WorldWideScience

Sample records for single delay model

  1. Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections

    Science.gov (United States)

    Wang, Ningbo; Yuan, Yunbin; Li, Zishen; Huo, Xingliang

    2016-04-01

    Broadcast ionospheric model is currently an effective approach to mitigate the ionospheric time delay for real-time Global Navigation Satellite System (GNSS) single-frequency users. Klobuchar coefficients transmitted in Global Positioning System (GPS) navigation message have been widely used in various GNSS positioning and navigation applications; however, this model can only reduce the ionospheric error by approximately 50% in mid-latitudes. With the emerging BeiDou and Galileo, as well as the modernization of GPS and GLONASS, more precise ionospheric correction models or algorithms are required by GNSS single-frequency users. Numerical analysis of the initial phase and nighttime term in Klobuchar algorithm demonstrates that more parameters should be introduced to better describe the variation of nighttime ionospheric total electron content (TEC). In view of this, several schemes are proposed for the improvement of Klobuchar algorithm. Performance of these improved Klobuchar-like models are validated over the continental and oceanic regions during high (2002) and low (2006) levels of solar activities, respectively. Over the continental region, GPS TEC generated from 35 International GNSS Service (IGS) and the Crust Movement Observation Network of China (CMONOC) stations are used as references. Over the oceanic region, TEC data from TOPEX/Poseidon and JASON-1 altimeters are used for comparison. A ten-parameter Klobuchar-like model, which describes the nighttime term as a linear function of geomagnetic latitude, is finally proposed for GNSS single-frequency ionospheric corrections. Compared to GPS TEC, while GPS broadcast model can correct for 55.0% and 49.5% of the ionospheric delay for the year 2002 and 2006, respectively, the proposed ten-parameter Klobuchar-like model can reduce the ionospheric error by 68.4% and 64.7% for the same period. Compared to TOPEX/Poseidon and JASON-1 TEC, the improved ten-parameter Klobuchar-like model can mitigate the ionospheric

  2. Single generation cycles and delayed feedback cycles are not separate phenomena.

    Science.gov (United States)

    Pfaff, T; Brechtel, A; Drossel, B; Guill, C

    2014-12-01

    We study a simple model for generation cycles, which are oscillations with a period of one or a few generation times of the species. The model is formulated in terms of a single delay-differential equation for the population density of an adult stage, with recruitment to the adult stage depending on the intensity of competition during the juvenile phase. This model is a simplified version of a group of models proposed by Gurney and Nisbet, who were the first to distinguish between single-generation cycles and delayed-feedback cycles. According to these authors, the two oscillation types are caused by different mechanisms and have periods in different intervals, which are one to two generation times for single-generation cycles and two to four generation times for delayed-feedback cycles. By abolishing the strict coupling between the maturation time and the time delay between competition and its effect on the population dynamics, we find that single-generation cycles and delayed-feedback cycles occur in the same model version, with a gradual transition between the two as the model parameters are varied over a sufficiently large range. Furthermore, cycle periods are not bounded to lie within single octaves. This implies that a clear distinction between different types of generation cycles is not possible. Cycles of all periods and even chaos can be generated by varying the parameters that determine the time during which individuals from different cohorts compete with each other. This suggests that life-cycle features in the juvenile stage and during the transition to the adult stage are important determinants of the dynamics of density limited populations. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Stability and Hopf Bifurcation of Fractional-Order Complex-Valued Single Neuron Model with Time Delay

    Science.gov (United States)

    Wang, Zhen; Wang, Xiaohong; Li, Yuxia; Huang, Xia

    2017-12-01

    In this paper, the problems of stability and Hopf bifurcation in a class of fractional-order complex-valued single neuron model with time delay are addressed. With the help of the stability theory of fractional-order differential equations and Laplace transforms, several new sufficient conditions, which ensure the stability of the system are derived. Taking the time delay as the bifurcation parameter, Hopf bifurcation is investigated and the critical value of the time delay for the occurrence of Hopf bifurcation is determined. Finally, two representative numerical examples are given to show the effectiveness of the theoretical results.

