WorldWideScience

Sample records for single ion anisotropy

  1. Most spin-1/2 transition-metal ions do have single ion anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jia; Whangbo, Myung-Hwan, E-mail: hxiang@fudan.edu.cn, E-mail: mike-whangbo@ncsu.edu [Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695 (United States); Koo, Hyun-Joo [Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Xiang, Hongjun, E-mail: hxiang@fudan.edu.cn, E-mail: mike-whangbo@ncsu.edu [Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433 (China); Kremer, Reinhard K. [Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany)

    2014-09-28

    The cause for the preferred spin orientation in magnetic systems containing spin-1/2 transition-metal ions was explored by studying the origin of the easy-plane anisotropy of the spin-1/2 Cu{sup 2+} ions in CuCl{sub 2}·2H{sub 2}O, LiCuVO{sub 4}, CuCl{sub 2}, and CuBr{sub 2} on the basis of density functional theory and magnetic dipole-dipole energy calculations as well as a perturbation theory treatment of the spin-orbit coupling. We find that the spin orientation observed for these spin-1/2 ions is not caused by their anisotropic spin exchange interactions, nor by their magnetic dipole-dipole interactions, but by the spin-orbit coupling associated with their crystal-field split d-states. Our study also predicts in-plane anisotropy for the Cu{sup 2+} ions of Bi{sub 2}CuO{sub 4} and Li{sub 2}CuO{sub 2}. The results of our investigations dispel the mistaken belief that magnetic systems with spin-1/2 ions have no magnetic anisotropy induced by spin-orbit coupling.

  2. The single-ion anisotropy effects in the mixed-spin ternary-alloy

    Science.gov (United States)

    Albayrak, Erhan

    2018-04-01

    The effect of single-ion anisotropy on the thermal properties of the ternary-alloy in the form of ABpC1-p is investigated on the Bethe lattice (BL) in terms of exact recursion relations. The simulation on the BL consists of placing A atoms (spin-1/2) on the odd shells and randomly placing B (spin-3/2) or C (spin-5/2) atoms with concentrations p and 1 - p, respectively, on the even shells. The phase diagrams are calculated in possible planes spanned by the system parameters: temperature, single-ion anisotropy, concentration and ratio of the bilinear interaction parameters for z = 3 corresponding to the honeycomb lattice. It is found that the crystal field drives the system to the lowest possible state therefore reducing the temperatures of the critical lines in agreement with the literature.

  3. Phase diagrams of the ternary alloy with a single-ion anisotropy in the mean-field approximation

    International Nuclear Information System (INIS)

    Dely, J.; Bobak, A.

    2006-01-01

    The phase diagram of the AB p C 1-p ternary alloy consisting of Ising spins S A =32, S B =2, and S C =52 is investigated by the use of a mean-field theory based on the Bogoliubov inequality for the Gibbs free energy. The effect of the single-ion anisotropy on the phase diagrams is discussed by changing values of the parameters in the model Hamiltonian and comparison is made with the recently reported finite-temperature phase diagrams for the ternary alloy having spin S B =1

  4. The influence of elastic subsystem on phase transitions in ferromagnets with competitive exchange and single-ion anisotropies

    International Nuclear Information System (INIS)

    Freedman, Yu.A.; Klevets, F.N.; Matunin, D.A.

    2006-01-01

    The influence of planar and bulk elastic interactions on the phase states of an ultrathin ferromagnetic film with anisotropic exchange interaction is investigated for different relationships among the material constants. It is shown that when the elastic interactions, with competing exchange and single-ion anisotropies, and the magnetic dipole interaction are taken into account, a cascade of phase transitions appears. Furthermore, taking the 'planar' elastic interaction into account leads to realization of an additional phase, with an easy axis in the film plane. This state is absent in the case of a bulk elastic subsystem

  5. Union Jack and checkerboard lattices with easy plane single ion anisotropy

    Science.gov (United States)

    Pires, A. S. T.

    2017-11-01

    The zero-temperature phase diagrams of the antiferromagnetic Union Jack and checkerboard lattices, with spin one and an easy-plane single anisotropy term, are studied using the SU(3) Schwinger boson formalism (also known as flavor wave theory). We find that the Union Jack lattice has a quantum phase transition (QPT) at J2/J1 = 0.707 between a Néel and a collinear phase, while the checkerboard lattice has a QPT at J2/J1 = 0.785, from the Néel to a magnetically disordered phase. The ground state phase diagrams of the two models are different, both from each other and from that of the square lattice antiferromagnet with all the next nearest neighbors. For the checkerboard lattice, we calculate the spin gap and the ground state energy in the disordered phase. This phase is a candidate for a spin liquid state.

  6. Magnetic anisotropy of a Co-II single ion magnet with distorted trigonal prismatic coordination

    DEFF Research Database (Denmark)

    Peng, Yan; Bodenstein, Tilmann; Fink, Karin

    2016-01-01

    (methanylylidene)) bis(2-methoxyphenol) coordinates to Co(II) does indeed lead to enhanced single-ion behaviour as has previously been predicted. Synthesis of the compound, structural information, and static as well as dynamic magnetic data are presented along with an analysis using quantum chemical ab initio......The single ion magnetic properties of Co(II) are affected by the details of the coordination geometry of the ion. Here we show that a geometry close to trigonal prismatic which arises when the ligand 6,6'-((1Z)-((piperazine-1,4-diylbis(propane-3,1-diyl)) bis(azanylylidene)) bis...... calculations. Though the complex shows a slight deviation from an ideal trigonal prismatic coordination, the zero-field splitting as well as the g-tensor are strongly axial with D = -41 cm(-1) and E

  7. Anisotropy effect of crater formation on single crystal silicon surface under intense pulsed ion beam irradiation

    Science.gov (United States)

    Shen, Jie; Yu, Xiao; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Liang, Guoying; Yu, Xiang; Huang, Wanying; Shahid, Ijaz; Zhang, Xiaofu; Yan, Sha; Le, Xiaoyun

    2018-04-01

    Due to the induced extremely fast thermal and dynamic process, Intense Pulsed Ion Beam (IPIB) is widely applied in material processing, which can bring enhanced material performance and surface craters as well. To investigate the craters' formation mechanism, a specific model was built with Finite Element Methods (FEM) to simulate the thermal field on irradiated single crystal silicon. The direct evidence for the existence of the simulated 6-fold rotational symmetric thermal distribution was provided by electron microscope images obtained on single crystal silicon. The correlation of the experiment and simulation is of great importance to understand the interaction between IPIB and materials.

  8. Modulational instability and localized modes in Heisenberg ferromagnetic chains with single-ion easy-axis anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Bing, E-mail: bingtangphy@jsu.edu.cn; Li, Guang-Ling; Fu, Mei

    2017-03-15

    A semiclassical theoretical study on the property of the modulational instability of corresponding linear spin-waves and the presence of nonlinear localized excitations in a discrete quantum ferromagnetic spin chain with single-ion easy-axis anisotropy is reported. We consider the Glauber coherent-state representation combined with the Dyson-Maleev transformation for local spin operators as the basic representation of the system, and derive the equation of motion by means of the Ehrenfest theorem. Using a modulational instability analysis of plane waves, we predict the existence regions of bright envelope solitons and intrinsic localized spin-wave modes. Besides, with the help of a semidiscrete multi-scale method, we obtain analytical solutions for the bright envelope soliton and intrinsic localized spin-wave mode. Moreover, we analyze their existence conditions, which agree with the results of modulational instability analysis. - Highlights: • The anisotropy plays significant role in both the property of the modulational instability and the existence conditions for localized modes in ferromagnetic chains. • The analytical solutions of localized modes are obtained. • The appearance conditions for such localized modes agree with the modulational instability analysis.

  9. Reentrant behaviors in the phase diagram of spin-1 planar ferromagnets with easy-axis single-ion anisotropy via the Devlin two-time Green function framework

    Science.gov (United States)

    Mercaldo, M. T.; Rabuffo, I.; De Cesare, L.; Caramico D'Auria, A.

    2017-10-01

    The Devlin two-time Green function framework is used to investigate the role played by the easy-axis single-ion anisotropy on the phase diagram of (d > 2) -dimensional spin-1 planar ferromagnets which exhibit a magnetic-field-induced quantum phase transition (QPT). In this scheme, the exchange anisotropy terms in the equations of motion are treated at the Tyablikov decoupling level while the crystal field anisotropy contribution is handled exactly. The emerging key result is a reentrant structure of the phase diagram close to the quantum critical point for a well defined window of values of the single-ion anisotropy parameter. This experimentally interesting feature was recently recovered by employing the Anderson-Callen decoupling (ACD) which is considered to provide meaningful results only for small values of the single-ion anisotropy parameter. In this context, our findings suggest that the simplest ACD treatment offers the possibility to have, at least qualitatively, a correct physical scenario of quantum criticality close to a field-induced QPT avoiding the limiting mathematical difficulties involved in the Devlin scheme.

  10. Erratum : Critical Properties of Spin-1 Antiferromagnetic Heisenberg Chains with Bond Alternation and Uniaxial Single-Ion-Type Anisotropy (vol 69, pg 237, 2000)

    OpenAIRE

    Chen, Wei; 飛田, 和男; Sanctuary, Bryan C.

    2008-01-01

    Original Paper :Critical Properties of Spin-1 Antiferromagnetic Heisenberg Chains with Bond Alternation and Uniaxial Single-Ion-Type AnisotropyWei Chen, Kazuo Hida and Bryan Clifford Sanctuary Journal of the Physical Society of Japan 69 (2000) pp.237-241

  11. Temperature-Dependent Interplay of Dzyaloshinskii-Moriya Interaction and Single-Ion Anisotropy in Multiferroic BiFeO3

    Science.gov (United States)

    Jeong, Jaehong; Le, Manh Duc; Bourges, P.; Petit, S.; Furukawa, S.; Kim, Shin-Ae; Lee, Seongsu; Cheong, S.-W.; Park, Je-Geun

    2014-09-01

    Low-energy magnon excitations in multiferroic BiFeO3 were measured in detail as a function of temperature around several Brillouin zone centers by inelastic neutron scattering experiments on single crystals. Unique features around 1 meV are directly associated with the interplay of the Dzyaloshinskii-Moriya interaction and a small single-ion anisotropy. The temperature dependence of these and the exchange interactions were determined by fitting the measured magnon dispersion with spin-wave calculations. The spectra best fit an easy-axis type magnetic anisotropy and the deduced exchange and anisotropy parameters enable us to determine the anharmonicity of the magnetic cycloid. We then draw a direct connection between the changes in the parameters of spin Hamiltonian with temperature and the physical properties and structural deformations of BiFeO3.

  12. The interplay of long-range magnetic order and single-ion anisotropy in rare earth nickel germanides

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Z.

    1999-05-10

    This dissertation is concerned with the interplay of long-range order and anisotropy in the tetragonal RNi{sub 2}Ge{sub 2} (R = rare earth) family of compounds. Microscopic magnetic structures were studied using both neutron and x-ray resonant exchange scattering (XRES) techniques. The magnetic structures of Tb, Dy, Eu and Gd members have been determined using high-quality single-crystal samples. This work has correlated a strong Fermi surface nesting to the magnetic ordering in the RNi{sub 2}Ge{sub 2} compounds. Generalized susceptibility, {chi}{sub 0}(q), calculations found nesting to be responsible for both incommensurate ordering wave vector in GdNi{sub 2}Ge{sub 2}, and the commensurate structure in EuNi{sub 2}Ge{sub 2}. A continuous transition from incommensurate to commensurate magnetic structures via band filling is predicted. The surprisingly higher T{sub N} in EuNi{sub 2}Ge{sub 2} than that in GdNi{sub 2}Ge{sub 2} is also explained. Next, all the metamagnetic phases in TbNi{sub 2}Ge{sub 2} with an applied field along the c axis have been characterized with neutron diffraction measurements. A mixed phase model for the first metamagnetic structure consisting of fully-saturated as well as reduced-moment Tb ions is presented. The moment reduction may be due to moment instability which is possible if the exchange is comparable to the low-lying CEF level splitting and the ground state is a singlet. In such a case, certain Tb sites may experience a local field below the critical value needed to reach saturation.

  13. The interplay of long-range magnetic order and single-ion anisotropy in rare earth nickel germanides

    International Nuclear Information System (INIS)

    Islam, Z.

    1999-01-01

    This dissertation is concerned with the interplay of long-range order and anisotropy in the tetragonal RNi 2 Ge 2 (R = rare earth) family of compounds. Microscopic magnetic structures were studied using both neutron and x-ray resonant exchange scattering (XRES) techniques. The magnetic structures of Tb, Dy, Eu and Gd members have been determined using high-quality single-crystal samples. This work has correlated a strong Fermi surface nesting to the magnetic ordering in the RNi 2 Ge 2 compounds. Generalized susceptibility, χ 0 (q), calculations found nesting to be responsible for both incommensurate ordering wave vector in GdNi 2 Ge 2 , and the commensurate structure in EuNi 2 Ge 2 . A continuous transition from incommensurate to commensurate magnetic structures via band filling is predicted. The surprisingly higher T N in EuNi 2 Ge 2 than that in GdNi 2 Ge 2 is also explained. Next, all the metamagnetic phases in TbNi 2 Ge 2 with an applied field along the c axis have been characterized with neutron diffraction measurements. A mixed phase model for the first metamagnetic structure consisting of fully-saturated as well as reduced-moment Tb ions is presented. The moment reduction may be due to moment instability which is possible if the exchange is comparable to the low-lying CEF level splitting and the ground state is a singlet. In such a case, certain Tb sites may experience a local field below the critical value needed to reach saturation

  14. Phase transitions and multicritical points in the mixed spin-32 and spin-2 Ising system with a single-ion anisotropy

    International Nuclear Information System (INIS)

    Bobak, A.; Dely, J.

    2007-01-01

    The effect of a single-ion anisotropy on the phase diagram of the mixed spin-32 and spin-2 Ising system is investigated by the use of a mean-field theory based on the Bogoliubov inequality for the free energy. Topologically different kinds of phase diagrams are achieved by changing values of the parameter in the model Hamiltonian. Besides second-order transitions, lines of first-order transitions terminating either at a tricritical point or an isolated critical point, are found

  15. No Giant Two-Ion Anisotropy in the Heavy-Rare-Earth Metals

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1976-01-01

    A new Bose-operator expansion of tensor operators is applied to the heavy-rare-earth metals. The Er data for the cone phase have been analyzed successfully with single-ion anisotropy and isotropic exchange interaction. The Tb data can be understood on the same basis. The previously found large two......-ion anisotropy was due to an inadequate treatment of the large single-ion anisotropy leading to an incorrect expression for the spin-wave energy....

  16. Combining microscopic and macroscopic probes to untangle the single-ion anisotropy and exchange energies in an S =1 quantum antiferromagnet

    Science.gov (United States)

    Brambleby, Jamie; Manson, Jamie L.; Goddard, Paul A.; Stone, Matthew B.; Johnson, Roger D.; Manuel, Pascal; Villa, Jacqueline A.; Brown, Craig M.; Lu, Helen; Chikara, Shalinee; Zapf, Vivien; Lapidus, Saul H.; Scatena, Rebecca; Macchi, Piero; Chen, Yu-sheng; Wu, Lai-Chin; Singleton, John

    2017-04-01

    The magnetic ground state of the quasi-one-dimensional spin-1 antiferromagnetic chain is sensitive to the relative sizes of the single-ion anisotropy (D ) and the intrachain (J ) and interchain (J') exchange interactions. The ratios D /J and J'/J dictate the material's placement in one of three competing phases: a Haldane gapped phase, a quantum paramagnet, and an X Y -ordered state, with a quantum critical point at their junction. We have identified [Ni (HF2) (pyz) 2] SbF6 , where pyz = pyrazine, as a rare candidate in which this behavior can be explored in detail. Combining neutron scattering (elastic and inelastic) in applied magnetic fields of up to 10 tesla and magnetization measurements in fields of up to 60 tesla with numerical modeling of experimental observables, we are able to obtain accurate values of all of the parameters of the Hamiltonian [D =13.3 (1 ) K, J =10.4 (3 ) K, and J'=1.4 (2 ) K], despite the polycrystalline nature of the sample. Density-functional theory calculations result in similar couplings (J =9.2 K, J'=1.8 K) and predict that the majority of the total spin population resides on the Ni(II) ion, while the remaining spin density is delocalized over both ligand types. The general procedures outlined in this paper permit phase boundaries and quantum-critical points to be explored in anisotropic systems for which single crystals are as yet unavailable.

  17. The BEAN experiment - An EISCAT study of ion temperature anisotropies

    Directory of Open Access Journals (Sweden)

    I. W. McCrea

    Full Text Available Results are presented from a novel EISCAT special programme, SP-UK-BEAN, intended for the direct measurement of the ion temperature anisotropy during ion frictional heating events in the high-latitude F-region. The experiment employs a geometry which provides three simultaneous estimates of the ion temperature in a single F-region observing volume at a range of aspect angles from 0° to 36°. In contrast to most previous EISCAT experiments to study ion temperature anisotropies, field-aligned observations are made using the Sodankylä radar, while the Kiruna radar measures at an aspect angle of the order of 30°. Anisotropic effects can thus be studied within a small common volume whose size and altitude range is limited by the radar beamwidth, rather than in volumes which overlap but cover different altitudes. The derivation of line-of-sight ion temperature is made more complex by the presence of an unknown percentage of atomic and molecular ions at the observing altitude and the possibility of non-Maxwellian distortion of the ion thermal velocity distribution. The first problem has been partly accounted for by insisting that a constant value of electron temperature be maintained. This enables an estimate of the ion composition to be made, and facilitates the derivation of more realistic line-of-sight ion temperatures and temperature anisotropies. The latter problem has been addressed by assuming that the thermal velocity distribution remains bi-Maxwellian. The limitations of these approaches are discussed. The ion temperature anisotropies and temperature partition coefficients during two ion heating events give values intermediate between those expected for atomic and for molecular species. This result is consistent with an analysis which indicates that significant proportions of molecular ions (up to 50% were present at the times of greatest heating.

  18. ANISOTROPY EFFECTS IN SINGLE-ELECTRON TRANSFER BETWEEN LASER-EXCITED ATOMS AND HIGHLY-CHARGED IONS

    NARCIS (Netherlands)

    Recent collision experiments are reviewed in which one-electron transfer between laser excited target atoms and (highly charged) keV-ions has been studied. Especially results showing a dependence of the charge exchange on the initial target orbital alignment are discussed. The question to what

  19. Multiple Quantum Coherences (MQ) NMR and Entanglement Dynamics in the Mixed-Three-Spin XXX Heisenberg Model with Single-Ion Anisotropy

    Science.gov (United States)

    Hamid, Arian Zad

    2016-12-01

    We analytically investigate Multiple Quantum (MQ) NMR dynamics in a mixed-three-spin (1/2,1,1/2) system with XXX Heisenberg model at the front of an external homogeneous magnetic field B. A single-ion anisotropy property ζ is considered for the spin-1. The intensities dependence of MQ NMR coherences on their orders (zeroth and second orders) for two pairs of spins (1,1/2) and (1/2,1/2) of the favorite tripartite system are obtained. It is also investigated dynamics of the pairwise quantum entanglement for the bipartite (sub)systems (1,1/2) and (1/2,1/2) permanently coupled by, respectively, coupling constants J}1 and J}2, by means of concurrence and fidelity. Then, some straightforward comparisons are done between these quantities and the intensities of MQ NMR coherences and ultimately some interesting results are reported. We also show that the time evolution of MQ coherences based on the reduced density matrix of the pair spins (1,1/2) is closely connected with the dynamics of the pairwise entanglement. Finally, we prove that one can introduce MQ coherence of the zeroth order corresponds to the pair spins (1,1/2) as an entanglement witness at some special time intervals.

  20. Role of crystallographic anisotropy in the formation of surface layers of single NiTi crystals after ion-plasma alloying

    Energy Technology Data Exchange (ETDEWEB)

    Poletika, T. M., E-mail: poletm@ispms.tsc.ru; Girsova, S. L., E-mail: llm@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Meisner, L. L., E-mail: girs@ispms.tsc.ru; Meisner, S. N., E-mail: msn@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Shulepov, I. A., E-mail: iashulepov@tpu.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The structure of the surface and near-surface layers of single crystals of NiTi, differently oriented relative to the direction of ion beam treatment was investigated. The role of the crystallographic orientation in formation of structure of surface layers after ion-plasma alloying was revealed. It was found that the orientation effects of selective sputtering and channeling determine the thickness of the oxide and amorphous layers, the depth of penetration of ions and impurities, the distribution of Ni with depth.

  1. Ion temperature anisotropy limitation in high beta plasmas

    International Nuclear Information System (INIS)

    Scime, Earl E.; Keiter, Paul A.; Balkey, Matthew M.; Boivin, Robert F.; Kline, John L.; Blackburn, Melanie; Gary, S. Peter

    2000-01-01

    Measurements of parallel and perpendicular ion temperatures in the Large Experiment on Instabilities and Anisotropies (LEIA) space simulation chamber display an inverse correlation between the upper bound on the ion temperature anisotropy and the parallel ion beta (β=8πnkT/B 2 ). Fluctuation measurements indicate the presence of low frequency, transverse, electromagnetic waves with wave numbers and frequencies that are consistent with predictions for Alfven Ion Cyclotron instabilities. These observations are also consistent with in situ spacecraft measurements in the Earth's magnetosheath and with a theoretical/computational model that predicts that such an upper bound on the ion temperature anisotropy is imposed by scattering from enhanced fluctuations due to growth of the Alfven ion cyclotron instability. (c) 2000 American Institute of Physics

  2. Switching the uniaxial magnetic anisotropy by ion irradiation induced compensation

    Science.gov (United States)

    Yuan, Ye; Amarouche, Teyri; Xu, Chi; Rushforth, Andrew; Böttger, Roman; Edmonds, Kevin; Campion, Richard; Gallagher, Bryan; Helm, Manfred; Jürgen von Bardeleben, Hans; Zhou, Shengqiang

    2018-04-01

    In the present work, the uniaxial magnetic anisotropy of GaMnAsP is modified by helium ion irradiation. According to the micro-magnetic parameters, e.g. resonance fields and anisotropy constants deduced from ferromagnetic resonance measurements, a rotation of the magnetic easy axis from out-of-plane [0 0 1] to in-plane [1 0 0] direction is achieved. From the application point of view, our work presents a novel avenue in modifying the uniaxial magnetic anisotropy in GaMnAsP with the possibility of lateral patterning by using lithography or focused ion beam.

  3. Limits on the ions temperature anisotropy in turbulent intracluster medium

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Lima, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Potsdam Univ. (Germany). Inst. fuer Physik und Astronomie; Univ. de Sao Paulo (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas; Yan, H. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Potsdam Univ. (Germany). Inst. fuer Physik und Astronomie; Gouveia Dal Pino, E.M. de [Univ. de Sao Paulo (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas; Lazarian, A. [Wisconsin Univ., Madison, WI (United States). Dept. of Astronomy

    2016-05-15

    Turbulence in the weakly collisional intracluster medium of galaxies (ICM) is able to generate strong thermal velocity anisotropies in the ions (with respect to the local magnetic field direction), if the magnetic moment of the particles is conserved in the absence of Coulomb collisions. In this scenario, the anisotropic pressure magnetohydrodynamic (AMHD) turbulence shows a very different statistical behaviour from the standard MHD one and is unable to amplify seed magnetic fields, in disagreement with previous cosmological MHD simulations which are successful to explain the observed magnetic fields in the ICM. On the other hand, temperature anisotropies can also drive plasma instabilities which can relax the anisotropy. This work aims to compare the relaxation rate with the growth rate of the anisotropies driven by the turbulence. We employ quasilinear theory to estimate the ions scattering rate due to the parallel firehose, mirror, and ion-cyclotron instabilities, for a set of plasma parameters resulting from AMHD simulations of the turbulent ICM. We show that the ICM turbulence can sustain only anisotropy levels very close to the instabilities thresholds. We argue that the AMHD model which bounds the anisotropies at the marginal stability levels can describe the Alfvenic turbulence cascade in the ICM.

  4. Anisotropy of electrical conductivity in dc due to intrinsic defect formation in α-Al{sub 2}O{sub 3} single crystal implanted with Mg ions

    Energy Technology Data Exchange (ETDEWEB)

    Tardío, M., E-mail: mtardio@fis.uc3m.es [Departamento de Física, Escuela Politécnica Superior, Universidad Carlos III, Avda. de la Universidad, 30, 28911 Leganés (Madrid) (Spain); Egaña, A.; Ramírez, R.; Muñoz-Santiuste, J.E. [Departamento de Física, Escuela Politécnica Superior, Universidad Carlos III, Avda. de la Universidad, 30, 28911 Leganés (Madrid) (Spain); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela (Portugal)

    2016-07-15

    The electrical conductivity in α-Al{sub 2}O{sub 3} single crystals implanted with Mg ions in two different crystalline orientations, parallel and perpendicular to c axis, was investigated. The samples were implanted at room temperature with energies of 50 and 100 keV and fluences of 1 × 10{sup 15}, 5 × 10{sup 15} and 5 × 10{sup 16} ions/cm{sup 2}. Optical characterization reveals slight differences in the absorption bands at 6.0 and 4.2 eV, attributed to F type centers and Mie scattering from Mg precipitates, respectively. DC electrical measurements using the four and two-point probe methods, between 295 and 490 K, were used to characterize the electrical conductivity of the implanted area (Meshakim and Tanabe, 2001). Measurements in this temperature range indicate that: (1) the electrical conductivity is thermally activated independently of crystallographic orientation, (2) resistance values in the implanted region decrease with fluence levels, and (3) the I–V characteristic of electrical contacts in samples with perpendicular c axis orientation is clearly ohmic, whereas contacts are blocking in samples with parallel c axis. When thin layers are sequentially removed from the implanted region by immersing the sample in a hot solution of nitric and fluorhydric acids the electrical resistance increases until reaching the values of non-implanted crystal (Jheeta et al., 2006). We conclude that the enhancement in conductivity observed in the implanted regions is related to the intrinsic defects created by the implantation rather than to the implanted Mg ions (da Silva et al., 2002; Tardío et al., 2001; Tardío et al., 2008).

  5. Origin and spectroscopic determination of trigonal anisotropy in a heteronuclear single-molecule magnet

    Science.gov (United States)

    Sorace, L.; Boulon, M.-E.; Totaro, P.; Cornia, A.; Fernandes-Soares, J.; Sessoli, R.

    2013-09-01

    W-band (ν ≅ 94 GHz) electron paramagnetic resonance (EPR) spectroscopy was used for a single-crystal study of a star-shaped Fe3Cr single-molecule magnet (SMM) with crystallographically imposed trigonal symmetry. The high resolution and sensitivity accessible with W-band EPR allowed us to determine accurately the axial zero-field splitting terms for the ground (S = 6) and first two excited states (S = 5 and S = 4). Furthermore, spectra recorded by applying the magnetic field perpendicular to the trigonal axis showed a π/6 angular modulation. This behavior is a signature of the presence of trigonal transverse magnetic anisotropy terms whose values had not been spectroscopically determined in any SMM prior to this work. Such in-plane anisotropy could only be justified by dropping the so-called “giant spin approach” and by considering a complete multispin approach. From a detailed analysis of experimental data with the two models, it emerged that the observed trigonal anisotropy directly reflects the structural features of the cluster, i.e., the relative orientation of single-ion anisotropy tensors and the angular modulation of single-ion anisotropy components in the hard plane of the cluster. Finally, since high-order transverse anisotropy is pivotal in determining the spin dynamics in the quantum tunneling regime, we have compared the angular dependence of the tunnel splitting predicted by the two models upon application of a transverse field (Berry-phase interference).

  6. Study of Ion Temperature Anisotropy Boundaries in the Magnetosheath

    Science.gov (United States)

    Lin, N.; Travnicek, P. M.; McFadden, J. P.; Parks, G. K.; Yoon, P. H.; Johnson, J.; Chaston, C. C.

    2012-12-01

    The magnetosheath plasma often exhibits proton temperature anisotropy which may develop several instabilities. For anisotropy Tperp>Tpara, where Tperp and Tpara are the perpendicular and parallel (to the ambient magnetic field) proton temperatures, respectively, electromagnetic ion cyclotron (EMIC) and mirror mode instabilities can be excited, while for TperpHellinger et al., 2006] with linear theory, by assuming bi-Maxwellian protons, in the form of Tperp/Tpara = 1+ a /(beta_para-beta_0)^b, where a, b, and beta_0 are fitting parameters for the threshold condition of maximum growth rate γmax =10^-3 ωcp, and ωcp is the proton cyclotron frequency. We have used plasma and magnetic field observations from several magnetosheath passes of THEMIS and Cluster spacecraft to examine the anisotropy boundary and compare the observations with the theoretical stability boundary. Three wave parameters |δB||/B0|, |δBperp/B0|, and the magnetic compressibility, δB||^2/( δB||^2+ δBperp^2), are calculated and distributions of their intensities on the Tperp/Tpara vs beta_para plane are examined. The data are shown to cluster around the thresholds of the mirror mode and the EMIC mode. For compressional waves there exist enhancements above the mirror mode threshold, which may indicate evolving process of the magnetosheath unstable plasma. The transverse variations are better constrained by the theoretical EMIC marginal curve. The distributions are notably different compared to previous observations of the solar wind fluctuations, which are enhanced along the temperature anisotropy thresholds of the four instabilities, indicating that the proton temperature anisotropy in the solar wind is constrained by the threshold defined in the above equation. We will discuss the interpretation of the results which may provide observational support or constraints on the theoretical and modeling developments of the marginal condition for the proton temperature anisotropy instabilities in the

  7. Computing magnetic anisotropy constants of single molecule magnets

    Indian Academy of Sciences (India)

    Administrator

    Abstract. We present here a theoretical approach to compute the molecular magnetic anisotropy parameters, DM and EM for single molecule magnets in any given spin eigenstate of exchange spin Hami- ltonian. We first describe a hybrid constant MS-valence bond (VB) technique of solving spin Hamilto- nians employing ...

  8. Computing magnetic anisotropy constants of single molecule magnets

    Indian Academy of Sciences (India)

    We present here a theoretical approach to compute the molecular magnetic anisotropy parameters, and for single molecule magnets in any given spin eigenstate of exchange spin Hamiltonian. We first describe a hybrid constant -valence bond (VB) technique of solving spin Hamiltonians employing full spatial ...

  9. Role of the substrate on the magnetic anisotropy of magnetite thin films grown by ion-assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, Pilar, E-mail: pilar.prieto@uam.es [Dpto. Física Aplicada M-12, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Prieto, José Emilio [Centro de Microanálisis de Materiales (CMAM) and Dpto. De Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Gargallo-Caballero, Raquel; Marco, José Francisco; Figuera, Juan de la [Instituto de Química Física “Rocasolano”, CSIC, 28006 Madrid (Spain)

    2015-12-30

    Graphical abstract: - Highlights: • The magnetic anisotropy of magnetite thin films is controlled by the substrate induced microstructure. • Single-crystal oxide substrates induce fourfold in-plane magnetic anisotropy • MgO and SrTiO{sub 3} substrates show the same magnetic behavior despite its different mismatch with Fe{sub 3}O{sub 4} films. • Silicon and glass substrates induce in-plane magnetic isotropy and uniaxial anisotropy, respectively. - Abstract: Magnetite (Fe{sub 3}O{sub 4}) thin films were deposited on MgO (0 0 1), SrTiO{sub 3} (0 0 1), LaAlO{sub 3} (0 0 1) single crystal substrates as well on as silicon and amorphous glass in order to study the effect of the substrate on their magnetic properties, mainly the magnetic anisotropy. We have performed a structural, morphological and compositional characterization by X-ray diffraction, atomic force microscopy and Rutherford backscattering ion channeling in oxygen resonance mode. The magnetic anisotropy has been investigated by vectorial magneto-optical Kerr effect. The results indicate that the magnetic anisotropy is especially influenced by the substrate-induced microstructure. In-plane isotropy and uniaxial anisotropy behavior have been observed on silicon and glass substrates, respectively. The transition between both behaviors depends on grain size. For LaAlO{sub 3} substrates, in which the lattice mismatch between the Fe{sub 3}O{sub 4} films and the substrate is significant, a weak in-plane fourfold magnetic anisotropy is induced. However when magnetite is deposited on MgO (0 0 1) and SrTiO{sub 3} (0 0 1) substrates, a well-defined fourfold in-plane magnetic anisotropy is observed with easy axes along [1 0 0] and [0 1 0] directions. The magnetic properties on these two latter substrates are similar in terms of magnetic anisotropy and coercive fields.

  10. Anisotropy of Single-Crystal Silicon in Nanometric Cutting.

    Science.gov (United States)

    Wang, Zhiguo; Chen, Jiaxuan; Wang, Guilian; Bai, Qingshun; Liang, Yingchun

    2017-12-01

    The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal directions in this study. The simulation results show the variations of different degrees in chip, subsurface damage, cutting force, and friction coefficient with changes in crystal plane and crystal direction. Shear deformation is the formation mechanism of subsurface damage, and the direction and complexity it forms are the primary causes that result in the anisotropy of subsurface damage. Structurally, chips could be classified into completely amorphous ones and incompletely amorphous ones containing a few crystallites. The formation mechanism of the former is high-pressure phase transformation, while the latter is obtained under the combined action of high-pressure phase transformation and cleavage. Based on an analysis of the material removal mode, it can be found that compared with the other crystal direction on the same crystal plane, the (100)[0-10], (110)[-110], and (111)[-101] directions are more suitable for ductile cutting.

  11. Single Cathode Ion Thruster

    Data.gov (United States)

    National Aeronautics and Space Administration — Objective is to design an electrostatic ion thruster that is more efficient, simpler, and lower cost than the current gridded ion thruster. Initial objective is to...

  12. Computing magnetic anisotropy constants of single molecule magnets

    Indian Academy of Sciences (India)

    Administrator

    stringent requirements for a molecule to behave as a. SMM. Modelling magnetic anisotropy in these sys- tems becomes necessary for developing new SMMs with desired properties. Magnetic anisotropy of SMMs is computed by treating the anisotropy Hamiltonian as a perturbation over the Heisenberg exchange ...

  13. On the Acceleration and Anisotropy of Ions Within Magnetotail Dipolarizing Flux Bundles

    Science.gov (United States)

    Zhou, Xu-Zhi; Runov, Andrei; Angelopoulos, Vassilis; Artemyev, Anton V.; Birn, Joachim

    2018-01-01

    Dipolarizing flux bundles (DFBs), earthward propagating structures with enhanced northward magnetic field Bz, are usually believed to carry a distinctly different plasma population from that in the ambient magnetotail plasma sheet. The ion distribution functions within the DFB, however, have been recently found to be largely controlled by the ion adiabaticity parameter κ in the ambient plasma sheet outside the DFB. According to these observations, the ambient κ values of 2-3 usually correspond to a strong perpendicular anisotropy of suprathermal ions within the DFB, whereas for lower κ values the DFB ions become more isotropic. Here we utilize a simple, test particle model to explore the nature of the anisotropy and its dependence on the ambient κ values. We find that the anisotropy originates from successive ion reflections and reentries to the DFB, during which the ions are consecutively accelerated in the perpendicular direction by the DFB-associated electric field. This consecutive acceleration may be interrupted, however, when magnetic field lines are highly curved in the ambient plasma sheet. In this case, the ion trajectories become stochastic outside the DFB, which makes the reflected ions less likely to return to the DFB for another cycle of acceleration; as a consequence, the perpendicular ion anisotropy does not appear. Given that the DFB ions are a free energy source for instabilities when they are injected toward Earth, our simple model (that reproduces most observational features on the anisotropic DFB ion distributions) may shed new lights on the coupling process between magnetotail and inner magnetosphere.

  14. Reflection of slow ions: effect of anisotropy of scattering on energy spectra

    International Nuclear Information System (INIS)

    Vukanic, J.; Simovic, R.

    1997-01-01

    Transport calculations based on linear Boltzmann equation have been carried out analytically for the reflection of low energy light ions from heavy targets. The collision integral of the ion transport equation is replaced by P3 approximation in angle. For power potentials the influence of the anisotropy of scattering on universal path length distribution of reflected particles is investigated. (author)

  15. Magnetic anisotropies of quantum dots doped with magnetic ions

    Czech Academy of Sciences Publication Activity Database

    Výborný, Karel; Han, J.E.; Oszwałdowski, R.; Žutić, I.; Petukhov, A.G.

    2012-01-01

    Roč. 85, č. 15 (2012), "155312-1"-"155312-8" ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : magnetocrystalline anisotropy * quantum dot s * dilute magnetic semiconductors Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.767, year: 2012

  16. Tailoring magnetism in CoNi films with perpendicular anisotropy by ion irradiation

    International Nuclear Information System (INIS)

    Stanescu, D.; Ravelosona, D.; Mathet, V.; Chappert, C.; Samson, Y.; Beigne, C.; Vernier, N.; Ferre, J.; Gierak, J.; Bouhris, E.; Fullerton, E. E.

    2008-01-01

    This paper reports on the influence of ion irradiation on the magnetic properties of Co/Ni multilayers with perpendicular magnetic anisotropy (PMA). This material is a very promising candidate for ultrahigh density spintronic applications since it exhibits high polarization and low damping parameters. We show that PMA can be tailored in a controlled way by using uniform He + ion irradiation or focused Ga + ion beam

  17. Measurement of the anisotropy ratios in MgB2 single crystals

    International Nuclear Information System (INIS)

    Kim, Heon-Jung; Kang, Byeongwon; Lee, Hyun-Sook; Lee, Sung-Ik

    2006-01-01

    We present our recent measurements on the anisotropy ratios of MgB 2 single crystals. Our measurements indicate that the anisotropy ratios of the penetration depth and of the upper critical field have different magnitudes and temperature dependences, as predicted by theoretical calculations. These results imply that the two-gap nature can strongly influence the superconducting properties of MgB 2

  18. Magnetic holes in the dipolarized magnetotail: ion and electron anisotropies

    Science.gov (United States)

    Shustov, P.; Artemyev, A.; Zhang, X. J.; Yushkov, E.; Petrukovich, A. A.

    2017-12-01

    We conduct statistics on magnetic holes observed by THEMIS spacecraft in the near-Earth magnetotail. Groups of holes are detected after dipolarizations in the quiet, equatorial plasma sheet. Magnetic holes are characterized by significant magnetic field depressions (up to 50%) and strong electron currents ( 10-50 nA/m2), with spatial scales much smaller than the ion gyroradius. These magnetic holes are populated by hot (>10 keV), transversely anisotropic electrons supporting the pressure balance. We present statistical properties of these sub-ion scale magnetic holes and discuss possible mechanisms on the hole formation.

  19. Syntheses, crystal structures and magnetic properties of two mixed-valence Co(iii)Co(ii) compounds derived from Schiff base ligands: field-supported single-ion-magnet behavior with easy-plane anisotropy.

    Science.gov (United States)

    Mandal, Shuvankar; Mondal, Suraj; Rajnák, Cyril; Titiš, Ján; Boča, Roman; Mohanta, Sasankasekhar

    2017-10-14

    Two μ-phenoxo-μ 1,1 -azide dinuclear Co III Co II complexes [Co III (N 3 ) 2 L 1 (μ 1,1 -N 3 )Co II (N 3 )]·MeOH (1) and [Co III (N 3 ) 2 L 2 (μ 1,1 -N 3 )Co II (N 3 )]·MeOH (2) (HL 1 and HL 2 are two Schiff base ligands having N 2 O-N 2 O compartments) both possess one hexacoordinate Co(iii) and one pentacoordinate Co(ii) center. DC magnetic susceptibility and magnetization measurements show an appreciable amount of positive magnetic anisotropy (D/hc∼ 40 cm -1 ) that is also confirmed by ab initio CASSCF calculations. AC susceptibility measurements of 1 reveal that it exhibits a slow magnetic relaxation with two relaxation channels. The external magnetic field supports the low-frequency (LF) channel that escapes on heating more progressively than the high-frequency (HF) branch. The relaxation time is as slow as τ = 255 ms at T = 1.9 K and B DC = 0.6 T, where the LF mole fraction is 69%. The complex 2 also displays similar field-supported slow magnetic relaxation with two relaxation channels.

  20. Scaling of anisotropy flows in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Ma, Y.G.; Yan, T.Z.; Cai, X.Z.; Chen, J.G.; Fang, D.Q.; Guo, W.; Liu, G.H.; Ma, C.W.; Ma, E.J.; Shen, W.Q.; Shi, Y.; Su, Q.M.; Tian, W.D.; Wang, H.W.; Wang, K.

    2007-01-01

    Anisotropic flows (v 1 , v 2 and v 4 ) of light nuclear clusters are studied by a nucleonic transport model in intermediate energy heavy ion collisions. The number-of-nucleon scalings of the directed flow (v 1 ) and elliptic flow (v 2 ) are demonstrated for light nuclear clusters. Moreover, the ratios of v 4 /v 2 2 of nuclear clusters show a constant value of 1/2 regardless of the transverse momentum. The above phenomena can be understood by the coalescence mechanism in nucleonic level and are worthy to be explored in experiments

  1. Tuning anisotropy barriers in a family of tetrairon(III) single-molecule magnets with an S = 5 ground state.

    Science.gov (United States)

    Accorsi, Stefania; Barra, Anne-Laure; Caneschi, Andrea; Chastanet, Guillaume; Cornia, Andrea; Fabretti, Antonio C; Gatteschi, Dante; Mortalo, Cecilia; Olivieri, Emiliano; Parenti, Francesca; Rosa, Patrick; Sessoli, Roberta; Sorace, Lorenzo; Wernsdorfer, Wolfgang; Zobbi, Laura

    2006-04-12

    Tetrairon(III) Single-Molecule Magnets (SMMs) with a propeller-like structure exhibit tuneable magnetic anisotropy barriers in both height and shape. The clusters [Fe4(L1)2(dpm)6] (1), [Fe4(L2)2(dpm)6] (2), [Fe4(L3)2(dpm)6].Et2O (3.Et2O), and [Fe4(OEt)3(L4)(dpm)6] (4) have been prepared by reaction of [Fe4(OMe)6(dpm)6] (5) with tripodal ligands R-C(CH2OH)3 (H3L1, R = Me; H3L2, R = CH2Br; H3L3, R = Ph; H3L4, R = tBu; Hdpm = dipivaloylmethane). The iron(III) ions exhibit a centered-triangular topology and are linked by six alkoxo bridges, which propagate antiferromagnetic interactions resulting in an S = 5 ground spin state. Single crystals of 4 reproducibly contain at least two geometric isomers. From high-frequency EPR studies, the axial zero-field splitting parameter (D) is invariably negative, as found in 5 (D = -0.21 cm(-1)) and amounts to -0.445 cm(-1) in 1, -0.432 cm(-1) in 2, -0.42 cm(-1) in 3.Et2O, and -0.27 cm(-1) in 4 (dominant isomer). The anisotropy barrier Ueff determined by AC magnetic susceptibility measurements is Ueff/kB = 17.0 K in 1, 16.6 K in 2, 15.6 K in 3.Et2O, 5.95 K in 4, and 3.5 K in 5. Both |D| and U(eff) are found to increase with increasing helical pitch of the Fe(O2Fe)3 core. The fourth-order longitudinal anisotropy parameter B4(0), which affects the shape of the anisotropy barrier, concomitantly changes from positive in 1 ("compressed parabola") to negative in 5 ("stretched parabola"). With the aid of spin Hamiltonian calculations the observed trends have been attributed to fine modulation of single-ion anisotropies induced by a change of helical pitch.

  2. Single-ion anisotropy and exchange interactions in the cyano-bridged trimers MnIII2MIII(CN)6 (MIII = Co, Cr, Fe) species incorporating [Mn(5-Brsalen)]+ units: an inelastic neutron scattering and magnetic susceptibility study

    DEFF Research Database (Denmark)

    Tregenna-Piggott, Philip L W; Sheptyakov, Denis; Keller, Lukas

    2009-01-01

    expectations based on the unquenched orbital angular momentum of the [Fe(CN)(6)](3-) anion, giving rise to an M(s) approximately +/-9/2 ground state, isolated by approximately 11.5 cm(-1) from the higher-lying levels. The reported INS and magnetic data should now serve as a benchmark against which theoretical...... interactions that define the low-lying states of the Mn-M(III)-Mn trimeric units. Despite the presence of an antiferromagnetic intertrimer interaction, the experimental evidence supports the classification of both the Cr(III) and Fe(III) compounds as single-molecule magnets. The value of 17(2) cm(-1...

  3. Review- Magnetic orientation and magnetic anisotropy in paramagnetic layered oxides containing rare-earth ions

    Directory of Open Access Journals (Sweden)

    Shigeru Horii, Atsushi Ishihara, Takayuki Fukushima, Tetsuo Uchikoshi, Hiraku Ogino, Tohru S Suzuki, Yoshio Sakka, Jun-ichi Shimoyama and Kohji Kishio

    2009-01-01

    Full Text Available The magnetic anisotropies and easy axes of magnetization at room temperature were determined, and the effects of rare-earth (RE ions were clarified for RE-based cuprates, RE-doped bismuth-based cuprates and RE-doped Bi-based cobaltite regarding the grain orientation by magnetic field. The easy axis, determined from the powder orientation in a static field of 10 T, depended qualitatively on the type of RE ion for all three systems. On the other hand, the magnetization measurement of the c-axis oriented powders, aligned in static or rotating fields, revealed that the type of RE ion strongly affected not only the directions of the easy axis but also the absolute value of magnetic anisotropy, and an appropriate choice of RE ion is required to minimize the magnetic field used for grain orientation. We also studied the possibility of triaxial grain orientation in high-critical-temperature superconductors by a modulated oval magnetic field. In particular, triaxial orientation was attempted in a high-oxygen-pressure phase of orthorhombic RE-based cuprates Y2Ba4Cu7Oy. Although the experiment was performed in epoxy resin, which is not practical, in-plane alignment within 3° was achieved.

  4. High-temperature and low-stress creep anisotropy of single-crystal superalloys

    Czech Academy of Sciences Publication Activity Database

    Jacome, L. A.; Nortershauser, P.; Heyer, J. K.; Lahni, A.; Frenzel, J.; Dlouhý, Antonín; Somsen, C.; Eggeler, G.

    2013-01-01

    Roč. 61, č. 8 (2013), s. 2926-2943 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA202/09/2073 Institutional support: RVO:68081723 Keywords : superalloy single crystals * creep anisotropy * rafting * dislocations * deformation mechanisms Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.940, year: 2013

  5. Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy

    Czech Academy of Sciences Publication Activity Database

    Pacáková, Barbara; Mantlíková, Alice; Nižňanský, D.; Kubíčková, Simona; Vejpravová, Jana

    2016-01-01

    Roč. 28, č. 20 (2016), 1-11, č. článku 206004. ISSN 0953-8984 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:68378271 Keywords : magnetic nanoparticles * single-particle anisotropy * dipolar energy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.649, year: 2016

  6. Magnetocrystalline anisotropy of cementite pseudo single crystal fabricated under a rotating magnetic field

    Science.gov (United States)

    Yamamoto, Sukeyoshi; Terai, Tomoyuki; Fukuda, Takashi; Sato, Kazunori; Kakeshita, Tomoyuki; Horii, Shigeru; Ito, Mikio; Yonemura, Mitsuharu

    2018-04-01

    We have fabricated a pseudo single crystal of cementite under a rotating magnetic field and investigated its easy and hard axes of magnetization, and determined its magnetocrystalline anisotropy energy. The obtained results are as follows: the hard and easy axes of cementite are the a- and c-axes of the orthorhombic structure with the space group Pnma, respectively. The hard axis observed experimentally was in good agreement with that obtained by an ab initio calculation; however, such consistency was not observed for the easy axis. The magnetocrystalline anisotropy energy was determined as 334 ± 20 kJ/m3 at 5 K.

  7. Electrical resistivity anisotropy of osmium single crystals in the range 4,2 to 300 K

    International Nuclear Information System (INIS)

    Volkenshtejn, N.V.; Dyakina, V.P.; Dyakin, V.V.; Startsev, V.E.; Cherepanov, V.I.; Azhazha, V.M.; Kovtun, G.P.; Elenskij, V.A.; AN Ukrainskoj SSR, Kharkov. Fiziko-Tekhnicheskij Inst.)

    1981-01-01

    Electrical resistivity and size effect anisotropies of pure osmium single crystals with rhosub(273.2/rhosub(4.2)2600 were investigated in the temperature range 4.2 to 300 K. It is found that the electrical resistivity anisotropy (αT)=rhosub( )/rhosub( ) is less than unit and has a maximum at T approximately 50 K; the size effect anisotropy (rho1)sub( )/(rho1)sub( ) is 0.39+-0.07 at T=4.2 K; at liquid helium temperature, the dependence of thin samples is controlled by the scattering of conduction electrons by the surface of the sample. The results are discussed for the specific shape of the Fermi surface geometry of osmium with an account for the scattering processes of conduction electrons by phonons and by surface of the sample

  8. Precision ESR Measurements of Transverse Anisotropy in the Single-molecule Magnet Ni4

    Science.gov (United States)

    Friedman, Jonathan; Collett, Charles; Allao Cassaro, Rafael

    We present a method to precisely determine the transverse anisotropy in a single-molecule magnet (SMM) through electron-spin resonance measurements of a tunnel splitting that arises from the anisotropy via first-order perturbation theory. We demonstrate the technique using the SMM Ni4 diluted via co-crystallization in a diamagnetic isostructural analogue. At 5% dilution, we find markedly narrower resonance peaks than are observed in undiluted samples. Ni4 has a zero-field tunnel splitting of 4 GHz, and we measure that transition at several nearby frequencies using custom loop-gap resonators, allowing a precise determination of the tunnel splitting. Because the transition under investigation arises due to a first-order perturbation from the transverse anisotropy, and lies at zero field, we can relate the splitting to the transverse anisotropy independent of any other Hamiltonian parameters. This method can be applied to other SMMs with zero-field tunnel splittings arising from first-order transverse anisotropy perturbations. NSF Grant No. DMR-1310135.

  9. Doping effects of Fe ion on magnetic anisotropy of YBa2Cu3Oy

    International Nuclear Information System (INIS)

    Ugawa, T.; Horii, S.; Maeda, T.; Haruta, M.; Shimoyama, J.

    2013-01-01

    Highlights: •We clarified orientation effects of Fe-doped Y123 in modulated rotating fields. •Y123 showed two different hard magnetic axes due to twin microstructures. •The two hard magnetic axes in Fe-doped Y123 were [1 0 0] and [1 1 0] directions. •Magnetic anisotropy of the [1 1 0] grain was higher than that of the [1 0 0] grain. -- Abstract: We report magnetic alignment of YBa 2 (Cu 1−x Fe x ) 3 O y (Fe-doped Y123, x = 0–0.1) powders under modulated rotation magnetic fields (MRFs) and roles of Fe ion as a determination factor of magnetic anisotropy in Y123. The Fe-free and Fe-doped Y123 powder samples aligned in the MRF of 10 T showed two different orientation types of the hard axis in Y123 grains. From an X-ray rocking curve measurement for the magnetically aligned powder samples of the Fe-doped Y123, inplane magnetic anisotropy for Y123 grains with the hard axis parallel to the [1 1 0] direction was found to be higher than that for Y123 grains with the hard axis parallel to the [0 1 0] direction

  10. Magnetic anisotropy considerations in magnetic force microscopy studies of single superparamagnetic nanoparticles

    International Nuclear Information System (INIS)

    Nocera, Tanya M; Agarwal, Gunjan; Chen Jun; Murray, Christopher B

    2012-01-01

    In recent years, superparamagnetic nanoparticles (SPNs) have become increasingly important in applications ranging from solid state memory devices to biomedical diagnostic and therapeutic tools. However, detection and characterization of the small and unstable magnetic moment of an SPN at the single particle level remains a challenge. Further, depending on their physical shape, crystalline structure or orientation, SPNs may also possess magnetic anisotropy, which can govern the extent to which their magnetic moments can align with an externally applied magnetic field. Here, we demonstrate how we can exploit the magnetic anisotropy of SPNs to enable uniform, highly-sensitive detection of single SPNs using magnetic force microscopy (MFM) in ambient air. Superconducting quantum interference device magnetometry and analytical transmission electron microscopy techniques are utilized to characterize the collective magnetic behavior, morphology and composition of the SPNs. Our results show how the consideration of magnetic anisotropy can enhance the ability of MFM to detect single SPNs at ambient room temperature with high force sensitivity and spatial resolution. (paper)

  11. Strain induced magnetic anisotropy and 3d7 ions effect in CoFe2O4 nanoplatelets

    Science.gov (United States)

    Chandekar, Kamlesh V.; Kant, K. Mohan

    2017-11-01

    Cobalt ferrite (CoFe2O4) magnetic nanoplatelets were synthesized by hydrothermal method at 120 °C (H120) and 180 °C (H180) respectively. The formation of inverse spinel cobalt ferrite was confirmed by X- ray diffraction pattern (XRD) and Transmission electron microscopy (TEM). The X-ray diffraction studies shows the linear variation of microstrain with inverse crystallite size. The compressive microstrain of 0.024 and 0.016 was estimated for CoFe2O4 samples H120 and H180 respectively using Williamson-Hall (W-H) plot analysis assuming uniform deformation model. The valence state of metal ions and single phase formation single domain CoFe2O4 was confirmed by X-ray photoemission spectroscopy (XPS) and Raman spectroscopy. X-ray photoemission spectra (XPS) exhibit Fe 2p3/2 peak and Co 2p3/2 peaks in both samples composed of two peaks corresponding to octahedral sites and tetrahedral sites. The strain induced magnetic anisotropy is estimated on basis of strain measured by W-H plot at 300 K. The contribution of the Co2+ ions on octahedral sites of both samples of CoFe2O4 is assigned to the magnetostriction ions in cubic structure of cobalt ferrite by assuming ground state. The magnetic ions with 3d7 transition in CoFe2O4 lattice introduced the local magnetostriction through spin-orbit-lattice interaction with distorted cubic crystal field.

  12. Electrical conductivity and ion diffusion in porcine meniscus: effects of strain, anisotropy, and tissue region.

    Science.gov (United States)

    Kleinhans, Kelsey L; McMahan, Jeffrey B; Jackson, Alicia R

    2016-09-06

    The purpose of the present study was to investigate the effects of mechanical strain, anisotropy, and tissue region on electrical conductivity and ion diffusivity in meniscus fibrocartilage. A one-dimensional, 4-wire conductivity experiment was employed to measure the electrical conductivity in porcine meniscus tissues from two tissue regions (horn and central), for two tissue orientations (axial and circumferential), and for three levels of compressive strain (0%, 10%, and 20%). Conductivity values were then used to estimate the relative ion diffusivity in meniscus. The water volume fraction of tissue specimens was determined using a buoyancy method. A total of 135 meniscus samples were measured; electrical conductivity values ranged from 2.47mS/cm to 4.84mS/cm, while relative ion diffusivity was in the range of 0.235 to 0.409. Results show that electrical conductivity and ion diffusion are significantly anisotropic (pmeniscus fibrocartilage, which is essential in developing new strategies to treat and/or prevent tissue degeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Strong out-of-plane magnetic anisotropy in ion irradiated anatase TiO2 thin films

    Directory of Open Access Journals (Sweden)

    M. Stiller

    2016-12-01

    Full Text Available The temperature and field dependence of the magnetization of epitaxial, undoped anatase TiO2 thin films on SrTiO3 substrates was investigated. Low-energy ion irradiation was used to modify the surface of the films within a few nanometers, yet with high enough energy to produce oxygen and titanium vacancies. The as-prepared thin film shows ferromagnetism which increases after irradiation with low-energy ions. An optimal and clear magnetic anisotropy was observed after the first irradiation, opposite to the expected form anisotropy. Taking into account the experimental parameters, titanium vacancies as di-Frenkel pairs appear to be responsible for the enhanced ferromagnetism and the strong anisotropy observed in our films. The magnetic impurities concentrations was measured by particle-induced X-ray emission with ppm resolution. They are ruled out as a source of the observed ferromagnetism before and after irradiation.

  14. Anisotropy-graded magnetic media obtained by ion irradiation of L10 FePt

    International Nuclear Information System (INIS)

    Bona, A. di; Luches, P.; Albertini, F.; Casoli, F.; Lupo, P.; Nasi, L.; D’Addato, S.; Gazzadi, G.C.; Valeri, S.

    2013-01-01

    We show that Ar + irradiation can be used effectively to transform a chemically ordered FePt L1 0 homogeneous thin film into an anisotropy-graded composite media with tunable magnetic response. This can be exploited to produce magnetic media with high thermal stability and moderate coercivity with potential in high-density magnetic recording applications. The depth distribution of the chemical order parameter, which controls the magnetic switching mechanism of the system, has been determined by high-resolution transmission electron microscopy. The irradiation-induced modifications of the material have been modeled using Monte Carlo simulations for ion transport in solids. The magnetic properties and coupling regimes of the resulting exchange-coupled systems are discussed

  15. Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy.

    Science.gov (United States)

    Pacakova, B; Mantlikova, A; Niznansky, D; Kubickova, S; Vejpravova, J

    2016-05-25

    Magnetic response of single-domain nanoparticles (NPs) in concentrated systems is strongly affected by mutual interparticle interactions. However, particle proximity significantly influences single-particle effective anisotropy. To solve which of these two phenomena plays a dominant role in the magnetic response of real NP systems, systematic study on samples with well-defined parameters is required. In our work, we prepared a series of nanocomposites constituted of highly-crystalline and well-isolated CoFe2O4 NPs embedded in an amorphous SiO2 matrix using a single-molecule precursor method. This preparation method enabled us to reach a wide interval of particle size and concentration. We observed that the characteristic parameters of the single-domain state (coercivity, blocking temperature) and dipole-dipole interaction energy ([Formula: see text]) scaled with each other and increased with increasing [Formula: see text], where d XRD was the NP diameter and r was the interparticle distance. Our results are in excellent agreement with Monte-Carlo simulations of the particle growth. Moreover, we demonstrated that the contribution of [Formula: see text] acting as an additional energetic barrier to the superspin reversal or as an average static field did not sufficiently explain how the concentrated NP systems responded to an external magnetic field. Alternations in the blocking temperature and coercivity of our NP systems accounted for reformed relaxations of the NP superspins and modified effective anisotropy energy of the interacting NPs. Therefore, the concept of modified NP effective anisotropy explains the magnetic response of our concentrated NP systems better than the concept of the energy barrier influenced by interparticle interactions.

  16. Single ion dynamics in molten sodium bromide

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, O.; Trullas, J. [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, 08034 Barcelona (Spain); Demmel, F. [ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

    2014-12-28

    We present a study on the single ion dynamics in the molten alkali halide NaBr. Quasielastic neutron scattering was employed to extract the self-diffusion coefficient of the sodium ions at three temperatures. Molecular dynamics simulations using rigid and polarizable ion models have been performed in parallel to extract the sodium and bromide single dynamics and ionic conductivities. Two methods have been employed to derive the ion diffusion, calculating the mean squared displacements and the velocity autocorrelation functions, as well as analysing the increase of the line widths of the self-dynamic structure factors. The sodium diffusion coefficients show a remarkable good agreement between experiment and simulation utilising the polarisable potential.

  17. Influence of Sn on the optical anisotropy of single-domain Si(001)

    International Nuclear Information System (INIS)

    Astropekakis, A.; Power, J.R.; Fleischer, K.; Esser, N.; Richter, W.; Galata, S.; Papadimitriou, D.

    2001-01-01

    We apply reflectance anisotropy spectroscopy (RAS) and low-energy electron diffraction (LEED) to the study of Sn deposited on a single-domain vicinal Si(001) sample. Large variations in RAS are recorded when up to 5 monolayers (ML) of Sn is deposited on the Si substrate at room temperature. We observe (2x2) and (1x1) LEED patterns for the 0.5-ML and 1.0-ML Sn covered surfaces, respectively. The (1x1) LEED pattern exists beyond this coverage and up to 5.0-ML deposition. Even though a (1x1) LEED pattern is observed upon deposition of 1.5 ML, surprisingly, a significant optical anisotropy is observed. After annealing to 570 degree sign C for 2 min, we observe a progression of LEED pattern changes from c(4x4)→(6x2)→c(8x4)→(5x1) with increased Sn coverage up to 1.5 ML. Similar RAS line shapes are obtained for all reconstructions produced through annealing with the exception of the (5x1). For the (5x1) phase, a significant anisotropy appears in the region of 1.8 eV. Similarities in the RAS line shape for both the (5x1) phase and that obtained after deposition of 1.5 ML of Sn at room temperature may indicate a RAS sensitivity to Sn dimer orientation within the uppermost layer

  18. Crystal growth and anisotropy of high temperature thermoelectric properties of yttrium borosilicide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, M. Anwar [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044 (Japan); Center for Crystal Science and Technology, University of Yamanashi, Miyamae 7-32, Kofu, Yamanashi 400-8511 (Japan); Tanaka, Isao [Center for Crystal Science and Technology, University of Yamanashi, Miyamae 7-32, Kofu, Yamanashi 400-8511 (Japan); Tanaka, Takaho; Khan, A. Ullah [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044 (Japan); Mori, Takao, E-mail: MORI.Takao@nims.go.jp [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8671 (Japan)

    2016-01-15

    We studied thermoelectric properties of YB{sub 41}Si{sub 1.3} single crystals grown by the floating zone method. The composition of the grown crystal was confirmed by electron probe micro-analysis. We have determined the growth direction for the first time for these borosilicides, and discovered relatively large anisotropy in electrical properties. We measured the electrical resistivity and Seebeck coefficient along [510] (the growth direction) and [052] directions and we found that this crystal exhibits strong electrical anisotropy with a maximum of more than 8 times. An interesting layered structural feature is revealed along [510] with dense boron cluster layers and yttrium layers, with conductivity enhanced along this direction. We obtained 3.6 times higher power factor along [510] compared to that along [052]. Although the ZT of the present system is low, anisotropy in the thermoelectric properties of a boride was reported for the first time, and can be a clue in developing other boride systems also. - Graphical abstract: The growth direction ([510]) was determined for the first time in YB{sub 41}Si{sub 1.3} single crystals and revealed an interesting layered feature of boron clusters and metal atoms, along which the electrical conductivity and thermoelectric power factor was strongly enhanced. - Highlights: • We have grown YB{sub 41}Si{sub 1.3} single crystals by the floating zone method. • Growth direction of [510] determined for first time in REB{sub 41}Si{sub 1.2}. • Electrical resistivity was strongly anisotropic with possible enhancement along metal layers. • The obtained power factor along [510] is 3.6 times higher than that along [052].

  19. Anisotropy barrier reduction in fast-relaxing Mn12 single-molecule magnets

    Science.gov (United States)

    Hill, Stephen; Murugesu, Muralee; Christou, George

    2009-11-01

    An angle-swept high-frequency electron paramagnetic resonance (HFEPR) technique is described that facilitates efficient in situ alignment of single-crystal samples containing low-symmetry magnetic species such as single-molecule magnets (SMMs). This cavity-based technique involves recording HFEPR spectra at fixed frequency and field, while sweeping the applied field orientation. The method is applied to the study of a low-symmetry Jahn-Teller variant of the extensively studied spin S=10 Mn12 SMMs (e.g., Mn12 -acetate). The low-symmetry complex also exhibits SMM behavior, but with a significantly reduced effective barrier to magnetization reversal (Ueff≈43K) and, hence, faster relaxation at low temperature in comparison with the higher-symmetry species. Mn12 complexes that crystallize in lower symmetry structures exhibit a tendency for one or more of the Jahn-Teller axes associated with the MnIII atoms to be abnormally oriented, which is believed to be the cause of the faster relaxation. An extensive multi-high-frequency angle-swept and field-swept electron paramagnetic resonance study of [Mn12O12(O2CCH2But)16(H2O)4]ṡCH2Cl2ṡMeNO2 is presented in order to examine the influence of the abnormally oriented Jahn-Teller axis on the effective barrier to magnetization reversal. The reduction in the axial anisotropy, D , is found to be insufficient to account for the nearly 40% reduction in Ueff . However, the reduced symmetry of the Mn12 core gives rise to a very significant second-order transverse (rhombic) zero-field-splitting anisotropy, E≈D/6 . This, in turn, causes a significant mixing of spin projection states well below the top of the classical anisotropy barrier. Thus, magnetic quantum tunneling is the dominant factor contributing to the effective barrier reduction in fast relaxing Mn12 SMMs.

  20. Single-ion nonlinear mechanical oscillator

    International Nuclear Information System (INIS)

    Akerman, N.; Kotler, S.; Glickman, Y.; Dallal, Y.; Keselman, A.; Ozeri, R.

    2010-01-01

    We study the steady-state motion of a single trapped ion oscillator driven to the nonlinear regime. Damping is achieved via Doppler laser cooling. The ion motion is found to be well described by the Duffing oscillator model with an additional nonlinear damping term. We demonstrate here the unique ability of tuning both the linear as well as the nonlinear damping coefficients by controlling the laser-cooling parameters. Our observations pave the way for the investigation of nonlinear dynamics on the quantum-to-classical interface as well as mechanical noise squeezing in laser-cooling dynamics.

  1. Jet quenching and azimuthal anisotropy of large $p_{T}$ spectra in noncentral high-energy heavy-ion collisions

    CERN Document Server

    Wang Xin Nian

    2001-01-01

    Parton energy loss inside a dense medium leads to the suppression of large p/sub T/ hadrons and can also cause azimuthal anisotropy of hadron spectra at large transverse momentum in noncentral high-energy heavy-ion collisions. Such azimuthal anisotropy is studied qualitatively in a parton model for heavy-ion collisions at RHIC energies. The coefficient v/sub 2/(p/sub T/) of the elliptic anisotropy at large p/sub T/ is found to be very sensitive to parton energy loss. It decreases slowly with p/sub T/ contrary to its low p /sub T/ behavior where v/sub 2/ increases very rapidly with p/sub T/. The turning point signals the onset of contributions of hard processes and the magnitude of parton energy loss. The centrality dependence of v/sub 2/(p/sub T/) is shown to be sensitive to both size and density dependence of the parton energy loss and the latter can also be studied via variation of the colliding energy. The anisotropy coefficient v/sub 2// epsilon normalized by the spatial ellipticity epsilon is found to de...

  2. A Low-Symmetry Dysprosium Metallocene Single-Molecule Magnet with a High Anisotropy Barrier.

    Science.gov (United States)

    Pugh, Thomas; Chilton, Nicholas F; Layfield, Richard A

    2016-09-05

    The single-molecule magnet (SMM) properties of the isocarbonyl-ligated dysprosium metallocene [Cp*2 Dy{μ-(OC)2 FeCp}]2 (1Dy ), which contains a rhombus-shaped Dy2 Fe2 core, are described. Combining a strong axial [Cp*](-) ligand field with a weak equatorial field consisting of the isocarbonyl ligands leads to an anisotropy barrier of 662 cm(-1) in zero applied field. The dominant thermal relaxation pathways in 1Dy involves at least the fourth-excited Kramers doublet, thus demonstrating that prominent SMM behavior can be observed for dysprosium in low-symmetry environments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Magnetic moment and magnetocrystalline anisotropy of 3d-ion subsystem in R2T14B

    International Nuclear Information System (INIS)

    Bartashevich, M.I.; Kudrevatykh, N.V.; Andreev, A.V.; Rejmer, V.A.

    1990-01-01

    The effect of substituting cobalt for iron on the magnetic moment, magneto-crystalline anisotropy and thermal expansion of R 2 (Fe 1-x Co x ) 14 B single crystals (R=Y, Gd, 0≤x≤0.3) is investigated. The uniaxial magnetic anisotropy constant K 1 for the 3d-subsystem passes through a maximum at T=4.2 K with increasing Co concentration. For T c the temperature dependence of K 1 does not possess a positive slope. The magnetic moment of the 3d-subsystem at 4.2 K does not exhibit the maximum at intermediate concentrations observed for most R(Fe, Co)-intermetallics. An explanation is presented of the changes in the magnetic properties. It is shown that the variation of the interatomic distances on thermal expansion should not affect the magnitude of the anisotropy constant of the 3d- and R-subsystems

  4. Dynamical vs. geometric anisotropy in relativistic heavy-ion collisions. Which one prevails?

    Energy Technology Data Exchange (ETDEWEB)

    Bravina, L.V. [University of Oslo, Department of Physics, Oslo (Norway); National Research Nuclear University ' ' MEPhI' ' (Moscow Engineering Physics Institute), Moscow (Russian Federation); Lokhtin, I.P.; Malinina, L.V.; Petrushanko, S.V.; Snigirev, A.M. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Zabrodin, E.E. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); University of Oslo, Department of Physics, Oslo (Norway); National Research Nuclear University ' ' MEPhI' ' (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2017-11-15

    We study the influence of geometric and dynamical anisotropies on the development of flow harmonics and, simultaneously, on the second- and third-order oscillations of femtoscopy radii. The analysis is done within the Monte Carlo event generator HYDJET++, which was extended to dynamical triangular deformations. It is shown that the merely geometric anisotropy provides the results which anticorrelate with the experimental observations of either v{sub 2} (or v{sub 3}) or second-order (or third-order) oscillations of the femtoscopy radii. Decays of resonances significantly increase the emitting areas but do not change the phases of the radii oscillations. In contrast to the spatial deformations, the dynamical anisotropy alone provides the correct qualitative description of the flow and the femtoscopy observables simultaneously. However, one needs both types of the anisotropy to match quantitatively the experimental data. (orig.)

