an open-label Phase 1 study of gemcitabine. Gemcitabine was administered as a 30-minute intravenous bolus starting at 800 mg/m(2), using escalation of 50 mg/m(2) increments with 3 dogs per dose level. MTD was established based on the number of dogs experiencing DLT assessed after 1 cycle. Treatment continued until disease progression or unacceptable toxicosis. Additional dogs were enrolled at MTD to better characterize tolerability, and to assess the extent and duration of gemcitabine excretion. Twenty-two dogs were treated at 4 dose levels, ranging from 800 to 950 mg/m(2). Neutropenia was identified as DLT. MTD was 900 mg/m(2). DLT consisting of grade 4 febrile neutropenia was observed at 950 mg/m(2) in 2 dogs. There were no nonhematologic DLTs. Twenty dogs received multiple doses, and none had evidence of severe toxicosis from any of their subsequent treatments. At 900 mg/m(2), 2 complete and 5 partial responses were observed in dogs with measurable tumors. The amount of gemcitabine excreted in urine decreased over time, and was undetectable after the first 24 hours. The recommended dose of gemcitabine for future Phase 2 studies is weekly 900 mg/m(2). In chemotherapy-naïve dogs with advanced solid tumor this dose level merits further evaluation. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  9. A chimeric path to neuronal synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L. [School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-9709 (United States)

    2015-01-15

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)

  10. A chimeric path to neuronal synchronization

    International Nuclear Information System (INIS)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L.

    2015-01-01

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)

  11. Muscle and motor neuron ciliary neurotrophic factor receptor α together maintain adult motor neuron axons in vivo.

    Science.gov (United States)

    Lee, Nancy; Serbinski, Carolyn R; Braunlin, Makayla R; Rasch, Matthew S; Rydyznski, Carolyn E; MacLennan, A John

    2016-12-01

    The molecular mechanisms maintaining adult motor innervation are comparatively unexplored relative to those involved during development. In addition to the fundamental neuroscience question, this area has important clinical ramifications given that loss of neuromuscular contact is thought to underlie several adult onset human neuromuscular diseases including amyotrophic lateral sclerosis. Indirect evidence suggests that ciliary neurotrophic factor (CNTF) receptors may contribute to adult motor neuron axon maintenance. To directly address this in vivo, we used adult onset mouse genetic disruption techniques to deplete motor neuron and muscle CNTF receptor α (CNTFRα), the essential ligand binding subunit of the receptor, and incorporated reporters labelling affected motor neuron axons and terminals. The combined depletion of motor neuron and muscle CNTFRα produced a large loss of motor neuron terminals and retrograde labelling of motor neurons with FluoroGold indicated axon die-back well beyond muscle, together revealing an essential role for CNTFRα in adult motor axon maintenance. In contrast, selective depletion of motor neuron CNTFRα did not affect motor innervation. These data, along with our previous work indicating no effect of muscle specific CNTFRα depletion on motor innervation, suggest that motor neuron and muscle CNTFRα function in concert to maintain motor neuron axons. The data also raise the possibility of motor neuron and/or muscle CNTFRα as therapeutic targets for adult neuromuscular denervating diseases. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Power laws from linear neuronal cable theory

    DEFF Research Database (Denmark)

    Pettersen, Klas H; Lindén, Henrik Anders; Tetzlaff, Tom

    2014-01-01

    suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general...... expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements...... to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency [Formula: see text] power laws with power-law exponents analytically identified as [Formula: see text] for the soma...

  13. Response to selection for photoperiod responsiveness on the density and location of mature GnRH-releasing neurons.

    Science.gov (United States)

    Avigdor, Mauricio; Sullivan, Shannon D; Heideman, Paul D

    2005-05-01

    Natural variation in neuroendocrine traits is poorly understood, despite the importance of variation in brain function and evolution. Most rodents in the temperate zones inhibit reproduction and other nonessential functions in short winter photoperiods, but some have little or no reproductive response. We tested whether genetic variability in reproductive seasonality is related to individual differences in the neuronal function of the gonadotropin-releasing hormone network, as assessed by the number and location of mature gonadotropin-releasing hormone-secreting neurons under inhibitory and excitatory photoperiods. The experiments used lines of Peromyscus leucopus previously developed by selection from a wild population. One line contained individuals reproductively inhibited by short photoperiod, and the other line contained individuals nonresponsive to short photoperiod. Expression of mature gonadotropin-releasing hormone (GnRH) immunoreactivity in the brain was detected using SMI-41 antibody in the single-labeled avidin-biotin-peroxidase-complex method. Nonresponsive mice had 50% more immunoreactive GnRH neurons than reproductively inhibited mice in both short- and long-day photoperiods. The greatest differences were in the anterior hypothalamus and preoptic areas. In contrast, we detected no significant within-lines differences in the number or location of immunoreactive GnRH neurons between photoperiod treatments. Our data indicate that high levels of genetic variation in a single wild population for a specific neuronal trait are related to phenotypic variation in a life history trait, i.e., winter reproduction. Variation in GnRH neuronal activity may underlie some of the natural reproductive and life history variation observed in wild populations of P. leucopus. Similar genetic variation in neuronal traits may be present in humans and other species.

  14. A non-randomized, open-label, single-arm, Phase 2 study of emibetuzumab in Asian patients with MET diagnostic positive, advanced gastric cancer.

    Science.gov (United States)

    Sakai, Daisuke; Chung, Hyun Cheol; Oh, Do-Youn; Park, Se Hoon; Kadowaki, Shigenori; Kim, Yeul Hong; Tsuji, Akihito; Komatsu, Yoshito; Kang, Yoon-Koo; Uenaka, Kazunori; Wijayawardana, Sameera R; Wacheck, Volker; Wang, Xuejing; Yamamura, Ayuko; Doi, Toshihiko

    2017-12-01

    Mesenchymal-epithelial transition factor (MET) is expressed in gastric cancer and associated with poor clinical outcomes. We assessed activity, safety, and pharmacokinetics of emibetuzumab, a bivalent monoclonal anti-MET antibody that blocks ligand-dependent and ligand-independent MET signaling. This non-randomized, single-arm, Phase 2 study enrolled Asian patients with MET diagnostic positive advanced gastric adenocarcinoma. Emibetuzumab (2000 mg, intravenous) was given on days 1 and 15 (28-day cycle). The primary endpoint was 8-week progression-free survival rate. Secondary objectives included safety, pharmacokinetics, overall survival, and change in tumor size. Tumors from 65 patients were immunohistochemically screened to enroll 15 MET diagnostic positive patients (23% positivity; 8 Japanese, 7 Korean; 10 male). Eight-week progression-free survival rate was 0.47 (70% CI, 0.33-0.59). Disease control rate was 40% (target lesion decreases, three patients; no complete/partial responses according to RECIST). Median overall survival was 17.1 weeks (95% CI, 6.3-not achievable). No serious emibetuzumab-related adverse events or new safety signals emerged. Grade ≥ 3 possibly drug-related adverse events were hyperkalemia, hyponatremia, and hyperuricemia (one each). Emibetuzumab's pharmacokinetics profile was similar to that observed previously. MET expression and clinical outcomes were not obviously associated. Emibetuzumab was well tolerated with limited single-agent activity in advanced gastric adenocarcinoma.

  15. Inducible Gene Manipulations in Serotonergic Neurons

    Science.gov (United States)

    Weber, Tillmann; Böhm, Gerald; Hermann, Elke; Schütz, Günther; Schönig, Kai; Bartsch, Dusan

    2009-01-01

    An impairment of the serotonergic (5-HT) system has been implicated in the etiology of many neuropsychiatric disorders. Despite the considerable genetic evidence, the exact molecular and pathophysiological mechanisms underlying this dysfunction remain largely unknown. To address the lack of instruments for the molecular dissection of gene function in serotonergic neurons we have developed a new mouse transgenic tool that allows inducible Cre-mediated recombination of genes selectively in 5-HT neurons of all raphe nuclei. In this transgenic mouse line, the tamoxifen-inducible CreERT2 recombinase is expressed under the regulatory control of the mouse tryptophan hydroxylase 2 (Tph2) gene locus (177 kb). Tamoxifen treatment efficiently induced recombination selectively in serotonergic neurons with minimal background activity in vehicle-treated mice. These genetic manipulations can be initiated at any desired time during embryonic development, neonatal stage or adulthood. To illustrate the versatility of this new tool, we show that Brainbow-1.0LTPH2-CreERT2 mice display highly efficient recombination in serotonergic neurons with individual 5-HT neurons labeling with multiple distinct fluorescent colors. This labeling is well suited for visualization and tracing of serotonergic neurons and their network architecture. Finally, the applicability of TPH2-CreERT2 for loxP-flanked candidate gene manipulation is evidenced by our successful knockout induction of the ubiquitously expressed glucocorticoid-receptor exclusively in 5-HT neurons of adult mice. The TPH2-CreERT2 line will allow detailed analysis of gene function in both developing and adult serotonergic neurons. PMID:19936315

  16. NEUROANATOMICAL ASSOCIATION OF HYPOTHALAMIC HSD2-CONTAINING NEURONS WITH ERα, CATECHOLAMINES, OR OXYTOCIN: IMPLICATIONS FOR FEEDING?

    Directory of Open Access Journals (Sweden)

    Maegan L. Askew

    2015-06-01

    Full Text Available This study used immunohistochemical methods to investigate the possibility that hypothalamic neurons that contain 11-β-hydroxysteroid dehydrogenase type 2 (HSD2 are involved in the control of feeding by rats via neuroanatomical associations with the α subtype of estrogen receptor (ERα, catecholamines, and/or oxytocin. An aggregate of HSD2-containing neurons is located laterally in the hypothalamus, and the numbers of these neurons were greatly increased by estradiol treatment in ovariectomized rats compared to numbers in male rats and in ovariectomized rats that were not given estradiol. However, HSD2-containing neurons were anatomically segregated from ERα-containing neurons in the Ventromedial Hypothalamus and the Arcuate Nucleus. There was an absence of oxytocin-immunolabeled fibers in the area of HSD2-labeled neurons. Taken together, these findings provide no support for direct associations between hypothalamic HSD2 and ERα or oxytocin neurons in the control of feeding. In contrast, there was catecholamine-fiber labeling in the area of HSD2-labeled neurons, and these fibers occasionally were in close apposition to HSD2-labeled neurons. Therefore, we cannot rule out interactions between HSD2 and catecholamines in the control of feeding; however, given the relative sparseness of the appositions, any such interaction would appear to be modest. Thus, these studies do not conclusively identify a neuroanatomical substrate by which HSD2-containing neurons in the hypothalamus may alter feeding, and leave the functional role of hypothalamic HSD2-containing neurons subject to further investigation.

  17. Initial experience with single-photon emission tomography using iodine-123-labelled 2β-carbomethoxy-3β(4-iodophnyl)tropane in human brain

    International Nuclear Information System (INIS)

    Kuikka, J.T.; Bergstroem, K.A.; Vanninen, E.; Laulumaa, V.; Hartikainen, P.; Laensimies, E.

    1993-01-01

    The iodinated cocaine analogue 2β-carbomethoxy-3β-(4-iodophenyl)tropane ([ 123 I]β-CIT), a new dopamine transporter, was preliminarily tested in human brain. Two normal volunteers and two patients with Parkinson's disease were imaged with a high-resolution single-photon emission tomography scanner. The specific binding of [ 123 I]β-CIT in the basal ganglia and thalamus was high in normal volunteers. In addition, there was relatively intense uptake in the medial prefrontal area. Patients with Parkinson's disease who were older than controls showed significantly lower specific binding in the basal ganglia and thalamus and no uptake in the medial prefrontal cortex. This decrease in the dopamine transporter may be age related. (orig.)

  18. Prenatal exposure to dietary fat induces changes in the transcriptional factors, TEF and YAP, which may stimulate differentiation of peptide neurons in rat hypothalamus.

    Directory of Open Access Journals (Sweden)

    Kinning Poon

    Full Text Available Gestational exposure to a high-fat diet (HFD stimulates the differentiation of orexigenic peptide-expressing neurons in the hypothalamus of offspring. To examine possible mechanisms that mediate this phenomenon, this study investigated the transcriptional factor, transcription enhancer factor-1 (TEF, and co-activator, Yes-associated protein (YAP, which when inactivated stimulate neuronal differentiation. In rat embryos and postnatal offspring prenatally exposed to a HFD compared to chow, changes in hypothalamic TEF and YAP and their relationship to the orexigenic peptide, enkephalin (ENK, were measured. The HFD offspring at postnatal day 15 (P15 exhibited in the hypothalamic paraventricular nucleus a significant reduction in YAP mRNA and protein, and increased levels of inactive and total TEF protein, with no change in mRNA. Similarly, HFD-exposed embryos at embryonic day 19 (E19 showed in whole hypothalamus significantly decreased levels of YAP mRNA and protein and TEF mRNA, and increased levels of inactive TEF protein, suggesting that HFD inactivates TEF and YAP. This was accompanied by increased density and fluorescence intensity of ENK neurons. A close relationship between TEF and ENK was suggested by the finding that TEF co-localizes with this peptide in hypothalamic neurons and HFD reduced the density of TEF/ENK co-labeled neurons, even while the number and fluorescence intensity of single-labeled TEF neurons were increased. Increased YAP inactivity by HFD was further evidenced by a decrease in number and fluorescence intensity of YAP-containing neurons, although the density of YAP/ENK co-labeled neurons was unaltered. Genetic knockdown of TEF or YAP stimulated ENK expression in hypothalamic neurons, supporting a close relationship between these transcription factors and neuropeptide. These findings suggest that prenatal HFD exposure inactivates both hypothalamic TEF and YAP, by either decreasing their levels or increasing their inactive

  19. A new model of artificial neuron: cyberneuron and its use

    OpenAIRE

    Polikarpov, S. V.; Dergachev, V. S.; Rumyantsev, K. E.; Golubchikov, D. M.

    2009-01-01

    This article describes a new type of artificial neuron, called the authors "cyberneuron". Unlike classical models of artificial neurons, this type of neuron used table substitution instead of the operation of multiplication of input values for the weights. This allowed to significantly increase the information capacity of a single neuron, but also greatly simplify the process of learning. Considered an example of the use of "cyberneuron" with the task of detecting computer viruses.

  20. Switching to Tenofovir Alafenamide, Coformulated With Elvitegravir, Cobicistat, and Emtricitabine, in HIV-Infected Patients With Renal Impairment: 48-Week Results From a Single-Arm, Multicenter, Open-Label Phase 3 Study.

    Science.gov (United States)

    Pozniak, Anton; Arribas, Jose R; Gathe, Joseph; Gupta, Samir K; Post, Frank A; Bloch, Mark; Avihingsanon, Anchalee; Crofoot, Gordon; Benson, Paul; Lichtenstein, Kenneth; Ramgopal, Moti; Chetchotisakd, Ploenchan; Custodio, Joseph M; Abram, Michael E; Wei, Xuelian; Cheng, Andrew; McCallister, Scott; SenGupta, Devi; Fordyce, Marshall W

    2016-04-15

    Tenofovir alafenamide (TAF) is a novel tenofovir prodrug with improved renal and bone safety compared with TDF-containing regimens. We report the 48 week safety and efficacy of a once-daily single tablet regimen of elvitegravir 150 mg (E), cobicistat 150 mg (C), emtricitabine 200 mg (F), and TAF 10 mg (E/C/F/TAF) in HIV-1-infected patients with mild to moderate renal impairment. We enrolled virologically suppressed HIV-1-infected subjects with estimated creatinine clearance (CrCl) 30-69 mL/min in a single-arm, open-label study to switch regimens to E/C/F/TAF. The primary endpoint was the change from baseline in glomerular filtration rate estimated using various formulae. This study is registered with ClinicalTrials.gov, number NCT01818596. We enrolled and treated 242 patients with mean age 58 years, 18% Black, 39% hypertension, 14% diabetes. Through week 48, no significant change in estimated CrCl was observed. Two patients (0.8%) discontinued study drug for decreased creatinine clearance, neither had evidence of renal tubulopathy and both had uncontrolled hypertension. Subjects had significant improvements in proteinuria, albuminuria, and tubular proteinuria (P Proteinuria, albuminuria and bone mineral density significantly improved. These data support the efficacy and safety of once daily E/C/F/TAF in HIV+ patients with mild or moderate renal impairment without dose adjustment.