  4. Delay-induced wave instabilities in single-species reaction-diffusion systems

    Science.gov (United States)

    Otto, Andereas; Wang, Jian; Radons, Günter

    2017-11-01

    The Turing (wave) instability is only possible in reaction-diffusion systems with more than one (two) components. Motivated by the fact that a time delay increases the dimension of a system, we investigate the presence of diffusion-driven instabilities in single-species reaction-diffusion systems with delay. The stability of arbitrary one-component systems with a single discrete delay, with distributed delay, or with a variable delay is systematically analyzed. We show that a wave instability can appear from an equilibrium of single-species reaction-diffusion systems with fluctuating or distributed delay, which is not possible in similar systems with constant discrete delay or without delay. More precisely, we show by basic analytic arguments and by numerical simulations that fast asymmetric delay fluctuations or asymmetrically distributed delays can lead to wave instabilities in these systems. Examples, for the resulting traveling waves are shown for a Fisher-KPP equation with distributed delay in the reaction term. In addition, we have studied diffusion-induced instabilities from homogeneous periodic orbits in the same systems with variable delay, where the homogeneous periodic orbits are attracting resonant periodic solutions of the system without diffusion, i.e., periodic orbits of the Hutchinson equation with time-varying delay. If diffusion is introduced, standing waves can emerge whose temporal period is equal to the period of the variable delay.

  5. Time delay between singly and doubly ionizing wavepackets in laser-driven helium

    International Nuclear Information System (INIS)

    Parker, J S; Doherty, B J S; Meharg, K J; Taylor, K T

    2003-01-01

    We present calculations of the time delay between single and double ionization of helium, obtained from full-dimensionality numerical integrations of the helium-laser Schroedinger equation. The notion of a quantum mechanical time delay is defined in terms of the interval between correlated bursts of single and double ionization. Calculations are performed at 390 and 780 nm in laser intensities that range from 2 x 10 14 to 14 x 10 14 Wcm -2 . We find results consistent with the rescattering model of double ionization but supporting its classical interpretation only at 780 nm. (letter to the editor)

  6. Goodwin accelerator model revisited with fixed time delays

    Science.gov (United States)

    Matsumoto, Akio; Merlone, Ugo; Szidarovszky, Ferenc

    2018-05-01

    Dynamics of Goodwin's accelerator business cycle model is reconsidered. The model is characterized by a nonlinear accelerator and an investment time delay. The role of the nonlinearity for the birth of persistent oscillations is fully discussed in the existing literature. On the other hand, not much of the role of the delay has yet been revealed. The purpose of this paper is to show that the delay really matters. In the original framework of Goodwin [6], it is first demonstrated that there is a threshold value of the delay: limit cycles arise for smaller values than the threshold and so do sawtooth oscillations for larger values. In the extended framework in which a consumption or saving delay, in addition to the investment delay, is introduced, three main results are demonstrated under assumption of the identical length of investment and consumption delays. The dynamics with consumption delay is basically the same as that of the single delay model. Second, in the case of saving delay, the steady state can coexist with the stable and unstable limit cycles in the stable case. Third, in the unstable case, there is an interval of delay in which the limit cycle or the sawtooth oscillation emerges depending on the choice of the constant initial function.

  7. Photonic single nonlinear-delay dynamical node for information processing

    Science.gov (United States)

    Ortín, Silvia; San-Martín, Daniel; Pesquera, Luis; Gutiérrez, José Manuel

    2012-06-01

    An electro-optical system with a delay loop based on semiconductor lasers is investigated for information processing by performing numerical simulations. This system can replace a complex network of many nonlinear elements for the implementation of Reservoir Computing. We show that a single nonlinear-delay dynamical system has the basic properties to perform as reservoir: short-term memory and separation property. The computing performance of this system is evaluated for two prediction tasks: Lorenz chaotic time series and nonlinear auto-regressive moving average (NARMA) model. We sweep the parameters of the system to find the best performance. The results achieved for the Lorenz and the NARMA-10 tasks are comparable to those obtained by other machine learning methods.

  8. Application of TaiWan Ionosphere Model to Single-Frequency Ionospheric Delay Correction for GPS Static Position Positioning

    Science.gov (United States)

    Macalalad, E. P.; Tsai, L.; Wu, J.

    2011-12-01

    Ionospheric delay is one of the major sources of error in GPS positioning and navigation. This error in both pseudorange and phase ranges can vary depending on the location of observation, local time, season, solar cycle and geomagnetic activity. This effect can be practically removed using dual-frequency receivers. However, these types of receivers are very expensive and thus, impractical for most users. Therefore, for single-frequency receivers, ionosphere is usually modeled to attempt to remove this effect analytically. Numerous ionosphere models have been introduced in the past. Some of which are the Klobuchar (or broadcast) model and the global ionosphere map (GIM) provided by the International GNSS Service (IGS). In this paper, another model, called the TaiWan Ionosphere Model (TWIM) was used to correct this effect. TWIM is a three dimensional ionospheric electron (ne) density model derived from FormoSat3/COSMIC GPS Radio Occultation measurements, was used to calculate ionospheric delay for GPS single-frequency positioning. The ne profiles were used to calculate the slant TEC (STEC) between a receiver and each GPS satellite and correct the pseudorange single-frequency observations. The corrected pseudorange for every epoch was used to calculate the position of the receiver. Observations were made in a low-latitude location near one of the peaks of the equatorial anomaly. It was shown that TEC maps generated using TWIM exhibited detailed structure of the ionosphere, whereas Klobuchar and GIM only provided the basic diurnal and geographic features of the ionosphere. Also, it was shown that for static point positioning TWIM provides more accurate and more precise positioning than the Klobuchar and GIM models. That is, on the average, the horizontal accuracy, represented by the circular error probable (CEP), distance RMS (DRMS) and twice the DRMS (2DRMS), were better by 15-18% as compared with the CEP, DRMS and 2DRMS of uncorrected, Klobuchar and GIM. Moreover