  5. How to probe transverse magnetic anisotropy of a single-molecule magnet by electronic transport?

    Science.gov (United States)

    Misiorny, M.; Burzuri, E.; Gaudenzi, R.; Park, K.; Leijnse, M.; Wegewijs, M.; Paaske, J.; Cornia, A.; van der Zant, H.

    We propose an approach for in-situ determination of the transverse magnetic anisotropy (TMA) of an individual molecule by electronic transport measurements, see Phys. Rev. B 91, 035442 (2015). We study a Fe4 single-molecule magnet (SMM) captured in a gateable junction, a unique tool for addressing the spin in different redox states of a molecule. We show that, due to mixing of the spin eigenstates of the SMM, the TMA significantly manifests itself in transport. We predict and experimentally observe the pronounced intensity modulation of the Coulomb peak amplitude with the magnetic field in the linear-response transport regime, from which the TMA parameter E can be estimated. Importantly, the method proposed here does not rely on the small induced tunnelling effects and, hence, works well at temperatures and electron tunnel broadenings by far exceeding the tunnel splittings and even E itself. We deduce that the TMA for a single Fe4 molecule captured in a junction is substantially larger than the bulk value. Work supported by the Polish Ministry of Science and Education as `Iuventus Plus' project (IP2014 030973) in years 2015-2016.

  6. Anisotropy and linear polarization of radiative processes in energetic ion-atom collisions; Untersuchung zur Anisotropie und linearen Polarisation radiativer Prozesse in energiereichen Ion-Atom-Stoessen

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Guenter

    2010-06-16

    In the present thesis the linear polarization of radiation emitted in energetic ion-atom collisions at the ESR storage ring was measured by applying a novel type of position, timing and energy sensitive X-ray detector as a Compton polarimeter. In contrast to previous measurements, that mainly concentrate on studies of the spectral and angular distribution, the new detectors allowed the first polarization study of the Ly-{alpha}{sub 1} radiation (2p{sub 3/2}{yields}1s{sub 1/2}) in U{sup 91+}. Owing to the high precision of the polarimeters applied here, the experimental results indicate a significant depolarization of the Ly-{alpha}{sub 1} radiation caused by the interference of the E1 and M2 transition branches. Moreover, the current investigation shows that measurements of the linear polarization in combination with angular distribution studies provide a model-independent probe for the ratio of the E1 and M2 transition amplitudes and, consequently, of the corresponding transition probabilities. In addition, a first measurement of the linear polarization as well as an angular distribution study of the electron-nucleus Bremsstrahlung arising from ion-atom collisions was performed. The experimental results obtained were compared to exact relativistic calculations and, in case of the Bremsstrahlung, to a semirelativistic treatment. In general, good agreement was found between theoretical predictions and experimental findings. (orig.)

  7. Towards single Ce ion detection in a bulk crystal for the development of a single-ion qubit readout scheme

    OpenAIRE

    Yan, Ying

    2013-01-01

    The work presented in this thesis was concerned with investigating the relevant spectroscopic properties of Ce ions randomly doped in an Y2SiO5 crystal at low temperatures (around 4 K), in order to develop a technique and an experimental set-up to detect the fluorescence photons emitted by a single Ce ion. The aim of the work was to determine whether a single Ce ion (referred to as the readout ion) can be used as a local probe to sense the quantum state of a neighbouring single-ion qubit via ...

  8. In-Plane Electronic Anisotropy of Underdoped ___122___ Fe-Arsenide Superconductors Revealed by Measurements of Detwinned Single Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Ian Randal

    2012-05-08

    The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Neel transition is either preceded or accompanied by a structural transition that breaks the four fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and ARPES measurements of detwinned single crystals of underdoped Fe arsenide superconductors in the '122' family of compounds.

  9. Enhancement of the point defect pinning effect in Mo-doped Bi2212 single crystals of reduced anisotropy

    CERN Document Server

    Han, S H; Dai, Y; Zhang, Y; Zhang, H; Zhao, Y

    2002-01-01

    High quality Bi sub 2 Sr sub 2 CaCu sub 2 sub - sub x Mo sub x O sub y (x = 0, 0.01 and 0.02) single crystals have been grown by a self-flux method in a horizontal temperature gradient and their flux pinning and irreversibility behaviour have been investigated. The irreversibility lines of the undoped and Mo-doped Bi2212 crystals have been greatly improved by reducing the anisotropy parameter gamma. However, this improvement is much more pronounced for Mo-doped crystals than for the undoped ones. The peak effect of magnetization loops also changes with both Mo-doping and gamma. The results provide strong evidence that the point defect pinning served by Mo is greatly enhanced when the anisotropy of the system is reduced.

  10. Synthesis, structural, X-ray photoelectron spectroscopy (XPS) studies and IR induced anisotropy of Tl{sub 4}HgI{sub 6} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Parasyuk, O.V. [Department of Inorganic and Physical Chemistry, Lesya Ukrainka Eastern European National University, Voli Ave. 13, Lutsk, 43025 (Ukraine); Khyzhun, O.Y. [Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivsky St., 03142, Kyiv (Ukraine); Piasecki, M. [Institute of Physics, J. Dlugosz University Częstochowa, Armii Krajowej 13/15, Częstochowa (Poland); Kityk, I.V., E-mail: iwank74@gmail.com [Electrical Engineering Department, Czestochowa University Technology, Armii Krajowej 17, PL-42-217, Czestochowa (Poland); Lakshminarayana, G. [Wireless and Photonic Networks Research Centre, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor (Malaysia); Luzhnyi, I. [Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivsky St., 03142, Kyiv (Ukraine); Fochuk, P.M. [Yuriy Fed’kovych Chernivtsi National University, 2 Kotziubynskoho Str., 58012, Chernivtsi (Ukraine); Fedorchuk, A.O. [Department of Inorganic and Organic Chemistry, Lviv National University of Veterinary Medicine and Biotechnologies, Pekarska Street 50, 79010, Lviv (Ukraine); Levkovets, S.I.; Yurchenko, O.M.; Piskach, L.V. [Department of Inorganic and Physical Chemistry, Lesya Ukrainka Eastern European National University, Voli Ave. 13, Lutsk, 43025 (Ukraine)

    2017-02-01

    In the present work, we report on the synthesis and structural properties including X-ray protoelectron spectroscopy (XPS) analysis of Tl{sub 4}HgI{sub 6} crystals that were grown by Bridgman-Stockbarger method up to 80 mm in length and 18 mm in diameter. The existence of the ternary compound Tl{sub 4}HgI{sub 6} that melts incongruently at 641 K was confirmed. Phase equilibria and structural properties for the TlI–HgI{sub 2} system were investigated by differential thermal analysis (DTA) and X-ray diffraction (XRD) methods. X-ray photoelectron spectra were measured for both pristine and Ar{sup +} ion-bombarded Tl{sub 4}HgI{sub 6} single crystal surfaces. The data reveal that the Tl{sub 4}HgI{sub 6} single crystal is sensitive with respect to Ar{sup +} ion-bombardment as 3.0 keV Ar{sup +} irradiation over 5 min at an ion current density 14 μA/cm{sup 2} induces changes to the elemental stoichiometry of the Tl{sub 4}HgI{sub 6} surface, leading to a decrease of the mercury content in the topmost surface layers. X-ray photoelectron spectroscopy (XPS) measurements indicate very low hygroscopic nature of the Tl{sub 4}HgI{sub 6} single crystal surface. The IR coherent bicolor laser treatment at wavelengths 10.6/5.3 μm has shown an occurrence of anisotropy at wavelengths 1540 nm of Er:glass laser. This may open the applications of Tl{sub 4}HgI{sub 6} as a material for IR laser triggering. - Highlights: • Phase diagram of the HgI{sub 2}–TlI system was built. • Tl{sub 4}HgI{sub 6} single crystals were grown by Bridgman Stockbarger method. • XRD, XPS analysis was done. • Ir induced anisotropy was established. • The compounds may be proposed as Ir laser operated polarizers.

  11. Investigation of the polarization anisotropy in a single-mode quartz fiber

    Science.gov (United States)

    Kozel, S. M.; Listvin, V. N.; Shatalin, S. V.

    A method is presented for investigating the fiber-length dependence of optical activity, linear birefringence and the azimuth of the major axis of linear birefringence on the basis of the evolution of two states of light polarization in a fiber with arbitrary polarization anisotropy. Linear and circular birefringent properties of the fiber are determined, and, it is shown that the fiber is irregular.

  12. Coherent Control of a Single Trapped Rydberg Ion

    Science.gov (United States)

    Higgins, Gerard; Pokorny, Fabian; Zhang, Chi; Bodart, Quentin; Hennrich, Markus

    2017-12-01

    Trapped Rydberg ions are a promising novel approach to quantum computing and simulations. They are envisaged to combine the exquisite control of trapped ion qubits with the fast two-qubit Rydberg gates already demonstrated in neutral atom experiments. Coherent Rydberg excitation is a key requirement for these gates. Here, we carry out the first coherent Rydberg excitation of an ion and perform a single-qubit Rydberg gate, thus demonstrating basic elements of a trapped Rydberg ion quantum computer.

  13. Higher harmonics of azimuthal anisotropy in relativistic heavy ion collisions in HYDJET++ model

    CERN Document Server

    Bravina, L V; Eyyubova, G. Kh.; Korotkikh, V.L.; Lokhtin, I.P.; Malinina, L.V.; Petrushanko, S.V.; Snigirev, A.M.; Zabrodin, E.E.

    2014-01-01

    The LHC data on azimuthal anisotropy harmonics from PbPb collisions at center-of-mass energy 2.76 TeV per nucleon pair are analyzed and interpreted in the framework of the HYDJET++ model. The cross-talk of elliptic $v_2$ and triangular $v_3$ flow in the model generates both even and odd harmonics of higher order. Comparison with the experimental data shows that this mechanism is able to reproduce the $p_{\\rm T}$ and centrality dependencies of quadrangular flow $v_4$, and also the basic trends for pentagonal $v_5$ and hexagonal $v_6$ flows.

  14. Single ion counting with a MCP (microchannel plate) detector

    Energy Technology Data Exchange (ETDEWEB)

    Tawara, Hiroko; Sasaki, Shinichi; Miyajima, Mitsuhiro [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Shibamura, Eido

    1996-07-01

    In this study, a single-ion-counting method using alpha-particle-impact ionization of Ar atoms is demonstrated and the preliminary {epsilon}{sub mcp} for Ar ions with incident energies of 3 to 4.7 keV is determined. The single-ion counting by the MCP is aimed to be performed under experimental conditions as follows: (1) A signal from the MCP is reasonably identified as incidence of single Ar-ion. (2) The counting rate of Ar ions is less than 1 s{sup -1}. (3) The incident Ar ions are not focused on a small part of an active area of the MCP, namely, {epsilon}{sub mcp} is determined with respect to the whole active area of the MCP. So far, any absolute detection efficiency has not been reported under these conditions. (J.P.N.)

  15. Automated parallel recordings of topologically identified single ion channels.

    Science.gov (United States)

    Kawano, Ryuji; Tsuji, Yutaro; Sato, Koji; Osaki, Toshihisa; Kamiya, Koki; Hirano, Minako; Ide, Toru; Miki, Norihisa; Takeuchi, Shoji

    2013-01-01

    Although ion channels are attractive targets for drug discovery, the systematic screening of ion channel-targeted drugs remains challenging. To facilitate automated single ion-channel recordings for the analysis of drug interactions with the intra- and extracellular domain, we have developed a parallel recording methodology using artificial cell membranes. The use of stable lipid bilayer formation in droplet chamber arrays facilitated automated, parallel, single-channel recording from reconstituted native and mutated ion channels. Using this system, several types of ion channels, including mutated forms, were characterised by determining the protein orientation. In addition, we provide evidence that both intra- and extracellular amyloid-beta fragments directly inhibit the channel open probability of the hBK channel. This automated methodology provides a high-throughput drug screening system for the targeting of ion channels and a data-intensive analysis technique for studying ion channel gating mechanisms.

  16. Single track regime in ion implanted polystyrene

    Energy Technology Data Exchange (ETDEWEB)

    Licciardello, A.; Puglisi, O.; Calcagno, L.; Foti, G.

    1988-05-01

    The molecular weight distribution (MWD) of nearly monodisperse polystyrene thin films is heavily affected by ion bombardment. The main effect is an increase of the MW and is detectable at fluences as low as 10/sup 11/ ions cm/sup -2/ for 400 keV Ar/sup +/ bombardment. A statistical model, here outlined for the first time, allows us the predict the size distribution of these high MW components. From the analysis of the MWD curves one can extract useful information concerning the lateral dimensions of the ion tracks.

  17. Magnetic anisotropy of single Co atom on CuN surface

    Czech Academy of Sciences Publication Activity Database

    Shick, Alexander; Máca, František; Lichtenstein, A.I.

    2009-01-01

    Roč. 105, č. 7 (2009), 07C309/1-07C309/3 ISSN 0021-8979 R&D Projects: GA ČR(CZ) GC202/07/J047 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic anisotropy energy * first principle calculations * cobalt * CuN Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.072, year: 2009

  18. Ion temperature anisotropy in high power helium neutral beam fuelling experiments in JET

    Energy Technology Data Exchange (ETDEWEB)

    Maas, A.C.; Core, W.G.F.; Gerstel, U.C.; Von Hellermann, M.G.; Koenig, R.W.T.; Marcus, F.B. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    During helium beam fuelling experiments in JET, distinctive anisotropic features have been observed in the velocity distribution function describing both fast and thermal alpha particle populations. During the initial fuelling phase the central helium ion temperature observed perpendicular to the magnetic field is higher than the central electron temperature, while the central helium ion temperature observed parallel to the magnetic field is lower than or equal to the central electron temperature. In order to verify temperature measurements of both perpendicular and parallel lines of sight, other independent methods of deducing the ion temperature are investigated: deuterium ion temperature, deuterium density, comparison with neutron rates and profiles (influence of a possible metastable population of helium). 6 refs., 7 figs.

  19. Magnetic anisotropy of single 3d spins on a CuN surface

    Czech Academy of Sciences Publication Activity Database

    Shick, Alexander; Máca, František; Lichtenstein, A.I.

    2009-01-01

    Roč. 79, č. 17 (2009), 172409/1-172409/4 ISSN 1098-0121 R&D Projects: GA AV ČR IAA100100912; GA ČR(CZ) GC202/07/J047 Grant - others:DFG(DE) SFB668-A3; German-Czech collaboration(DE) 436TSE113/53/0-1 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic anisotropy * first principle calculations * iron * manganese * CuN Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009

  20. Room-temperature superparamagnetism due to giant magnetic anisotropy in Mo S defected single-layer MoS2

    Science.gov (United States)

    Khan, M. A.; Leuenberger, Michael N.

    2018-04-01

    Room-temperature superparamagnetism due to a large magnetic anisotropy energy (MAE) of a single atom magnet has always been a prerequisite for nanoscale magnetic devices. Realization of two dimensional (2D) materials such as single-layer (SL) MoS2, has provided new platforms for exploring magnetic effects, which is important for both fundamental research and for industrial applications. Here, we use density functional theory (DFT) to show that the antisite defect (Mo S ) in SL MoS2 is magnetic in nature with a magnetic moment μ of  ∼2 μB and, remarkably, exhibits an exceptionally large atomic scale MAE =\\varepsilon\\parallel-\\varepsilon\\perp of  ∼500 meV. Our calculations reveal that this giant anisotropy is the joint effect of strong crystal field and significant spin–orbit coupling (SOC). In addition, the magnetic moment μ can be tuned between 1 μB and 3 μB by varying the Fermi energy \\varepsilonF , which can be achieved either by changing the gate voltage or by chemical doping. We also show that MAE can be raised to  ∼1 eV with n-type doping of the MoS2:Mo S sample. Our systematic investigations deepen our understanding of spin-related phenomena in SL MoS2 and could provide a route to nanoscale spintronic devices.

  1. Large Anisotropy Barrier in a Tetranuclear Single-Molecule Magnet Featuring Low-Coordinate Cobalt Centers.

    Science.gov (United States)

    Chakarawet, Khetpakorn; Bunting, Philip C; Long, Jeffrey R

    2018-02-14

    The tetranuclear cobalt cluster compound [Co 4 (μ-NP t Bu 3 ) 4 ][B(C 6 F 5 ) 4 ] ( t Bu = tert-butyl) was synthesized by chemical oxidation of Co 4 (NP t Bu 3 ) 4 with [FeCp 2 ][B(C 6 F 5 ) 4 ] and magnetically characterized to study the effect of electronic communication between low-coordinate metal centers on slow magnetic relaxation in a transition metal cluster. The dc magnetic susceptibility data reveal that the complex exhibits a well-isolated S = 9 / 2 ground state, which persists even to 300 K and is attributed to the existence of direct metal-metal orbital overlap. The ac magnetic susceptibility data further reveals that the complex exhibits slow magnetic relaxation in the absence of an applied field, and that the relaxation dynamics can be fit with a combination of Orbach, quantum tunneling, and Raman relaxation processes. The effective spin reversal barrier for this molecule is 87 cm -1 , the largest reported to date for a transition metal cluster, and arises due to the presence of a large easy-axis magnetic anisotropy. The complex additionally exhibits waist-restricted magnetic hysteresis and magnetic blocking below 3.6 K. Taken together, these results indicate that coupling of low-coordinate metal centers is a promising strategy to enhance magnetic anisotropy and slow magnetic relaxation in transition metal cluster compounds.

  2. Anisotropy of the angular distribution of fission fragments in heavy-ion fusion-fission reactions: The influence of the level-density parameter and the neck thickness

    Science.gov (United States)

    Naderi, D.; Pahlavani, M. R.; Alavi, S. A.

    2013-05-01

    Using the Langevin dynamical approach, the neutron multiplicity and the anisotropy of angular distribution of fission fragments in heavy ion fusion-fission reactions were calculated. We applied one- and two-dimensional Langevin equations to study the decay of a hot excited compound nucleus. The influence of the level-density parameter on neutron multiplicity and anisotropy of angular distribution of fission fragments was investigated. We used the level-density parameter based on the liquid drop model with two different values of the Bartel approach and Pomorska approach. Our calculations show that the anisotropy and neutron multiplicity are affected by level-density parameter and neck thickness. The calculations were performed on the 16O+208Pb and 20Ne+209Bi reactions. Obtained results in the case of the two-dimensional Langevin with a level-density parameter based on Bartel and co-workers approach are in better agreement with experimental data.

  3. Magnetic dispersion and anisotropy in multiferroic BiFeO3

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Masaaki [ORNL; Fishman, Randy Scott [ORNL; Hong, Tao [ORNL; Lee, C. H. [AIST, Japan; Ushiyama, T. [AIST, Japan; Yanagisawa, Y. [AIST, Japan; Tomioka, Y. [AIST, Japan; Ito, T. [AIST, Japan

    2012-01-01

    We have determined the full magnetic dispersion relations of multiferroic BiFeO3. In particular, two excitation gaps originating from magnetic anisotropies have been clearly observed. The direct observation of the gaps enables us to accurately determine the Dzyaloshinskii-Moriya (DM) interaction and the single ion anisotropy. The DM interaction supports a sizable magneto-electric coupling in this compound.

  4. A compact source for bunches of singly charged atomic ions

    Science.gov (United States)

    Murböck, T.; Schmidt, S.; Andelkovic, Z.; Birkl, G.; Nörtershäuser, W.; Vogel, M.

    2016-04-01

    We have built, operated, and characterized a compact ion source for low-energy bunches of singly charged atomic ions in a vacuum beam line. It is based on atomic evaporation from an electrically heated oven and ionization by electron impact from a heated filament inside a grid-based ionization volume. An adjacent electrode arrangement is used for ion extraction and focusing by applying positive high-voltage pulses to the grid. The method is particularly suited for experimental environments which require low electromagnetic noise. It has proven simple yet reliable and has been used to produce μs-bunches of up to 106 Mg+ ions at a repetition rate of 1 Hz. We present the concept, setup and characterizing measurements. The instrument has been operated in the framework of the SpecTrap experiment at the HITRAP facility at GSI/FAIR to provide Mg+ ions for sympathetic cooling of highly charged ions by laser-cooled 24Mg+.

  5. The rise of 3-d single-ion magnets in molecular magnetism: towards materials from molecules?

    Science.gov (United States)

    Frost, Jamie M; Harriman, Katie L M; Murugesu, Muralee

    2016-04-21

    Single-molecule magnets (SMMs) that contain one spin centre (so-called single-ion magnets) theoretically represent the smallest possible unit for spin-based electronic devices. The realisation of this and related technologies, depends on first being able to design systems with sufficiently large energy barriers to magnetisation reversal, U eff , and secondly, on being able to organise these molecules into addressable arrays. In recent years, significant progress has been made towards the former goal - principally as a result of efforts which have been directed towards studying complexes based on highly anisotropic lanthanide ions, such as Tb(iii) and Dy(iii). Since 2013 however, and the remarkable report by Long and co-workers of a linear Fe(i) system exhibiting U eff = 325 K, single-ion systems of transition metals have undergone something of a renaissance in the literature. Not only do they have important lessons to teach us about anisotropy and relaxation dynamics in the quest to enhance U eff , the ability to create strongly coupled spin systems potentially offers access to a whole of host of 1, 2 and 3-dimensional materials with interesting structural and physical properties. This perspective summarises recent progress in this rapidly expanding sub-genre of molecular magnetism from the viewpoint of the synthetic chemist, with a particular focus on the lessons that have so far been learned from single-ion magnets of the d-block, and, the future research directions which we feel are likely to emerge in the coming years.

  6. Azimuthal anisotropy in heavy-ion collisions using non-extensive statistics in Boltzmann transport equation

    International Nuclear Information System (INIS)

    Tripathy, S.; Tiwari, S.K.; Younus, M.; Sahoo, R.

    2017-01-01

    One of the major goals in heavy-ion physics is to understand the properties of Quark Gluon Plasma (QGP), a deconfined hot and dense state of quarks and gluons existed shortly after the Big Bang. In the present scenario, the high-energy particle accelerators are able to reach energies where this extremely dense nuclear matter can be probed for a short time. Here, we follow our earlier works which use non-extensive statistics in Boltzmann Transport Equation (BTE). We represent the initial distribution of particles with the help of Tsallis power law distribution parameterized by the nonextensive parameter q and the Tsallis temperature T, remembering the fact that their origin is due to hard scatterings. We use the initial distribution (f in ) with Relaxation Time Approximation (RTA) of the BTE and calculate the final distribution (f fin ). Then we calculate ν 2 of the system using the final distribution in the definition of ν2

  7. Anisotropic Lithium Ion Conductivity in Single-Ion Diblock Copolymer Electrolyte Thin Films

    NARCIS (Netherlands)

    Aissou, Karim; Mumtaz, Muhammad; Usluer, Özlem; Pécastaings, Gilles; Portale, Giuseppe; Fleury, Guillaume; Cloutet, Eric; Hadziioannou, Georges

    Well-defined single-ion diblock copolymers consisting of a Li-ion conductive poly(styrenesulfonyllithium(trifluoromethylsulfonyl)imide) (PSLiTFSI) block associated with a glassy polystyrene (PS) block have been synthesized via reversible addition fragmentation chain transfer polymerization.

  8. Conduction in ion implanted single crystal diamond

    International Nuclear Information System (INIS)

    Hunn, J.D.; Parikh, N.R.; Swanson, M.L.

    1992-01-01

    We have implanted sodium, phosphorus and arsenic into single crystal type IIa diamond as possible n-type dopants. Particular emphasis was applied to the implantation of sodium at different temperatures and doses; combined implantation energies of 55,80 and 120 keV were used to provide a uniformly doped layer over approximately 100 nm depth. The implanted layers exhibited semiconducting behavior with a single exponential activation energy between 0.40 and 0.48 eV, as determined by temperature dependent resistance measurements. A sample implanted to a concentration of 5.10 19 Na + /cm 3 at 550 degrees C exhibited a single activation energy of 0.415 eV over a temperature range from 25 to 500 degrees C. Thermal annealing above 900 degrees C was found to remove implantation damage as measured by optical absorption and RBS/channeling. However, concomitant increases in the resistance and the activation energy were observed. Implantation of 22 Ne was used to introduce a damage density equivalent to the 23 Na implant, while not introducing an electrically active species. The activation energy and electrical resistance were similar but higher than those produced by implantation with sodium. We conclude that the electrical properties of the Na-implanted samples were at least partly due to electrically active Na, but that residual implantation damage was still important

  9. A sensitive fluorescence anisotropy method for detection of lead (II) ion by a G-quadruplex-inducible DNA aptamer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dapeng [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Yin, Lei; Meng, Zihui [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China); Yu, Anchi [Department of Chemistry, Renmin University of China, Beijing, 100872 (China); Guo, Lianghong [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Wang, Hailin, E-mail: hlwang@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China)

    2014-02-17

    Graphical abstract: -- Highlights: •A fluorescence anisotropy approach for detection of Pb{sup 2+} was developed. •The strategy was based on binding-induced allosteric conformational change of aptamer probe. •The sensing mechanism was established by testing the photoinduced electron transfer interaction. -- Abstract: Sensitive and selective detection of Pb{sup 2+} is of great importance to both human health and environmental protection. Here we propose a novel fluorescence anisotropy (FA) approach for sensing Pb{sup 2+} in homogeneous solution by a G-rich thrombin binding aptamer (TBA). The TBA labeled with 6-carboxytetramethylrhodamine (TMR) at the seventh thymine nucleotide was used as a fluorescent probe for signaling Pb{sup 2+}. It was found that the aptamer probe had a high FA in the absence of Pb{sup 2+}. This is because the rotation of TMR is restricted by intramolecular interaction with the adjacent guanine bases, which results in photoinduced electron transfer (PET). When the aptamer probe binds to Pb{sup 2+} to form G-quadruplex, the intramolecular interaction should be eliminated, resulting in faster rotation of the fluorophore TMR in solution. Therefore, FA of aptamer probe is expected to decrease significantly upon binding to Pb{sup 2+}. Indeed, we observed a decrease in FA of aptamer probe upon Pb{sup 2+} binding. Circular dichroism, fluorescence spectra, and fluorescence lifetime measurement were used to verify the reliability and reasonability of the sensing mechanism. By monitoring the FA change of the aptamer probe, we were able to real-time detect binding between the TBA probe and Pb{sup 2+}. Moreover, the aptamer probe was exploited as a recognition element for quantification of Pb{sup 2+} in homogeneous solution. The change in FA showed a linear response to Pb{sup 2+} from 10 nM to 2.0 μM, with 1.0 nM limit of detection. In addition, this sensing system exhibited good selectivity for Pb{sup 2+} over other metal ions. The method is simple

  10. Localization Spectroscopy of a Single Ion in an Optical Lattice

    DEFF Research Database (Denmark)

    Legrand, Olivier Philippe Alexandre

    2015-01-01

    The work reported in this thesis primarily focuses on studies of the dynamics of a single laser-cooled ion, simultaneously confined in the harmonic potential of a linear Paul trap and a rapidly varying periodic potential – a so-called optical lattice – generated from an optical standing-wave. Bes......The work reported in this thesis primarily focuses on studies of the dynamics of a single laser-cooled ion, simultaneously confined in the harmonic potential of a linear Paul trap and a rapidly varying periodic potential – a so-called optical lattice – generated from an optical standing...... calibration and analysis of the detection system, several theoretical simulations of the expected dynamics and associated optical response of the ion were undertaken. Finally, a new laser source based on second harmonic generation was developed in order to perform laser-cooling of Ca+ ions, and to serve...

  11. Ion implantation induced blistering of rutile single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Bing-Xi [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Jiao, Yang [College of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250100 (China); Guan, Jing [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Wang, Lei [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (China)

    2015-07-01

    The rutile single crystals were implanted by 200 keV He{sup +} ions with a series fluence and annealed at different temperatures to investigate the blistering behavior. The Rutherford backscattering spectrometry, optical microscope and X-ray diffraction were employed to characterize the implantation induced lattice damage and blistering. It was found that the blistering on rutile surface region can be realized by He{sup +} ion implantation with appropriate fluence and the following thermal annealing.

  12. Single Ion Trapping for the Enriched Xenon Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Waldman, Samuel J.; /Stanford U., Phys. Dept. /SLAC

    2006-03-28

    In the last decade, a variety of neutrino oscillation experiments have established that there is a mass difference between neutrino flavors, without determining the absolute neutrino mass scale. The Enriched Xenon Observatory for neutrinoless double beta decay (EXO) will search for the rare decays of xenon to determine the absolute value of the neutrino mass. The experiment uses a novel technique to minimize backgrounds, identifying the decay daughter product in real time using single ion spectroscopy. Here, we describe single ion trapping and spectroscopy compatible with the EXO detector. We extend the technique of single ion trapping in ultrahigh vacuum to trapping in xenon gas. With this technique, EXO will achieve a neutrino mass sensitivity of {approx_equal} .010 eV.

  13. g-Anisotropy of the S2-state manganese cluster in single crystals of cyanobacterial photosystem II studied by W-band electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Matsuoka, Hideto; Furukawa, Ko; Kato, Tatsuhisa; Mino, Hiroyuki; Shen, Jian-Ren; Kawamori, Asako

    2006-07-06

    The multiline signal from the S2-state manganese cluster in the oxygen evolving complex of photosystem II (PSII) was observed in single crystals of a thermophilic cyanobacterium Thermosynechococcus vulcanus for the first time by W-band (94 GHz) electron paramagnetic resonance (EPR). At W-band, spectra were characterized by the g-anisotropy, which enabled the precise determination of the tensor. Distinct hyperfine splittings (hfs's) as seen in frozen solutions of PSII at X-band (9.5 GHz) were detected in most of the crystal orientations relative to the magnetic field. In some orientations, however, the hfs's disappeared due to overlapping of a large number of EPR lines from eight crystallographic symmetry-related sites of the manganese cluster within the unit cell of the crystal. Analysis of the orientation-dependent spectral features yielded the following g-tensor components: g(x) = 1.988, g(y) = 1.981, g(z) = 1.965. The principal values suggested an approximate axial symmetry around the Mn(III) ion in the cluster.

  14. Ion Source Multiplexing on a Single Mass Spectrometer.

    Science.gov (United States)

    Kostyukevich, Yury; Nikolaev, Eugene

    2018-03-06

    We present the simple approach for the combination of different ion sources on a single mass spectrometer without any interference between them. Each ion source can be positioned as far as 1 m from the mass spectrometer; ions are transported by the means of flexible copper tubes, which are connected, to the separate inlet capillaries. Special valves enable switching channels on and off. Using this approach, we successfully combined native electrospray ionization (ESI), regular ESI, β-electrons ionization, and atmospheric pressure photoionization (APPI) of thermally desorbed vapors of petroleum on a single mass spectrometer. In addition, separate channels allow infusing internal calibration mixture or performing ion molecular reactions in one channel and using the other as a reference. Using this idea, we have developed an original sequential window acquisition of all theoretical mass spectra (SWATH MS) approach in which peptide ions are transported in different channels, one of which is heated to high temperature so that ions are thermally fragmented, and the other channel ensures the presence of nonfragmented ions in the spectrum. Also, we demonstrated the possibility to perform gas phase H/D exchange reaction in one channel and using another as reference. Use of valves makes it possible to exclude any interference between them. Thus, we have demonstrated the possibility to create a multichannel system in which ions would be transported through several inlet tubes in which different ion molecular reactions such as Paternò-Büchi, ozonation, or H/D exchange will occur. Comparison of mass spectra recorded when different channels are open will provide structural and chemical information about unknown species.

  15. Modification of ion implanted or irradiated single crystal sapphire

    International Nuclear Information System (INIS)

    Song Yin; Zhang Chonghong; Wang Zhiguang; Zhao Zhiming; Yao Cunfeng; Zhou Lihong; Jin Yunfan

    2006-01-01

    Single crystal sapphire (Al 2 O 3 ) samples were implanted at 600 K by He, Ne and Ar ions with energy of 110 keV to doses ranging from 5 x 10 16 to 2 x 10 17 ion/cm 2 or irradiated at 320 K by 208 Pb 27+ ion with energy of 1.1 MeV/u to the fluences ranging from 1 x 10 12 to 5 x 10 14 ion/cm 2 . The modification of structure and optical properties induced by ion implantation or irradiation were analyzed by using photoluminescence (PL) and Fourier transformation infrared spectrum (FTIR) spectra and transmission electron microscopy (TEM) measurements. The PL measurements showed that absorption peaks located at 375, 413 and 450 nm appeared in all the implanted or irradiated samples, the PL intensities reached up to the maximum for the 5 x 10 16 ion/cm 2 implanted samples. After Pb-ion irradiation, a new peak located at 390 nm formed. TEM analyses showed that small size voids (1-2 nm) with high density were formed in the region from the surface till to about 100 nm in depth and also large size Ne-bubble formed in the Ne-doped region. Form the obtained FTIR spectra, it was found that Pb-ion irradiation induced broadening of the absorption band in 460-510 cm -1 and position shift of the absorption band in 1000-1300 cm -1 towards to high wavenumber. The possible damage mechanism in single crystal sapphire induced by energetic ion implantation or irradiation was briefly discussed. (authors)

  16. Studies at IBM on anisotropy in single crystals of the high-temperature oxide superconductor Y1Ba2Cu3O7/sub -//sub x/ (invited)

    International Nuclear Information System (INIS)

    Gallagher, W.J.

    1988-01-01

    A series of studies carried out at IBM on the magnetic, transport, and optical properties of single crystal Y 1 Ba 2 Cu 3 O/sub 7-//sub x/ demonstrate the overriding importance of anisotropy in its superconducting and normal-state properties

  17. CoV2O6 single crystals grown in a closed crucible: unusual magnetic behaviors with large anisotropy and 1/3 magnetization plateau.

    Science.gov (United States)

    He, Zhangzhen; Yamaura, Jun-ichi; Ueda, Yutaka; Cheng, Wendan

    2009-06-10

    Single crystals of CoV(2)O(6) were obtained in a closed crucible using a flux method. Magnetic measurements showed that this material displays a large magnetic anisotropy and a 1/3 magnetization plateau under a magnetic field applied along the c axis.

  18. Surface noise analysis using a single-ion sensor

    Science.gov (United States)

    Daniilidis, N.; Gerber, S.; Bolloten, G.; Ramm, M.; Ransford, A.; Ulin-Avila, E.; Talukdar, I.; Häffner, H.

    2014-06-01

    We use a single-ion electric-field noise sensor in combination with in situ surface treatment and analysis tools, to investigate the relationship between electric-field noise from metal surfaces in vacuum and the composition of the surface. These experiments are performed in a setup that integrates ion trapping capabilities with surface analysis tools. We find that treatment of an aluminum-copper surface with energetic argon ions significantly reduces the level of room-temperature electric-field noise, but the surface does not need to be atomically clean to show noise levels comparable to those of the best cryogenic traps. The noise levels after treatment are low enough to allow fault-tolerant trapped-ion quantum information processing on a microfabricated surface trap at room temperature.

  19. Single qubit manipulation in a microfabricated surface electrode ion trap

    Science.gov (United States)

    Mount, Emily; Baek, So-Young; Blain, Matthew; Stick, Daniel; Gaultney, Daniel; Crain, Stephen; Noek, Rachel; Kim, Taehyun; Maunz, Peter; Kim, Jungsang

    2013-09-01

    We trap individual 171Yb+ ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms-1, indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps.

  20. Single qubit manipulation in a microfabricated surface electrode ion trap

    International Nuclear Information System (INIS)

    Mount, Emily; Baek, So-Young; Gaultney, Daniel; Crain, Stephen; Noek, Rachel; Kim, Taehyun; Maunz, Peter; Kim, Jungsang; Blain, Matthew; Stick, Daniel

    2013-01-01

    We trap individual 171 Yb + ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms −1 , indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps. (paper)

  1. Magnetic anisotropy engineering in square magnetic elements

    International Nuclear Information System (INIS)

    Di Bona, A.; Contri, S.F.; Gazzadi, G.C.; Valeri, S.; Vavassori, P.

    2007-01-01

    Square magnetic elements with side in the 100-500 nm range have been fabricated using the focused ion beam (FIB) milling technique from a 10 nm thick, single-crystal Fe film, epitaxially grown on MgO(0 0 1). Thanks to the good crystal quality of the film, magnetic elements with well-defined magnetocrystalline anisotropy have been prepared, while the fine control of the size and shape of the magnets allows for the effective engineering of the anisotropic behavior of the magnetostatic energy that determines the so-called configurational anisotropy. Micromagnetic calculations and experiments show that the angular dependence of the transverse susceptibility has a strong dependence on the material parameters as well as on the static applied field. This allows the effective engineering of the total anisotropy of the magnets

  2. Enriching lanthanide single-ion magnetism through symmetry and axiality.

    Science.gov (United States)

    Gupta, Sandeep K; Murugavel, Ramaswamy

    2018-04-10

    Rapidly growing modern information technology demands energy and cost efficient tools that can efficiently store and process a large amount of data. However, the miniaturization technology that was being used to boost the performance of the electronic devices, keeping up with the pace as estimated by Moore's law, is reaching its limit. To overcome these challenges, several alternative routes that can eventually mimic the modern electronics fabrication using silicon have been proposed. Single molecule magnets (SMMs), being considered as one of the potential alternatives, have gone through significant progress and the focus has shifted from the use of polynuclear clusters to mononuclear complexes in the last few years. The recent frenzy in the field of SMMs is driven by a better understanding of the effects of crystal field (CF) and molecular symmetry on the magnetic properties, especially in the case of mononuclear paramagnetic complexes, apart from other controlling factors. This has led to the advent of highly anisotropic single-ion magnets (SIMs) with magnetic blocking temperatures as high as 60 K and anisotropic energy barriers over 1800 K. This article overviews our recent research in the light of the emergence of the importance of CF and symmetry in 4f ion based single-ion magnets (SIMs), especially in the context of SIMs with D5h symmetry, apart from commenting on the synthetic efforts adopted to place these metal ions in unusual coordination geometries.

  3. Anisotropy of elastic and relaxation properties of the superconducting 123-YBCO single crystals

    International Nuclear Information System (INIS)

    Pal-Val, P.P.; Pal-Val, L.N.; Demirsky, V.V.; Natsik, V.D.; Sorin, M.N.

    1996-01-01

    Acoustic properties of the YBa 2 Cu 3 O 6.7 single crystal are studied in the temperature range 5-300 K. The wave vector of the longitudinal and torsional standing waves in the frequency range 50 - 90 kHz was directed along and normal to the c-axis. It is shown that the acoustic anomalies observed in the single crystal qualitatively are the same that those found earlier in the 123-YBCO ceramics but depend strongly on the mutual orientation of the wave vector and the c-axis. It is established that the significant temperature hysteresis and ''softening'' of the dynamic elastic moduli at thermocycling are observed only in the case when the sound waves have a displacement component along the c-axis. Moreover, in this case the sound absorption peak near 230 K is more pronounced. The locations of sound absorption peaks are not sensitive to the oscillation mode and sample orientation. The results obtained are qualitatively consistent with the model of bistable behaviour of the sublattice formed by apical oxygen atoms. (orig.)

  4. Single Gold Nanorod Charge Modulation in an Ion Gel Device.

    Science.gov (United States)

    Collins, Sean S E; Wei, Xingzhan; McKenzie, Thomas G; Funston, Alison M; Mulvaney, Paul

    2016-11-09

    A reliable and reproducible method to rapidly charge single gold nanocrystals in a solid-state device is reported. Gold nanorods (Au NRs) were integrated into an ion gel capacitor, enabling them to be charged in a transparent and highly capacitive device, ideal for optical transmission. Changes in the electron concentration of a single Au NR were observed with dark-field imaging spectroscopy via localized surface plasmon resonance (LSPR) shifts in the scattering spectrum. A time-resolved, laser-illuminated, dark-field system was developed to enable direct measurement of single particle charging rates with time resolution below one millisecond. The added sensitivity of this new approach has enabled the optical detection of fewer than 110 electrons on a single Au NR. Single wavelength resonance shifts provide a much faster, more sensitive method for all surface plasmon-based sensing applications.

  5. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field.

    Science.gov (United States)

    García-García, Amanda; Vergaz, Ricardo; Algorri, José F; Zito, Gianluigi; Cacace, Teresa; Marino, Antigone; Otón, José M; Geday, Morten A

    2016-01-01

    Single-wall carbon nanotubes (SWCNT) are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules.

  6. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field

    Directory of Open Access Journals (Sweden)

    Amanda García-García

    2016-06-01

    Full Text Available Single-wall carbon nanotubes (SWCNT are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules.

  7. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    International Nuclear Information System (INIS)

    Weis, Christoph D.

    2011-01-01

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  8. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    Energy Technology Data Exchange (ETDEWEB)

    Weis, Christoph D.

    2011-10-04

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  9. Fluorescence anisotropy of acridinedione dyes in glycerol: Prolate ...

    Indian Academy of Sciences (India)

    TECS

    of rotational reorientation of molecules in liquid so- lution using ... sition metal ions has been studied. 29. In the present work, ..... of-plane rotation. ADR dyes show single exponen- tial fluorescence anisotropy decay at 250 nm due to slower in-plane rotation. The absorption and emission dipoles are nearly collinear at 394 ...

  10. Coherent manipulation of three-qubit states in a molecular single-ion magnet

    Science.gov (United States)

    Jenkins, M. D.; Duan, Y.; Diosdado, B.; García-Ripoll, J. J.; Gaita-Ariño, A.; Giménez-Saiz, C.; Alonso, P. J.; Coronado, E.; Luis, F.

    2017-02-01

    We study the quantum spin dynamics of nearly isotropic Gd3 + ions entrapped in polyoxometalate molecules and diluted in crystals of a diamagnetic Y3 + derivative. The full energy-level spectrum and the orientations of the magnetic anisotropy axes have been determined by means of continuous-wave electron paramagnetic resonance experiments, using X-band (9-10 GHz) cavities and on-chip superconducting waveguides and 1.5-GHz resonators. The results show that seven allowed transitions between the 2 S +1 spin states can be separately addressed. Spin coherence T2 and spin-lattice relaxation T1 rates have been measured for each of these transitions in properly oriented single crystals. The results suggest that quantum spin coherence is limited by residual dipolar interactions with neighbor electronic spins. Coherent Rabi oscillations have been observed for all transitions. The Rabi frequencies increase with microwave power and agree quantitatively with predictions based on the spin Hamiltonian of the molecular spin. We argue that the spin states of each Gd3 + ion can be mapped onto the states of three addressable qubits (or, alternatively, of a d =8 -level "qudit"), for which the seven allowed transitions form a universal set of operations. Within this scheme, one of the coherent oscillations observed experimentally provides an implementation of a controlled-controlled-NOT (or Toffoli) three-qubit gate.

  11. Scaling properties in single collision model of light ion reflection

    International Nuclear Information System (INIS)

    Vukanic, J.; Simovic, R.

    2004-01-01

    Light ion reflection from solids in the keV energy region has been studied within the single collision model. Particle and energy reflection coefficients as functions of the scaled transport cross section have been calculated numerically by utilizing the exact scattering function for the Kr-C potential and analytically with an effective power approximation for the same potential. The obtained analytical formulae approximate very accurately to the numerical results. Comparison of the calculated reflection coefficients with the experimental data and computer simulations for different light ion-heavy target combinations shows that the scaled transport cross section remains a convenient scaling parameter in the single collision domain, as adopted previously in multiple collision theory

  12. Designing Single-Ion Magnets and Phosphorescent Materials with 1-Methylimidazole-5-carboxylate and Transition-Metal Ions.

    Science.gov (United States)

    García-Valdivia, Antonio A; Seco, Jose M; Cepeda, Javier; Rodríguez-Diéguez, Antonio

    2017-11-20

    Detailed structural, magnetic, and photoluminescence (PL) characterization of four new compounds based on 1-methylimidazole-5-carboxylate (mimc) ligand and transition metal ions, namely [Ni(mimc) 2 (H 2 O) 4 ] (1), [Co(μ-mimc) 2 ] n (2), {[Cu 2 (μ-mimc) 4 (H 2 O)]·2H 2 O} n (3), and [Cd(μ-mimc) 2 (H 2 O)] n (4) is reported. The structural diversity found in the family of compounds derives from the coordination versatility of the ligand, which coordinates as a terminal ligand to give a supramolecular network of monomeric entities in 1 or acts as a bridging linker to build isoreticular 2D coordination polymers (CPs) in 2-4. Magnetic direct-current (dc) susceptibility data have been measured for compounds 1-3 to analyze the exchange interactions among paramagnetic centers, which have been indeed supported by calculations based on broken symmetry (BS) and density functional theory (DFT) methodology. The temperature dependence of susceptibility and magnetization data of 2 are indicative of easy-plane anisotropy (D = +12.9 cm -1 , E = +0.5 cm -1 ) that involves a bistable M s = ±1/2 ground state. Alternating-current (ac) susceptibility curves exhibit field-induced single-ion magnet (SIM) behavior that occurs below 14 K, which is characterized by two spin relaxation processes of distinct nature: fast relaxation of single ions proceeding through multiple mechanisms (U eff = 26 K) and a slow relaxation attributed to interactions along the polymeric crystal building. Exhaustive PL analysis of compound 4 in the solid state confirms low-temperature phosphorescent green emission consisting of radiative lifetimes in the range of 0.25-0.43 s, which explains the afterglow observed during about 1 s after the removal of the UV source. Time-dependent DFT and computational calculations to estimate phosphorescent vertical transitions have been also employed to provide an accurate description of the PL performance of this long-lasting phosphor.

  13. Single event upsets caused by solar energetic heavy ions

    International Nuclear Information System (INIS)

    Tylka, A.J.; Adams, J.H. Jr.; Boberg, P.R.; Smith, E.C.

    1996-01-01

    The authors calculate single event upset (SEU) rates due to protons, alphas, and heavier ions in two satellite systems for the major solar particle events of 1989--92, using a new and complete analysis of GOES proton data and high-energy heavy-ion fluences from the University of Chicago Cosmic Ray Telescope on IMP-8. These measurements cover the entire range of energies relevant to SEU studies and therefore overcome shortcomings of previous studies, which relied upon theoretical or semi-empirical estimates of high-energy heavy-ion spectra. They compare the results to the observed SEU rates in these events. The SEU rates in one device were overwhelmingly dominated by protons. However, even after taking into account uncertainties in the ground-test cross-section data, the authors find that at least ∼45% of the SEUs in the other device must have been caused by heavy ions. The results demonstrate that both protons and heavy ions must be considered in order to make a reliable assessment of SEU vulnerabilities. Furthermore, the GOES/Chicago database of solar particle events provides a basis for making accurate solar particle SEU calculations and credible worst-case estimates. In particular, measurements of the historic solar particle events of October 1989 are used in worst week and worst day environment models in CREME96, a revision of NRL's Cosmic Ray Effects on MicroElectronics code

  14. Conduction Mechanisms and Structure of Ionomeric Single-Ion Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Colby, Ralph H. [Pennsylvania State Univ., University Park, PA (United States); Maranas, Janna K. [Pennsylvania State Univ., University Park, PA (United States); Mueller, Karl T. [Pennsylvania State Univ., University Park, PA (United States); Runt, James [Pennsylvania State Univ., University Park, PA (United States); Winey, Karen I. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2015-03-01

    Our team has designed using DFT (Gaussian) and synthesized low glass transition temperature single-ion conductors that are either polyanions that conduct small cations Li+, Na+, Cs+ or polycations that conduct small anions F-, OH-, Br-. We utilize a wide range of complimentary experimental materials characterization tools to understand ion transport; differential scanning calorimetry, dielectric relaxation spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, linear viscoelasticity, X-ray scattering and molecular dynamics simulations. The glass transition temperature Tg needs to be as low as possible to facilitate ion transport, so the nonionic parts of the polymer need to be polar, flexible and have strong solvation interactions with the ions. The lowest Tg we have managed for polyanions conducting Li+ is -60 °C. In contrast, polysiloxanes with PEO side chains and tetrabutylphosphonium cationic side groups have Tg ≈ -75 °C that barely increases with ion content, as anticipated by DFT. A survey of all polyanions in the literature suggests that Tg < -80 °C is needed to achieve the 10-4 S/cm conductivity needed for battery separators.

  15. Applications of heavy ion microprobe for single event effects analysis

    International Nuclear Information System (INIS)

    Reed, Robert A.; Vizkelethy, Gyorgy; Pellish, Jonathan A.; Sierawski, Brian; Warren, Kevin M.; Porter, Mark; Wilkinson, Jeff; Marshall, Paul W.; Niu, Guofu; Cressler, John D.; Schrimpf, Ronald D.; Tipton, Alan; Weller, Robert A.

    2007-01-01

    The motion of ionizing-radiation-induced rogue charge carriers in a semiconductor can create unwanted voltage and current conditions within a microelectronic circuit. If sufficient unwanted charge or current occurs on a sensitive node, a variety of single event effects (SEEs) can occur with consequences ranging from trivial to catastrophic. This paper describes the application of heavy ion microprobes to assist with calibration and validation of SEE modeling approaches

  16. Toward Molecular 4f Single-Ion Magnet Qubits.

    Science.gov (United States)

    Pedersen, Kasper S; Ariciu, Ana-Maria; McAdams, Simon; Weihe, Høgni; Bendix, Jesper; Tuna, Floriana; Piligkos, Stergios

    2016-05-11

    Quantum coherence is detected in the 4f single-ion magnet (SIM) Yb(trensal), by isotope selective pulsed EPR spectroscopy on an oriented single crystal. At X-band, the spin-lattice relaxation (T1) and phase memory (Tm) times are found to be independent of the nuclei bearing, or not, a nuclear spin. The observation of Rabi oscillations of the spin echo demonstrates the possibility to coherently manipulate the system for more than 70 rotations. This renders Yb(trensal), a sublimable and chemically modifiable SIM, an excellent candidate for quantum information processing.

  17. Design of a single ion facility and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Cholewa, M.; Saint, A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    The use of micro-irradiation techniques in radiobiology is not new; however, the current techniques take advantage of recent developments in particle delivery, focussing detection, image processing, cell recognition and computer control. These developments have generally come from other fields, for example microbeam elemental analysis techniques and single-event upset testing of semiconductor devices. Also in radiation biology there have been important advances in developments of individual cell assays, which allow a wide range of endpoints to be studied with good accuracy at low doses. Many of the studies that are planned involve following the responses of individual cells after a programmed exposure to charged-particle traversals. To probe the radiation sensitivity of a single cell and/or its constituents with a submicron resolution several developments are needed. The essential parameters of the proposed system can be summarised as follows: a focussed beam of ions of 300nm or less at the cell; a reliable (close to 100%) single ion detection; a fast beam switch to prevent second hits; a target holder adapted for the irradiation of wet cells and a fully automated system for cell recognition and single hits. 1 fig.

  18. A single laboratory setup for investigating the anisotropy of both seismic and electrical properties in core samples

    Science.gov (United States)

    David, Christian; Robion, Philippe; Louis, Laurent

    2017-09-01

    A fully automated versatile device is presented for analysing the anisotropy of both seismic and electrical properties on cylindrical rock samples. Initially devoted to the study of P-wave velocity anisotropy (APV), the system has been upgraded to allow the measurement of electrical conductivity anisotropy (AEC) as well. The improved setup allows for the estimation of the APV and AEC, from measurements across multiple diameters with an angular spacing selected by the operator. In order to determine the APV simplified tensor and the true AEC tensor, at least three mutually orthogonal samples are required. Switching from velocity to electrical measurements only requires replacing the pair of ultrasonic transducers by a pair of electrodes. Whereas the procedure is quite straightforward for the P-wave velocity analysis, different calibration steps and approximations are required in the processing of the electrical data. As an example the methodology was applied to a set of two rocks, the Leopard and the Castlegate sandstones, for which the APV and AEC are compared in a unified scheme. Good agreement was found between the orientation of the symmetry axes for both properties, suggesting that in the studied rocks pore space anisotropy accounts for both velocity and electrical anisotropy. This methodology can also be incorporated into a core analysis workflow to obtain a first-hand assessment of the rock fabric orientation and anisotropy with respect to seismic and transport properties. The information thus obtained can be used as a screening step for sampling and stress testing as well as for direct core to log integration and cross-property correlations.

  19. THE THREE-DIMENSIONAL EVOLUTION OF ION-SCALE CURRENT SHEETS: TEARING AND DRIFT-KINK INSTABILITIES IN THE PRESENCE OF PROTON TEMPERATURE ANISOTROPY

    Energy Technology Data Exchange (ETDEWEB)

    Gingell, P. W.; Burgess, D. [Queen Mary University of London, Mile End Road, London E4 1NS (United Kingdom); Matteini, L., E-mail: p.w.gingell@qmul.ac.uk [Imperial College London, London SW7 2AZ (United Kingdom)

    2015-03-20

    We present the first three-dimensional (3D) hybrid simulations of the evolution of ion-scale current sheets, with an investigation of the role of temperature anisotropy and associated kinetic instabilities on the growth of the tearing instability and particle heating. We confirm the ability of the ion cyclotron and firehose instabilities to enhance or suppress reconnection, respectively. The simulations demonstrate the emergence of persistent 3D structures, including patchy reconnection sites and the fast growth of a narrow-band drift-kink instability, which suppresses reconnection for thin current sheets with weak guide fields. Potential observational signatures of the 3D evolution of solar wind current sheets are also discussed. We conclude that kinetic instabilities, arising from non-Maxwellian ion populations, are significant to the evolution of 3D current sheets, and two-dimensional studies of heating rates by reconnection may therefore over-estimate the ability of thin, ion-scale current sheets to heat the solar wind by reconnection.

  20. Enhanced superconductivity and anisotropy of FeTe0.6Se0.4 single crystals with Li -NH3 intercalation

    Science.gov (United States)

    Li, Chenghe; Sun, Shanshan; Wang, Shaohua; Lei, Hechang

    2017-10-01

    We report a systematic study of anisotropy resistivity, magnetoresistance, and Hall effect of Li0.32(NH3)yFe2Te1.2Se0.8 single crystals. When compared to the parent compound FeTe0.6Se0.4 , the Li-NH3 intercalation not only increases the superconducting transition temperature but also enhances the electronic anisotropy in both normal and superconducting states. Moreover, in contrast to the parent compound, the Hall coefficient RH becomes negative at low temperature, indicating electron-type carriers are dominant due to Li doping. On the other hand, the sign reverse of RH at high temperature and the failure of scaling behavior of magnetoresistance imply that hole pockets may be still crossing or just below the Fermi energy level, leading to the multiband behavior in Li0.32(NH3)yFe2Te1.2Se0.8 .

  1. Single-ion quantum lock-in amplifier.

    Science.gov (United States)

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Keselman, Anna; Ozeri, Roee

    2011-05-05

    Quantum metrology uses tools from quantum information science to improve measurement signal-to-noise ratios. The challenge is to increase sensitivity while reducing susceptibility to noise, tasks that are often in conflict. Lock-in measurement is a detection scheme designed to overcome this difficulty by spectrally separating signal from noise. Here we report on the implementation of a quantum analogue to the classical lock-in amplifier. All the lock-in operations--modulation, detection and mixing--are performed through the application of non-commuting quantum operators to the electronic spin state of a single, trapped Sr(+) ion. We significantly increase its sensitivity to external fields while extending phase coherence by three orders of magnitude, to more than one second. Using this technique, we measure frequency shifts with a sensitivity of 0.42 Hz Hz(-1/2) (corresponding to a magnetic field measurement sensitivity of 15 pT Hz(-1/2)), obtaining an uncertainty of less than 10 mHz (350 fT) after 3,720 seconds of averaging. These sensitivities are limited by quantum projection noise and improve on other single-spin probe technologies by two orders of magnitude. Our reported sensitivity is sufficient for the measurement of parity non-conservation, as well as the detection of the magnetic field of a single electronic spin one micrometre from an ion detector with nanometre resolution. As a first application, we perform light shift spectroscopy of a narrow optical quadrupole transition. Finally, we emphasize that the quantum lock-in technique is generic and can potentially enhance the sensitivity of any quantum sensor. ©2011 Macmillan Publishers Limited. All rights reserved

  2. Comparison of the Magnetic Anisotropy and Spin Relaxation Phenomenon of Dinuclear Terbium(III) Phthalocyaninato Single-Molecule Magnets Using the Geometric Spin Arrangement.

    Science.gov (United States)

    Morita, Takaumi; Damjanović, Marko; Katoh, Keiichi; Kitagawa, Yasutaka; Yasuda, Nobuhiro; Lan, Yanhua; Wernsdorfer, Wolfgang; Breedlove, Brian K; Enders, Markus; Yamashita, Masahiro

    2018-02-28

    Herein we report the synthesis and characterization of a dinuclear Tb III single-molecule magnet (SMM) with two [TbPc 2 ] 0 units connected via a fused-phthalocyaninato ligand. The stable and robust complex [(obPc)Tb(Fused-Pc)Tb(obPc)] (1) was characterized by using synchrotron radiation measurements and other spectroscopic techniques (ESI-MS, FT-IR, UV). The magnetic couplings between the Tb III ions and the two π radicals present in 1 were explored by means of density functional theory (DFT). Direct and alternating current magnetic susceptibility measurements were conducted on magnetically diluted and nondiluted samples of 1, indicating this compound to be an SMM with improved properties compared to those of the well-known [TbPc 2 ] -/0/+ and the axially symmetric dinuclear Tb III phthalocyaninato triple-decker complex (Tb 2 (obPc) 3 ). Assuming that the probability of quantum tunneling of the magnetization (QTM) occurring in one TbPc 2 unit is P QTM , the probability of QTM simultaneously occurring in 1 is P QTM 2 , meaning that QTM is effectively suppressed. Furthermore, nondiluted samples of 1 underwent slow magnetic relaxation times (τ ≈ 1000 s at 0.1 K), and the blocking temperature (T B ) was determined to be ca. 16 K with an energy barrier for spin reversal (U eff ) of 588 cm -1 (847 K) due to D 4d geometry and weak inter- and intramolecular magnetic interactions as an exchange bias (H bias ), reducing QTM. Four hyperfine steps were observed by micro-SQUID measurement. Furthermore, solution NMR measurements (one-dimensional, two-dimensional, and dynamic) were done on 1, which led to the determination of the high rotation barrier (83 ± 10 kJ/mol) of the obPc ligand. A comparison with previously reported Tb III triple-decker compounds shows that ambient temperature NMR measurements can indicate improvements in the design of coordination environments for SMMs. A large U eff causes strong uniaxial magnetic anisotropy in 1, leading to a χ ax value (1.39

  3. Photodynamic membrane damage at the level of single ion channels.

    Science.gov (United States)

    Kunz, L; Stark, G

    1997-07-05

    Illumination of cellular membranes by visible light in the presence of appropriate photosensitizers is known to inactivate specific ionic pathways and to increase the unspecific leak conductance of the membranes. While previous studies have concentrated on the macroscopic ionic currents, the present study separates the two phenomena at the microscopic level. Using opossum kidney (OK) cells as epithelial model system and photofrin II as sensitizer, the patch-clamp technique in inside-out configuration has been applied to show the inactivation of single ion channels immediately after start of illumination and the subsequent strong increase of the leak conductance. Inactivation is shown for two kinds of channels: the large-conductance Ca2+-dependent K+ channel (maxi-K(Ca)) and the stretch-activated nonselective cation channel (SA-cat).

  4. Fine structure of an exciton coupled to a single Fe2 + ion in a CdSe/ZnSe quantum dot

    Science.gov (United States)

    Smoleński, T.; Kazimierczuk, T.; Goryca, M.; Pacuski, W.; Kossacki, P.

    2017-10-01

    We present a polarization-resolved photoluminescence study of the exchange interaction effects in a prototype system consisting of an individual Fe2 + ion and a single neutral exciton confined in a CdSe/ZnSe quantum dot. A maximal possible number of eight fully linearly polarized lines in the bright exciton emission spectrum is observed, evidencing complete degeneracy lifting in the investigated system. We discuss the conditions required for such a scenario to take place: anisotropy of the electron-hole interaction and the zero-field splitting of the Fe2 + ion spin states. Neglecting either of these components is shown to restore partial degeneracy of the transitions, making the excitonic spectrum similar to those previously reported for all other systems of quantum dots with single magnetic dopants.

  5. Signatures of Beam - and Anisotropy Driven Oscillitons

    Science.gov (United States)

    Sauer, K.; Dubinin, E.; McKenzie, J. F.

    Oscillitons represent a new class of stationary nonlinear waves, first found in bi-ion plasmas (Sauer et al., 1991) where mode splitting of the `individual' wave modes leads to conditions for phase- and group-standing waves near the `crossing points'. The corresponding structures have signatures of the usual solitons, superimposed by spatial oscillations. Oscillitons may also occur in single-ion plasmas, e.g. in the elec- tron whistler branch. The characteristic features of different types of oscillitons under realistic conditions in space plasmas including damping, beams and anisotropies are analyzed. Relevant mechanisms of coherent waves observed in different frequency ranges (Lion Roars at Earth, ion cyclotron waves near Io and Mars) are discussed.

  6. Single-ion and single-chain magnetism in triangular spin-chain oxides

    Science.gov (United States)

    Seikh, Md. Motin; Caignaert, Vincent; Perez, Olivier; Raveau, Bernard; Hardy, Vincent

    2017-05-01

    S r4 -xC axM n2Co O9 oxides (x =0 and x =2 ) are found to exhibit magnetic responses typical of single-chain magnets (SCMs) and single-ion magnets (SIMs), two features generally investigated in coordination polymers or complexes. The compound x =0 appears to be a genuine SCM, in that blocking effects associated with slow spin dynamics yield remanence and coercivity in the absence of long-range ordering (LRO). In addition, SIM signatures of nearly identical nature are detected in both compounds, coexisting with SCM in x =0 and with LRO in x =2 . It is also observed that a SCM response can be recovered in x =2 after application of magnetic field. These results suggest that purely inorganic systems could play a valuable role in the topical issue of the interplay among SIM, SCM, and LRO phenomena in low-dimensional magnetism.

  7. Growth rate anisotropy and absorption studies on β-BaB 2O 4 single crystals grown by the top-seeded solution growth technique

    Science.gov (United States)

    Bhatt, Rajeev; Ganesamoorthy, S.; Bhaumik, Indranil; Karnal, A. K.; Wadhawan, V. K.

    2007-03-01

    Beta barium borate (β-BaB2O4; BBO) single crystals have been grown from Na2O flux by the TSSG technique and the observed growth rate anisotropy is reported. The symmetrical conoscopic interference pattern on the c-cut plate confirmed strain-free and optical homogeneity of the crystals. The observed growth habits of as-grown crystals are explained using crystal growth theories. The relative growth rate along different crystallographic directions of BBO can be described by R[100] = R[010] > R[001]. The absorption measurements show a nearly 9 nm shift in fundamental absorption edges in X and Z cut samples. Band gap energies measured were 6.45 and 6.2 eV along the X and Z directions, respectively. The absorption spectra near the fundamental absorption edges (AE) follow Urbach's rule.

  8. Synergy and destructive interferences between local magnetic anisotropies in binuclear complexes

    Energy Technology Data Exchange (ETDEWEB)

    Guihéry, Nathalie; Ruamps, Renaud [Laboratoire de Chimie et Physique Quantiques, UMR5625, University of Toulouse 3, Paul Sabatier, 118 route de Narbonne, 31062 Toulouse (France); Maurice, Rémi [SUBATECH, IN2P3/EMN Nantes/University of Nantes, 4 rue Alfred Kastler, BP 20722 44307, Nantes, Cedex 3 (France); Graaf, Coen de [University Rovira i Virgili, Marcelli Domingo s/n, 43007 Tarragona (Spain)

    2015-12-31

    Magnetic anisotropy is responsible for the single molecule magnet behavior of transition metal complexes. This behavior is characterized by a slow relaxation of the magnetization for low enough temperatures, and thus for a possible blocking of the magnetization. This bistable behavior can lead to possible technological applications in the domain of data storage or quantum computing. Therefore, the understanding of the microscopic origin of magnetic anisotropy has received a considerable interest during the last two decades. The presentation focuses on the determination of the anisotropy parameters of both mono-nuclear and bi-nuclear types of complexes and on the control and optimization of the anisotropic properties. The validity of the model Hamiltonians commonly used to characterize such complexes has been questioned and it is shown that neither the standard multispin Hamiltonian nor the giant spin Hamiltonian are appropriate for weakly coupled ions. Alternative models have been proposed and used to properly extract the relevant parameters. Rationalizations of the magnitude and nature of both local anisotropies of single ions and the molecular anisotropy of polynuclear complexes are provided. The synergy and interference effects between local magnetic anisotropies are studied in a series of binuclear complexes.

  9. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

    Science.gov (United States)

    McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; Adams, C.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Guenette, R.; Hafidi, K.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Johnston, S.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Repond, J.; Renner, J.; Riordan, S.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.; NEXT Collaboration

    2018-03-01

    A new method to tag the barium daughter in the double-beta decay of Xe 136 is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba++ ) resolution at a transparent scanning surface is demonstrated. A single-step photobleach confirms the single ion interpretation. Individual ions are localized with superresolution (˜2 nm ), and detected with a statistical significance of 12.9 σ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double-beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

  10. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; Adams, C.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Guenette, R.; Hafidi, K.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Johnston, S.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Repond, J.; Renner, J.; Riordan, S.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.

    2018-03-01

    A new method to tag the barium daughter in the double beta decay of $^{136}$Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba$^{++}$) resolution at a transparent scanning surface has been demonstrated. A single-step photo-bleach confirms the single ion interpretation. Individual ions are localized with super-resolution ($\\sim$2~nm), and detected with a statistical significance of 12.9~$\\sigma$ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

  11. Novel, Solvent-Free, Single Ion Conductive Polymer Electrolytes

    National Research Council Canada - National Science Library

    Florjanczyk, Zbigniew

    2008-01-01

    This project report concerns studies on the synthesis of new polymer electrolytes for application in lithium and lithium-ion batteries characterized by limited participation of anions in the transport...

  12. Features of polyatomic ion emission under sputtering of a silicon single crystal by Au sub m sup - cluster ions

    CERN Document Server

    Akhunov, S; Rasulev, U K

    2003-01-01

    Comparative studies of the emission of secondary cluster Si sub n sup + ions (n=1-11) and polyatomic Si sub n X sub l Y sub k sup + ions (X, Y are Au, B, C, N), as well as doubly charged Si sup 2 sup + ions under bombardment of single crystalline silicon by cluster Au sub m sup - (m=1-5) ions with energy E sub 0 =4-18 keV have been carried out. High non-additivity enhancement of the yield of the Si sub n sup + ions and most polyatomic ones has been observed with an increase of the number of atoms in the projectiles. For Si sup 2 sup + ions the negative non-additive effect has been observed. The increase in the yield of impurity-containing cluster Si sub n X sup + ions allows for an increase by a factor of 100-1000 for the sensitivity of the SIMS analysis of the Au, B, C, N impurities in Si with the use of cluster ions as primary and secondary ones.

  13. Development of a keV single-ion-implanter for nanofabrication

    International Nuclear Information System (INIS)

    Yang, C.; Jamieson, D.N.; Hopf, T.; Tamanyan, G.; Spizziri, P.; Pakes, C.; Andresen, S.E.; Hudson, F.; Gauja, E.; Dzurak, A.; Clark, R.G.