  1. Clinical and instrumental evaluation of a cross-linked hyaluronic acid filler dermal injection: effects on nasolabial folds skin biophysical parameters and augmentation from a single-dose, monocentric, open-label trial.

    Science.gov (United States)

    Cameli, Norma; Mariano, Maria; Serio, Mirko; Berardesca, Enzo

    2016-10-01

    When a hyaluronic acid dermal device to fill soft tissues is chosen, efficacy, safety and durability are key concerns. This is an open-label prospective study to instrumentally evaluate the effects of HA filler dermal injection on nasolabial folds skin biophysical parameters and augmentation. A single Italian site treated female subjects aged 40-55, for nasolabial folds, with a single standardized injection. The outcome was evaluated with objective quantitative measurements after 90 (T1) and 180 days (T2) from the injection comparing to baseline (T0) by means of Corneometer (skin hydration measurement), Cutometer (skin elasticity measurement), and Visioface devices for digital and UV computerized image analysis. Secondary endpoints were safety assessment, subject investigator satisfaction with the intervention. Assessment of aesthetic results included photographic documentation. The computerized image analysis confirmed the clinical assessment showing statistically significant reduction in nasolabial folds both at T1 and T2. Visioface® indexes showed a marked and statistical significant response. An excellent profile of satisfaction of the product at T2 from investigators and patients was recorded. Skin hydration and elasticity did not show significant changes. In our study, a standardized HA filler dermal injection on nasolabial folds did not influence skin biophysical parameters such as skin hydration and elasticity. Nasolabial folds showed a persistent and significative response at T2 confirmed by instrumental evaluation. The tolerability and safety profile of the product was excellent.

  2. Barreloid Borders and Neuronal Activity Shape Panglial Gap Junction-Coupled Networks in the Mouse Thalamus.

    Science.gov (United States)

    Claus, Lena; Philippot, Camille; Griemsmann, Stephanie; Timmermann, Aline; Jabs, Ronald; Henneberger, Christian; Kettenmann, Helmut; Steinhäuser, Christian

    2018-01-01

    The ventral posterior nucleus of the thalamus plays an important role in somatosensory information processing. It contains elongated cellular domains called barreloids, which are the structural basis for the somatotopic organization of vibrissae representation. So far, the organization of glial networks in these barreloid structures and its modulation by neuronal activity has not been studied. We have developed a method to visualize thalamic barreloid fields in acute slices. Combining electrophysiology, immunohistochemistry, and electroporation in transgenic mice with cell type-specific fluorescence labeling, we provide the first structure-function analyses of barreloidal glial gap junction networks. We observed coupled networks, which comprised both astrocytes and oligodendrocytes. The spread of tracers or a fluorescent glucose derivative through these networks was dependent on neuronal activity and limited by the barreloid borders, which were formed by uncoupled or weakly coupled oligodendrocytes. Neuronal somata were distributed homogeneously across barreloid fields with their processes running in parallel to the barreloid borders. Many astrocytes and oligodendrocytes were not part of the panglial networks. Thus, oligodendrocytes are the cellular elements limiting the communicating panglial network to a single barreloid, which might be important to ensure proper metabolic support to active neurons located within a particular vibrissae signaling pathway. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Visualization of cortical projection neurons with retrograde TET-off lentiviral vector.

    Directory of Open Access Journals (Sweden)

    Akiya Watakabe

    Full Text Available We are interested in identifying and characterizing various projection neurons that constitute the neocortical circuit. For this purpose, we developed a novel lentiviral vector that carries the tetracycline transactivator (tTA and the transgene under the TET Responsive Element promoter (TRE on a single backbone. By pseudotyping such a vector with modified rabies G-protein, we were able to express palmitoylated-GFP (palGFP or turboFP635 (RFP in corticothalamic, corticocortical, and corticopontine neurons of mice. The high-level expression of the transgene achieved by the TET-Off system enabled us to observe characteristic elaboration of neuronal processes for each cell type. At higher magnification, we were able to observe fine structures such as boutons and spines as well. We also injected our retrograde TET-Off vector to the marmoset cortex and proved that it can be used to label the long-distance cortical connectivity of millimeter scale. In conclusion, our novel retrograde tracer provides an attractive option to investigate the morphologies of identified cortical projection neurons of various species.

  4. Single-chain antibody conjugated to a cage amine chelator and labeled with positron-emitting copper-64 for diagnostic imaging of activated platelets.

    Science.gov (United States)

    Alt, Karen; Paterson, Brett M; Ardipradja, Katie; Schieber, Christine; Buncic, Gojko; Lim, Bock; Poniger, Stan S; Jakoby, Bjoern; Wang, Xiaowei; O'Keefe, Graeme J; Tochon-Danguy, Henri J; Scott, Andrew M; Ackermann, Uwe; Peter, Karlheinz; Donnelly, Paul S; Hagemeyer, Christoph E

    2014-08-04

    Imaging of activated platelets using an activation specific anti-GPIIb/IIIa integrin single-chain antibody (scFvanti-LIBS) conjugated to a positron emitting copper-64 complex of a cage amine sarcophagine chelator (MeCOSar) is reported. This tracer was compared in vitro to a (64)Cu(II) complex of the scFv conjugated to another commonly used macrocycle, DOTA. The scFvanti-LIBS-MeCOSar conjugate was radiolabeled with (64)Cu(II) rapidly under mild conditions and with higher specific activity than scFvanti-LIBS-DOTA. The utility of scFvanti-LIBS-MeCOSar as a diagnostic agent was assessed in vivo in a mouse model of acute thrombosis. The uptake of scFvanti-LIBS-(64)CuMeCOSar in the injured vessel was significantly higher than the noninjured vessel. Positron emission tomography (PET) was used to show accumulation of scFvanti-LIBS-(64)CuMeCOSar with high and specific uptake in the injured vessel. ScFvanti-LIBS-(64)CuMeCOSar is an excellent tool for highly sensitive in vivo detection of activated platelets in PET and has the potential to be used for early diagnosis of acute thrombotic events.

  5. The possibility of a fully automated procedure for radiosynthesis of fluorine-18-labeled fluoromisonidazole using a simplified single, neutral alumina column purification procedure

    International Nuclear Information System (INIS)

    Nandy, Saikat; Rajan, M.G.R.; Korde, A.; Krishnamurthy, N.V.

    2010-01-01

    A novel fully automated radiosynthesis procedure for [ 18 F]Fluoromisonidazole using a simple alumina cartridge-column for purification instead of conventionally used semi-preparative HPLC was developed. [ 18 F]FMISO was prepared via a one-pot, two-step synthesis procedure using a modified nuclear interface synthesis module. Nucleophilic fluorination of the precursor molecule 1-(2'-nitro-1'-imidazolyl) -2-O-tetrahydropyranyl-3-O-toluenesulphonylpropanediol (NITTP) with no-carrier added [ 18 F]fluoride followed by hydrolysis of the protecting group with 1 M HCl. Purification was carried out using a single neutral alumina cartridge-column instead of semi-preparative HPLC. The maximum overall radiochemical yield obtained was 37.49±1.68% with 10 mg NITTP (n=3, without any decay correction) and the total synthesis time was 40±1 min. The radiochemical purity was greater than 95% and the product was devoid of other chemical impurities including residual aluminum and acetonitrile. The biodistribution study in fibrosarcoma tumor model showed maximum uptake in tumor, 2 h post injection. Finally, PET/CT imaging studies in normal healthy rabbit, showed clear uptake in the organs involved in the metabolic process of MISO. No bone uptake was observed excluding the presence of free [ 18 F]fluoride. The reported method can be easily adapted in any commercial FDG synthesis module.

  6. Phase I, first-in-human study of BMS747158, a novel 18F-labeled tracer for myocardial perfusion PET: dosimetry, biodistribution, safety, and imaging characteristics after a single injection at rest.

    Science.gov (United States)

    Maddahi, Jamshid; Czernin, Johannes; Lazewatsky, Joel; Huang, Sung-Cheng; Dahlbom, Magnus; Schelbert, Heinrich; Sparks, Richard; Ehlgen, Alexander; Crane, Paul; Zhu, Qi; Devine, Marybeth; Phelps, Michael

    2011-09-01

    (18)F-labeled BMS747158 is a novel myocardial perfusion imaging tracer that targets mitochondrial complex 1. The objectives of this phase I study were to evaluate radiation dosimetry, biodistribution, human safety, tolerability, and early elimination of (18)F activity in urine after injection of a single dose of the tracer at rest in healthy subjects. Thirteen healthy subjects were injected with 170-244 MBq (4.6-6.6 mCi) of BMS747158 intravenously. Dynamic PET was obtained over the heart for 10 min, followed by sequential whole-body imaging for 5 h. Blood samples and urinary excretion were collected for up to 8 h. Heart rate, electrocardiogram, and blood pressure were monitored before and during imaging. The residence times were determined from multiexponential regression of organ region-of-interest data normalized by injected dose. Absorbed dose estimates for all target organs were determined using MIRD schema with OLINDA/EXM software. The organ receiving the largest mean absorbed dose was the kidneys at 0.066 mSv/MBq (0.24 rem/mCi), followed by the heart wall at 0.048 mSv/MBq (0.18 rem/mCi). The mean effective dose was 0.019 mSv/MBq (0.072 rem/mCi). The heart exhibited high and sustained retention of BMS747158 from the earliest images through approximately 5 h after injection. There were no drug-related adverse events, and the tracer was well tolerated in all subjects. Mean urinary excretion was 4.83 percentage injected dose (range, 0.64-12.41 percentage injected dose). These preliminary data suggest that (18)F-labeled BMS747158 appears to be well tolerated and has a unique potential for myocardial perfusion PET.

  7. Figuring Out Food Labels

    Science.gov (United States)

    ... beware of. Using Food Labels for a Well-Balanced Diet Here are some guidelines on using food labels ... food label smarts to create a healthy, well-balanced diet. It might seem complicated at first, but it ...

  8. Understanding Food Labels

    Science.gov (United States)

    ... Healthy eating for girls Understanding food labels Understanding food labels There is lots of info on food ... need to avoid because of food allergies. Other food label terms top In addition to the Nutrition ...

  9. Visualizing the distribution of synapses from individual neurons in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Ling Li

    2010-07-01

    Full Text Available Proper function of the mammalian brain relies on the establishment of highly specific synaptic connections among billions of neurons. To understand how complex neural circuits function, it is crucial to precisely describe neuronal connectivity and the distributions of synapses to and from individual neurons.In this study, we present a new genetic synaptic labeling method that relies on expression of a presynaptic marker, synaptophysin-GFP (Syp-GFP in individual neurons in vivo. We assess the reliability of this method and use it to analyze the spatial patterning of synapses in developing and mature cerebellar granule cells (GCs. In immature GCs, Syp-GFP is distributed in both axonal and dendritic regions. Upon maturation, it becomes strongly enriched in axons. In mature GCs, we analyzed synapses along their ascending segments and parallel fibers. We observe no differences in presynaptic distribution between GCs born at different developmental time points and thus having varied depths of projections in the molecular layer. We found that the mean densities of synapses along the parallel fiber and the ascending segment above the Purkinje cell (PC layer are statistically indistinguishable, and higher than previous estimates. Interestingly, presynaptic terminals were also found in the ascending segments of GCs below and within the PC layer, with the mean densities two-fold lower than that above the PC layer. The difference in the density of synapses in these parts of the ascending segment likely reflects the regional differences in postsynaptic target cells of GCs.The ability to visualize synapses of single neurons in vivo is valuable for studying synaptogenesis and synaptic plasticity within individual neurons as well as information flow in neural circuits.

  10. Detection of activated platelets in a mouse model of carotid artery thrombosis with 18 F-labeled single-chain antibodies.

    Science.gov (United States)

    Ardipradja, Katie; Yeoh, Shinn Dee; Alt, Karen; O'Keefe, Graeme; Rigopoulos, Angela; Howells, David W; Scott, Andrew M; Peter, Karlheinz; Ackerman, Uwe; Hagemeyer, Christoph E

    2014-03-01

    Activated platelets are key players in thrombosis and inflammation. We previously generated single-chain antibodies (scFv) against ligand-induced binding sites (LIBS) on the highly abundant platelet glycoprotein integrin receptor IIb/IIIa. The aim of this study was the construction and characterisation of a novel (18)F PET radiotracer based on this antibody. ScFv(anti-LIBS) and control antibody mut-scFv were reacted with N-succinimidyl-4-[(18)F]fluorobenzoate (S[(18)F]FB). Radiolabeled scFv was incubated with in vitro formed platelet clots and injected into mice with FeCl(3) induced thrombus in the left carotid artery. Clots were imaged in the PET scanner and amount of radioactivity measured using an ionization chamber and image analysis. Assessment of vessel injury as well as the biodistribution of the radiolabeled scFv was studied. After incubation with increasing concentrations of (18)F-scFv(anti-LIBS) clots had retained significantly higher amounts of radioactivity compared to clots incubated with radiolabeled (18)F-mut-scFv (13.3 ± 3.8 vs. 3.6 ± 1 KBq, p tracer in the injured vessel compared with the non-injured vessel, with 12.6 ± 4.7% injected dose per gram (ID/g) uptake in the injured vessel and 3.7 ± 0.9% ID/g in the non-injured vessel 5 minutes after injection (p < 0.05, n = 6). Our results show that the novel antibody radiotracer (18)F-scFv(anti-LIBS) is useful for the sensitive detection of activated platelets and thrombosis. We describe the first (18)F variant of a scFv(anti-LIBS) against activated platelets. This diagnostic agent could provide a powerful tool for the assessment of acute thrombosis and inflammation in patients in the future. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Engineering BspQI nicking enzymes and application of N.BspQI in DNA labeling and production of single-strand DNA.