  9. Single-subject withdrawal designs in delayed matching-to-sample procedures

    OpenAIRE

    Eilifsen, Christoffer; Arntzen, Erik

    2011-01-01

    In most studies of delayed matching-to-sample (DMTS) and stimulus equivalence, the delay has remained fixed throughout a single experimental condition. We wanted to expand on the DMTS and stimulus equivalence literature by examining the effects of using titrating delays with different starting points during the establishment of conditional discriminations prerequisite for stimulus equivalence. In Experiment 1, a variation of a single-subject withdrawal design was used. Ten adults were exposed...

  10. Delayed Single Stage Perineal Posterior Urethroplasty.

    Science.gov (United States)

    Ali, Shahzad; Shahnawaz; Shahzad, Iqbal; Baloch, Muhammad Umar

    2015-06-01

    To determine the delayed single stage perineal posterior urethroplasty for treatment of posterior urethral stricture/distraction defect. Descriptive case series. Department of Urology, Jinnah Postgraduate Medical Centre, Karachi, from January 2009 to December 2011. Patients were selected for delayed single stage perineal posterior urethroplasty for treatment of posterior urethral stricture / distraction defect. All were initially suprapubically catheterized followed by definitive surgery after at least 3 months. Thirty male patients were analyzed with a mean follow-up of 10 months, 2 patients were excluded as they developed failure in first 3 months postoperatively. Mean patient's age was 26.25 ± 7.9 years. On follow-up, 7 patients (23.3%) experienced recurrent stricture during first 10 months. Five (16.6%) patients were treated successfully with single direct visual internal urethrotomy. Two patients (6.6%) had more than one direct visual internal urethrotomy and considered failed. Re-do perineal urethroplasty was eventually performed. The overall success rate was 93.3% with permissive criteria allowing single direct visual internal urethrotomy and 76.6% with strict criteria allowing no more procedures postoperatively. Posterior anastomotic urethroplasty offers excellent long-term results to patients with posterior urethral trauma and distraction defect even after multiple prior procedures.

  11. Delayed Single Stage Perineal Posterior Urethroplasty

    International Nuclear Information System (INIS)

    Ali, S.; Shahnawaz; Shahzad, I.; Baloch, M. U.

    2015-01-01

    Objective: To determine the delayed single stage perineal posterior urethroplasty for treatment of posterior urethral stricture/distraction defect. Study Design: Descriptive case series. Place and Duration of Study: Department of Urology, Jinnah Postgraduate Medical Centre, Karachi, from January 2009 to December 2011. Methodology: Patients were selected for delayed single stage perineal posterior urethroplasty for treatment of posterior urethral stricture / distraction defect. All were initially suprapubically catheterized followed by definitive surgery after at least 3 months. Results: Thirty male patients were analyzed with a mean follow-up of 10 months, 2 patients were excluded as they developed failure in first 3 months postoperatively. Mean patients age was 26.25 ± 7.9 years. On follow-up, 7 patients (23.3 percentage) experienced recurrent stricture during first 10 months. Five (16.6 percentage) patients were treated successfully with single direct visual internal urethrotomy. Two patients (6.6 percentage) had more than one direct visual internal urethrotomy and considered failed. Re-do perineal urethroplasty was eventually performed. The overall success rate was 93.3 percentage with permissive criteria allowing single direct visual internal urethrotomy and 76.6% with strict criteria allowing no more procedures postoperatively. Conclusion: Posterior anastomotic urethroplasty offers excellent long-term results to patients with posterior urethral trauma and distraction defect even after multiple prior procedures. (author)

  12. Persistent Memory in Single Node Delay-Coupled Reservoir Computing.

    Science.gov (United States)