    2005-01-01

    Traditional methods of doping semiconductors have a difficulty meeting the demand for high precision doping due to large statistical fluctuations in the numbers of dopant atoms introduced in the ever shrinking volume in micro- and nano-electronics devices, especially when the fabrication process approaches the nanometre scale. The statistical fluctuations in doping semiconductors for the fabrication of devices with a very small feature size may lead to inconsistent and unreliable performance. This paper describes the adaptation of a commercial ion implanter into a single-ion-implantation system for the accurate delivery of dopants into a nanometre or micrometre area in a silicon substrate. All the implanted ions can be accurately counted with near 100% certainty through online detection using the silicon substrate itself as an ion detector. A variety of ion species including B + , N + , P + at the energy range of 10-15 keV can be delivered in the single ion implantation system. (author). 6 refs., 6 figs

  14. Optimization of ECR singly-charged ion sources for the radioactive ion beam production

    CERN Document Server

    Jardin, P; Gaubert, G; Pacquet, J Y; Drobert, T; Cornell, J; Barue, C; Canet, C; Dupuis, M; Flambard, J L; Lecesne, N; Leherissier, P; Lemagnen, F; Leroy, R

    2003-01-01

    Measurements of the transformation time of atoms into ions were carried out with two 2.45 GHz electron cyclotron resonance ion sources (ECRIS) in the case of the simple ionization of He, Ne, Ar and Kr gases. The effect of the plasma volume, of the dead volumes and of the ionization efficiency are presented. Some rules are deduced for the design of the next ECRIS dedicated to radioactive ion production with noble gases.

  15. Ion beam induced single phase nanocrystalline TiO2 formation

    Science.gov (United States)

    Rukade, Deepti A.; Tribedi, L. C.; Bhattacharyya, Varsha

    2014-06-01

    Single phase TiO2 nanostructures are fabricated by oxygen ion implantation (60 keV) at fluence ranging from 1×1016 ions/cm2 to 1×1017 ions/cm2 in titanium thin films deposited on fused silica substrate and subsequent thermal annealing in argon atmosphere. GAXRD and Raman spectroscopy study reveals formation of single rutile phases of TiO2. Particle size is found to vary from 29 nm to 35 nm, establishing nanostructure formation. Nanostructure formation is also confirmed by the quantum confinement effect manifested by the blueshift of the UV-vis absorption spectra. Photoluminescence spectra show peaks corresponding to TiO2 rutile phase and reveal the presence of oxygen defects due to implantation. The controlled synthesis of single phase nanostructure is attributed to ion induced defects and post-implantation annealing. It is observed that the size of the nanostructures formed is strongly dependent on the ion fluence.

  16. Development of heavy-ion irradiation technique for single-event in semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Norio; Akutsu, Takao; Matsuda, Sumio [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Naitoh, Ichiro; Itoh, Hisayoshi; Agematsu, Takashi; Kamiya, Tomihiro; Nashiyama, Isamu

    1997-03-01

    Heavy-ion irradiation technique has been developed for the evaluation of single-event effects on semiconductor devices. For the uniform irradiation of high energy heavy ions to device samples, we have designed and installed a magnetic beam-scanning system in a JAERI cyclotron beam course. It was found that scanned area was approximately 4 x 2 centimeters and that the deviation of ion fluence from the average value was less than 7%. (author)

  17. Action of age-hardening on the copper single crystals after ion implantation

    International Nuclear Information System (INIS)

    Kul'ment'eva, O.P.; Kul'ment'ev, A.I.

    2007-01-01

    High-dose implantation (up to (1-5)·10 17 cm -2 ) of tantalum ions into a copper single crystal of (100), (110) and (111) orientation has been investigated. Modified properties just after ion implantation and subsequent age-hardening during ten years were studied. It was shown that ion implantation and subsequent masstransfer process results in sufficient long-term stable changes of the microhardness. (authors)

  18. Production of multi-, oligo- and single-pore membranes using a continuous ion beam

    Czech Academy of Sciences Publication Activity Database

    Apel, P. Yu.; Ivanov, O.; Lizunov, N. E.; Mamonova, T. I.; Nechaev, A. N.; Olejniczak, K.; Vacík, Jiří; Dmitriev, S. N.

    2015-01-01

    Roč. 365, DEC (2015), s. 641-645 ISSN 0168-583X R&D Projects: GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : ion beam * irradiation * ion track * etching * single nanopore Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.389, year: 2015

  19. Lattice location of platinum ions implanted into single crystal zirconia and their annealing behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Cao, D.X. [Royal Melbourne Inst. of Tech., VIC (Australia); Sood, D.K. [Academia Sinica, Shanghai, SH (China). Shanghai Inst. of Nuclear Research; Brown, I.G. [Lawrence Berkeley Lab., CA (United States)

    1993-12-31

    Single crystal samples of (100) oriented cubic zirconia stabilised with 9.5 mol % yttria were implanted with platinum ions, using a metal vapour vacuum arc (MEVVA) high current ion implanter, to a nominal dose of 1x10{sup 17} ions/cm{sup 2}. The implanted samples were annealed isothermally in air ambient at 1200 deg C, from 1-24 hours. Rutherford Backscattering Spectrometry and Channeling (RBSC) of 2 MeV He ions are employed to determine depth distributions of ion damage, Pt ions and substitutionality of Pt ions before and after annealing. The damage behaviour, Pt migration and lattice location are discussed in terms of metastable phase formation and solid solubility considerations. 7 refs., 3 figs.

  20. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    Science.gov (United States)

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-05

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms. © 2011 IOP Publishing Ltd

  1. Secondary electron emission from boron-doped diamond under ion impact: Applications in single-ion detection

    International Nuclear Information System (INIS)

    Kamiya, T.; Cholewa, M.; Saint, A.; Prawer, S.; Legge, G.J.; Butler, J.E.; Vestyck, D.J. , Jr.

    1997-01-01

    The secondary electron emission from a 2 μm thick boron-doped diamond film under ion (4.6 endash 7.7 MeV He + )impact is reported. The yield under ions impact is found to be remarkably high, stable over a period of many months, and independent of which side of the film (i.e., growth or substrate side) is exposed to the ion flux. By taking advantage of the high secondary-electron yield, the passage of each ion through the film could be detected with an efficiency of close to 100%, which to the best of our knowledge is the highest efficiency recorded to date for any thin-film window. This finding has an immediate application in single-ion irradiation systems where a thin vacuum window is required to allow extraction of an ion beam from the vacuum into air and at the same time offer 100% efficiency for the detection of the passage of the ion through the window. copyright 1997 American Institute of Physics

  2. Anisotropy of vortex creep in YBa2Cu3O7-x single crystals with unidirectional twin boundaries

    International Nuclear Information System (INIS)

    Bondarenko, A.V.; Revyakina, M.G.; Prodan, A.A.; Obolenskij, M.A.; Vovk, R.V.; Arouri, T.R.

    2001-01-01

    The creep of Abrikosov vortices in a YBa 2 Cu 3 O 7-x single crystal containing unidirectional twin boundaries (TB's) was investigated in a special experimental geometry: J parallel ab, J parallel TB, H perpendicular J, and α ident to angle H, ab was a variable parameter. It is shown that the TB's affect the configuration structure of vortex lines for disorientation angles θ between magnetic field vector and TB's planes up to 70: at angles θ current J cE , observed in low magnetic fields for H parallel ab, is replaced by a minimum in high magnetic fields. This behavior is explained by the change-over from the single vortex creep to a collective one with increasing magnetic field

  3. Anisotropy in Ba2Cu3O4Cl2 single crystals grown by the traveling solvent floating zone method

    International Nuclear Information System (INIS)

    Yamada, Shigeki; Iwagaki, Yohei; Noro, Sumiko

    2007-01-01

    Magnetic and electrical properties of layered copper oxychloride Ba 2 Cu 3 O 4 Cl 2 single crystals are measured. Single crystal growth of Ba 2 Cu 3 O 4 Cl 2 by the traveling solvent floating zone method is attempted using Ba 3 Cu 2 O 4 Cl 2 as solvent. By optimization of the growth conditions, large single crystals of (φ5mmx30mm) of Ba 2 Cu 3 O 4 Cl 2 are grown. The resistivity with the current parallel to the c-axis is 10 2 -10 3 times larger than that with the current perpendicular to the a-axis. The temperature dependence of the dielectric spectrum for each direction is measured and analyzed by using the Debye model. The spectrum width, which is related to the effective number of electrons (n/m), does not show an appreciable dependence on temperature. The characteristic frequencies at which the dielectric constant changes, which are related to the dissipation (γ), increase with warming. The temperature dependence is almost the same as the resistivity curve. This indicates that the hopping process dominates both DC- and AC-type electrical transport. The spectrum width with the electric field parallel to the a-axis is 30 times larger than that with the electric field parallel to the c-axis. On the other hand, the characteristic frequencies do not show an appreciable dependence on electric field direction

  4. Scanning probe microscopy of single Au ion implants in Si

    International Nuclear Information System (INIS)

    Vines, L.; Monakhov, E.; Maknys, K.; Svensson, B.G.; Jensen, J.; Hallen, A.; Kuznetsov, A. Yu.

    2006-01-01

    We have studied 5 MeV Au 2+ ion implantation with fluences between 7 x 10 7 and 2 x 10 8 cm -2 in Si by deep level transient spectroscopy (DLTS) and scanning capacitance microscopy (SCM). The DLTS measurements show formation of electrically active defects such as the two negative charge states of the divacancy (V 2 (=/-) and V 2 (-/0)) and the vacancy-oxygen (VO) center. It is observed that the intensity of the V 2 (=/-) peak is lower compared to that of V 2 (-/0) by a factor of 5. This has been attributed to a highly localized distribution of the defects along the ion tracks, which results in trapping of the carriers at V 2 (-/0) and incomplete occupancy of V 2 (=/-). The SCM measurements obtained in a plan view show a random pattern of regions with a reduced SCM signal for the samples implanted with fluence above 2 x 10 8 cm -2 . The reduced SCM signal is attributed to extra charges associated with acceptor states, such as V 2 (-/0), formed along the ion tracks in the bulk Si. Indeed, the electron emission rate from the V 2 (-/0) state is in the range of 10 kHz at room temperature, which is well below the probing frequency of the SCM measurements, resulting in 'freezing' of electrons at V 2 (-/0)

  5. A simple and rapid method for high-resolution visualization of single-ion tracks

    Directory of Open Access Journals (Sweden)

    Masaaki Omichi

    2014-11-01

    Full Text Available Prompt determination of spatial points of single-ion tracks plays a key role in high-energy particle induced-cancer therapy and gene/plant mutations. In this study, a simple method for the high-resolution visualization of single-ion tracks without etching was developed through the use of polyacrylic acid (PAA-N, N’-methylene bisacrylamide (MBAAm blend films. One of the steps of the proposed method includes exposure of the irradiated films to water vapor for several minutes. Water vapor was found to promote the cross-linking reaction of PAA and MBAAm to form a bulky cross-linked structure; the ion-track scars were detectable at a nanometer scale by atomic force microscopy. This study demonstrated that each scar is easily distinguishable, and the amount of generated radicals of the ion tracks can be estimated by measuring the height of the scars, even in highly dense ion tracks. This method is suitable for the visualization of the penumbra region in a single-ion track with a high spatial resolution of 50 nm, which is sufficiently small to confirm that a single ion hits a cell nucleus with a size ranging between 5 and 20 μm.

  6. Network type sp3 boron-based single-ion conducting polymer electrolytes for lithium ion batteries

    Science.gov (United States)

    Deng, Kuirong; Wang, Shuanjin; Ren, Shan; Han, Dongmei; Xiao, Min; Meng, Yuezhong

    2017-08-01

    Electrolytes play a vital role in modulating lithium ion battery performance. An outstanding electrolyte should possess both high ionic conductivity and unity lithium ion transference number. Here, we present a facile method to fabricate a network type sp3 boron-based single-ion conducting polymer electrolyte (SIPE) with high ionic conductivity and lithium ion transference number approaching unity. The SIPE was synthesized by coupling of lithium bis(allylmalonato)borate (LiBAMB) and pentaerythritol tetrakis(2-mercaptoacetate) (PETMP) via one-step photoinitiated in situ thiol-ene click reaction in plasticizers. Influence of kinds and content of plasticizers was investigated and the optimized electrolytes show both outstanding ionic conductivity (1.47 × 10-3 S cm-1 at 25 °C) and high lithium transference number of 0.89. This ionic conductivity is among the highest ionic conductivity exhibited by SIPEs reported to date. Its electrochemical stability window is up to 5.2 V. More importantly, Li/LiFePO4 cells with the prepared single-ion conducting electrolytes as the electrolyte as well as the separator display highly reversible capacity and excellent rate capacity under room temperature. It also demonstrates excellent long-term stability and reliability as it maintains capacity of 124 mA h g-1 at 1 C rate even after 500 cycles without obvious decay.

  7. The method and equipment for the investigation of ions orienting transmission through thin single crystals

    CERN Document Server

    Soroka, V Y; Maznij, Y O

    2003-01-01

    A new approach is proposed to solve the task of angular distribution measurement of intensity strongly differentiated ions fluxes. Channeling effect makes this problem a regular feature of experimental study of ions orientating transmission through thin single crystals. The approach is based on the use of ions additional scattering by an amorphous (polycrystalline) target after passing through single crystal. The additional target manipulator is joined with the principal target chamber equipment with three-axis goniometer. The manipulator allows to move an additional target in the vicinity of the accelerator beam within the limits of +- 3 sup 0 in all directions and allows to measure the angular distribution of scattered ions with the accuracy of 1 min. The method and equipment were tested at the single ended electrostatic accelerator (EG-5) using a proton beam. At present the measurements have been resumed at the tandem accelerator (EG-10) of the Institute for Nuclear Research of the Academy of Sciences of U...

  8. Single photons, dileptons and hadrons from relativistic heavy ion ...

    Indian Academy of Sciences (India)

    The production of single photons in Pb+Pb collisions at the CERN SPS as measured by the WA98 experiment is analysed. A quark gluon plasma is assumed to be formed initially, which expands, cools, hadronizes, and undergoes freeze-out. A rich hadronic equation of state is used and the transverse expansion of the ...

  9. Single photons, dileptons and hadrons from relativistic heavy ion ...

    Indian Academy of Sciences (India)

    Abstract. The production of single photons in Pb+Pb collisions at the CERN SPS as measured by the WA98 experiment is analysed. A quark gluon plasma is assumed to be formed initially, which expands, cools, hadronizes, and undergoes freeze-out. A rich hadronic equation of state is used and the transverse expansion of ...

  10. Single event simulation for memories using accelerated ions

    International Nuclear Information System (INIS)

    Sakagawa, Y.; Shiono, N.; Mizusawa, T.; Sekiguchi, M.; Sato, K.; Sugai, I.; Hirao, Y.; Nishimura, J.; Hattori, T.

    1987-01-01

    To evaluate the error immunity of the LSI memories from cosmic rays in space, an irradiation test using accelerated heavy ions is performed. The sensitive regions for 64 K DRAM (Dynamic Random Access Memory) and 4 K SRAM (Static Random Access Memory) are determined from the irradiation test results and the design parameters of the devices. The observed errors can be classified into two types. One is the direct ionization type and the other is the recoil produced error type. Sensitive region is determined for the devices. Error rate estimation methods for both types are proposed and applied to those memories used in space. The error rate of direct ionization exceeds the recoil type by 2 or 3 orders. And the direct ionization is susceptible to shield thickness. (author)

  11. Magnetic properties of the mixed ferrimagnetic ternary system with a single-ion anisotropy on the Bethe lattice

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); School of Computational Science, Florida State University, Tallahassee, FL 32306-4120 (United States); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr

    2009-05-15

    The magnetic properties of the ternary system ABC consisting of spins {sigma}=1/2 , S=1, and m=3/2 are investigated on the Bethe lattice by using the exact recursion relations. We consider both ferromagnetic and antiferromagnetic exchange interactions. The exact expressions for magnetizations and magnetic susceptibilities are found, and thermal behaviors of magnetizations and susceptibilities are studied. We construct the phase diagrams and find that the system exhibits one, two or even three compensation temperatures depending on the values of the interaction parameters in the Hamiltonian. Moreover, the system undergoes a second-order phase transition for the coordination number q{<=}3 and a second- and first-order phase transitions for q>3; hence the system gives a tricritical point. The system also exhibits the reentrant behaviors.

  12. Magnetic properties of the mixed ferrimagnetic ternary system with a single-ion anisotropy on the Bethe lattice

    International Nuclear Information System (INIS)

    Deviren, Bayram; Canko, Osman; Keskin, Mustafa

    2009-01-01

    The magnetic properties of the ternary system ABC consisting of spins σ=1/2 , S=1, and m=3/2 are investigated on the Bethe lattice by using the exact recursion relations. We consider both ferromagnetic and antiferromagnetic exchange interactions. The exact expressions for magnetizations and magnetic susceptibilities are found, and thermal behaviors of magnetizations and susceptibilities are studied. We construct the phase diagrams and find that the system exhibits one, two or even three compensation temperatures depending on the values of the interaction parameters in the Hamiltonian. Moreover, the system undergoes a second-order phase transition for the coordination number q≤3 and a second- and first-order phase transitions for q>3; hence the system gives a tricritical point. The system also exhibits the reentrant behaviors

  13. Evaporation Anisotropy of Forsterite

    Science.gov (United States)

    Ozawa, K.; Nagahara, H.; Morioka, M.

    1996-03-01

    Evaporation anisotropy of a synthetic single crystal of forsterite was investigated by high temperature vacuum experiments. The (001), (010), and (001) surfaces show microstructures characteristic for each surface. Obtained overall linear evaporation rates for the (001), (010), and (001) surfaces are ~17, ~7, and ~22 mm/hour, and the intrinsic evaporation rates, obtained by the change in surface microstructures, are ~10, ~4.5, and ~35 mm/hour, respectively. The difference between the intrinsic evaporation rates and overall rates can be regarded as contribution of dislocation, which is notable for the (100) and (010) surfaces and insignificant for the (001) surface. This is consistent with observed surface microstructures.

  14. Single event effects induced by 15.14 MeV/u 136Xe ions

    International Nuclear Information System (INIS)

    Hou Mingdong; Zhang Qingxiang; Liu Jie; Wang Zhiguang; Jin Yunfan; Zhu Zhiyong; Zhen Honglou; Liu Changlong; Chen Xiaoxi; Wei Xinguo; Zhang Lin; Fan Youcheng; Zhu Zhourong; Zhang Yiting

    2002-01-01

    Single event effects induced by 15.14 MeV/u 136 Xe ions in different batches of 32k x 8 bits static random access memory are studied. The incident angle dependences of the cross sections for single event upset and single event latch up are presented. The SEE cross sections are plotted versus energy loss instead of linear energy transfer value in sensitive region. The depth of sensitive volume and thickness of 'dead' layer above the sensitive volume are estimated

  15. Imaging large cohorts of single ion channels and their activity

    Directory of Open Access Journals (Sweden)

    Katia eHiersemenzel

    2013-09-01

    Full Text Available As calcium is the most important signaling molecule in neurons and secretory cells, amongst many other cell types, it follows that an understanding of calcium channels and their regulation of exocytosis is of vital importance. Calcium imaging using calcium dyes such as Fluo3, or FRET-based dyes that have been used widely has provided invaluable information, which combined with modeling has estimated the sub-types of channels responsible for triggering the exocytotic machinery as well as inferences about the relative distances away from vesicle fusion sites these molecules adopt. Importantly, new super-resolution microscopy techniques, combined with novel Ca2+ indicators and imaginative imaging approaches can now define directly the nanoscale locations of very large cohorts of single channel molecules in relation to single vesicles. With combinations of these techniques the activity of individual channels can be visualized and quantified using novel Ca2+ indicators. Fluorescently labeled specific channel toxins can also be used to localize endogenous assembled channel tetramers. Fluorescence lifetime imaging microscopy and other single-photon-resolution spectroscopic approaches offer the possibility to quantify protein-protein interactions between populations of channels and the SNARE protein machinery for the first time. Together with simultaneous electrophysiology, this battery of quantitative imaging techniques has the potential to provide unprecedented detail describing the locations, dynamic behaviours, interactions and conductance activities of many thousands of channel molecules and vesicles in living cells.

  16. Mg2+-Dependent High Mechanical Anisotropy of Three-Way-Junction pRNA as Revealed by Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Sun, Yang; Di, Weishuai; Li, Yiran; Huang, Wenmao; Wang, Xin; Qin, Meng; Wang, Wei; Cao, Yi

    2017-08-01

    Mechanical anisotropy is ubiquitous in biological tissues but is hard to reproduce in synthetic biomaterials. Developing molecular building blocks with anisotropic mechanical response is the key towards engineering anisotropic biomaterials. The three-way-junction (3WJ) pRNA, derived from ϕ29 DNA packaging motor, shows strong mechanical anisotropy upon Mg 2+ binding. In the absence of Mg 2+ , 3WJ-pRNA is mechanically weak without noticeable mechanical anisotropy. In the presence of Mg 2+ , the unfolding forces can differ by more than 4-fold along different pulling directions, ranging from about 47 pN to about 219 pN. Mechanical anisotropy of 3WJ-pRNA stems from pulling direction dependent cooperativity for the rupture of two Mg 2+ binding sites, which is a novel mechanism for the mechanical anisotropy of biomacromolecules. It is anticipated that 3WJ-pRNA can be used as a key element for the construction of biomaterials with controllable mechanical anisotropy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Laser spectroscopic investigation of singly and doubly charged thorium ions

    Energy Technology Data Exchange (ETDEWEB)

    Thielking, Johannes; Meier, David-Marcel; Glowacki, Przemyslaw; Okhapkin, Maksim V.; Peik, Ekkehard [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2017-07-01

    The {sup 229}Th isotope possesses a unique, low-energy nuclear isomeric state at about 7.8(5) eV. This fact has stimulated the development of novel ideas in the borderland between atomic and nuclear physics, for example the use as an optical nuclear clock. Since the required precise information on the isomer energy is not yet available, it is intensely searched for using different experimental approaches. For the excitation of the nuclear isomer via electronic bridge or NEET processes, we plan to use two-photon laser excitation of high-lying electronic levels in Th{sup +}. We recently expanded our search range to higher energies and measured 38 previously unknown energy levels in the range from 7.8 eV to 8.7 eV. We also prepare to study the nuclear structure of the isomeric state in cooperation with the Maier-Leibnitz-Laboratorium at LMU Munich, using trapped recoil ions, where the isomeric state is populated via α-decay from {sup 233}U. For this purpose we investigate the hyperfine structure of suitable transitions of Th{sup 2+}.

  18. Transmission of Fast Highly Charged Ions through a Single Glass Macrocapillary and Polycarbonate Nanocapillary Foils

    Science.gov (United States)

    Ayyad, A. M.; Dassanayake, B. S.; Keerthisinghe, D.; DeSilva, G. G.; Elkafrawy, T.; Kayani, N.; Tanis, J. A.

    2012-11-01

    Transmission of 3 MeV protons and 16 MeV O5+ ions through a single glass macrocapillary and a polycarbonate nanocapillary foil has been investigated. Results show that 3 MeV protons transmit through the capillary and the foils with little or no energy loss, while 16 MeV O5+ ions show transmission through the capillary and the foil with energy losses that vary with the tilt angle, and there are also changes in the charge state.

  19. Characterization of strained InGaAs single quantum well structures by ion beam methods

    International Nuclear Information System (INIS)

    Yu, K.M.; Chan, K.T.

    1990-01-01

    We have investigated strained InGaAs single quantum well structures using MeV ion beam methods. The structural properties of these structures, including composition and well size, have been studied. It has been found that the composition obtained by Rutherford backscattering spectrometry and particle-induced x-ray emission techniques agrees very well with that obtained by the ion channeling method

  20. Effect of 120 MeV Ag9+ ion irradiation of YCOB single crystals

    Science.gov (United States)

    Arun Kumar, R.; Dhanasekaran, R.

    2012-09-01

    Single crystals of yttrium calcium oxy borate (YCOB) grown from boron-tri-oxide flux were subjected to swift heavy ion irradiation using silver Ag9+ ions from the 15 UD Pelletron facility at Inter University Accelerator Center, New Delhi. The crystals were irradiated at 1 × 1013, 5 × 1013 and 1 × 1014 ions/cm2 fluences at room temperature and with 5 × 1013 ions/cm2 fluence at liquid nitrogen temperature. The pristine and the irradiated samples were characterized by glancing angle X-ray diffraction, UV-Vis-NIR and photoluminescence studies. From the characterization studies performed on the samples, it is inferred that the crystals irradiated at liquid nitrogen temperature had fewer defects compared to the crystals irradiated at room temperature and the defects increased when the ion fluence was increased at room temperature.

  1. SINGLE AND DOUBLE IMPRINTED POLYMER FOR SELECTIVE RECOGNITION OF Cd(II IONS IN AQUEOUS MEDIA

    Directory of Open Access Journals (Sweden)

    Ebru Birlik ÖZKÜTÜK

    2010-12-01

    Full Text Available In this paper, we have reported the synthesis of a new single and double-imprinted polymeric material for the separation of Cd(II ions in aqueous solutions. Chitosan has choosen as the Cd(II metal complexing big polymer for single and double imprinted polymers. In the synthesis of single imprinted polymer, Cd(II-complexed chitosan has crosslinked by epichlorohydrin. In the synthesis of double imprinted polymer, Cd(II-complexed chitosan was reacted with 3-mercaptopropyl-trimethoxysilane. Then, the polymeric beads have crosslinked with tetraethoxysilane (TEOS. The imprinted cadmium ions have removed from the polymeric matrix by 0.1M HNO3 (to prepare Cd(II templates. Optimum pH for rebinding of Cd(II on the single and double-imprinted polymers was 7.0. Equilibrium binding time and sorbent capacity have been found as 120 and 60 min, 342 and 172 mg g-1 for single and double imprinted polymers, respectively. In selectivity studies, it has been found that double imprinted results in increased affinity of the material toward Cd(II ion over other competitor metal ions with the same charge. The prepared single and double-imprinted polymers have repeatedly used and regenerated for thirty times without a significant decrease in polymer binding affinities.

  2. Ion beam synthesis of buried single crystal erbium silicide

    International Nuclear Information System (INIS)

    Golanski, A.; Feenstra, R.; Galloway, M.D.; Park, J.L.; Pennycook, S.J.; Harmon, H.E.; White, C.W.

    1990-01-01

    High doses (10 16 --10 17 /cm 2 ) of 170 keV Er + were implanted into single-crystal left-angle 111 right-angle Si at implantation temperatures between 350 degree C and 520 degree C. Annealing at 800 degree C in vacuum following the implant, the growth and coalescence of ErSi 2 precipitates leads to a buried single crystalline ErSi 2 layer. This has been studied using Rutherford backscattering/channeling, X-ray diffraction, cross-sectional TEM and resistance versus temperature measurements. Samples implanted at 520 degree C using an Er dose of 7 x 10 16 /cm 2 and thermally annealed were subsequently used as seeds for the mesoepitaxial growth of the buried layer during a second implantation and annealing process. Growth occurs meso-epitaxially along both interfaces through beam induced, defect mediated mobility of Er atoms. The crystalline quality of the ErSi 2 layer strongly depends on the temperature during the second implantation. 12 refs., 4 figs

  3. Quantum ion-acoustic oscillations in single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Khan, S.A. [Kyoto Univ., Katsura (Japan). Graduate School of Engineering; Quaid-i-Azam Univ., Islamabad (Pakistan). National Centre for Physics; Iqbal, Z. [University of Management and Technology, Sialkot (Pakistan); Wazir, Z. [Riphah International Univ., Islamabad (Pakistan). Dept. of Basic Sciences; Rehman, Aman ur [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad (Pakistan)

    2016-08-01

    Quantum ion-acoustic oscillations in single-walled carbon nanotubes are studied by employing a quantum hydrodynamics model. The dispersion equation is obtained by Fourier transformation, which exhibits the existence of quantum ion-acoustic wave affected by change of density balance due to presence of positive or negative heavy species as stationary ion clusters and wave potential at equilibrium. The numerical results are presented, and the role of quantum degeneracy, nanotube geometry, electron exchange-correlation effects, and concentration and polarity of heavy species on wave dispersion is pointed out for typical systems of interest.

  4. Quantum Ion-Acoustic Oscillations in Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Khan, S. A.; Iqbal, Z.; Wazir, Z.; Aman-ur-Rehman

    2016-05-01

    Quantum ion-acoustic oscillations in single-walled carbon nanotubes are studied by employing a quantum hydrodynamics model. The dispersion equation is obtained by Fourier transformation, which exhibits the existence of quantum ion-acoustic wave affected by change of density balance due to presence of positive or negative heavy species as stationary ion clusters and wave potential at equilibrium. The numerical results are presented, and the role of quantum degeneracy, nanotube geometry, electron exchange-correlation effects, and concentration and polarity of heavy species on wave dispersion is pointed out for typical systems of interest.

  5. Effect of defects, magnetocrystalline anisotropy, and shape anisotropy on magnetic structure of iron thin films by magnetic force microscopy

    Directory of Open Access Journals (Sweden)

    Ke Xu

    2017-05-01

    Full Text Available Microstructures of magnetic materials, including defects and crystallographic orientations, are known to strongly influence magnetic domain structures. Measurement techniques such as magnetic force microscopy (MFM thus allow study of correlations between microstructural and magnetic properties. The present work probes effects of anisotropy and artificial defects on the evolution of domain structure with applied field. Single crystal iron thin films on MgO substrates were milled by Focused Ion Beam (FIB to create different magnetically isolated squares and rectangles in [110] crystallographic orientations, having their easy axis 45° from the sample edge. To investigate domain wall response on encountering non-magnetic defects, a 150 nm diameter hole was created in the center of some samples. By simultaneously varying crystal orientation and shape, both magnetocrystalline anisotropy and shape anisotropy, as well as their interaction, could be studied. Shape anisotropy was found to be important primarily for the longer edge of rectangular samples, which exaggerated the FIB edge effects and provided nucleation sites for spike domains in non-easy axis oriented samples. Center holes acted as pinning sites for domain walls until large applied magnetic fields. The present studies are aimed at deepening the understanding of the propagation of different types of domain walls in the presence of defects and different crystal orientations.

  6. Feasibility of Observing and Characterizing Single Ion Strikes in Microelectronic Components.

    Energy Technology Data Exchange (ETDEWEB)

    Dingreville, Remi Philippe Michel [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hattar, Khalid Mikhiel [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bufford, Daniel Charles [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The transient degradation of semiconductor device performance under irradiation has long been an issue of concern. A single high-energy charged particle can degrade or permanently destroy the microelectronic component, potentially altering the course or function of the systems. Disruption of the the crystalline structure through the introduction of quasi-stable defect structures can change properties from semiconductor to conductor. Typically, the initial defect formation phase is followed by a recovery phase in which defect-defect or defect-dopant interactions modify the characteristics of the damaged structure. In this LDRD Express, in-situ ion irradiation transmission microscopy (TEM) in-situ TEM experiments combined with atomistic simulations have been conducted to determine the feasibility of imaging and characterizing the defect structure resulting from a single cascade in silicon. In-situ TEM experiments have been conducted to demonstrate that a single ion strike can be observed in Si thin films with nanometer resolution in real time using the in-situ ion irradiation transmission electron microscope (I3TEM). Parallel to this experimental effort, ion implantation has been numerically simulated using Molecular Dynamics (MD). This numerical framework provides detailed predictions of the damage and follow the evolution of the damage during the first nanoseconds. The experimental results demonstrate that single ion strike can be observed in prototypical semiconductors.

  7. Single-ion and pair-interaction potentials near simple metal surfaces

    International Nuclear Information System (INIS)

    Barnett, R.N.; Barrera, R.G.; Cleveland, C.L.; Landman, U.

    1983-01-01

    Presented is a model for semi-infinite simple metals which does not require crystalline order or a single species, and thus is applicable to problems of defect energetics near the surface and random-alloy surfaces as well as ideal metal surfaces. The formulation is based on the use of ionic pseudopotentials and linear-response theory. An expression for the total energy is obtained which depends explicitly on ionic species and position. This expression is decomposed into a density-dependent term and single-ion and ionic pair-interaction potential terms. The single-ion potentials oscillate about a constant bulk value, with the magnitude of the oscillation decreasing rapidly away from the surface. The interaction between pairs of ions near the surface is shown to be a noncentral force interaction which differs significantly from the central-force bulk pair potential. The effect of quantum interference in the response of the semi-infinite electron gas to the ions is seen in both the single-ion and the pair-interaction potentials. Results are presented for the simple metals sodium, potassium, and rubidium

  8. Feasibility of Observing and Characterizing Single Ion Strikes in Microelectronic Components

    International Nuclear Information System (INIS)

    Dingreville, Remi Philippe Michel; Hattar, Khalid Mikhiel; Bufford, Daniel Charles

    2015-01-01

    The transient degradation of semiconductor device performance under irradiation has long been an issue of concern. A single high-energy charged particle can degrade or permanently destroy the microelectronic component, potentially altering the course or function of the systems. Disruption of the the crystalline structure through the introduction of quasi-stable defect structures can change properties from semiconductor to conductor. Typically, the initial defect formation phase is followed by a recovery phase in which defect-defect or defect-dopant interactions modify the characteristics of the damaged structure. In this LDRD Express, in-situ ion irradiation transmission microscopy (TEM) in-situ TEM experiments combined with atomistic simulations have been conducted to determine the feasibility of imaging and characterizing the defect structure resulting from a single cascade in silicon. In-situ TEM experiments have been conducted to demonstrate that a single ion strike can be observed in Si thin films with nanometer resolution in real time using the in-situ ion irradiation transmission electron microscope (I 3 TEM). Parallel to this experimental effort, ion implantation has been numerically simulated using Molecular Dynamics (MD). This numerical framework provides detailed predictions of the damage and follow the evolution of the damage during the first nanoseconds. The experimental results demonstrate that single ion strike can be observed in prototypical semiconductors.

  9. Exchange interaction of strongly anisotropic tripodal erbium single-ion magnets with metallic surfaces

    DEFF Research Database (Denmark)

    Dreiser, Jan; Wäckerlin, Christian; Ali, Md. Ehesan

    2014-01-01

    We present a comprehensive study of Er(trensal) single-ion magnets deposited in ultrahigh vacuum onto metallic surfaces. X-ray photoelectron spectroscopy reveals that the molecular structure is preserved after sublimation, and that the molecules are physisorbed on Au(111) while they are chemisorbed....... Furthermore XMCD indicates a weak antiferromagnetic exchange coupling between the single-ion magnets and the ferromagnetic Ni/Cu(100) substrate. For the latter case, spin-Hamiltonian fits to the XMCD M(H) suggest a significant structural distortion of the molecules. Scanning tunneling microscopy reveals...

  10. Xenon gas field ion source from a single-atom tip

    Science.gov (United States)

    Lai, Wei-Chiao; Lin, Chun-Yueh; Chang, Wei-Tse; Li, Po-Chang; Fu, Tsu-Yi; Chang, Chia-Seng; Tsong, T. T.; Hwang, Ing-Shouh

    2017-06-01

    Focused ion beam (FIB) systems have become powerful diagnostic and modification tools for nanoscience and nanotechnology. Gas field ion sources (GFISs) built from atomic-size emitters offer the highest brightness among all ion sources and thus can improve the spatial resolution of FIB systems. Here we show that the Ir/W(111) single-atom tip (SAT) can emit high-brightness Xe+ ion beams with a high current stability. The ion emission current versus extraction voltage was analyzed from 150 K up to 309 K. The optimal emitter temperature for maximum Xe+ ion emission was ˜150 K and the reduced brightness at the Xe gas pressure of 1 × 10-4 torr is two to three orders of magnitude higher than that of a Ga liquid metal ion source, and four to five orders of magnitude higher than that of a Xe inductively coupled plasma ion source. Most surprisingly, the SAT emitter remained stable even when operated at 309 K. Even though the ion current decreased with increasing temperature, the current at room temperature (RT) could still reach over 1 pA when the gas pressure was higher than 1 × 10-3 torr, indicating the feasibility of RT-Xe-GFIS for application to FIB systems. The operation temperature of Xe-SAT-GFIS is considerably higher than the cryogenic temperature required for the helium ion microscope (HIM), which offers great technical advantages because only simple or no cooling schemes can be adopted. Thus, Xe-GFIS-FIB would be easy to implement and may become a powerful tool for nanoscale milling and secondary ion mass spectroscopy.

  11. Temperature dependence of magnetic anisotropy: An ab initio approach

    Science.gov (United States)

    Staunton, J. B.; Szunyogh, L.; Buruzs, A.; Gyorffy, B. L.; Ostanin, S.; Udvardi, L.

    2006-10-01

    We present a first-principles theory of the variation of magnetic anisotropy, K , with temperature, T , in metallic ferromagnets. It is based on relativistic electronic structure theory and calculation of magnetic torque. Thermally induced local moment magnetic fluctuations are described within the relativistic generalization of the disordered local moment theory from which the T dependence of the magnetization, m , is found. We apply the theory to a uniaxial magnetic material with tetragonal crystal symmetry, L10 -ordered FePd, and find its uniaxial K consistent with a magnetic easy axis perpendicular to the Fe/Pd layers for all m and proportional to m2 for a broad range of values of m . This is the same trend that we have previously found in L10 -ordered FePt and which agrees with experiment. We also study a magnetically soft cubic magnet, the Fe50Pt50 solid solution, and find that its small magnetic anisotropy constant K1 rapidly diminishes from 8μeV to zero. K1 evolves from being proportional to m7 at low T to m4 near the Curie temperature. The accounts of both the tetragonal and cubic itinerant electron magnets differ from those extracted from single ion anisotropy models and instead receive clear interpretations in terms of two ion anisotropic exchange.

  12. Single-photon emission correlated to double-electron capture by bare ions: background processes

    Science.gov (United States)

    Elkafrawy, T.; Warczak, A.; Simon, A.; Tanis, J. A.

    2013-09-01

    Radiative single- and double-electron capture are one-step processes where a single target electron or two target electrons, respectively, are captured to a bound state of a highly charged projectile with the simultaneous emission of a single photon. In ion-atom collisions, several background processes are likely to contribute to these processes and may interfere with the measured x-rays due to radiative single and double capture. In this study, possible contributions from radiative electron capture to the continuum, secondary electron bremsstrahlung, the two-step process of independent double radiative electron capture, as well as radiative- combined with nonradiative-electron capture are taken into account based on our analysis of the data for 2.21 MeV u-1 F9+ ions colliding with a thin carbon foil.

  13. Structural and optical properties of Cd2+ ion on the growth of sulphamic acid single crystals

    Science.gov (United States)

    Rajyalakshmi, S.; Rao, Valluru Srinivasa; Reddy, P. V. S. S. S. N.; Krishna, V. Y. Rama; Samatha, K.; Rao, K. Ramachandra

    2016-05-01

    Transparent single crystals of Cadmium doped Sulphamic acid (SA) was grown by Conventional slow evaporation solution technique (SEST) which had the size of 13 × 8 × 7 mm3. The grown single crystals have been characterized using single crystal X-ray diffraction UV-visible Spectral studies and Second harmonic generation (SHG) efficiency and the results were discussed. The lattice parameters of the grown Cd2+ ion doped SA crystal are confirmed by single crystal X-ray diffraction and belong to orthorhombic system. Optical transmittance of the crystal was recorded using UV-vis NIR spectrophotometer with its lower cut off wavelength around 259nm. SHG measurements indicate that the SHG efficiency of the grown Cd2+ ion doped SA crystal at a fundamental wavelength of 1064 nm is approximately equal to KDP.

  14. Study of single and binary ion plasma expansion into laboratory-generated plasma wakes

    International Nuclear Information System (INIS)

    Wright, K.H. Jr.

    1988-02-01

    Plasma expansion into the wake of a large rectangular plate immersed in a collisionless, supersonic plasma was investigated in laboratory experiments. The experimental conditions address both single ion and binary ion plasma flows for the case of a body whose size is large in comparison with the Debye length, when the potential difference between the body and the plasma is relatively small. A new plasma source was developed to generate equi-velocity, binary ion plasma flows, which allows access to new parameter space that have previously been unavailable for laboratory studies. Specifically, the new parameters are the ionic mass ratio and the ionic component density ratio. In a series of experiments, a krypton-neon plasma is employed where the ambient density ratio of neon to krypton is varied more than an order of magnitude. The expansion in both the single ion and binary ion plasma cases is limited to early times, i.e., a few ion plasma periods, by the combination of plasma density, plasma drift speed, and vacuum chamber size, which prevented detailed comparison with self-similar theory

  15. Ion beam induced single phase nanocrystalline TiO{sub 2} formation

    Energy Technology Data Exchange (ETDEWEB)

    Rukade, Deepti A. [Department of Physics, University of Mumbai, Mumbai 400098 (India); Tribedi, L.C. [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Bhattacharyya, Varsha, E-mail: varsha.b1.physics@gmail.com [Department of Physics, University of Mumbai, Mumbai 400098 (India)

    2014-06-15

    Single phase TiO{sub 2} nanostructures are fabricated by oxygen ion implantation (60 keV) at fluence ranging from 1×10{sup 16} ions/cm{sup 2} to 1×10{sup 17} ions/cm{sup 2} in titanium thin films deposited on fused silica substrate and subsequent thermal annealing in argon atmosphere. GAXRD and Raman spectroscopy study reveals formation of single rutile phases of TiO{sub 2}. Particle size is found to vary from 29 nm to 35 nm, establishing nanostructure formation. Nanostructure formation is also confirmed by the quantum confinement effect manifested by the blueshift of the UV–vis absorption spectra. Photoluminescence spectra show peaks corresponding to TiO{sub 2} rutile phase and reveal the presence of oxygen defects due to implantation. The controlled synthesis of single phase nanostructure is attributed to ion induced defects and post-implantation annealing. It is observed that the size of the nanostructures formed is strongly dependent on the ion fluence.

  16. Ion mass dependence for low energy channeling in single-wall nanotubes

    International Nuclear Information System (INIS)

    An Monte Carlo (MC) simulation program has been used to study ion mass dependence for the low energy channeling of natural- and pseudo-Ar ions in single-wall nanotubes. The MC simulations show that the channeling critical angle Ψ C obeys the (E) -1/2 and the (M 1 ) -1/2 rules, where E is the incident energy and M 1 is the ion mass. The reason for this may be that the motion of the channeled (or de-channeled) ions should be correlated with both the incident energy E and the incident momentum (2M 1 E) 1/2 , in order to obey the conservation of energy and momentum

  17. Heavy doping of CdTe single crystals by Cr ion implantation

    Science.gov (United States)

    Popovych, Volodymyr D.; Böttger, Roman; Heller, Rene; Zhou, Shengqiang; Bester, Mariusz; Cieniek, Bogumil; Mroczka, Robert; Lopucki, Rafal; Sagan, Piotr; Kuzma, Marian

    2018-03-01

    Implantation of bulk CdTe single crystals with high fluences of 500 keV Cr+ ions was performed to achieve Cr concentration above the equilibrium solubility limit of this element in CdTe lattice. The structure and composition of the implanted samples were studied using secondary ion mass spectrometry (SIMS), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS) to characterize the incorporation of chromium into the host lattice and to investigate irradiation-induced damage build-up. It was found that out-diffusion of Cr atoms and sputtering of the targets alter the depth distribution and limit concentration of the projectile ions in the as-implanted samples. Appearance of crystallographically oriented, metallic α-Cr nanoparticles inside CdTe matrix was found after implantation, as well as a strong disorder at the depth far beyond the projected range of the implanted ions.

  18. Development of noise-suppressed detector for single ion hit system

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Takuro; Hamano, Tsuyoshi; Suda, Tamotsu; Hirao, Toshio; Kamiya, Tomihiro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    A noise-suppressed detector for single ion detection has been developed, and combined with the heavy ion microbeam apparatus. This detector consists of a pair of micro channel plates (MCP`s) and a very thin carbon foil. The detection signal is formed by the coincidence of the signals from these MCP`s, so that this detector and the coincidence measurement unit can reduce miscounting in the circuit. The detection efficiency for 15 MeV heavy ions was evaluated to be comparable to that of a silicon surface-barrier detector (SSD) and the miscounting rate was 4 orders lower than the noise rate of a single MCP. The rise time of the detection signal was also estimated. (author)

  19. Surface structure modification of single crystal graphite after slow, highly charged ion irradiation

    Science.gov (United States)

    Alzaher, I.; Akcöltekin, S.; Ban-d'Etat, B.; Manil, B.; Dey, K. R.; Been, T.; Boduch, P.; Rothard, H.; Schleberger, M.; Lebius, H.

    2018-04-01

    Single crystal graphite was irradiated by slow, highly charged ions. The modification of the surface structure was studied by means of Low-Energy Electron Diffraction. The observed damage cross section increases with the potential energy, i.e. the charge state of the incident ion, at a constant kinetic energy. The potential energy is more efficient for the damage production than the kinetic energy by more than a factor of twenty. Comparison with earlier results hints to a strong link between early electron creation and later target atom rearrangement. With increasing ion fluence, the initially large-scale single crystal is first transformed into μ m-sized crystals, before complete amorphisation takes place.

  20. Production of multi-, oligo- and single-pore membranes using a continuous ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Apel, P.Yu., E-mail: apel@nrmail.jinr.ru [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 141980 Dubna (Russian Federation); Dubna International University, Universitetskaya Str. 19, 141980 Dubna (Russian Federation); Ivanov, O.M.; Lizunov, N.E.; Mamonova, T.I.; Nechaev, A.N. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 141980 Dubna (Russian Federation); Olejniczak, K. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 141980 Dubna (Russian Federation); Faculty of Chemistry, Nicolaus Copernicus University, Gagarina Str. 7, 87-100 Torun (Poland); Vacik, J. [Nuclear Physics Institute, ASCR, v.v.i., 25068 Řež (Czech Republic); Dmitriev, S.N. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 141980 Dubna (Russian Federation)

    2015-12-15

    Ion track membranes (ITM) have attracted significant interest over the past two decades due to their numerous applications in physical, biological, chemical, biochemical and medical experimental works. A particular feature of ITM technology is the possibility to fabricate samples with a predetermined number of pores, including single-pore membranes. The present report describes a procedure that allowed for the production of multi-, oligo- and single-pore membranes using a continuous ion beam from an IC-100 cyclotron. The beam was scanned over a set of small diaphragms, from 17 to ∼1000 μm in diameter. Ions passed through the apertures and impinged two sandwiched polymer foils, with the total thickness close to the ion range in the polymer. The foils were pulled across the ion beam at a constant speed. The ratio between the transport speed and the scanning frequency determined the distance between irradiation spots. The beam intensity and the aperture diameters were adjusted such that either several, one or no ions passed through the diaphragms during one half-period of scanning. After irradiation, the lower foil was separated from the upper foil and was etched to obtain pores 6–8 μm in diameter. The pores were found using a color chemical reaction between two reagents placed on opposite sides of the foil. The located pores were further confirmed using SEM and optical microscopy. The numbers of tracks in the irradiation spots were consistent with the Poisson statistics. Samples with single or few tracks obtained in this way were employed to study fine phenomena in ion track nanopores.

  1. Potential of electric quadrupole transitions in radium isotopes for single-ion optical frequency standards

    NARCIS (Netherlands)

    Versolato, O. O.; Wansbeek, L. W.; Jungmann, K.; Timmermans, R. G. E.; Willmann, L.; Wilschut, H. W.

    2011-01-01

    We explore the potential of the electric quadrupole transitions 7s (2)S(1/2)-(6)d (2)D(3/2), 6d (2)D(5/2) in radium isotopes as single-ion optical frequency standards. The frequency shifts of the clock transitions due to external fields and the corresponding uncertainties are calculated. Several

  2. Towards a Precise Measurement of Atomic Parity Violation in a Single Ra+ Ion

    NARCIS (Netherlands)

    Jungmann, K.; Giri, G. S.; Versolato, O. O.; Steadman, SG; Stephans, GSF; Taylor, FE

    2012-01-01

    In the singly charged Ra+ ion the contributions of the weak interactions to the atomic level energies are some 50 times larger than in the Cs atom. We report the results of laser spectroscopy experiments on Ra-209-214(+) isotopes in preparation of a precision atomic parity violation experiment.

  3. Dimer self-organization of impurity ytterbium ions in synthetic forsterite single crystals

    Science.gov (United States)

    Tarasov, V. F.; Sukhanov, A. A.; Dudnikova, V. B.; Zharikov, E. V.; Lis, D. A.; Subbotin, K. A.

    2017-07-01

    Paramagnetic centers formed by impurity Yb3+ ions in synthetic forsterite (Mg2SiO4) grown by the Czochralski technique are studied by X-band CW and pulsed EPR spectroscopy. These centers are single ions substituting magnesium in two different crystallographic positions denoted M1 and M2, and dimer associates formed by two Yb3+ ions in nearby positions M1. It is established that there is a pronounced mechanism favoring self-organization of ytterbium ions in dimer associates during the crystal growth, and the mechanism of the spin-spin coupling between ytterbium ions in the associate has predominantly a dipole-dipole character, which makes it possible to control the energy of the spin-spin interaction by changing the orientation of the external magnetic field. The structural computer simulation of cluster ytterbium centers in forsterite crystals is carried out by the method of interatomic potentials using the GULP 4.0.1 code (General Utility Lattice Program). It is established that the formation of dimer associates in the form of a chain parallel to the crystallographic axis consisting of two ytterbium ions with a magnesium vacancy between them is the most energetically favorable for ytterbium ions substituting magnesium in the position M1.

  4. Elastic anisotropy of crystals

    Directory of Open Access Journals (Sweden)

    Christopher M. Kube

    2016-09-01

    Full Text Available An anisotropy index seeks to quantify how directionally dependent the properties of a system are. In this article, the focus is on quantifying the elastic anisotropy of crystalline materials. Previous elastic anisotropy indices are reviewed and their shortcomings discussed. A new scalar log-Euclidean anisotropy measure AL is proposed, which overcomes these deficiencies. It is based on a distance measure in a log-Euclidean space applied to fourth-rank elastic tensors. AL is an absolute measure of anisotropy where the limiting case of perfect isotropy yields zero. It is a universal measure of anisotropy applicable to all crystalline materials. Specific examples of strong anisotropy are highlighted. A supplementary material provides an anisotropy table giving the values of AL for 2,176 crystallite compounds.

  5. Transport of ions and biomolecules through asymmetric single nanopores fabricated by heavy ion irradiation and chemical etching

    International Nuclear Information System (INIS)

    Neumann, R.; Siwy, Z.; Schiedt, B.; Toimil Molares, M.E.

    2005-01-01

    In the framework of the CRP 'Radiation Synthesis of Stimuli-responsive Membranes, Hydrogels and Adsorbents for Separation Purposes', GSI has worked on the production of polymeric single conical nanopores and the study of the ionic transport through these pores. To produce single-pore membranes, polyethylene teraphthalate (PET) and polyimide (PI) foils were first irradiated with GeV single heavy ions. By subsequent one-side etching, asymmetric nanopores were created. The diameter of the conical pores in PET varied between 4-20 nm at the small opening and several hundred nm at the large opening. In the case of PI, due to the higher bulk etching rate, the large aperture reached a few μm. The current-voltage (I-V) characteristics were measured at symmetric electrolyte conditions of KCl at various concentrations and pH values. It was found that conical nanopores with charged surfaces are cation selective, and show preferential cation flow (i.e. rectification) from the narrow entrance to the wide opening of the cone. Concentration and pH influence the rectification properties for both polymers was studied. The experimental results are in agreement with existing models. The transient transport properties of single PET and PI pores were also investigated. The ion current through PET nanopores fluctuates considerably, the fluctuation depending on the voltage, whereas PI nanopores display a stable current signal for KCl concentrations between 0.1 and 3 M, and pH values between 2 and 8. This different behavior has been attributed to the chemical structure of the two polymers influencing surface characteristics of the resulting nanopores. Finally, the application of polyimide conical nanopores as single-molecule-DNA sensors is being investigated. First results demonstrate their ability to detect individual plasmid DNA molecules. The nanopore sensor is also able to discriminate between DNA fragments of different lengths. (author)

  6. Deep level defects in 4H-SiC introduced by ion implantation: the role of single ion regime.

    Science.gov (United States)

    Pastuović, Željko; Siegele, Rainer; Capan, Ivana; Brodar, Tomislav; Sato, Shin-Ichiro; Ohshima, Takeshi

    2017-11-29

    We characterized intrinsic deep level defects created in ion collision cascades which were produced by patterned implantation of single accelerated 2.0 MeV He and 600 keV H ions into n-type 4H-SiC epitaxial layers using a fast-scanning reduced-rate ion microbeam. The initial deep level transient spectroscopy measurement performed on as-grown material in the temperature range 150-700 K revealed the presence of only two electron traps, Z 1/2 (0.64 eV) and EH 6/7 (1.84 eV) assigned to the two different charge state transitions of the isolated carbon vacancy, V C (=/0) and (0/+). C-V measurements of as-implanted samples revealed the increasing free carrier removal with larger ion fluence values, in particular at depth corresponding to a vicinity of the end of an ion range. The first DLTS measurement of as-implanted samples revealed formation of additional deep level defects labelled as ET1 (0.35 eV), ET2 (0.65 eV) and EH3 (1.06 eV) which were clearly distinguished from the presence of isolated carbon vacancies (Z 1/2 and EH 6/7 defects) in increased concentrations after implantations either by He or H ions. Repeated C-V measurements showed that a partial net free-carrier recovery occurred in as-implanted samples upon the low-temperature annealing following the first DLTS measurement. The second DLTS measurement revealed the almost complete removal of ET2 defect and the partial removal of EH3 defect, while the concentrations of Z 1/2 and EH 6/7 defects increased, due to the low temperature annealing up to 700 K accomplished during the first temperature scan. We concluded that the ET2 and EH3 defects: (i) act as majority carrier removal traps, (ii) exhibit a low thermal stability and (iii) can be related to the simple point-like defects introduced by light ion implantation, namely interstitials and/or complex of interstitials and vacancies in both carbon and silicon sub-lattices.

  7. Magnetic properties of R.sub.2./sub.(F, Si).sub.17./sub. (R= U, Lu) single crystals: the U contribution to the magnetocrystalline anisotropy

    Czech Academy of Sciences Publication Activity Database

    Andreev, Alexander V.; Homma, Y.; Shiokawa, Y.

    2002-01-01

    Roč. 319, - (2002), s. 208-219 ISSN 0921-4526 R&D Projects: GA AV ČR IAA1010018 Institutional research plan: CEZ:AV0Z1010914 Keywords : R 2 T 17 * ferromagnetism * magnetic anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.609, year: 2002

  8. A Stable Pentagonal Bipyramidal Dy(III) Single-Ion Magnet with a Record Magnetization Reversal Barrier over 1000 K.

    Science.gov (United States)

    Liu, Jiang; Chen, Yan-Cong; Liu, Jun-Liang; Vieru, Veacheslav; Ungur, Liviu; Jia, Jian-Hua; Chibotaru, Liviu F; Lan, Yanhua; Wernsdorfer, Wolfgang; Gao, Song; Chen, Xiao-Ming; Tong, Ming-Liang

    2016-04-27

    Single-molecule magnets (SMMs) with a large spin reversal barrier have been recognized to exhibit slow magnetic relaxation that can lead to a magnetic hysteresis loop. Synthesis of highly stable SMMs with both large energy barriers and significantly slow relaxation times is challenging. Here, we report two highly stable and neutral Dy(III) classical coordination compounds with pentagonal bipyramidal local geometry that exhibit SMM behavior. Weak intermolecular interactions in the undiluted single crystals are first observed for mononuclear lanthanide SMMs by micro-SQUID measurements. The investigation of magnetic relaxation reveals the thermally activated quantum tunneling of magnetization through the third excited Kramers doublet, owing to the increased axial magnetic anisotropy and weaker transverse magnetic anisotropy. As a result, pronounced magnetic hysteresis loops up to 14 K are observed, and the effective energy barrier (Ueff = 1025 K) for relaxation of magnetization reached a breakthrough among the SMMs.

  9. Effect of H + ion implantation on structural, morphological, optical and dielectric properties of L-arginine monohydrochloride monohydrate single crystals

    Science.gov (United States)

    Sangeetha, K.; Babu, R. Ramesh; Kumar, P.; Bhagvannarayana, G.; Ramamurthi, K.

    2011-06-01

    L-arginine monohydrochloride monohydrate (LAHCl) single crystals have been implanted with 100 keV H + ions at different ion fluence ranging from 10 12 to 10 15 ions/cm 2. Implanted LAHCl single crystals have been investigated for property changes. Crystal surface and crystalline perfection of the pristine and implanted crystals were analyzed by atomic force microscope and high-resolution X-ray diffraction studies, respectively. Optical absorption bands induced by colour centers, refractive index and birefringence, mechanical stability and dielectric constant of implanted crystals were studied at different ion fluence and compared with that of pristine LAHCl single crystal.

  10. Modification of mechanical properties of single crystal aluminum oxide by ion beam induced structural changes

    International Nuclear Information System (INIS)

    Ensinger, W.; Nowak, R.; Horino, Y.; Baba, K.

    1993-01-01

    The mechanical behaviour of ceramics is essentially determined by their surface qualities. As a surface modification technique, ion implantation provides the possibility to modify the mechanical properties of ceramics. Highly energetic ions are implanted into the near-surface region of a material and modify its composition and structure. Ions of aluminum, oxygen, nickel and tantalum were implanted into single-crystal α-aluminum oxide. Three-point bending tests showed that an increase in flexural strength of up to 30% could be obtained after implantation of aluminum and oxygen. Nickel and tantalum ion implantation increased the fracture toughness. Indentation tests with Knoop and Vickers diamonds and comparison of the lengths of the developed radial cracks showed that ion implantation leads to a reaction in cracking. The observed effects are assigned to radiation induced structural changes of the ceramic. Ion bombardment leads to radiation damage and formation of compressive stress. In case of tantalum implantation, the implanted near-surface zone becomes amorphous. These effects make the ceramic more resistant to fracture. (orig.)

  11. Engineering of electronic properties of single layer graphene by swift heavy ion irradiation

    Science.gov (United States)

    Kumar, Sunil; Kumar, Ashish; Tripathi, Ambuj; Tyagi, Chetna; Avasthi, D. K.

    2018-04-01

    In this work, swift heavy ion irradiation induced effects on the electrical properties of single layer graphene are reported. The modulation in minimum conductivity point in graphene with in-situ electrical measurement during ion irradiation was studied. It is found that the resistance of graphene layer decreases at lower fluences up to 3 × 1011 ions/cm2, which is accompanied by the five-fold increase in electron and hole mobilities. The ion irradiation induced increase in electron and hole mobilities at lower fluence up to 1 × 1011 ions/cm2 is verified by separate Hall measurements on another irradiated graphene sample at the selected fluence. In contrast to the adverse effects of irradiation on the electrical properties of materials, we have found improvement in electrical mobility after irradiation. The increment in mobility is explained by considering the defect annealing in graphene after irradiation at a lower fluence regime. The modification in carrier density after irradiation is also observed. Based on findings of the present work, we suggest ion beam irradiation as a useful tool for tuning of the electrical properties of graphene.

  12. Single Qubit Manipulation in a Microfabricated Surface Electrode Ion Trap (Open Access, Publisher’s Version)

    Science.gov (United States)

    2013-09-13

    electrode ion trap with field compensation using a modulated Raman effect D T C Allcock, J A Sherman, D N Stacey et al. Spatially uniform single-qubit gate...in thermal states of motion G Kirchmair, J Benhelm, F Zähringer et al. Normal modes of trapped ions in the presence of anharmonic trap potentials J P...Qloaded = 280) [35]. New Journal of Physics 15 (2013) 093018 (http://www.njp.org/) 5 2.1 GHz Zeeman = 1.4 MHz/G 36 9. 5 nm HF = 12.6 GHz 171Yb+ 2P 1

  13. Changes in ion channel geometry resolved to sub-angstroem precision via single molecule mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Joseph W F; Kasianowicz, John J; Reiner, Joseph E [Semiconductor Electronics Division, Electronics and Electrical Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2010-11-17

    The ion channel formed by Staphylococcus aureus alpha-hemolysin switches between multiple open conducting states. We describe a method for precisely estimating the changes in the ion channel geometry that correspond to these different states. Experimentally, we observed that the permeability of a single channel to differently sized poly(ethylene glycol) molecules depends on the magnitude of the open state conductance. A simple theory is proposed for determining changes in channel length of 4.2% and in cross-sectional area of - 0.4%.

  14. Single electron attachment and stripping cross sections for relativistic heavy ions

    International Nuclear Information System (INIS)

    Crawford, H.J.

    1979-06-01

    The results of a Bevalac experiment to measure the single electron attachment and stripping cross sections for relativistic (0.5 1 , and fully stripped, N 0 , ion beams emerging from the targets. Separate counters measured the number of ions in each charge state. The ratios N 1 /N 0 for different target thicknesses were fit to a simple growth curve to yield electron attachment and stripping cross sections. The data are compared to relativistic extrapolations of available theories. Clear evidence for two separate attachment processes, radiative and non-radiative, is found. Data are compared to a recently improved formulation for the stripping cross sections

  15. Single electron attachment and stripping cross sections for relativistic heavy ions

    International Nuclear Information System (INIS)

    Crawford, H.J.

    1979-01-01

    The results of a Bevalac experiment to measure the single electron attachment and stripping cross sections for relativistic (0.5 1 , and fully stripped, N 0 , ion beams emerging from the targets. Separate counters measured the number of ions in each charge state. The ratios N 1 /N 0 for different target thicknesses were fit to a simple growth curve to yield electron attachment and stripping cross sections. The data are compared to relativistic extrapolations of available theories. Clear evidence of two separate attachment processes, radiative and non-radiative, is found. Data are compared to a recently improved formulation for the stripping cross sections

  16. The tensile effect on crack formation in single crystal silicon irradiated by intense pulsed ion beam

    Science.gov (United States)

    Liang, Guoying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Yan, Sha; Zhang, Xiaofu; Yu, Xiao; Le, Xiaoyun

    2017-10-01

    Improving antifatigue performance of silicon substrate is very important for the development of semiconductor industry. The cracking behavior of silicon under intense pulsed ion beam irradiation was studied by numerical simulation in order to understand the mechanism of induced surface peeling observed by experimental means. Using molecular dynamics simulation based on Stillinger Weber potential, tensile effect on crack growth and propagation in single crystal silicon was investigated. Simulation results reveal that stress-strain curves of single crystal silicon at a constant strain rate can be divided into three stages, which are not similar to metal stress-strain curves; different tensile load velocities induce difference of single silicon crack formation speed; the layered stress results in crack formation in single crystal silicon. It is concluded that the crack growth and propagation is more sensitive to strain rate, tensile load velocity, stress distribution in single crystal silicon.

  17. Damage evolution in Xe-ion irradiated rutile (TiO2) single crystals

    International Nuclear Information System (INIS)

    Li, F.; Sickafus, K.E.; Evans, C.R.; Nastasi, M.

    1999-01-01

    Rutile (TiO 2 ) single crystals with (110) orientation were irradiated with 360 keV Xe 2+ ions at 300 K to fluences ranging from 2 x 10 19 to 1 x 10 20 Xe/m 2 . Irradiated samples were analyzed using: (1) Rutherford backscattering spectroscopy combined with ion channeling analysis (RBS/C); and (2) cross-sectional transmission electron microscopy (XTEM). Upon irradiation to a fluence of 2 x 10 19 Xe/m 2 , the sample thickness penetrated by the implanted ions was observed to consist of three distinct layers: (1) a defect-free layer at the surface (thickness about 12 nm) exhibiting good crystallinity; (2) a second layer with a low density of relatively large-sized defects; and (3) a third layer consisting of a high concentration of small defects. After the fluence was increased to 7 x 10 19 Xe/m 2 , a buried amorphous layer was visible by XTEM. The thickness of the amorphous layer was found to increase with increasing Xe ion fluence. The location of this buried amorphous layer was found to coincide with the measured peak in the Xe concentration (measured by RBS/C), rather than with the theoretical maximum in the displacement damage profile. This observation suggests the implanted Xe ions may serve as nucleation sites for the amorphization transformation. The total thickness of the damaged microstructure due to ion irradiation was always found to be much greater than the projected range of the Xe ions. This is likely due to point defect migration under the high stresses induced by ion implantation

  18. Single-column ion chromatography with determination of hydrazoic acid produced in spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Ma Guilan; Tan Shuping

    2006-01-01

    The reaction of hydrazine and its derivative with ammonium metavanadate may produce hydrazoic acid (HN 3 ). A single-column ion chromatography is used for the determination of HN 3 after neutralizing the rest acid in the sample with sodium hydroxide. Chromatography separation of HN 3 is carried out on a 25 cm x 0.46 cm (inside diameter) stainless steel column packed with Vydac IC302 ion Chromatography packing. The eluent is 1 mmol/L o-phthalic acid, and the ion is detected by conductivity detector. The detection limit in the presence chromatography is 5 μg/mL, the linear range is from 5 to 201 μg/mL, the linear correlation coefficient is 0.9994, respectively. The analysis accuracy is 2% for standard sample, and the detection limit is 51 μg/mL for HN 3 in the real sample. (authors)

  19. Charging the quantum capacitance of graphene with a single biological ion channel.

    Science.gov (United States)

    Wang, Yung Yu; Pham, Ted D; Zand, Katayoun; Li, Jinfeng; Burke, Peter J

    2014-05-27

    The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge. Here, we report graphene-based field-effect transistors combined with supported lipid bilayers as a platform for measuring, for the first time, individual ion channel activity. We show that the supported lipid bilayers uniformly coat the single layer graphene surface, acting as a biomimetic barrier that insulates (both electrically and chemically) the graphene from the electrolyte environment. Upon introduction of pore-forming membrane proteins such as alamethicin and gramicidin A, current pulses are observed through the lipid bilayers from the graphene to the electrolyte, which charge the quantum capacitance of the graphene. This approach combines nanotechnology with electrophysiology to demonstrate qualitatively new ways of measuring ion channel currents.

  20. Modifying the properties of 4f single-ion magnets by peripheral ligand functionalisation

    DEFF Research Database (Denmark)

    Pedersen, Kasper Steen; Ungur, Liviu; Sigrist, Marc

    2014-01-01

    We study the ligand-field splittings and magnetic properties of three ErIII single-ion magnets which differ in the peripheral ligand sphere but exhibit similar first coordination spheres by inelastic neutron scattering (INS) and SQUID magnetometry. The INS spectra of the three compounds are profo......We study the ligand-field splittings and magnetic properties of three ErIII single-ion magnets which differ in the peripheral ligand sphere but exhibit similar first coordination spheres by inelastic neutron scattering (INS) and SQUID magnetometry. The INS spectra of the three compounds...... allows for the extraction of the sign and magnitude of all symmetry-allowed Stevens parameters. The parameter values and the energy spectrum derived from INS are compared to the results of state-of-the-art ab initio CASSCF calculations. Temperature-dependent alternating current (ac) susceptibility...... measurements suggest that the magnetisation relaxation in the investigated temperature range of 1.9 K

  1. Investigating change of properties in gallium ion irradiation patterned single-layer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quan, E-mail: wangq@mail.ujs.edu.cn [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (China); Dong, Jinyao; Bai, Bing [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Xie, Guoxin [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2016-10-14

    Besides its excellent physical properties, graphene promises to play a significant role in electronics with superior properties, which requires patterning of graphene for device integration. Here, we presented the changes in properties of single-layer graphene before and after patterning using gallium ion beam. Combined with Raman spectra of graphene, the scanning capacitance microscopy (SCM) image confirmed that a metal–insulator transition occurred after large doses of gallium ion irradiation. The changes in work function and Raman spectra of graphene indicated that the defect density increased as increasing the dose and a structural transition occurred during gallium ion irradiation. The patterning width of graphene presented an increasing trend due to the scattering influence of the impurities and the substrate. - Highlights: • The scanning capacitance microscopy image confirmed a metal–insulator transition occurred after large doses of gallium ion irradiation. • The changes indicated the defect density increased as increasing the dose and a structural transition occurred during gallium ion irradiation. • The patterning width of graphene presented a increasing trend due to the scattering influence of the impurities and the substrate.