    Science.gov (United States)

    Zhang, Penghua; Too, Priscilla Hiu-Mei; Samuelson, James C; Chan, Siu-Hong; Vincze, Tamas; Doucette, Stephanie; Bäckström, Stefan; Potamousis, Konstantinos D; Schramm, Timothy M; Forrest, Dan; Schwartz, David C; Xu, Shuang-yong

    2010-02-01

    BspQI is a thermostable Type IIS restriction endonuclease (REase) with the recognition sequence 5'GCTCTTC N1/N4 3'. Here we report the cloning and expression of the bspQIR gene for the BspQI restriction enzyme in Escherichia coli. Alanine scanning of the BspQI charged residues identified a number of DNA nicking variants. After sampling combinations of different amino acid substitutions, an Nt.BspQI triple mutant (E172A/E248A/E255K) was constructed with predominantly top-strand DNA nicking activity. Furthermore, a triple mutant of BspQI (Nb.BspQI, N235A/K331A/R428A) was engineered to create a bottom-strand nicking enzyme. In addition, we demonstrated the application of Nt.BspQI in optical mapping of single DNA molecules. Nt or Nb.BspQI-nicked dsDNA can be further digested by E. coli exonuclease III to create ssDNA for downstream applications. BspQI contains two potential catalytic sites: a top-strand catalytic site (Ct) with a D-H-N-K motif found in the HNH endonuclease family and a bottom-strand catalytic site (Cb) with three scattered Glu residues. BlastP analysis of proteins in GenBank indicated a putative restriction enzyme with significant amino acid sequence identity to BspQI from the sequenced bacterial genome Croceibacter atlanticus HTCC2559. This restriction gene was amplified by PCR and cloned into a T7 expression vector. Restriction mapping and run-off DNA sequencing of digested products from the partially purified enzyme indicated that it is an EarI isoschizomer with 6-bp recognition, which we named CatHI (CTCTTC N1/N4).

  12. Shaping Neuronal Network Activity by Presynaptic Mechanisms.

    Directory of Open Access Journals (Sweden)

    Ayal Lavi

    2015-09-01

    Full Text Available Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions such as sleep, learning and sensorimotor gating. Although synaptic release processes are well known for their ability to shape the interaction between neurons in microcircuits, most computational models do not simulate the synaptic transmission process directly and hence cannot explain how changes in synaptic parameters alter neuronal network activity. In this paper, we present a novel neuronal network model that incorporates presynaptic release mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to model the spontaneous activity of neuronal networks. The model, which is based on modified leaky integrate-and-fire neurons, generates spontaneous network activity patterns, which are similar to experimental data and robust under changes in the model's primary gain parameters such as excitatory postsynaptic potential and connectivity ratio. Furthermore, it reliably recreates experimental findings and provides mechanistic explanations for data obtained from microelectrode array recordings, such as network burst termination and the effects of pharmacological and genetic manipulations. The model demonstrates how elevated asynchronous release, but not spontaneous release, synchronizes neuronal network activity and reveals that asynchronous release enhances utilization of the recycling vesicle pool to induce the network effect. The model further predicts a positive correlation between vesicle priming at the single-neuron level and burst frequency at the network level; this prediction is supported by experimental findings. Thus, the model is utilized to reveal how synaptic release processes at the neuronal level govern activity patterns and synchronization at the network level.

  13. Detection of activated platelets in a mouse model of carotid artery thrombosis with 18F-labeled single-chain antibodies

    International Nuclear Information System (INIS)

    Ardipradja, Katie; Yeoh, Shinn Dee; Alt, Karen; O’Keefe, Graeme; Rigopoulos, Angela; Howells, David W.; Scott, Andrew M.; Peter, Karlheinz; Ackerman, Uwe; Hagemeyer, Christoph E.

    2014-01-01

    Introduction: Activated platelets are key players in thrombosis and inflammation. We previously generated single-chain antibodies (scFv) against ligand-induced binding sites (LIBS) on the highly abundant platelet glycoprotein integrin receptor IIb/IIIa. The aim of this study was the construction and characterisation of a novel 18 F PET radiotracer based on this antibody. Methods: ScFv anti-LIBS and control antibody mut-scFv were reacted with N-succinimidyl-4-[ 18 F]fluorobenzoate (S[ 18 F]FB). Radiolabeled scFv was incubated with in vitro formed platelet clots and injected into mice with FeCl 3 induced thrombus in the left carotid artery. Clots were imaged in the PET scanner and amount of radioactivity measured using an ionization chamber and image analysis. Assessment of vessel injury as well as the biodistribution of the radiolabeled scFv was studied. Results: After incubation with increasing concentrations of 18 F-scFv anti-LIBS clots had retained significantly higher amounts of radioactivity compared to clots incubated with radiolabeled 18 F-mut-scFv (13.3 ± 3.8 vs. 3.6 ± 1 KBq, p < 0.05, n = 9, decay corrected). In the in vivo experiments we found an high uptake of the tracer in the injured vessel compared with the non-injured vessel, with 12.6 ± 4.7% injected dose per gram (ID/g) uptake in the injured vessel and 3.7 ± 0.9% ID/g in the non-injured vessel 5 minutes after injection (p < 0.05, n = 6). Conclusions: Our results show that the novel antibody radiotracer 18 F-scFv anti-LIBS is useful for the sensitive detection of activated platelets and thrombosis. Advances in knowledge and implications for patient care: We describe the first 18 F variant of a scFv anti-LIBS against activated platelets. This diagnostic agent could provide a powerful tool for the assessment of acute thrombosis and inflammation in patients in the future

  14. A COMPUTATIONAL MODEL OF MOTOR NEURON DEGENERATION

    Science.gov (United States)

    Le Masson, Gwendal; Przedborski, Serge; Abbott, L.F.

    2014-01-01

    SUMMARY To explore the link between bioenergetics and motor neuron degeneration, we used a computational model in which detailed morphology and ion conductance are paired with intracellular ATP production and consumption. We found that reduced ATP availability increases the metabolic cost of a single action potential and disrupts K+/Na+ homeostasis, resulting in a chronic depolarization. The magnitude of the ATP shortage at which this ionic instability occurs depends on the morphology and intrinsic conductance characteristic of the neuron. If ATP shortage is confined to the distal part of the axon, the ensuing local ionic instability eventually spreads to the whole neuron and involves fasciculation-like spiking events. A shortage of ATP also causes a rise in intracellular calcium. Our modeling work supports the notion that mitochondrial dysfunction can account for salient features of the paralytic disorder amyotrophic lateral sclerosis, including motor neuron hyperexcitability, fasciculation, and differential vulnerability of motor neuron subpopulations. PMID:25088365

  15. Extracting labeled topological patterns from samples of networks.

    Directory of Open Access Journals (Sweden)

    Christoph Schmidt

    Full Text Available An advanced graph theoretical approach is introduced that enables a higher level of functional interpretation of samples of directed networks with identical fixed pairwise different vertex labels that are drawn from a particular population. Compared to the analysis of single networks, their investigation promises to yield more detailed information about the represented system. Often patterns of directed edges in sample element networks are too intractable for a direct evaluation and interpretation. The new approach addresses the problem of simplifying topological information and characterizes such a sample of networks by finding its locatable characteristic topological patterns. These patterns, essentially sample-specific network motifs with vertex labeling, might represent the essence of the intricate topological information contained in all sample element networks and provides as well a means of differentiating network samples. Central to the accurateness of this approach is the null model and its properties, which is needed to assign significance to topological patterns. As a proof of principle the proposed approach has been applied to the analysis of networks that represent brain connectivity before and during painful stimulation in patients with major depression and in healthy subjects. The accomplished reduction of topological information enables a cautious functional interpretation of the altered neuronal processing of pain in both groups.

  16. Randomized, open-label, blinded-endpoint, crossover, single-dose study to compare the pharmacodynamics of torasemide-PR 10 mg, torasemide-IR 10 mg, and furosemide-IR 40 mg, in patients with chronic heart failure

    Science.gov (United States)

    Ballester, Maria Rosa; Roig, Eulàlia; Gich, Ignasi; Puntes, Montse; Delgadillo, Joaquín; Santos, Benjamín; Antonijoan, Rosa Maria

    2015-01-01

    Purpose Diuretics are the primary treatment for the management of chronic heart failure (HF) symptoms and for the improvement of acute HF symptoms. The rate of delivery to the site of action has been suggested to affect diuretic pharmacodynamics. The main objective of this clinical trial was to explore whether a prolonged release tablet formulation of torasemide (torasemide-PR) was more natriuretically efficient in patients with chronic HF compared to immediate-release furosemide (furosemide-IR) after a single-dose administration. Moreover, the pharmacokinetics of torasemide-PR, furosemide-IR, and torasemide-IR were assessed in chronic HF patients as well as urine pharmacodynamics. Methods Randomized, open-label, blinded-endpoint, crossover, and single-dose Phase I clinical trial with three experimental periods. Torasemide-PR and furosemide-IR were administered as a single dose in a crossover fashion for the first two periods, and torasemide-IR 10 mg was administered for the third period. Blood and urine samples were collected at fixed timepoints. The primary endpoint was the natriuretic efficiency after administration of torasemide-PR and furosemide-IR, defined as the ratio between the average drug-induced natriuresis and the average drug recovered in urine over 24 hours. Results Ten patients were included and nine completed the study. Here, we present the results from nine patients. Torasemide-PR was more natriuretically efficient than furosemide-IR (0.096±0.03 mmol/μg vs 0.015±0.0007 mmol/μg; P<0.0001). Mictional urgency was lower and more delayed with torasemide-PR than with furosemide-IR. Conclusion In a study with a limited sample size, our results suggest that 10 mg of torasemide-PR is more natriuretically efficient than 40 mg of furosemide-IR after single-dose administration in patients with chronic HF over a 24-hour collection period. Further studies are necessary to evaluate potential pharmacodynamic differences between torasemide formulations and to

  17. Evaluation of the EmbaGYN™ pelvic floor muscle stimulator in addition to Kegel exercises for the treatment of female stress urinary incontinence: a prospective, open-label, multicenter, single-arm study.

    Science.gov (United States)

    Eder, Scott Evan

    2014-01-01

    To assess the efficacy and safety of the EmbaGYN™ Pelvic Floor Exerciser, a battery-powered neuromuscular stimulation device with a vaginal, two-electrode stimulation probe in women with stress urinary incontinence. In this prospective, open-label, multicenter, single-arm study, patients with stress urinary incontinence (n = 83) underwent 12 weeks of treatment with EmbaGYN with Kegel exercises. At week 12, the mean number of incontinence episodes/day (primary end point) fell 56.2% (p = 0.152). A ≥50% decrease from baseline in incontinence episodes was seen in 65.3% of subjects (p = 0.006). The mean number of incontinence pads/day fell 57.1% (p = 0.001). Mean 24- and 1-h in-office urine loss declined 59.0% (p Kegel exercises resulted in significant reductions in urine loss, incontinence pad use and improved incontinence-related quality of life, but did not have a significant effect on incontinence episodes/day.

  18. The Intelence aNd pRezista Once A Day Study (INROADS): a multicentre, single-arm, open-label study of etravirine and darunavir/ritonavir as dual therapy in HIV-1-infected early treatment-experienced subjects.

    Science.gov (United States)

    Ruane, P J; Brinson, C; Ramgopal, M; Ryan, R; Coate, B; Cho, M; Kakuda, T N; Anderson, D

    2015-05-01

    Following antiretroviral therapy failure, patients are often treated with a three-drug regimen that includes two nucleoside/tide reverse transcriptase inhibitors [N(t)RTIs]. An alternative two-drug nucleoside-sparing regimen may decrease the pill burden and drug toxicities associated with the use of N(t)RTIs. The Intelence aNd pRezista Once A Day Study (INROADS; NCT01199939) evaluated the nucleoside-sparing regimen of etravirine 400 mg with darunavir/ritonavir 800/100 mg once-daily in HIV-1-infected treatment-experienced subjects or treatment-naïve subjects with transmitted resistance. In this exploratory phase 2b, single-arm, open-label, multicentre, 48-week study, the primary endpoint was the proportion of subjects who achieved HIV-1 RNA treatment-experienced subjects or treatment-naïve subjects with transmitted resistance was virologically efficacious and well tolerated. © 2014 British HIV Association.

  19. The Influence of Hepatic and Renal Impairment on the Pharmacokinetics of a Treatment for Herpes Zoster, Amenamevir (ASP2151): Phase 1, Open-Label, Single-Dose, Parallel-Group Studies.

    Science.gov (United States)

    Kusawake, Tomohiro; Kowalski, Donna; Takada, Akitsugu; Kato, Kota; Katashima, Masataka; Keirns, James J; Lewand, Michaelene; Lasseter, Kenneth C; Marbury, Thomas C; Preston, Richard A

    2017-12-01

    Amenamevir (ASP2151) is a nonnucleoside human herpesvirus helicase-primase inhibitor that was approved in Japan for the treatment of herpes zoster (shingles) in 2017. This article reports the results of two clinical trials that investigated the effects of renal and hepatic impairment on the pharmacokinetics of amenamevir. These studies were phase 1, open-label, single-dose (oral 400 mg), parallel-group studies evaluating the pharmacokinetics, safety, and tolerability of amenamevir in healthy participants and participants with moderate hepatic impairment and mild, moderate, and severe renal impairment. In the hepatic impairment study, the pharmacokinetic profile of amenamevir in participants with moderate hepatic impairment was generally similar to that of participants with normal hepatic function. In the renal impairment study, the area under the amenamevir concentration versus time curve from the time of dosing up to the time of the last sample with extrapolation to infinity of the terminal phase was increased by 78.1% in participants with severe renal impairment. There was a positive relationship between creatinine clearance and oral and renal clearance for amenamevir in the renal impairment study. In both studies, amenamevir was safe and well tolerated. The findings of the hepatic impairment study indicate that no dosing adjustment is required in patients with moderate hepatic impairment. In the renal impairment study, systemic amenamevir exposure was increased by renal impairment. However, it is unlikely that renal impairment will have a significant effect on the safety of amenamevir given that in previous pharmacokinetic and safety studies in healthy individuals amenamevir was safe and well tolerated after a single dose (5-2400 mg, fasted condition) and repeated doses for 7 days (300 or 600 mg, fed condition), and the amount of amenamevir exposure in the renal impairment study was covered by those studies. These findings suggest that amenamevir does not

  20. Immunogenicity and safety of a single dose of a CRM-conjugated meningococcal ACWY vaccine in children and adolescents aged 2-18 years in Taiwan: results of an open label study.

    Science.gov (United States)

    Huang, Li-Min; Chiu, Nan-Chang; Yeh, Shu-Jen; Bhusal, Chiranjiwi; Arora, Ashwani Kumar

    2014-09-08

    MenACWY-CRM (Menveo®, Novartis Vaccines, Siena, Italy) is a quadrivalent meningococcal conjugate vaccine developed to help prevent invasive meningococcal disease caused by Neisseria meningitidis serogroups A, C, W, and Y. It is approved within the European Union in persons >2 years of age and in persons from 2 months to 55 years of age in the United States, among other countries. Little is known about the immunogenicity and safety of this vaccine in Taiwanese children >2 years and adolescents. This study assessed the immunogenicity and safety of a single injection of MenACWY-CRM vaccine in Taiwanese subjects aged 2-18 years old. In this phase III, multicentre, open-label study 341 subjects received one dose of MenACWY-CRM. Immunogenicity measures were rates of seroresponse (defined as the proportion of subjects with a postvaccination hSBA ≥1:8 if the prevaccination (baseline) titre was CRM vaccination at Day 29 for the serogroups A, C, W, and Y were 83%, 93%, 50%, and 65%, respectively. At Day 29 the percentages of subjects with hSBA ≥1:8 against all four serogroups A, C, W and Y were: 83%, 96%, 96% and 82%, respectively. GMTs against all serogroups rose by ≥7-fold from baseline to Day 29. The vaccine was well tolerated. A single dose of MenACWY-CRM demonstrated a robust immune response, and an acceptable safety profile in Taiwanese children and adolescents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Synaptic glutamate release by postnatal rat serotonergic neurons in microculture.