  2. Investigating change of properties in gallium ion irradiation patterned single-layer graphene

    International Nuclear Information System (INIS)

    Wang, Quan; Dong, Jinyao; Bai, Bing; Xie, Guoxin

    2016-01-01

    Besides its excellent physical properties, graphene promises to play a significant role in electronics with superior properties, which requires patterning of graphene for device integration. Here, we presented the changes in properties of single-layer graphene before and after patterning using gallium ion beam. Combined with Raman spectra of graphene, the scanning capacitance microscopy (SCM) image confirmed that a metal–insulator transition occurred after large doses of gallium ion irradiation. The changes in work function and Raman spectra of graphene indicated that the defect density increased as increasing the dose and a structural transition occurred during gallium ion irradiation. The patterning width of graphene presented an increasing trend due to the scattering influence of the impurities and the substrate. - Highlights: • The scanning capacitance microscopy image confirmed a metal–insulator transition occurred after large doses of gallium ion irradiation. • The changes indicated the defect density increased as increasing the dose and a structural transition occurred during gallium ion irradiation. • The patterning width of graphene presented a increasing trend due to the scattering influence of the impurities and the substrate.

  3. Single-crate stand-alone CAMAC control system for a negative ion source test facility

    International Nuclear Information System (INIS)

    Juras, R.C.; Ziegler, N.F.

    1979-01-01

    A single-crate CAMAC system was configured to control a negative ion source development facility at ORNL and control software was written for the crate microcomputer. The software uses inputs from a touch panel and a shaft encoder to control the various operating parameters of the test facility and uses the touch panel to display the operating status. Communication to and from the equipment at ion source potential is accomplished over optical fibers from an ORNL-built CAMAC module. A receiver at ion source potential stores the transmitted data and some of these stored values are then used to control discrete parameters of the ion source (i.e., power supply on or off). Other stored values are sent to a multiplexed digital-to-analog converter to provide analog control signals. A transmitter at ion source potential transmits discrete status information and several channels of analog data from an analog-to-digital converter back to the ground-potential receiver where it is stored to be read and displayed by the software

  4. Impact of temperature on single event upset measurement by heavy ions in SRAM devices

    International Nuclear Information System (INIS)

    Liu Tianqi; Geng Chao; Zhang Zhangang; Gu Song; Tong Teng; Xi Kai; Hou Mingdong; Liu Jie; Zhao Fazhan; Liu Gang; Han Zhengsheng

    2014-01-01

    The temperature dependence of single event upset (SEU) measurement both in commercial bulk and silicon on insulator (SOI) static random access memories (SRAMs) has been investigated by experiment in the Heavy Ion Research Facility in Lanzhou (HIRFL). For commercial bulk SRAM, the SEU cross section measured by 12 C ions is very sensitive to the temperature. The temperature test of SEU in SOI SRAM was conducted by 209 Bi and 12 C ions, respectively, and the SEU cross sections display a remarkable growth with the elevated temperature for 12 C ions but keep constant for 209 Bi ions. The impact of temperature on SEU measurement was analyzed by Monte Carlo simulation. It is revealed that the SEU cross section is significantly affected by the temperature around the threshold linear energy transfer of SEU occurrence. As the SEU occurrence approaches saturation, the SEU cross section gradually exhibits less temperature dependency. Based on this result, the experimental data measured in HIRFL was analyzed, and then a reasonable method of predicting the on-orbit SEU rate was proposed. (semiconductor devices)

  5. Not Only Enthalpy: Large Entropy Contribution to Ion Permeation Barriers in Single-File Channels

    OpenAIRE

    Portella, Guillem; Hub, Jochen S.; Vesper, Martin D.; de Groot, Bert L.

    2008-01-01

    The effect of channel length on the barrier for potassium ion permeation through single-file channels has been studied by means of all-atom molecular dynamics simulations. Using series of peptidic gramicidin-like and simplified ring-structured channels, both embedded in model membranes, we obtained two distinct types of behavior: saturation of the central free energy barriers for peptidic channels and a linear increase in simplified ring-structured channels with increasing channel length. The...

  6. A generalized Jaynes-Cummings model: The relativistic parametric amplifier and a single trapped ion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-Guillén, D., E-mail: dojedag@ipn.mx [Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz esq. Av. Miguel Othón de Mendizábal, Col. Lindavista, Delegación Gustavo A. Madero, C.P. 07738 Ciudad de México (Mexico); Mota, R. D. [Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacán, Delegación Coyoacán, C.P. 04430 Ciudad de México (Mexico); Granados, V. D. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, C.P. 07738 Ciudad de México (Mexico)

    2016-06-15

    We introduce a generalization of the Jaynes-Cummings model and study some of its properties. We obtain the energy spectrum and eigenfunctions of this model by using the tilting transformation and the squeezed number states of the one-dimensional harmonic oscillator. As physical applications, we connect this new model to two important and novelty problems: the relativistic parametric amplifier and the quantum simulation of a single trapped ion.

  7. V79 cell survival after a single lithium ion nuclear traversal

    International Nuclear Information System (INIS)

    Pinto, M.; Buonanno, M.; Campajola, L.; Durante, M.; Grossi, G.; Publiese, G.; Scampoli, P.; Gialanella, G.; Manti, L.

    2003-01-01

    Full text: Biological studies on the effects of low doses of densely ionising radiation are highly influenced by the stochastic character of the energy deposition events. For several end-points, including clonogenic survival, to follow-up individual cells that have undergone an exactly determined number of charged particle traversals is highly desirable. While RBE-LET curves have been measured after conventional 'broad beam' irradiation with several ions of varying energies, the probability of cell survival after a single charged particle traversal has only been determined for accelerated protons and alpha particles, whereas the ability of single particle traversals at higher LET to cause clonogenic death is yet unknown. Recently, low dose studies have also shown phenomena of high interest, such as the hypersensitivity/induced radioresistance(HS/IRR) adaptive responses. However, for particles of high LET, even a single nuclear traversal may deliver an average dose to a single cell that may be beyond the dose region of the HS/IRR response. We ave set up an experimental apparatus for the determination of the inactivation cross section after an exactly known number of accelerated Lithium ions traversals (210 keV/micron when hitting the cell surface). Using a bio-stack approach (Pugliese et al, IJRB Oct;72(4):397-407 1997) LR115 thin nuclear track detectors have been employed for the direct visualisation of Lithium ion traversals in V79 cells nuclei that are labeled with Hoechst 33258. A computer software has been designed and implemented to control micro-meter movements of a motorised Marzhauser stage, mounted on a fluorescent microscope, for the acquisition of individual attached cell coordinates, type of traversal, as well as for re-visiting the registered coordinates for analysis of survivors. The V79 cell survival experiment after exactly known numbers of Lithium ions traversals is in progress, along with a classical 'broad beam' survival assay

  8. Heavy Ion Irradiation Fluence Dependence for Single-Event Upsets of NAND Flash Memory

    Science.gov (United States)

    Chen, Dakai; Wilcox, Edward; Ladbury, Raymond; Kim, Hak; Phan, Anthony; Seidleck, Christina; LaBel, Kenneth

    2016-01-01

    We investigated the single-event effect (SEE) susceptibility of the Micron 16 nm NAND flash, and found the single-event upset (SEU) cross section varied inversely with fluence. The SEU cross section decreased with increasing fluence. We attribute the effect to the variable upset sensitivities of the memory cells. The current test standards and procedures assume that SEU follow a Poisson process and do not take into account the variability in the error rate with fluence. Therefore, heavy ion irradiation of devices with variable upset sensitivity distribution using typical fluence levels may underestimate the cross section and on-orbit event rate.

  9. Artificial anisotropy and polarizing filters.

    Science.gov (United States)

    Flory, François; Escoubas, Ludovic; Lazaridès, Basile

    2002-06-01

    The calculated spectral transmittance of a multilayer laser mirror is used to determine the effective index of the single layer equivalent to the multilayer stack. We measure the artificial anisotropy of photoresist thin films whose structure is a one-dimensional, subwavelength grating obtained from interference fringes. The limitation of the theory of the first-order effective index homogenization is discussed. We designed normal-incidence, polarizing coating and a polarization rotator by embedding anisotropic films in simple multilayer structures.

  10. Towards radiocarbon dating of single foraminifera with a gas ion source

    Science.gov (United States)

    Wacker, L.; Lippold, J.; Molnár, M.; Schulz, H.

    2013-01-01

    Carbonate shells from foraminifera are often analysed for radiocarbon to determine the age of deep-sea sediments or to assess radiocarbon reservoir ages. However, a single foraminiferal test typically contains only a few micrograms of carbon, while most laboratories require more than 100 μg for radiocarbon dating with an accelerator mass spectrometry (AMS) system. The collection of the required amount of foraminifera for a single analyses is therefore time consuming and not always possible. Here, we present a convenient method to measure the radiocarbon content of foraminifera using an AMS system fitted with a gas ion source. CO2 is liberated from 150 to 1150 μg of carbonate in septum sealed vials by acid decomposition of the carbonate. The CO2 is collected on a zeolite trap and subsequently transferred to a syringe from where it is delivered to the ion source. A sample of 400 μg (50 μg C) typically gives a 12C- ion source current of 10-15 μA over 20 min, yielding a measurement precision of less than 7 per mil for a modern sample. Using this method, we were able to date a single 560 μg Cibicides pseudoungerianus test at 14,030 ± 160 radiocarbon years. Only a minor modification to our existing gas handling system was required and the system is fully automatable to further reduce the effort involved for sample preparation.

  11. Towards radiocarbon dating of single foraminifera with a gas ion source

    International Nuclear Information System (INIS)

    Wacker, L.; Lippold, J.; Molnár, M.; Schulz, H.

    2013-01-01

    Carbonate shells from foraminifera are often analysed for radiocarbon to determine the age of deep-sea sediments or to assess radiocarbon reservoir ages. However, a single foraminiferal test typically contains only a few micrograms of carbon, while most laboratories require more than 100 μg for radiocarbon dating with an accelerator mass spectrometry (AMS) system. The collection of the required amount of foraminifera for a single analyses is therefore time consuming and not always possible. Here, we present a convenient method to measure the radiocarbon content of foraminifera using an AMS system fitted with a gas ion source. CO 2 is liberated from 150 to 1150 μg of carbonate in septum sealed vials by acid decomposition of the carbonate. The CO 2 is collected on a zeolite trap and subsequently transferred to a syringe from where it is delivered to the ion source. A sample of 400 μg (50 μg C) typically gives a 12 C − ion source current of 10–15 μA over 20 min, yielding a measurement precision of less than 7 per mil for a modern sample. Using this method, we were able to date a single 560 μg Cibicides pseudoungerianus test at 14,030 ± 160 radiocarbon years. Only a minor modification to our existing gas handling system was required and the system is fully automatable to further reduce the effort involved for sample preparation.

  12. Towards radiocarbon dating of single foraminifera with a gas ion source

    Energy Technology Data Exchange (ETDEWEB)

    Wacker, L., E-mail: wacker@phys.ethz.ch [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Lippold, J. [Heidelberg Academy of Sciences, 69120 Heidelberg (Germany); Molnar, M. [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Institute of Nuclear Research, Hungarian Academy of Sciences, 4026 Debrecen (Hungary); Schulz, H. [Institute for Geosciencies, University of Tuebingen, 72076 Tuebingen (Germany)

    2013-01-15

    Carbonate shells from foraminifera are often analysed for radiocarbon to determine the age of deep-sea sediments or to assess radiocarbon reservoir ages. However, a single foraminiferal test typically contains only a few micrograms of carbon, while most laboratories require more than 100 {mu}g for radiocarbon dating with an accelerator mass spectrometry (AMS) system. The collection of the required amount of foraminifera for a single analyses is therefore time consuming and not always possible. Here, we present a convenient method to measure the radiocarbon content of foraminifera using an AMS system fitted with a gas ion source. CO{sub 2} is liberated from 150 to 1150 {mu}g of carbonate in septum sealed vials by acid decomposition of the carbonate. The CO{sub 2} is collected on a zeolite trap and subsequently transferred to a syringe from where it is delivered to the ion source. A sample of 400 {mu}g (50 {mu}g C) typically gives a {sup 12}C{sup -} ion source current of 10-15 {mu}A over 20 min, yielding a measurement precision of less than 7 per mil for a modern sample. Using this method, we were able to date a single 560 {mu}g Cibicides pseudoungerianus test at 14,030 {+-} 160 radiocarbon years. Only a minor modification to our existing gas handling system was required and the system is fully automatable to further reduce the effort involved for sample preparation.

  13. Field-Induced Co(II) Single-Ion Magnets with mer-Directing Ligands but Ambiguous Coordination Geometry.

    Science.gov (United States)

    Peng, Yan; Mereacre, Valeriu; Anson, Christopher E; Zhang, Yiquan; Bodenstein, Tilmann; Fink, Karin; Powell, Annie K

    2017-06-05

    Three air-stable Co(II) mononuclear complexes with different aromatic substituents have been prepared and structurally characterized by single-crystal X-ray diffraction. The mononuclear complexes [Co(H 2 L1) 2 ]·2THF (1), [Co(HL2) 2 ] (2), and [Co(H 2 L3) 2 ]·CH 2 Cl 2 (3) (where H 3 L1, H 2 L2, and H 3 L3 represent 3-hydroxy-naphthalene-2-carboxylic acid (6-hydroxymethyl-pyridin-2-ylmethylene) hydrazide, nicotinic acid (6-hydroxymethyl-pyridin-2-ylmethylene) hydrazide, and 2-hydroxy-benzoic acid (6-hydroxymethyl-pyridin-2-ylmethylene) hydrazide, respectively) feature a distorted mer octahedral coordination geometry. Detailed magnetic studies of 1-3 have been conducted using direct and alternating current magnetic susceptibility data. Field-induced slow magnetic relaxation was observed for these three complexes. There are few examples of such behavior in (distorted) octahedral coordination geometry (OC) Co(II) mononuclear complexes with uniaxial anisotropy. Analysis of the six-coordinate Co(II) mononuclear single-ion magnets (SIMs) in the literature using the SHAPE program revealed that they all show what is best described as distorted trigonal prismatic (TRP) coordination geometry, and in general, these show negative D zero-field splitting (ZFS) values. On the other hand, all the Co(II) mononuclear complexes displaying what is best approximated as distorted octahedral (OC) coordination geometry show positive D values. In the new Co(II) mononuclear complexes we describe here, there is an ambiguity, since the rigid tridentate ligands confer what is best described for an octahedral complex as a mer coordination geometry, but the actual shape of the first coordination sphere is between octahedral and trigonal prismatic. The negative D values observed experimentally and supported by high-level electronic structure calculations are thus in line with a trigonal prismatic geometry. However, a consideration of the rhombicity as indicated by the E value of the ZFS in

  14. Fast detection of narcotics by single photon ionization mass spectrometry and laser ion mobility spectrometry

    Science.gov (United States)

    Laudien, Robert; Schultze, Rainer; Wieser, Jochen

    2010-10-01

    In this contribution two analytical devices for the fast detection of security-relevant substances like narcotics and explosives are presented. One system is based on an ion trap mass spectrometer (ITMS) with single photon ionization (SPI). This soft ionization technique, unlike electron impact ionization (EI), reduces unwanted fragment ions in the mass spectra allowing the clear determination of characteristic (usually molecular) ions. Their enrichment in the ion trap and identification by tandem MS investigations (MS/MS) enables the detection of the target substances in complex matrices at low concentrations without time-consuming sample preparation. For SPI an electron beam pumped excimer light source of own fabrication (E-Lux) is used. The SPI-ITMS system was characterized by the analytical study of different drugs like cannabis, heroin, cocaine, amphetamines, and some precursors. Additionally, it was successfully tested on-site in a closed illegal drug laboratory, where low quantities of MDMA could be directly detected in samples from floors, walls and lab equipments. The second analytical system is based on an ion mobility (IM) spectrometer with resonant multiphoton ionization (REMPI). With the frequency quadrupled Nd:YAG laser (266 nm), used for ionization, a selective and sensitive detection of aromatic compounds is possible. By application of suited aromatic dopants, in addition, also non-aromatic polar compounds are accessible by ion molecule reactions like proton transfer or complex formation. Selected drug precursors could be successfully detected with this device as well, qualifying it to a lower-priced alternative or useful supplement of the SPI-ITMS system for security analysis.

  15. Effect of swift heavy ion irradiation on single- and multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Olejniczak, Andrzej, E-mail: aolejnic@chem.uni.torun.pl [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Faculty of Chemistry, Nicolaus Copernicus University, ul. Gagarina 7, 87-100 Toruń (Poland); Skuratov, Vladimir A. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation)

    2014-05-01

    The effect of irradiation with swift heavy ions on the structure and properties of carbon nanotubes was investigated by Raman spectroscopy. It was found that disordering of the system occurred mainly at the surface. No ordering phenomena have been observed over a whole range of both fluences and electronic stopping powers studied. The disorder parameter (i.e., the ratio of the D and G band intensities (I{sub D}/I{sub G})) increases non-linearly with the irradiation dose, showing a tendency to saturate at high fluences. The increase in the disorder parameter upon irradiation was proportional to the square root of the ion fluence. The radiation stability of the few-walled nanotubes was ca. 1.6 higher than that of the single-walled ones. The irradiation with both the Xe and Kr ions leads to essentially the same increase in the I{sub D}/I{sub G} ratio with respect to the deposited electronic energy density. In the case of the Ar ion irradiation, the observed increase in the I{sub D}/I{sub G} ratio is much lower, suggesting that the electronic stopping power threshold for defects creation in carbon nanotubes is lower than that for graphite.

  16. Trapped-ion anomalous diffusion coefficient on the basis of single mode saturation

    International Nuclear Information System (INIS)

    Koshi, Yuji; Hatayama, Akiyoshi; Ogasawara, Masatada.

    1982-03-01

    Expressions of the anomalous diffusion coefficient due to the dissipative trapped ion instability (DTII) are derived for the case with and without the effect of magnetic shear. Derivation is made by taking into account of the single mode saturation of the DTII previously obtained numerically. In the absence of the shear effect, the diffusion coefficient is proportional to #betta#sub(i)a 2 (#betta#sub(i) is the effective collision frequency of the trapped ions and a is the minor radius of a torus) and is much larger than the neoclassical ion heat conductivity. In the presence of the shear effect, the diffusion coefficient is much smaller than the Kadomtsev and Pogutse's value and is the same order of magnitude as the neoclassical ion heat conductivity. Dependences of the diffusion coefficient on the temperature and on the total particle number density are rather complicated due to the additional spectral cut-off, which is introduced to regularize the short wavelength modes in the numerical analysis. (author)

  17. Live cell imaging combined with high-energy single-ion microbeam

    International Nuclear Information System (INIS)

    Guo, Na; Du, Guanghua; Liu, Wenjing; Wu, Ruqun; Wei, Junzhe; Guo, Jinlong; Chen, Hao

    2016-01-01

    DNA strand breaks can lead to cell carcinogenesis or cell death if not repaired rapidly and efficiently. An online live cell imaging system was established at the high energy microbeam facility at the Institute of Modern Physics to study early and fast cellular response to DNA damage after high linear energy transfer ion radiation. The HT1080 cells expressing XRCC1-RFP were irradiated with single high energy nickel ions, and time-lapse images of the irradiated cells were obtained online. The live cell imaging analysis shows that strand-break repair protein XRCC1 was recruited to the ion hit position within 20 s in the cells and formed bright foci in the cell nucleus. The fast recruitment of XRCC1 at the ion hits reached a maximum at about 200 s post-irradiation and then was followed by a slower release into the nucleoplasm. The measured dual-exponential kinetics of XRCC1 protein are consistent with the proposed consecutive reaction model, and the measurements obtained that the reaction rate constant of the XRCC1 recruitment to DNA strand break is 1.2 × 10 −3 s −1 and the reaction rate constant of the XRCC1 release from the break-XRCC1 complex is 1.2 × 10 −2 s −1 .

  18. Live cell imaging combined with high-energy single-ion microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Na; Du, Guanghua, E-mail: gh-du@impcas.ac.cn; Liu, Wenjing; Wu, Ruqun; Wei, Junzhe [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Guo, Jinlong [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Northwest Normal University, Lanzhou (China); Chen, Hao [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Institute of Nuclear Science and Technology, University of Lanzhou, Lanzhou (China)

    2016-03-15

    DNA strand breaks can lead to cell carcinogenesis or cell death if not repaired rapidly and efficiently. An online live cell imaging system was established at the high energy microbeam facility at the Institute of Modern Physics to study early and fast cellular response to DNA damage after high linear energy transfer ion radiation. The HT1080 cells expressing XRCC1-RFP were irradiated with single high energy nickel ions, and time-lapse images of the irradiated cells were obtained online. The live cell imaging analysis shows that strand-break repair protein XRCC1 was recruited to the ion hit position within 20 s in the cells and formed bright foci in the cell nucleus. The fast recruitment of XRCC1 at the ion hits reached a maximum at about 200 s post-irradiation and then was followed by a slower release into the nucleoplasm. The measured dual-exponential kinetics of XRCC1 protein are consistent with the proposed consecutive reaction model, and the measurements obtained that the reaction rate constant of the XRCC1 recruitment to DNA strand break is 1.2 × 10{sup −3} s{sup −1} and the reaction rate constant of the XRCC1 release from the break-XRCC1 complex is 1.2 × 10{sup −2} s{sup −1}.

  19. Live cell imaging combined with high-energy single-ion microbeam

    Science.gov (United States)

    Guo, Na; Du, Guanghua; Liu, Wenjing; Guo, Jinlong; Wu, Ruqun; Chen, Hao; Wei, Junzhe

    2016-03-01

    DNA strand breaks can lead to cell carcinogenesis or cell death if not repaired rapidly and efficiently. An online live cell imaging system was established at the high energy microbeam facility at the Institute of Modern Physics to study early and fast cellular response to DNA damage after high linear energy transfer ion radiation. The HT1080 cells expressing XRCC1-RFP were irradiated with single high energy nickel ions, and time-lapse images of the irradiated cells were obtained online. The live cell imaging analysis shows that strand-break repair protein XRCC1 was recruited to the ion hit position within 20 s in the cells and formed bright foci in the cell nucleus. The fast recruitment of XRCC1 at the ion hits reached a maximum at about 200 s post-irradiation and then was followed by a slower release into the nucleoplasm. The measured dual-exponential kinetics of XRCC1 protein are consistent with the proposed consecutive reaction model, and the measurements obtained that the reaction rate constant of the XRCC1 recruitment to DNA strand break is 1.2 × 10-3 s-1 and the reaction rate constant of the XRCC1 release from the break-XRCC1 complex is 1.2 × 10-2 s-1.

  20. Scattering of atomic and molecular ions from single crystal surfaces of Cu, Ag and Fe

    International Nuclear Information System (INIS)

    Zoest, J.M. van.

    1986-01-01

    This thesis deals with analysis of crystal surfaces of Cu, Ag and Fe with Low Energy Ion scattering Spectroscopy (LEIS). Different atomic and molecular ions with fixed energies below 7 keV are scattered by a metal single crystal (with adsorbates). The energy and direction of the scattered particles are analysed for different selected charge states. In that way information can be obtained concerning the composition and atomic and electronic structure of the single crystal surface. Energy spectra contain information on the composition of the surface, while structural atomic information is obtained by direction measurements (photograms). In Ch.1 a description is given of the experimental equipment, in Ch.2 a characterization of the LEIS method. Ch.3 deals with the neutralization of keV-ions in surface scattering. Two different ways of data interpretation are presented. First a model is treated in which the observed directional dependence of neutralization action of the first atom layer of the surface is presented by a laterally varying thickness of the neutralizing layer. Secondly it is shown that the data can be reproduced by a more realistic, physical model based on atomic transition matrix elements. In Ch.4 the low energy hydrogen scattering is described. The study of the dissociation of H 2 + at an Ag surface r0230ted in a model based on electronic dissociation, initialized by electron capture into a repulsive (molecular) state. In Ch.5 finally the method is applied to the investigation of the surface structure of oxidized Fe. (Auth.)

  1. Electrochemical lithium-ion storage properties of quinone molecules encapsulated in single-walled carbon nanotubes.

    Science.gov (United States)

    Ishii, Yosuke; Tashiro, Kosuke; Hosoe, Kento; Al-Zubaidi, Ayar; Kawasaki, Shinji

    2016-04-21

    We investigated the electrochemical lithium-ion storage properties of 9,10-anthraquinone (AQ) and 9,10-phenanthrenequinone (PhQ) molecules encapsulated in the inner hollow core of single-walled carbon nanotubes (SWCNTs). The structural properties of the obtained encapsulated systems were characterized by electron microscopy, synchrotron powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. We found that almost all quinone molecules encapsulated in the SWCNTs can store Li-ions reversibly. Interestingly, the undesired capacity fading, which comes from the dissolution of quinone molecules into the electrolyte, was suppressed by the encapsulation. It was also found that the overpotential of AQ was decreased by the encapsulation, probably due to the high-electric conductivity of SWCNTs.

  2. Swift heavy ion induced modifications of single walled carbon nanotube thin films

    Energy Technology Data Exchange (ETDEWEB)

    Vishalli, E-mail: vishalli_2008@yahoo.com [Department of Physics, Panjab University, Chandigarh 160014 (India); Raina, K.K. [Materials Research Laboratory, School of Physics and Materials Science, Thapar University, P.O. Box 32, Patiala 147004, Punjab (India); Avasthi, D.K. [Materials Science Group, Inter University Accelerator Centre, Aruna Asaf Ali Marg, P.O. Box 10502, New Delhi 110067 (India); Srivastava, Alok [Department of Chemistry, Panjab University, Chandigarh 160014 (India); Dharamvir, Keya [Department of Physics, Panjab University, Chandigarh 160014 (India)

    2016-04-15

    Thin films of single walled carbon nanotubes (SWCNTs) were prepared by Langmuir–Blodgett method and irradiated with swift heavy ions, carbon and nickel each of energy 60 MeV. The ion beams have different electronic energy loss (S{sub e}) values and the samples were exposed to various irradiation doses. The irradiated films were characterized using Raman and optical absorption spectroscopy. Raman spectroscopy results indicate the competing processes of defect creation and healing (annealing) of SWCNTs at lower fluences, while at higher fluences defect creation or damage dominates. In UV–Vis–NIR spectroscopy we find that there is decrease in the intensity of characteristic peaks with every increasing fluence, indicating decrease in the optically active states with irradiation.

  3. Investigation on optical absorption properties of ion irradiated single walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vishalli,, E-mail: vishalli-2008@yahoo.com; Dharamvir, Keya, E-mail: keya@pu.ac.in [Department of Physics, Panjab University, Chandigarh (India); Kaur, Ramneek; Raina, K. K. [Materials Research Laboratory, School of Physics and Materials Science, Thapar University, Patiala (India); Avasthi, D. K. [Materials Science Group, Inter University Accelerator Centre, ArunaAsaf Ali Marg, NewDelhi (India); Jeet, Kiran [Electron Microscopy and Nanoscience laboratory, Punjab Agriculture University, Ludhiana (India)

    2015-08-28

    In the present study change in the optical absorption properties of single walled carbon nanotubes (SWCNTs) under nickel ion (60 MeV) irradiation at various fluences has been investigated. Langmuir Blodgett technique is used to deposit SWCNT thin film of uniform thickness. AFM analysis shows a network of interconnected bundles of nanotubes. UV-Vis-NIR absorption spectra indicate that the sample mainly contain SWCNTs of semiconducting nature. It has been found in absorption spectra that there is decrease in the intensity of the characteristic SWCNT peaks with increase in fluence. At fluence value 1×10{sup 14} ions/cm{sup 2} there is almost complete suppression of the characteristic SWCNTs peaks.The decrease in the optical absorption with increase in fluence is due to the increase in the disorder in the system which leads to the decrease in optically active states.

  4. Energy transduction and signal averaging of fluctuating electric fields by a single protein ion channel.

    Science.gov (United States)

    Verdia-Baguena, C; Gomez, V; Cervera, J; Ramirez, P; Mafe, S

    2016-12-21

    We demonstrate the electrical rectification and signal averaging of fluctuating signals using a biological nanostructure in aqueous solution: a single protein ion channel inserted in the lipid bilayer characteristic of cell membranes. The conversion of oscillating, zero time-average potentials into directional currents permits charging of a load capacitor to significant steady-state voltages within a few minutes in the case of the outer membrane porin F (OmpF) protein, a bacterial channel of Escherichia coli. The experiments and simulations show signal averaging effects at a more fundamental level than the traditional cell and tissue scales, which are characterized by ensembles of many ion channels operating simultaneously. The results also suggest signal transduction schemes with bio-electronic interfaces and ionic circuits where soft matter nanodiodes can be coupled to conventional electronic elements.

  5. An efficient single-step scheme for manipulating quantum information of two trapped ions beyond the Lamb-Dicke limit

    International Nuclear Information System (INIS)

    Wei, L.F.; Nori, Franco

    2003-01-01

    Based on the exact conditional quantum dynamics for a two-ion system, we propose an efficient single-step scheme for coherently manipulating quantum information of two trapped cold ions by using a pair of synchronous laser pulses. Neither the auxiliary atomic level nor the Lamb-Dicke approximation are needed

  6. Étude ab initio de molécules aimants à base d'ions lanthanides

    OpenAIRE

    Jung , Julie

    2015-01-01

    Lanthanide ions have been used successfully in the synthesis of single molecule magnets for more than a decade. This particular class of molecules shows slow relaxation of their magnetization from purely molecular origin. This property come mainly from the strong single ion anisotropy of these ions, and from their high magnetic moment. In the case of complexes with more than one spin carrier (3d, 4f metal or organic radical), coupling interactions can arise. These are called magnetic exchange...

  7. Measurement of the thermopower anisotropy in iron arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, T., E-mail: fujii@crc.u-tokyo.ac.jp [Cryogenic Research Center, the University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-0032 (Japan); Shirachi, T. [Department of Applied Physics, the University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Asamitsu, A. [Cryogenic Research Center, the University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-0032 (Japan); Department of Applied Physics, the University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Ashikaga Institute of Technology, 268-1 Omae, Ashikaga, Tochigi 326-8558 (Japan)

    2016-11-15

    Highlights: • In this study, in order to investigate the origin of the in-plane anisotropy, the in-plane anisotropy of the thermopower was measured for the detwined single crystals of BFe{sub 2}As{sub 2}. And, we found no anisotropy in the thermopower above T{sub AFO}, although there is a large anisotropy in the resistivity. This result gives evidence that the anisotropy in the resistivity arise from the anisotropy of the scattering time, and the energy dependence of the scattering time can be considered negligible. In the case of iron pnictides, the proposed orbital ordering more likely results in an anisotropy of electronic structure below T{sub AFO}, whereas the spin-nematic ordering leads to an anisotropy of electron scattering above T{sub AFO}. Therefore, our results suggest that nematicity above T{sub AFO} results from anisotropic magnetic scattering. - Abstract: We investigated the in-plane anisotropy of the thermopower and electrical resistivity on detwinned single crystals of BaFe{sub 2}As{sub 2}. The in-plane anisotropy of the resistivity was clearly observed far above the magnetostructural transition temperature T{sub AFO}. While, the thermopower showed the in-plane anisotropy only below T{sub AFO}. These results are associated with the different origin of the anisotropy above and below T{sub AFO}. Since the thermopower does not depend on the scattering time, the anisotropy of the resistivity above T{sub AFO} is considered to be due to the anisotropic scattering. On the other hand, the anisotropy in the thermopower below T{sub AFO} is ascribed to the reconstructed Fermi surface.

  8. Numerical simulation study into the effect of a single heavy ion on a sub-micron CMOS device

    International Nuclear Information System (INIS)

    Detcheverry, C.; Lorfevre, E.; Bruguier, G.; Palau, J.M.; Gasiot, J.; Ecoffet, R.

    1997-01-01

    This article discusses coupling between the MEDICI component simulator and the SPICE circuit simulator to study single-event-upset phenomena caused by a single ion on a 0.6 μm CMOS device. Results conforming closely to experimental values were obtained by adopting an appropriate mesh size, a hydrodynamic charge transport model (rather than a diffusion-conduction model), and realistic simulation of photon-induced carrier generation, to accurately model the ion passage and trajectory. (authors)

  9. Single-Qubit-Gate Error below 0.0001 in a Trapped Ion

    Science.gov (United States)

    2011-01-01

    nuclear spins in liquid-state nuclear-magnetic resonance experiments [6] and with neutral atoms confined in optical lattices [7]; here we demonstrate...Single trapped ion 2.0(2)×10−5 Reference [6] (2009) Nuclear magnetic resonance 1.3(1)×10−4 Reference [7] (2010) Atoms in an optical lattice 1.4(1)×10...determined by comparing the qubit frequency measured in a Ramsey experiment with that of a Rabi experiment. Such back-to-back comparisons yielded values

  10. Machining with micro-size single crystalline diamond tools fabricated by a focused ion beam

    International Nuclear Information System (INIS)

    Ding, X; Butler, D L; Lim, G C; Shaw, K C; Liu, K; Fong, W S; Zheng, H Y; Cheng, C K

    2009-01-01

    A study was carried out to understand the physics of micro-scale mechanical machining (henceforth referred to as 'micro-machining') with a micro-size tool using a five-axis ultra-precision machine. A micro-size single crystalline diamond (SCD) tool with sharp cutting edges fabricated by a focused ion beam (FIB) was employed to orthogonal-machine four materials (three polycrystalline metals with various grain sizes and one amorphous metal plating material). Since the wealth of knowledge of macro-machining cannot be successfully used in micro-machining, this study contributes to the understanding of the physics of mechanical machining with micro-size tools

  11. Rational Design of Lanthanoid Single-Ion Magnets: Predictive Power of the Theoretical Models.

    Science.gov (United States)

    Baldoví, José J; Duan, Yan; Morales, Roser; Gaita-Ariño, Alejandro; Ruiz, Eliseo; Coronado, Eugenio

    2016-09-12

    We report two new single-ion magnets (SIMs) of a family of oxydiacetate lanthanide complexes with D3 symmetry to test the predictive capabilities of complete active space ab initio methods (CASSCF and CASPT2) and the semiempirical radial effective charge (REC) model. Comparison of the theoretical predictions of the energy levels, wave functions and magnetic properties with detailed spectroscopic and magnetic characterisation is used to critically discuss the limitations of these theoretical approaches. The need for spectroscopic information for a reliable description of the properties of lanthanide SIMs is emphasised. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Subattoampere current induced by single ions in silicon oxide layers of nonvolatile memory cells

    International Nuclear Information System (INIS)

    Cellere, G.; Paccagnella, A.; Larcher, L.; Visconti, A.; Bonanomi, M.

    2006-01-01

    A single ion impinging on a thin silicon dioxide layer generates a number of electron/hole pairs proportional to its linear energy transfer coefficient. Defects generated by recombination can act as a conductive path for electrons that cross the oxide barrier, thanks to a multitrap-assisted mechanism. We present data on the dependence of this phenomenon on the oxide thickness by using floating gate memory arrays. The tiny number of excess electrons stored in these devices allows for extremely high sensitivity, impossible with any direct measurement of oxide leakage current. Results are of particular interest for next generation devices

  13. Fracture analysis of surface exfoliation on single crystal silicon irradiated by intense pulsed ion beam

    Science.gov (United States)

    Shen, Jie; Shahid, Ijaz; Yu, Xiao; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Liang, Guoying; Yu, Xiang; Huang, Wanying; Yan, Sha; Zhang, Gaolong; Zhang, Xiaofu; Le, Xiaoyun

    2017-12-01

    Surface exfoliation was observed on single crystal silicon surface irradiated by Intense Pulsed Ion Beam (IPIB). As the strong transient thermal stress impact induced by IPIB was mainly attributed to the exfoliation, a micro scale model combined with thermal conduction and linear elastic fracture mechanics was built to analyze the thermal stress distribution along the energy deposition process. After computation with finite element method, J integral parameter was applied as the criterion for crack development. It was demonstrated that the exfoliation initiation calls for specific material, crack depth and IPIB parameter. The results are potentially valuable for beam/target selection and IPIB parameter optimization.

  14. Anisotropy, reversibility and scale dependence of transport properties in single fracture and fractured zone - Non-sorbing tracer experiment at the Kamaishi mine

    International Nuclear Information System (INIS)

    Sawada, Atushi; Uchida, Masahiro; Shimo, Michito; Yamamoto, Hajime; Takahara, Hiroyuki; Doe, T.W.

    2001-01-01

    A comprehensive set of the non-sorbing tracer experiments were run in the granodiorite of the Kamaishi mine located in the northern part of the main island of Japan-Honshu. A detailed geo-hydraulic investigation was carried out prior to performing the tracer migration experiments. The authors conducted a detailed but simple investigation in order to understand the spatial distribution of conductive fractures and the pressure field. Seven boreholes were drilled in the test area of which dimension is approximately 80 meters by 60 meters, revealing hydraulic compartmentalization and a heterogeneous distribution of conductive features. Central three boreholes which are approx. 2 to 4 meters apart form a triangle array. After identifying two hydraulically isolated fractures and one fractured zone, a comprehensive non-sorbing tracer experiments were conducted. Four different dipole fields were used to study the heterogeneity within a fracture. Firstly, anisotropy was studied using the central borehole array of three boreholes and changing injection/withdrawal wells. Secondly, dipole ratio was varied to study how prume spread could affect the result. Thirdly, reversibility was studied by switching injection/withdrawal wells. Lastly, scale dependency was studied by using outer boreholes. The tracer breakthrough curves were analyzed by using a streamline, analytical solution and numerical analysis of mass transport. Best-fit calculations of the experimental breakthrough curves were obtained by assigning apertures within the range of 1-10 times the square root of transmissivity and a dispersion length equal to 1/10 of the migration length. Different apertures and dispersion lengths were also interpreted in anisotropy case, reversibility case and scale dependency case. Fractured zone indicated an increased aperture and increased dispersivity

  15. Electron paramagnetic resonance and optical absorption of uranium ions diluted in CdF2 single crystals

    International Nuclear Information System (INIS)

    Pereira, J.J.C.R.

    1976-08-01

    The electron paramagnetic resonance (EPR) has been studied in conection with the optical absortion spectra of Uranium ions diluted in CdF 2 single crystals. Analyses of the EPR and optical absorption spectra obtained experimentally, and a comparison with known results in the isomorfic CaF 2 , SrF 2 and BaF 2 , allowed the identification of two paramagnetic centers associated with Uranium ions. These are the U(2+) ion in cubic symmetry having the triplet γ 5 as ground state, and the U(3+) ion in cubic symmetry having the dublet γ 6 as ground state. (Author) [pt

  16. Numerical Simulations of Calcium Ions Spiral Wave in Single Cardiac Myocyte

    Science.gov (United States)

    Bai, Yong-Qiang; Zhu, Xing

    2010-04-01

    The calcium ions (Ca2+) spark is an elementary Ca2+ release event in cardiac myocytes. It is believed to buildup cell-wide Ca2+ signals, such as Ca2+ transient and Ca2+ wave, through a Ca2+-induced Ca2+ release (CICR) mechanism. Here the excitability of the Ca2+ wave in a single cardiac myocyte is simulated by employing the fire-diffuse-fire model. By modulating the dynamic parameters of Ca2+ release and re-uptake channels, we find three Ca2+ signaling states in a single cardiac myocyte: no wave, plane wave, and spiral wave. The period of a spiral wave is variable in the different regimes. This study indicates that the spiral wave or the excitability of the system can be controlled through micro-modulation in a living excitable medium.

  17. Experimental Verification of a Jarzynski-Related Information-Theoretic Equality by a Single Trapped Ion

    Science.gov (United States)

    Xiong, T. P.; Yan, L. L.; Zhou, F.; Rehan, K.; Liang, D. F.; Chen, L.; Yang, W. L.; Ma, Z. H.; Feng, M.; Vedral, V.

    2018-01-01

    Most nonequilibrium processes in thermodynamics are quantified only by inequalities; however, the Jarzynski relation presents a remarkably simple and general equality relating nonequilibrium quantities with the equilibrium free energy, and this equality holds in both the classical and quantum regimes. We report a single-spin test and confirmation of the Jarzynski relation in the quantum regime using a single ultracold Ca40 + ion trapped in a harmonic potential, based on a general information-theoretic equality for a temporal evolution of the system sandwiched between two projective measurements. By considering both initially pure and mixed states, respectively, we verify, in an exact and fundamental fashion, the nonequilibrium quantum thermodynamics relevant to the mutual information and Jarzynski equality.

  18. High-fidelity state detection and tomography of a single-ion Zeeman qubit

    International Nuclear Information System (INIS)

    Keselman, A; Glickman, Y; Akerman, N; Kotler, S; Ozeri, R

    2011-01-01

    We demonstrate high-fidelity Zeeman qubit state detection in a single trapped 88 Sr + ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm, followed by state-selective fluorescence detection. The average fidelity reached for the readout of the qubit state is 0.9989(1). We then measure the fidelity of state tomography, averaged over all possible single-qubit states, which is 0.9979(2). We also fully characterize the detection process using quantum process tomography. This readout fidelity is compatible with recent estimates of the detection error threshold required for fault-tolerant computation, whereas high-fidelity state tomography opens the way for high-precision quantum process tomography.

  19. High-fidelity state detection and tomography of a single-ion Zeeman qubit

    Energy Technology Data Exchange (ETDEWEB)

    Keselman, A; Glickman, Y; Akerman, N; Kotler, S; Ozeri, R, E-mail: ozeri@weizmann.ac.il [Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2011-07-15

    We demonstrate high-fidelity Zeeman qubit state detection in a single trapped {sup 88}Sr{sup +} ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm, followed by state-selective fluorescence detection. The average fidelity reached for the readout of the qubit state is 0.9989(1). We then measure the fidelity of state tomography, averaged over all possible single-qubit states, which is 0.9979(2). We also fully characterize the detection process using quantum process tomography. This readout fidelity is compatible with recent estimates of the detection error threshold required for fault-tolerant computation, whereas high-fidelity state tomography opens the way for high-precision quantum process tomography.

  20. Conductometric determination of single pores in polyethyleneterephthalate irradiated by heavy ions

    International Nuclear Information System (INIS)

    Oganesyan, V.R.; Trofimov, V.V.; Doerschel, B.; Hermsdorf, D.; Vetter, J.; Danziger, M.

    2002-01-01

    Most of the previous works devoted to the problem of track formation processes did not pay enough attention to direct measurement of the appearance of every individual pore in an array of many pores induced by the irradiation of polymer films with ions. Such measurements are not easy to carry out due to the extremely high electric resistance in the moment of pore opening. In this work the analysis of films irradiated with low particle fluences up to 3.7·10 3 ions/cm 2 is described. Polyethyleneterephthalate (PET) Hostaphan with a thickness of 20μm was used. The samples were irradiated with Bi ions of 11.4 MeV/amu energy. Using optimized etching conditions and computer aided data evaluation, we obtained results, which are in good agreement with theoretical predictions and model calculations. The measured increase of conductivity beginning from the breakthrough of a single track up to the next pore opening in dependence on the etching time and the number of opened pores confirm the assumed model. Thus, the developed 'track-by-track' method can be used effectively for description of the sequential appearance of individual pores in an electrolytic etching process

  1. Nanomechanical investigation of ion implanted single crystals - Challenges, possibilities and pitfall traps related to nanoindentation

    Science.gov (United States)

    Kurpaska, Lukasz

    2017-10-01

    Nanoindentation technique have developed considerably over last thirty years. Nowadays, commercially available systems offer very precise measurement in nano- and microscale, environmental noise cancelling (or at least noise suppressing), in situ high temperature indentation in controlled atmosphere and vacuum conditions and different additional options, among them dedicated indentation is one of the most popular. Due to its high precision, and ability to measure mechanical properties from very small depths (tens of nm), this technique become quite popular in the nuclear society. It is known that ion implantation (to some extent) can simulate the influence of neutron flux. However, depth of the material damage is very limited resulting in creation of thin layer of modified material over unmodified bulk. Therefore, only very precise technique, offering possibility to control depth of the measurement can be used to study functional properties of the material. For this reason, nanoindentation technique seems to be a perfect tool to investigate mechanical properties of ion implanted specimens. However, conducting correct nanomechanical experiment and extracting valuable mechanical parameters is not an easy task. In this paper a discussion about the nanoindentation tests performed on ion irradiated YSZ single crystal is presented. The goal of this paper is to discuss possible traps when studying mechanical properties of such materials and thin coatings.

  2. An investigation of electron paramagnetic resonance spectra of Mn+2 ion in silver nitrate single crystals

    International Nuclear Information System (INIS)

    Korkmaz, M.

    1974-01-01

    X-band EPR spectra of Mn +2 ion in AgNO 3 single crystals have been investigated as a function of temperature. Because of the small size of the fine structure constant 'a' and the large size of the hyperfine constant 'A' in this crystal, all electronic transitions are superimposed. For this reason, spectra consist of a group of six hyperfine components. The spectra appeared to be isotropic, although the symmetry of the host lattice is orthoromibc. This shows that the local symmetry of the paramagnetic ions is of cubic type. EPR signal disappears completely at -40 0 C. As the temperature is increased from this value the signal intensity increases steadily and reaches a maximum value at +40 0 C. If the temperature is raised further the signal tends to decrease. In other words in this crystal Mn +2 ion shows antiferromagnetic property below +40 0 C and paramagnetic property above +40 0 C. We also found that, in the antiferromagnetic region, the line width increases as the temperature is decreased. In the paramagnetic region the line width increases as the temperature is increased. Other spectral parameters A and g do not change with the temperature. Spectra obtained at room temperature and at different temperatures are also discussed. (Korkmaz, M.)

  3. Diode-like single-ion track membrane prepared by electro-stopping

    International Nuclear Information System (INIS)

    Apel, P.Yu.; Korchev, Yu.E.; Siwy, Z.; Spohr, R.; Yoshida, M.

    2001-01-01

    The preparation of an asymmetric membrane in poly(ethylene terephthalate) (PET) is described, using a combination of chemical and electro-stopping. For this purpose, a single-ion-irradiated PET film is inserted into an electrolytic cell and etched from one side in 9 M sodium hydroxide while bathing the other side in a mixture of 2 M KCl and 2 M HCOOH (1:1 by volume), electrically retracting the OH - ions from the tip of the etch pit during pore break-through. When a preset current has been reached, the etch process is interrupted by replacing the etching solution with acidic 1 M potassium chloride solution. After etching, the current-voltage (I-V) characteristic is determined under symmetric bathing conditions, immersing both sides of the membrane in KCl solutions of identical concentration (0.01-1 M) and pH (3-8). The I-V characteristic is strongly non-linear, comparable to that of an electrical diode. If the polarity during etching is reversed, pushing the OH - ions into the tip of the etch pit, the resulting pores are larger and the degree of asymmetry smaller. The importance of electro-stopping is compared with chemical stopping

  4. Conductometric determination of single pores in polyethyleneterephthalate irradiated by heavy ions

    CERN Document Server

    Oganesyan, V R; Dörschel, B; Hermsdorf, D; Trofimov, V V; Vetter, J

    2002-01-01

    Most of the previous works devoted to the problem of track formation processes did not pay enough attention to direct measurement of the appearance of every individual pore in an array of many pores induced by the irradiation of polymer films with ions. Such measurements are not easy to carry out due to the extremely high electric resistance in the moment of pore opening. In this work the analysis of films irradiated with low particle fluences up to 3.7 centre dot 10 sup 3 ions/cm sup 2 is described. Polyethyleneterephthalate (PET) Hostaphan with a thickness of 20 mu m was used. The samples were irradiated with Bi ions of 11.4 MeV/amu energy. Using optimized etching conditions and computer aided data evaluation, we obtained results, which are in good agreement with theoretical predictions and model calculations. The measured increase of conductivity beginning from the breakthrough of a single track up to the next pore opening in dependence on the etching time and the number of opened pores confirm the assumed...

  5. Conductometric Determination of Single Pores in Polyethyleneterephthalate Irradiated by Heavy Ions

    CERN Document Server

    Oganesyan, V R; Dörschel, B; Vetter, J E; Danziger, M; Hermsdorf, D

    2002-01-01

    Most of previous works devoted to the problem of track formation processes did not pay enough attention to direct measurement of the appearance of every individual pore in an array of many pores induced by the irradiation of polymer films with ions. Such measurements are not easy to carry out due to the extremely high electric resistance in the moment of pore opening. In this work the analysis of films irradiated with low particle fluences up to 3.7\\cdot 10^{3} ions/cm^2 is described. Polyethyleneterephthalate (PET) Hostaphan with a thickness of 20 m was used. The samples were irradiated with Bi ions of 11.4 MeV/amu energy. Using optimized etching conditions and computer aided data evaluation we obtained results, which are in good agreement with theoretical predictions and model calculations. The measured increase of conductivity beginning from the breakthrough of a single track up to the next pore opening in dependence on the etching time and the number of opened pores confirm the assumed model. Thus, the de...

  6. Development of the IFJ single ion hit facility for cells irradiation

    International Nuclear Information System (INIS)

    Veselov, O.; Polak, W.; Ugenskiene, R.; Hajduk, R.; Lebed, K.; Lekki, J.; Horwacik, T.; Dutkiewicz, E.M.; Maranda, S.; Pieprzyca, T.; Sarnecki, C.; Stachura, Z.; Szklarz, Z.; Styczen, J.

    2005-12-01

    In recent years a single ion hit facility (SIHF) has been constructed at the IFJ ion microprobe. The setup is used for the precise irradiations of living cells by a controlled number of ions. The facility allows investigations in various aspects of biomedical research, such as adaptive response, bystander effect, inverse dose-rate effect, low-dose hypersensitivity, etc. Those investigations have two very important requirements: (i) cells must be examined in their natural state and environment, i.e. without previously being killed, and preferentially, neither fixed nor stained, and (ii) a possibility of automatic irradiation of large number of cells with a computer recognition of their positions must be provided. This work presents some of the crucial features of the off-line and on-line optical systems, including self-developed software responsible for the automatic cell recognition. We also show several tests carried out to determine the efficiency of the whole setup and some segments. In conclusion, the results of our first irradiation measurements performed with living cells are demonstrated. (author)

  7. Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries

    KAUST Repository

    Tu, Zhengyuan

    2017-09-21

    Substrates able to rectify transport of ions based on charge and/or size are ubiquitous in biological systems. Electrolytes and interphases that selectively transport electrochemically active ions are likewise of broad interest in all electrical energy storage technologies. In lithium-ion batteries, electrolytes with single- or near-single-ion conductivity reduce losses caused by ion polarization. In emergent lithium or sodium metal batteries, they maintain high conductivity at the anode and stabilize metal deposition by fundamental mechanisms. We report that 20- to 300-nm-thick, single-ion-conducting membranes deposited at the anode enable electrolytes with the highest combination of cation transference number, ionic conductivity, and electrochemical stability reported. By means of direct visualization we find that single-ion membranes also reduce dendritic deposition of Li in liquids. Galvanostatic measurements further show that the electrolytes facilitate long (3 mAh) recharge of full Li/LiNi0.8Co0.15Al0.05O2 (NCA) cells with high cathode loadings (3 mAh cm−2/19.9 mg cm−2) and at high current densities (3 mA cm−2).

  8. First-principles study of the giant magnetic anisotropy energy in bulk Na4IrO4

    Science.gov (United States)

    Wang, Di; Tang, Feng; Du, Yongping; Wan, Xiangang

    2017-11-01

    In 5 d transition-metal oxides, novel properties arise from the interplay of electron correlations and spin-orbit interactions. Na4IrO4 , where the 5 d transition-metal Ir atom occupies the center of the square-planar coordination environment, has attracted research interest. Based on density functional theory, we present a comprehensive investigation of electronic and magnetic properties of Na4IrO4 . We propose the magnetic ground-state configuration, and find that the magnetic easy axis is perpendicular to the IrO4 plane. The magnetic anisotropy energy (MAE) of Na4IrO4 is found to be giant. We estimate the magnetic parameters in the generalized symmetry-allowed spin model, and find that the next-nearest-neighbor exchange interaction J2 is much larger than other intersite exchange interactions and results in the magnetic ground-state configuration. The numerical results reveal that the anisotropy of interatomic spin-exchange interaction is quite small and the huge MAE comes from the single-ion anisotropy. This compound has a large spin gap but very narrow spin-wave dispersion, due to the large single-ion anisotropy and quite small intersite exchange couplings. We clarify that these remarkable magnetic features are originated from its highly isolated and low-symmetry IrO4 moiety. We also explore the possibility to further enhance the MAE.

  9. Persistent photoconductivity in hydrogen ion-implanted KNbO3 bulk single crystal

    Science.gov (United States)

    Tsuruoka, R.; Shinkawa, A.; Nishimura, T.; Tanuma, C.; Kuriyama, K.; Kushida, K.

    2017-06-01

    Persistent Photoconductivity (PPC) in hydorogen-ion implanted (001) oriented KNbO3 bulk single crystals (perovskite structure at room temperature; ferroelectric with a band gap of 3.16 eV) is studied in air at room temperature to prevent the crystallinity degradation caused by the phase transition. Hydrogen is implanted into KNbO3 bulk single crystals using the energy (the peak ion fluence) of 500 keV (5.0 × 1015 cm-2). The resistivity varies from ∼108 Ω/□ for an un-implanted KNbO3 sample to 2.3 × 105 Ω/□ for as-implanted one. suggesting the presence of donors consisting of hydrogen interstitial and oxygen vacancy. The PPC is clearly observed with ultraviolet and blue LEDs illumination rather than green and infrared, suggesting the release of electrons from the metastable conductive state below the conduction band relating to the charge states of the oxygen vacancy as observed in electron irradiated ZnO.

  10. Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate

    International Nuclear Information System (INIS)

    Sun Xiaoguang; Hou Jun; Kerr, John B.

    2005-01-01

    Comb-shaped single ion conductors have been synthesized by (1) sulfonation of small molecule chloroethyleneglycols, which, after ion exchange to the Li + salt were then converted to the acrylate by reaction with acryloyl chloride and copolymerized with polyethylene glycol monomethyl ether acrylate (Mn = 454, n = 8) (PAE 8 -co-E 3 SO 3 Li); (2) sulfonation of chloride end groups grafted on to prepolymers of polyacrylate ethers (PAE 8 -g-E n SO 3 Li, n = 2, 3). The highest conductivity at 25 deg. C of 2.0 x 10 -7 S cm -1 was obtained for the PAE 8 -co-E 3 SO 3 Li with a salt concentration of EO/Li = 40. The conductivity of PAE 8 -g-E 3 SO 3 Li is lower than that of PAE 8 -co-E 3 SO 3 Li at similar salt concentrations, which is related to the incomplete sulfonation of the grafted polymer that leads to a lower concentration of Li + . The addition of 50 wt.% of plasticizer, PC/EMC (1/1, v/v), to PAE 8 -g-E 2 SO 3 Li increases the ambient conductivity by three orders of magnitude, which is due to the increased ion mobility in a micro-liquid environment and an increase concentration of free ions as a result of the higher dielectric constant of the solvent. A symmetrical Li/Li cell with an electrolyte membrane consisting of 75 wt.% PC/EMC (1/1, v/v) was cycled at a current density of 100 μA cm -2 at 85 deg. C. The cycling profile showed no concentration polarization after a break-in period during the first few cycles, which was apparently due to reaction of the solvent at the lithium metal surface that reacted with lithium metal to form a stable SEI layer

  11. Ion assisted structural collapse of a single stranded DNA: A molecular dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Soumadwip; Dixit, Himanshu; Chakrabarti, Rajarshi, E-mail: rajarshi@chem.iitb.ac.in

    2015-09-28

    Highlights: • The dynamics of a single-stranded DNA in presence of different concentrations of Mg{sup 2+} is investigated. • The initial DNA chain collapse is characterized by the formation of non-sequentially stacked base pairs. • The DNA chain re-swells at high concentrations of Mg{sup 2+} as a consequence of overcharging. - Abstract: The structure and dynamics of negatively charged nucleic acids strongly correlate with the concentration and charge of the oppositely charged counterions. It is well known that the structural collapse of DNA is favoured in the presence of additional salt, a source of excess oppositely charged ions. Under such conditions single stranded DNA adopts a collapsed coil like conformation, typically characterized by stacking base pairs. Using atomistic molecular dynamics simulation, we demonstrate that in the presence of additional divalent salt (MgCl{sub 2}) single stranded DNA with base sequence 5′-CGCGAATTCGCG-3′ (Dickerson Drew dodecamer) initially collapses and then expands with increasing salt concentration. This is due to the overcharging induced DNA chain swelling, a dominant factor at a higher divalent salt concentration. In a nutshell, our simulations show how in the presence of divalent salt, non-sequential base stacking and overcharging competes and affect single stranded DNA dynamics unlike a monovalent salt.

  12. Seismic anisotropy - Introduction

    Czech Academy of Sciences Publication Activity Database

    Grechka, V.; Pšenčík, Ivan; Ravve, I.; Tsvankin, I.

    2017-01-01

    Roč. 82, č. 4 (2017), WAI-WAII ISSN 0016-8033 Institutional support: RVO:67985530 Keywords : seismic anisotropy Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 2.391, year: 2016

  13. Study of magnetization reversal and anisotropy of single crystalline ultrathin Fe/MgO (001) film by magneto-optic Kerr effect

    Science.gov (United States)

    Miao-Ling, Zhang; Jun, Ye; Rui, Liu; Shu, Mi; Yong, Xie; Hao-Liang, Liu; Chris Van, Haesendonck; Zi-Yu, Chen

    2016-04-01

    The magnetization reversal process of Fe/MgO (001) thin film is investigated by combining transverse and longitudinal hysteresis loops. Owing to the competition between domain wall pinning energy and weak uniaxial magnetic anisotropy, the typical magnetization reversal process of Fe ultrathin film can take place via either an “l-jump” process near the easy axis, or a “2-jump” process near the hard axis, depending on the applied field orientation. Besides, the hysteresis loop presents strong asymmetry resulting from the variation of the detected light intensity due to the quadratic magneto-optic effect. Furthermore, we modify the detectable light intensity formula and simulate the hysteresis loops of the Kerr signal. The results show that they are in good agreement with the experimental data. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274033, 11474015, and 61227902), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20131102130005), and the Beijing Key Discipline Foundation of Condensed Matter Physics.

  14. Studies of anisotropy of iron based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Jason A. [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    To study the electronic anisotropy in iron based superconductors, the temperature dependent London penetration depth, Δλ(T), have been measured in several compounds, along with the angular dependent upper critical field, Hc2(T). Study was undertaken on single crystals of Ba(Fe1-xCox)2As2 with x=0.108 and x=0.127, in the overdoped range of the doping phase diagram, characterized by notable modulation of the superconducting gap. Heavy ion irradiation with matching field doses of 6 T and 6.5 T respectively, were used to create columnar defects and to study their effect on the temperature Δλ(T). The variation of the low-temperature penetration depth in both pristine and irradiated samples was fitted with a power-law function Δλ(T) = ATn. Irradiation increases the magnitude of the pre-factor A and decreases the exponent n, similar to the effect on the optimally doped samples. This finding supports the universal s ± scenario for the whole doping range.

  15. Verifying Heisenberg's error-disturbance relation using a single trapped ion.

    Science.gov (United States)

    Zhou, Fei; Yan, Leilei; Gong, Shijie; Ma, Zhihao; He, Jiuzhou; Xiong, Taiping; Chen, Liang; Yang, Wanli; Feng, Mang; Vedral, Vlatko

    2016-10-01

    Heisenberg's uncertainty relations have played an essential role in quantum physics since its very beginning. The uncertainty relations in the modern quantum formalism have become a fundamental limitation on the joint measurements of general quantum mechanical observables, going much beyond the original discussion of the trade-off between knowing a particle's position and momentum. Recently, the uncertainty relations have generated a considerable amount of lively debate as a result of the new inequalities proposed as extensions of the original uncertainty relations. We report an experimental test of one of the new Heisenberg's uncertainty relations using a single 40 Ca + ion trapped in a harmonic potential. By performing unitary operations under carrier transitions, we verify the uncertainty relation proposed by Busch, Lahti, and Werner (BLW) based on a general error-trade-off relation for joint measurements on two compatible observables. The positive operator-valued measure, required by the compatible observables, is constructed by single-qubit operations, and the lower bound of the uncertainty, as observed, is satisfied in a state-independent manner. Our results provide the first evidence confirming the BLW-formulated uncertainty at a single-spin level and will stimulate broad interests in various fields associated with quantum mechanics.

  16. Verifying Heisenberg’s error-disturbance relation using a single trapped ion

    Science.gov (United States)

    Zhou, Fei; Yan, Leilei; Gong, Shijie; Ma, Zhihao; He, Jiuzhou; Xiong, Taiping; Chen, Liang; Yang, Wanli; Feng, Mang; Vedral, Vlatko

    2016-01-01

    Heisenberg’s uncertainty relations have played an essential role in quantum physics since its very beginning. The uncertainty relations in the modern quantum formalism have become a fundamental limitation on the joint measurements of general quantum mechanical observables, going much beyond the original discussion of the trade-off between knowing a particle’s position and momentum. Recently, the uncertainty relations have generated a considerable amount of lively debate as a result of the new inequalities proposed as extensions of the original uncertainty relations. We report an experimental test of one of the new Heisenberg’s uncertainty relations using a single 40Ca+ ion trapped in a harmonic potential. By performing unitary operations under carrier transitions, we verify the uncertainty relation proposed by Busch, Lahti, and Werner (BLW) based on a general error–trade-off relation for joint measurements on two compatible observables. The positive operator-valued measure, required by the compatible observables, is constructed by single-qubit operations, and the lower bound of the uncertainty, as observed, is satisfied in a state-independent manner. Our results provide the first evidence confirming the BLW-formulated uncertainty at a single-spin level and will stimulate broad interests in various fields associated with quantum mechanics. PMID:28861461

  17. How to resolve microsecond current fluctuations in single ion channels: The power of beta distributions

    Science.gov (United States)

    Schroeder, Indra

    2015-01-01

    Abstract A main ingredient for the understanding of structure/function correlates of ion channels is the quantitative description of single-channel gating and conductance. However, a wealth of information provided from fast current fluctuations beyond the temporal resolution of the recording system is often ignored, even though it is close to the time window accessible to molecular dynamics simulations. This kind of current fluctuations provide a special technical challenge, because individual opening/closing or blocking/unblocking events cannot be resolved, and the resulting averaging over undetected events decreases the single-channel current. Here, I briefly summarize the history of fast-current fluctuation analysis and focus on the so-called “beta distributions.” This tool exploits characteristics of current fluctuation-induced excess noise on the current amplitude histograms to reconstruct the true single-channel current and kinetic parameters. A guideline for the analysis and recent applications demonstrate that a construction of theoretical beta distributions by Markov Model simulations offers maximum flexibility as compared to analytical solutions. PMID:26368656

  18. Magnetic anisotropy of YFe.sub.3./sub. compound

    Czech Academy of Sciences Publication Activity Database

    Bolyachkin, A.S.; Neznakhin, D.S.; Garaeva, T.V.; Andreev, Alexander V.; Bartashevich, M. I.

    2017-01-01

    Roč. 426, Mar (2017), s. 740-743 ISSN 0304-8853 R&D Projects: GA ČR GA16-03593S Institutional support: RVO:68378271 Keywords : magnetic anisotropy * magnetization anisotropy * single crystal Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.630, year: 2016

  19. Dependence of the structure of ion-modified NiTi single crystal layers on the orientation of irradiated surface

    Science.gov (United States)

    Poletika, T. M.; Meisner, L. L.; Girsova, S. L.; Tverdokhlebova, A. V.; Meisner, S. N.

    2017-07-01

    The composition and structure of Si layers implanted into titanium nickelide single crystals with different orientations relative to the ion beam propagation direction have been studied using Auger electron spectroscopy and transmission electron microscopy. The role of the "soft" [111]B2 and "hard" [001]B2 NiTi orientations in the formation of the structure of ion-modified surface layer, as well as the defect structure of the surface layers of the single crystals, has been revealed. Orientation effects of selective sputtering and channeling of ions, which control the composition and thickness of the oxide and amorphous layers being formed, ion and impurity penetration depth, as well as the concentration profile of the Ni distribution over the surface, have been detected.

  20. The effect of Cu{sup II} ions in L-asparagine single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Ricardo C., E-mail: santana@ufg.br; Gontijo, Henrique O.; Menezes, Arthur F.; Martins, José A.; Carvalho, Jesiel F., E-mail: carvalho@ufg.br

    2016-11-15

    We report the synthesis, crystal growth, and spectroscopic characterization of L-asparagine monohydrate (LAM) single crystals doped with CuII. The crystals were successfully grown by slow cooling from a supersaturated aqueous solution up to size of 16×12×2 mm{sup 3};the effect of copper impurities in the crystals morphology was discussed. Electron Paramagnetic Resonance (EPR) was used to calculate the g and hyperfine coupling (A) tensors of the CuII ions (g{sub 1}=2.044, g{sub 2}=2.105, g{sub 3}=2.383and A{sub 1}≈0, A{sub 2}=35, A{sub 3}=108 Gauss). The EPR spectra for certain orientations of the magnetic field suggest that CuII ions are coordinated to two {sup 14}N atoms. Correlating the EPR and optical absorption results, the crystal field and the Cu{sup II} orbital bond parameters were calculated. The results indicate that the paramagnetic center occupies interstitial rhombic distorted site and the ground orbital state for the unpaired electron is the d(x{sup 2}-y{sup 2}).

  1. Non-destructive single-pass low-noise detection of ions in a beamline

    Science.gov (United States)

    Schmidt, Stefan; Murböck, Tobias; Andelkovic, Zoran; Birkl, Gerhard; Nörtershäuser, Wilfried; Stahl, Stefan; Vogel, Manuel

    2015-11-01

    We have conceived, built, and operated a device for the non-destructive single-pass detection of charged particles in a beamline. The detector is based on the non-resonant pick-up and subsequent low-noise amplification of the image charges induced in a cylindrical electrode surrounding the particles' beam path. The first stage of the amplification electronics is designed to be operated from room temperature down to liquid helium temperature. The device represents a non-destructive charge counter as well as a sensitive timing circuit. We present the concept and design details of the device. We have characterized its performance and show measurements with low-energy highly charged ions (such as Ar13+) passing through one of the electrodes of a cylindrical Penning trap. This work demonstrates a novel approach of non-destructive, low noise detection of charged particles which is, depending on the bunch structure, suitable, e.g., for ion traps, low-energy beamlines or accelerator transfer sections.

  2. Luminescent single-ion magnets from Lanthanoid(III) complexes with monodentate ketone ligands

    Energy Technology Data Exchange (ETDEWEB)

    Kanetomo, Takuya; Ishida, Takayuki, E-mail: takayuki.ishida@uec.ac.jp [Department of Engineering Science, The University of Electro-Communications, Tokyo (Japan)

    2016-02-01

    We synthesized [Ln{sup III}(hfac){sub 3}(H{sub 2}O)(L)] (abbreviated as Ln-L; Ln = Gd, Tb, Eu; L = DTBK (di-t-butyl ketone), BP (benzophenone)), in which the carbonyl oxygen atom was coordinated to the Ln ion center, despite of such bulky substituents. Their crystal structures were determined by means of X-ray diffraction study. Gd-DTBK is completely isomorphous to the di-t-butyl nitroxide derivative and accordingly can be regarded as a model with the ligand spin masked. The ac magnetic susceptibility measurements on Tb-DTBK and -BP showed frequency dependence, characteristic of single-ion magnets. They also displayed photoluminescence in the solid state at room temperature. The quantum yields of the luminescence of Tb-DTBK and -BP (λ{sub ex} = 360 nm) were improved to 57 and 35%, respectively, from that of the starting material [TbI{sup III}(hfac){sub 3}(H{sub 2}O){sub 2}] (28% at λ{sub ex} = 370 nm). Similarly, the quantum yields for Eu-DTBK and -BP were 8 and 15%, respectively, with λ{sub ex} = 400 nm, while that of the starting material [EuI{sup III}(hfac){sub 3}(H{sub 2}O){sub 2}] was 4% at λ{sub ex}=400 nm.

  3. Luminescent single-ion magnets from Lanthanoid(III) complexes with monodentate ketone ligands

    Science.gov (United States)

    Kanetomo, Takuya; Ishida, Takayuki

    2016-02-01

    We synthesized [LnIII(hfac)3(H2O)(L)] (abbreviated as Ln-L; Ln = Gd, Tb, Eu; L = DTBK (di-t-butyl ketone), BP (benzophenone)), in which the carbonyl oxygen atom was coordinated to the Ln ion center, despite of such bulky substituents. Their crystal structures were determined by means of X-ray diffraction study. Gd-DTBK is completely isomorphous to the di-t-butyl nitroxide derivative and accordingly can be regarded as a model with the ligand spin masked. The ac magnetic susceptibility measurements on Tb-DTBK and -BP showed frequency dependence, characteristic of single-ion magnets. They also displayed photoluminescence in the solid state at room temperature. The quantum yields of the luminescence of Tb-DTBK and -BP (λex = 360 nm) were improved to 57 and 35%, respectively, from that of the starting material [TbIIII(hfac)3(H2O)2] (28% at λex = 370 nm). Similarly, the quantum yields for Eu-DTBK and -BP were 8 and 15%, respectively, with λex = 400 nm, while that of the starting material [EuIIII(hfac)3(H2O)2] was 4% at λex=400 nm.

  4. Single Ion transient-IBIC analyses of semiconductor devices using a cryogenic temperature stage

    International Nuclear Information System (INIS)

    Laird, J.S.; Bardos, R.; Legge, G.J.F.; Jagadish, C.

    1998-01-01

    A new Transient - IBIC data acquisition and analysis system at MARC is described. A discussion on the need for single ion control and temperature control is also given. The recorded signal is used as the trigger for beam pulsing. The new cryostatic temperature control stage is introduced. Data is presented on line profiles across the edge of a Au-Si junction collected over the temperature range of 25-300K using a developed C-V and I-V variable temperature stage incorporating a liquid helium cryostat. It demonstrates the potential improvements in spatial resolution in materials of long lifetime by mapping on timing windows around the prompt charge component in the charge transient

  5. A diode laser stabilization scheme for 40Ca+ single-ion spectroscopy

    Science.gov (United States)

    Rohde, F.; Almendros, M.; Schuck, C.; Huwer, J.; Hennrich, M.; Eschner, J.

    2010-06-01

    We present a scheme for stabilizing multiple lasers at wavelengths between 795 and 866 nm to the same atomic reference line. A reference laser at 852 nm is stabilized to the Cs D2 line using a Doppler-free frequency modulation technique. Through transfer cavities, four lasers are stabilized to the relevant atomic transitions in 40Ca+. The rms linewidth of a transfer-locked laser is measured to be 123 kHz over 200 ms with respect to an independent atomic reference, the Rb D1 line. This stability is confirmed by the comparison of an excitation spectrum of a single 40Ca+ ion to an eight-level Bloch equation model. The long-term stability with respect to the same reference is measured to be 130 kHz over a period of 2 h. The high degree of stability is demonstrated by the measured Allan deviation around 10-11 between 1 and 100 s.

  6. A diode laser stabilization scheme for 40Ca+ single-ion spectroscopy

    International Nuclear Information System (INIS)

    Rohde, F; Almendros, M; Schuck, C; Huwer, J; Hennrich, M; Eschner, J

    2010-01-01

    We present a scheme for stabilizing multiple lasers at wavelengths between 795 and 866 nm to the same atomic reference line. A reference laser at 852 nm is stabilized to the Cs D 2 line using a Doppler-free frequency modulation technique. Through transfer cavities, four lasers are stabilized to the relevant atomic transitions in 40 Ca + . The rms linewidth of a transfer-locked laser is measured to be 123 kHz over 200 ms with respect to an independent atomic reference, the Rb D 1 line. This stability is confirmed by the comparison of an excitation spectrum of a single 40 Ca + ion to an eight-level Bloch equation model. The long-term stability with respect to the same reference is measured to be 130 kHz over a period of 2 h. The high degree of stability is demonstrated by the measured Allan deviation around 10 -11 between 1 and 100 s.

  7. Single Ion transient-IBIC analyses of semiconductor devices using a cryogenic temperature stage

    Energy Technology Data Exchange (ETDEWEB)

    Laird, J.S.; Bardos, R.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Jagadish, C. [Australian National Univ., Canberra, ACT (Australia). School of Physics, Electronic Materials Engineering

    1998-06-01

    A new Transient - IBIC data acquisition and analysis system at MARC is described. A discussion on the need for single ion control and temperature control is also given. The recorded signal is used as the trigger for beam pulsing. The new cryostatic temperature control stage is introduced. Data is presented on line profiles across the edge of a Au-Si junction collected over the temperature range of 25-300K using a developed C-V and I-V variable temperature stage incorporating a liquid helium cryostat. It demonstrates the potential improvements in spatial resolution in materials of long lifetime by mapping on timing windows around the prompt charge component in the charge transient. 2 figs.

  8. Dynamics of a single ion in a perturbed Penning trap: Octupolar perturbation

    International Nuclear Information System (INIS)

    Lara, Martin; Salas, J. Pablo

    2004-01-01

    Imperfections in the design or implementation of Penning traps may give rise to electrostatic perturbations that introduce nonlinearities in the dynamics. In this paper we investigate, from the point of view of classical mechanics, the dynamics of a single ion trapped in a Penning trap perturbed by an octupolar perturbation. Because of the axial symmetry of the problem, the system has two degrees of freedom. Hence, this model is ideal to be managed by numerical techniques like continuation of families of periodic orbits and Poincare surfaces of section. We find that, through the variation of the two parameters controlling the dynamics, several periodic orbits emanate from two fundamental periodic orbits. This process produces important changes (bifurcations) in the phase space structure leading to chaotic behavior

  9. Focused ion beam milling of nanocavities in single colloidal particles and self-assembled opals

    International Nuclear Information System (INIS)

    Woldering, Leon A; Otter, A M; Husken, Bart H; Vos, Willem L

    2006-01-01

    We present a new method of realizing single nanocavities in individual colloidal particles on the surface of silicon dioxide artificial opals using a focused ion beam milling technique. We show that both the radius and the position of the nanocavity can be controlled with nanometre precision, to radii as small as 40 nm. The relation between the defect size and the milling time has been established. We confirmed that milling not only occurs on the surface of the spheres, but into and through them as well. We also show that an array of nanocavities can be fashioned. Structurally modified colloids have interesting potential applications in nanolithography, as well as in chemical sensing and solar cells, and as photonic crystal cavities

  10. Angle-resolved imaging of single-crystal materials with MeV helium ions

    International Nuclear Information System (INIS)

    Strathman, M.D.; Baumann, S.

    1992-01-01

    The simplest form of angle-resolved mapping for single-crystal materials is the creation of a channeling angular scan. Several laboratories have expanded this simple procedure to include mapping as a function of two independent tilts. These angle-resolved images are particularly suited to the assessment of crystal parameters including disorder, lattice location of impurities, and lattice stress. This paper will describe the use of the Charles Evans and Associates RBS-400 scattering chamber for acquisition, display, and analysis of angle-resolved images obtained from backscattered helium ions. Typical data acquisition times are 20 min for a ±2deg X-Y tilt scan with 2500 pixels (8/100deg resolution), and 10 nC per pixel. In addition, we will present a method for automatically aligning crystals for channeling measurements based on this imaging technology. (orig.)

  11. On the calculation of single ion activity coefficients in homogeneous ionic systems by application of the grand canonical ensemble

    DEFF Research Database (Denmark)

    Sloth, Peter

    1993-01-01

    The grand canonical ensemble has been used to study the evaluation of single ion activity coefficients in homogeneous ionic fluids. In this work, the Coulombic interactions are truncated according to the minimum image approximation, and the ions are assumed to be placed in a structureless...... of the individual ionic activity coefficients with respect to the total ionic concentration. This formula has previously been proposed on the basis of somewhat different considerations....

  12. Field-Induced Single-Ion Magnet Behaviour in Two New Cobalt(II Coordination Polymers with 2,4,6-Tris(4-pyridyl-1,3,5-triazine

    Directory of Open Access Journals (Sweden)

    Dong Shao

    2017-12-01

    Full Text Available We herein reported the syntheses, crystal structures, and magnetic properties of a two-dimensional coordination polymer {[CoII(TPT2/3(H2O4][CH3COO]2·(H2O4}n (1 and a chain compound {[CoII(TPT2(CHOO2(H2O2]}n (2 based on the 2,4,6-Tris(4-pyridyl-1,3,5-triazine (TPT ligand. Structure analyses showed that complex 1 had a cationic hexagonal framework structure, while 2 was a neutral zig-zag chain structure with different distorted octahedral coordination environments. Magnetic measurements revealed that both complexes exhibit large easy-plane magnetic anisotropy with the zero-field splitting parameter D = 47.7 and 62.1 cm−1 for 1 and 2, respectively. This magnetic anisotropy leads to the field-induced slow magnetic relaxation behaviour. However, their magnetic dynamics are quite different; while complex 1 experienced a dominating thermally activated Orbach relaxation at the whole measured temperature region, 2 exhibited multiple relaxation pathways involving direct, Raman, and quantum tunneling (QTM processes at low temperatures and Orbach relaxation at high temperatures. The present complexes enlarge the family of framework-based single-ion magnets (SIMs and highlight the significance of the structural dimensionality to the final magnetic properties.

  13. Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors.

    Science.gov (United States)

    Karas, M; Glückmann, M; Schäfer, J

    2000-01-01

    A new model for the ionization processes in UV matrix-assisted laser desorption/ionization (MALDI) which accounts for the major phenomena observed is presented and discussed. The model retains elements of earlier approaches, such as photoionization and photochemical reactions, but it redefines these in the light of new working questions, most importantly why only singly charged ions are detected. Based on experimental evidence, the formation of singly and multiply charged clusters by a deficiency/excess of ions and also by photoionization and subsequent photochemical processes is pointed out to be the major ionization processes, which typically occur in parallel. The generation of electrons and their partial loss into the surrounding vacuum and solid, on the one hand, results in a positively charged ion-neutral plume facilitating a high overall ionization yield. On the other hand, these electrons, and also the large excess of protonated matrix ions in the negative ion mode, induce effective ion reneutralization in the plume. These neutralization processes are most effective for the highly charged cluster ions initially formed. Their fragmentation behaviour is evidenced in fast metastable fragmentation characteristics and agrees well with an electron capture dissociation mechanism and the enthalpy transfer upon neutralization forms the rationale for the prominent fragmentation and intense chemical noise accompanying successful MALDI. Within the course of the paper, cross-correlations with other desorption/ionization techniques and with earlier discussions on their mechanisms are drawn. Copyright 2000 John Wiley & Sons, Ltd.

  14. Intrinsic magnetism of a series of Co substituted ZnO single crystals

    International Nuclear Information System (INIS)

    Lv Peiwen; Huang Feng; Chu Wangsheng; Lin Zhang; Chen Dagui; Li Wei; Chen Dongliang; Wu Ziyu

    2008-01-01

    Magnetic properties of a series of well-substituted Zn 1-x Co x O (x = 0.018,0.036 and 0.05) single crystals were studied. A typical paramagnetic anisotropy property, which strengthens when x decreases, was found. A magnetization step was observed at 2 K when the magnetic field is parallel to the c axis, indicating that paramagnetic anisotropy is the origin of the strong crystal field effect on Co 2+ ions in ZnO lattices. The Co 2+ single-ion anisotropy parameter 2D is obtained as 7.5 K. The effective moment of Co 2+ takes the values 2.7 μ B , 1.82 μ B , 1.49 μ B when x = 0.018, 0.036 and 0.05, revealing that more antiferromagnetic coupling between Co 2+ ions arises in the perfect crystal when x increases

  15. Spectroscopy of single Pr3+ ion in LaF3 crystal at 1.5 K.

    Science.gov (United States)

    Nakamura, Ippei; Yoshihiro, Tatsuya; Inagawa, Hironori; Fujiyoshi, Satoru; Matsushita, Michio

    2014-12-08

    Optical read-out and manipulation of the nuclear spin state of single rare-earth ions doped in a crystal enable the large-scale storage and the transport of quantum information. Here, we report the photo-luminescence excitation spectroscopy results of single Pr(3+) ions in a bulk crystal of LaF3 at 1.5 K. In a bulk sample, the signal from a single ion at the focus is often hidden under the background signal originating from numerous out-of-focus ions in the entire sample. To combine with a homemade cryogenic confocal microscope, we developed a reflecting objective that works in superfluid helium with a numerical aperture of 0.99, which increases the signal by increasing the solid angle of collection to 1.16π and reduces the background by decreasing the focal volume. The photo-luminescence excitation spectrum of single Pr(3+) was measured at a wing of the spectral line of the (3)H4 → (3)P0 transition at 627.33 THz (477.89 nm). The spectrum of individual Pr(3+) ions appears on top of the background of 60 cps as isolated peaks with intensities of 20-30 cps and full-width at half-maximum widths of approximately 3 MHz at an excitation intensity of 80 W cm(-2).

  16. Current sheets and pressure anisotropy in the reconnection exhaust

    International Nuclear Information System (INIS)

    Le, A.; Karimabadi, H.; Roytershteyn, V.; Egedal, J.; Ng, J.; Scudder, J.; Daughton, W.; Liu, Y.-H.

    2014-01-01

    A particle-in-cell simulation shows that the exhaust during anti-parallel reconnection in the collisionless regime contains a current sheet extending 100 inertial lengths from the X line. The current sheet is supported by electron pressure anisotropy near the X line and ion anisotropy farther downstream. Field-aligned electron currents flowing outside the magnetic separatrices feed the exhaust current sheet and generate the out-of-plane, or Hall, magnetic field. Existing models based on different mechanisms for each particle species provide good estimates for the levels of pressure anisotropy. The ion anisotropy, which is strong enough to reach the firehose instability threshold, is also important for overall force balance. It reduces the outflow speed of the plasma

  17. Effect of giant plasmon excitations in single and double ionization of C60 in fast heavy-ion collisions

    Science.gov (United States)

    Kadhane, Umesh; Kelkar, A.; Misra, D.; Kumar, Ajay; Tribedi, Lokesh C.

    2007-04-01

    Single and multiple ionization of C60 in collisions with highly charged fast oxygen ions have been studied using the recoil-ion time-of-flight technique. The dependence of multiple-ionization cross sections on projectile charge state (qp) was found to be drastically different from those for an atomic target, such as Ne. A model based on the giant dipole plasmon resonance explains quite well the observed qp dependence for the single- and-double-ionization cross sections. But the same model deviates for triple and quadruple ionizations.

  18. Single-electron capture collisions of ground and metastable Ne2+ ions with molecular gases

    Science.gov (United States)

    Hasan, A.; Abu-Haija, O.; Harris, J.; Elkafrawy, T.; Kayani, A.; Kamber, E. Y.

    2013-09-01

    Using the translational energy-gain spectroscopy technique, we have measured the energy-gain spectra and absolute total cross sections for single-electron capture in collisions of Ne2+ with N2, CO2 and H2O at laboratory impact energies between 50 and 400 eV and 0° scattering angles. In all the collision systems studied here, reaction channels have been observed which indicate the presence of the long-lived metastable states of (2s2 2p4 1D and 1S) in the Ne2+ incident beam. These measurements also indicate that capture from the metastable states into excited states of the projectile product ions is the most important inelastic process. Contributions from capture accompanied by the excitation and ionization of the target product are also detected. In addition, the energy dependence of the total single-electron capture cross sections is studied and found to slowly increase with increasing impact energy. The present data are compared with the theoretical calculations of the classical over the barrier, extended classical over the barrier and Landau-Zener models.

  19. Detection of isolated protein-bound metal ions by single-particle cryo-STEM.

    Science.gov (United States)

    Elad, Nadav; Bellapadrona, Giuliano; Houben, Lothar; Sagi, Irit; Elbaum, Michael

    2017-10-17

    Metal ions play essential roles in many aspects of biological chemistry. Detecting their presence and location in proteins and cells is important for understanding biological function. Conventional structural methods such as X-ray crystallography and cryo-transmission electron microscopy can identify metal atoms on protein only if the protein structure is solved to atomic resolution. We demonstrate here the detection of isolated atoms of Zn and Fe on ferritin, using cryogenic annular dark-field scanning transmission electron microscopy (cryo-STEM) coupled with single-particle 3D reconstructions. Zn atoms are found in a pattern that matches precisely their location at the ferroxidase sites determined earlier by X-ray crystallography. By contrast, the Fe distribution is smeared along an arc corresponding to the proposed path from the ferroxidase sites to the mineral nucleation sites along the twofold axes. In this case the single-particle reconstruction is interpreted as a probability distribution function based on the average of individual locations. These results establish conditions for detection of isolated metal atoms in the broader context of electron cryo-microscopy and tomography.

  20. Optical spectroscopy of Eu3+ ions doped in KLu(WO4)2 single crystals

    International Nuclear Information System (INIS)

    Koubaa, T.; Dammak, M.; Pujol, M.C.; Aguiló, M.; Díaz, F.

    2015-01-01

    Europium single doped potassium lutetium tungstate Eu 3+ :KLu(WO 4 ) 2 single crystals have been grown with the top seeded solution growth slow cooling method. Their absorption spectra are studied in detail for principal light polarizations, E||N p , N m and N g at room and low temperatures. The absorption oscillator strengths parameters are calculated by means of the theory of f–f transition intensities for systems with anomalously strong configuration interaction and by Judd–Ofelt theory. The Ω t (t=2, 4, 6) intensity parameters, and the {O dk , O ck , Δ d , Δ c1 and Δ c2 } (k=1, 2, 3) ASCI parameters are calculated. The radiative transition rates A R , radiative lifetimes τ R , and fluorescent branching ratios β R associated with 5 D 0 – 7 F J transitions of Eu 3+ were determined. The calculated decay times are discussed and compared with experimental values. - Highlights: • Absorption spectra of Eu:KLuW are investigated with respect to principal light polarizations. • Spectroscopic properties of Eu:KLuW are modeled within conventional Judd–Ofelt and (ASCI) theories. • 5 D 0 multiplet shows the contribution of a NR processes and an ET between the Eu 3+ ions. • It is suggested that the Eu 3+ :KLuW is a potential host material for optical applications.

  1. A laser desorption-electron impact ionization ion trap mass spectrometer for real-time analysis of single atmospheric particles

    Science.gov (United States)

    Simpson, E. A.; Campuzano-Jost, P.; Hanna, S. J.; Robb, D. B.; Hepburn, J. H.; Blades, M. W.; Bertram, A. K.

    2009-04-01

    A novel aerosol ion trap mass spectrometer combining pulsed IR laser desorption with electron impact (EI) ionization for single particle studies is described. The strengths of this instrument include a two-step desorption and ionization process to minimize matrix effects; electron impact ionization, a universal and well-characterized ionization technique; vaporization and ionization inside the ion trap to improve sensitivity; and an ion trap mass spectrometer for MSn experiments. The instrument has been used for mass spectral identification of laboratory generated pure aerosols in the 600 nm-1.1 [mu]m geometric diameter range of a variety of aromatic and aliphatic compounds, as well as for tandem mass spectrometry studies (up to MS3) of single caffeine particles. We investigate the effect of various operational parameters on the mass spectrum and fragmentation patterns. The single particle detection limit of the instrument was found to be a 325 nm geometric diameter particle (8.7 × 107 molecules or 22 fg) for 2,4-dihydroxybenzoic acid. Lower single particle detection limits are predicted to be attainable by modifying the EI pulse. The use of laser desorption-electron impact (LD-EI) in an ion trap is a promising technique for determining the size and chemical composition of single aerosol particles in real time.

  2. Dynamic fluorescence spectroscopy on single tryptophan mutants of EIImtl in detergent micelles : Effects of substrate binding and phosphorylation on the fluorescence and anisotropy decay

    NARCIS (Netherlands)

    Swaving Dijkstra, Dolf; Broos, J.; Visser, Antonie J.W.G.; van Hoek, A.; Robillard, George

    1997-01-01

    The effects of substrate and substrate analogue binding and phosphorylation on the conformational dynamics of the mannitol permease of Escherichia coli were investigated, using time-resolved fluorescence spectroscopy on mutants containing five single tryptophans situated in the membrane-embedded C

  3. Correlation of precursor and product ions in single-stage high resolution mass spectrometry. A tool for detecting diagnostic ions and improving the precursor elemental composition elucidation

    Energy Technology Data Exchange (ETDEWEB)

    Borràs, S. [Departament de Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain); Kaufmann, A., E-mail: anton.kaufmann@klzh.ch [Official Food Control Authority, Fehrenstrasse 15, 8032 Zürich (Switzerland); Companyó, R. [Departament de Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain)

    2013-04-15

    Highlights: ► We are describing a technique to spot ions which are derived from each other. ► Single stage high resolution data is used. ► This “in silicon” technique is compared to conventional precursor scan. ► Some applications for this technique are presented. -- Abstract: Monitoring of common diagnostic fragments is essential for recognizing molecules which are members of a particular compound class. Up to now, unit resolving tandem quadrupole mass spectrometers, operating in the precursor ion scan mode, have been typically used to perform such analysis. By means of high-resolution mass spectrometry (HRMS) a much more sensitive and selective detection can be achieved. However, using a single-stage HRMS instrument, there is no unequivocal link to the corresponding precursor ion, since such instrumentation does not permit a previous precursor selection. Thus, to address this limitation, an in silico approach to locate precursor ions, based on diagnostic fragments, was developed. Implemented as an Excel macro, the algorithm rapidly assembles and surveys exact mass data to provide a list of feasible precursor candidates according to the correlation of the chromatographic peak shape profile and other additional filtering criteria (e.g. neutral losses and isotopes). The macro was tested with two families of veterinary drugs, sulfonamides and penicillins, which are known to yield diagnostic product ions when fragmented. Data sets obtained from different food matrices (fish and liver), both at high and low concentration of the target compounds, were investigated in order to evaluate the capabilities and limitations of the reported approach. Finally, other possible applications of this technique, such as the elucidation of elemental compositions based on product ions and corresponding neutral losses, were also presented and discussed.

  4. Anisotropy across Superplume Boundaries

    Science.gov (United States)

    Cottaar, S.; Romanowicz, B. A.

    2011-12-01

    Sdiff data sets are presented for paths that run parallel to the African and the Pacific superplume boundaries. Objective clustering of waveforms illustrates sharp changes across these boundaries. The African plume shows a sharp offset in travel times in the SHdiff phase, while a more gradual offset towards slower arrivals is seen in the case of the Pacific superplume. Additionally, Pdiff phases display no offset around the African plume and a weak one around the Pacific plume. Here we focus mainly on another striking feature observed in both cases: outside of the superplume the Sdiff particle motion is strongly elliptical, but becomes linear within the superplume (first noticed by To et al. 2005 in the African superplume case). For the African plume we argue that these observations of delayed SV at large distances (~120 degrees) are indicative of the occurrence of azimuthal anisotropy. The SV arrivals have similar polarity as SH, opposite from what their radiation pattern predicts. Azimuthal anisotropy causes SH energy to be converted to SV (Maupin, 1994), explaining the travel time, polarity and amplitude. Forward modeling through different isotropic and anisotropic models supports this statement, although there are trade-offs between direction and magnitude of azimuthal anisotropy. The strong elliptical particle motions are also observed outside the Pacific plume, but at shorter distances (95-105 degrees). Elliptical motions can occur in the absence of anisotropy when strong velocity deviations or layering occurs close to the CMB, which, based on velocity profiles with depth in global tomographic models would be more likely within the superplume rather than on the fast side. The elliptical particle motions here can be modelled with a simple transverse isotropic model with VSH>VSV, but azimuthal anisotropy cannot be ruled out. The complexities within the Pacific superplume, including strong amplitude drop and existence of a post-cursor, are likely caused by an

  5. Structural and optical properties of Cd{sup 2+} ion on the growth of sulphamic acid single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Rajyalakshmi, S.; Samatha, K. [Department of Physics, Andhra University, Visakhapatnam-530003 (India); Rao, Valluru Srinivasa; Reddy, P. V. S. S. S. N.; Rao, K. Ramachandra, E-mail: drkrcr@gmail.com [Crystal Growth & Nano Science Research Center, Department of Physics, Govt. College (A), Rajahmundry-533 105 (India); Krishna, V. Y. Rama [Department of Engg. Physics, Andhra University, Visakhapatnam-530003 (India)

    2016-05-06

    Transparent single crystals of Cadmium doped Sulphamic acid (SA) was grown by Conventional slow evaporation solution technique (SEST) which had the size of 13 × 8 × 7 mm{sup 3}. The grown single crystals have been characterized using single crystal X-ray diffraction UV-visible Spectral studies and Second harmonic generation (SHG) efficiency and the results were discussed. The lattice parameters of the grown Cd{sup 2+} ion doped SA crystal are confirmed by single crystal X-ray diffraction and belong to orthorhombic system. Optical transmittance of the crystal was recorded using UV-vis NIR spectrophotometer with its lower cut off wavelength around 259nm. SHG measurements indicate that the SHG efficiency of the grown Cd{sup 2+} ion doped SA crystal at a fundamental wavelength of 1064 nm is approximately equal to KDP.

  6. Synchrotron Topographic and Diffractometer Studies of Buried Layered Structures Obtained by Implantation with Swift Heavy Ions in Silicon Single Crystals

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Wieteska, K.; Zymierska, D.; Graeff, W.; Czosnyka, T.; Choinski, J.

    2006-01-01

    A distribution of crystallographic defects and deformation in silicon crystals subjected to deep implantation (20-50 μm) with ions of the energy of a few MeV/amu is studied. Three different buried layered structures (single layer, binary buried structure and triple buried structure) were obtained by implantation of silicon single crystals with 184 MeV argon ions, 29.7 MeV boron ions, and 140 MeV argon ions, each implantation at a fluency of 1x10 14 ions cm -2 . The implanted samples were examined by means of white beam X-ray section and projection topography, monochromatic beam topography and by recording local rocking curves with the beam restricted to 50 x 50 μm 2 . The experiment pointed to a very low level of implantation-induced strain (below 10 -5 ). The white beam Bragg case section experiment revealed a layer producing district black contrast located at a depth of the expected mean ion range. The presence of these buried layered structures in studied silicon crystals strongly affected the fringe pattern caused by curvature of the samples. In case of white beam projection and monochromatic beam topographs the implanted areas were revealed as darker regions with a very tiny grain like structure. One may interpret these results as the effect of considerable heating causing annihilation of point defects and formation of dislocation loops connected with point defect clusters. (author)

  7. Irradiation of zinc single crystal with 500 keV singly-charged carbon ions: surface morphology, structure, hardness, and chemical modifications

    Science.gov (United States)

    Waqas Khaliq, M.; Butt, M. Z.; Saleem, Murtaza

    2017-07-01

    Cylindrical specimens of (1 0 4) oriented zinc single crystal (diameter  =  6 mm and length  =  5 mm) were irradiated with 500 keV C+1 ions with the help of a Pelletron accelerator. Six specimens were irradiated in an ultra-high vacuum (~10‒8 Torr) with different ion doses, namely 3.94  ×  1014, 3.24  ×  1015, 5.33  ×  1015, 7.52  ×  1015, 1.06  ×  1016, and 1.30  ×  1016 ions cm-2. A field emission scanning electron microscope (FESEM) was utilized for the morphological study of the irradiated specimens. Formation of nano- and sub-micron size rods, clusters, flower- and fork-like structures, etc, was observed. Surface roughness of the irradiated specimens showed an increasing trend with the ions dose. Energy dispersive x-ray spectroscopy (EDX) helped to determine chemical modifications in the specimens. It was found that carbon content varied in the range 22.86-31.20 wt.% and that oxygen content was almost constant, with an average value of 10.16 wt.%. The balance content was zinc. Structural parameters, i.e. crystallite size and lattice strain, were determined by Williamson-Hall analysis using x-ray diffraction (XRD) patterns of the irradiated specimens. Both crystallite size and lattice strain showed a decreasing trend with the increasing ions dose. A good linear relationship between crystallite size and lattice strain was observed. Surface hardness depicted a decreasing trend with the ions dose and followed an inverse Hall-Petch relation. FTIR spectra of the specimens revealed that absorption bands gradually diminish as the dose of singly-charged carbon ions is increased from 3.94  ×  1014 ions cm-1 to 1.30  ×  1016 ions cm-1. This indicates progressive deterioration of chemical bonds with the increase in ion dose.

  8. MeV single-ion beam irradiation of mammalian cells using the Surrey vertical nanobeam, compared with broad proton beam and X-ray irradiations

    Science.gov (United States)

    Prakrajang, K.; Jeynes, J. C. G.; Merchant, M. J.; Kirkby, K.; Kirkby, N.; Thopan, P.; Yu, L. D.

    2013-07-01

    As a part of a systematic study on mechanisms involved in physical cancer therapies, this work investigated response of mammalian cells to ultra-low-dose ion beam irradiation. The ion beam irradiation was performed using the recently completed nanobeam facility at the Surrey Ion Beam Centre. A scanning focused vertical ion nano-beam was applied to irradiate Chinese hamster V79 cells. The V79 cells were irradiated in two different beam modes, namely, focused single ion beam and defocused scanning broad ion beam of 3.8-MeV protons. The single ion beam was capable of irradiating a single cell with a precisely controlled number of the ions to extremely low doses. After irradiation and cell incubation, the number of surviving colonies as a function of the number of the irradiating ions was measured for the cell survival fraction curve. A lower survival for the single ion beam irradiation than that of the broad beam case implied the hypersensitivity and bystander effect. The ion-beam-induced cell survival curves were compared with that from 300-kV X-ray irradiation. Theoretical studies indicated that the cell death in single ion irradiation mainly occurred in the cell cycle phases of cell division and intervals between the cell division and the DNA replication. The success in the experiment demonstrated the Surrey vertical nanobeam successfully completed.

  9. Single-pulse terahertz coherent control of spin resonance in the canted antiferromagnet YFeO3, mediated by dielectric anisotropy

    DEFF Research Database (Denmark)

    Jin, Zuanming; Mics, Zoltán; Ma, Guohong

    2013-01-01

    We report on the coherent control of terahertz (THz) spin waves in a canted antiferromagnet yttrium orthoferrite, YFeO3, associated with a quasiferromagnetic (quasi-FM) spin resonance at a frequency of 0.3 THz, using a single-incident THz pulse. The spin resonance is excited impulsively by the ma...... polarization of the THz oscillation at the spin resonance frequency, suggests a key role of magnon–phonon coupling in spin-wave energy dissipation....

  10. Water softening by single-bowl ion exchange filter efficiency estimate and improvement

    OpenAIRE

    Kostygin, V. A.; Stolyarenko, G. S.; Kochetov, G. M.; Tugay, A. M.; Vashchenko, V. N.

    2014-01-01

    The article presents results of experimental investigations of the water softener in a laboratory installation of uninterruptible countercurrent ion exchange filter, which has a movable layer of ion exchange material. The installation provides for two simultaneous processes: counter ion sorption and regeneration of the sorbent with the processing capability of the sorbent in the regeneration zone by ultrasonic radiation.

  11. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp [Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi (Japan)

    2016-07-06

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  12. Possible wave formation and martensitic transformation of iron particles in copper single crystals during argon ion bombardment

    DEFF Research Database (Denmark)

    Thölén, Anders Ragnar; Li, Chang-Hai; Easterling, K.E.

    1983-01-01

    Thin single crystal copper specimens (thickness ~250 nm) containing coherent iron particles (diameter 40–50 nm) have been bombarded with argon ions (5, 80, and 330 keV). During this process some of the iron particles transform to martensite. The transformation was observed near the exposed surface...

  13. Combined determination of copper ions and β-amyloid peptide by a single ratiometric electrochemical biosensor.

    Science.gov (United States)

    Yu, Yanyan; Wang, Peng; Zhu, Xiaodan; Peng, Qiwen; Zhou, Yi; Yin, Tianxiao; Liang, Yixin; Yin, Xiaoxing

    2017-12-18

    Copper ions (Cu 2+ ) play a critical role in biological processes and are directly involved in β-amyloid peptide (Aβ) aggregation, which is responsible for the occurrence and development of Alzheimer's disease (AD). Therefore, combined determination of Cu 2+ and Aβ in one analytical system is of great significance to understand the exact nature of the AD event. This work presents a novel ratiometric electrochemical biosensor for the dual determination of Cu 2+ and Aβ 1-42 . This unique sensor is based on a 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) (ABTS) and poly(diallyldimethylammonium chloride) (PDDA)-bi functionalized single-walled carbon nanotubes (ABTS-PDDA/CNTs) composite. The inclusion of ABTS not only enhanced the sensitivity, but it also acted as an inner reference molecule to improve detection accuracy. The specific recognition of Cu 2+ was realized by neurokinin B (NKB) coatings on the ABTS-PDDA/CNTs surface to form a [Cu II (NKB) 2 ] complex with Cu 2+ . The ABTS-PDDA/CNTs-NKB modified electrode also displayed an excellent electrochemical response toward the Aβ 1-42 monomer, when a certain amount of the Aβ 1-42 monomer was added to Cu 2+ -contained PBS buffer, which was due to the release of Cu 2+ from the [Cu II (NKB) 2 ] complex through Aβ binding to Cu 2+ . Meanwhile, our work showed that Cu 2+ bound Aβ 1-42 was concentration-dependent. Consequently, the presented electrochemical approach was capable of quantifying two important biological species associated with AD by one single biosensor, with the detection limits of 0.04 μM for Cu 2+ and 0.5 ng mL -1 for Aβ 1-42 , respectively. Finally, the ratiometric electrode was successfully applied for monitoring Cu 2+ and Aβ 1-42 variations in plasma and hippocampus of normal and AD rats.

  14. MeV single-ion beam irradiation of mammalian cells using the Surrey vertical nanobeam, compared with broad proton beam and X-ray irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Jeynes, J.C.G.; Merchant, M.J.; Kirkby, K.; Kirkby, N. [Surrey Ion Beam Center, Faculty of Engineering and Physical Science, University of Surrey, Guildford Surrey, GU2 7XH (United Kingdom); Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: •Recently completed nanobeam at the Surrey Ion Beam Centre was used. •3.8-MeV single and broad proton beams irradiated Chinese hamster cells. •Cell survival curves were measured and compared with 300-kV X-ray irradiation. •Single ion irradiation had a lower survival part at ultra-low dose. •It implies hypersensitivity, bystander effect and cell cycle phase of cell death. -- Abstract: As a part of a systematic study on mechanisms involved in physical cancer therapies, this work investigated response of mammalian cells to ultra-low-dose ion beam irradiation. The ion beam irradiation was performed using the recently completed nanobeam facility at the Surrey Ion Beam Centre. A scanning focused vertical ion nano-beam was applied to irradiate Chinese hamster V79 cells. The V79 cells were irradiated in two different beam modes, namely, focused single ion beam and defocused scanning broad ion beam of 3.8-MeV protons. The single ion beam was capable of irradiating a single cell with a precisely controlled number of the ions to extremely low doses. After irradiation and cell incubation, the number of surviving colonies as a function of the number of the irradiating ions was measured for the cell survival fraction curve. A lower survival for the single ion beam irradiation than that of the broad beam case implied the hypersensitivity and bystander effect. The ion-beam-induced cell survival curves were compared with that from 300-kV X-ray irradiation. Theoretical studies indicated that the cell death in single ion irradiation mainly occurred in the cell cycle phases of cell division and intervals between the cell division and the DNA replication. The success in the experiment demonstrated the Surrey vertical nanobeam successfully completed.

  15. Rational design of single-ion magnets and spin qubits based on mononuclear lanthanoid complexes.

    Science.gov (United States)

    Baldoví, José J; Cardona-Serra, Salvador; Clemente-Juan, Juan M; Coronado, Eugenio; Gaita-Ariño, Alejandro; Palii, Andrew

    2012-11-19

    Here we develop a general approach to calculating the energy spectrum and the wave functions of the low-lying magnetic levels of a lanthanoid ion submitted to the crystal field created by the surrounding ligands. This model allows us to propose general criteria for the rational design of new mononuclear lanthanoid complexes behaving as single-molecule magnets (SMMs) or acting as robust spin qubits. Three typical environments exhibited by these metal complexes are considered, namely, (a) square antiprism, (b) triangular dodecahedron, and (c) trigonal prism. The developed model is used to explain the properties of some representative examples showing these geometries. Key questions in this area, such as the chemical tailoring of the superparamagnetic energy barrier, tunneling gap, or spin relaxation time, are discussed. Finally, in order to take into account delocalization and/or covalent effects of the ligands, this point-charge model is complemented with ab initio calculations, which provide accurate information on the charge distribution around the metal, allowing for an explanation of the SMM behavior displayed by some sandwich-type organometallic compounds.

  16. A diode laser stabilization scheme for {sup 40}Ca{sup +} single-ion spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rohde, F; Almendros, M; Schuck, C; Huwer, J; Hennrich, M; Eschner, J, E-mail: felix.rohde@icfo.e [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, E-08860 Castelldefels, Barcelona (Spain)

    2010-06-14

    We present a scheme for stabilizing multiple lasers at wavelengths between 795 and 866 nm to the same atomic reference line. A reference laser at 852 nm is stabilized to the Cs D{sub 2} line using a Doppler-free frequency modulation technique. Through transfer cavities, four lasers are stabilized to the relevant atomic transitions in {sup 40}Ca{sup +}. The rms linewidth of a transfer-locked laser is measured to be 123 kHz over 200 ms with respect to an independent atomic reference, the Rb D{sub 1} line. This stability is confirmed by the comparison of an excitation spectrum of a single {sup 40}Ca{sup +} ion to an eight-level Bloch equation model. The long-term stability with respect to the same reference is measured to be 130 kHz over a period of 2 h. The high degree of stability is demonstrated by the measured Allan deviation around 10{sup -11} between 1 and 100 s.

  17. Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex.

    Science.gov (United States)

    Choi, Inhee; Song, Hyeon Don; Lee, Suseung; Yang, Young In; Kang, Taewook; Yi, Jongheop

    2012-07-25

    We report core-satellites (Au-Ag) coupled plasmonic nanoassemblies based on bottom-up, high-density assembly of molecular-scale silver nanoparticles on a single gold nanoparticle surface, and demonstrate direct observation and quantification of enhanced plasmon coupling (i.e., intensity amplification and apparent spectra shift) in a single particle level. We also explore metal ion sensing capability based on our coupled plasmonic core-satellites, which enabled at least 1000 times better detection limit as compared to that of a single plasmonic nanoparticle. Our results demonstrate and suggest substantial promise for the development of coupled plasmonic nanostructures for ultrasensitive detection of various biological and chemical analytes.

  18. Single event effects induced by 15.14 MeV/u sup 1 sup 3 sup 6 Xe ions

    CERN Document Server

    Hou Ming Dong; LiuJie; Wang Zhi Guang; Jin Yun Fan; Zhu Zhi Yong; Zhen Hong Lou; Liu Chang Long; Chen Xiao Xi; Wei Xin Guo; Zhang Li; Fan You Cheng; Zhu Zhou Rong; Zhang Yiting

    2002-01-01

    Single event effects induced by 15.14 MeV/u sup 1 sup 3 sup 6 Xe ions in different batches of 32k x 8 bits static random access memory are studied. The incident angle dependences of the cross sections for single event upset and single event latch up are presented. The SEE cross sections are plotted versus energy loss instead of linear energy transfer value in sensitive region. The depth of sensitive volume and thickness of 'dead' layer above the sensitive volume are estimated

  19. Diagnostics and Degradation Investigations of Li-Ion Battery Electrodes using Single Nanowire Electrochemical Cells

    Science.gov (United States)

    Palapati, Naveen Kumar Reddy

    Portable energy storage devices, which drive advanced technological devices, are improving the productivity and quality of our everyday lives. In order to meet the growing needs for energy storage in transportation applications, the current lithium-ion (Li-ion) battery technology requires new electrode materials with performance improvements in multiple aspects: (1) energy and power densities, (2) safety, and (3) performance lifetime. While a number of interesting nanomaterials have been synthesized in recent years with promising performance, accurate capabilities to probe the intrinsic performance of these high-performance materials within a battery environment are lacking. Most studies on electrode nanomaterials have so far used traditional, bulk-scale techniques such as cyclic voltammetry, electrochemical impedance spectroscopy, and Raman spectroscopy. These approaches give an ensemble-average estimation of the electrochemical properties of a battery electrode and does not provide a true indication of the performance that is intrinsic to its material system. Thus, new techniques are essential to understand the changes happening at a single particle level during the operation of a battery. The results from this thesis solve this need and study the electrical, mechanical and size changes that take place in a battery electrode at a single particle level. Single nanowire lithium cells are built by depositing nanowires in carefully designed device regions of a silicon chip using Dielectrophoresis (DEP). This work has demonstrated the assembly of several NW cathode materials like LiFePO 4, pristine and acid-leached alpha-MnO2, todorokite - MnO2, acid and nonacid-leached Na0.44MnO2. Within these materials, alpha-MnO2 was chosen as the model material system for electrochemical experiments. Electrochemical lithiation of pristine alpha-MnO 2 was performed inside a glove box. The volume, elasticity and conductivity changes were measured at each state-of-charge (SOC) to

  20. Novel single-cell mega-size chambers for electrochemical etching of panorama position-sensitive polycarbonate ion image detectors

    Science.gov (United States)

    Sohrabi, Mehdi

    2017-11-01

    A novel development is made here by inventing panorama single-cell mega-size electrochemical etching (MS-ECE) chamber systems for processing panorama position-sensitive mega-size polycarbonate ion image detectors (MS-PCIDs) of potential for many neutron and ion detection applications in particular hydrogen ions or proton tracks and images detected for the first time in polycarbonates in this study. The MS-PCID is simply a large polycarbonate sheet of a desired size. The single-cell MS-ECE invented consists of two large equally sized transparent Plexiglas sheets as chamber walls holding a MS-PCID and the ECE chamber components tightly together. One wall has a large flat stainless steel electrode (dry cell) attached to it which is directly in contact with the MS-PCID and the other wall has a rod electrode with two holes to facilitate feeding and draining out the etching solution from the wet cell. A silicon rubber washer plays the role of the wet cell to hold the etchant and the electrical insulator to isolate the dry cell from the wet cell. A simple 50 Hz-HV home-made generator provides an adequate field strength through the two electrodes across the MS-ECE chamber. Two panorama single-cell MS-ECE chamber systems (circular and rectangular shapes) constructed were efficiently applied to processing the MS-PCIDs for 4π ion emission image detection of different gases in particular hydrogen ions or protons in a 3.5 kJ plasma focus device (PFD as uniquely observed by the unaided eyes). The panorama MS-PCID/MS-ECE image detection systems invented are novel with high potential for many applications in particular as applied to 4π panorama ion emission angular distribution image detection studies in PFD space, some results of which are presented and discussed.

  1. Effect of H{sup +} ion implantation on structural, morphological, optical and dielectric properties of L-arginine monohydrochloride monohydrate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, K. [Crystal Growth and Thin film Laboratory, Department of Physics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in [Crystal Growth and Thin film Laboratory, Department of Physics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Kumar, P. [Inter-University Accelerator Centre, P.O. Box 10502, Aruna Asaf Ali Marg, New Delhi 110067 (India); Bhagvannarayana, G. [Materials Characterization Division, National Physical Laboratory, New Delhi 110012 (India); Ramamurthi, K. [Crystal Growth and Thin film Laboratory, Department of Physics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India)

    2011-06-15

    L-arginine monohydrochloride monohydrate (LAHCl) single crystals have been implanted with 100 keV H{sup +} ions at different ion fluence ranging from 10{sup 12} to 10{sup 15} ions/cm{sup 2}. Implanted LAHCl single crystals have been investigated for property changes. Crystal surface and crystalline perfection of the pristine and implanted crystals were analyzed by atomic force microscope and high-resolution X-ray diffraction studies, respectively. Optical absorption bands induced by colour centers, refractive index and birefringence, mechanical stability and dielectric constant of implanted crystals were studied at different ion fluence and compared with that of pristine LAHCl single crystal.

  2. Changes in ion channel geometry resolved to sub-ångström precision via single molecule mass spectrometry

    Science.gov (United States)

    Robertson, Joseph W. F.; Kasianowicz, John J.; Reiner, Joseph E.

    2010-11-01

    The ion channel formed by Staphylococcus aureus alpha-hemolysin switches between multiple open conducting states. We describe a method for precisely estimating the changes in the ion channel geometry that correspond to these different states. Experimentally, we observed that the permeability of a single channel to differently sized poly(ethylene glycol) molecules depends on the magnitude of the open state conductance. A simple theory is proposed for determining changes in channel length of 4.2% and in cross-sectional area of - 0.4%.

  3. Strong coupling between a single nitrogen-vacancy spin and the rotational mode of diamonds levitating in an ion trap

    Science.gov (United States)

    Delord, T.; Nicolas, L.; Chassagneux, Y.; Hétet, G.

    2017-12-01

    A scheme for strong coupling between a single atomic spin and the rotational mode of levitating nanoparticles is proposed. The idea is based on spin readout of nitrogen-vacancy centers embedded in aspherical nanodiamonds levitating in an ion trap. We show that the asymmetry of the diamond induces a rotational confinement in the ion trap. Using a weak homogeneous magnetic field and a strong microwave driving we then demonstrate that the spin of the nitrogen-vacancy center can be strongly coupled to the rotational mode of the diamond.

  4. Anisotropic interactions in magnetic crystals with S-state ions. Nanostructures

    Science.gov (United States)

    Ovchinnikov, S. G.; Rudenko, V. V.

    2014-12-01

    Anisotropy mechanisms in compounds with S-state ions are discussed, including the 'single-ion' exchange mechanism that was developed theoretically by Nikiforov and coworkers based on the two-ion model and which has only recently received detailed experimental study. Results demonstrating the significant role of the 'single-ion' source are presented. An independent generalized method for quantitatively describing and predicting the anisotropy of magnetically ordered crystals is discussed, and its potential for the investigation of the BiFeO _3 multiferroic in the region of the existence of a spin cycloid is examined. The anisotropic interactions responsible for the formation of nanostructures in the form of spin vortices (skyrmions) in MnSi and Cu _2OSeO _3 are analyzed.

  5. Anisotropy of the upper critical fields and the paramagnetic Meissner effect in La1.85Sr0.15CuO4 single crystals

    Science.gov (United States)

    Felner, I.; Tsindlekht, M. I.; Drachuck, G.; Keren, A.

    2013-02-01

    Optimally doped La1.85Sr0.15CuO4 single crystals have been investigated by dc and ac magnetic measurements. These crystals have rectangular needle-like shapes with the long needle axis parallel to the crystallographic c axis (c-crystal) or parallel to the basal planes (a-crystal). In both crystals, the temperature dependence of the upper critical fields (HC2) and the surface critical field (HC3) were measured. The H-T phase diagram is presented. Close to TC = 35 K, for the c-crystal, {\\boldsymbol{\\gamma}}^{c}={H}_{{C3}}^{c}/{H}_{{C2}}^{c}=1.8 0(2), whereas for the a-crystal the {\\boldsymbol{\\gamma}}^{a}={H}_{{C3}}^{a}/{H}_{{C2}}^{a}=4.0(2) obtained is much higher than 1.69, predicted by the ideal mathematical model. At low applied dc fields, positive field-cooled branches known as the ‘paramagnetic Meissner effect’ (PME) are observed; their magnitude is inversely proportional to H. The anisotropic PME is observed in both a- and c-crystals, only when the applied field is along the basal planes. It is speculated that the high γa and the PME are connected to each other.

  6. Spintronic magnetic anisotropy

    OpenAIRE

    Misiorny, Maciej; Hell, Michael; Wegewijs, Maarten R.

    2014-01-01

    An attractive feature of magnetic adatoms and molecules for nanoscale applications is their superparamagnetism, the preferred alignment of their spin along an easy axis preventing undesired spin reversal. The underlying magnetic anisotropy barrier --a quadrupolar energy splitting-- is internally generated by spin-orbit interaction and can nowadays be probed by electronic transport. Here we predict that in a much broader class of quantum-dot systems with spin larger than one-half, superparamag...

  7. Productivity Improvement for the SHX--SEN's Single-Wafer High-Current Ion Implanter

    International Nuclear Information System (INIS)

    Ninomiya, Shiro; Ochi, Akihiro; Kimura, Yasuhiko; Yumiyama, Toshio; Kudo, Tetsuya; Kurose, Takeshi; Kariya, Hiroyuki; Tsukihara, Mitsukuni; Ishikawa, Koji; Ueno, Kazuyoshi

    2011-01-01

    Equipment productivity is a critical issue for device fabrication. For ion implantation, productivity is determined both by ion current at the wafer and by utilization efficiency of the ion beam. Such improvements not only result in higher fabrication efficiency but also reduce consumption of both electrical power and process gases. For high-current ion implanters, reduction of implant area is a key factor to increase efficiency. SEN has developed the SAVING system (Scanning Area Variation Implantation with Narrower Geometrical pattern) to address this opportunity. In this paper, three variations of the SAVING system are introduced along with discussion of their effects on fab productivity.

  8. Supernovae anisotropy power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Ghodsi, Hoda; Baghram, Shant [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Habibi, Farhang, E-mail: h.ghodsi@mehr.sharif.ir, E-mail: baghram@sharif.edu, E-mail: habibi@lal.in2p3.fr [LAL-IN2P3/CNRS, BP 34, 91898 Orsay Cedex (France)

    2017-10-01

    We contribute another anisotropy study to this field of research using Type Ia supernovae (SNe Ia). In this work, we utilise the power spectrum calculation method and apply it to both the current SNe Ia data and simulation. Using the Union2.1 data set at all redshifts, we compare the spectrum of the residuals of the observed distance moduli to that expected from an isotropic universe affected by the Union2.1 observational uncertainties at low multipoles. Through this comparison we find a dipolar anisotropy with tension of less that 2σ towards l = 171° ± 21° and b = −26° ± 28° which is mainly induced by anisotropic spatial distribution of the SNe with z > 0.2 rather than being a cosmic effect. Furthermore, we find a tension of ∼ 4σ at ℓ = 4 between the two spectra. Our simulations are constructed with the characteristics of the upcoming surveys like the Large Synoptic Survey Telescope (LSST), which shall bring us the largest SNe Ia collection to date. We make predictions for the amplitude of a possible dipolar anisotropy that would be detectable by future SNe Ia surveys.

  9. ions

    African Journals Online (AJOL)

    (MP2 B2). In order to draw the final conclusion about the content of the isomers of pentaatomic ions in saturated vapor over cesium chloride, we have taken into account the entropy factor. We considered the isomerization reactions which are given below: Cs3Cl2. + (V-shaped) = Cs3Cl2. + (cyclic or bipyramidal). (1). Cs2Cl3.

  10. Single potential electrodeposition of nanostructured battery materials for lithium-ion batteries

    Science.gov (United States)

    Mosby, James Matthew

    The increasing reliance on portable electronics is continuing to fuel research in the area of low power lithium-ion batteries, while a new surge in research for high power lithium-ion batteries has been sparked by the demand for plug-in hybrid electric vehicles (PHEV) and plug-in electric vehicles (PEV). To compete with current lead-acid battery chemistry, a few of the shortcomings of lithium-ion battery chemistry need to be addressed. The three main drawbacks of lithium-ion batteries for this application are: (1) low power density, (2) safety, and (3) the high cost of manufacturing. This dissertation covers the development of a low cost fabrication technique for an alternative anode material with high surface area geometries. The anode material is safer than the conventional anode material in lithium-ion batteries and the high surface area geometries permit higher power densities to be achieved. Electrodeposition is an inexpensive alternative method for synthesizing materials for electronics, energy conversion and energy storage applications relative to traditional solid state techniques. These techniques led to expensive device fabrication. Unlike most solid state synthesis routes, electrodeposition can usually be performed from common solutions and at moderate conditions. Three other benefits of using electrodeposition are: (1) it allows precise control of composition and crystallinity, (2) it provides the ability to deposit on complex shapes, and (3) it can deposit materials with nanoscale dimensions. The use of electrodeposition for alternative anode materials results in the deposition of the material directly onto the current collector that is used for the battery testing and applications without the need of additional binders and with excellent electrical contact. While this improves the characterization of the material and lowers the weight of the non-active materials within a battery, it also allows the anode to be deposited onto current collectors with

  11. Determination of trace inorganic anions in weak acids by single-pump column-switching ion chromatography.

    Science.gov (United States)

    Zhu, Haibao; Chen, Huadong; Zhong, Yingying; Ren, Dandan; Qian, Yaling; Tang, Hongfang; Zhu, Yan

    2010-08-01

    Ion chromatography has been proposed for the determination of three common inorganic anions (chloride, nitrate, and sulfate) in nine weak acids (tartaric acid, citric acid, formic acid, acetic acid, metacetonic acid, butyric acid, butanedioic acid, hexafluorophosphoric acid, and salicylic acid) using a single pump, two valves, a single eluent, and a single conductivity detector. The present system uses ion exclusion, concentrator, and anion-exchange columns connected in series via 6-port and 10-port valves in a Dionex ICS-2100 ion chromatograph. The valves were switched for the determination of three inorganic anions from weak acids in a single chromatographic run. Sample matrices of weak acids with a series of concentrations can be investigated. Complete separations of the previously mentioned anions are demonstrated within 40 min. Under the optimum conditions, the relative standard deviation values ranged from 1.3 to 3.8%. The detection limits of the three inorganic anions (S/N = 3) were in the range of 0.3-1.7 microg/L. The recoveries were in the range of 75.2-117.6%. With this system, automation for routine analysis, short analysis time, and low cost can be achieved.

  12. Magnetic anisotropy of ultrafine 316L stainless steel fibers

    Energy Technology Data Exchange (ETDEWEB)

    Shyr, Tien-Wei, E-mail: twshyr@fcu.edu.tw [Department of Fiber and Composite Materials, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC (China); Huang, Shih-Ju [Department of Fiber and Composite Materials, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC (China); Wur, Ching-Shuei [Department of Physics, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan, ROC (China)

    2016-12-01

    An as-received 316L stainless steel fiber with a diameter of 20 μm was drawn using a bundle drawing process at room temperature to form ultrafine stainless steel fibers with diameters of 12, 8, and 6 μm. The crystalline phases of the fibers were analyzed using the X-ray diffraction (XRD) profile fitting technique. The grain sizes of γ-austenite and α′-martensite were reduced to nanoscale sizes after the drawing process. XRD analysis and focused ion beam-scanning electron microscope observations showed that the newly formed α′-martensitic grains were closely arrayed in the drawing direction. The magnetic property was measured using a superconducting quantum interference device vibrating sample magnetometer. The magnetic anisotropy of the fibers was observed by applying a magnetic field parallel and perpendicular to the fiber axis. The results showed that the microstructure anisotropy including the shape anisotropy, magnetocrystalline anisotropy, and the orientation of the crystalline phases strongly contributed to the magnetic anisotropy. - Highlights: • The martensitic transformation of the 316L SS fiber occurred during the cold drawn. • The grain sizes of γ-austenite and α′-martensite were reduced to the nanoscale. • The newly formed martensitic grains were closely arrayed in the drawing direction. • The drawing process caused the magnetic easy axis to be aligned with the fiber axis. • The microstructure anisotropy strongly contributed to the magnetic anisotropy.

  13. Synthetic, structural, spectroscopic and theoretical study of a Mn(III)-Cu(II) dimer containing a Jahn-Teller compressed Mn ion

    DEFF Research Database (Denmark)

    Berg, Nelly; Hooper, Thomas N.; Liu, Junjie

    2013-01-01

    The heterobimetallic complex [Cu(II)Mn(III)(L)(2)(py)(4)](ClO(4))·EtOH (1) built using the pro-ligand 2,2'-biphenol (LH(2)), contains a rare example of a Jahn-Teller compressed Mn(III) centre. Dc magnetic susceptibility measurements on 1 reveal a strong antiferromagnetic exchange between the Cu...... anisotropy also correlates well with experiment. A larger cluster anisotropy for the S = 3/2 state compared to the single-ion anisotropy of Mn(III) is rationalised on the basis of orbital mixing and various contributions that arise due to the spin-orbit interaction....

  14. Cationized phenylalanine conformations characterized by IRMPD and computation for singly and doubly charged ions

    NARCIS (Netherlands)

    Dunbar, R. C.; Steill, J. D.; Oomens, J.

    2010-01-01

    Electrospray ionization produces phenylalanine (Phe) complexes of the alkali metal ion series, plus Ag+ and Ba2+. Infrared multiple photon dissociation (IRMPD) spectroscopy using the FELIX free electron laser light source is used to characterize the conformations of the ions, in conjunction with

  15. Early Stage of Deformation under Nanoindenter Tip of Ion-irradiated Single Crystals

    International Nuclear Information System (INIS)

    Shin, Chan Sun; Jin, Hyung Ha; Kwon, Jun Hyun

    2010-01-01

    Ion irradiation has been used for almost 40 years to emulate the effect of neutrons. Ion irradiation has a number of advantages in terms of time and expenses compared to neutron irradiation. Ion irradiation is expected to greatly contribute to the development of Fusion and Gen IV materials. Ions have short penetration depth, and they induce continuously varying dose rate over the penetration depth. Although it depends on the energy and species of incident ions, the depth of ion-irradiated region is in general on the order of a few micron meters. Depth controlled probing technique is required to measure the mechanical properties of ion-irradiated layer, and nanoindentation is widely used. During nanoindentation, a hard tip with known properties is pressed into a material which has unknown properties. The depth of penetration and load on the indenter are recorded during loading and unloading. The initial Loading depth curve follows the Hertzian elastic solution, and at a certain load, a sudden displacement excursion occurs in indenter depth and then hardening follows. This is called 'Pop-in' event, and since residual impression can be found only after pop-ins, the pop-in is regarded as the onset of plasticity. The objectives of this research are to investigate the effects of ion irradiation on popins, and to examine dislocation nucleation and propagation at the onset of plasticity by using MD simulations

  16. Early Stage of Deformation under Nanoindenter Tip of Ion-irradiated Single Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chan Sun; Jin, Hyung Ha; Kwon, Jun Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Ion irradiation has been used for almost 40 years to emulate the effect of neutrons. Ion irradiation has a number of advantages in terms of time and expenses compared to neutron irradiation. Ion irradiation is expected to greatly contribute to the development of Fusion and Gen IV materials. Ions have short penetration depth, and they induce continuously varying dose rate over the penetration depth. Although it depends on the energy and species of incident ions, the depth of ion-irradiated region is in general on the order of a few micron meters. Depth controlled probing technique is required to measure the mechanical properties of ion-irradiated layer, and nanoindentation is widely used. During nanoindentation, a hard tip with known properties is pressed into a material which has unknown properties. The depth of penetration and load on the indenter are recorded during loading and unloading. The initial Loading depth curve follows the Hertzian elastic solution, and at a certain load, a sudden displacement excursion occurs in indenter depth and then hardening follows. This is called 'Pop-in' event, and since residual impression can be found only after pop-ins, the pop-in is regarded as the onset of plasticity. The objectives of this research are to investigate the effects of ion irradiation on popins, and to examine dislocation nucleation and propagation at the onset of plasticity by using MD simulations

  17. Potent neutralization of influenza A virus by a single-domain antibody blocking M2 ion channel protein.

    Directory of Open Access Journals (Sweden)

    Guowei Wei

    Full Text Available Influenza A virus poses serious health threat to humans. Neutralizing antibodies against the highly conserved M2 ion channel is thought to offer broad protection against influenza A viruses. Here, we screened synthetic Camel single-domain antibody (VHH libraries against native M2 ion channel protein. One of the isolated VHHs, M2-7A, specifically bound to M2-expressed cell membrane as well as influenza A virion, inhibited replication of both amantadine-sensitive and resistant influenza A viruses in vitro, and protected mice from a lethal influenza virus challenge. Moreover, M2-7A showed blocking activity for proton influx through M2 ion channel. These pieces of evidence collectively demonstrate for the first time that a neutralizing antibody against M2 with broad specificity is achievable, and M2-7A may have potential for cross protection against a number of variants and subtypes of influenza A viruses.

  18. Optical planar waveguides in photo-thermal-refractive glasses fabricated by single- or double-energy carbon ion implantation

    Science.gov (United States)

    Wang, Yue; Shen, Xiao-Liang; Zheng, Rui-Lin; Guo, Hai-Tao; Lv, Peng; Liu, Chun-Xiao

    2018-01-01

    Ion implantation has demonstrated to be an efficient and reliable technique for the fabrication of optical waveguides in a diversity of transparent materials. Photo-thermal-refractive glass (PTR) is considered to be durable and stable holographic recording medium. Optical planar waveguide structures in the PTR glasses were formed, for the first time to our knowledge, by the C3+-ion implantation with single-energy (6.0 MeV) and double-energy (5.5+6.0 MeV), respectively. The process of the carbon ion implantation was simulated by the stopping and range of ions in matter code. The morphologies of the waveguides were recorded by a microscope operating in transmission mode. The guided beam distributions of the waveguides were measured by the end-face coupling technique. Comparing with the single-energy implantation, the double-energy implantation improves the light confinement for the dark-mode spectrum. The guiding properties suggest that the carbon-implanted PTR glass waveguides have potential for the manufacture of photonic devices.

  19. Junctionless Diode Enabled by Self-Bias Effect of Ion Gel in Single-Layer MoS2 Device.

    Science.gov (United States)

    Khan, Muhammad Atif; Rathi, Servin; Park, Jinwoo; Lim, Dongsuk; Lee, Yoontae; Yun, Sun Jin; Youn, Doo-Hyeb; Kim, Gil-Ho

    2017-08-16

    The self-biasing effects of ion gel from source and drain electrodes on electrical characteristics of single layer and few layer molybdenum disulfide (MoS 2 ) field-effect transistor (FET) have been studied. The self-biasing effect of ion gel is tested for two different configurations, covered and open, where ion gel is in contact with either one or both, source and drain electrodes, respectively. In open configuration, the linear output characteristics of the pristine device becomes nonlinear and on-off ratio drops by 3 orders of magnitude due to the increase in "off" current for both single and few layer MoS 2 FETs. However, the covered configuration results in a highly asymmetric output characteristics with a rectification of around 10 3 and an ideality factor of 1.9. This diode like behavior has been attributed to the reduction of Schottky barrier width by the electric field of self-biased ion gel, which enables an efficient injection of electrons by tunneling at metal-MoS 2 interface. Finally, finite element method based simulations are carried out and the simulated results matches well in principle with the experimental analysis. These self-biased diodes can perform a crucial role in the development of high-frequency optoelectronic and valleytronic devices.

  20. Elucidating distinct ion channel populations on the surface of hippocampal neurons via single-particle tracking recurrence analysis

    Science.gov (United States)

    Sikora, Grzegorz; Wyłomańska, Agnieszka; Gajda, Janusz; Solé, Laura; Akin, Elizabeth J.; Tamkun, Michael M.; Krapf, Diego

    2017-12-01

    Protein and lipid nanodomains are prevalent on the surface of mammalian cells. In particular, it has been recently recognized that ion channels assemble into surface nanoclusters in the soma of cultured neurons. However, the interactions of these molecules with surface nanodomains display a considerable degree of heterogeneity. Here, we investigate this heterogeneity and develop statistical tools based on the recurrence of individual trajectories to identify subpopulations within ion channels in the neuronal surface. We specifically study the dynamics of the K+ channel Kv1.4 and the Na+ channel Nav1.6 on the surface of cultured hippocampal neurons at the single-molecule level. We find that both these molecules are expressed in two different forms with distinct kinetics with regards to surface interactions, emphasizing the complex proteomic landscape of the neuronal surface. Further, the tools presented in this work provide new methods for the analysis of membrane nanodomains, transient confinement, and identification of populations within single-particle trajectories.

  1. Examination of the anisotropy of the wetting behaviour of liquid Al-Cu alloys on single crystalline oriented Al{sub 2}O{sub 3}-substrates; Untersuchung der Anisotropie im Benetzungsverhalten fluessiger Al-Cu Legierungen auf einkristallinen orientierten Al{sub 2}O{sub 3}-Substraten

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Julianna

    2011-02-04

    The wetting behaviour of liquid Al-Cu alloys and pure metals on oriented single crystalline Al{sub 2}O{sub 3}-substrates was examined, utilising the sessile drop technique. Measurements were performed at moderate temperatures of 1100 C, where the alloys are liquid. Different Al{sub 2}O{sub 3}-surfaces were studied, which are terminated by the crystallographic planes (0001), (11 anti 20), and (1 anti 102), also called C-, A-, and R-surfaces. After deposition, pure Cu-droplets show an exponential increase of the wetting angle to a value of about 115 for all investigated Al{sub 2}O{sub 3}-surfaces. The timescale of this increase is of the order of 100 s. The effect of surface- and interfacial energies on the wetting angle is discussed considering Young's equation. The most probable reason for its time-dependence seems to be an increase of the interfacial energy due to deoxidation of the droplet. Therefore it is reasonable to regard the isotropic contact angle value as the intrinsic one of the Cu/Al{sub 2}O{sub 3} system. In contrast, the wetting angle of pure Al metal with the different Al{sub 2}O{sub 3}-substrates shows a qualitatively different behaviour. In this system, it rises from about 90 to 115 roughly for C-substrates, twice as fast as in the Cu case but to a comparable value. On the other substrates a wetting angle of about 90 establishes immediately, and no pronounced time dependence is obvious. In order to study changes in the wetting behaviour of Al-Cu-alloys, which is isotropic for Cu and anisotropic for Al-rich alloys, contact angles of Al{sub 50}Cu{sub 50}, Al{sub 30}Cu{sub 70} und Al{sub 17}Cu{sub 83} on Al{sub 2}O{sub 3} were determined. For each alloy composition the wetting angle is about 120 after 300 s. The initial values on distinct surfaces hardly differ and become non-wetting with increasing Cu-content. Hence, anisotropy decreases. To determine the work of adhesion of the solid-liquid interface, the temperature- and composition

  2. Electron paramagnetic resonance of Cr{sup 3+} ions in ABO{sub 3} (A = Sc, Lu, In) diamagnetic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vorotynov, A. M., E-mail: sasa@iph.krasn.ru; Ovchinnikov, S. G.; Rudenko, V. V. [Russian Academy of Sciences, Kirenskii Institute of Physics, Siberian Branch (Russian Federation); Vorotynova, O. V. [Siberian Federal University (Russian Federation)

    2016-04-15

    A magnetic resonance method is applied to the investigation of a number of isostructural diamagnetic compounds ABO{sub 3} (A = Sc, Lu, In) with small additions of Cr{sup 3+} ions (S = 3/2) sufficient to observe single-ion spectra. It is shown that the resonance spectra for isolated Cr{sup 3+} ions can be described to a good accuracy by the ordinary axial spin Hamiltonian for 3d ions in octahedral oxygen environment. The parameters of the spin Hamiltonian are determined. It is established that Cr{sup 3+} ions in these crystals are characterized by easy-axis-type anisotropy.

  3. Molecular dynamics study of radiation damage and microstructure evolution of zigzag single-walled carbon nanotubes under carbon ion incidence

    Science.gov (United States)

    Li, Huan; Tang, Xiaobin; Chen, Feida; Huang, Hai; Liu, Jian; Chen, Da

    2016-07-01

    The radiation damage and microstructure evolution of different zigzag single-walled carbon nanotubes (SWCNTs) were investigated under incident carbon ion by molecular dynamics (MD) simulations. The radiation damage of SWCNTs under incident carbon ion with energy ranging from 25 eV to 1 keV at 300 K showed many differences at different incident sites, and the defect production increased to the maximum value with the increase in incident ion energy, and slightly decreased but stayed fairly stable within the majority of the energy range. The maximum damage of SWCNTs appeared when the incident ion energy reached 200 eV and the level of damage was directly proportional to incident ion fluence. The radiation damage was also studied at 100 K and 700 K and the defect production decreased distinctly with rising temperature because radiation-induced defects would anneal and recombine by saturating dangling bonds and reconstructing carbon network at the higher temperature. Furthermore, the stability of a large-diameter tube surpassed that of a thin one under the same radiation environments.

  4. Investigations on heavy ion induced Single-Event Transients (SETs) in highly-scaled FinFETs

    International Nuclear Information System (INIS)

    Gaillardin, M.; Raine, M.; Paillet, P.; Adell, P.C.; Girard, S.; Duhamel, O.; Andrieu, F.; Barraud, S.; Faynot, O.

    2015-01-01

    We investigate Single-Event Transients (SET) in different designs of multiple-gate devices made of FinFETs with various geometries. Heavy ion experimental results are explained by using a thorough charge collection analysis of fast transients measured on dedicated test structures. Multi-level simulations are performed to get new insights into the charge collection mechanisms in multiple-gate devices. Implications for multiple-gate device design hardening are finally discussed.