    Science.gov (United States)

    Johnson, M D

    1994-02-01

    Serotonergic neurons are thought to play a role in depression and obsessive compulsive disorder. However, their functional transmitter repertoire is incompletely known. To investigate this repertoire, intracellular recordings were obtained from 132 cytochemically identified rat mesopontine serotonergic neurons that had re-established synapses in microcultures. Approximately 60% of the neurons evoked excitatory glutamatergic potentials in themselves or in target neurons. Glutamatergic transmission was frequently observed in microcultures containing a solitary serotonergic neuron. Evidence for co-release of serotonin and glutamate from single raphe neurons was also obtained. However, evidence for gamma-aminobutyric acid release by serotonergic neurons was observed in only two cases. These findings indicate that many cultured serotonergic neurons form glutamatergic synapses and may explain several observations in slices and in vivo.

  2. What the training of a neuronal network optimizes.

    Science.gov (United States)

    Tabor, Zbisław

    2007-09-01

    In the study a model of training of neuronal networks built of integrate-and-fire neurons is investigated. Neurons are assembled into complex networks of Watts-Strogatz type. Every neuronal network contains a single receptor neuron. The receptor neuron, stimulated by an external signal, evokes spikes in equal time intervals. The spikes generated by the receptor neuron induce subsequent activity of a whole network. The depolarization signals, traveling the network, modify synaptic couplings according to a kick-and-delay rule, whose process is termed "training." It is shown that the training decreases the mean length of paths along which a depolarization signal is transmitted from the receptor neuron. Consequently, the training also decreases the reaction time and the energy expense necessary for the network to react to the external stimulus. It is shown that the initial distribution of synaptic couplings crucially determines the performance of trained networks.

  3. Single versus Serial Measurements of Neuron-Specific Enolase and Prediction of Poor Neurological Outcome in Persistently Unconscious Patients after Out-Of-Hospital Cardiac Arrest - A TTM-Trial Substudy.

    Directory of Open Access Journals (Sweden)

    Sebastian Wiberg

    Full Text Available Prediction of neurological outcome is a crucial part of post cardiac arrest care and prediction in patients remaining unconscious and/or sedated after rewarming from targeted temperature management (TTM remains difficult. Current guidelines suggest the use of serial measurements of the biomarker neuron-specific enolase (NSE in combination with other predictors of outcome in patients admitted after out-of-hospital cardiac arrest (OHCA. This study sought to investigate the ability of NSE to predict poor outcome in patients remaining unconscious at day three after OHCA. In addition, this study sought to investigate if serial NSE measurements add incremental prognostic information compared to a single NSE measurement at 48 hours in this population.This study is a post-hoc sub-study of the TTM trial, randomizing OHCA patients to a course of TTM at either 33°C or 36°C. Patients were included from sites participating in the TTM-trial biobank sub study. NSE was measured at 24, 48 and 72 hours after ROSC and follow-up was concluded after 180 days. The primary end point was poor neurological function or death defined by a cerebral performance category score (CPC-score of 3 to 5.A total of 685 (73% patients participated in the study. At day three after OHCA 63 (9% patients had died and 473 (69% patients were not awake. In these patients, a single NSE measurement at 48 hours predicted poor outcome with an area under the receiver operating characteristics curve (AUC of 0.83. A combination of all three NSE measurements yielded the highest discovered AUC (0.88, p = .0002. Easily applicable combinations of serial NSE measurements did not significantly improve prediction over a single measurement at 48 hours (AUC 0.58-0.84 versus 0.83.NSE is a strong predictor of poor outcome after OHCA in persistently unconscious patients undergoing TTM, and NSE is a promising surrogate marker of outcome in clinical trials. While combinations of serial NSE measurements may

  4. Cortical Divergent Projections in Mice Originate from Two Sequentially Generated, Distinct Populations of Excitatory Cortical Neurons with Different Initial Axonal Outgrowth Characteristics.

    Science.gov (United States)

    Hatanaka, Yumiko; Namikawa, Tomohiro; Yamauchi, Kenta; Kawaguchi, Yasuo

    2016-05-01

    Excitatory cortical neurons project to various subcortical and intracortical regions, and exhibit diversity in their axonal connections. Although this diversity may develop from primary axons, how many types of axons initially occur remains unknown. Using a sparse-labeling in utero electroporation method, we investigated the axonal outgrowth of these neurons in mice and correlated the data with axonal projections in adults. Examination of lateral cortex neurons labeled during the main period of cortical neurogenesis (E11.5-E15.5) indicated that axonal outgrowth commonly occurs in the intermediate zone. Conversely, the axonal direction varied; neurons labeled before E12.5 and the earliest cortical plate neurons labeled at E12.5 projected laterally, whereas neurons labeled thereafter projected medially. The expression of Ctip2 and Satb2 and the layer destinations of these neurons support the view that lateral and medial projection neurons are groups of prospective subcortical and callosal projection neurons, respectively. Consistently, birthdating experiments demonstrated that presumptive lateral projection neurons were generated earlier than medial projection neurons, even within the same layer. These results suggest that the divergent axonal connections of excitatory cortical neurons begin from two types of primary axons, which originate from two sequentially generated distinct subpopulations: early-born lateral (subcortical) and later-born medial (callosal) projection neuron groups. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Mixed Map Labeling

    Directory of Open Access Journals (Sweden)

    Maarten Löffler

    2016-12-01

    Full Text Available Point feature map labeling is a geometric visualization problem, in which a set of input points must be labeled with a set of disjoint rectangles (the bounding boxes of the label texts. It is predominantly motivated by label placement in maps but it also has other visualization applications. Typically, labeling models either use internal labels, which must touch their feature point, or external (boundary labels, which are placed outside the input image and which are connected to their feature points by crossing-free leader lines. In this paper we study polynomial-time algorithms for maximizing the number of internal labels in a mixed labeling model that combines internal and external labels. The model requires that all leaders are parallel to a given orientation θ ∈ [0, 2π, the value of which influences the geometric properties and hence the running times of our algorithms.

  6. Prospective Coding by Spiking Neurons.

    Directory of Open Access Journals (Sweden)

    Johanni Brea

    2016-06-01

    Full Text Available Animals learn to make predictions, such as associating the sound of a bell with upcoming feeding or predicting a movement that a motor command is eliciting. How predictions are realized on the neuronal level and what plasticity rule underlies their learning is not well understood. Here we propose a biologically plausible synaptic plasticity rule to learn predictions on a single neuron level on a timescale of seconds. The learning rule allows a spiking two-compartment neuron to match its current firing rate to its own expected future discounted firing rate. For instance, if an originally neutral event is repeatedly followed by an event that elevates the firing rate of a neuron, the originally neutral event will eventually also elevate the neuron's firing rate. The plasticity rule is a form of spike timing dependent plasticity in which a presynaptic spike followed by a postsynaptic spike leads to potentiation. Even if the plasticity window has a width of 20 milliseconds, associations on the time scale of seconds can be learned. We illustrate prospective coding with three examples: learning to predict a time varying input, learning to predict the next stimulus in a delayed paired-associate task and learning with a recurrent network to reproduce a temporally compressed version of a sequence. We discuss the potential role of the learning mechanism in classical trace conditioning. In the special case that the signal to be predicted encodes reward, the neuron learns to predict the discounted future reward and learning is closely related to the temporal difference learning algorithm TD(λ.

  7. Neurogenic period of ascending tract neurons in the upper lumbar spinal cord of the rat

    International Nuclear Information System (INIS)

    Nandi, K.N.; Beal, J.A.; Knight, D.S.

    1990-01-01

    Although the neurogenic period for neurons in the lumbar spinal cord has been clearly established (Days 12 through 16 of gestation), it is not known when the neurogenesis of ascending tract neurons is completed within this period. The purpose of the present study was to determine the duration of the neurogenic period for projection neurons of the ascending tracts. To label neurons undergoing mitosis during this period, tritiated thymidine was administered to fetal rats on Embryonic (E) Days E13 through E16 of gestation. Ascending tract neurons of the lumbar cord were later (Postnatal Days 40-50) labeled in each animal with a retrograde tracer, Fluoro-Gold, applied at the site of a hemisection at spinal cord segment C3. Ascending tract neurons which were undergoing mitosis in the upper lumbar cord were double labeled, i.e., labeled with both tritiated thymidine and Fluoro-Gold. On Day E13, 89-92% of the ascending tract neurons were double labeled; on Day E14, 35-37%; and on Day E15, 1-4%. Results showed, then, that some ascending tract neurons were double labeled through Day E15 and were, therefore, proliferating in the final one-third of the neurogenic period. Ascending tract neurons proliferating on Day E15 were confined to laminae III, IV, V, and X and the nucleus dorsalis. Long tract neurons in the superficial dorsal horn (laminae I and II), on the other hand, were found to have completed neurogenesis on Day E14 of gestation. Results of the present study show that spinal neurogenesis of ascending projection neurons continues throughout most of the neurogenic period and does not completely follow the well-established ventral to dorsal gradient

  8. Link Label Prediction in Signed Citation Network

    KAUST Repository

    Akujuobi, Uchenna

    2016-04-12

    Link label prediction is the problem of predicting the missing labels or signs of all the unlabeled edges in a network. For signed networks, these labels can either be positive or negative. In recent years, different algorithms have been proposed such as using regression, trust propagation and matrix factorization. These approaches have tried to solve the problem of link label prediction by using ideas from social theories, where most of them predict a single missing label given that labels of other edges are known. However, in most real-world social graphs, the number of labeled edges is usually less than that of unlabeled edges. Therefore, predicting a single edge label at a time would require multiple runs and is more computationally demanding. In this thesis, we look at link label prediction problem on a signed citation network with missing edge labels. Our citation network consists of papers from three major machine learning and data mining conferences together with their references, and edges showing the relationship between them. An edge in our network is labeled either positive (dataset relevant) if the reference is based on the dataset used in the paper or negative otherwise. We present three approaches to predict the missing labels. The first approach converts the label prediction problem into a standard classification problem. We then, generate a set of features for each edge and then adopt Support Vector Machines in solving the classification problem. For the second approach, we formalize the graph such that the edges are represented as nodes with links showing similarities between them. We then adopt a label propagation method to propagate the labels on known nodes to those with unknown labels. In the third approach, we adopt a PageRank approach where we rank the nodes according to the number of incoming positive and negative edges, after which we set a threshold. Based on the ranks, we can infer an edge would be positive if it goes a node above the

  9. Industrial Robot Label Applicator

    OpenAIRE

    Kukasch, Kai

    2017-01-01

    The thesis deals with a project carried out for developing and setting up a robot label applicator system. The requirement was that RFID tracking labels can be applied on flexible positions, without manual effort and rearrangement, via programming. The purpose of the robot label applicator system is to increase the efficiency in production sites, where the RFID label position can change, depending on product or other reasons. New label positions should be programmed easily with a human-m...

  10. Two distinct populations of projection neurons in the rat lateral parafascicular thalamic nucleus and their cholinergic responsiveness.

    Science.gov (United States)

    Beatty, J A; Sylwestrak, E L; Cox, C L

    2009-08-04

    The lateral parafascicular nucleus (lPf) is a member of the intralaminar thalamic nuclei, a collection of nuclei that characteristically provides widespread projections to the neocortex and basal ganglia and is associated with arousal, sensory, and motor functions. Recently, lPf neurons have been shown to possess different characteristics than other cortical-projecting thalamic relay neurons. We performed whole cell recordings from lPf neurons using an in vitro rat slice preparation and found two distinct neuronal subtypes that were differentiated by distinct morphological and physiological characteristics: diffuse and bushy. Diffuse neurons, which had been previously described, were the predominant neuronal subtype (66%). These neurons had few, poorly-branching, extended dendrites, and rarely displayed burst-like action potential discharge, a ubiquitous feature of thalamocortical relay neurons. Interestingly, we discovered a smaller population of bushy neurons (34%) that shared similar morphological and physiological characteristics with thalamocortical relay neurons of primary sensory thalamic nuclei. In contrast to other thalamocortical relay neurons, activation of muscarinic cholinergic receptors produced a membrane hyperpolarization via activation of M(2) receptors in most lPf neurons (60%). In a minority of lPf neurons (33%), muscarinic agonists produced a membrane depolarization via activation of predominantly M(3) receptors. The muscarinic receptor-mediated actions were independent of lPf neuronal subtype (i.e. diffuse or bushy neurons); however the cholinergic actions were correlated with lPf neurons with different efferent targets. Retrogradely-labeled lPf neurons from frontal cortical fluorescent bead injections primarily consisted of bushy type lPf neurons (78%), but more importantly, all of these neurons were depolarized by muscarinic agonists. On the other hand, lPf neurons labeled by striatal injections were predominantly hyperpolarized by muscarinic

  11. NEURON and Python

    OpenAIRE

    Michael Hines; Andrew P Davison; Eilif Muller

    2009-01-01

    The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because ...

  12. Direct and Auger Electron-Induced, Single- and Double-Strand Breaks on Plasmid DNA Caused by 99mTc-Labeled Pyrene Derivatives and the Effect of Bonding Distance.

    Directory of Open Access Journals (Sweden)

    Falco Reissig

    Full Text Available It is evident that 99mTc causes radical-mediated DNA damage due to Auger electrons, which were emitted simultaneously with the known γ-emission of 99mTc. We have synthesized a series of new 99mTc-labeled pyrene derivatives with varied distances between the pyrene moiety and the radionuclide. The pyrene motif is a common DNA intercalator and allowed us to test the influence of the radionuclide distance on damages of the DNA helix. In general, pUC 19 plasmid DNA enables the investigation of the unprotected interactions between the radiotracers and DNA that results in single-strand breaks (SSB or double-strand breaks (DSB. The resulting DNA fragments were separated by gel electrophoresis and quantified by fluorescent staining. Direct DNA damage and radical-induced indirect DNA damage by radiolysis products of water were evaluated in the presence or absence of the radical scavenger DMSO. We demonstrated that Auger electrons directly induced both SSB and DSB in high efficiency when 99mTc was tightly bound to the plasmid DNA and this damage could not be completely prevented by DMSO, a free radical scavenger. For the first time, we were able to minimize this effect by increasing the carbon chain lengths between the pyrene moiety and the 99mTc nuclide. However, a critical distance between the 99mTc atom and the DNA helix could not be determined due to the significantly lowered DSB generation resulting from the interaction which is dependent on the type of the 99mTc binding motif. The effect of variable DNA damage caused by the different chain length between the pyrene residue and the Tc-core as well as the possible conformations of the applied Tc-complexes was supplemented with molecular dynamics (MD calculations. The effectiveness of the DNA-binding 99mTc-labeled pyrene derivatives was demonstrated by comparison to non-DNA-binding 99mTcO4-, since nearly all DNA damage caused by 99mTcO4- was prevented by incubating with DMSO.

  13. Glutamatergic vestibular neurons express Fos after vestibular stimulation and project to the NTS and the PBN in rats.

    Science.gov (United States)

    Cai, Yi-Ling; Ma, Wen-Ling; Li, Min; Guo, Jun-Sheng; Li, Yi-Qian; Wang, Li-Gang; Wang, Wei-Zhong

    2007-05-01

    In this study, retrograde tracing method combined with phosphate-activated glutaminase (PAG) and Fos immunofluorescence histochemistry was used to identify glutamatergic vestibular nucleus (VN) neurons receiving vestibular inputs and projecting to the nucleus of the solitary tract (NTS) and the parabrachial nucleus (PBN). Conscious animals were subjected to 120 min Ferris-wheel like rotation stimulation. Neuronal activation was assessed by Fos expression in the nucleus of VN neurons. After Fluoro-gold (FG) injection into the caudal NTS, approximately 48% FG-labeled VN neurons were immunoreactive for PAG, and about 14% PAG/FG double-labeled neurons co-existed with Fos. Following FG injection into the PBN, approximately 56% FG-labeled VN neurons were double-labeled with PAG, and about 12% of the PAG/FG double-labeled neurons also expressed Fos. Careful examination of the typology and distribution pattern of these PAG-immunoreactive neurons indicated that the vast majority of these neurons were glutamatergic rather than GABAergic. These results suggest that PAG-immunoreactive VN neurons might constitute excitatory glutamatergic VN-NTS and VN-PBN transmission pathways and these pathways might be involved in vestibulo-autonomic reflexes during vestibular stimulation.