  5. Tumor induction in mice after local irradiation with single doses of either carbon-ion beams or gamma rays.

    Science.gov (United States)

    Ando, Koichi; Koike, Sachiko; Ohmachi, Yasushi; Ando, Yutaka; Kobashi, Gen

    2014-12-01

    To determine the dose-dependent relative biological effectiveness (RBE) for tumor prevalence in mice receiving single localized doses to their right leg of either carbon ions (15, 45 or 75 keV/μm) or 137Cs gamma rays. A total of 1647 female C3H mice were irradiated to their hind legs with a localized dose of either reference gamma rays or 15, 45 or 75 keV/μm carbon-ion beams. Irradiated mice were evaluated for tumors twice a month during their three-year life span, and the dimensions of any tumors found were measured with a caliper. The tumor induction frequency was calculated by Kaplan-Meier analysis. The incidence of tumors from 50 Gy of 45 keV/μm carbon ions was marginally higher than those from 50 Gy of gamma rays. However, 60 Gy of 15 keV/μm carbon ions induced significantly fewer tumors than did gamma rays. RBE values of 0.87 + 0.12, 1.29 + 0.08 or 2.06 + 0.39 for lifetime tumorigenesis were calculated for 15, 45 or 75 keV/μm carbon-ion beams, respectively. Fibrosarcoma predominated, with no Linear Energy Transfer (LET)-dependent differences in the tumor histology. Experiments measuring the late effect of leg skin shrinkage suggested that the carcinogenic damage of 15 keV/μm carbon ions would be less than that of gamma rays. We conclude that patients receiving radiation doses to their normal tissues would face less risk of secondary tumor induction by carbon ions of intermediate LET values compared to equivalent doses of photons.

  6. Determination and shaping of the ion-velocity distribution function in a single-ended Q machine

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Michelsen, Poul

    1971-01-01

    An electrostatic energy analyzer with a resolution better than 0.03 eV was constructed. This analyzer was used to determine the ion-velocity distribution function at different densities and plate temperatures in a single-ended Q machine. In all regions good agreement with theoretical predictions...... based on simple, physical pictures is obtained. It is shown that within certain limits the velocity distribution function can be shaped; double-humped distribution functions have been obtained. The technique used here is suggested as an accurate method for determination of plasma densities within 10......% in single-ended Q machines...

  7. A novel aptasensor based on single-molecule force spectroscopy for highly sensitive detection of mercury ions.

    Science.gov (United States)

    Li, Qing; Michaelis, Monika; Wei, Gang; Colombi Ciacchi, Lucio

    2015-08-07

    We have developed a novel aptasensor based on single-molecule force spectroscopy (SMFS) capable of detecting mercury ions (Hg(2+)) with sub-nM sensitivity. The single-strand (ss) DNA aptamer used in this work is rich in thymine (T) and readily forms T-Hg(2+)-T complexes in the presence of Hg(2+). The aptamer was conjugated to an atomic force microscope (AFM) probe, and the adhesion force between the probe and a flat graphite surface was measured by single-molecule force spectroscopy (SMFS). The presence of Hg(2+) ions above a concentration threshold corresponding to the affinity constant of the ions for the aptamer (about 5 × 10(9) M(-1)) could be easily detected by a change of the measured adhesion force. With our chosen aptamer, we could reach an Hg(2+) detection limit of 100 pM, which is well below the maximum allowable level of Hg(2+) in drinking water. In addition, this aptasensor presents a very high selectivity for Hg(2+) over other metal cations, such as K(+), Ca(2+), Zn(2+), Fe(2+), and Cd(2+). Furthermore, the effects of the ionic strength and loading rate on the Hg(2+) detection were evaluated. Its simplicity, reproducibility, high selectivity and sensitivity make our SMFS-based aptasensor advantageous with respect to other current Hg(2+) sensing methods. It is expected that our strategy can be exploited for monitoring the pollution of water environments and the safety of potentially contaminated food.

  8. Temperature Dependent Magnetic Anisotropy in Metallic Magnets from an Ab Initio Electronic Structure Theory: L10-Ordered FePt

    Science.gov (United States)

    Staunton, J. B.; Ostanin, S.; Razee, S. S.; Gyorffy, B. L.; Szunyogh, L.; Ginatempo, B.; Bruno, Ezio

    2004-12-01

    Using a first-principles, relativistic electronic structure theory of finite temperature metallic magnetism, we investigate the variation of magnetic anisotropy K with magnetization M in metallic ferromagnets. We apply the theory to the high uniaxial K material, L10-ordered FePt, and find its magnetic easy axis perpendicular to the Fe/Pt layers for all M and K to be proportional to M2 for a broad range of values of M. For small M, near the Curie temperature, the calculations pick out the easy axis for the onset of magnetic order. Our abinitio results for this important magnetic material agree well with recent experimental measurements, whereas the single-ion anisotropy model fails to give the correct qualitative behavior.

  9. Flow stress anisotropy

    DEFF Research Database (Denmark)

    Winther, G.

    1996-01-01

    stress Variation in the rolling plane, which may be as high as 20%, are presented. The traditional Taylor model is applied to the data to account for the effect of texture. However, texture effects alone are not enough to explain all of the observed anisotropy. New models which take the combined effects...... of texture and deformation microstructure into account are presented. The models are based on the Taylor and Sachs models but modified with an anisotropic critical shear stress to account for the effect of the microstructure. The agreement between experimental data and model predictions is definitely better...

  10. Lithium ions in the van der Waals gap of Bi2Se3 single crystals

    International Nuclear Information System (INIS)

    Bludska, J.; Jakubec, I.; Karamazov, S.; Horak, J.; Uher, C.

    2010-01-01

    Insertion/extraction of lithium ions into/from Bi 2 Se 3 crystals was investigated by means of cyclic voltammetry. The process of insertion is reflected in the appearance of two bands on voltammograms at ∼1.7 and ∼1.5 V, corresponding to the insertion of Li + ions into octahedral and tetrahedral sites of the van der Waals gap of these layered crystals. The process of extraction of Li + ions from the gap results in the appearance of four bands on the voltammograms. The bands 1 and 2 at ∼2.1 and ∼2.3 V correspond to the extraction of a part of Li + guest ions from the octahedral and tetrahedrals sites and this extraction has a character of a reversible intercalation/deintercalation process. A part of Li + ions is bound firmly in the crystal due to the formation of negatively charged clusters of the (LiBiSe 2 .Bi 3 Se 4 - ) type. A further extraction of Li + ions from the van der Waals gap is associated with the presence of bands 3 and 4 placed at ∼2.5 and ∼2.7 V on the voltammograms as their extraction needs higher voltage due to the influence of negative charges localized on these clusters. -- Graphical abstract: Insertion/extraction of lithium ions into/from Bi 2 Se 3 layered crystals was investigated by cyclic voltammetry. The extraction of Li + results in the appearance of four bands on the voltammograms. The first two bands have a character of a reversible process. A part of Li + ions is bound firmly in the crystal due to the formation of negatively charged clusters of the (LiBiSe 2 .Bi 3 Se 4 - ) type. Their extraction needs higher voltage due to the negative charge. Display Omitted

  11. Nanometer-size surface modification produced by single, low energy, highly charged ions

    International Nuclear Information System (INIS)

    Stockli, M.P.

    1994-01-01

    Atomically flat surfaces of insulators have been bombarded with low energy, highly charged ions to search for nanometer-size surface modifications. It is expected that the high electron deficiency of highly charged ions will capture and/or remove many of the insulator's localized electrons when impacting on an insulating surface. The resulting local electron deficiency is expected to locally disintegrate the insulator through a open-quotes Coulomb explosionclose quotes forming nanometer-size craters. Xe ions with charge states between 10+ and 45+ and kinetic energies between 0 and 10 keV/q were obtained from the KSU-CRYEBIS, a CRYogenic Electron Beam Ion Source and directed onto various insulating materials. Mica was favored as target material as atomically flat surfaces can be obtained reliably through cleaving. However, the authors observations with an atomic force microscope have shown that mica tends to defoliate locally rather than disintegrate, most likely due to the small binding forces between adjacent layers. So far the authors measurements indicate that each ion produces one blister if the charge state is sufficiently high. The blistering does not seem to depend very much on the kinetic energy of the ions

  12. Cluster-continuum quasichemical theory calculation of the lithium ion solvation in water, acetonitrile and dimethyl sulfoxide: an absolute single-ion solvation free energy scale.

    Science.gov (United States)

    Carvalho, Nathalia F; Pliego, Josefredo R

    2015-10-28

    Absolute single-ion solvation free energy is a very useful property for understanding solution phase chemistry. The real solvation free energy of an ion depends on its interaction with the solvent molecules and on the net potential inside the solute cavity. The tetraphenyl arsonium-tetraphenyl borate (TATB) assumption as well as the cluster-continuum quasichemical theory (CC-QCT) approach for Li(+) solvation allows access to a solvation scale excluding the net potential. We have determined this free energy scale investigating the solvation of the lithium ion in water (H2O), acetonitrile (CH3CN) and dimethyl sulfoxide (DMSO) solvents via the CC-QCT approach. Our calculations at the MP2 and MP4 levels with basis sets up to the QZVPP+diff quality, and including solvation of the clusters and solvent molecules by the dielectric continuum SMD method, predict the solvation free energy of Li(+) as -116.1, -120.6 and -123.6 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively (1 mol L(-1) standard state). These values are compatible with the solvation free energy of the proton of -253.4, -253.2 and -261.1 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively. Deviations from the experimental TATB scale are only 1.3 kcal mol(-1) in H2O and 1.8 kcal mol(-1) in DMSO solvents. However, in the case of CH3CN, the deviation reaches a value of 9.2 kcal mol(-1). The present study suggests that the experimental TATB scale is inconsistent for CH3CN. A total of 125 values of the solvation free energy of ions in these three solvents were obtained. These new data should be useful for the development of theoretical solvation models.

  13. Synthesis, structure, luminescence, and magnetic properties of a single-ion magnet "mer"-[tris(N-[(imidazol-4-yl)-methylidene]-DL-phenylalaninato)terbium(III) and related "fac"-DL-alaninato derivative.

    Science.gov (United States)

    Yamauchi, Suguru; Fujinami, Takeshi; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Watanabe, Masayuki; Tsuchimoto, Masanobu; Coletti, Cecilia; Re, Nazzareno

    2014-06-16

    Two Tb(III) complexes with the same N6O3 donor atoms but different coordination geometries, "fac"-[Tb(III)(HL(DL-ala))3]·7H2O (1) and "mer"-[Tb(III)(HL(DL-phe))3]·7H2O (2), were synthesized, where H2L(DL-ala) and H2L(DL-phe) are N-[(imidazol-4-yl)methylidene]-DL-alanine and -DL-phenylalanine, respectively. Each Tb(III) ion is coordinated by three electronically mononegative NNO tridentate ligands to form a coordination geometry of a tricapped trigonal prism. Compound 1 consists of enantiomers "fac"-[Tb(III)(HL(D-ala))3] and "fac"-[Tb(III)(HL(L-ala))3], while 2 consists of "mer"-[Tb(III)(HL(D-phe))2(HL(L-phe))] and "mer"-[Tb(III)(HL(D-phe))(HL(L-phe))2]. Magnetic data were analyzed by a spin Hamiltonian including the crystal field effect on the Tb(III) ion (4f(8), J = 6, S = 3, L = 3, gJ = 3/2, (7)F6). The Stark splitting of the ground state (7)F6 was evaluated from magnetic analysis, and the energy diagram pattern indicated easy-plane and easy-axis (Ising type) magnetic anisotropies for 1 and 2, respectively. Highly efficient luminescences with Φ = 0.50 and 0.61 for 1 and 2, respectively, were observed, and the luminescence fine structure due to the (5)D4 → (7)F6 transition is in good accordance with the energy diagram determined from magnetic analysis. The energy diagram of 1 shows an approximate single-well potential curve, whereas that of 2 shows a double- or quadruple-well potential within the (7)F6 multiplets. Complex 2 displayed an onset of the out-of-phase signal in alternating current (ac) susceptibility at a direct current bias field of 1000 Oe on cooling down to 1.9 K. A slight frequency dependence was recorded around 2 K. On the other hand, 1 did not show any meaningful out-of-phase ac susceptibility. Pulsed-field magnetizations of 1 and 2 were measured below 1.6 K, and only 2 exhibited magnetic hysteresis. This finding agrees well with the energy diagram pattern from crystal field calculation on 1 and 2. DFT calculation allowed us to estimate the

  14. Interaction of singly and multiply charged ions with a lithium-fluoride surface

    CERN Document Server

    Wirtz, L

    2001-01-01

    Charge transfer between slow ions and an ionic crystal surface still poses a considerable challenge to theory due to the intrinsic many-body character of the system. For the neutralization of multiply charged ions in front of metal surfaces, the Classical Over the Barrier (COB) model is a widely used tool. We present an extension of this model to ionic crystal surfaces where the localization of valence electrons at the anion sites and the lack of cylindrical symmetry of the ion-surface system impede a simple analytical estimate of electron transfer rates. We use a classical trajectory Monte Carlo approach to calculate electron transfer rates for different charge states of the projectile ion. With these rates we perform a Monte Carlo simulation of the neutralization of slow Ne10+ ions in vertical incidence on an LiF surface. Capture of one or several electrons may lead to a local positive charge up of the surface. The projectile dynamics depends on the balance between the repulsion due to this charge and the a...

  15. Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent.

    Science.gov (United States)

    Wang, Futao; Pan, Yuanfeng; Cai, Pingxiong; Guo, Tianxiang; Xiao, Huining

    2017-10-01

    A high efficient and eco-friendly sugarcane cellulose-based adsorbent was prepared in an attempt to remove Pb 2+ , Cu 2+ and Zn 2+ from aqueous solutions. The effects of initial concentration of heavy metal ions and temperature on the adsorption capacity of the bioadsorbent were investigated. The adsorption isotherms showed that the adsorption of Pb 2+ , Cu 2+ and Zn 2+ followed the Langmuir model and the maximum adsorptions were as high as 558.9, 446.2 and 363.3mg·g -1 , respectively, in single component system. The binary component system was better described with the competitive Langmuir isotherm model. The three dimensional sorption surface of binary component system demonstrated that the presence of Pb 2+ decreased the sorption of Cu 2+ , but the adsorption amount of other metal ions was not affected. The result from SEM-EDAX revealed that the adsorption of metal ions on bioadsorbent was mainly driven by coordination, ion exchange and electrostatic association. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Single-ion triblock copolymer electrolytes based on poly(ethylene oxide) and methacrylic sulfonamide blocks for lithium metal batteries

    Science.gov (United States)

    Porcarelli, Luca; Aboudzadeh, M. Ali; Rubatat, Laurent; Nair, Jijeesh R.; Shaplov, Alexander S.; Gerbaldi, Claudio; Mecerreyes, David

    2017-10-01

    Single-ion conducting polymer electrolytes represent the ideal solution to reduce concentration polarization in lithium metal batteries (LMBs). This paper reports on the synthesis and characterization of single-ion ABA triblock copolymer electrolytes comprising PEO and poly(lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethylsulfonyl)imide) blocks, poly(LiMTFSI). Block copolymers are prepared by reversible addition-fragmentation chain transfer polymerization, showing low glass transition temperature (-55 to 7 °C) and degree of crystallinity (51-0%). Comparatively high values of ionic conductivity are obtained (up to ≈ 10-4 S cm-1 at 70 °C), combined with a lithium-ion transference number close to unity (tLi+ ≈ 0.91) and a 4 V electrochemical stability window. In addition to these promising features, solid polymer electrolytes are successfully tested in lithium metal cells at 70 °C providing long lifetime up to 300 cycles, and stable charge/discharge cycling at C/2 (≈100 mAh g-1).

  17. Analysis of trace inorganic anions in weak acid salts by single pump cycling-column-switching ion chromatography.

    Science.gov (United States)

    Huang, Zhongping; Ni, Chengzhu; Zhu, Zhuyi; Pan, Zaifa; Wang, Lili; Zhu, Yan

    2015-05-01

    The application of ion chromatography with the single pump cycling-column-switching technique was described for the analysis of trace inorganic anions in weak acid salts within a single run. Due to the hydrogen ions provided by an anion suppressor electrolyzing water, weak acid anions could be transformed into weak acids, existing as molecules, after passing through the suppressor. Therefore, an anion suppressor and ion-exclusion column were adopted to achieve on-line matrix elimination of weak acid anions with high concentration for the analysis of trace inorganic anions in weak acid salts. A series of standard solutions consisting of target anions of various concentrations from 0.005 to 10 mg/L were analyzed, with correlation coefficients r ≥ 0.9990. The limits of detection were in the range of 0.67 to 1.51 μg/L, based on the signal-to-noise ratio of 3 and a 25 μL injection volume. Relative standard deviations for retention time, peak area, and peak height were all less than 2.01%. A spiking study was performed with satisfactory recoveries between 90.3 and 104.4% for all anions. The chromatographic system was successfully applied to the analysis of trace inorganic anions in five weak acid salts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Single-Event Effects in Power MOSFETs During Heavy Ion Irradiations Performed After Gamma-Ray Degradation

    Science.gov (United States)

    Busatto, G.; De Luca, V.; Iannuzzo, F.; Sanseverino, A.; Velardi, F.

    2013-10-01

    The robustness of commercial power metal-oxide semiconductor field-effect transistors to combined gamma-heavy ion irradiation has been investigated, evidence that the degradation of the gate oxide caused by the γ irradiation can severely corrupt the robustness to single-event effects and drastically modify the physical behavior of the device under test after the impact of a heavy ion. A decrease of the critical voltages at which destructive burnouts and gate ruptures for heavy ion impact appear, has been detected in the devices under test, which were previously irradiated with γ rays. In addition, the amount of critical voltage reduction is strictly related to the amount of the absorbed γ-ray dose. Furthermore, at the failure voltage, the behavior of the device is affected by the conduction of a current through the gate oxide. Moreover, the single-event gate rupture” of the device appears at lower voltages because of the reduction of the Fowler-Nordheim limit in the γ-irradiated devices.

  19. A Nanophase-Separated, Quasi-Solid-State Polymeric Single-Ion Conductor: Polysulfide Exclusion for Lithium–Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jinhong; Song, Jongchan; Lee, Hongkyung; Noh, Hyungjun; Kim, Yun-Jung; Kwon, Sung Hyun; Lee, Seung Geol; Kim, Hee-Tak

    2017-04-19

    Formation of soluble polysulfide (PS), which is a key feature of lithium sulfur (Li–S) batteries, provides a fast redox kinetic based on a liquid–solid mechanism; however, it imposes the critical problem of PS shuttle. Here, we address the dilemma by exploiting a solvent-swollen polymeric single-ion conductor (SPSIC) as the electrolyte medium of the Li–S battery. The SPSIC consisting of a polymeric single-ion conductor and lithium salt-free organic solvents provides Li ion hopping by forming a nanoscale conducting channel and suppresses PS shuttle according to the Donnan exclusion principle when being employed for Li–S batteries. The organic solvents at the interface of the sulfur/carbon composite and SPSIC eliminate the poor interfacial contact and function as a soluble PS reservoir for maintaining the liquid–solid mechanism. Furthermore, the quasi-solid-state SPSIC allows the fabrication of a bipolar-type stack, which promises the realization of a high-voltage and energy-dense Li–S battery.

  20. Ion Density Analysis of Single-Stranded DNA in Liquid Crystal

    Science.gov (United States)

    Iwabata, Kazuki; Seki, Yasutaka; Toizumi, Ryota; Shimada, Yuki; Furue, Hirokazu; Sakaguchi, Kengo

    2013-09-01

    With the widespread use of liquid crystals (LCs) in liquid crystal displays, we have looked into the application of liquid crystals in biotechnology. The purpose of the study described here is to investigate the physical properties of DNA using LCs. Synthetic oligonucleotide molecules were dispersed in MLC6884, the sample injected into antiparallel cells, and the amount of mobile ions was measured. The LC cell doped with oligonucleotide molecules showed a sequence-dependent, specific correlation between oligonucleotide concentration and the amount of mobile ions in the LC cells. In the framework of the Stokes model and polyacrylamide gel electrophoresis (PAGE) analysis, we speculate that this result arises from the difference in ion mobility, which is caused by the shape of the oligonucleotide molecule in the LC.

  1. Positron bound states on hydride ions in thermochemically reduced MgO single crystals

    International Nuclear Information System (INIS)

    Monge, M.A.; Pareja, R.; Gonzalez, R.; Chen, Y.

    1996-01-01

    Positron-lifetime and Doppler-broadening techniques were used to unambiguously identify positronium hydrides in thermochemically reduced MgO crystals at low temperatures. Positrons trapped at H - ions, forming PsH, yield a lifetime of (640±40) ps, independent of temperature. Complementary evidence for this identification was provided by Doppler-broadening experiments, in which positrons were trapped at H 2- sites at low temperatures. The H 2- ions were formed via H - +e - →H 2- by the capturing of an electron released from Fe + impurity under blue-light stimulation. copyright 1996 The American Physical Society

  2. Large Flexoelectric Anisotropy in Paraelectric Barium Titanate.

    Science.gov (United States)

    Narvaez, Jackeline; Saremi, Sahar; Hong, Jiawang; Stengel, Massimiliano; Catalan, Gustau

    2015-07-17

    The bending-induced polarization of barium titanate single crystals has been measured with an aim to elucidate the origin of the large difference between theoretically predicted and experimentally measured flexoelectricity in this material. The results indicate that part of the difference is due to polar regions (short-range order) that exist above T(C) and up to T*≈200-225 °C. Above T*, however, the flexovoltage coefficient still shows an unexpectedly large anisotropy for a cubic material, with (001)-oriented crystals displaying 10 times more flexoelectricity than (111)-oriented crystals. Theoretical analysis shows that this anisotropy cannot be a bulk property, and we therefore interpret it as indirect evidence for the theoretically predicted but experimentally elusive contribution of surface piezoelectricity to macroscopic bending-induced polarization.

  3. Seismic anisotropy in deforming salt bodies

    Science.gov (United States)

    Prasse, P.; Wookey, J. M.; Kendall, J. M.; Dutko, M.

    2017-12-01

    Salt is often involved in forming hydrocarbon traps. Studying salt dynamics and the deformation processes is important for the exploration industry. We have performed numerical texture simulations of single halite crystals deformed by simple shear and axial extension using the visco-plastic self consistent approach (VPSC). A methodology from subduction studies to estimate strain in a geodynamic simulation is applied to a complex high-resolution salt diapir model. The salt diapir deformation is modelled with the ELFEN software by our industrial partner Rockfield, which is based on a finite-element code. High strain areas at the bottom of the head-like strctures of the salt diapir show high amount of seismic anisotropy due to LPO development of halite crystals. The results demonstrate that a significant degree of seismic anisotropy can be generated, validating the view that this should be accounted for in the treatment of seismic data in, for example, salt diapir settings.

  4. Large Flexoelectric Anisotropy in Paraelectric Barium Titanate

    Science.gov (United States)

    Narvaez, Jackeline; Saremi, Sahar; Hong, Jiawang; Stengel, Massimiliano; Catalan, Gustau

    2015-07-01

    The bending-induced polarization of barium titanate single crystals has been measured with an aim to elucidate the origin of the large difference between theoretically predicted and experimentally measured flexoelectricity in this material. The results indicate that part of the difference is due to polar regions (short-range order) that exist above TC and up to T*≈2 00 - 2 2 5 °C . Above T* , however, the flexovoltage coefficient still shows an unexpectedly large anisotropy for a cubic material, with (001)-oriented crystals displaying 10 times more flexoelectricity than (111)-oriented crystals. Theoretical analysis shows that this anisotropy cannot be a bulk property, and we therefore interpret it as indirect evidence for the theoretically predicted but experimentally elusive contribution of surface piezoelectricity to macroscopic bending-induced polarization.

  5. Microwave background anisotropies in quasiopen inflation

    Science.gov (United States)

    García-Bellido, Juan; Garriga, Jaume; Montes, Xavier

    1999-10-01

    Quasiopenness seems to be generic to multifield models of single-bubble open inflation. Instead of producing infinite open universes, these models actually produce an ensemble of very large but finite inflating islands. In this paper we study the possible constraints from CMB anisotropies on existing models of open inflation. The effect of supercurvature anisotropies combined with the quasiopenness of the inflating regions make some models incompatible with observations, and severely reduces the parameter space of others. Supernatural open inflation and the uncoupled two-field model seem to be ruled out due to these constraints for values of Ω0<~0.98. Others, such as the open hybrid inflation model with suitable parameters for the slow roll potential can be made compatible with observations.

  6. Sputtering of lunar regolith simulant by protons and singly and multicharged Ar ions at solar wind energies

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, F.W., E-mail: meyerfw@ornl.gov [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Harris, P.R.; Taylor, C.N. [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Meyer III, H.M. [MST Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Barghouty, A.F.; Adams, J.H. [NASA-Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2011-06-01

    We report preliminary results on sputtering of a lunar regolith simulant at room temperature by singly and multiply charged solar wind ions using quadrupole and time-of-flight (TOF) mass spectrometry approaches. Sputtering of the lunar regolith by solar-wind heavy ions may be an important particle source that contributes to the composition of the lunar exosphere, and is a possible mechanism for lunar surface ageing and compositional modification. The measurements were performed in order to assess the relative sputtering efficiency of protons, which are the dominant constituent of the solar wind, and less abundant heavier multicharged solar wind constituents, which have higher physical sputtering yields than same-velocity protons, and whose sputtering yields may be further enhanced due to potential sputtering. Two different target preparation approaches using JSC-1A AGGL lunar regolith simulant are described and compared using SEM and XPS surface analysis.

  7. High Lithium Insertion Voltage Single-Crystal H2 Ti12 O25 Nanorods as a High-Capacity and High-Rate Lithium-Ion Battery Anode Material.

    Science.gov (United States)

    Guo, Qiang; Chen, Li; Shan, Zizhao; Lee, Wee Siang Vincent; Xiao, Wen; Liu, Zhifang; Liang, Jingjing; Yang, Gaoli; Xue, Junmin

    2018-01-10

    H 2 Ti 12 O 25 holds great promise as a high-voltage anode material for advanced lithium-ion battery applications. To enhance its electrochemical performance, control of the crystal orientation and morphology is an effective way to cope with slow Li + -ion diffusion inside H 2 Ti 12 O 25 with severe anisotropy. In this report, Na 2 Ti 6 O 13 nanorods, prepared from Na 2 CO 3 and anatase TiO 2 in molten NaCl medium, were used as a precursor in the synthesis of long single-crystal H 2 Ti 12 O 25 nanorods with reactive facets. The as-prepared H 2 Ti 12 O 25 nanorods with a diameter of 100-200 nm showed higher charge (extraction) specific capacity and better rate performance than previously reported systems. The reversible capacity of H 2 Ti 12 O 25 was 219.8 mAh g -1 at 1C after 100 cycles, 172.1 mAh g -1 at 10C, and 144.4 mAh g -1 at 20C after 200 cycles; these values are higher than those of H 2 Ti 12 O 25 prepared by the conventional soft-chemical method. Moreover, the as-prepared H 2 Ti 12 O 25 nanorods exhibited superior cycle stability with more than 94 % retention of capacity with nearly 100 % coulombic efficiency after 100 cycles at 1C. On the basis of the above results, long single-crystal H 2 Ti 12 O 25 nanorods synthesized in molten NaCl with outstanding electrochemical characteristics hold a significant amount of promise for hybrid electric vehicles and energy-storage systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Metallization of Single-Stranded Polyl by Zn2+ Ions in Neutral Solutions

    Czech Academy of Sciences Publication Activity Database

    Sorokin, V. A.; Valeev, V. A.; Usenko, E. L.; Andrushchenko, Valery

    2014-01-01

    Roč. 118, č. 43 (2014), s. 12360-12365 ISSN 1520-6106 Institutional support: RVO:61388963 Keywords : nucleic acid metallization * zinc ion * differential UV spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.302, year: 2014

  9. Spectroscopic properties of LaAlO3 single-crystal doped with Tb3+ ions

    Science.gov (United States)

    Sztolberg, D.; Brzostowski, B.; Dereń, P. J.

    2018-04-01

    LaAlO3 monocrystal doped with 0.5 wt% Tb3+ ions was grown by the Czochralski method. Absorption, emission and emission decay time were measured 300 K in the IR, visible and near UV range. The Tb3+ energy levels in LaAlO3 were assigned both from the absorption and emission spectra.

  10. Single-Ion Deconvolution of Mass Peak Overlaps for Atom Probe Microscopy.

    Science.gov (United States)

    London, Andrew J; Haley, Daniel; Moody, Michael P

    2017-04-01

    Due to the intrinsic evaporation properties of the material studied, insufficient mass-resolving power and lack of knowledge of the kinetic energy of incident ions, peaks in the atom probe mass-to-charge spectrum can overlap and result in incorrect composition measurements. Contributions to these peak overlaps can be deconvoluted globally, by simply examining adjacent peaks combined with knowledge of natural isotopic abundances. However, this strategy does not account for the fact that the relative contributions to this convoluted signal can often vary significantly in different regions of the analysis volume; e.g., across interfaces and within clusters. Some progress has been made with spatially localized deconvolution in cases where the discrete microstructural regions can be easily identified within the reconstruction, but this means no further point cloud analyses are possible. Hence, we present an ion-by-ion methodology where the identity of each ion, normally obscured by peak overlap, is resolved by examining the isotopic abundance of their immediate surroundings. The resulting peak-deconvoluted data are a point cloud and can be analyzed with any existing tools. We present two detailed case studies and discussion of the limitations of this new technique.

  11. Fluorescence-based high-throughput functional profiling of ligand-gated ion channels at the level of single cells.

    Directory of Open Access Journals (Sweden)

    Sahil Talwar

    Full Text Available Ion channels are involved in many physiological processes and are attractive targets for therapeutic intervention. Their functional properties vary according to their subunit composition, which in turn varies in a developmental and tissue-specific manner and as a consequence of pathophysiological events. Understanding this diversity requires functional analysis of ion channel properties in large numbers of individual cells. Functional characterisation of ligand-gated channels involves quantitating agonist and drug dose-response relationships using electrophysiological or fluorescence-based techniques. Electrophysiology is limited by low throughput and high-throughput fluorescence-based functional evaluation generally does not enable the characterization of the functional properties of each individual cell. Here we describe a fluorescence-based assay that characterizes functional channel properties at single cell resolution in high throughput mode. It is based on progressive receptor activation and iterative fluorescence imaging and delivers >100 dose-responses in a single well of a 384-well plate, using α1-3 homomeric and αβ heteromeric glycine receptor (GlyR chloride channels as a model system. We applied this assay with transiently transfected HEK293 cells co-expressing halide-sensitive yellow fluorescent protein and different GlyR subunit combinations. Glycine EC50 values of different GlyR isoforms were highly correlated with published electrophysiological data and confirm previously reported pharmacological profiles for the GlyR inhibitors, picrotoxin, strychnine and lindane. We show that inter and intra well variability is low and that clustering of functional phenotypes permits identification of drugs with subunit-specific pharmacological profiles. As this method dramatically improves the efficiency with which ion channel populations can be characterized in the context of cellular heterogeneity, it should facilitate systems

  12. Radiation-induced effects in MgO single crystal by 200 keV and 1 MeV Ni ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryohei; Nakai, Yoshihiro; Hamaguchi, Dai [Kyoto Inst. of Tech. (Japan)] [and others

    1997-03-01

    MgO(100) single crystals were implanted with 1.0 MeV and 200 keV Ni ions between 10{sup 15} and 10{sup 17} ions/cm{sup 2} at room temperature. Before and after thermal annealing the radiation damage and the lattice location of implanted Ni ions were analyzed by using Rutherford backscattering spectrometry with channeling and optical absorption measurements. For 1.0 MeV Ni ions, the disorder of Mg atoms increased slowly with ion dose near surface region, while it increased sharply and saturated with ion dose from 2x10{sup 16} ions/cm{sup 2} near ion range. The radiation damage was recovered and implanted Ni ions diffused to the whole of crystal and occupied substitutional positions after 1400degC annealing. For 200 keV Ni ions, the disorder of Mg atoms increased with dose near ion range and had a maximum at about 5x10{sup 16} ions/cm{sup 2}. This tendency agrees with the behavior of color centers obtained from optical measurements. For thermal annealing the radiation damage did not change during 500degC annealing, but the aggregate centers appeared after 300degC annealing. (author)

  13. FIRE HOSE INSTABILITY DRIVEN BY ALPHA PARTICLE TEMPERATURE ANISOTROPY

    Energy Technology Data Exchange (ETDEWEB)

    Matteini, L.; Schwartz, S. J. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Hellinger, P. [Astronomical Institute, CAS, Prague (Czech Republic); Landi, S. [Dipartimento di Fisica e Astronomia, Università di Firenze, Firenze (Italy)

    2015-10-10

    We investigate properties of a solar wind-like plasma, including a secondary alpha particle population exhibiting a parallel temperature anisotropy with respect to the background magnetic field, using linear and quasi-linear predictions and by means of one-dimensional hybrid simulations. We show that anisotropic alpha particles can drive a parallel fire hose instability analogous to that generated by protons, but that, remarkably, can also be triggered when the parallel plasma beta of alpha particles is below unity. The wave activity generated by the alpha anisotropy affects the evolution of the more abundant protons, leading to their anisotropic heating. When both ion species have sufficient parallel anisotropies, both of them can drive the instability, and we observe the generation of two distinct peaks in the spectra of the fluctuations, with longer wavelengths associated to alphas and shorter ones to protons. If a non-zero relative drift is present, the unstable modes propagate preferentially in the direction of the drift associated with the unstable species. The generated waves scatter particles and reduce their temperature anisotropy to a marginally stable state, and, moreover, they significantly reduce the relative drift between the two ion populations. The coexistence of modes excited by both species leads to saturation of the plasma in distinct regions of the beta/anisotropy parameter space for protons and alpha particles, in good agreement with in situ solar wind observations. Our results confirm that fire hose instabilities are likely at work in the solar wind and limit the anisotropy of different ion species in the plasma.

  14. Generation of vacancy cluster-related defects during single MeV silicon ion implantation of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Pastuović, Ž., E-mail: zkp@ansto.gov.au [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC NSW 2232 (Australia); Capan, I. [Ruđer Bošković Institute, Bijenička cesta 54, P.O. Box 180, 10002 Zagreb (Croatia); Siegele, R. [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC NSW 2232 (Australia); Jačimović, R. [Jozef Stefan Institute, 1000 Ljubljana (Slovenia); Forneris, J. [Physics Department and NIS Excellence Centre, University of Torino, INFN – sez. Torino, CNISM – sez. Torino, via P. Giuria 1, 10125 Torino (Italy); Cohen, D.D. [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC NSW 2232 (Australia); Vittone, E. [Physics Department and NIS Excellence Centre, University of Torino, INFN – sez. Torino, CNISM – sez. Torino, via P. Giuria 1, 10125 Torino (Italy)

    2014-08-01

    Deep Level Transient Spectroscopy (DLTS) has been used to study defects formed in bulk silicon after implantation of 8.3 MeV {sup 28}Si{sup 3+} ions at room temperature. For this study, Schottky diodes prepared from n-type Czohralski-grown silicon wafers have been implanted in the single ion regime up to fluence value of 1 × 10{sup 10} cm{sup −2} utilizing the scanning focused ion microbeam as implantation tool and the Ion Beam Induced Current (IBIC) technique for ion counting. Differential DLTS analysis of the vacancy-rich region in self-implanted silicon reveals a formation of the broad vacancy-related defect state(s) at E{sub c} −0.4 eV. Direct measurements of the electron capture kinetics associated with this trap at E{sub c} −0.4 eV, prior to any annealing do not show an exponential behaviour typical for the simple point-like defects. The logarithmic capture kinetics is in accordance with the theory of majority carrier capture at extended or cluster-related defects. We have detected formation of two deep electron traps at E{sub c} −0.56 eV and E{sub c} −0.61 eV in the interstitial-rich region of the self-implanted silicon, before any annealing. No DLTS signal originating from vacancy-oxygen trap at E{sub c} −0.17 eV, present in the sample irradiated with 0.8 MeV neutrons, has been recorded in the self-implanted sample.

  15. Comparison of single and mixed ion implantation effects on the changes of the surface hardness, light transmittance, and electrical conductivity of polymeric materials

    International Nuclear Information System (INIS)

    Park, J. W.; Lee, J. H.; Lee, J. S.; Kil, J. G.; Choi, B. H.; Han, Z. H.

    2001-01-01

    Single or mixed ions of N, He, C were implanted onto the transparent PET(Polyethylen Terephtalate) with the ion energies of less than 100 keV and the surface hardness, light transmittance and electrical conductivity were examined. As measured with nanoindentation, mixed ion implantations such as N + +He + or N + + C + exhibited more increase in the surface hardness than the single ion implantation. Especially, implantation of C+N ions increased the surface hardness by about three times as compared to the implantation of N ion alone, which means more than 10 times increase than the untreated PET. Surface electrical conductivity was increased along with the hardness increase. The conductivity increase was more proportional to the hardness when used the higher ion energy and ion dose, while it did not show any relationship at as low as 50 keV of ion energy. The light at the 550 nm wavelength (visual range) transmitted more than 85%, which is close to that of as-received PET, and at the wavelength below 300 nm(UV range) the rays were absorbed more than 95% as traveling through the sheet, implying that there are processing parameters which the ion implanted PET maintains the transparency and absorbs the UV rays

  16. Effects of Metal Ions on Conductivity and Structure of Single DNA Molecule in Different Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Dong Ruixin

    2010-01-01

    Full Text Available Abstract We design a novel nano-gap electrode to measure the current of DNA molecule, by which the current–voltage characteristics of individual native DNA, Ag-DNA and Ni-DNA molecules are obtained, respectively. The results show that the voltage gap of Ag- and Ni-DNA is higher than that of native DNA, and the conductance is lower than native DNA in neutral environment. The structure transition from B- to Z-DNA is observed in the presence of high concentrations of nickel ions and Ag-DNA appears chaos state by STM image and U-V spectra characterization. But in alkaline environment, the conductance of Ni-DNA rises and the voltage gap decreases with the increasing of nickel ion concentration denotes that the conductive ability of Ni-DNA is higher than that of native DNA.

  17. Development of a single ion micro-irradiation facility for experimental radiobiology at cell level

    International Nuclear Information System (INIS)

    Barberet, Ph.

    2003-10-01

    A micro-irradiation device has been developed for radiobiology applications at the scale of the cell. This device is based on an upgrade of an existing micro-beam line that was already able to deliver a 1 to 3 MeV proton or alpha beam of low intensity and whose space resolution is lower than 1 micrometer in vacuum. The important part of this work has been the development of an irradiation stage designed to fit on the micro-probe and able to deliver ions in the air with an absolute accuracy of a few micrometers. A program has been set up to monitor the complete irradiation line in testing and in automatic irradiation operating phases. Simulation tools based on Monte-Carlo calculations have been validated through comparisons with experimental data particularly in the field of spatial resolution and of the number of ions delivered. The promising results show the possibility in a near future to use this tool to study the response of cells to very low irradiation doses down to the extreme limit of one ion per cell

  18. Radiation damage induced in Al2O3 single crystal by 90 MeV Xe ions

    Science.gov (United States)

    Zirour, H.; Izerrouken, M.; Sari, A.

    2015-12-01

    Radiation damage induced in Al2O3 single crystal by 90 MeV Xe ions were investigated by optical absorption measurements, Raman spectroscopy and X-ray diffraction (XRD) techniques. The irradiations were performed at the GANIL accelerator in Caen, France for the fluence in the range from 1012 to 6 × 1013 cm-2 at room temperature under normal incidence. The F+ and F2+enters kinetic as a function of fluence deduced from the optical measurements explains that the single defects (F and F+) aggregate to F center clusters (F2 , F2+, F22+) during irradiation at high fluence (>1013 cm-2). Raman and XRD analysis reveal a partial disorder of 40% of Al2O3 in the studied fluence range in accordance with Kabir et al. (2008) study. The result suggests that this is due to the stress relaxation process which occurs at high fluence (>1013 cm-2).

  19. Hyperfine-Interaction-Driven Suppression of Quantum Tunneling at Zero Field in a Holmium(III) Single-Ion Magnet.

    Science.gov (United States)

    Chen, Yan-Cong; Liu, Jun-Liang; Wernsdorfer, Wolfgang; Liu, Dan; Chibotaru, Liviu F; Chen, Xiao-Ming; Tong, Ming-Liang

    2017-04-24

    An extremely rare non-Kramers holmium(III) single-ion magnet (SIM) is reported to be stabilized in the pentagonal-bipyramidal geometry by a phosphine oxide with a high energy barrier of 237(4) cm -1 . The suppression of the quantum tunneling of magnetization (QTM) at zero field and the hyperfine structures originating from field-induced QTMs can be observed even from the field-dependent alternating-current magnetic susceptibility in addition to single-crystal hysteresis loops. These dramatic dynamics were attributed to the combination of the favorable crystal-field environment and the hyperfine interactions arising from 165 Ho (I=7/2) with a natural abundance of 100 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hyperfine-interaction-driven suppression of quantum tunneling at zero field in a holmium(III) single-ion magnet

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan-Cong; Liu, Jun-Liang; Chen, Xiao-Ming; Tong, Ming-Liang [Key Lab. of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen Univ., Guangzhou (China); Wernsdorfer, Wolfgang [Institut Neel, CNRS and Universite Joseph Fournier, Grenoble (France); Institute of Nanotechnology, Karlsruhe Institute of Technology (Germany); Physikalisches Institut, Karlsruhe Institute of Technology (Germany); Liu, Dan; Chibotaru, Liviu F. [Theory of Nanomaterials Group and INPAC-Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven (Belgium)

    2017-04-24

    An extremely rare non-Kramers holmium(III) single-ion magnet (SIM) is reported to be stabilized in the pentagonal-bipyramidal geometry by a phosphine oxide with a high energy barrier of 237(4) cm{sup -1}. The suppression of the quantum tunneling of magnetization (QTM) at zero field and the hyperfine structures originating from field-induced QTMs can be observed even from the field-dependent alternating-current magnetic susceptibility in addition to single-crystal hysteresis loops. These dramatic dynamics were attributed to the combination of the favorable crystal-field environment and the hyperfine interactions arising from {sup 165}Ho (I=7/2) with a natural abundance of 100 %. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching

    Science.gov (United States)

    Li, Zhiqin; Chen, Yiqin; Zhu, Xupeng; Zheng, Mengjie; Dong, Fengliang; Chen, Peipei; Xu, Lihua; Chu, Weiguo; Duan, Huigao

    2016-09-01

    Single-crystal silicon nanostructures have attracted much attention in recent years due in part to their unique optical properties. In this work, we demonstrate direct fabrication of single-crystal silicon nanotubes with sub-10 nm walls which show low reflectivity. The fabrication was based on a cryogenic inductively coupled plasma reactive ion etching process using high-resolution hydrogen silsesquioxane nanostructures as the hard mask. Two main etching parameters including substrate low-frequency power and SF6/O2 flow rate ratio were investigated to determine the etching mechanism in the process. With optimized etching parameters, high-aspect-ratio silicon nanotubes with smooth and vertical sub-10 nm walls were fabricated. Compared to commonly-used antireflection silicon nanopillars with the same feature size, the densely packed silicon nanotubes possessed a lower reflectivity, implying possible potential applications of silicon nanotubes in photovoltaics.

  2. Optical parameters and dispersion behavior of potassium magnesium chloride sulfate single crystals doped with Co+2 ions.

    Science.gov (United States)

    Abu El-Fadl, A; Abd-Elsalam, A M

    2018-05-05

    Single crystals of potassium magnesium chloride sulfate (KMCS) doped with cobalt ions were grown by slow cooling method. Powder XRD study confirmed the monoclinic structure of the grown crystals. The functional group vibrations were checked through FTIR spectroscopy measurements. In optical studies, the absorbance behavior of the crystals and their optical energy gap were established by Tauc plot. The refractive index, the extinction coefficient and other optical constants were calculated for the grown crystals. The normal dispersion of the refractive index was analyzed according to single oscillator Sellmeier's model. The Urbach's rule was applied to analyze the localized states density in the forbidden gap. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Surgical cardiac denervation therapy for treatment of congenital ion channelopathies in pediatric patients: a contemporary, single institutional experience.

    Science.gov (United States)

    Costello, John P; Wilson, Jennifer K; Louis, Clauden; Peer, Syed M; Zurakowski, David; Nadler, Evan P; Qureshi, Faisal G; Jonas, Richard A; Greene, E Anne; Berul, Charles I; Moak, Jeffrey P; Nath, Dilip S

    2015-01-01

    Congenital ion channel disorders, including congenital long QT syndrome (LQTS), cause significant morbidity in pediatric patients. When medication therapy does not control symptoms or arrhythmias, more invasive treatment strategies may be necessary. This study examines our institution's clinical experience with surgical cardiac denervation therapy for management of these arrhythmogenic disorders in children. An institutional review board-approved retrospective review identified ten pediatric patients with congenital ion channelopathies who underwent surgical cardiac denervation therapy at a single institution between May 2011 and April 2014. Eight patients had a diagnosis of congenital LQTS, two patients were diagnosed with catecholaminergic polymorphic ventricular tachycardia (CPVT). All patients underwent sympathectomy and partial stellate ganglionectomy via video-assisted thoracoscopic surgery (VATS). Six of the ten patients had documented ventricular arrhythmias preoperatively, and 70% of the patients had preoperative syncope. The corrected QT interval decreased in 75% of patients with LQTS following sympathectomy. Postoperative arrhythmogenic symptoms were absent in 88% of congenital LQTS patients, but both patients with CPVT continued to have symptoms throughout the duration of follow-up. All patients were alive after a median follow-up period of 10 months. Surgical cardiac denervation therapy via VATS is a useful treatment strategy for congenital LQTS patients who fail medical management, and its potential benefit in the management of CPVT is unclear. A prospective comparison of the efficacy of surgical cardiac denervation therapy and implantable cardioverter-defibrillator use in congenital ion channelopathies is timely and crucial. © The Author(s) 2014.

  4. Enzymatically mediated bioprecipitation of heavy metals from industrial wastes and single ion solutions by mammalian alkaline phosphatase.

    Science.gov (United States)

    Chaudhuri, Gouri; Shah, Gaurav A; Dey, Pritam; S, Ganesh; Venu-Babu, P; Thilagaraj, W Richard

    2013-01-01

    The study was aimed at investigating the potential use of calf intestinal alkaline phosphatase (CIAP) enzyme in the removal of heavy metals (Cd(2+), Ni(2+), Co(2+) and Cr(3+/6+)) from single ion solutions as well as tannery and electroplating effluents. CIAP mediated bioremediation (white biotechnology) is a novel technique that is eco-friendly and cost effective unlike the conventional chemical technologies. Typical reactions containing the enzyme (CIAP) and p-nitrophenyl phosphate (pNPP) as substrate in Tris-HCl buffer (pH 8 and 11) and either single ion metal solutions (250 ppm and 1000 ppm) or effluents from tannery or electroplating industry were incubated at 37°C for 30 min, 60 min and 120 min. The inorganic phosphate (P(i)) generated due to catalytic breakdown of pNPP complexes free metal ions as metal-phosphate and the amount of metal precipitated was derived by estimating the reduction in the free metal ion present in the supernatant of reactions employing atomic absorption spectrophotometer (AAS). Better precipitation of metal was obtained at pH 11 than at pH 8 and between the two concentrations of different metals tested, an initial metal concentration of 250 ppm in the reaction gave more precipitation than with 1000 ppm. Experimental data showed that at pH 11, the percentage of removal of metal ions (for an initial concentration of 250 ppm) was in the following order: Cd(2+) (80.99%) > Ni(2+) (64.78%) > Cr(3+) > (46.15%) > Co(2+) (36.47%) > Cr(6+) (32.33%). The overall removal of Cr(3+) and Cr(6+) from tannery effluent was 32.77% and 37.39% respectively in 120 min at pH 11. Likewise, the overall removal of Cd(2+), Co(2+) and Ni(2+) from electroplating effluent was 50.42%, 13.93% and 38.64% respectively in 120 min at pH 11. The study demonstrates that bioprecipitation by CIAP may be a viable and environmental friendly method for clean-up of heavy metals from tannery and electroplating effluents.

  5. Deep reactive ion etching of fused silica using a single-coated soft mask layer for bio-analytical applications

    International Nuclear Information System (INIS)

    Ray, Tathagata; Zhu, Haixin; Meldrum, Deirdre R

    2010-01-01

    In this note, we present our results from process development and characterization of reactive ion etching (RIE) of fused silica using a single-coated soft masking layer (KMPR® 1025, Microchem Corporation, Newton, MA). The effects of a number of fluorine-radical-based gaseous chemistries, the gas flow rate, RF power and chamber pressure on the etch rate and etching selectivity of fused silica were studied using factorial experimental designs. RF power and pressure were found to be the most important factors in determining the etch rate. The highest fused silica etch rate obtained was about 933 Å min −1 by using SF 6 -based gas chemistry, and the highest etching selectivity between the fused silica and KMPR® 1025 was up to 1.2 using a combination of CF 4 , CHF 3 and Ar. Up to 30 µm deep microstructures have been successfully fabricated using the developed processes. The average area roughness (R a ) of the etched surface was measured and results showed it is comparable to the roughness obtained using a wet etching technique. Additionally, near-vertical sidewalls (with a taper angle up to 85°) have been obtained for the etched microstructures. The processes developed here can be applied to any application requiring fabrication of deep microstructures in fused silica with near-vertical sidewalls. To our knowledge, this is the first note on deep RIE of fused silica using a single-coated KMPR® 1025 masking layer and a non-ICP-based reactive ion etcher. (technical note)

  6. The structural and compositional analysis of single crystal surfaces using low energy ion scattering

    International Nuclear Information System (INIS)

    Armour, D.G.; Van der Berg, J.A.; Verheij, IL.K.

    1979-01-01

    The use of ion scattering for surface composition and structure analysis has been reviewed. The extreme surface specificity of this technique has been widely used to obtain quitative information in a straightforward way, but the/aolc/currence of charge exchange processes, thermal lattice vibrations and multiple scattering have precluded quantitative analysis of experimental data. Examples are quoted to illustrate the progress that has been made in understanding these fundamental processes and in applying this knowledge to the development of the analytical capabilities of the technique. (author)

  7. Giant plasmon excitation in single and double ionization of C60 by fast highly charged Si and O ions

    Science.gov (United States)

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Tribedi, L. C.

    2007-09-01

    Se have investigated single and double ionization of C60 molecule in collisions with 2.33 MeV/u Siq+ (q=6-14) and 3.125 MeV/u Oq+ (q=5-8) projectiles. The projectile charge state dependence of the single and double ionization yields of C60 are then compared to those for an ion-atom collision system using Ne gas as a target. A large difference between the gas and the cluster target behaviour was partially explained in terms of a model based on collective excitation namely the giant dipole plasmon resonance (GDPR). The qualitative agreement between the data and GDPR model prediction for single and double ionization signifies the importance of single and double plasmon excitations in the ionization process. A large deviation of the GDPR model for triple and quadruple ionization from the experimental data imply the importance of the other low impact parameter processes such as evaporation, fragmentation and a possible solid-like dynamical screening.

  8. Giant plasmon excitation in single and double ionization of C60 by fast highly charged Si and O ions

    International Nuclear Information System (INIS)

    Kelkar, A H; Kadhane, U; Misra, D; Tribedi, L C

    2007-01-01

    Se have investigated single and double ionization of C 60 molecule in collisions with 2.33 MeV/u Si q+ (q=6-14) and 3.125 MeV/u O q+ (q=5-8) projectiles. The projectile charge state dependence of the single and double ionization yields of C 60 are then compared to those for an ion-atom collision system using Ne gas as a target. A large difference between the gas and the cluster target behaviour was partially explained in terms of a model based on collective excitation namely the giant dipole plasmon resonance (GDPR). The qualitative agreement between the data and GDPR model prediction for single and double ionization signifies the importance of single and double plasmon excitations in the ionization process. A large deviation of the GDPR model for triple and quadruple ionization from the experimental data imply the importance of the other low impact parameter processes such as evaporation, fragmentation and a possible solid-like dynamical screening

  9. Flow stress anisotropy in aluminium

    DEFF Research Database (Denmark)

    Juul Jensen, D.; Hansen, N.

    1990-01-01

    tension as a function of the angle between the tensile axis and the rolling direction. Textures were determined by neutron diffraction, and Taylor M-factors were calculated. The microstructures were studied by TEM. It was found that the flow stress varies significantly with orientation both at low......The plastic anisotropy of cold-rolled high purity aluminum (99.996%) and commercially pure aluminum (99.6%) has been investigated. Sample parameters were the initial grain size and the degree of plastic strain (ϵ stresses (0.2% offset) were measured at room temperature by uniaxial...... and high strains. It is shown that for most experimental conditions, texture effects alone cannot explain the observed anisotropy, and microstructural anisotropy effects have to be taken into account. In those cases, a correlation between the microstructural anisotropy and the development of microbands...

  10. Supramolecular Nanoparticles via Single-Chain Folding Driven by Ferrous Ions.

    Science.gov (United States)

    Wang, Fei; Pu, Hongting; Jin, Ming; Wan, Decheng

    2016-02-01

    Single-chain nanoparticles can be obtained via single-chain folding assisted by intramolecular crosslinking reversibly or irreversibly. Single-chain folding is also an efficient route to simulate biomacromolecules. In present study, poly(N-hydroxyethylacrylamide-co-4'-(propoxy urethane ethyl acrylate)-2,2':6',2''-terpyridine) (P(HEAm-co-EMA-Tpy)) is synthesized via reversible addition fragmentation chain transfer polymerization. Single-chain folding and intramolecular crosslinking of P(HEAm-co-EMA-Tpy) are achieved via metal coordination chemistry. The intramolecular interaction is characterized on ultraviolet/visible spectrophotometer (UV-vis spectroscopy), proton nuclear magnetic resonance ((1)H NMR), and differential scanning calorimetry (DSC). The supramolecular crosslinking mediated by Fe(2+) plays an important role in the intramolecular collapsing of the single-chain and the formation of the nanoparticles. The size and morphology of the nanoparticles can be controlled reversibly via metal coordination chemistry, which can be characterized by dynamic light scattering (DLS), transmission electron microscope (TEM), and atomic force microscope (AFM). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Heavy Ion Irradiation Fluence Dependence for Single-Event Upsets in a NAND Flash Memory

    Science.gov (United States)

    Chen, Dakai; Wilcox, Edward; Ladbury, Raymond L.; Kim, Hak; Phan, Anthony; Seidleck, Christina; Label, Kenneth

    2016-01-01

    We investigated the single-event effect (SEE) susceptibility of the Micron 16 nm NAND flash, and found that the single-event upset (SEU) cross section varied inversely with cumulative fluence. We attribute the effect to the variable upset sensitivities of the memory cells. Furthermore, the effect impacts only single cell upsets in general. The rate of multiple-bit upsets remained relatively constant with fluence. The current test standards and procedures assume that SEU follow a Poisson process and do not take into account the variability in the error rate with fluence. Therefore, traditional SEE testing techniques may underestimate the on-orbit event rate for a device with variable upset sensitivity.

  12. Microstructural evolution of reduced-activation martensitic steel under single and sequential ion irradiations

    International Nuclear Information System (INIS)

    Luo, Fengfeng; Guo, Liping; Jin, Shuoxue; Li, Tiecheng; Zheng, Zhongcheng; Yang, Feng; Xiong, Xuesong; Suo, Jinping

    2013-01-01

    Microstructural evolution of super-clean reduced-activation martensitic steels irradiated with single-beam (Fe + ) and sequential-beam (Fe + plus He + ) at 350 °C and 550 °C was studied. Sequential-beam irradiation induced smaller size and larger number density of precipitates compared to single-beam irradiation at 350 °C. The largest size of cavities was observed after sequential-beam irradiation at 550 °C. The segregation of Cr and W and depletion of Fe in carbides were observed, and the maximum depletion of Fe and enrichment of Cr occurred under irradiation at 350 °C

  13. Single-walled carbon nanotubes as stabilizing agents in red phosphorus Li-ion battery anodes

    KAUST Repository

    Smajic, Jasmin

    2017-08-16

    Phosphorus boasts extremely high gravimetric and volumetric capacities but suffers from poor electrochemical stability with significant capacity loss immediately after the first cycle. We propose to circumvent this issue by mixing amorphous red phosphorus with single-walled carbon nanotubes. Employing a non-destructive sublimation–deposition method, we have synthesized composites where the synergetic effect between red phosphorus and single-walled carbon nanotubes allows for a considerable improvement in the electrochemical stability of battery anodes. In contrast to the average 40% loss of capacity after 50 cycles for other phosphorus–carbon composites in the literature, our material shows losses of just 22% under analogous cycling conditions.

  14. Formation of oriented nitrides by N{sup +} ion implantation in iron single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Costa, A.R.G. [CFMC, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); IST/IPFN, Universidade de Lisboa, Campus Tecnológico e Nuclear, E.N.10, 2686-953 Sacavém (Portugal); Silva, R.C. da [IST/IPFN, Universidade de Lisboa, Campus Tecnológico e Nuclear, E.N.10, 2686-953 Sacavém (Portugal); Ferreira, L.P. [CFMC, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Dep. Física, Fac. Ciências e Tecnologia, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Carvalho, M.D. [CCMM/Dep. Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Silva, C. [CFMC, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Dep. Física, Fac. Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Franco, N. [IST/IPFN, Universidade de Lisboa, Campus Tecnológico e Nuclear, E.N.10, 2686-953 Sacavém (Portugal); Godinho, M. [CFMC, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Dep. Física, Fac. Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); and others

    2014-01-15

    Iron single crystals were implanted with nitrogen at room temperature, with a fluence of 5×10{sup 17} cm{sup −2} and 50 keV energy, to produce iron nitride phases and characterize the influence of the crystal orientation. The stability and evolution of the nitride phases and diffusion of implanted nitrogen were studied as a function of successive annealing treatments at 250 °C in vacuum. The composition, structure and magnetic properties were characterized using RBS/channeling, X-Ray Diffraction, Magnetic Force Microscopy, Magneto-optical Kerr Effect and Conversion Electron Mössbauer Spectroscopy. In the as-implanted state the formation of Fe{sub 2}N phase was clearly identified in all single crystals. This phase is not stable at 250 °C and annealing at this temperature promotes the formation of ε-Fe{sub 3}N, or γ′-Fe{sub 4}N, depending on the orientation of the substrate. - Highlights: • Oriented magnetic iron nitrides were obtained by nitrogen implantation into iron single crystals. • The stable magnetic nitride phase at 250 °C depends on the orientation of the host single crystal, being γ'-Fe{sub 4}N or ε-Fe{sub 3}N. • The easy magnetization axis was found to lay in the (100) plane for cubic γ'-Fe{sub 4}N and out of (100) plane for hexagonal ε-Fe{sub 3}N.

  15. High-energy heavy ion testing of VLSI devices for single event ...

    Indian Academy of Sciences (India)

    Unknown

    Single event upset is defined by NASA as 'radiation- induced errors in microelectronic circuits caused when charged particles (usually from the radiation belts or from cosmic rays) lose energy by ionizing the medium through which they pass, leaving behind a wake of elec- tron-hole pairs'. SEU are transient soft errors and ...

  16. Formation of oriented nitrides by N+ ion implantation in iron single crystals

    International Nuclear Information System (INIS)

    Costa, A.R.G.; Silva, R.C. da; Ferreira, L.P.; Carvalho, M.D.; Silva, C.; Franco, N.; Godinho, M.

    2014-01-01

    Iron single crystals were implanted with nitrogen at room temperature, with a fluence of 5×10 17 cm −2 and 50 keV energy, to produce iron nitride phases and characterize the influence of the crystal orientation. The stability and evolution of the nitride phases and diffusion of implanted nitrogen were studied as a function of successive annealing treatments at 250 °C in vacuum. The composition, structure and magnetic properties were characterized using RBS/channeling, X-Ray Diffraction, Magnetic Force Microscopy, Magneto-optical Kerr Effect and Conversion Electron Mössbauer Spectroscopy. In the as-implanted state the formation of Fe 2 N phase was clearly identified in all single crystals. This phase is not stable at 250 °C and annealing at this temperature promotes the formation of ε-Fe 3 N, or γ′-Fe 4 N, depending on the orientation of the substrate. - Highlights: • Oriented magnetic iron nitrides were obtained by nitrogen implantation into iron single crystals. • The stable magnetic nitride phase at 250 °C depends on the orientation of the host single crystal, being γ'-Fe 4 N or ε-Fe 3 N. • The easy magnetization axis was found to lay in the (100) plane for cubic γ'-Fe 4 N and out of (100) plane for hexagonal ε-Fe 3 N

  17. Laboratory seismic anisotropy in mylonites

    Science.gov (United States)

    Almqvist, B. S. G.; Herwegh, M.; Hirt, A. M.; Ebert, A.; Linckens, J.; Precigout, J.; Leiss, B.; Walter, J. M.; Burg, J.-P.

    2012-04-01

    Tectonic strain is often accommodated along narrow zones in the Earth's crust and upper mantle, and these high-strain zones represent an important mechanical and rheological component in geodynamics. In outcrop we observe the intense deformation along and across these structures. But at depth, in the mid and lower crust, and in the mantle, we are dependent on geophysical methods for analysis of structures, such as seismic reflection and refraction surveys. A natural progression has therefore been to understand the remote geophysical signal in terms of laboratory ultrasonic pulse transmission measurements on rock cores, collected in the field or from borehole drill core. Here we first present a brief review that consider key studies in the area of laboratory seismic measurements in strongly anisotropic rocks, ranging from calcite mylonites to metapelites. In the second part we focus attention on ongoing research projects targetting laboratory seismic anisotropy in mylonitized rocks, and associated challenges. Measurements of compressional (P) and shear (S) waves were made at high confining pressure (up to 5 kbar). Mineral texture analysis was performed with electron backscatter diffraction (EBSD) and neutron texture diffraction to determine crystallographic preferred orientation (CPO). So-called "rock-recipe" models are used to calculate seismic anisotropy, which consider the elastic properties of minerals that constitutes the rock, and their respective CPO. However, the outcome of such models do not always simply correspond to the measured seismic anisotropy. Differences are attributed to several factors, such as grain boundaries, mineral microstructures including shape-preferred orientation (SPO), micro-cracks and pores, and grain-scale stress-strain conditions. We highlight the combination of these factors in case studies on calcite and peridotite mylonites. In calcite mylonites, sampled in the Morcles nappe shear zone, the measured seismic anisotropy generally

  18. Electrical properties of InP:Fe single crystals implanted by phosphorus ions

    International Nuclear Information System (INIS)

    Radautsan, S.I.; Tiginyanu, I.M.; Pyshnaya, N.B.

    1988-01-01

    Investigations of phosphorus ion implantation in InP:Fe monocrystals and of the post-implantation annealing process upon the electrical properties of InP:Fe were carried out. The electrical parameters of the samples have been determined by Hall effect measurements. The curves of electron surface concentration n s and mobility μ s as functions of annealing temperature in the range of 200 to 600 0 C are shown and discussed. In order to estimate the depth of donor levels in annealed samples the temperature dependence of the surface Hall coefficient has been studied in the range 100 to 400 K. The thermal electron activation energy has been determined to be 0.09 eV

  19. Monte Carlo prediction of crater formation by single ion impact on solid surface

    International Nuclear Information System (INIS)

    Perez-Martin, A.M.C.; Dominguez-Vazquez, J.; Jimenez-Rodriguez, J.J.; Collins, R.; Gras-Marti, A.

    1994-01-01

    A method is presented for predicting the topography changes following the impact of one energetic ion on the plane surface of a monatomic amorphous solid. This is done in two stages. The first is a Monte Carlo calculation of the sputter yield and interior distribution relocated atoms, with no compensation for local departures from equilibrium density. In the second stage there is a systematic relaxation of the solid, in which the density returns to its previous constant value and a crater develops in the surface. Two alternative methods of carrying out stage two are compared. In the first the solid is subdivided into cells within which relaxation is carried out normal to the surface, as in previous one-dimensional studies. The second method treats the solid as a 3-dimensional incompressible medium. Both seem to reproduce quite well the main features found experimentally. (orig.)

  20. Microstructural evolution of reduced-activation martensitic steel under single and sequential ion irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fengfeng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Jin, Shuoxue; Li, Tiecheng; Zheng, Zhongcheng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yang, Feng; Xiong, Xuesong; Suo, Jinping [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-07-15

    Microstructural evolution of super-clean reduced-activation martensitic steels irradiated with single-beam (Fe{sup +}) and sequential-beam (Fe{sup +} plus He{sup +}) at 350 °C and 550 °C was studied. Sequential-beam irradiation induced smaller size and larger number density of precipitates compared to single-beam irradiation at 350 °C. The largest size of cavities was observed after sequential-beam irradiation at 550 °C. The segregation of Cr and W and depletion of Fe in carbides were observed, and the maximum depletion of Fe and enrichment of Cr occurred under irradiation at 350 °C.

  1. Model of coordination melting of crystals and anisotropy of physical and chemical properties of the surface

    Science.gov (United States)

    Bokarev, Valery P.; Krasnikov, Gennady Ya

    2018-02-01

    Based on the evaluation of the properties of crystals, such as surface energy and its anisotropy, the surface melting temperature, the anisotropy of the work function of the electron, and the anisotropy of adsorption, were shown the advantages of the model of coordination melting (MCM) in calculating the surface properties of crystals. The model of coordination melting makes it possible to calculate with an acceptable accuracy the specific surface energy of the crystals, the anisotropy of the surface energy, the habit of the natural crystals, the temperature of surface melting of the crystal, the anisotropy of the electron work function and the anisotropy of the adhesive properties of single-crystal surfaces. The advantage of our model is the simplicity of evaluating the surface properties of the crystal based on the data given in the reference literature. In this case, there is no need for a complex mathematical tool, which is used in calculations using quantum chemistry or modeling by molecular dynamics.

  2. Focused-ion-beam overlay-patterning of three-dimensional diamond structures for advanced single-photon properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Qianqing; Liu, Dongqi; Liu, Gangqin; Chang, Yanchun; Li, Wuxia, E-mail: liwuxia@aphy.iphy.ac.cn, E-mail: czgu@aphy.iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Pan, Xinyu; Gu, Changzhi, E-mail: liwuxia@aphy.iphy.ac.cn, E-mail: czgu@aphy.iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China)

    2014-07-28

    Sources of single photons are of fundamental importance in many applications as to provide quantum states for quantum communication and quantum information processing. Color centers in diamond are prominent candidates to generate and manipulate quantum states of light, even at room temperature. However, the efficiency of photon collection of the color centers in bulk diamond is greatly reduced by refraction at the diamond/air interface. To address this issue, diamond structuring has been investigated by various methods. Among them, focused-ion-beam (FIB) direct patterning has been recognized as the most favorable technique. But it has been noted that diamond tends to present significant challenges in FIB milling, e.g., the susceptibility of forming charging related artifacts and topographical features. In this work, periodically-positioned-rings and overlay patterning with stagger-superimposed-rings were proposed to alleviate some problems encountered in FIB milling of diamond, for improved surface morphology and shape control. Cross-scale network and uniform nanostructure arrays have been achieved in single crystalline diamond substrates. High quality diamond solid immersion lens and nanopillars were sculptured with a nitrogen-vacancy center buried at the desired position. Compared with the film counterpart, an enhancement of about ten folds in single photon collection efficiency was achieved with greatly improved signal to noise ratio. All these results indicate that FIB milling through over-lay patterning could be an effective approach to fabricate diamond structures, potentially for quantum information studies.

  3. Studies of anisotropy of iron based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Jason [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    To study the electronic anisotropy in iron based superconductors, the temperature dependent London penetration depth, Δλ (T), have been measured in several compounds, along with the angular dependent upper critical field, Hc2(T). Study was undertaken on single crystals of Ba(Fe1-xCox)2As2 with x=0.108 and x=0.127, in the overdoped range of the doping phase diagram, characterized by notable modulation of the superconducting gap. Heavy ion irradiation with matching field doses of 6 T and 6.5 T respectively, were used to create columnar defects and to study their effect on the temperature Δλ (T). The variation of the low-temperature penetration depth in both pristine and irradiated samples was fitted with a power-law function Δλ (T) = ATn. Irradiation increases the magnitude of the pre-factor A and decreases the exponent n, similar to the effect on the optimally doped samples. This finding supports the universal s± scenario for the whole doping range. Knowing that the s± gap symmetry exists across the superconducting dome for the electron doped systems, we next looked at λ (T), in optimally - doped, SrFe2(As1-xPx)2, x =0.35. Both, as-grown (Tc ~ 25 K) and annealed (Tc ~ 35 K) single crystals of SrFe2(As1-xPx)2 were measured. Annealing decreases the absolute value of the London penetration depth from λ(0) = 300 ± 10 nm in as-grown samples to λ (0) = 275±10 nm. At low temperatures, λ (T) ~ T indicates a superconducting gap with line nodes. Analysis of the full-temperature range superfluid density is consistent with the line nodes, but differs from the simple single-gap d-wave. The observed behavior is very similar to that of BaFe2(As1-xPx)2, showing that isovalently substituted pnictides are inherently different from

  4. Theory of single-spin inelastic tunneling spectroscopy.

    Science.gov (United States)

    Fernández-Rossier, J

    2009-06-26

    I show that recent experiments of inelastic scanning tunneling spectroscopy of single and a few magnetic atoms are modeled with a phenomenological spin-assisted tunneling Hamiltonian so that the inelastic dI/dV line shape is related to the spin spectral weight of the magnetic atom. This accounts for the spin selection rules and dI/dV spectra observed experimentally for single Fe and Mn atoms deposited on Cu2N. In the case of chains of Mn atoms it is found necessary to include both first and second-neighbor exchange interactions as well as single-ion anisotropy.

  5. Effects of pressure anisotropy on plasma transport

    International Nuclear Information System (INIS)

    Zawaideh, E.; Najmabadi, F.; Conn, R.W.

    1986-03-01

    In a recent paper a new set of generalized two-field equations is derived which describes plasma transport along the field lines of a space and time dependent magnetic field. These equations are valid for collisional to weakly collisional plasmas; they reduce to the conventional fluid equations of Braginskii for highly collisional plasmas. An important feature of these equations is that the anisotropy in the ion pressure is explicitly included. In this paper, these generalized transport equations are applied to a model problem of plasma flow through a magnetic mirror field. The profiles of the plasma parameters (density, flow speed, and pressures) are numerically calculated for plasma in different collisionality regimes. These profiles are explained by examining the competing terms in the transport equation. The pressure anisotropy is found to profoundly impact the plasma flow behavior. As a result, the new generalized equations predict flow behavior more accurately than the conventional transport equations. A large density and pressure drop is predicted as the flow passes through a magnetic mirror. Further, the new equations uniquely predict oscillations in the density profile, an effect missing in results from the conventional equations

  6. Absence of single critical dose for the amorphization of quartz under ion irradiation

    Science.gov (United States)

    Zhang, S.; Pakarinen, O. H.; Backholm, M.; Djurabekova, F.; Nordlund, K.; Keinonen, J.; Wang, T. S.

    2018-01-01

    In this work, we first simulated the amorphization of crystalline quartz under 50 keV 23 Na ion irradiation with classical molecular dynamics (MD). We then used binary collision approximation algorithms to simulate the Rutherford backscattering spectrometry in channeling conditions (RBS-C) from these irradiated MD cells, and compared the RBS-C spectra with experiments. The simulated RBS-C results show an agreement with experiments in the evolution of amorphization as a function of dose, showing what appears to be (by this measure) full amorphization at about 2.2 eVṡatom-1 . We also applied other analysis methods, such as angular structure factor, Wigner–Seitz, coordination analysis and topological analysis, to analyze the structural evolution of the irradiated MD cells. The results show that the atomic-level structure of the sample keeps evolving after the RBS signal has saturated, until the dose of about 5 eVṡatom-1 . The continued evolution of the SiO2 structure makes the definition of what is, on the atomic level, an amorphized quartz ambiguous.

  7. Charge transport and glassy dynamics of poly(ethylene oxide)-based single-ion conductors under geometrical confinement

    Science.gov (United States)

    Runt, James; Iacob, Ciprian

    2015-03-01

    Segmental and local dynamics as well as charge transport are investigated in a series of poly(ethylene oxide)-based single-ion conductors (ionomers) with varying counterions (Li +, Na +) confined in uni-directional nanoporous silica membranes. The dynamics are explored over a wide frequency and temperature range by broadband dielectric relaxation spectroscopy. Slowing of segmental dynamics and a decrease in dc conductivity (strongly coupled with segmental relaxation) of the confined ionomers are associated with surface effects - resulting from interfacial hydrogen bonding between the host nanoporous silica membrane and the guest ionomers. These effects are significantly reduced or eliminated upon pore surface modification through silanization. The primary transport properties for the confined ionomers decrease by about one decade compared to the bulk ionomer. A model assuming reduced mobility of an adsorbed layer at the pore wall/ionomer interface is shown to provide a quantitative explanation for the decrease in effective transport quantities in non-silanized porous silica membranes. Additionally, the effect of confinement on ion aggregation in ionomers by using X-ray scattering will also be discussed. Supported by the National Science Foundation, Polymers Program.

  8. Large Easy-Plane Magnetic Anisotropy in a Three-Coordinate Cobalt(II) Complex [Li(THF)4][Co(NPh2)3].

    Science.gov (United States)

    Deng, Yi-Fei; Wang, Zhenxing; Ouyang, Zhong-Wen; Yin, Bing; Zheng, Zhiping; Zheng, Yan-Zhen

    2016-10-10

    Magnetic anisotropy is the key element in the construction of single-ion magnets, a kind of nanomagnets for high-density information storage. This works describes an unusual large easy-plane magnetic anisotropy (with a zero-field splitting parameter D of +40.2 cm -1 ), mainly arising from the second-order spin-orbit coupling effect in a trigonal-planar Co II complex [Li(THF) 4 ][Co(NPh 2 ) 3 ], revealed by combined studies of magnetism, high frequency/field electron paramagnetic resonance spectroscopy, and ab initio calculations. Meanwhile, the field-induced slow magnetic relaxation in this complex was mainly attributed to the Raman process. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Calculations of Q values in single- and double-charge-transfer collisions of highly charged ions with atoms

    International Nuclear Information System (INIS)

    Chen, Z.; Lin, C.D.; Toshima, N.

    1994-01-01

    Close-coupling calculations are carried out for the Q values for electron capture processes in collisions of multiply charged ions with atoms over a broad range of energies. For single-capture processes the results for N 7+ +He and O 8+ +He collisions are in good agreement with the experimental data of Wu et al. [preceding paper, Phys. Rev. A 50, 502 (1994)]. To compare with the experimental Q values for the transfer ionization (TI) and the true double-capture (TDC) processes, an independent-electron model was used to calculate double-electron-capture cross sections. By combining with the calculated average fluorescence yields, the theoretical Q values for TI and TDC processes are also found to be in fair agreement with the experimental data. We also compared the Q values calculated by the close-coupling method and by the classical-trajectory Monte Carlo method

  10. Upconversion study of singly activator ions doped La2O3 nanoparticle synthesized via optimized solvothermal method

    Science.gov (United States)

    Tiwari, S. P.; Singh, S.; Kumar, A.; Kumar, K.

    2016-05-01

    In present work, an optimized solvothermal method has been chosen to synthesize the singly doped Er3+ activator ions with La2O3 host matrix. The sample is annealed at 500 °C in order to remove the moisture and other organic impurities. The sample is characterized by using XRD and FESEM to find out the phase and surface morphology. The observed particle size is found almost 80 nm with spherical agglomerated shape. Upconversion spectra are recorded at room temperature using 976 nm diode laser excitation sources and consequently the emission peaks in green and red region are observed. The color coordinate diagram shows the results that the present material may be applicable in different light emitting sources.

  11. Negative Ion MALDI Mass Spectrometry of Polyoxometalates (POMs): Mechanism of Singly Charged Anion Formation and Chemical Properties Evaluation

    Science.gov (United States)

    Boulicault, Jean E.; Alves, Sandra; Cole, Richard B.

    2016-08-01

    MALDI-MS has been developed for the negative ion mode analysis of polyoxometalates (POMs). Matrix optimization was performed using a variety of matrix compounds. A first group of matrixes offers MALDI mass spectra containing abundant intact singly charged anionic adduct ions, as well as abundant in-source fragmentations at elevated laser powers. A relative ranking of the ability to induce POM fragmentation is found to be: DAN > CHCA > CNA > DIT> HABA > DCTB > IAA. Matrixes of a second group provide poorer quality MALDI mass spectra without observable fragments. Sample preparation, including the testing of salt additives, was performed to optimize signals for a model POM, POMc12, the core structure of which bears four negative charges. The matrix 9-cyanoanthracene (CNA) provided the best signals corresponding to singly charged intact POMc12 anions. Decompositions of these intact anionic species were examined in detail, and it was concluded that hydrogen radical-induced mechanisms were not prevalent, but rather that the observed prompt fragments originate from transferred energy derived from initial electronic excitation of the CNA matrix. Moreover, in obtained MALDI mass spectra, clear evidence of electron transfer to analyte POM species was found: a manifestation of the POMs ability to readily capture electrons. The affinity of polyanionic POMc12 toward a variety of cations was evaluated and the following affinity ranking was established: Fe3+ > Al3+ > Li+ > Ga3+ > Co2+ > Cr3+ > Cu2+ > [Mn2+, Mg2+] > [Na+, K+]. Thus, from the available cationic species, specific adducts are preferentially formed, and evidence is given that these higher affinity POM complexes are formed in the gas phase during the early stages of plume expansion.

  12. Anisotropy in elastic properties of lithium sodium sulphate ...

    Indian Academy of Sciences (India)

    Anisotropy in elastic properties of lithium sodium sulphate hexahydrate single crystal—An ultrasonic study. GEORGE VARUGHESE. ,∗. , A S KUMAR†, J PHILIP†† and GODFREY LOUIS#. Department of Physics, Catholicate College, Pathanamthitta 689 648, India. †SPAP, M.G. University, Kottayam 686 560, India. ††STIC ...

  13. Absolute experimental cross sections for the electron impact single, double, triple, and quadruple ionization of Cs/sup +/ ions. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Feeney, R.K.; Hertling, D.R.

    1981-02-28

    The absolute cross sections for the single, double, triple and quadruple ionization of Cs/sup +/ ions by electron impact have been measured from below their respective thresholds to approximately 5000 eV. This determination has been accomplshed using a crossed beam facility in which monoenergetic beams of ions and electrons are caused to intersect at right angles in a well-defined collision volume. Multiply charged, product ions born as a result of the electron impact are deflected into their respective detectors by cascaded electrostatic analyzers. The multiply charged beam current component is measured by means of a vibrating reed electrometer operating in the rate-of-charge mode.

  14. Dielectronic recombination experiments with tungsten ions at the test storage ring and development of a single-particle detector at the cryogenic storage ring

    International Nuclear Information System (INIS)

    Spruck, Kaija

    2015-05-01

    This work is about electron-ion collision experiments at the ion storage rings of the Max Planck Institute for Nuclear Physics in Heidelberg. Absolute recombination rate coefficients of highly-charged tungsten ions featuring an open 4-f-shell structure have been measured at the heavy-ion storage ring TSR. The resulting plasma rate coefficients have been used to probe the significance of newly developed theoretical approaches. Plasma rate coefficients of highly-charged tungsten ions are in particular interesting for the development of plasma models for nuclear fusion reactors, since tungsten is a foreseeable impurity in the fusion plasma. In the relevant temperature range, the experimental results exceed the theoretical data used so far by up to a factor of 10, showing the need for more reliable theoretical calculations. Furthermore, based on the design of the detectors which have been used in the experiments at TSR, a movable single-particle detector for electron-ion recombination studies at the cryogenic storage ring CSR has been developed and installed within the scope of this work. The device has been designed specifically to meet the requirements of the CSR regarding low ion energies and cryogenic ambient temperature conditions. In a series of experiments, the detector was carefully characterised and successfully tested for its compatibility with these requirements. The detector was part of the infrastructure used for the room-temperature commissioning of CSR (2014) and is currently operated as a single-particle counter during the first cryogenic operation of CSR in 2015.

  15. Modification of magnetic anisotropy in metallic glasses using high ...

    Indian Academy of Sciences (India)

    metallic glass ribbons. 90 MeV 127I beam was used for the irradiations. Irradiation doses were. 5×1013 and 7.5×1013 ions/cm2. The relative intensity ratios D23 of the second and third lines of the. Mössbauer spectra were measured to determine the magnetic anisotropy. The virgin samples of both the materials display ...

  16. New insight in the nature of surface magnetic anisotropy in iron borate

    Science.gov (United States)

    Strugatsky, M.; Seleznyova, K.; Zubov, V.; Kliava, J.

    2018-02-01

    The theory of surface magnetism of iron borate, FeBO3, has been extended by taking into consideration a crystal field contribution to the surface magnetic anisotropy energy. For this purpose, a model of distortion of the six-fold oxygen environment of iron ions in the near-surface layer of iron borate has been put forward. The spin Hamiltonian parameters for isolated Fe3+ ions in the distorted environment of the near-surface layer have been calculated using the Newman's superposition model. The crystal field contribution to the surface magnetic anisotropy energy has been calculated in the framework of the perturbation theory. The model developed allows concluding that the distortions of the iron environment produce a significant crystal field contribution to the surface magnetic anisotropy constant. The results of experimental studies of the surface magnetic anisotropy in iron borate can be described assuming the existence of relative contractions in the near-surface layer of the order of 1 %.

  17. Chemical properties of astatine positive single-charged ion in aqueous solutions

    International Nuclear Information System (INIS)

    Milanov, M.; Doberents, V.; Khalkin, V.A.; Marinov, A.

    1983-01-01

    The mobility of the oxidized astatine in solutions H(Na)ClO 4 (μ=0.4 M) - 1x10 -4 M K 2 Cr 2 O 7 has been measured at 25 deg C in the interval 0.63 -4 cm 2 V -1 s -1 , pH 0.63 Usub(c)=2.67x10 -4 cm 2 V -1 s -1 . The effect agrees with the opinion that a single-charged cation of astatine formed in acidic solutions is a strong aquacomplex ((Hsub(2)O)sub(x)At)sup(+) (x=1-2) (protonized hypoastatine acid). Deprotonization constant of this cation is Ksub(dp)=0.032+-0.005. Specific properties of the astatine cation are given. They can be explained, probability, through the peculiarities of its structure

  18. Anisotropy in the deep Earth

    Science.gov (United States)

    Romanowicz, Barbara; Wenk, Hans-Rudolf

    2017-08-01

    Seismic anisotropy has been found in many regions of the Earth's interior. Its presence in the Earth's crust has been known since the 19th century, and is due in part to the alignment of anisotropic crystals in rocks, and in part to patterns in the distribution of fractures and pores. In the upper mantle, seismic anisotropy was discovered 50 years ago, and can be attributed for the most part, to the alignment of intrinsically anisotropic olivine crystals during large scale deformation associated with convection. There is some indication for anisotropy in the transition zone, particularly in the vicinity of subducted slabs. Here we focus on the deep Earth - the lower mantle and core, where anisotropy is not yet mapped in detail, nor is there consensus on its origin. Most of the lower mantle appears largely isotropic, except in the last 200-300 km, in the D″ region, where evidence for seismic anisotropy has been accumulating since the late 1980s, mostly from shear wave splitting measurements. Recently, a picture has been emerging, where strong anisotropy is associated with high shear velocities at the edges of the large low shear velocity provinces (LLSVPs) in the central Pacific and under Africa. These observations are consistent with being due to the presence of highly anisotropic MgSiO3 post-perovskite crystals, aligned during the deformation of slabs impinging on the core-mantle boundary, and upwelling flow within the LLSVPs. We also discuss mineral physics aspects such as ultrahigh pressure deformation experiments, first principles calculations to obtain information about elastic properties, and derivation of dislocation activity based on bonding characteristics. Polycrystal plasticity simulations can predict anisotropy but models are still highly idealized and neglect the complex microstructure of polyphase aggregates with strong and weak components. A promising direction for future progress in understanding the origin of seismic anisotropy in the deep mantle

  19. Voltage Control of Magnetic Anisotropy

    Science.gov (United States)

    Hao, Guanhua; Cao, Shi; Noviasky, Nick; Ilie, Carolina; Sokolov, Andre; Yin, Yuewei; Xu, Xiaoshan; Dowben, Peter

    Pd/Co/Gd2O3/Si heterostructures were fabricated via pulsed laser deposition and e-beam evaporation. Hysteresis loops, obtained by longitudinal magneto-optical Kerr-effect (MOKE) measurements, indicates an initial in-plane magnetic anisotropy. Applying a perpendicular voltage on the sample, the differences between the polar and longitudinal MOKE and anomalous Hall effect data indicates there is a reversible change in magnetic anisotropy, from in-plane to out-of-plane, with applied voltage. Prior work by others suggests that the change in magnetic anisotropy is due to redox reactions at the Co/Gd2O3 interference. Voltage controlled magnetism can result from changing interfacial chemistry and does not always require a magneto-electric coupling tensor.

  20. A permeation theory for single-file ion channels: one- and two-step models.

    Science.gov (United States)

    Nelson, Peter Hugo

    2011-04-28

    How many steps are required to model permeation through ion channels? This question is investigated by comparing one- and two-step models of permeation with experiment and MD simulation for the first time. In recent MD simulations, the observed permeation mechanism was identified as resembling a Hodgkin and Keynes knock-on mechanism with one voltage-dependent rate-determining step [Jensen et al., PNAS 107, 5833 (2010)]. These previously published simulation data are fitted to a one-step knock-on model that successfully explains the highly non-Ohmic current-voltage curve observed in the simulation. However, these predictions (and the simulations upon which they are based) are not representative of real channel behavior, which is typically Ohmic at low voltages. A two-step association/dissociation (A/D) model is then compared with experiment for the first time. This two-parameter model is shown to be remarkably consistent with previously published permeation experiments through the MaxiK potassium channel over a wide range of concentrations and positive voltages. The A/D model also provides a first-order explanation of permeation through the Shaker potassium channel, but it does not explain the asymmetry observed experimentally. To address this, a new asymmetric variant of the A/D model is developed using the present theoretical framework. It includes a third parameter that represents the value of the "permeation coordinate" (fractional electric potential energy) corresponding to the triply occupied state n of the channel. This asymmetric A/D model is fitted to published permeation data through the Shaker potassium channel at physiological concentrations, and it successfully predicts qualitative changes in the negative current-voltage data (including a transition to super-Ohmic behavior) based solely on a fit to positive-voltage data (that appear linear). The A/D model appears to be qualitatively consistent with a large group of published MD simulations, but no

  1. Fine-tuning the local symmetry to attain record blocking temperature and magnetic remanence in a single-ion magnet.

    Science.gov (United States)

    Ungur, Liviu; Le Roy, Jennifer J; Korobkov, Ilia; Murugesu, Muralee; Chibotaru, Liviu F

    2014-04-22

    Remanence and coercivity are the basic characteristics of permanent magnets. They are also tightly correlated with the existence of long relaxation times of magnetization in a number of molecular complexes, called accordingly single-molecule magnets (SMMs). Up to now, hysteresis loops with large coercive fields have only been observed in polynuclear metal complexes and metal-radical SMMs. On the contrary, mononuclear complexes, called single-ion magnets (SIM), have shown hysteresis loops of butterfly/phonon bottleneck type, with negligible coercivity, and therefore with much shorter relaxation times of magnetization. A mononuclear Er(III) complex is presented with hysteresis loops having large coercive fields, achieving 7000 Oe at T=1.8 K and field variation as slow as 1 h for the entire cycle. The coercivity persists up to about 5 K, while the hysteresis loops persist to 12 K. Our finding shows that SIMs can be as efficient as polynuclear SMMs, thus opening new perspectives for their applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Single glass nanopore-based regenerable sensing platforms with a non-immobilized polyglutamic acid probe for selective detection of cupric ions.

    Science.gov (United States)

    Chen, Lizhen; He, Haili; Xu, Xiaolong; Jin, Yongdong

    2015-08-19

    A single glass capillary nanopore-based sensing platform for rapid and selective detection of cupric ions is demonstrated by utilizing polyglutamic acid (PGA) as a non-immobilized probe. The detection is based on the significant decrease of ionic current through nanopore and the reversal of ion current rectification responses induced by the chelated cupric ions on the probes when in the presence of cupric ions. PGA shows high selectivity for detecting cupric ions rather than other metal ions. The sensitivity of the sensing platform can be improved about 1-2 orders of magnitude by employing asymmetric salt gradients during the measurements. And the PGA-based nanopore sensing platform shows excellent regenerability for Cu(2+) sensing applications. In addition, the method is found effective and reliable for the detection of cupric ions in real samples with small volume down to 20 μL. This nanopore-based sensing platform will find promising practical applications for the detection of cupric ions. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Influence of anisotropy and pinning centers on critical current properties in Bi-2212 superconductors

    International Nuclear Information System (INIS)

    Haraguchi, T.; Takayama, S.; Kiuchi, M.; Otabe, E.S.; Matsushita, T.; Yasuda, T.; Okayasu, S.; Uchida, S.; Shimoyama, J.; Kishio, K.

    2006-01-01

    The critical current density in Bi-2212 superconductors with various anisotropies irradiated by heavy ions was investigated in the medium temperature region to understand the effects of defect size and the anisotropy of the superconductor. It was found that the critical current density and the irreversibility field were larger for the specimen with larger defect and/or with smaller anisotropy. Introduction of stronger pinning centers and the optimization of the doping condition to improve the dimensionality are desired for further improvement of the critical current properties

  4. Single Gold Nanoparticle-Based Colorimetric Detection of Picomolar Mercury Ion with Dark-Field Microscopy.

    Science.gov (United States)

    Liu, Xiaojun; Wu, Zhangjian; Zhang, Qingquan; Zhao, Wenfeng; Zong, Chenghua; Gai, Hongwei

    2016-02-16

    Mercury severely damages the environment and human health, particularly when it accumulates in the food chain. Methods for the colorimetric detection of Hg(2+) have increasingly been developed over the past decade because of the progress in nanotechnology. However, the limits of detection (LODs) of these methods are mostly either comparable to or higher than the allowable maximum level (10 nM) in drinking water set by the US Environmental Protection Agency. In this study, we report a single Au nanoparticle (AuNP)-based colorimetric assay for Hg(2+) detection in solution. AuNPs modified with oligonucleotides were fixed on the slide. The fixed AuNPs bound to free AuNPs in the solution in the presence of Hg(2+) because of oligonucleotide hybridization. This process was accompanied by a color change from green to yellow as observed under an optical microscope. The ratio of changed color spots corresponded with Hg(2+) concentration. The LOD was determined as 1.4 pM, which may help guard against mercury accumulation. The proposed approach was applied to environmental samples with recoveries of 98.3 ± 7.7% and 110.0 ± 8.8% for Yuquan River and industrial wastewater, respectively.

  5. Single and double [ital K]-shell ionization and electron-transfer cross sections for Fe and Ni bombarded by S ions and Fe by Si ions at 1. 25--4. 70 MeV/amu

    Energy Technology Data Exchange (ETDEWEB)

    Tribedi, L.C.; Prasad, K.G.; Tandon, P.N. (Tata Institute of Fundamental Research, Bombay 400005 (India)); Chen, Z.; Lin, C.D. (Department of Physics, Kansas State University, Manhattan, Kansas (United States))

    1994-02-01

    Single and double [ital K]-shell vacancy production and [ital K]-[ital K] electron-transfer cross sections have been measured in the limit of zero target thickness for Fe and Ni induced by 1.25--4.70 MeV/amu [sup 28]Si and [sup 32]S ions. The fluorescence yield [omega][sub [ital k

  6. Single grain boundary break junction for suspended nanogap electrodes with gapwidth down to 1-2 nm by focused ion beam milling.

    Science.gov (United States)

    Cui, Ajuan; Liu, Zhe; Dong, Huanli; Wang, Yujin; Zhen, Yonggang; Li, Wuxia; Li, Junjie; Gu, Changzhi; Hu, Wenping

    2015-05-20

    Single grain boundary junctions are used for the fabrication of suspended nanogap electrodes with a gapwidth down to 1-2 nm through the break of such junctions by focused ion beam (FIB) milling. With advantages of stability and no debris, such nanogap electrodes are suitable for single molecular electronic device construction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Magnetic alloys with vanishing anisotropies

    International Nuclear Information System (INIS)

    Couderchon, G.

    1991-01-01

    Co-based amorphous alloys and 80 Ni Permalloys have vanishingly-low anisotropies and show the highest permeabilities and lowest losses among commercial magnetic materials. In spit of their different atomic arrangements, these two types of material show close similarities in domain structure and in their temperature and frequency behavior. Information is also given concerning material technology and applications. (orig.)

  8. Effects of ion-implantation in magnetic garnet

    International Nuclear Information System (INIS)

    Betsui, Keiichi; Komenou, Kazunari

    1986-01-01

    Ion implantation in magnetic garnet film induces anisotropy field change, ΔH k . The primary origin of the ΔH k is the stress-induced anisotropy, but it was precisely reported that ion-implantation also induces non-magnetostrictive anisotropy change due to the growth-induced anisotropy suppression. The hydrogen ion-implantation induces a large ΔH k due to the chemical effects of the hydrogen in the implanted layer. The ΔH k in ion-implanted garnet is greatly enhanced by exposing implanted films to plasma of hydrogen or rare gases. These large anisotropy changes in hydrogen implantation and plasma exposure are attributed to the change in valence state of Fe-ions. This report reviews these recent developments on ion-implanted garnets. (author)

  9. Effect of swift heavy ion Ag9+ irradiation on the surface morphology, structure and optical properties of AgGaS2 single crystals

    Science.gov (United States)

    Prabukanthan, P.; Asokan, K.; Kanjilal, D.; Dhanasekaran, R.

    2008-12-01

    AgGaS2 (AGS) single crystals grown by chemical vapor transport (CVT) method were irradiated with Ag9+ ions (120 MeV) with various ion fluences. The irradiation was carried out at room temperature (RT) and at liquid nitrogen temperature (LNT). A glancing angle x-ray diffraction (GAXRD) analysis reveals a huge lattice disorder at RT irradiation. This is observed from an increase in the full width at half maximum (FWHM) and a decrease in the intensity of the AGS (1 1 2) peak. However, there is no change in the FWHM of the (1 1 2) peak but the intensity slightly decreases at LNT irradiation. Also, AGS (3 0 3) peak is not observed for the samples irradiated with the fluences of 5 × 1013 and 1 × 1013 ions cm-2 at RT conditions. The GAXRD results show the decrease in degree of crystallinity upon ion irradiation at RT while there is not much degradation in crystallinity upon ion irradiation at LNT. But the LNT irradiation on AGS has its own effects. Atomic force microscope (AFM) studies show that the roughness of AGS increases on increasing the ion fluences at LNT and at RT. Also, it is found that there is an increase in the surface defects with fluences of Ag9+ ion irradiation when compared to pristine AGS. UV-visible transmission spectra show that the percentage of transmission and bandgap energy decrease with increasing ion fluences and also that the peaks are broadened at LNT and at RT. The photoluminescence (PL) spectra were analyzed as a function of irradiation ion fluences in the AGS crystals at RT. It has been found that the emission intensities of band-to-band transition decrease with increase of ion fluences at LNT and at RT.

  10. Production of a double-humped ion velocity distribution function in a single-ended Q-machine

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Michelsen, Poul

    1970-01-01

    An experimental method of producing a double-humped velocity distribution function for the ions in a Q-machine is described. The method is based on charge exchange processes between neutral ceasium and the ions in a ceasium plasma.......An experimental method of producing a double-humped velocity distribution function for the ions in a Q-machine is described. The method is based on charge exchange processes between neutral ceasium and the ions in a ceasium plasma....

  11. Measurement and Calculation of Absolute Single- and Multiple-Charge-Exchange Cross Sections for Feq+ Ions Impacting CO and CO2

    Energy Technology Data Exchange (ETDEWEB)

    Simcic, J. [Jet Propulsion Laboratory/Caltech; Schultz, David Robert [ORNL; Mawhorter, R. J. [Pomona College; Cadez, I. [Jozef Stefan Institute, Slovenia; Greenwood, J. B. [Queen' s University, Belfast; Chutjian, A. [Jet Propulsion Laboratory/Caltech; Lisse, Carey M. [Johns Hopkins University; Smith, S. J. [Indiana Wesleyan University, Marion

    2010-01-01

    Absolute cross sections are reported for single, double, and triple charge exchange of Feq+ (q=5- 13) ions with CO and CO2. The highly-charged Fe ions are generated in an electron cyclotron resonance ion source. Absolute data are derived from knowledge of the target gas pressure, target path length, and incident and charge-exchanged ion currents. Experimental results are compared with new calculations of these cross sections in the n-electron classical trajectory Monte-Carlo approximation, in which the ensuing radiative and non-radiative cascades are approximated with scaled hydrogenic transition probabilities and scaled Auger rates. The present data are needed in astrophysical applications of solar- and stellar-wind charge-exchange with comets, planetary atmospheres, and circumstellar clouds.

  12. Single and multiple ionization of C60 fullerenes and collective effects in collisions with highly charged C, F, and Si ions with energy 3 MeV/u

    Science.gov (United States)

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Gulyas, L.; Tribedi, L. C.

    2010-10-01

    We have measured absolute cross sections for single, double, triple, and quadruple ionization of C60 in collisions with 3 MeV/u C, F, and Si projectile ions at various projectile charge states. The experiment was performed using the recoil-ion time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for ion-atom collisions was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR model predictions was found for all projectile charge states.

  13. Single and multiple ionization of C60 fullerenes and collective effects in collisions with highly charged C, F, and Si ions with energy 3 MeV/u

    International Nuclear Information System (INIS)

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Tribedi, L. C.; Gulyas, L.

    2010-01-01

    We have measured absolute cross sections for single, double, triple, and quadruple ionization of C 60 in collisions with 3 MeV/u C, F, and Si projectile ions at various projectile charge states. The experiment was performed using the recoil-ion time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for ion-atom collisions was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR model predictions was found for all projectile charge states.

  14. Molecular dynamics simulations to examine structure, energetics, and evaporation/condensation dynamics in small charged clusters of water or methanol containing a single monatomic ion.

    Science.gov (United States)

    Daub, Christopher D; Cann, Natalie M

    2012-11-01

    We study small clusters of water or methanol containing a single Ca(2+), Na(+), or Cl(-) ion with classical molecular dynamics simulations, using models that incorporate polarizability via the Drude oscillator framework. Evaporation and condensation of solvent from these clusters is examined in two systems, (1) for isolated clusters initially prepared at different temperatures and (2) those with a surrounding inert (Ar) gas of varying temperature. We examine these clusters over a range of sizes, from almost bare ions up to 40 solvent molecules. We report data on the evaporation and condensation of solvent from the clusters and argue that the observed temperature dependence of evaporation in the smallest clusters demonstrates that the presence of heated gas alone cannot, in most cases, solely account for bare ion production in electrospray ionization (ESI), neglecting the key contribution of the electric field. We also present our findings on the structure and energetics of the clusters as a function of size. Our data agree well with the abundant literature on hydrated ion clusters and offer some novel insight into the structure of methanol and ion clusters, especially those with a Cl(-) anion, where we observe the presence of chain-like structures of methanol molecules. Finally, we provide some data on the reparameterizations necessary to simulate ions in methanol using the separately developed Drude oscillator models for methanol and for ions in water.

  15. Texture and anisotropy analysis of Qusaiba shales

    KAUST Repository

    Kanitpanyacharoen, Waruntorn

    2011-02-17

    Scanning and transmission electron microscopy, synchrotron X-ray diffraction, microtomography and ultrasonic velocity measurements were used to characterize microstructures and anisotropy of three deeply buried Qusaiba shales from the Rub\\'al-Khali basin, Saudi Arabia. Kaolinite, illite-smectite, illite-mica and chlorite show strong preferred orientation with (001) pole figure maxima perpendicular to the bedding plane ranging from 2.4-6.8 multiples of a random distribution (m.r.d.). Quartz, feldspars and pyrite crystals have a random orientation distribution. Elastic properties of the polyphase aggregate are calculated by averaging the single crystal elastic properties over the orientation distribution, assuming a nonporous material. The average calculated bulk P-wave velocities are 6.2 km/s (maximum) and 5.5 km/s (minimum), resulting in a P-wave anisotropy of 12%. The calculated velocities are compared with those determined from ultrasonic velocity measurements on a similar sample. In the ultrasonic experiment, which measures the effects of the shale matrix as well as the effects of porosity, velocities are smaller (P-wave maximum 5.3 km/s and minimum 4.1 km/s). The difference between calculated and measured velocities is attributed to the effects of anisotropic pore structure and to microfractures present in the sample, which have not been taken into account in the matrix averaging. © 2011 European Association of Geoscientists & Engineers.

  16. Solar energetic particle anisotropies and insights into particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Leske, R. A., E-mail: ral@srl.caltech.edu; Cummings, A. C.; Cohen, C. M. S.; Mewaldt, R. A.; Labrador, A. W.; Stone, E. C. [California Institute of Technology, Pasadena, CA 91125 (United States); Wiedenbeck, M. E. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Christian, E. R.; Rosenvinge, T. T. von [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-03-25

    As solar energetic particles (SEPs) travel through interplanetary space, their pitch-angle distributions are shaped by the competing effects of magnetic focusing and scattering. Measurements of SEP anisotropies can therefore reveal information about interplanetary conditions such as magnetic field strength, topology, and turbulence levels at remote locations from the observer. Onboard each of the two STEREO spacecraft, the Low Energy Telescope (LET) measures pitch-angle distributions for protons and heavier ions up to iron at energies of about 2-12 MeV/nucleon. Anisotropies observed using LET include bidirectional flows within interplanetary coronal mass ejections, sunward-flowing particles when STEREO was magnetically connected to the back side of a shock, and loss-cone distributions in which particles with large pitch angles underwent magnetic mirroring at an interplanetary field enhancement that was too weak to reflect particles with the smallest pitch angles. Unusual oscillations in the width of a beamed distribution at the onset of the 23 July 2012 SEP event were also observed and remain puzzling. We report LET anisotropy observations at both STEREO spacecraft and discuss their implications for SEP transport, focusing exclusively on the extreme event of 23 July 2012 in which a large variety of anisotropies were present at various times during the event.

  17. Optical spectroscopy of Eu{sup 3+} ions doped in KLu(WO{sub 4}){sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Koubaa, T. [Université de Sfax, Faculté des Sciences de Sfax, Département de Physique, Laboratoire de Physique Appliquée, Groupe de Physique des Matériaux Luminescent, Sfax (Tunisia); Dammak, M., E-mail: madidammak@yahoo.com [Université de Sfax, Faculté des Sciences de Sfax, Département de Physique, Laboratoire de Physique Appliquée, Groupe de Physique des Matériaux Luminescent, Sfax (Tunisia); Pujol, M.C.; Aguiló, M.; Díaz, F. [Física i Cristallografia de Materials i Nanomaterials (FiCMA-FiCNA)-EMaS. Universitat Rovira i Virgili (URV), Campus Sescelades, c/ MarcelIi Domingo, 1, E-43007 Tarragona (Spain)

    2015-12-15

    Europium single doped potassium lutetium tungstate Eu{sup 3+}:KLu(WO{sub 4}){sub 2} single crystals have been grown with the top seeded solution growth slow cooling method. Their absorption spectra are studied in detail for principal light polarizations, E||N{sub p}, N{sub m} and N{sub g} at room and low temperatures. The absorption oscillator strengths parameters are calculated by means of the theory of f–f transition intensities for systems with anomalously strong configuration interaction and by Judd–Ofelt theory. The Ω{sub t} (t=2, 4, 6) intensity parameters, and the {O_d_k, O_c_k, Δ_d, Δ_c_1 and Δ_c_2} (k=1, 2, 3) ASCI parameters are calculated. The radiative transition rates A{sub R}, radiative lifetimes τ{sub R}, and fluorescent branching ratios β{sub R} associated with {sup 5}D{sub 0}–{sup 7}F{sub J} transitions of Eu{sup 3+} were determined. The calculated decay times are discussed and compared with experimental values. - Highlights: • Absorption spectra of Eu:KLuW are investigated with respect to principal light polarizations. • Spectroscopic properties of Eu:KLuW are modeled within conventional Judd–Ofelt and (ASCI) theories. • {sup 5}D{sub 0} multiplet shows the contribution of a NR processes and an ET between the Eu{sup 3+} ions. • It is suggested that the Eu{sup 3+}:KLuW is a potential host material for optical applications.

  18. Scanning MOKE investigation of ion-beam-synthesized silicide films

    Energy Technology Data Exchange (ETDEWEB)

    Gumarov, G.G., E-mail: ifoggg@gmail.com [Zavoisky Physical-Technical Institute of THE RAS, 10/7 Sibirsky Trakt, Kazan 420029, Tatarstan (Russian Federation); Kazan Federal University, 18 Kremlyovskaya St., Kazan 420008, Tatarstan (Russian Federation); Konovalov, D.A.; Alekseev, A.V. [Zavoisky Physical-Technical Institute of THE RAS, 10/7 Sibirsky Trakt, Kazan 420029, Tatarstan (Russian Federation); Petukhov, V.Yu. [Zavoisky Physical-Technical Institute of THE RAS, 10/7 Sibirsky Trakt, Kazan 420029, Tatarstan (Russian Federation); Kazan Federal University, 18 Kremlyovskaya St., Kazan 420008, Tatarstan (Russian Federation); Zhikharev, V.A. [Kazan State Technology University, 68 Karl Marx St., Kazan 420015, Tatarstan (Russian Federation); Nuzhdin, V.I.; Shustov, V.A. [Zavoisky Physical-Technical Institute of THE RAS, 10/7 Sibirsky Trakt, Kazan 420029, Tatarstan (Russian Federation)

    2012-07-01

    Fe ions with an energy of 40 keV were implanted into Si plates with the fluence varying in the range of (1.6-3.0) Multiplication-Sign 10{sup 17} ion/cm{sup 2} in the external magnetic field. Scanning magnetooptical Kerr effect (MOKE) studies have shown that all samples possess uniaxial anisotropy. Both the coercive field and the anisotropy field increase with fluence. It was suggested that induced anisotropy is caused by inverse magnetostriction.

  19. Scanned ion beam therapy for prostate carcinoma. Comparison of single plan treatment and daily plan-adapted treatment

    International Nuclear Information System (INIS)

    Hild, Sebastian; Graeff, Christian; Rucinski, Antoni; Zink, Klemens; Habl, Gregor; Durante, Marco; Herfarth, Klaus; Bert, Christoph

    2016-01-01

    Intensity-modulated particle therapy (IMPT) for tumors showing interfraction motion is a topic of current research. The purpose of this work is to compare three treatment strategies for IMPT to determine potential advantages and disadvantages of ion prostate cancer therapy. Simulations for three treatment strategies, conventional one-plan radiotherapy (ConvRT), image-guided radiotherapy (IGRT), and online adaptive radiotherapy (ART) were performed employing a dataset of 10 prostate cancer patients with six CT scans taken at one week intervals. The simulation results, using a geometric margin concept (7-2 mm) as well as patient-specific internal target volume definitions for IMPT were analyzed by target coverage and exposure of critical structures on single fraction dose distributions. All strategies led to clinically acceptable target coverage in patients exhibiting small prostate motion (mean displacement < 4 mm), but IGRT and especially ART led to significant sparing of the rectum. In 20 % of the patients, prostate motion exceeded 4 mm causing insufficient target coverage for ConvRT (V95 mean = 0.86, range 0.63-0.99) and IGRT (V95 mean = 0.91, range 0.68-1.00), while ART maintained acceptable target coverage. IMPT of prostate cancer demands consideration of rectal sparing and adaptive treatment replanning for patients exhibiting large prostate motion. (orig.) [de

  20. Towards ion beam synthesis of single CdSe nanocrystal quantum dots in a SiO{sub 2} matrix

    Energy Technology Data Exchange (ETDEWEB)

    Mangold, Hans Moritz; Kinzel, Joerg B.; Krenner, Hubert J. [Emmy Noether Group at Lehrstuhl Experimentalphysik 1, Universitaet Augsburg (Germany); Karl, Helmut [Lehrstuhl Experimentalphysik IV, Universitaet Augsburg (Germany); Wixforth, Achim [Lehrstuhl Experimentalphysik I, Universitaet Augsburg (Germany)

    2013-07-01

    II-VI compound semiconductor quantum dots (QDs) are a promising class of materials for applications in optical devices in the visible spectral domain. Here we show that in addition to traditional fabrication techniques such as molecular beam epitaxy or chemical synthesis, high fluence ion-beam implantation followed by a rapid thermal annealing step, can be readily applied to synthesize CdSe nanocrystals with superior optical properties within the thermal oxide on a Si wafer. In order to confine the implantation volume we employ chromium masks with arrays of nanoscale aperture openings with diameters smaller than 250 nm. We analyzed the such implanted and annealed samples by scanning electron microscopy and micro-photoluminescence spectroscopy. We observe a pronounced broadening and blue shift of the nanocrystal emission when decreasing the aperture diameter to <1000 nm. We attribute this behavior to a reduction of the mean nanocrystal size but increase of its size distribution. For the smallest aperture sizes used we observe a pronounced shell-filling behavior characteristic for single quantum dot nanoemitters.

  1. Submicron mass spectrometry imaging of single cells by combined use of mega electron volt time-of-flight secondary ion mass spectrometry and scanning transmission ion microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Siketić, Zdravko; Bogdanović Radović, Ivančica; Jakšić, Milko; Popović Hadžija, Marijana; Hadžija, Mirko [Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb (Croatia)

    2015-08-31

    In order to better understand biochemical processes inside an individual cell, it is important to measure the molecular composition at the submicron level. One of the promising mass spectrometry imaging techniques that may be used to accomplish this is Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), using MeV energy heavy ions for excitation. MeV ions have the ability to desorb large intact molecules with a yield that is several orders of magnitude higher than conventional SIMS using keV ions. In order to increase the spatial resolution of the MeV TOF-SIMS system, we propose an independent TOF trigger using a STIM (scanning transmission ion microscopy) detector that is placed just behind the thin transmission target. This arrangement is suitable for biological samples in which the STIM detector simultaneously measures the mass distribution in scanned samples. The capability of the MeV TOF-SIMS setup was demonstrated by imaging the chemical composition of CaCo-2 cells.

  2. Magnetic properties of weakly exchange-coupled high spin Co(II) ions in pseudooctahedral coordination evaluated by single crystal X-band EPR spectroscopy and magnetic measurements.

    Science.gov (United States)

    Neuman, Nicolás I; Winkler, Elín; Peña, Octavio; Passeggi, Mario C G; Rizzi, Alberto C; Brondino, Carlos D

    2014-03-03

    We report single-crystal X-band EPR and magnetic measurements of the coordination polymer catena-(trans-(μ2-fumarato)tetraaquacobalt(II)), 1, and the Co(II)-doped Zn(II) analogue, 2, in different Zn:Co ratios. 1 presents two magnetically inequivalent high spin S = 3/2 Co(II) ions per unit cell, named A and B, in a distorted octahedral environment coordinated to four water oxygen atoms and trans coordinated to two carboxylic oxygen atoms from the fumarate anions, in which the Co(II) ions are linked by hydrogen bonds and fumarate molecules. Magnetic susceptibility and magnetization measurements of 1 indicate weak antiferromagnetic exchange interactions between the S = 3/2 spins of the Co(II) ions in the crystal lattice. Oriented single crystal EPR experiments of 1 and 2 were used to evaluate the molecular g-tensor and the different exchange coupling constants between the Co(II) ions, assuming an effective spin S′= 1/2. Unexpectedly, the eigenvectors of the molecular g-tensor were not lying along any preferential bond direction, indicating that, in high spin Co(II) ions in roughly octahedral geometry with approximately axial EPR signals, the presence of molecular pseudo axes in the metal site does not determine preferential directions for the molecular g-tensor. The EPR experiment and magnetic measurements, together with a theoretical analysis relating the coupling constants obtained from both techniques, allowed us to evaluate selectively the exchange coupling constant associated with hydrogen bonds that connect magnetically inequivalent Co(II) ions (|JAB(1/2)| = 0.055(2) cm(–1)) and the exchange coupling constant associated with a fumarate bridge connecting equivalent Co(II) ions (|JAA(1/2)| ≈ 0.25 (1) cm(–1)), in good agreement with the average J(3/2) value determined from magnetic measurements.

  3. Anisotropy of domain wall resistance

    Science.gov (United States)

    Viret; Samson; Warin; Marty; Ott; Sondergard; Klein; Fermon

    2000-10-30

    The resistive effect of domain walls in FePd films with perpendicular anisotropy was studied experimentally as a function of field and temperature. The films were grown directly on MgO substrates, which induces an unusual virgin magnetic configuration composed of 60 nm wide parallel stripe domains. This allowed us to carry out the first measurements of the anisotropy of domain wall resistivity in the two configurations of current perpendicular and parallel to the walls. At 18 K, we find 8.2% and 1.3% for the domain wall magnetoresistance normalized to the wall width (8 nm) in these two respective configurations. These values are consistent with the predictions of Levy and Zhang.

  4. A Comparison and Integration of MiSeq and MinION Platforms for Sequencing Single Source and Mixed Mitochondrial Genomes.

    Directory of Open Access Journals (Sweden)

    Michael R Lindberg

    Full Text Available Single source and multiple donor (mixed samples of human mitochondrial DNA were analyzed and compared using the MinION and the MiSeq platforms. A generalized variant detection strategy was employed to provide a cursory framework for evaluating the reliability and accuracy of mitochondrial sequences produced by the MinION. The feasibility of long-read phasing was investigated to establish its efficacy in quantitatively distinguishing and deconvolving individuals in a mixture. Finally, a proof-of-concept was demonstrated by integrating both platforms in a hybrid assembly that leverages solely mixture data to accurately reconstruct full mitochondrial genomes.

  5. Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water

    Science.gov (United States)

    Reif, Maria M.; Hünenberger, Philippe H.

    2011-04-01

    The raw single-ion solvation free energies computed from atomistic (explicit-solvent) simulations are extremely sensitive to the boundary conditions and treatment of electrostatic interactions used during these simulations. However, as shown recently [M. A. Kastenholz and P. H. Hünenberger, J. Chem. Phys. 124, 224501 (2006), 10.1529/biophysj.106.083667; M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144103 (2010)], the application of appropriate correction terms permits to obtain methodology-independent results. The corrected values are then exclusively characteristic of the underlying molecular model including in particular the ion-solvent van der Waals interaction parameters, determining the effective ion size and the magnitude of its dispersion interactions. In the present study, the comparison of calculated (corrected) hydration free energies with experimental data (along with the consideration of ionic polarizabilities) is used to calibrate new sets of ion-solvent van der Waals (Lennard-Jones) interaction parameters for the alkali (Li+, Na+, K+, Rb+, Cs+) and halide (F-, Cl-, Br-, I-) ions along with either the SPC or the SPC/E water models. The experimental dataset is defined by conventional single-ion hydration free energies [Tissandier et al., J. Phys. Chem. A 102, 7787 (1998), 10.1021/jp982638r; Fawcett, J. Phys. Chem. B 103, 11181] along with three plausible choices for the (experimentally elusive) value of the absolute (intrinsic) hydration free energy of the proton, namely, Δ G_hyd^{ominus }[H+] = -1100, -1075 or -1050 kJ mol-1, resulting in three sets L, M, and H for the SPC water model and three sets LE, ME, and HE for the SPC/E water model (alternative sets can easily be interpolated to intermediate Δ G_hyd^{ominus }[H+] values). The residual sensitivity of the calculated (corrected) hydration free energies on the volume-pressure boundary conditions and on the effective ionic radius entering into the calculation of the correction terms is

  6. Visualised predictions of gap anisotropy to test new electron pairing scheme

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, X.H.; Walmsley, D.G., E-mail: dg.walmsley@qub.ac.uk

    2017-03-15

    Highlights: • Proposed test of new electron pairing scheme. • Energy gap anisotropy maps. • Reinterpretation of experimental data on gap anisotropy. • Critical comparison of theoretical results with sparse experimental data in lead, aluminium, niobium and tantalum. • Identification of absence of significant (>1%) gap anisotropy in single crystal tunnelling data. - Abstract: The rich and fertile but not yet adequately exploited ground of superconductor anisotropy is proposed as a test bed for a new empirical scheme of electron pairing. The scheme is directed to resolving a numerical and conceptual difficulty in the BCS theory. The original theoretical formulation of the anisotropy problem by Bennett is adopted and its outcomes extensively explored. Here the Bennett conclusion that in metallic superconductors phonon anisotropy is the principal source of gap anisotropy is accepted. Values of the energy gap are visualised globally in k-space with unprecedented detail and accuracy. Comparison is made between the anisotropy pattern from the new and the usual BCS pairing schemes. Differences are revealed for future experimental resolution.

  7. Giant enhancement of magnetocrystalline anisotropy in ultrathin manganite films via nanoscale 1D periodic depth modulation

    Science.gov (United States)

    Rajapitamahuni, Anil; Zhang, Le; Singh, Vijay; Burton, John; Koten, Mak; Shield, Jeffrey; Tsymbal, Evgeny; Hong, Xia

    We report a unusual giant enhancement of in-plane magnetocrystalline anisotropy (MCA) in ultrathin colossal magnetoresistive oxide films due to 1D nanoscale periodic depth modulation. High quality epitaxial thin films of La0.67Sr0.33MnO3 (LSMO) of thickness 6 nm were grown on (001) SrTiO3 substrates via off-axis radio frequency magnetron sputtering. The top 2 nm of LSMO films are patterned into periodic nano-stripes using e-beam lithography and reactive ion etching. The resulting structure consists of nano-stripes of 2 nm height and 100-200 nm width on top of a 4 nm thick continuous base layer. We employed planar Hall effect measurements to study the in-plane magnetic anisotropy of the unpatterned and nanopatterned films. The unpatterned films show a biaxial anisotropy with easy axis along [110]. The extracted anisotropy energy density is ~1.1 x 105 erg/cm3, comparable to previously reported values. In the nanopatterned films, a strong uniaxial anisotropy is developed along one of the biaxial easy axes. The corresponding anisotropy energy density is ~5.6 x 106 erg/cm3 within the nano-striped volume, comparable to that of Co. We attribute the observed uniaxial MCA to MnO6 octahedral rotations/tilts and the enhancement in the anisotropy energy density to the strain gradient within the nano-stripes.

  8. Doubly versus Singly Positively Charged Oxygen Ions Back-Scattering from a Silicon Surface under Dynamic O2+ Bombardment

    Czech Academy of Sciences Publication Activity Database

    Franzreb, K.; Williams, P.; Lörinčík, Jan; Šroubek, Zdeněk

    203-204, 1/4 (2003), s. 39-42 ISSN 0169-4332 Institutional research plan: CEZ:AV0Z2067918; CEZ:AV0Z4040901 Keywords : low-energy ion scattering * doubly charged ions * molecular orbital Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.284, year: 2003

  9. Spectroscopic properties of Bi2ZnOB2O6 single crystals doped with Pr3+ ions: Absorption and luminescence investigations

    Science.gov (United States)

    Kasprowicz, D.; Brik, M. G.; Jaroszewski, K.; Pedzinski, T.; Bursa, B.; Głuchowski, P.; Majchrowski, A.; Michalski, E.

    2015-09-01

    Nonlinear optical Bi2ZnOB2O6 single crystals doped with Pr3+ ions were grown using the Kyropoulos method. The absorption and luminescence properties of these new systems were investigated for the first time. The crystals are characterized by the large values of nonlinear optical coefficients. Effective luminescence of the Pr3+ ions makes this system an excellent candidate for the near-infrared (NIR) and/or ultraviolet (UV) to visible (VIS) laser converters. Based on the obtained experimental spectroscopic data, detailed analysis of the absorption and luminescence spectra was performed using the conventional Judd-Ofelt theory. Those transitions, which can be potentially used for laser applications of the Pr3+ ion, have been identified. In addition to the intensity parameters Ω2, Ω4, Ω6 the branching ratios and radiative lifetimes were estimated for all possible transitions in the studied spectral region.

  10. Mosaic anisotropy model for magnetic interactions in mesostructured crystals

    Directory of Open Access Journals (Sweden)

    Abby R. Goldman

    2017-10-01

    Full Text Available We propose a new model for interpreting the magnetic interactions in crystals with mosaic texture called the mosaic anisotropy (MA model. We test the MA model using hematite as a model system, comparing mosaic crystals to polycrystals, single crystal nanoparticles, and bulk single crystals. Vibrating sample magnetometry confirms the hypothesis of the MA model that mosaic crystals have larger remanence (Mr/Ms and coercivity (Hc compared to polycrystalline or bulk single crystals. By exploring the magnetic properties of mesostructured crystalline materials, we may be able to develop new routes to engineering harder magnets.

  11. Online differentiation of mineral phase in aerosol particles by ion formation mechanism using a LAAP-TOF single-particle mass spectrometer

    Directory of Open Access Journals (Sweden)

    N. A. Marsden

    2018-01-01

    Full Text Available Mineralogy of silicate mineral dust has a strong influence on climate and ecosystems due to variation in physiochemical properties that result from differences in composition and crystal structure (mineral phase. Traditional offline methods of analysing mineral phase are labour intensive and the temporal resolution of the data is much longer than many atmospheric processes. Single-particle mass spectrometry (SPMS is an established technique for the online size-resolved measurement of particle composition by laser desorption ionisation (LDI followed by time-of-flight mass spectrometry (TOF-MS. Although non-quantitative, the technique is able to identify the presence of silicate minerals in airborne dust particles from markers of alkali metals and silicate molecular ions in the mass spectra. However, the differentiation of mineral phase in silicate particles by traditional mass spectral peak area measurements is not possible. This is because instrument function and matrix effects in the ionisation process result in variations in instrument response that are greater than the differences in composition between common mineral phases.In this study, we introduce a novel technique that enables the differentiation of mineral phase in silicate mineral particles by ion formation mechanism measured from subtle changes in ion arrival times at the TOF-MS detector. Using a combination of peak area and peak centroid measurements, we show that the arrangement of the interstitial alkali metals in the crystal structure, an important property in silicate mineralogy, influences the ion arrival times of elemental and molecular ion species in the negative ion mass spectra. A classification scheme is presented that allowed for the differentiation of illite–smectite, kaolinite and feldspar minerals on a single-particle basis. Online analysis of mineral dust aerosol generated from clay mineral standards produced mineral fractions that are in agreement with bulk

  12. Online differentiation of mineral phase in aerosol particles by ion formation mechanism using a LAAP-TOF single-particle mass spectrometer

    Science.gov (United States)

    Marsden, Nicholas A.; Flynn, Michael J.; Allan, James D.; Coe, Hugh

    2018-01-01

    Mineralogy of silicate mineral dust has a strong influence on climate and ecosystems due to variation in physiochemical properties that result from differences in composition and crystal structure (mineral phase). Traditional offline methods of analysing mineral phase are labour intensive and the temporal resolution of the data is much longer than many atmospheric processes. Single-particle mass spectrometry (SPMS) is an established technique for the online size-resolved measurement of particle composition by laser desorption ionisation (LDI) followed by time-of-flight mass spectrometry (TOF-MS). Although non-quantitative, the technique is able to identify the presence of silicate minerals in airborne dust particles from markers of alkali metals and silicate molecular ions in the mass spectra. However, the differentiation of mineral phase in silicate particles by traditional mass spectral peak area measurements is not possible. This is because instrument function and matrix effects in the ionisation process result in variations in instrument response that are greater than the differences in composition between common mineral phases.In this study, we introduce a novel technique that enables the differentiation of mineral phase in silicate mineral particles by ion formation mechanism measured from subtle changes in ion arrival times at the TOF-MS detector. Using a combination of peak area and peak centroid measurements, we show that the arrangement of the interstitial alkali metals in the crystal structure, an important property in silicate mineralogy, influences the ion arrival times of elemental and molecular ion species in the negative ion mass spectra. A classification scheme is presented that allowed for the differentiation of illite-smectite, kaolinite and feldspar minerals on a single-particle basis. Online analysis of mineral dust aerosol generated from clay mineral standards produced mineral fractions that are in agreement with bulk measurements reported by

  13. Removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution using rice husk-based activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Mohd F., E-mail: faisalt@petronas.com.my; Shaharun, Maizatul S. [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Perak Darul Ridzuan (Malaysia); Shuib, Anis Suhaila, E-mail: anisuha@petronas.com.my; Borhan, Azry [Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Perak Darul Ridzuan (Malaysia)

    2014-10-24

    An attempt was made to investigate the potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Rice husk-based activated carbon was prepared via treatment of rice husk with NaOH followed by the carbonization process at 400°C for 2 hours. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). These samples were also analyzed for their carbon, hydrogen, nitrogen, oxygen and silica contents using CHN elemental analyzer and FESEM/EDX. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were 255 m{sup 2}/g and 0.17 cm{sup 2}/g, respectively. The adsorption studies for the removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution were carried out at a fixed initial concentration of metal ion (150 ppm) with variation amount of adsorbent (rice husk-based activated carbon) as a function of varied contact time at room temperature. The concentration of each metal ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Isotherm and kinetic model analyses suggested that the experimental data of adsorption studies fitted well with Langmuir, Freundlich and second-order kinetic models.

  14. Resonator QED experiments with single {sup 40}Ca{sup +} ions; Resonator-QED-Experimente mit einzelnen {sup 40}Ca{sup +}-Ionen

    Energy Technology Data Exchange (ETDEWEB)

    Lange, B.

    2006-12-20

    Combining an optical resonator with an ion trap provides the possibility for QED experiments with single or few particles interacting with a single mode of the electro-magnetic field (Cavity-QED). In the present setup, fluctuations in the count rate on a time scale below 30 seconds were purely determined by the photon statistics due to finite emission and detection efficiency, whereas a marginal drift of the system was noticeable above 200 seconds. To find methods to increase the efficiency of the photon source, investigations were conducted and experimental improvements of the setup implemented in the frame of this thesis. Damping of the resonator field and coupling of ion and field were considered as the most important factors. To reduce the damping of the resonator field, a resonator with a smaller transmissivity of the output mirror was set up. The linear trap used in the experiment allows for the interaction of multiple ions with the resonator field, so that more than one photon may be emitted per pump pulse. This was investigated in this thesis with two ions coupled to the resonator. The cross correlation of the emitted photons was measured with the Hanbury Brown-Twiss method. (orig.)

  15. Radiation damage induced in Al{sub 2}O{sub 3} single crystal sequentially irradiated with reactor neutrons and 90 MeV Xe ions

    Energy Technology Data Exchange (ETDEWEB)

    Zirour, H. [Faculty of Physics, USTHB, BP. 32, El-Alia, Bab-Ezzouar, Algiers (Algeria); Izerrouken, M., E-mail: izerrouken@yahoo.com [Centre de Recherche Nucléaire de Draria, BP. 43, Sebbala, Draria, Algiers (Algeria); Sari, A. [Centre de Recherche Nucléaire de Berine, BP. 108, Ain-Oussara, Djelfa (Algeria)

    2016-06-15

    The present investigation reports the effect of 90 MeV Xe ion irradiation on neutron irradiated Al{sub 2}O{sub 3} single crystals. Three irradiation experiments were performed, with neutrons only, 90 MeV Xe ions only and with neutrons followed by 90 MeV Xe ions. Neutron and 90 MeV Xe ion irradiations were performed at NUR research reactor, Algiers, Algeria and at GANIL accelerator, Caen, France respectively. After irradiation, the radiation damage was investigated by Raman spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), optical absorption measurements, and X-ray diffraction (XRD) techniques. Raman technique revealed that the concentration of the defects formed in Al{sub 2}O{sub 3} samples subsequently irradiated with neutrons and 90 MeV Xe ions is lower than that formed in Al{sub 2}O{sub 3} samples which were irradiated only with neutrons. This reveals the occurrence of ionization-induced recovery of the neutron damage. Furthermore, as revealed by XRD analysis, a new peak is appeared at about 2θ = 38.03° after irradiation at high fluence (>3 × 10{sup 13} Xe/cm{sup 2}). It can be assigned to the formation of new lattice plane.

  16. TEM investigation of the surface layer structure [111]{sub B2} of the single NiTi crystal modified by the Si-ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Girsova, S. L., E-mail: girs@ispms.tsc.ru; Poletika, T. M., E-mail: poletm@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Meisner, S. N., E-mail: msn@ispms.tsc.ru; Meisner, L. L., E-mail: llm@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The study was carried on for the single NiTi crystals subjected to the Si-ion beam implantation. Using the transmission electron microscopy technique (TEM), the surface layer structure [111]{sub B2} was examined for the treated material. The modified near-surface sublayers were found to have different composition. Thus the uppermost sublayer contained mostly oxides; the lower-lying modified sublayer material was in an amorphous state and the thin underlying sublayer had a defect structure.

  17. Test Standard Revision Update: JESD57, "Procedures for the Measurement of Single-Event Effects in Semiconductor Devices from Heavy-Ion Irradiation"

    Science.gov (United States)

    Lauenstein, Jean-Marie

    2015-01-01

    The JEDEC JESD57 test standard, Procedures for the Measurement of Single-Event Effects in Semiconductor Devices from Heavy-Ion Irradiation, is undergoing its first revision since 1996. In this talk, we place this test standard into context with other relevant radiation test standards to show its importance for single-event effect radiation testing for space applications. We show the range of industry, government, and end-user party involvement in the revision. Finally, we highlight some of the key changes being made and discuss the trade-space in which setting standards must be made to be both useful and broadly adopted.

  18. Study of the reaction between methyl 4-nitrobenzenesulfonate and bromide ions in mixed single-chain-gemini micellar solutions: kinetic evidence for morphological transitions.

    Science.gov (United States)

    del Mar Graciani, María; Rodríguez, Amalia; Moyá, María Luisa

    2008-12-15

    The reaction between methyl 4-nitrobenzenesulfonate and bromide ions has been studied in mixed single-chain-gemini micellar solutions of n-dodecyltrimethylammonium bromide, DTAB, and dodecyl tricosaoxyethylene glycol ether, Brij(35), with alkanediyl-alpha-omega-bis(dodecyldimethylammonium) bromide, 12-s-12,2Br(-) (s=3,4,5). Kinetic micellar effects show that an increase in the solution mole fraction of the single-chain surfactant, X(single-chain), results in a diminution of the mixed micelles tendency to form spherocylindrical aggregates upon increasing surfactant concentration. The dependence of the surfactant concentration at which the sphere-to-rod transition occurs, C(*), on X(single-chain) showed through kinetic data was in agreement with results obtained by means of fluorescence measurements.

  19. Effects of Transverse Magnetic Anisotropy on Current-Induced Spin Switching

    OpenAIRE

    Misiorny, Maciej; Barnaś, Józef

    2013-01-01

    Spin-polarized transport through bistable magnetic adatoms or single-molecule magnets (SMMs), which exhibit both uniaxial and transverse magnetic anisotropy, is considered theoretically. The main focus is on the impact of transverse anisotropy on transport characteristics and the adatom's/SMM's spin. In particular, we analyze the role of quantum tunneling of magnetization (QTM) in the mechanism of the current-induced spin switching, and show that the QTM phenomenon becomes revealed as resonan...

  20. On the Site-Decomposition of Magnetocrystalline Anisotropy Energy Using Ome-Electron Eigenstates

    Energy Technology Data Exchange (ETDEWEB)

    Aberg, Daniel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sadigh, Babak [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benedict, Lorin X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    We discuss two di erent schemes for decomposing the magnetocrystalline anisotropy energy into atomic site-speci c contributions, and show that one of these, which uses projected single-particle states, is inherently ill-de ned in practical applications. We therefore argue that the other decomposition scheme, involving ground state matrix elements of the spin-orbit operator, is preferable for the numerical prediction of one-site contributions to the anisotropy.

  1. Synthesis and Characterization of Network Single Ion Conductors(NSIC) Based On Comb-Branched Polyepoxide Ethers and LithiumBis(allylmalonato)borate

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiao-Guang; Kerr, John B.

    2004-07-11

    Network single ion conductors (NSICs) based on comb-branch polyepoxide ethers and lithium bis(allylmalonato) borate have been synthesized and thoroughly characterized by means of ionic conductivity measurements, electrochemical impedance and by dynamic mechanical analysis (DMA). The materials have been tested as battery electrolytes by cycling in symmetrical Li/Li half cells and in Li/V{sub 6}O{sub 13} full cells in which the NSIC was used as both binder and electrolyte in the cathode electrode and as the electrolyte separator membrane,. The substitution of the trimethylene oxide (TMO) unit into the side chains in place of ethylene oxide (EO) units increased the polymerion mobility (lower glass transition temperature). However, the ionic conductivity was nearly one and half orders of magnitude lower than the corresponding pure EO based single ion conductor at the same salt concentration. This effect may be ascribed to the lower dielectric constant of the TMO side chains that result in a lower concentration of free conducting lithium cations. For a highly cross-linked system (EO/Li=20), only 47 wt% plasticizing solvent (ethylene carbonate (EC)/ethyl methyl carbonate (EMC), 1/1 by wt) could be taken up and the ionic conductivity was only increased by one order of magnitude over the dry polyelectrolyte while for a less densely crosslinked system (EO/Li=80), up to 75 wt% plasticizer could be taken up and the ionic conductivity was increased by nearly two orders of magnitude. A Li/Li symmetric cell that was cycled at 85 C at a current density of 25{micro}Acm{sup -2} showed no concentration polarization or diffusional relaxation, consistent with a lithium ion transference number of one. However, both the bulk and interfacial impedances increased after 20 cycles, apparently due to continued cross-linking reactions within the membrane and on the surface of the lithium electrodes. A Li/V{sub 6}O{sub 13} full cell constructed using a single ion conductor gel (propylene

  2. Magnetic anisotropy of Ni/Cr multilayers

    International Nuclear Information System (INIS)

    Kang, S.; Xia, H.

    1997-01-01

    The magnetic anisotropy of Ni/Cr multilayers has been investigated by using vibrating sample magnetometer (VSM) and ferromagnetic resonance techniques (FMR). The FMR spectra are obtained as a function of the orientation of the applied magnetic field from in-plane to out-of-plane. The results are fitted theoretically to determine the magnetic anisotropy. From VSM and FMR, a positive value for Ni/Cr interface anisotropy is obtained, which favours a perpendicular easy axis. The possible mechanism for the perpendicular anisotropy has been discussed and it may be attributed to the magnetostriction, caused by intrinsic stress due to lattice mismatch. (orig.). With 005 figs., 001 tabs

  3. Establishing a Quantitative Relationship Between Ion and Pulsed-Laser Induced Single Event Soft Errors in Advanced Semiconductor Devices

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation is a pervasive environmental challenge in space and the upper atmosphere. Ions can interact with microelectronic devices and create unwanted charge leading...

  4. Intrinsic magnetism of a series of Co substituted ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lv Peiwen [Laboratory of Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, National Engineering Research Center for Optoelectronic Crystalline Materials, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Huang Feng [Laboratory of Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, National Engineering Research Center for Optoelectronic Crystalline Materials, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Chu Wangsheng [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing (China); Lin Zhang [Laboratory of Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, National Engineering Research Center for Optoelectronic Crystalline Materials, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Chen Dagui [Laboratory of Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, National Engineering Research Center for Optoelectronic Crystalline Materials, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Li Wei [Laboratory of Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, National Engineering Research Center for Optoelectronic Crystalline Materials, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Chen Dongliang [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing (China)

    2008-01-23

    Magnetic properties of a series of well-substituted Zn{sub 1-x}Co{sub x}O (x = 0.018,0.036 and 0.05) single crystals were studied. A typical paramagnetic anisotropy property, which strengthens when x decreases, was found. A magnetization step was observed at 2 K when the magnetic field is parallel to the c axis, indicating that paramagnetic anisotropy is the origin of the strong crystal field effect on Co{sup 2+} ions in ZnO lattices. The Co{sup 2+} single-ion anisotropy parameter 2D is obtained as 7.5 K. The effective moment of Co{sup 2+} takes the values 2.7 {mu}{sub B}, 1.82 {mu}{sub B}, 1.49 {mu}{sub B} when x = 0.018, 0.036 and 0.05, revealing that more antiferromagnetic coupling between Co{sup 2+} ions arises in the perfect crystal when x increases.

  5. Poisson-Fermi modeling of ion activities in aqueous single and mixed electrolyte solutions at variable temperature

    Science.gov (United States)

    Liu, Jinn-Liang; Eisenberg, Bob

    2018-02-01

    The combinatorial explosion of empirical parameters in tens of thousands presents a tremendous challenge for extended Debye-Hückel models to calculate activity coefficients of aqueous mixtures of the most important salts in chemistry. The explosion of parameters originates from the phenomenological extension of the Debye-Hückel theory that does not take steric and correlation effects of ions and water into account. By contrast, the Poisson-Fermi theory developed in recent years treats ions and water molecules as nonuniform hard spheres of any size with interstitial voids and includes ion-water and ion-ion correlations. We present a Poisson-Fermi model and numerical methods for calculating the individual or mean activity coefficient of electrolyte solutions with any arbitrary number of ionic species in a large range of salt concentrations and temperatures. For each activity-concentration curve, we show that the Poisson-Fermi model requires only three unchanging parameters at most to well fit the corresponding experimental data. The three parameters are associated with the Born radius of the solvation energy of an ion in electrolyte solution that changes with salt concentrations in a highly nonlinear manner.