  14. Local-circuit phenotypes of layer 5 neurons in motor-frontal cortex of YFP-H mice

    Directory of Open Access Journals (Sweden)

    Jianing Yu

    2008-12-01

    Full Text Available Layer 5 pyramidal neurons comprise an important but heterogeneous group of cortical projection neurons. In motor-frontal cortex, these neurons are centrally involved in the cortical control of movement. Recent studies indicate that local excitatory networks in mouse motor-frontal cortex are dominated by descending pathways from layer 2/3 to 5. However, those pathways were identified in experiments involving unlabeled neurons in wild type mice. Here, to explore the possibility of class-specific connectivity in this descending pathway, we mapped the local sources of excitatory synaptic input to a genetically labeled population of cortical neurons: YFP-positive layer 5 neurons of YFP-H mice. We found, first, that in motor cortex, YFP-positive neurons were distributed in a double blade, consistent with the idea of layer 5B having greater thickness in frontal neocortex. Second, whereas unlabeled neurons in upper layer 5 received their strongest inputs from layer 2, YFP-positive neurons in the upper blade received prominent layer 3 inputs. Third, YFP-positive neurons exhibited distinct electrophysiological properties, including low spike frequency adaptation, as reported previously. Our results with this genetically labeled neuronal population indicate the presence of distinct local-circuit phenotypes among layer 5 pyramidal neurons in mouse motor-frontal cortex, and present a paradigm for investigating local circuit organization in other genetically labeled populations of cortical neurons.

  15. Synthesizing labeled compounds

    International Nuclear Information System (INIS)

    London, R.E.; Matwiyoff, N.A.; Unkefer, C.J.; Walker, T.E.

    1983-01-01

    A metabolic study is presented of the chemical reactions provided by isotopic labeling and NMR spectroscopy. Synthesis of 13 C-labeled D-glucose, a 6-carbon sugar, involves adding a labeled nitrile group to the 5-carbon sugar D-arabinose by reaction with labeled hydrogen cyanide. The product of this reaction is then reduced and hydrolyzed to a mixture of the labeled sugars. The two sugars are separated by absorption chromotography. The synthesis of 13 C-labeled L-tyrosine, an amino acid, is also presented

  16. Monitoring of single-cell responses in the optic tectum of adult zebrafish with dextran-coupled calcium dyes delivered via local electroporation.

    Directory of Open Access Journals (Sweden)

    Vanessa Kassing

    Full Text Available The zebrafish (Danio rerio has become one of the major animal models for in vivo examination of sensory and neuronal computation. Similar to Xenopus tadpoles neural activity in the optic tectum, the major region controlling visually guided behavior, can be examined in zebrafish larvae by optical imaging. Prerequisites of these approaches are usually the transparency of larvae up to a certain age and the use of two-photon microscopy. This principle of fluorescence excitation was necessary to suppress crosstalk between signals from individual neurons, which is a critical issue when using membrane-permeant dyes. This makes the equipment to study neuronal processing costly and limits the approach to the study of larvae. Thus there is lack of knowledge about the properties of neurons in the optic tectum of adult animals. We established a procedure to circumvent these problems, enabling in vivo calcium imaging in the optic tectum of adult zebrafish. Following local application of dextran-coupled dyes single-neuron activity of adult zebrafish can be monitored with conventional widefield microscopy, because dye labeling remains restricted to tens of neurons or less. Among the neurons characterized with our technique we found neurons that were selective for a certain pattern orientation as well as neurons that responded in a direction-selective way to visual motion. These findings are consistent with previous studies and indicate that the functional integrity of neuronal circuits in the optic tectum of adult zebrafish is preserved with our staining technique. Overall, our protocol for in vivo calcium imaging provides a useful approach to monitor visual responses of individual neurons in the optic tectum of adult zebrafish even when only widefield microscopy is available. This approach will help to obtain valuable insight into the principles of visual computation in adult vertebrates and thus complement previous work on developing visual circuits.

  17. Simeprevir in combination with sofosbuvir in treatment-naïve and -experienced patients with hepatitis C virus genotype 4 infection: a Phase III, open-label, single-arm study (PLUTO).

    Science.gov (United States)

    Buti, M; Calleja, J L; Lens, S; Diago, M; Ortega, E; Crespo, J; Planas, R; Romero-Gómez, M; Rodríguez, F G; Pascasio, J M; Fevery, B; Kurland, D; Corbett, C; Kalmeijer, R; Jessner, W

    2017-02-01

    Hepatitis C virus (HCV) infection is a leading cause of liver cirrhosis and subsequent hepatocellular carcinoma. HCV genotype 4 is found widely in the Middle East, Egypt and Africa, and has also spread into Europe. There are limited data available regarding the use of direct-acting antiviral agents in HCV genotype 4-infected patients with cirrhosis. To evaluate in the phase III, open-label, single-arm PLUTO study the efficacy and safety of 12 weeks of simeprevir (HCV NS3/4A protease inhibitor) plus sofosbuvir (HCV nucleotide-analogue NS5B polymerase inhibitor) in treatment-naïve and (peg)interferon ± ribavirin-experienced HCV genotype 4-infected patients, with or without compensated cirrhosis. Adult patients with chronic HCV genotype 4 infection received simeprevir 150 mg once-daily and sofosbuvir 400 mg once-daily for 12 weeks. The primary efficacy endpoint was sustained virologic response 12 weeks after the end of treatment (SVR12). Safety was also assessed. Forty patients received treatment; the majority were male (73%) and treatment-experienced (68%). Overall, 7/40 (18%) patients had compensated cirrhosis. All patients achieved SVR12 [100% (Clopper-Pearson 95% confidence interval: 91-100%)]. Adverse events, all Grade 1 or 2, were reported in 20/40 (50%) patients. No serious adverse events were reported and no patients discontinued study treatment. Grade 3 treatment-emergent laboratory abnormalities were noted in 2/40 (5%) patients. Treatment with simeprevir plus sofosbuvir for 12 weeks resulted in SVR12 rates of 100% in treatment-naïve and -experienced patients with HCV genotype 4 infection with or without compensated cirrhosis, and was well tolerated. [NCT02250807]. © 2016 John Wiley & Sons Ltd.

  18. Safety, pharmacokinetics and efficacy findings in an open-label, single-arm study of weekly paclitaxel plus lapatinib as first-line therapy for Japanese women with HER2-positive metastatic breast cancer.

    Science.gov (United States)

    Inoue, Kenichi; Kuroi, Katsumasa; Shimizu, Satoru; Rai, Yoshiaki; Aogi, Kenjiro; Masuda, Norikazu; Nakayama, Takahiro; Iwata, Hiroji; Nishimura, Yuichiro; Armour, Alison; Sasaki, Yasutsuna

    2015-12-01

    Lapatinib is the human epidermal growth factor receptor 2 (HER2) targeting agent approved globally for HER2-positive metastatic breast cancer (MBC). The efficacy, safety and pharmacokinetics (PK) of lapatinib combined with paclitaxel (L+P) were investigated in this study, to establish clear evidence regarding the combination in Japanese patients. In this two-part, single-arm, open-label study, the tolerability of L+P as first-line treatment in Japanese patients with HER2-positive MBC was evaluated in six patients in the first part, and the safety, efficacy and PK were evaluated in a further six patients (making a total of twelve patients) in the second part. Eligible women were enrolled and received lapatinib 1500 mg once daily and paclitaxel 80 mg/m(2) weekly for at least 6 cycles. The only dose-limiting toxicity reported was Grade 3 diarrhea in one patient. The systemic exposure to maximum plasma concentration and area under the plasma concentration curve (AUC) for lapatinib, as well as the AUC of paclitaxel, were increased when combined. The most common adverse events (AEs) related to the study treatment were alopecia, diarrhea and decreased hemoglobin. The majority of drug-related AEs were Grade 1 or 2. The median overall survival was 35.6 months (95 % confidence interval 23.9, not reached). The response rate and clinical benefit rate were both 83 % (95 % confidence interval 51.6, 97.9). The L+P treatment was well tolerated in Japanese patients with HER2-positive MBC. Although the PK profiles of lapatinib and paclitaxel influenced each other, the magnitudes were not greatly different from those in non-Japanese patients.

  19. Determination of Labeled Fatty Acids Content in Milk Products, Infant Formula, and Adult/Pediatric Nutritional Formula by Capillary Gas Chromatography: Single-Laboratory Validation, First Action 2012.13.

    Science.gov (United States)

    Golay, Pierre-Alain; Dong, Yan

    2015-01-01

    The method described is intended for the quantification of all fatty acids, including commercially important groups of fatty acids used for labeling reasons [i. e., trans fatty acids, saturated fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids (PUFA), omega-3, omega-6, and omega-9] and/or individual fatty acids (i. e., linoleic acid, α-linolenic acid, arachidonic acid, ecosapentaenoic acid, and docosahexaenoic acid) in milk products, infant formula, and adult/pediatric nutritional formula. These products often contain milk fat and/or vegetable oils and are supplemented or not supplemented with oils rich in long-chain PUFA. The determination is performed by direct transesterification of ready-to-feed (RTF) liquid concentrate or powder products without prior fat extraction. Single-laboratory validation (SLV) data were submitted to the AOAC Expert Review Panel (ERP) on Nutrient Methods for review at the AOAC Annual Meeting held on September 30 to October 3, 2012, in Las Vegas, NV. The ERP determined that the data reviewed met the Standard Method Performance Requirements (SMPR® 2012.011) set by the AOAC Stakeholder Panel on Infant Formula and Adult Nutritionals (SPIFAN) and was approved as an AOAC Official First Action method. The analytical range for SPIFAN samples was between 0.001 and 7.94 g/100 g reconstituted product or RTF liquid. LOQ was estimated as 0.001 g/100 g, while repeatability and intermediate precision were both less than 1.8% RSD above 0.05 g/100 g and acids ranged from 100.0 to 102.9% for three different SPIFAN products. All the parameters evaluated during the SLV were well within the values defined in SMPR 2012.011.

  20. Multimodal Imaging of Integrin Receptor-Positive Tumors by Bioluminescence, Fluorescence, Gamma Scintigraphy, and Single-Photon Emission Computed Tomography Using a Cyclic RGD Peptide Labeled with a Near-Infrared Fluorescent Dye and a Radionuclide

    Directory of Open Access Journals (Sweden)

    W. Barry Edwards

    2009-03-01

    Full Text Available Integrins, particularly the αvβ3 heterodimers, play important roles in tumor-induced angiogenesis and invasiveness. To image the expression pattern of the αvβ3 integrin in tumors through a multimodality imaging paradigm, we prepared a cyclic RGDyK peptide analogue (LS308 bearing a tetraazamacrocycle 1,4,7,10-tetraazacyclododecane-N, N′, N″, N‴-tetraacetic acid (DOTA and a lipophilic near-infrared (NIR fluorescent dye cypate. The αvβ3 integrin binding affinity and the internalization properties of LS308 mediated by the αvβ3 integrin in 4t1luc cells were investigated by receptor binding assay and fluorescence microscopy, respectively. The in vivo distribution of 111In-labeled LS308 in a 4t1luc tumor-bearing mouse model was studied by fluorescence, bioluminescence, planar gamma, and single-photon emission computed tomography (SPECT. The results show that LS308 has high affinity for αvβ3 integrin and internalized preferentially via the αvβ3 integrin-mediated endocytosis in 4t1luc cells. We also found that LS308 selectively accumulated in αvβ3-positve tumors in a receptor-specific manner and was visualized by the four imaging methods. Whereas the endogenous bioluminescence imaging identified the ensemble of the tumor tissue, the fluorescence and SPECT methods with the exogenous contrast agent LS308 reported the local expression of αvβ3 integrin. Thus, the multimodal imaging approach could provide important complementary diagnostic information for monitoring the efficacy of new antiangiogenic drugs.

  1. Matrix-dependent local retention of secretory vesicle cargo in cortical neurons

    NARCIS (Netherlands)

    de Wit, J.; Toonen, R.F.G.; Verhage, M.

    2009-01-01

    Neurons secrete many diffusible signals from synaptic and other secretory vesicles. We characterized secretion of guidance cues, neuropeptides, neurotrophins, and proteases from single secretory vesicles using pHluorin-tagged cargo in cortical neurons. Stimulation triggered transient and persistent

  2. Male pheromone protein components activate female vomeronasal neurons in the salamander Plethodon shermani

    Directory of Open Access Journals (Sweden)

    Feldhoff Pamela W

    2006-03-01

    Full Text Available Abstract Background The mental gland pheromone of male Plethodon salamanders contains two main protein components: a 22 kDa protein named Plethodon Receptivity Factor (PRF and a 7 kDa protein named Plethodon Modulating Factor (PMF, respectively. Each protein component individually has opposing effects on female courtship behavior, with PRF shortening and PMF lengthening courtship. In this study, we test the hypothesis that PRF or PMF individually activate vomeronasal neurons. The agmatine-uptake technique was used to visualize chemosensory neurons that were activated by each protein component individually. Results Vomeronasal neurons exposed to agmatine in saline did not demonstrate significant labeling. However, a population of vomeronasal neurons was labeled following exposure to either PRF or PMF. When expressed as a percent of control level labeled cells, PRF labeled more neurons than did PMF. These percentages for PRF and PMF, added together, parallel the percentage of labeled vomeronasal neurons when females are exposed to the whole pheromone. Conclusion This study suggests that two specific populations of female vomeronasal neurons are responsible for responding to each of the two components of the male pheromone mixture. These two neural populations, therefore, could express different receptors which, in turn, transmit different information to the brain, thus accounting for the different female behavior elicited by each pheromone component.

  3. Bevacizumab combined with capecitabine and oxaliplatin in patients with advanced adenocarcinoma of the small bowel or ampulla of vater: A single-center, open-label, phase 2 study.