  6. Deep Crustal Anisotropy and its Distortion Through the Seismological Lens

    Science.gov (United States)

    Schulte-Pelkum, V.; Mahan, K. H.

    2011-12-01

    Seismic interpretations of crustal anisotropy often appear to be at odds with expectations based on structural geology. We provide a solution to the apparent discrepancy based on petrological data and synthetic seismograms and present results across the continental US. Seismic investigations of crustal anisotropy offer one of the best chances to observe lower crustal flow in situ, and receiver function (converted wave) studies have good horizontal and depth resolution and are less expensive than active source studies, and suffer from less tradeoff than tomographic studies. A puzzling observation in receiver function studies of the continental crust has been a prevalence of observed plunging axis anisotropy in subhorizontal layers interpreted to have accommodated a significant component of simple shear. In contrast, geological field observations and deformation experiments suggest that shear zones develop a significant boundary-parallel foliation (C-planes in S-C mylonite) after only modest amounts of strain accumulation (~gamma A2), while plunging P anisotropy shows a much higher amplitude single peak and trough (termed A1). Published crustal sample P versus S anisotropies range within a factor of 2 of each other, with the majority of samples showing comparable P and S anisotropy. While the A2 signal theoretically provides a robust detector for anisotropy, we suggest that a search for the larger A1 signal is more likely to be successful. We present seismic forward modeling results for petrological crustal deformation fabrics with aligned mica, amphibole, and quartz for different geometries. We also show results from the EarthScope Transportable Array across areas with presumed past or present lower crustal flow. When observed receiver function signal amplitudes are decomposed into A0 (isotropic, 1-D), A1, and A2 components, the A1 component dominates A2 by a factor of ~3 averaged across the entire network. The A1 component also contains information on isotropic

  7. Anisotropy of the magnetic susceptibility of gallium

    Science.gov (United States)

    Pankey, T.

    1960-01-01

    The bulk magnetic susceptibilities of single gallium crystals and polycrystalline gallium spheres were measured at 25??C. The following anisotropic diamagnetic susceptibilities were found: a axis (-0.119??0. 001)??10-6 emu/g, b axis (-0.416??0.002)??10 -6 emu/g, and c axis (-0.229??0.001) emu/g. The susceptibility of the polycrystalline spheres, assumed to be the average value for the bulk susceptibility of gallium, was (-0.257??0.003)??10-6 emu/g at 25??C, and (-0.299??0.003)??10-6 emu/g at -196??C. The susceptibility of liquid gallium was (0.0031??0.001) ??10-6 emu/g at 30??C and 100??C. Rotational diagrams of the susceptibilities in the three orthogonal planes of the unit cell were not sinusoidal. The anisotropy in the single crystals was presumably caused by the partial overlap of Brillouin zone boundaries by the Fermi-energy surface. The large change in susceptibility associated with the change in state was attributed to the absence of effective mass influence in the liquid state. ?? 1960 The American Institute of Physics.

  8. Microstructure and nanomechanical properties of single stalks from diatom Didymosphenia geminata and their change due to adsorption of selected metal ions.

    Science.gov (United States)

    Zgłobicka, Izabela; Chlanda, Adrian; Woźniak, Michał; Łojkowski, Maciej; Szoszkiewicz, Robert; Mazurkiewicz-Pawlicka, Marta; Święszkowski, Wojciech; Wyroba, Elżbieta; Kurzydłowski, Krzysztof J

    2017-08-01

    We present topographical and nanomechanical characterization of single Didymosphenia geminata stalk. We compared the samples before and after adsorption of metal ions from freshwater samples. Transmission electron microscopy studies of single stalk cross-sections have shown three distinct layers and an additional thin extra coat on the external layer (called "EL"). Using scanning electron microscopy and atomic force microscopy (AFM), we found that topography of single stalks after ionic adsorption differed significantly from topography of pristine stalks. AFM nanoindentation studies in ambient conditions yielded elastic moduli of 214 ± 170 MPa for pristine stalks and 294 ± 108 MPa for stalks after ionic adsorption. Statistical tests showed that those results were significantly different. We conducted only preliminary comparisons between ionic adsorption of several stalks in air and in water. While the stalks with ions were on average stiffer than the pristine stalks in air, they became more compliant than the pristine stalks in water. We also heated the stalks and detected EL softening at 50°C ± 15°C. AFM nanoindentation in air on the softened samples yielded elastic moduli of 26 ± 9 MPa for pristine samples and 43 ± 22 MPa for stalks with absorbed metal ions. Substantial decrease of the EL elastic moduli after heating was expected. Significantly different elastic moduli for the samples after ionic adsorption in both cases (i.e., for heated and nonheated samples), as well as behavior of the stalks immersed in water, point to permanent structural EL changes due to ions. © 2017 Phycological Society of America.

  9. Detection of two electrons in low-lying continuum states of a single projectile ion resulting from the collision of a 10.7-MeV Ag4+ ion with an Ar gas atom

    International Nuclear Information System (INIS)

    Richards, J.D.; Breinig, M.; Gaither, C.C.; Berryman, J.W.; Hasson, B.F.

    1993-01-01

    Two electrons, excited just above the double-ionization threshold of an Ag q+ (q=5,6) core in a single collision of a 0.1-MeV/u Ag 4+ projectile ion with an Ar atom, are detected. The electron detector consists of electrically isolated anode segments located behind a microchannel-plate electron multiplier. A large electrostatic 30 degree parallel-plate analyzer is used to deflect the two free electrons, which move with approximately the projectile velocity, into the detector. The cross sections for producing final states consisting of a positively charged ionic core and two electrons just above the threshold for double ionization in ion-atom collisions have been measured. The cross sections for producing states with one electron moving with a kinetic energy less than 0.13 eV in the projectile frame and the other moving with somewhat higher kinetic energy are presented

  10. Magnetic compensation and critical properties of a mixed spin-(2, 3/2) Heisenberg single-walled nanotube superlattice

    Science.gov (United States)

    Mi, Bin-Zhou; Feng, Cui-Ju; Luo, Jian-Guo; Hu, De-Zhi

    2018-01-01

    In recent years, some theoretical interests have been focused on the binary alloy nanotubes and nanowires with mixed spins. Compared with ferrimagnetic nanowires, few studies have been done on ferrimagnetic nanotubes. In this paper, the magnetic properties of a mixed spin-(2, 3/2) Heisenberg single-walled nanotube superlattice are calculated by use of the double-time Green's function method within the random phase approximation and the Anderson and Callen's decoupling. Magnetic compensation and critical properties are obtained for a wide range of parameters in the Hamiltonian, and magnetic phase diagrams are plotted in the related planes. For Heisenberg single-walled nanotube superlattice model with Néel-type magnetic structure, anisotropy must be taken into account, and the easy-axis single-ion anisotropy is considered in this paper. The next nearest neighbor exchange interactions Jbb and/or single-ion anisotropy strength Db of the smaller spin sublattice were necessary in order to obtain a compensation point. The influence of the wall diameter number of the tubes, m, an important parameter of the system, on the compensation behavior is considered. Calculation shows that as Jbb and Db are fixed, only when m is beyond a certain minimum value, mmin, can compensation temperature Tcom appears, where the next nearest neighbor exchange interactions Jaa and single-ion anisotropy strength Da of the larger spin sublattice are absent. The compensation temperature and critical temperature increase with m rising, which indicates that the longitudinal correlation effect is enhanced and the fluctuation effect is weakened with the increase of m.

  11. Development of Guidelines for Use of Proton Single-Event Test Data to Bound Single-Event Effect Susceptibility Due to Light Ions

    Data.gov (United States)

    National Aeronautics and Space Administration — Conventional methods for Single-Event Effects (SEE) Hardness Assurance have proven difficult to adapt to Explorer, Cubesat and other risk tolerant platforms with...

  12. Quantitative imaging of chemical composition in single cells by secondary ion mass spectrometry: cisplatin affects calcium stores in renal epithelial cells.

    Science.gov (United States)

    Chandra, Subhash

    2010-01-01

    A detailed protocol for quantitative single cell mass spectrometry imaging (MSI) analysis is described in this chapter with examples of the treatment of cells with anticancer drug, cisplatin. Cisplatin, cis-diamminedichloridoplatinum ii (CDDP), is widely used for the treatment of many malignancies, including testicular, ovarian, bladder, cervical, head and neck, and small cell and non-small cell lung cancers. The possibility of renal injury by cisplatin treatment is a major dose-limiting factor in this cancer therapy. At present, the mechanisms of cisplatin-induced renal cytotoxicity are poorly understood. In this work, secondary ion mass spectrometry (SIMS) was used for investigating cisplatin-induced alterations in intracellular chemical composition in a well-established model (LLC-PK(1) cell line) for studying renal injury. The cells were cryogenically prepared by the sandwich freeze-fracture method for subcellular imaging analysis of chemical composition (total concentrations of K(+), Na(+), and Ca(2+)) in individual cells. The single cell analysis of these diffusible ions necessitates the use of reliable cryogenic sample preparations for SIMS. The sandwich freeze-fracture method offers a simple approach for cryogenically preserving diffusible ions and molecules inside the cells for SIMS analysis. A CAMECA IMS-3f SIMS ion microscope instrument capable of producing chemical images of single cells with 500-nm spatial resolution was used in the study. In cisplatin-treated cells, SIMS imaging showed the presence of detectable amount of platinum at mass 195, as (195)Pt(+) secondary ions in individual cells. SIMS observations also revealed that individual cells differed in their response to cisplatin. While the chemical composition of some cells was unaffected by cisplatin, others showed a reduction in cytoplasmic calcium stores that was not associated with changes in their intracellular K or Na concentrations. Another population of cells displayed an increase in

  13. The study of adsorption characteristics Cu2+ and Pb2+ ions onto PHEMA and P(MMA-HEMA) surfaces from aqueous single solution.

    Science.gov (United States)

    Moradi, O; Aghaie, M; Zare, K; Monajjemi, M; Aghaie, H

    2009-10-30

    The adsorption characteristics of Cu2+ and Pb2+ ions onto poly2-hydroxyethyl methacrylate (PHEMA) and copolymer 2-hydroxyethyl methacrylate with monomer methyl methacrylate P(MMA-HEMA) adsorbent surfaces from aqueous single solution were investigated with respect to the changes in the pH of solution, adsorbent composition (changes in the weight percentage of MMA copolymerized with HEMA monomer), contact time and the temperature in the individual aqueous solutions. The linear correlation coefficients of Langmuir and Freundlich isotherms were obtained. The results revealed that the Langmuir isotherm fitted the experimental results better than the Freundlich isotherm. Using the Langmuir model equation, the monolayer adsorption capacity of PHEMA surface was found to be 0.840 and 3.037 mg/g for Cu2+ and Pb2+ ions and adsorption capacity of (PMMA-HEMA) was found to be 31.153 and 31.447 mg/g for Cu2+ and Pb2+ ions, respectively. Changes in the standard Gibbs free energy (DeltaG(0)), standard enthalpy (DeltaH(0)) and standard entropy (DeltaS(0)) show that the adsorption of mentioned ions onto PHEMA and P(MMA-HEMA) are spontaneous and exothermic at 293-323 K.

  14. Selective Single-Step Separation of a Mixture of Three Metal Ions by a Triphasic Ionic-Liquid-Water-Ionic-Liquid Solvent Extraction System.

    Science.gov (United States)

    Vander Hoogerstraete, Tom; Blockx, Jonas; De Coster, Hendrik; Binnemans, Koen

    2015-08-10

    In a conventional solvent extraction system, metal ions are distributed between two immiscible phases, typically an aqueous and an organic phase. In this paper, the proof-of-principle is given for the distribution of metal ions between three immiscible phases, two ionic liquid phases with an aqueous phase in between them. Three-liquid-phase solvent extraction allows separation of a mixture of three metal ions in a single step, whereas at least two steps are required to separate three metals in the case of two-liquid-phase solvent extraction. In the triphasic system, the lower organic phase is comprised of the ionic liquid betainium- or choline bis(trifluoromethylsulfonyl)imide, whereas the upper organic phase is comprised of the ionic liquid trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide. The triphasic system was used for the separation of a mixture of tin(II), yttrium(III), and scandium(III) ions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Particle physics implications of Wilkinson microwave anisotropy ...

    Indian Academy of Sciences (India)

    ... Journals; Pramana – Journal of Physics; Volume 63; Issue 6. Particle physics implications of Wilkinson microwave anisotropy project measurements. U A Yajnik. Volume 63 Issue 6 December 2004 pp 1317-1330 ... Keywords. Cosmic microwave background radiation; inflation; Wilkinson microwave anisotropy project.

  16. Uniaxial anisotropy in magnetite thin film-Magnetization studies

    International Nuclear Information System (INIS)

    Wiechec, A.; Korecki, J.; Handke, B.; Kakol, Z.; Owoc, D.; Antolak, D.A.; Kozlowski, A.

    2006-01-01

    Magnetization and electrical resistivity measurements have been performed on a stoichiometric single crystalline magnetite Fe 3 O 4 thin film (thickness of ca. 500 nm) MBE deposited on MgO (1 0 0) substrate. The aim of these studies was to check the influence of preparation method and sample form (bulk vs. thin film) on magnetic anisotropy properties in magnetite. The film magnetization along versus applied magnetic field has been determined both in the direction parallel and perpendicular to the film surface, and at temperatures above and below the Verwey transition. We have found, in agreement with published results, that the in-plane field of 10 kOe was not sufficient to saturate the sample. This can be understood if some additional factor, on top of the bulk magnetocrystalline anisotropy, is taken into account

  17. Structural properties of as-grown and reduced Pr2CuO4 single crystals investigated by ion channeling

    International Nuclear Information System (INIS)

    Haga, T.; Abe, Y.

    1996-01-01

    Ion channeling is very sensitive to atomic arrangements and small atomic displacements in real space. Thus, in order to clarify a role of reduction for Pr 2 CuO 4 , ion channeling properties for the materials have been measured in detail. Anomalous increases of dechanneling fractions of Cu and O atoms in the reduced samples have been found. These results could not be explained by the apical oxygen model but probably suggest that O atoms in Cu-O planes are removed by reduction. Taking these results into account, correlation between lattice instability and superconductivity in the material will be discussed. (orig.)

  18. The production of optical waveguides by ion implantation: the case of rutile

    Energy Technology Data Exchange (ETDEWEB)

    Rickards, J.; Trejo L, R.; Flores R, E.; Golzarri, J. I.; Espinosa, G., E-mail: rickards@fisica.unam.m [UNAM, Instituto de Fisica, Apdo. Postal 20-364, 01000 Mexico D. F. (Mexico)

    2011-02-15

    With the purpose of developing optoelectronic devices, optical waveguides have been produced by ion implantation in many solids. The implantation process creates a damaged layer near the end of the ion trajectories, with a consequent reduction of density and index of refraction. This produces an optical barrier at a depth of a few microns, depending on the type of ion and its energy. The barrier and the surface constitute a planar waveguide. Rutile (TiO{sub 2} tetragonal structure) single crystals were implanted with 7 MeV carbon ions using the Physics Institute 3 MV Pelletron Accelerator, in the (100) and (001) directions, and Poly Allyl Diglycol Carbonate (P ADC) as detection material. The waveguides were observed using the coupled prism technique, which indicated differences in the waveguides produced for different directions due to crystal anisotropy. (Author)

  19. Scanned ion beam therapy for prostate carcinoma. Comparison of single plan treatment and daily plan-adapted treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hild, Sebastian [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Department of Biophysics, Darmstadt (Germany); University Clinic Erlangen and Friedrich- Alexander-University Erlangen-Nuernberg (FAU), Department of Radiation Oncology, Erlangen (Germany); Graeff, Christian [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Department of Biophysics, Darmstadt (Germany); Rucinski, Antoni [University Clinic Heidelberg, Heidelberg Ion-Beam Therapy Center (HIT) and Department of Radiation Oncology, Heidelberg (Germany); Sapienza Universit' a di Roma, Dipartimento di Scienze di Base e Applicate per Ingegneria, Roma (Italy); INFN, Roma (Italy); Zink, Klemens [University of Applied Sciences, Institute for Medical Physics and Radiation Protection, Giessen (Germany); University Medical Center Giessen-Marburg, Department of Radiotherapy and Radiooncology, Marburg (Germany); Habl, Gregor [University Clinic Heidelberg, Heidelberg Ion-Beam Therapy Center (HIT) and Department of Radiation Oncology, Heidelberg (Germany); Klinikum rechts der Isar, Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Munich (Germany); Durante, Marco [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Department of Biophysics, Darmstadt (Germany); Technische Universitaet Darmstadt, Faculty of Physics, Darmstadt (Germany); Herfarth, Klaus [University Clinic Heidelberg, Heidelberg Ion-Beam Therapy Center (HIT) and Department of Radiation Oncology, Heidelberg (Germany); Bert, Christoph [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Department of Biophysics, Darmstadt (Germany); University Clinic Erlangen and Friedrich- Alexander-University Erlangen-Nuernberg (FAU), Department of Radiation Oncology, Erlangen (Germany); University Hospital Erlangen, Radiation Oncology, Erlangen (Germany)

    2016-02-15

    Intensity-modulated particle therapy (IMPT) for tumors showing interfraction motion is a topic of current research. The purpose of this work is to compare three treatment strategies for IMPT to determine potential advantages and disadvantages of ion prostate cancer therapy. Simulations for three treatment strategies, conventional one-plan radiotherapy (ConvRT), image-guided radiotherapy (IGRT), and online adaptive radiotherapy (ART) were performed employing a dataset of 10 prostate cancer patients with six CT scans taken at one week intervals. The simulation results, using a geometric margin concept (7-2 mm) as well as patient-specific internal target volume definitions for IMPT were analyzed by target coverage and exposure of critical structures on single fraction dose distributions. All strategies led to clinically acceptable target coverage in patients exhibiting small prostate motion (mean displacement < 4 mm), but IGRT and especially ART led to significant sparing of the rectum. In 20 % of the patients, prostate motion exceeded 4 mm causing insufficient target coverage for ConvRT (V95{sub mean} = 0.86, range 0.63-0.99) and IGRT (V95{sub mean} = 0.91, range 0.68-1.00), while ART maintained acceptable target coverage. IMPT of prostate cancer demands consideration of rectal sparing and adaptive treatment replanning for patients exhibiting large prostate motion. (orig.) [German] Adaptive Therapieansaetze fuer sich interfraktionell bewegende Zielvolumina in der intensitaetsmodulierten Partikeltherapie (IMPT) befinden sich zurzeit in der Entwicklung. In dieser Arbeit werden drei Behandlungsstrategien auf moegliche Vor- und Nachteile in der IMPT des Prostatakarzinoms hin untersucht. Auf Basis eines anonymisierten Datensatzes aus 10 Patienten mit Prostatakarzinom wurden die drei Bestrahlungsstrategien, konventionelle Ein-Plan-Strahlentherapie (ConvRT), bildunterstuetzte Strahlentherapie (IGRT) und tagesaktuelle Strahlentherapie (adaptive radiotherapy,ART), simuliert

  20. Profiling neuronal ion channelopathies with non-invasive brain imaging and dynamic causal models: Case studies of single gene mutations.

    Science.gov (United States)

    Gilbert, Jessica R; Symmonds, Mkael; Hanna, Michael G; Dolan, Raymond J; Friston, Karl J; Moran, Rosalyn J

    2016-01-01

    Clinical assessments of brain function rely upon visual inspection of electroencephalographic waveform abnormalities in tandem with functional magnetic resonance imaging. However, no current technology proffers in vivo assessments of activity at synapses, receptors and ion-channels, the basis of neuronal communication. Using dynamic causal modeling we compared electrophysiological responses from two patients with distinct monogenic ion channelopathies and a large cohort of healthy controls to demonstrate the feasibility of assaying synaptic-level channel communication non-invasively. Synaptic channel abnormality was identified in both patients (100% sensitivity) with assay specificity above 89%, furnishing estimates of neurotransmitter and voltage-gated ion throughput of sodium, calcium, chloride and potassium. This performance indicates a potential novel application as an adjunct for clinical assessments in neurological and psychiatric settings. More broadly, these findings indicate that biophysical models of synaptic channels can be estimated non-invasively, having important implications for advancing human neuroimaging to the level of non-invasive ion channel assays. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Single amino acids in the carboxyl terminal domain of aquaporin-1 contribute to cGMP-dependent ion channel activation

    Directory of Open Access Journals (Sweden)

    Yool Andrea J

    2003-10-01

    Full Text Available Abstract Background Aquaporin-1 (AQP1 functions as an osmotic water channel and a gated cation channel. Activation of the AQP1 ion conductance by intracellular cGMP was hypothesized to involve the carboxyl (C- terminus, based on amino acid sequence alignments with cyclic-nucleotide-gated channels and cGMP-selective phosphodiesterases. Results Voltage clamp analyses of human AQP1 channels expressed in Xenopus oocytes demonstrated that the nitric oxide donor, sodium nitroprusside (SNP; 3–14 mM activated the ionic conductance response in a dose-dependent manner. Block of soluble guanylate cyclase prevented the response. Enzyme immunoassays confirmed a linear dose-dependent relationship between SNP and the resulting intracellular cGMP levels (up to 1700 fmol cGMP /oocyte at 14 mM SNP. Results here are the first to show that the efficacy of ion channel activation is decreased by mutations of AQP1 at conserved residues in the C-terminal domain (aspartate D237 and lysine K243. Conclusions These data support the idea that the limited amino acid sequence similarities found between three diverse classes of cGMP-binding proteins are significant to the function of AQP1 as a cGMP-gated ion channel, and provide direct evidence for the involvement of the AQP1 C-terminal domain in cGMP-mediated ion channel activation.

  2. Partial and total electronic stopping cross sections of atoms for a singly charged helium ion, Part 2

    International Nuclear Information System (INIS)

    Kaneko, T.; Nishikori, M.; Yamato, N.

    1991-08-01

    Partial and total electronic stopping cross sections of atoms with Z (55 ≤ Z ≤ 92) for a He + ion are tabulated as the second part of NIFS-DATA-11 (1991) on the basis of the wave-packet theory. (author)

  3. Scitillation characteristics of PbWO.sub.4./sub. single crystals doped with Th, Zr, Ce, Sb and Mn ions

    Czech Academy of Sciences Publication Activity Database

    Kobayashi, M.; Usuki, Y.; Ishii, M.; Senguttuvan, N.; Tanji, K.; Chiba, M.; Hara, K.; Nikl, Martin; Boháček, Pavel; Boccaro, S.

    2001-01-01

    Roč. 465, - (2001), s. 428-439 ISSN 0168-9002 R&D Projects: GA MŠk ME 159 Institutional research plan: CEZ:AV0Z1010914 Keywords : PbWO 4 * tetravalent-ion (Th 4 ) doping Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.026, year: 2001

  4. Optical and Magnetic Resonance Investigations of 3d Ions in Single Crystal Hosts: Candidates for Tunable Solid-State Lasers

    Science.gov (United States)

    1994-04-25

    reconcile the experintal and calculated spectra; evidently, the branching of the optical transition probabilities plays a critical U role in...octahedral Ci 4 ’ in YAG.25 A possible ra- tionale for the lack of observed tetrahedral Ct4" signals in garets is a large D splitting for the chromium ion

  5. Cyclotron instabilities driven by temperature anisotropy in the solar wind

    Science.gov (United States)

    Noreen, N.; Yoon, P. H.; Zaheer, S.

    2017-10-01

    Kinetic plasma instabilities are important for regulating the temperature anisotropies of electrons and ions in solar wind. For the low beta regime, it is known that electromagnetic ion/electron cyclotron instabilities are important, but in the literature these unstable modes are discussed under the assumption of parallel propagation. The present paper extends the analysis to two (or with cylindrical symmetry, three) dimensions. The analysis is further extended to include quasilinear description with the assumption of the bi-Maxwellian velocity distribution function. Such an analysis lays the foundation for an eventual study in which cyclotron instabilities as well as obliquely propagating unstable modes such as the mirror instability are simultaneously taken into account. The present paper first lays down the basis for such future efforts in which the two- or three dimensional linear and quasilinear theories of cyclotron instabilities in the low beta regime are formulated.

  6. Crystal Growth and Spectroscopic characterization of chloride and bromide single crystals doped with rare earth ions for the mid infrared amplification

    International Nuclear Information System (INIS)

    Ferrier, A.

    2007-12-01

    This work is devoted to the study of low phonon energy crystals doped with rare earth ions for the realisation of diode-pumped solid state laser sources emitting in the middle infrared. For that purpose, pure and (Er 3+ or Pr 3+ ) doped single crystals of KPb 2 Cl 5 and Tl 3 PbX 5 (X=Cl, Br) have been elaborated by using the Bridgman-Stockbarger method. These non-hygroscopic and congruent melting materials have been found to exhibit phase transitions during the cooling process but which do not limit the elaboration of centimeter-size single crystals. The spectroscopic study of the Er 3+ doped compounds has been performed both at high and low temperatures. It thus appears that these systems present long fluorescence lifetimes and relatively large gain cross sections favorable for a laser emission around 4.5μm. It has been demonstrated further that the up-conversion processes resulting from excited-state absorptions of the Er 3+ ions around the pumping wavelength as well as the energy transfer processes between the Er 3+ ions do not lead to significant optical losses for the laser system. The derived parameters then have been used to build a model and simulate the laser operation of the system following diode pumping around 800 nm. In the end, the spectroscopic study of the Pr 3+ ion in various materials has allowed us to evidence large emission cross sections associated with long fluorescence lifetimes, now favorable to a laser emission around 5μm. (author)

  7. Influence of VO2+ ions on structural and optical properties of potassium succinate-succinic acid single crystal for non-linear optical applications

    Science.gov (United States)

    Juliet sheela, K.; Subramanian, P.

    2018-04-01

    A transparent and good optical quality semi organic single crystal of vanadium doped potassium succinate-succinic acid (KSSA) was synthesized by slow evaporation technique at room temperature. The structural perfection was supported by the powder XRD of the KSSA-VO2+ single crystal. Optical behavior of the material was discovered from the absorption and transmission spectra of UV-vis-NIR characterization. Functional group and presence of metal ion in the specimen are depicted from FTIR traces. From the photoluminescence studies, emission of wavelength in the violet region (418 nm) at the excitation of 243 nm could be ascertained. EDAX, SEM measurements identify presence of elements and pictures the step-line growth and the imperfection presents in the grown crystal. EPR analysis extracts the information about the local site symmetry around the impurity ion, molecular orbital coefficients, admixture coefficients and ground state wave function of VO2+ doped KSSA single crystal. Second harmonic generation (SHG) efficiency of the grown crystal was investigated to explore the NLO characteristic of the material.

  8. UVnovo: A de Novo Sequencing Algorithm Using Single Series of Fragment Ions via Chromophore Tagging and 351 nm Ultraviolet Photodissociation Mass Spectrometry.

    Science.gov (United States)

    Robotham, Scott A; Horton, Andrew P; Cannon, Joe R; Cotham, Victoria C; Marcotte, Edward M; Brodbelt, Jennifer S

    2016-04-05

    De novo peptide sequencing by mass spectrometry represents an important strategy for characterizing novel peptides and proteins, in which a peptide's amino acid sequence is inferred directly from the precursor peptide mass and tandem mass spectrum (MS/MS or MS(3)) fragment ions, without comparison to a reference proteome. This method is ideal for organisms or samples lacking a complete or well-annotated reference sequence set. One of the major barriers to de novo spectral interpretation arises from confusion of N- and C-terminal ion series due to the symmetry between b and y ion pairs created by collisional activation methods (or c, z ions for electron-based activation methods). This is known as the "antisymmetric path problem" and leads to inverted amino acid subsequences within a de novo reconstruction. Here, we combine several key strategies for de novo peptide sequencing into a single high-throughput pipeline: high-efficiency carbamylation blocks lysine side chains, and subsequent tryptic digestion and N-terminal peptide derivatization with the ultraviolet chromophore AMCA yield peptides susceptible to 351 nm ultraviolet photodissociation (UVPD). UVPD-MS/MS of the AMCA-modified peptides then predominantly produces y ions in the MS/MS spectra, specifically addressing the antisymmetric path problem. Finally, the program UVnovo applies a random forest algorithm to automatically learn from and then interpret UVPD mass spectra, passing results to a hidden Markov model for de novo sequence prediction and scoring. We show this combined strategy provides high-performance de novo peptide sequencing, enabling the de novo sequencing of thousands of peptides from an Escherichia coli lysate at high confidence.

  9. A Bacillus flagellar motor that can use both Na+ and K+ as a coupling ion is converted by a single mutation to use only Na+.

    Directory of Open Access Journals (Sweden)

    Naoya Terahara

    Full Text Available In bacteria, the sodium ion (Na(+ cycle plays a critical role in negotiating the challenges of an extremely alkaline and sodium-rich environment. Alkaliphilic bacteria that grow optimally at high pH values use Na(+ for solute uptake and flagellar rotation because the proton (H(+ motive force is insufficient for use at extremely alkaline pH. Only three types of electrically driven rotary motors exist in nature: the F-type ATPase, the V-type ATPase, and the bacterial flagellar motor. Until now, only H(+ and Na(+ have been reported as coupling ions for these motors. Here, we report that the alkaliphilic bacterium Bacillus alcalophilus Vedder 1934 can grow not only under a Na(+-rich and potassium ion (K(+-poor condition but also under the opposite condition in an extremely alkaline environment. In this organism, swimming performance depends on concentrations of Na(+, K(+ or Rb(+. In the absence of Na(+, swimming behavior is clearly K(+- dependent. This pattern was confirmed in swimming assays of stator-less Bacillus subtilis and Escherichia coli mutants expressing MotPS from B. alcalophilus (BA-MotPS. Furthermore, a single mutation in BA-MotS was identified that converted the naturally bi-functional BA-MotPS to stators that cannot use K(+ or Rb(+. This is the first report that describes a flagellar motor that can use K(+ and Rb(+ as coupling ions. The finding will affect the understanding of the operating principles of flagellar motors and the molecular mechanisms of ion selectivity, the field of the evolution of environmental changes and stresses, and areas of nanotechnology.

  10. A Bacillus flagellar motor that can use both Na+ and K+ as a coupling ion is converted by a single mutation to use only Na+.

    Science.gov (United States)

    Terahara, Naoya; Sano, Motohiko; Ito, Masahiro

    2012-01-01

    In bacteria, the sodium ion (Na(+)) cycle plays a critical role in negotiating the challenges of an extremely alkaline and sodium-rich environment. Alkaliphilic bacteria that grow optimally at high pH values use Na(+) for solute uptake and flagellar rotation because the proton (H(+)) motive force is insufficient for use at extremely alkaline pH. Only three types of electrically driven rotary motors exist in nature: the F-type ATPase, the V-type ATPase, and the bacterial flagellar motor. Until now, only H(+) and Na(+) have been reported as coupling ions for these motors. Here, we report that the alkaliphilic bacterium Bacillus alcalophilus Vedder 1934 can grow not only under a Na(+)-rich and potassium ion (K(+))-poor condition but also under the opposite condition in an extremely alkaline environment. In this organism, swimming performance depends on concentrations of Na(+), K(+) or Rb(+). In the absence of Na(+), swimming behavior is clearly K(+)- dependent. This pattern was confirmed in swimming assays of stator-less Bacillus subtilis and Escherichia coli mutants expressing MotPS from B. alcalophilus (BA-MotPS). Furthermore, a single mutation in BA-MotS was identified that converted the naturally bi-functional BA-MotPS to stators that cannot use K(+) or Rb(+). This is the first report that describes a flagellar motor that can use K(+) and Rb(+) as coupling ions. The finding will affect the understanding of the operating principles of flagellar motors and the molecular mechanisms of ion selectivity, the field of the evolution of environmental changes and stresses, and areas of nanotechnology.

  11. Neoclassical study of temperature anisotropy in NSTX experiments using the GTC-NEO particle code

    Science.gov (United States)

    Perkins, David; Ethier, Stephane; Wang, Weixing

    2012-10-01

    It is well-known that the level of ion transport in the National Spherical Torus eXperiment (NSTX) is close to the neoclassical level. This makes self-consistent neoclassical simulations carried out with the GTC-NEO particle code highly relevant for studying transport-related issues in NSTX. GTC-NEO, which now treats multiple species of ion impurities [1], takes as input the experimental profiles from NSTX discharges and calculates the fully non-local, self-consistent neoclassical fluxes and radial electric field. One unanswered question related to NSTX plasmas is that of possible ion temperature anisotropy, which cannot be determined experimentally with the current diagnostics. This work describes new numerical diagnostics and computational improvements that were implemented in GTC-NEO to enable the study of temperature anisotropy.[4pt] [1] R.A. Kolesnikov et al., Phy. Plasmas 17, 022506 (2010)

  12. Diffusion creep in the mantle may create and maintain anisotropy

    Science.gov (United States)

    Wheeler, John

    2014-05-01

    Diffusion creep is thought to play an important role in lower mantle deformation and hence must be understood in detail if Earth behaviour is to be explained. It is commonly claimed that diffusion creep gives rise to equant grain shapes and destroys any crystallographic preferred orientation (CPO), so all physical properties would be isotropic. Some experiments on olivine support the first assertion but other minerals, and polyphase rocks, commonly show inequant grain shapes in nature and experiment even when diffusion creep is thought to be a major contribution to strain. Numerical models allow rigorous exploration of the effects of deformation under conditions not easily reached in experiments. A numerical model named 'DiffForm' (Wheeler & Ford 2007) gives insight into how grain shapes and microstructures evolve during diffusion creep. Modelling shows that whilst grains may initially rotate in apparently chaotic fashion during diffusion creep, such rotations slow down as grains become inequant. Consequently, an initial CPO (formed, for example, by dislocation creep at higher strain rates) will be decreased in intensity but not destroyed. Seismic anisotropy will decrease but not disappear (Wheeler 2009). Diffusion creep is also predicted to have intense mechanical anisotropy. In simple models diffusion creep is controlled entirely by diffusion and sliding along grain boundaries; there is no crystallographic influence. An aggregate of equant grains must then be mechanically isotropic, but a model microstructure with inequant grains has marked mechanical anisotropy (Wheeler 2010) - an effect related to the fact that grain boundary sliding is an intrinsic part of diffusion creep. That work was based on a very simple microstructure with a single inequant grain shape but I present here new results showing that for more complicated microstructures, mechanical anisotropy is intense even for quite modest grain elongations. There will be feedback between strain and

  13. Thiol-ene synthesis and characterization of lithium bis(malonato)borate single-ion conducting gel polymer electrolytes.

    Science.gov (United States)

    Weber, Ryan L; Mahanthappa, Mahesh K

    2017-10-25

    The development of high capacity anodes and high voltage cathodes for advanced lithium-ion batteries motivates the search for new polymer electrolytes that exhibit superior electrochemical stabilities and high ionic conductivities. We report a convenient, three-step synthesis of lithium bis(non-8-enyl-malonato)borate (LiBNMB) as a α,ω-diene monomer, which undergoes thermally initiated thiol-ene crosslinking polymerizations in propylene carbonate to yield gel polymer electrolytes with high lithium ion concentrations (∼0.9 M). By conducting these crosslinking polymerizations using mixtures of di- and tri-thiols and LiBNMB with [thiol] : [ene] = 1 : 1, we synthesized a series of gel networks with dynamic elastic moduli ranging from G' = 40-79 kPa that increase monotonically with trifunctional crosslinker content. While ionic conductivities for these polymer gels measured by electrochemical impedance spectroscopy at 22 °C are σ = 0.82-2.5 × 10 -6 S cm -1 , we show that the conductivity of propylene carbonate-solvated lithium ions though the bulk of these gel electrolytes is 8.5 × 10 -5 S cm -1 independent of crosslinker density. However, the conductivities of the gel interfaces depend sensitively on crosslinker content, suggesting the importance of segmental rearrangement dynamics at the electrode interface in limiting the rate of ion motion. Thus, the design of highly conductive polymer electrolytes for advanced batteries demands careful design of both the internal and interfacial properties of these new materials.

  14. Analysis of sub-bandgap losses in TiO2 coating deposited via single and dual ion beam deposition

    Czech Academy of Sciences Publication Activity Database

    Žídek, Karel; Hlubuček, Jiří; Horodyská, Petra; Budasz, Jiří; Václavík, Jan

    2017-01-01

    Roč. 626, March (2017), s. 60-65 ISSN 0040-6090 R&D Projects: GA MŠk(CZ) LO1206 Institutional support: RVO:61389021 Keywords : Ion beam deposition * Titanium dioxide * Optical coating * Sub-bandgap losses * Urbach tail Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.879, year: 2016 http://www.sciencedirect.com/science/article/pii/S0040609017301256

  15. Single crystal silicon carbide detector of emitted ions and soft x rays from power laser-generated plasmas

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Foti, G.; Giuffrida, L.; Puglisi, D.; Wolowski, J.; Badziak, J.; Parys, P.; Rosinski, M.; Margarone, D.; Krása, Josef; Velyhan, Andriy; Ullschmied, Jiří

    2009-01-01

    Roč. 105, č. 12 (2009), 123304/1-123304/7 ISSN 0021-8979 R&D Projects: GA AV ČR IAA100100715 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser-produced plasma * SiC detector * ion collector Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.072, year: 2009

  16. Interaction of Zn2+ Ions with Single-Stranded PolyU and PolyC in Neutral Solutions

    Czech Academy of Sciences Publication Activity Database

    Sorokin, V. A.; Usenko, E. L.; Valeev, V. A.; Berezniak, E. G.; Andrushchenko, Valery

    2015-01-01

    Roč. 119, č. 12 (2015), s. 4409-4416 ISSN 1520-6106 R&D Projects: GA ČR GAP208/11/0105; GA ČR GA15-09072S Institutional support: RVO:61388963 Keywords : metal ions * polyU * polyC * metallized DNA * differential UV spectroscopy * thermal denaturation * phase diagram Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.187, year: 2015

  17. Optical absorption, fluorescence and thermoluminescence of CaF2 single crystals doped with lanthanide rare earth ions

    International Nuclear Information System (INIS)

    Otani, Choyu

    1979-01-01

    Optical Absorption (OA) , Fluorescence (FL) and Thermoluminescence (TL) experiments were carried out in X-irradiated CaF 2 crystals doped with most of the Lanthanide Rare Earth (RE) ions, Yttrium, and with both RE ions Dysprosium and Terbium. All optical Absorption and Fluorescence measurements as well as optical bleaching and X-irradiation were performed at RT while the TL measurements were done i n the RT- 800K range. Every RE-doped specimen has been fully characterized by its OA and FL bands due to the RE ion-electronic transitions. Most of the RE ions which substitutes for a Ca 2+ ion in the CaF 2 lattice is in the trivial state, being reduced to the divalent state by X-irradiation. The TL results for X-irradiated CaF 2 :Tb , CaF 2 :Dy and CaF 2 :Ho specimens show that the mechanism proposed f o r the 4K-300K TL processing these crystals is also valid for the 300K - 800K temperature range. The photochromic (PC) effect in X-irradiated Tb-doped CaF 2 crystals upon thermal and optical bleaching has been detected. Optical experiments in CaF 2 :Tb,Dy show that the observed PC effect is due to photo switched reversibility of an electron between two states, the thermally stable original state and the ionized stat PC - e - -> PC + , Tb 3+ e - -. Tb 2+ . The regeneration of the OA bands is achieved thermally (-100 deg C) and optically (λ Vis >400nm) with further UV blenching. A detailed analysis of the OA spectra of CaF 2 :Tb crystals X=irradiated and thermally as well as optically bleached show that besides the photo switching, electron-hole recombination occurs leading to a decrease in the overall OA spectrum. The OA bands due to PC-, PC + and Tb 2+ - transitions have been identified by means of Optical Absorption Differential Analysis. Further studies of Photochromic color centers in CaF 2 :Tb crystals show that some of the OA bands detected i the 15Kcm -1 - 20Kcm -1 spectral region are due to hole centers. The TL emissions peaks resulting from the thermal

  18. Biased Brownian motion in narrow channels with asymmetry and anisotropy

    Science.gov (United States)

    To, Kiwing; Peng, Zheng

    2016-11-01

    We study Brownian motion of a single millimeter size bead confined in a quasi-two-dimensional horizontal channel with built-in anisotropy and asymmetry. Channel asymmetry is implemented by ratchet walls while anisotropy is introduced using a channel base that is grooved along the channel axis so that a bead can acquire a horizontal impulse perpendicular to the longitudinal direction when it collides with the base. When energy is injected to the channel by vertical vibration, the combination of asymmetric walls and anisotropic base induces an effective force which drives the bead into biased diffusive motion along the channel axis with diffusivity and drift velocity increase with vibration strength. The magnitude of this driving force, which can be measured in experiments of tilted channel, is found to be consistent to those obtained from dynamic mobility and position probability distribution measurements. These results are explained by a simple collision model that suggests the random kinetic energies transfer between different translational degrees of freedom may be turned into useful work in the presence of asymmetry and anisotropy.

  19. The elastic constants and anisotropy of superconducting MgCNi3 and CdCNi3 under different pressure

    KAUST Repository

    Feng, Huifang

    2013-11-23

    The second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of MgCNi3 and CdCNi3 are presented by using first-principles methods combined with homogeneous deformation theory. The Voigt-Reuss-Hill (VRH) approximation are used to calculate the bulk modulus B, shear modulus G, averaged Young\\'s modulus E and Poisson\\'s ratio ν for polycrystals and these effective modulus are consistent with the experiments. The SOECs under different pressure of MgCNi3 and CdCNi3 are also obtained based on the TOECs. Furthermore, the Zener anisotropy factor, Chung-Buessem anisotropy index, and the universal anisotropy index are used to describe the anisotropy of MgCNi3 and CdCNi3. The anisotropy of Young\\'s modulus of single-crystal under different pressure is also presented. © 2013 Springer Science+Business Media New York.

  20. Single-crystalline M-type Sr Hexaferrites studied by {sup 57}Fe Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, Nobumoto, E-mail: rk15v002@stkt.u-hyogo.ac.jp; Ikeda, Shugo [University of Hyogo, Graduate School of Material Science and Center for Novel Material Science under Multi-extreme Conditions (Japan); Shimoda, Aiko; Waki, Takeshi; Tabata, Yoshikazu; Nakamura, Hiroyuki [Kyoto University, Department of Material Science and Engineering (Japan); Kobayashi, Hisao [University of Hyogo, Graduate School of Material Science and Center for Novel Material Science under Multi-extreme Conditions (Japan)

    2016-12-15

    The {sup 57}Fe Mössbauer spectra of the single crystalline and the finely ground Sr{sub 1−x}La{sub x}Fe{sub 12−y}Co{sub y}O{sub 19} (x = 0 : y = 0, x = 0.192 : y = 0.152 and x = 0.456 : y = 0.225) samples have been measured to investigate the La-Co substitution effects. All observed spectra at 150 K were well fitted using the five subspectra which correspond to the five crystallographical nonequivalent Fe sites in the M-type hexaferrite, indicating that the valence changes to Fe{sup 2+} ions in the Fe{sup 3+} ions were not observed in our Sr{sub 1−x}La{sub x}Fe{sub 12−y}Co{sub y}O{sub 19} samples. In SrFe{sub 12}O{sub 19}, the relative absorption intensities in the five subspectra show the large anisotropies in the recoilless fractions at the five Fe sites whereas these anisotropies were not observed in Sr{sub 0.544}La{sub 0.456}Fe{sub 11.775}Co{sub 0.225}O{sub 19}. These results indicate the chemical compositional dependence on the anisotropies of the recoilless fractions at the five Fe sites. The substitution of a Co{sup 2+} ion for the Fe{sup 3+} ion changes the center shifts of the Fe{sup 3+} ions near the Co{sup 2+} ion by the perturbation of the Fe-O-Co hybridizations. Therefore, the Co{sup 2+} ions occupy the 4f{sub 1} and the 4f{sub 2} sites due to the chemical compositional dependences of the refined magnetic hyperfine field and center shifts of the Fe{sup 3+} ions.

  1. Anisotropic Oxygen Ion Diffusion in Layered PrBaCo 2 O 5+δ

    KAUST Repository

    Burriel, Mónica

    2012-02-14

    Oxygen diffusion and surface exchange coefficients have been measured on polycrystalline samples of the double perovskite oxide PrBaCo 2O 5+δ by the isotope exchange depth profile method, using a time-of-flight SIMS instrument. The measured diffusion coefficients show an activation energy of 1.02 eV, as compared to 0.89 eV for the surface exchange coefficients in the temperature range from 300 to 670 °C. Inhomogeneity was observed in the distribution of the oxygen-18 isotopic fraction from grain to grain in the ceramic samples, which was attributed to anisotropy in the diffusion and exchange of oxygen. By the use of a novel combination of electron back scattered diffraction measurements, time-of-flight, and focused ion beam SIMS, this anisotropy was confirmed by in-depth analysis of single grains of known orientation in a ceramic sample exchanged at 300 °C. Diffusion was shown to be faster in a grain oriented with the surface normal close to 100 and 010 (ab-plane oriented) than a grain with a surface normal close to 001 (c-axis oriented). The magnitude of this anisotropy is estimated to be close to a factor of 4, but this is only a lower bound due to experimental limitations. These findings are consistent with recent molecular dynamic simulations of this material where anisotropy in the oxygen transport was predicted. © 2012 American Chemical Society.

  2. Single and competitive adsorption of Cd(II and Pb(II ions from aqueous solutions onto industrial chili seeds (Capsicum annuum waste

    Directory of Open Access Journals (Sweden)

    Nahum A. Medellin-Castillo

    2017-03-01

    Full Text Available In this work, the single and binary adsorption of Cd(II and Pb(II onto industrial chili seeds (CS (Capsicum annuum from aqueous solutions was investigated as a possible low-cost biosorbent for the removal of toxic heavy metals from aqueous solutions. The dependence of the adsorption capacity of CS on the solution pH and temperature, and the presence of competitive metal were also studied in detail. The adsorption equilibrium experiments of Cd(II and Pb(II on CS were conducted in a batch adsorber. The Freundlich and Langmuir isotherm models were fitted to the single adsorption equilibrium data and the latter provided a better fit. Moreover, it was found that the adsorption capacity of CS towards Cd(II and Pb(II ions was greatly increased by increasing the solution pH. The effect of the pH was attributed to the electrostatic interaction between the negatively charged CS surface and the Cd2+ and Pb2+ cations in the aqueous solution. The adsorption capacity was slightly increased by raising the temperature because the adsorption of Cd(II or Pb(II ions on CS was an endothermic process. The experimental binary adsorption data were satisfactorily interpreted using the modified Langmuir multicomponent isotherm and the competitive adsorption of Cd(II-Pb(II on CS revealed that the affinity of Pb(II for CS was more than 5 times higher than that of Cd(II.

  3. Ion-beam modification of 2-D materials - single implant atom analysis via annular dark-field electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bangert, U., E-mail: Ursel.Bangert@ul.ie [Department of Physics, School of Sciences & Bernal Institute, University of Limerick, Limerick (Ireland); Stewart, A.; O’Connell, E.; Courtney, E. [Department of Physics, School of Sciences & Bernal Institute, University of Limerick, Limerick (Ireland); Ramasse, Q.; Kepaptsoglou, D. [SuperSTEM Laboratory, STFC Daresbury Campus, Daresbury WA4 4AD (United Kingdom); Hofsäss, H.; Amani, J. [II. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-PLatz 1, 37077 Göttingen (Germany); Tu, J.-S.; Kardynal, B. [Peter Grünberg Institut 9, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2017-05-15

    Functionalisation of two-dimensional (2-D) materials via low energy ion implantation could open possibilities for fabrication of devices based on such materials. Nanoscale patterning and/or electronically doping can thus be achieved, compatible with large scale integrated semiconductor technologies. Using atomic resolution High Angle Annular Dark Field (HAADF) scanning transmission electron microscopy supported by image simulation, we show that sites and chemical nature of individual implants/ dopants in graphene, as well as impurities in hBN, can uniquely and directly be identified on grounds of their position and their image intensity in accordance with predictions from Z-contrast theories. Dopants in graphene (e.g., N) are predominantly substitutional. In other 2-Ds, e.g. dichalcogenides, the situation is more complicated since implants can be embedded in different layers and substitute for different elements. Possible configurations of Se-implants in MoS{sub 2} are discussed and image contrast calculations performed. Implants substituting for S in the top or bottom layer can undoubtedly be identified. We show, for the first time, using HAADF contrast measurement that successful Se-integration into MoS{sub 2} can be achieved via ion implantation, and we demonstrate the possibility of HAADF image contrast measurements for identifying impurities and dopants introduced into in 2-Ds. - Highlights: • Ion implantation of 2-dimensional materials. • Targeted and controlled functionalisation of graphene and 2-D dichalcocenides. • Atomic resolution High Angle Dark Field scanning transmission electron microscopy. • Determination of atomic site and elemental nature of dopants in 2-D materials. • Quantitative information from Z-contrast images.

  4. Solvent induced supramolecular anisotropy in molecular gels

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Michael A., E-mail: mroger09@uoguelph.ca [Department of Food Science, University of Guelph, Guelph, Ontario, N3C3X9 (Canada); Corradini, Maria G. [Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003 (United States); Emge, Thomas [Department of Chemistry and Biochemistry, Rutgers University, New Brunswick, NJ, 08901 (United States)

    2017-06-15

    Herein is the first report of solvent induced anisotropy in 12-hydroxystearic acid self-assembled fibrillar networks. Increasing the chain length of polar solvent, such as nitriles and ketones, tailored the anisotropy of the fibrillar aggregates. 12HSA molecular gels, comprised of alkanes, exhibited an isotropic fibrillar network irrespective of the alkane chain length. In polar solvents, anisotropy, observed using 2D powder x-ray diffraction profiles, is correlated to a fibrillar supramolecular morphologies in long chain nitriles and ketones while sphereulitic crystals are correlated to x-ray diffraction patterns with an isotropic scatter intensity in short chain ketones and nitriles. These changes directly modify the final physical properties of the gels. - Highlights: • 12-HSA self-assembles into crystalline supramolecular morphologies depending on the solvent. • Alkanes, short chain nitriles and ketones led to 12-HSA displaying supramolecular isotropy. • In long chain nitriles and ketones, 12-HSA displays supramolecular anisotropy.

  5. Solvent induced supramolecular anisotropy in molecular gels

    International Nuclear Information System (INIS)

    Rogers, Michael A.; Corradini, Maria G.; Emge, Thomas

    2017-01-01

    Herein is the first report of solvent induced anisotropy in 12-hydroxystearic acid self-assembled fibrillar networks. Increasing the chain length of polar solvent, such as nitriles and ketones, tailored the anisotropy of the fibrillar aggregates. 12HSA molecular gels, comprised of alkanes, exhibited an isotropic fibrillar network irrespective of the alkane chain length. In polar solvents, anisotropy, observed using 2D powder x-ray diffraction profiles, is correlated to a fibrillar supramolecular morphologies in long chain nitriles and ketones while sphereulitic crystals are correlated to x-ray diffraction patterns with an isotropic scatter intensity in short chain ketones and nitriles. These changes directly modify the final physical properties of the gels. - Highlights: • 12-HSA self-assembles into crystalline supramolecular morphologies depending on the solvent. • Alkanes, short chain nitriles and ketones led to 12-HSA displaying supramolecular isotropy. • In long chain nitriles and ketones, 12-HSA displays supramolecular anisotropy.

  6. Simple, Single Step Potential Measurement for the Determination of the Ultimate Detection Limit of Ion Selective Electrodes

    Czech Academy of Sciences Publication Activity Database

    Bereczki, R.; Takács, B.; Gyurcsányi, R. E.; Tóth, K.; Nagy, G.; Langmaier, Jan; Lindner, E.

    2006-01-01

    Roč. 18, 13-14 (2006), s. 1245-1253 ISSN 1040-0397 Grant - others:National Science Foundation Grants(XE) 0202207; National Science Foundation Grants(XE) 0335228; Hungarian Scientific Foundation(HU) F037977; Hungarian Scientific Foundation(HU) M041969; Hungarian Scientific Foundation(HU) T46403; Hungarian Scientific Foundation(HU) OM/PAL-112/2003; Hungarian Scientific Foundation(HU) OTKA-NSF 46146 Institutional research plan: CEZ:AV0Z40400503 Keywords : carrier based ion-selective electrodes * potential difference measurement * response range * detection limit Subject RIV: CG - Electrochemistry Impact factor: 2.444, year: 2006

  7. Full characterization of laser-accelerated ion beams using Faraday cup, silicon carbide, and single-crystal diamond detectors

    Czech Academy of Sciences Publication Activity Database

    Margarone, Daniele; Krása, Josef; Giuffrida, L.; Picciotto, A.; Torrisi, L.; Nowak, T.; Musumeci, P.; Velyhan, Andriy; Prokůpek, Jan; Láska, Leoš; Mocek, Tomáš; Ullschmied, Jiří; Rus, Bedřich

    2011-01-01

    Roč. 109, č. 10 (2011), "103302-1"-"103302-8" ISSN 0021-8979 R&D Projects: GA ČR(CZ) GAP205/11/1165; GA MŠk(CZ) 7E09092 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : aluminium * chemical sensors * diamond * electrostatics * iodine * ion beams * thin films * lasers * time of flight spectrometers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.168, year: 2011 http://jap.aip.org/ resource /1/japiau/v109/i10/p103302_s1

  8. Single-Fraction Carbon-Ion Radiation Therapy for Patients 80 Years of Age and Older With Stage I Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Karube, Masataka, E-mail: mstk117@gmail.com [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Department of Radiology, The University of Tokyo Hospital, Tokyo (Japan); Yamamoto, Naoyoshi; Nakajima, Mio [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Yamashita, Hideomi; Nakagawa, Keiichi [Department of Radiology, The University of Tokyo Hospital, Tokyo (Japan); Miyamoto, Tadaaki; Tsuji, Hiroshi [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Fujisawa, Takehiko [Chiba Foundation for Health Promotion and Disease Prevention, Chiba (Japan); Kamada, Tadashi [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

    2016-05-01

    Purpose: In an aging society, many senior citizens want less invasive treatment because of potential medical complications. The National Institute of Radiological Sciences has started to treat stage I lung cancer with single-fraction carbon-ion radiation therapy (CIRT) as a dose escalation prospective phase 1/2 trial. We evaluated the efficacy and safety of CIRT for patients 80 years of age and older, undergoing single-fraction CIRT. Methods and Materials: Peripheral non-small cell lung cancer patients who were treated with single-fraction CIRT were prospectively followed. We analyzed the data from among these patients 80 years of age and older. Results: There were 70 patients. Median age was 83 years (range: 80-89) and median follow-up period was 42.7 months (range: 12-128 months). Three-year local control, cause-specific survival, and overall survival rates were 88.0%, 81.6%, and 72.4%, respectively. Five-year local control, cause-specific survival, and overall survival rates were 85.8%, 64.9%, and 39.7%, respectively. There were no adverse effects higher than grade 2 either in the acute or late phase in terms of skin and lung. Analgesic agents were necessary for only 5 patients (7.1%), to relieve muscular or rib fracture pain caused by irradiation. Conclusions: Single-fraction CIRT was low-risk and effective, even for the elderly.

  9. Giant plasmon excitation in single and double ionization of C{sub 60} by fast highly charged Si and O ions

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, A H; Kadhane, U; Misra, D; Tribedi, L C [Tata Institute of Fundamental Research, Colaba, Mumbai-5 (India)

    2007-09-15

    Se have investigated single and double ionization of C{sub 60} molecule in collisions with 2.33 MeV/u Si{sup q+} (q=6-14) and 3.125 MeV/u O{sup q+} (q=5-8) projectiles. The projectile charge state dependence of the single and double ionization yields of C{sub 60} are then compared to those for an ion-atom collision system using Ne gas as a target. A large difference between the gas and the cluster target behaviour was partially explained in terms of a model based on collective excitation namely the giant dipole plasmon resonance (GDPR). The qualitative agreement between the data and GDPR model prediction for single and double ionization signifies the importance of single and double plasmon excitations in the ionization process. A large deviation of the GDPR model for triple and quadruple ionization from the experimental data imply the importance of the other low impact parameter processes such as evaporation, fragmentation and a possible solid-like dynamical screening.

  10. Higher-order anisotropies in the Buda-Lund model: Disentangling flow and density field anisotropies

    Energy Technology Data Exchange (ETDEWEB)

    Loekoes, Sandor [Eoetvoes Lorand University, Budapest (Hungary); Csanad, Mate [Eoetvoes Lorand University, Budapest (Hungary); Stony Brook University, Stony Brook, NY (United States); Tomasik, Boris [Univerzita Mateja Bela, Banska Bystrica (Slovakia); Czech Technical University in Prague, FNSPE, Prague (Czech Republic); Csoergo, Tamas [Wigner RCP, Budapest (Hungary); KRF, Gyoengyoes (Hungary)

    2016-10-15

    The Buda-Lund hydro model describes an expanding ellipsoidal fireball, and fits the observed elliptic flow and oscillating HBT radii successfully. Due to fluctuations in energy depositions, the fireball shape however fluctuates on an event-by-event basis. The transverse plane asymmetry can be translated into a series of multipole anisotropy coefficients. These anisotropies then result in measurable momentum-space anisotropies, to be measured with respect to their respective symmetry planes. In this paper we detail an extension of the Buda-Lund model to multipole anisotropies and investigate the resulting flow coefficients and oscillations of HBT radii. (orig.)

  11. Resonant pickups for non-destructive single-particle detection in heavy-ion storage rings and first experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Sanjari, Mohammad Shahab

    2013-04-26

    Nuclear astrophysics studies on highly charged radionuclides benefit from accelerator facilities with storage rings, where exotic nuclides produced with small yields can be efficiently investigated. Currently there are two accelerator facilities capable of storing highly charged heavy ions, GSI in Darmstadt and IMP in Lanzhou. Non-destructive detection methods are often used for in-flight measurements based on frequency analysis. The sensitivity of such detection systems are of primary importance specially when number of stored ions is small. Furthermore, since the exotic nuclides of interest are as a rule short-lived, the detectors must be fast. One common form of such detectors are parallel plate SCHOTTKY monitors, on which particles induce a mirror charge at each passage. This method has been successfully used at ESR experimental storage ring of GSI since 1991. In this work we describe a new resonant SCHOTTKY pickup operating as a high sensitive cavity current monitor which was mounted and commissioned in the ESR early 2010. It was successfully used in several storage ring experiments. A very similar pickup was mounted in CSRe at IMP Lanzhou in 2011. First in-ring tests have been performed and new experimental results are pending. The spectral analysis of acquired signals by the new detector has enabled a broad range of new physics experiments. The theory of operation and first experimental results and future perspectives are presented in this thesis.

  12. 3D analyses of cavitation instabilities accounting for plastic anisotropy

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Tvergaard, Viggo

    2010-01-01

    Full three dimensional cell model analyses are carried out for a solid containing a single small void, in order to determine the critical stress levels for the occurrence of cavitation instabilities. The material models applied are elastic‐viscoplastic, with a small rate‐hardening exponent...... that the quasi‐static solution is well approximated. A special procedure is used to strongly reduce the loading rate a little before the instability occurs. It is found that plastic anisotropy has a significant effect on the level of the critical stress for cavitation instabilities....

  13. Elastic anisotropy in multifilament Nb$_3$Sn superconducting wires

    CERN Document Server

    Scheuerlein, C; Alknes, P; Arnau, G; Bjoerstad, R; Bordini, B

    2015-01-01

    The elastic anisotropy caused by the texture in the Nb3Sn filaments of PIT and RRP wires has been calculated by averaging the estimates of Voigt and Reuss, using published Nb3Sn single crystal elastic constants and the Nb3Sn grain orientation distribution determined in both wire types by Electron Backscatter Diffraction. At ambient temperature the calculated Nb3Sn E-moduli in axial direction in the PIT and the RRP wire are 130 GPa and 140 GPa, respectively. The calculated E-moduli are compared with tensile test results obtained for the corresponding wires and extracted filament bundles.

  14. The binding of in vitro synthesized adenovirus DNA binding protein to single-stranded DNA is stimulated by zinc ions

    NARCIS (Netherlands)

    Vos, H.L.; Lee, F.M. van der; Sussenbach, J.S.

    1988-01-01

    We have synthesized wild type DNA binding protein (DBP) of adenovirus type 5 (Ad5) and several truncated forms of this protein by a combination of in vitro transcription and translation. The proteins obtained were tested for binding to a single-stranded DNA-cellulose column. It could be shown that

  15. The role of Pb.sup.2+./sup. ions in the luminescence of LuAG:Ce single crystalline films

    Czech Academy of Sciences Publication Activity Database

    Babin, V.; Gorbenko, V.; Makhov, A.; Nikl, Martin; Zazubovich, S.; Zorenko, Y.

    2007-01-01

    Roč. 4, č. 3 (2007), s. 797-800 ISSN 1862-6351 R&D Projects: GA ČR GA202/05/2471 Grant - others:INTAS(XE) 04-78-7083 Institutional research plan: CEZ:AV0Z10100521 Keywords : single crystalline films * luminiscence * decay kinetics Subject RIV: BM - Solid Matter Physics ; Magnetism

  16. High-frequency magnetoimpedance in multilayer thin films with longitudinal and transverse anisotropy

    International Nuclear Information System (INIS)

    Cos, D. de; Lepalovskij, V.N.; Kurlyandskaya, G.V.; Garcia-Arribas, A.; Barandiaran, J.M.

    2008-01-01

    Giant magnetoimpedance (GMI) effect in NiFe (150 nm)/Cu (500 nm)/NiFe (150 nm) multilayers with longitudinal and transverse induced magnetic anisotropy was studied at frequencies of 300 kHz-3 GHz. Several sensitive elements were built in a single 'chip' configuration. At low and intermediate frequencies the GMI displays a single peak at zero-field for samples with longitudinal and two peaks for the samples with transverse anisotropy. Above 500 MHz the observed behaviour in both cases can be explained by the apparition of the ferromagnetic resonance (FMR). Regarding the performance of the sample, the maximum GMI sensitivity values achieved in case of longitunal anisotropy are 6%/Oe from the single peak to the saturation field at 500 MHz (quasistatic regime), and 12%/Oe from the FMR peaks to zero-field at 1.12 GHz (dynamic regime). Sensitivity values achieved in case of transverse anisotropy are 31%/Oe from the single peak to the saturation field at 70 MHz and 17%/Oe from the FMR peaks to zero-field at 0.8 GHz. Small variations of GMI ratio and field sensitivity for different sensitive elements built in a single 'chip' confirm the possibility to use this design for multi-analyte detector construction

  17. Magnetization and anisotropy of cobalt ferrite thin films

    Science.gov (United States)

    Eskandari, F.; Porter, S. B.; Venkatesan, M.; Kameli, P.; Rode, K.; Coey, J. M. D.

    2017-12-01

    The magnetization of thin films of cobalt ferrite frequently falls far below the bulk value of 455 kA m-1 , which corresponds to an inverse cation distribution in the spinel structure with a significant orbital moment of about 0.6 μB that is associated with the octahedrally coordinated Co2+ ions. The orbital moment is responsible for the magnetostriction and magnetocrystalline anisotropy and its sensitivity to imposed strain. We have systematically investigated the structure and magnetism of films produced by pulsed-laser deposition on different substrates (Ti O2 , MgO, MgA l2O4 , SrTi O3 , LSAT, LaAl O3 ) and as a function of temperature (500 -700 °C) and oxygen pressure (10-4-10 Pa ) . Magnetization at room-temperature ranges from 60 to 440 kA m-1 , and uniaxial substrate-induced anisotropy ranges from +220 kJ m-3 for films on deposited on MgO (100) to -2100 kJ m-3 for films deposited on MgA l2O4 (100), where the room-temperature anisotropy field reaches 14 T. No rearrangement of high-spin Fe3+ and Co2+ cations on tetrahedral and octahedral sites can reduce the magnetization below the bulk value, but a switch from Fe3+ and Co2+ to Fe2+ and low-spin Co3+ on octahedral sites will reduce the low-temperature magnetization to 120 kA m-1 , and a consequent reduction of Curie temperature can bring the room-temperature value to near zero. Possible reasons for the appearance of low-spin cobalt in the thin films are discussed.

  18. Effects of single- and multi-substituted Zn ions in doped 122-type iron-based superconductors

    Science.gov (United States)

    Zhao, YuanYuan; Li, Bo; Li, Wei; Chen, Hong-Yi; Bassler, Kevin E.; Ting, C. S.

    2016-04-01

    Recent experiments on Zn-substituted 122-type iron-based superconductors (FeSCs) at electron- and hole-doped regions provide us with a testing ground for understanding the effect of Zn impurities in these systems. Our first-principles calculations of the electronic structure reveal that the Zn 3 d orbitals are far below the Fermi level and are chemically inactive, while the Zn 4 s orbital is partially occupied and its wave function overlaps with the 3 d orbitals of neighboring Fe ions. This suggests that the impurity effect originates in the Zn 4 s orbital, not its 3 d orbitals. Employing a phenomenological two-orbital lattice model for 122-FeSCs and the self-consistent Bogoliubov-de Gennes equations, we study how the Zn impurities suppress the superconductivity in electron- and hole-doped compounds. Our obtained results qualitatively agree with the experimental measurements.

  19. Crystal-field tuning of photoluminescence in two-dimensional materials with embedded lanthanide ions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ding; Chen, Weiyin; Zeng, Mengqi; Xue, Haifeng; Chen, Yunxu; Xiao, Yao; Zhang, Tao; Fu, Lei [College of Chemistry and Molecular Sciences, Institute for Advanced Studies, Wuhan University, Wuhan (China); Sang, Xiahan; Unocic, Raymond R.; Xiao, Kai [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2018-01-15

    Lanthanide (Ln) group elements have been attracting considerable attention owing to the distinct optical properties. The crystal-field surroundings of Ln ions in the host materials can determine their energy level splitting, which is of vital importance to tailor their optical properties. 2D MoS{sub 2} single crystals were utilized as the host material to embed Eu{sup 3+} and energy-level splitting was achieved for tuning its photoluminescence (PL). The high anisotropy of the 2D host materials makes them distort the degenerate orbitals of the Ln ions more efficiently than the symmetrical bulk host materials. A significant red-shift of the PL peak for Eu{sup 3+} was observed. The strategy for tailoring the energy level splitting of Ln ions by the highly designable 2D material crystal field provides a new method to extend their optical properties. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Structural and Electronic Properties of Transition-Metal Oxides Attached to a Single-Walled CNT as a Lithium-Ion Battery Electrode: A First-Principles Study.

    Science.gov (United States)

    Tack, Liew Weng; Azam, Mohd Asyadi; Seman, Raja Noor Amalina Raja

    2017-04-06

    Single-walled carbon nanotubes (SWCNTs) and metal oxides (MOs), such as manganese(IV) oxide (MnO 2 ), cobalt(II, III) oxide (Co 3 O 4 ), and nickel(II) oxide (NiO) hybrid structures, have received great attention because of their promising application in lithium-ion batteries (LIBs). As electrode materials for LIBs, the structure of SWCNT/MOs provides high power density, good electrical conductivity, and excellent cyclic stability. In this work, first-principles calculations were used to investigate the structural and electronic properties of MOs attached to (5, 5) SWCNT and Li-ion adsorption to SWCNT/metal oxide composites as electrode materials in LIBs. Emphasis was placed on the synergistic effects of the composite on the electrochemical performance of LIBs in terms of adsorption capabilities and charge transfer of Li-ions attached to (5, 5) SWCNT and metal oxides. Also, Li adsorption energy on SWCNTs and three different metal oxides (NiO, MnO 2 , and Co 3 O 4 ) and the accompanying changes in the electronic properties, such as band structure, density of states and charge distribution as a function of Li adsorption were calculated. On the basis of the calculation results, the top C atom was found to be the most stable position for the NiO and MnO 2 attachment to SWCNT, while the Co 3 O 4 molecule, the Co 2+ , was found to be the most stable attachment on SWCNT. The obtained results show that the addition of MOs to the SWCNT electrode enables an increase in specific surface area and improves the electronic conductivity and charge transfer of an LIB.