    Science.gov (United States)

    Gulhati, Pat; Raghav, Kanwal; Shroff, Rachna T; Varadhachary, Gauri R; Kopetz, Scott; Javle, Milind; Qiao, Wei; Wang, Huamin; Morris, Jeffrey; Wolff, Robert A; Overman, Michael J

    2017-05-15

    Capecitabine with oxaliplatin (CAPOX) has previously demonstrated clinical activity in patients with small bowel adenocarcinoma (SBA) and ampullary adenocarcinoma (AAC). Herein, the authors conducted a phase 2 trial to evaluate the benefit of adding bevacizumab to CAPOX. In this phase 2, single-arm, single-center, open-label study, patients aged ≥18 years with untreated, advanced SBA or AAC were recruited. Patients received capecitabine at a dose of 750 mg/m 2 orally twice daily on days 1 to 14, oxaliplatin at a dose of 130 mg/m 2 intravenously on day 1, and bevacizumab at a dose of 7.5 mg/kg intravenously on day 1 of a 21-day cycle. The primary endpoint was progression-free survival (PFS) at 6 months. Secondary objectives included response rate, overall PFS, overall survival, and toxicity. Between August 2011 and November 2014, a total of 30 patients were enrolled into the study (male/female ratio of 13/17; median age of 63 years [range, 33-78 years]; and 7 patients with an Eastern Cooperative Oncology Group performance status [ECOG PS] of 0, 20 patients with an ECOG PS of 1, and 3 patients with an ECOG PS of 2). Of the 30 patients, 23 (77%) had SBA (18 of duodenal origin and 5 of jejunal/ileal origin) and 7 patients (23%) had AAC (5 of pancreaticobiliary subtype, 1 of mixed subtype, and 1 of intestinal subtype). The most common grade 3 toxicities observed were fatigue and hypertension (7 patients each [23%]), neutropenia (6 patients [20%]), and diarrhea (3 patients [10%]) (toxicity was graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events [version 4.0]). The probability of PFS at 6 months was 68% (95% confidence interval [95% CI], 52% to 88%). The response rate was 48.3%, with 1 complete response and 13 partial responses; 10 patients achieved stable disease. At a median follow-up of 25.9 months, the median PFS was 8.7 months (95% CI, 4.9-10.5 months) and the median overall survival was 12.9 months (95% CI, 9

  4. Pharmacokinetic comparison of controlled-release and immediate-release oral formulations of simvastatin in healthy Korean subjects: a randomized, open-label, parallel-group, single- and multiple-dose study.

    Science.gov (United States)

    Jang, Seong Bok; Lee, Yoon Jung; Lim, Lay Ahyoung; Park, Kyung-Mi; Kwon, Bong-Ju; Woo, Jong Soo; Kim, Yong-Il; Park, Min Soo; Kim, Kyung Hwan; Park, Kyungsoo

    2010-01-01

    A controlled-release (CR) formulation of simvastatin was recently developed in Korea. The formulation is expected to yield a lower C(max) and similar AUC values compared with the immediate-release (IR) formulation. The goal of this study was to compare the pharmacokinetics of the new CR formulation and an IR formulation of simvastatin after single- and multiple-dose administration in healthy Korean subjects. This study was developed as part of a product development project at the request of the Korean regulatory agency. This was a randomized, open-label, parallelgroup, 2-part study. Eligible subjects were healthy male or female volunteers between the ages of 19 and 55 years and within 20% of their ideal weight. In part I, each subject received a single dose of the CR or IR formulation of simvastatin 40 mg orally (20 mg x 2 tablets) after fasting. In part II, each subject received the same dose of the CR or IR formulation for 8 consecutive days. Blood samples were obtained for 48 hours after the dose in part I and after the first and the last dose in part II. Pharmacokinetic parameters were determined for both simvastatin (the inactive prodrug) and simvastatin acid (the active moiety). An adverse event (AE) was defined as any unfavorable sign (including an abnormal laboratory finding) or symptom, regardless of whether it had a causal relationship with the study medication. Serious AEs were defined as any events that are considered life threatening, require hospitalization or prolongation of existing hospitalization, cause persistent or significant disability or incapacity, or result in congenital abnormality, birth defect, or death. AEs were determined based on patient interviews and physical examinations. Twenty-four healthy subjects (17 men, 7 women; mean [SD] age, 29 [7] years; age range, 22-50 years) were enrolled in part I, and 29 subjects (17 men, 12 women; mean age, 33 [9] years; age range, 19-55 years) were enrolled in part II. For simvastatin acid, C

  5. Engineering connectivity by multiscale micropatterning of individual populations of neurons.

    Science.gov (United States)

    Albers, Jonas; Toma, Koji; Offenhäusser, Andreas

    2015-02-01

    Functional networks are the basis of information processing in the central nervous system. Essential for their formation are guided neuronal growth as well as controlled connectivity and information flow. The basis of neuronal development is generated by guiding cues and geometric constraints. To investigate the neuronal growth and connectivity of adjacent neuronal networks, two-dimensional protein patterns were created. A mixture of poly-L-lysine and laminin was transferred onto a silanized glass surface by microcontact printing. The structures were populated with dissociated primary cortical embryonic rat neurons. Triangular structures with diverse opening angles, height, and design were chosen as two-dimensional structures to allow network formation with constricted gateways. Neuronal development was observed by immunohistochemistry to pursue the influence of the chosen structures on the neuronal outgrowth. Neurons were stained for MAP2, while poly-L-lysine was FITC labeled. With this study we present an easy-to-use technique to engineer two-dimensional networks in vitro with defined gateways. The presented micropatterning method is used to generate daisy-chained neuronal networks with predefined connectivity. Signal propagation among geometrically constrained networks can easily be monitored by calcium-sensitive dyes, providing insights into network communication in vitro. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Soil Fumigant Labels - Dazomet

    Science.gov (United States)

    Updated labels include new safety requirements for buffer zones and related measures. Find information from the Pesticide Product Labeling System (PPLS) for products such as Basamid G, manufactured by Amvac.

  7. Soil Fumigant Labels - Chloropicrin

    Science.gov (United States)

    Search by EPA registration number, product name, or company name, and follow the link to the Pesticide Product Label System (PPLS) for details on each fumigant. Updated labels include new safety requirements for buffer zones and related measures.

  8. Semiotic labelled deductive systems

    Energy Technology Data Exchange (ETDEWEB)

    Nossum, R.T. [Imperial College of Science, Technology and Medicine, London (United Kingdom)

    1996-12-31

    We review the class of Semiotic Models put forward by Pospelov, as well as the Labelled Deductive Systems developed by Gabbay, and construct an embedding of Semiotic Models into Labelled Deductive Systems.

  9. Pesticide Product Label System

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Pesticide Product Label System (PPLS) provides a collection of pesticide product labels (Adobe PDF format) that have been approved by EPA under Section 3 of the...

  10. Mental Labels and Tattoos

    Science.gov (United States)

    Hyatt, I. Ralph

    1977-01-01

    Discusses the ease with which mental labels become imprinted in our system, six basic axioms for maintaining negative mental tattoos, and psychological processes for eliminating mental tattoos and labels. (RK)

  11. Electronic Submission of Labels

    Science.gov (United States)

    Pesticide registrants can provide draft and final labels to EPA electronically for our review as part of the pesticide registration process. The electronic submission of labels by registrants is voluntary but strongly encouraged.

  12. Tolerability and pharmacokinetics of ranolazine following single and multiple sustained-release doses in Chinese healthy adult volunteers: a randomized, open-label, Latin square design, phase I study.

    Science.gov (United States)

    Tan, Qin-You; Li, Huan-De; Zhu, Rong-Hua; Zhang, Qi-Zhi; Zhang, Jun; Peng, Wen-Xing

    2013-02-01

    Ranolazine was approved by the US Food and Drug Administration in January 2006 for the treatment of chronic angina pectoris, and is the first approved agent from a new class of anti-anginal drugs in almost 25 years. The primary objective of this study was to determine the concentration of ranolazine in human plasma using the liquid chromatography/tandem mass spectrometry (LC-MS/MS) method and to compare the pharmacokinetic properties of ranolazine after administration of single and multiple doses of ranolazine in healthy Chinese adult volunteers. A randomized, open-label, single- and multiple-dose study design was used in the study. Subjects were randomized to receive a single dose of 500, 1,000, or 1,500 mg of ranolazine. Those who received the single dose continued on to the multiple-dose phase and received 500 mg twice daily for 7 days. In the single-dose phase, blood samples were collected from 0 to 48 h after drug administration. In the multiple-dose phase, samples were obtained before drug administration at 8:00 am and 8:00 pm on days 6 and 7 to determine the minimum steady-state plasma concentration (C(min,ss)) of ranolazine; on day 8, samples were collected from 0 to 48 h after drug administration. All values were expressed as means (standard deviations [SDs]). Adverse events (AEs) were monitored throughout the study via subject interview, vital signs, and blood sampling. The LC-MS/MS method was developed and validated. Twelve Chinese subjects (six men, six women) were enrolled in the single-dose phase of the pharmacokinetic study. The mean (SD) age of the subjects was 24.7 (1.6) years; their mean (SD) weight was 61.3 (6.4) kg, their mean (SD) height was 165.7 (4.5) cm, and their mean (SD) body mass index was 21.6 (6.6) kg/m(2). The main pharmacokinetic parameters [mean (SD)] for ranolazine after administration of a single oral dose of 500, 1,000, and 1,500 mg were as follows: maximum plasma concentration (C(max)) 741.5 (253.0), 1,355.0 (502.0), and 2

  13. Relative bioavailability of two formulations of nevirapine 200-mg tablets in healthy Chinese male volunteers: a single-dose, randomized-sequence, open-label, two-way crossover study.

    Science.gov (United States)

    Zhu, Yubing; Zhang, Qian; Yu, Cuixia; Zou, Jianjun; Yang, Xiaohong; Hu, Yunfang

    2010-12-01

    Nevirapine was the first member of the nonnucleoside reverse transcriptase inhibitor class to be approved for the treatment of HIV infection. It binds directly to the allosteric site on the reverse transcriptase and inhibits the activity of both RNA- and DNA-dependent DNA polymerases. This study compared the pharmacokinetics and relative bioavailability of a test and reference formulation of nevirapine 200-mg tablets after single oral doses in healthy Chinese men to meet regulatory criteria for marketing of the new generic formulation. This single-dose, randomized-sequence, open-label, 2-way crossover study was conducted at the Nanjing First Hospital of Nanjing Medical University, Nanjing, China. Healthy male Chinese volunteers were randomized in a 1∶1 ratio to receive a single 200-mg (3.2-mg/kg) tablet of the test or reference formulation, followed by a 2-week washout period and administration of the alternate formulation. The study drugs were administered after a 10-hour overnight fast. Concentrations of nevirapine were assayed using an HPLC-UV method. For analysis of nevirapine pharmacokinetic parameters, blood samples were obtained before dosing and at regularly scheduled intervals over 168 hours after administration. The 2 formulations would be assumed to be bioequivalent for regulatory purposes if the 90% CIs for the log-transformed ratios of nevirapine AUC and C(max) were within the range established by the US Food and Drug Administration (0.80-1.25). Tolerability was evaluated throughout the study based on vital signs, physical examinations, 12-lead ECGs, and subject interviews concerning adverse events (AEs). Twenty Chinese male subjects were enrolled in and completed the study. Their mean age was 23 years (range, 21-25 years), mean weight was 63 kg (range, 56-70 kg), and mean height was 171 cm (range, 166-176 cm). No period or sequence effect was observed. The mean (SD) t(½) was 38.12 (2.23) hours for the test tablet and 36.79 (5.06) hours for the

  14. Pharmacokinetic comparison of sustained- and immediate-release oral formulations of cilostazol in healthy Korean subjects: a randomized, open-label, 3-part, sequential, 2-period, crossover, single-dose, food-effect, and multiple-dose study.

    Science.gov (United States)

    Lee, Donghwan; Lim, Lay Ahyoung; Jang, Seong Bok; Lee, Yoon Jung; Chung, Jae Yong; Choi, Jong Rak; Kim, Kiyoon; Park, Jin Woo; Yoon, Hosang; Lee, Jaeyong; Park, Min Soo; Park, Kyungsoo

    2011-12-01

    A sustained-release (SR) formulation of cilostazol was recently developed in Korea and was expected to yield a lower C(max) and a similar AUC to the immediate-release (IR) formulation. The goal of the present study was to compare the pharmacokinetic profiles of a newly developed SR formulation and an IR formulation of cilostazol after single- and multiple-dose administration and to evaluate the influence of food in healthy Korean subjects. This study was developed as part of a product development project at the request of the Korean regulatory agency. This was a randomized, 3-part, sequential, open-label, 2-period crossover study. Each part consisted of different subjects between the ages of 19 and 55 years. In part 1, each subject received a single dose of SR (200 mg × 1 tablet, once daily) and IR (100 mg × 2 tablets, BID) formulations of cilostazol orally 7 days apart in a fasted state. In part 2, each subject received a single dose of the SR (200 mg × 1 tablet, once daily) formulation of cilostazol 7 days apart in a fasted and a fed state. In part 3, each subject received multiple doses of the 2 formulations for 8 consecutive days 21 days apart. Blood samples were taken for 72 hours after the dose. Cilostazol pharmacokinetics were determined for both the parent drug and its metabolites (OPC-13015 and OPC-13213). Adverse events were evaluated through interviews and physical examinations. Among the 92 enrolled subjects (66 men, 26 women; part 1, n = 26; part 2, n = 26; part 3, n = 40), 87 completed the study. In part 1, all the primary pharmacokinetic parameters satisfied the criterion for assumed bioequivalence both in cilostazol and its metabolites, yielding 90% CI ratios of 0.9624 to 1.2323, 0.8873 to 1.1208, and 0.8919 to 1.1283 for C(max) and 0.8370 to 1.0134, 0.8204 to 0.9807, and 0.8134 to 0.9699 for AUC(0-last) of cilostazol, OPC-13015, and OPC-13213, respectively. In part 2, food intake increased C(max) and AUC significantly (P food and 23 with a high

  15. A Label to Regulate

    DEFF Research Database (Denmark)

    Tricoire, Aurélie; Boxenbaum, Eva; Laurent, Brice

    This paper examines the role labelling plays in the government of the contemporary economy.1Drawing on a detailed study of BBC-Effinergy, a French label for sustainable construction, we showhow the adoption and evolution of voluntary labels can be seen as emblematic of a governmentthrough experim...... experiment engaging 4 operations: stimulating market anticipations, focussing politicalconsultations, producing collective expertise and containing the regulatory transcription of the label....

  16. Rewiring of neuronal networks during synaptic silencing.

    Science.gov (United States)

    Wrosch, Jana Katharina; Einem, Vicky von; Breininger, Katharina; Dahlmanns, Marc; Maier, Andreas; Kornhuber, Johannes; Groemer, Teja Wolfgang

    2017-09-15

    Analyzing the connectivity of neuronal networks, based on functional brain imaging data, has yielded new insight into brain circuitry, bringing functional and effective networks into the focus of interest for understanding complex neurological and psychiatric disorders. However, the analysis of network changes, based on the activity of individual neurons, is hindered by the lack of suitable meaningful and reproducible methodologies. Here, we used calcium imaging, statistical spike time analysis and a powerful classification model to reconstruct effective networks of primary rat hippocampal neurons in vitro. This method enables the calculation of network parameters, such as propagation probability, path length, and clustering behavior through the measurement of synaptic activity at the single-cell level, thus providing a fuller understanding of how changes at single synapses translate to an entire population of neurons. We demonstrate that our methodology can detect the known effects of drug-induced neuronal inactivity and can be used to investigate the extensive rewiring processes affecting population-wide connectivity patterns after periods of induced neuronal inactivity.

  17. Mechanical Dissociation of Retinal Neurons with Vibration

    Science.gov (United States)

    Motomura, Tamami; Hayashida, Yuki; Murayama, Nobuki

    The neuromorphic device, which implements the functions of biological neural circuits by means of VLSI technology, has been collecting much attention in the engineering fields in the last decade. Concurrently, progress in neuroscience research has revealed the nonlinear computation in single neuron levels, suggesting that individual neurons are not merely the circuit elements but computational units. Thus, elucidating the properties of neuronal signal processing is thought to be an essential step for developing the next generation of neuromorphic devices. In the present study, we developed a method for dissociating single neurons from specific sublayers of mammalian retinas with using no proteolytic enzymes but rather combining tissue incubation in a low-Ca2+ medium and the vibro-dissociation technique developed for the slices of brains and spinal cords previously. Our method took shorter time of the procedure, and required less elaborated skill, than the conventional enzymatic method did; nevertheless it yielded enough number of the cells available for acute electrophysiological experiments. The isolated retinal neurons were useful for measuring the nonlinear membrane conductances as well as the spike firing properties under the perforated-patch whole-cell configuration. These neurons also enabled us to examine the effects of proteolytic enzymes on the membrane excitability in those cells.

  18. Distinct Effects of Abelson Kinase Mutations on Myocytes and Neurons in Dissociated Drosophila Embryonic Cultures: Mimicking of High Temperature

    Science.gov (United States)

    Liu, Lijuan; Wu, Chun-Fang

    2014-01-01

    Abelson tyrosine kinase (Abl) is known to regulate axon guidance, muscle development, and cell-cell interaction in vivo. The Drosophila primary culture system offers advantages in exploring the cellular mechanisms mediated by Abl with utilizing various experimental manipulations. Here we demonstrate that single-embryo cultures exhibit stage-dependent characteristics of cellular differentiation and developmental progression in neurons and myocytes, as well as nerve-muscle contacts. In particular, muscle development critically depends on the stage of dissociated embryos. In wild-type (WT) cultures derived from embryos before stage 12, muscle cells remained within cell clusters and were rarely detected. Interestingly, abundant myocytes were spotted in Abl mutant cultures, exhibiting enhanced myocyte movement and fusion, as well as neuron-muscle contacts even in cultures dissociated from younger, stage 10 embryos. Notably, Abl myocytes frequently displayed well-expanded lamellipodia. Conversely, Abl neurons were characterized with fewer large veil-like lamellipodia, but instead had increased numbers of filopodia and darker nodes along neurites. These distinct phenotypes were equally evident in both homo- and hetero-zygous cultures (Abl/Abl vs. Abl/+) of different alleles (Abl1 and Abl4) indicating dominant mutational effects. Strikingly, in WT cultures derived from stage 10 embryos, high temperature (HT) incubation promoted muscle migration and fusion, partially mimicking the advanced muscle development typical of Abl cultures. However, HT enhanced neuronal growth with increased numbers of enlarged lamellipodia, distinct from the characteristic Abl neuronal morphology. Intriguingly, HT incubation also promoted Abl lamellipodia expansion, with a much greater effect on nerve cells than muscle. Our results suggest that Abl is an essential regulator for myocyte and neuron development and that high-temperature incubation partially mimics the faster muscle development

  19. Neuronal Networks on Nanocellulose Scaffolds.

    Science.gov (United States)

    Jonsson, Malin; Brackmann, Christian; Puchades, Maja; Brattås, Karoline; Ewing, Andrew; Gatenholm, Paul; Enejder, Annika

    2015-11-01

    Proliferation, integration, and neurite extension of PC12 cells, a widely used culture model for cholinergic neurons, were studied in nanocellulose scaffolds biosynthesized by Gluconacetobacter xylinus to allow a three-dimensional (3D) extension of neurites better mimicking neuronal networks in tissue. The interaction with control scaffolds was compared with cationized nanocellulose (trimethyl ammonium betahydroxy propyl [TMAHP] cellulose) to investigate the impact of surface charges on the cell interaction mechanisms. Furthermore, coatings with extracellular matrix proteins (collagen, fibronectin, and laminin) were investigated to determine the importance of integrin-mediated cell attachment. Cell proliferation was evaluated by a cellular proliferation assay, while cell integration and neurite propagation were studied by simultaneous label-free Coherent anti-Stokes Raman Scattering and second harmonic generation microscopy, providing 3D images of PC12 cells and arrangement of nanocellulose fibrils, respectively. Cell attachment and proliferation were enhanced by TMAHP modification, but not by protein coating. Protein coating instead promoted active interaction between the cells and the scaffold, hence lateral cell migration and integration. Irrespective of surface modification, deepest cell integration measured was one to two cell layers, whereas neurites have a capacity to integrate deeper than the cell bodies in the scaffold due to their fine dimensions and amoeba-like migration pattern. Neurites with lengths of >50 μm were observed, successfully connecting individual cells and cell clusters. In conclusion, TMAHP-modified nanocellulose scaffolds promote initial cellular scaffold adhesion, which combined with additional cell-scaffold treatments enables further formation of 3D neuronal networks.

  20. Morphological features of neurons containing calcium-binding proteins in the human striatum.

    Science.gov (United States)

    Prensa, L; Giménez-Amaya, J M; Parent, A

    1998-01-26

    An immunohistochemical approach was used to characterize the morphological phenotype of neurons containing the calcium-binding proteins calretinin (CR), parvalbumin (PV), or calbindin-D28k (CB) in the normal human striatum. The protein CR occurs in at least four morphologically distinct types of neurons. Apart from the numerous medium-sized aspiny interneurons and the less abundant giant aspiny interneurons, CR also labels some medium-sized spiny neurons morphologically identical to striatal projection neurons. This finding indicates that CR is not only confined to striatal interneurons but also may be involved in the function of certain projection neurons. Some small and peculiar bushy-like aspiny neurons also are enriched with CR. These neurons could correspond to the dwarf or neurogliform neurons first described by Ramón y Cajal (1911). Three types of PV-immunoreactive striatal neurons can be visualized in the human striatum: 1) the common medium-sized aspiny leptodendritic neurons, 2) some smaller and profusely arborized aspiny neurons, and 3) a few large and intensely stained neurons with conspicuously beaded and poorly branched dendrites. The protein CB labels virtually all medium-sized spiny projection neurons located in the striatal matrix but also identifies a small subset of large and more intensely immunostained aspiny neurons. The latter finding indicates that CB is not entirely confined to striatal projection neurons but also may play a role in local circuit neurons. These normative data should help our understanding of the chemical anatomy of the human striatum in both health and disease.

  1. Statistics of Visual Responses to Image Object Stimuli from Primate AIT Neurons to DNN Neurons.

    Science.gov (United States)

    Dong, Qiulei; Wang, Hong; Hu, Zhanyi

    2018-02-01

    Under the goal-driven paradigm, Yamins et al. ( 2014 ; Yamins & DiCarlo, 2016 ) have shown that by optimizing only the final eight-way categorization performance of a four-layer hierarchical network, not only can its top output layer quantitatively predict IT neuron responses but its penultimate layer can also automatically predict V4 neuron responses. Currently, deep neural networks (DNNs) in the field of computer vision have reached image object categorization performance comparable to that of human beings on ImageNet, a data set that contains 1.3 million training images of 1000 categories. We explore whether the DNN neurons (units in DNNs) possess image object representational statistics similar to monkey IT neurons, particularly when the network becomes deeper and the number of image categories becomes larger, using VGG19, a typical and widely used deep network of 19 layers in the computer vision field. Following Lehky, Kiani, Esteky, and Tanaka ( 2011 , 2014 ), where the response statistics of 674 IT neurons to 806 image stimuli are analyzed using three measures (kurtosis, Pareto tail index, and intrinsic dimensionality), we investigate the three issues in this letter using the same three measures: (1) the similarities and differences of the neural response statistics between VGG19 and primate IT cortex, (2) the variation trends of the response statistics of VGG19 neurons at different layers from low to high, and (3) the variation trends of the response statistics of VGG19 neurons when the numbers of stimuli and neurons increase. We find that the response statistics on both single-neuron selectivity and population sparseness of VGG19 neurons are fundamentally different from those of IT neurons in most cases; by increasing the number of neurons in different layers and the number of stimuli, the response statistics of neurons at different layers from low to high do not substantially change; and the estimated intrinsic dimensionality values at the low

  2. Automatically tracking neurons in a moving and deforming brain.

    Science.gov (United States)

    Nguyen, Jeffrey P; Linder, Ashley N; Plummer, George S; Shaevitz, Joshua W; Leifer, Andrew M

    2017-05-01

    Advances in optical neuroimaging techniques now allow neural activity to be recorded with cellular resolution in awake and behaving animals. Brain motion in these recordings pose a unique challenge. The location of individual neurons must be tracked in 3D over time to accurately extract single neuron activity traces. Recordings from small invertebrates like C. elegans are especially challenging because they undergo very large brain motion and deformation during animal movement. Here we present an automated computer vision pipeline to reliably track populations of neurons with single neuron resolution in the brain of a freely moving C. elegans undergoing large motion and deformation. 3D volumetric fluorescent images of the animal's brain are straightened, aligned and registered, and the locations of neurons in the images are found via segmentation. Each neuron is then assigned an identity using a new time-independent machine-learning approach we call Neuron Registration Vector Encoding. In this approach, non-rigid point-set registration is used to match each segmented neuron in each volume with a set of reference volumes taken from throughout the recording. The way each neuron matches with the references defines a feature vector which is clustered to assign an identity to each neuron in each volume. Finally, thin-plate spline interpolation is used to correct errors in segmentation and check consistency of assigned identities. The Neuron Registration Vector Encoding approach proposed here is uniquely well suited for tracking neurons in brains undergoing large deformations. When applied to whole-brain calcium imaging recordings in freely moving C. elegans, this analysis pipeline located 156 neurons for the duration of an 8 minute recording and consistently found more neurons more quickly than manual or semi-automated approaches.

  3. Automatically tracking neurons in a moving and deforming brain.

    Directory of Open Access Journals (Sweden)

    Jeffrey P Nguyen

    2017-05-01

    Full Text Available Advances in optical neuroimaging techniques now allow neural activity to be recorded with cellular resolution in awake and behaving animals. Brain motion in these recordings pose a unique challenge. The location of individual neurons must be tracked in 3D over time to accurately extract single neuron activity traces. Recordings from small invertebrates like C. elegans are especially challenging because they undergo very large brain motion and deformation during animal movement. Here we present an automated computer vision pipeline to reliably track populations of neurons with single neuron resolution in the brain of a freely moving C. elegans undergoing large motion and deformation. 3D volumetric fluorescent images of the animal's brain are straightened, aligned and registered, and the locations of neurons in the images are found via segmentation. Each neuron is then assigned an identity using a new time-independent machine-learning approach we call Neuron Registration Vector Encoding. In this approach, non-rigid point-set registration is used to match each segmented neuron in each volume with a set of reference volumes taken from throughout the recording. The way each neuron matches with the references defines a feature vector which is clustered to assign an identity to each neuron in each volume. Finally, thin-plate spline interpolation is used to correct errors in segmentation and check consistency of assigned identities. The Neuron Registration Vector Encoding approach proposed here is uniquely well suited for tracking neurons in brains undergoing large deformations. When applied to whole-brain calcium imaging recordings in freely moving C. elegans, this analysis pipeline located 156 neurons for the duration of an 8 minute recording and consistently found more neurons more quickly than manual or semi-automated approaches.

  4. Multiple tag labeling method for DNA sequencing

    Science.gov (United States)

    Mathies, Richard A.; Huang, Xiaohua C.; Quesada, Mark A.

    1995-01-01

    A DNA sequencing method described which uses single lane or channel electrophoresis. Sequencing fragments are separated in said lane and detected using a laser-excited, confocal fluorescence scanner. Each set of DNA sequencing fragments is separated in the same lane and then distinguished using a binary coding scheme employing only two different fluorescent labels. Also described is a method of using radio-isotope labels.

  5. Birthdating of myenteric neuron subtypes in the small intestine of the mouse.

    Science.gov (United States)

    Bergner, Annette J; Stamp, Lincon A; Gonsalvez, David G; Allison, Margaret B; Olson, David P; Myers, Martin G; Anderson, Colin R; Young, Heather M

    2014-02-15

    There are many different types of enteric neurons. Previous studies have identified the time at which some enteric neuron subtypes are born (exit the cell cycle) in the mouse, but the birthdates of some major enteric neuron subtypes are still incompletely characterized or unknown. We combined 5-ethynynl-2'-deoxyuridine (EdU) labeling with antibody markers that identify myenteric neuron subtypes to determine when neuron subtypes are born in the mouse small intestine. We found that different neurochemical classes of enteric neuron differed in their birthdates; serotonin neurons were born first with peak cell cycle exit at E11.5, followed by neurofilament-M neurons, calcitonin gene-related peptide neurons (peak cell cycle exit for both at embryonic day [E]12.5-E13.5), tyrosine hydroxylase neurons (E15.5), nitric oxide synthase 1 (NOS1) neurons (E15.5), and calretinin neurons (postnatal day [P]0). The vast majority of myenteric neurons had exited the cell cycle by P10. We did not observe any EdU+/NOS1+ myenteric neurons in the small intestine of adult mice following EdU injection at E10.5 or E11.5, which was unexpected, as previous studies have shown that NOS1 neurons are present in E11.5 mice. Studies using the proliferation marker Ki67 revealed that very few NOS1 neurons in the E11.5 and E12.5 gut were proliferating. However, Cre-lox-based genetic fate-mapping revealed a small subpopulation of myenteric neurons that appears to express NOS1 only transiently. Together, our results confirm a relationship between enteric neuron subtype and birthdate, and suggest that some enteric neurons exhibit neurochemical phenotypes during development that are different from their mature phenotype. Copyright © 2013 Wiley Periodicals, Inc.

  6. Oxygen labelled CO2

    International Nuclear Information System (INIS)

    Schuster, K.-D.; Heller, H.

    1989-01-01

    Tests were carried out as to whether additional information concerning pulmonary gas exchange could be obtained from the application of oxygen labelled carbon dioxide. Single breath experiments were performed on two healthy subjects with 0.1 percent C 16 O 18 O and 2.8 percent C 18 O 2 in the inspiratory gas. Breath-hold time was varied between 0.5-20s in different experiments. The 18 O-concentration of the end-expired gas bi-exponentially decreased with increasing breath-hold time. The high and low rate constants 4s -1 and 0.12s -1 for C 18 O 2 and 2.5s -1 and 0.87s -1 for C 16 O 18 O were derived, respectively. These results, together with model calculations, suggest: 1) the rapid disappearance of C 18 O 2 from the alveolar space is primarily limited by diffusion, so that this isotopic species can be applied to quantify pulmonary diffusing conditions; 2) the lower disappearance rate of C 16 O 18 O is caused by a lower equilibration kinetics in blood, so that this isotopic species offers a possibility to study carbonic anhydrase activity of the red cells in vivo; 3) the slow phase of label decay is influenced by both alveolar dead space and carbonic anhydrase activity of the pulmonary tissues. Pathological dead spaces are expected to be sensitively detectable by C 16 O 18 O as well as by C 18 O 2 . (author). 4 refs.; 4 figs

  7. Corticospinal mirror neurons

    OpenAIRE

    Kraskov, A.; Philipp, R.; Waldert, S.; Vigneswaran, G.; Quallo, M. M.; Lemon, R. N.

    2014-01-01

    Here, we report the properties of neurons with mirror-like characteristics that were identified as pyramidal tract neurons (PTNs) and recorded in the ventral premotor cortex (area F5) and primary motor cortex (M1) of three macaque monkeys. We analysed the neurons' discharge while the monkeys performed active grasp of either food or an object, and also while they observed an experimenter carrying out a similar range of grasps. A considerable proportion of tested PTNs showed clear mirror-like p...

  8. Combining Optogenetics and Electrophysiology to Analyze Projection Neuron Circuits.

    Science.gov (United States)

    Yamawaki, Naoki; Suter, Benjamin A; Wickersham, Ian R; Shepherd, Gordon M G

    2016-10-03

    A set of methods is described for channelrhodopsin-2 (ChR2)-based synaptic circuit analysis that combines photostimulation of virally transfected presynaptic neurons' axons with whole-cell electrophysiological recordings from retrogradely labeled postsynaptic neurons. The approach exploits the preserved photoexcitability of ChR2-expressing axons in brain slices and can be used to assess either local or long-range functional connections. Stereotaxic injections are used both to express ChR2 selectively in presynaptic axons of interest (using rabies virus [RV] or adeno-associated virus [AAV]) and to label two types of postsynaptic projection neurons of interest with fluorescent retrograde tracers. In brain slices, tracer-labeled postsynaptic neurons are targeted for whole-cell electrophysiological recordings, and synaptic connections are assessed by sampling voltage or current responses to light-emitting diode (LED) photostimulation of ChR2-expressing axons. The data are analyzed to estimate the relative amplitude of synaptic input and other connectivity parameters. Pharmacological and electrophysiological manipulations extend the versatility of the basic approach, allowing the dissection of monosynaptic versus disynaptic responses, excitatory versus inhibitory responses, and more. The method enables rapid, quantitative characterization of synaptic connectivity between defined pre- and postsynaptic classes of neurons. © 2016 Cold Spring Harbor Laboratory Press.

  9. Myelin-associated proteins labelled by slow axonal transport

    International Nuclear Information System (INIS)

    Giorgi, P.P.; DuBois, H.

    1981-01-01

    This paper deals with the problem of protein metabolism and provides evidence that the neuronal contribution to myelin metabolism may be restricted to lipids only. On the other hand this line of research led to the partial characterization of a group of neuronal proteins probably involved in axo-glial interactions subserving the onset of myelination and the structural maintenance of the mature myelin sheath. Intraocular injection of radioactive amino acids allows the study of the anterograde transport of labelled proteins along retinofugal fibres which are well myelinated. Myelin extracted from the optic nerve and tract under these conditions also contains labelled proteins. Three hypotheses are available to explain this phenomenon. To offer an explanation for this phenomenon the work was planned as follows. a) Characterization of the spatio-temporal pattern of labelling of myelin, in order to define the experimental conditions (survival time and region of the optic pathway to be studied) necessary to obtain maximal labelling. b) Characterization (by gel electrophoresis) of the myelin-associated proteins which become labelled by axonal transport, in order to work on a consistent pattern of labelling. c) Investigation of the possible mechanism responsible for the labelling of myelin-associated proteins. (Auth.)

  10. Synthesis of tritium labelled DSP 4, a selective noradrenaline neurotoxin

    International Nuclear Information System (INIS)

    Sahlberg, Christer; Gawell, Lars

    1985-01-01

    DSP 4 (N-(2-Chloroethyl)-N-ethyl-2-bromobenzylamine) is a neurotoxin, selective for neuronal noradrenaline (NA). Tritium labelled DSP 4 with a specific activity of 105 mCi/mmol was prepared. The key step in the synthesis is a reduction of the aminoester with activated sodium boro[ 3 H]hydride thus forming the alcohol. (author)

  11. Morphometric multivariate analysis of GABAergic neurons containing calretinin and neuronal nitric oxide synthase in the mouse hippocampus.

    Science.gov (United States)

    Jinno, S; Kinukawa, N; Kosaka, T

    2001-05-11

    Several studies reported the morphology of calretinin-positive (CR+) neurons and nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) labeled or neuronal nitric oxide synthase-positive (nNOS+) neurons in the rodent hippocampus, where these neurons showed similar morphological features. In addition, a previous study reported the frequent colocalization of CR and NADPH-d in the rat hippocampus. In this study, we aimed to examine whether CR+ neurons and nNOS+ neurons belong to a same morphological subpopulation of GABAergic neurons in the mouse hippocampus. Neurons were immunocytochemically classified into three groups, i.e., CR+/nNOS-, CR-/nNOS+ and CR+/nNOS+ groups. The present morphometric analysis was performed in the mouse Ammon's horn, because CR+/nNOS+ neurons were rarely found in the mouse dentate gyrus. We selected three morphometric parameters, i.e., soma area, soma form factor (FF) and number of primary dendrites. Dunnett's post-hoc analysis revealed that soma area, soma FF and number of primary dendrites were significantly larger in CR-/nNOS+ group than in CR+/nNOS- and CR+/nNOS+ groups. The morphometric data of CR+/nNOS+ group were quite similar to those of CR+/nNOS- group. The morphometric multivariate logistic regression analysis revealed that these three morphometric parameters were independent significant variables to discriminate between CR+/nNOS- and CR-/nNOS+ groups, and the majority of CR+/nNOS- and CR-/nNOS+ groups were correctly classified from the morphometric features. The present results clearly indicate that CR+/nNOS- neurons and CR-/nNOS+ neurons belong to different morphological subpopulations, and lead us to speculate that they might play different functional roles in the hippocampal circuit. The further application of morphometric multivariate analysis would be valuable to understand the functional roles of chemically defined neurons in the various brain regions.

  12. Pharmacokinetic comparison study of a combination containing 500 mg of Naproxen and 20 mg of Esomeprazole: a randomized, single-dose, 2-way crossover, open-label study in healthy Korean men.

    Science.gov (United States)

    Choi, Hyun-Gyu; Jeon, Ji-Young; Kwak, Seong-Shin; Kim, Hyunil; Jin, Changyun; Im, Yong-Jin; Kim, Eun-Young; Wang, Hye Min; Kim, Yunjeong; Lee, Sun Young; Kim, Min-Gul

    2015-01-01

    Nonsteroidal anti-inflammatory drugs have been used for analgesic, anti-inflammatory, and antithrombotic effects, but they carry a risk of major gastrointestinal damage. This risk can be greatly reduced by the coadministration of inhibitors of gastric acid secretion, such as proton pump inhibitors. This study was performed for the subsequent marketing of a combination drug that contained 500 mg of naproxen and 20 mg of esomeprazole in Korea. We evaluated the comparative bioavailability and tolerability of the test and reference formulations in healthy men. A total of 60 healthy men were enrolled in this single-dose, randomized, open-label, 2-period, 2-sequence, crossover study. During each period, men received a combination of 500 mg of naproxen and 20 mg of esomeprazole for test or reference, and between each period, there was a 1-week washout period. Blood samples were obtained 21 times throughout each period before dosing and 0.17, 0.33, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 8, 10, 12, 24, 48, and 72 hours after oral administration. Plasma concentrations were determined using LC-MS/MS. The pharmacokinetic parameters, including Cmax, AUC0-t, AUC0-∞, and Tmax, were measured, and all treatment-emergent adverse events and their associations with the study medications were recorded throughout the entire study. A total of 59 men completed the study. No significant differences were found in the prevalence of AEs between the 2 formulations. In addition, there were no serious or unexpected AEs during the study. Both formulations had very similar Cmax, AUC, and t½ values, but the Tmax of naproxen appeared earlier in the test formulation than in the reference formulation and that of esomeprazole appeared later in the test formulation than in the reference formulation. This study suggests that the test and reference formulations of a combination of 500 mg of naproxen and 20 mg of esomeprazole are bioequivalent in the extent of absorption and peak concentration

  13. Therapeutic effect of co-enzyme Q10 on idiopathic dilated cardiomyopathy: assessment by iodine-123 labelled 15-(p-iodophenyl)-3(R,S)-methylpentadecanoic acid myocardial single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong-ih [Department of Internal Medicine, Nishiyodo Hospital, Nishiyodo (Japan); Sawada, Yoshihiro [Department of Internal Medicine, Nishiyodo Hospital, Nishiyodo (Japan); Fujiwara, Go [Department of Radiology, Nishiyodo Hospital, Nishiyodo (Japan); Chiba, Hiroshi [Department of Internal Medicine, Mimihara General Hospital, Mimihara (Japan); Nishimura, Tsunehiko [Division of Tracer Kinetics, Biomedical Research Center, Osaka University Medical School, Osaka (Japan)

    1997-06-10

    It has been reported that myocardial mitochondrial function can be improved by the administration of co-enzyme Q10 (CoQ10). Recently, iodine-123 labelled 15-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid (BMIPP) was developed for metabolic imaging using single-photon emission tomography (SPET). This study was conducted to determine whether the therapeutic effects of CoQ10 on idiopathic dilated cardiomyopathy can be evaluated by BMIPP myocardial SPET. Fifteen patients, comprising 14 men and one woman (mean age: 64{+-}12 years), were examined. CoQ10 was administered at 30 mg/day for a period of 35.7{+-}12.4 days. BMIPP myocardial SPET was carried out before and after CoQ10 treatment. The count ratio of the heart (H) to the upper mediastinum (M) (H/M ratio) was calculated using a region of interest method with anterior planar imaging. Representative short-axis tomograms were divided into 27 segments (three slices x nine segments). Each segmental score was analysed semiquantitatively using a four-point scoring system (normal=0, mild low uptake=1, severe low uptake=2, defect=3). The H/M ratio showed a significant improvement, from 2.39{+-}0.39 to 2.54{+-}0.47, after treatment (P<0.05). The BMIPP total defect score after CoQ10 treatment was significantly decreased to 10.1{+-}4.3, compared to 13.9{+-}4.5 without CoQ10 treatment (P<0.001). However, the percent fractional shortening measured using echocardiography was not significantly different before and after CoQ treatment (19.2{+-}8.1 vs 19.7{+-}7.1). BMIPP myocardial SPET was confirmed to be sensitive in evaluating the therapeutic effects of CoQ10 in patients with idiopathic dilated cardiomyopathy. This method is unique, since the therapeutic effects can be estimated from the perspective of metabolic SPET imaging. (orig.). With 5 figs., 1 tab.

  14. Expanded HIV pre-exposure prophylaxis (PrEP) implementation in communities in New South Wales, Australia (EPIC-NSW): design of an open label, single arm implementation trial.

    Science.gov (United States)

    Zablotska, Iryna B; Selvey, Christine; Guy, Rebecca; Price, Karen; Holden, Jo; Schmidt, Heather-Marie; McNulty, Anna; Smith, David; Jin, Fengyi; Amin, Janaki; Cooper, David A; Grulich, Andrew E

    2018-02-02

    The New South Wales (NSW) HIV Strategy 2016-2020 aims for the virtual elimination of HIV transmission in NSW, Australia, by 2020. Despite high and increasing levels of HIV testing and treatment since 2012, the annual number of HIV diagnoses in NSW has remained generally unchanged. Pre-exposure prophylaxis (PrEP) is highly effective in preventing HIV infection among gay and bisexual men (GBM) when taken appropriately. However, there have been no population-level studies that evaluate the impact of rapid PrEP scale-up in high-risk GBM. Expanded PrEP Implementation in Communities in NSW (EPIC-NSW) is a population-level evaluation of the rapid, targeted roll-out of PrEP to high-risk individuals. EPIC-NSW, is an open-label, single-arm, multi-centre prospective observational study of PrEP implementation and impact. Over 20 public and private clinics across urban and regional areas in NSW have participated in the rapid roll-out of PrEP, supported by strong community mobilization and PrEP promotion. The study began on 1 March 2016, aiming to enroll at least 3700 HIV negative people at high risk of HIV. This estimate took into consideration criteria for PrEP prescription in people at high risk for acquiring HIV as defined in the NSW PrEP guidelines. Study participants receive once daily co-formulated tenofovir disoproxil fumarate and emtricitabine (TDF/FTC) and are followed for up to 24 months. Follow-up includes: testing for HIV at 1 month, HIV and other sexually transmissible infections three-monthly, HCV annually and monitoring of renal function six-monthly. Optional online behavioural surveys are conducted quarterly. The co-primary endpoints are (i) HIV diagnoses and incidence in the cohort and (ii) HIV diagnoses in NSW. EPIC-NSW is a population-based PrEP implementation trial which targets the entire estimated population of GBM at high risk for HIV infection in NSW. It will provide a unique opportunity to evaluate the population impact of PrEP on a concentrated HIV

  15. Comparison of benzydamine hydrochloride and Salvia officinalis as an adjuvant local treatment to systemic nonsteroidal anti-inflammatory drug in controlling pain after tonsillectomy, adenoidectomy, or both: an open-label, single-blind, randomized clinical trial.

    Science.gov (United States)

    Lalićević, Sinisa; Djordjević, Ivan

    2004-07-01

    Benzydamine hydrochloride (BNZD) is a nonsteroidal anti-inflammatory drug (NSAID) used in an oral rinse formulation as an adjuvant to other NSAIDs in controlling postoperative pain after tonsillectomy, adenoidectomy, or both. Salvia officinalis (SO) is a topically applied herbal preparation frequently used for the same indication. Pain, bleeding, and infection are the most common postoperative complications of tonsillectomy. The aim of this study was to compare the efficacy and tolerability of BNDZ with those of SO as adjuvant treatments in controlling postoperative pain. This open-label, single-blind, randomized clinical trial was conducted at the Department of Otorhinolaryngology, Clinical Hospital Center "Dr. Dragiša Mišović-Dedinje" (Belgrade, Serbia and Montenegro). Pediatric and adult patients undergoing tonsillectomy, adenoidectomy, or both were enrolled. Patients were randomized to receive BNZD or SO, in addition to ibuprofen 20 mg/kg·d (children) or diclofenac 100 mg/d (adults). The primary end point was the proportion of patients with mild or no pain on postoperative days 1, 2, 4, and 7. Secondary end points were the incidences of infection, hemorrhage, and other adverse events. A total of 420 patients were enrolled (217 females, 203 males; 278 children, 142 adults; mean [SD] age, 6.2 [2.1] years [children] and 24.1 [9.8] years [adults] [range, 3-45 years]). One hundred thirty-eight children received BNZD; 140 received SO (both in addition to ibuprofen 20 mg/kg·d). Seventy-two adults received BNZD; 70 received SO (both in addition to diclofenac 100 mg/d). A significantly lower proportion of children treated with adjuvant BNZD experienced moderate or severe pain than those treated with SO at each time point (P safety profile of BNZD was comparable to that of SO, with the exception of postoperative infection in adults, for which BNZD was more efficacious. In particular, the use of BNZD was not associated with a high risk for early postoperative

  16. Monosynaptic connections between primary afferents and giant neurons in the turtle spinal dorsal horn

    DEFF Research Database (Denmark)

    Fernández, A; Radmilovich, M; Russo, R E

    1996-01-01

    This paper reports the occurrence of monosynaptic connections between dorsal root afferents and a distinct cell type-the giant neuron-deep in the dorsal horn of the turtle spinal cord. Light microscope studies combining Nissl stain and transganglionic HRP-labeling of the primary afferents have...... revealed the occurrence of axosomatic and axodendritic contacts between labeled boutons and giant neurons. The synaptic nature of these contacts has been confirmed by use of electron microscope procedures involving the partial three-dimensional reconstruction of identified giant neurons. Intracellular...

  17. Functional characterisation of filamentous actin probe expression in neuronal cells.

    Directory of Open Access Journals (Sweden)

    Shrujna Patel

    Full Text Available Genetically encoded filamentous actin probes, Lifeact, Utrophin and F-tractin, are used as tools to label the actin cytoskeleton. Recent evidence in several different cell types indicates that these probes can cause changes in filamentous actin dynamics, altering cell morphology and function. Although these probes are commonly used to visualise actin dynamics in neurons, their effects on axonal and dendritic morphology has not been systematically characterised. In this study, we quantitatively analysed the effect of Lifeact, Utrophin and F-tractin on neuronal morphogenesis in primary hippocampal neurons. Our data show that the expression of actin-tracking probes significantly impacts on axonal and dendrite growth these neurons. Lifeact-GFP expression, under the control of a pBABE promoter, caused a significant decrease in total axon length, while another Lifeact-GFP expression, under the control