    Kovac, André David; Koall, Maximilian; Pipa, Gordon; Toutounji, Hazem

    2016-01-01

    Delays are ubiquitous in biological systems, ranging from genetic regulatory networks and synaptic conductances, to predator/pray population interactions. The evidence is mounting, not only to the presence of delays as physical constraints in signal propagation speed, but also to their functional role in providing dynamical diversity to the systems that comprise them. The latter observation in biological systems inspired the recent development of a computational architecture that harnesses this dynamical diversity, by delay-coupling a single nonlinear element to itself. This architecture is a particular realization of Reservoir Computing, where stimuli are injected into the system in time rather than in space as is the case with classical recurrent neural network realizations. This architecture also exhibits an internal memory which fades in time, an important prerequisite to the functioning of any reservoir computing device. However, fading memory is also a limitation to any computation that requires persistent storage. In order to overcome this limitation, the current work introduces an extended version to the single node Delay-Coupled Reservoir, that is based on trained linear feedback. We show by numerical simulations that adding task-specific linear feedback to the single node Delay-Coupled Reservoir extends the class of solvable tasks to those that require nonfading memory. We demonstrate, through several case studies, the ability of the extended system to carry out complex nonlinear computations that depend on past information, whereas the computational power of the system with fading memory alone quickly deteriorates. Our findings provide the theoretical basis for future physical realizations of a biologically-inspired ultrafast computing device with extended functionality.

  13. Fuzzy delay model based fault simulator for crosstalk delay fault test ...

    Indian Academy of Sciences (India)

    In this paper, a fuzzy delay model based crosstalk delay fault simulator is proposed. As design trends move towards nanometer technologies, more number of new parameters affects the delay of the component. Fuzzy delay models are ideal for modelling the uncertainty found in the design and manufacturing steps.

  14. Activation delay-induced mechanical dyssynchrony in single-ventricle heart disease

    DEFF Research Database (Denmark)

    Forsha, Daniel; Risum, Niels; Barker, Piers

    2017-01-01

    We present the case of an infant with a single functional ventricle who developed ventricular dysfunction and heart failure due to an electrical activation delay and dyssynchrony. Earlier recognition of this potentially reversible aetiology may have changed her poor outcome.......We present the case of an infant with a single functional ventricle who developed ventricular dysfunction and heart failure due to an electrical activation delay and dyssynchrony. Earlier recognition of this potentially reversible aetiology may have changed her poor outcome....

  15. Persistent Memory in Single Node Delay-Coupled Reservoir Computing.

    Directory of Open Access Journals (Sweden)

    André David Kovac

    Full Text Available Delays are ubiquitous in biological systems, ranging from genetic regulatory networks and synaptic conductances, to predator/pray population interactions. The evidence is mounting, not only to the presence of delays as physical constraints in signal propagation speed, but also to their functional role in providing dynamical diversity to the systems that comprise them. The latter observation in biological systems inspired the recent development of a computational architecture that harnesses this dynamical diversity, by delay-coupling a single nonlinear element to itself. This architecture is a particular realization of Reservoir Computing, where stimuli are injected into the system in time rather than in space as is the case with classical recurrent neural network realizations. This architecture also exhibits an internal memory which fades in time, an important prerequisite to the functioning of any reservoir computing device. However, fading memory is also a limitation to any computation that requires persistent storage. In order to overcome this limitation, the current work introduces an extended version to the single node Delay-Coupled Reservoir, that is based on trained linear feedback. We show by numerical simulations that adding task-specific linear feedback to the single node Delay-Coupled Reservoir extends the class of solvable tasks to those that require nonfading memory. We demonstrate, through several case studies, the ability of the extended system to carry out complex nonlinear computations that depend on past information, whereas the computational power of the system with fading memory alone quickly deteriorates. Our findings provide the theoretical basis for future physical realizations of a biologically-inspired ultrafast computing device with extended functionality.

  16. Modelling delays in pharmacokinetics

    International Nuclear Information System (INIS)

    Farooqi, Z.H.; Lambrecht, R.M.

    1990-01-01

    Linear system analysis has come to form the backbone of pharmacokinetics. Natural systems usually involve time delays, thus models incorporating them would be an order closer approximation to the real world compared to those that do not. Delays may be modelled in several ways. The approach considered in this study is to have a discrete-time delay dependent rate with the delay respresenting the duration between the entry of a drug into a compartment and its release in some form (may be as a metabolite) from the compartment. Such a delay may be because of one or more of several physiological reasons, like, formation of a reservoir, slow metabolism, or receptor binding. The mathematical structure this gives rise to is a system of delay-differential equations. Examples are given of simple one and two compartment systems with drugs like bumetanide, carbamazepine, and quinolone-caffeine interaction. In these examples generally a good fit is obtained and the suggested models form a good approximation. 21 refs., 6 figs

  17. Neuronal model with distributed delay: analysis and simulation study for gamma distribution memory kernel.

    Science.gov (United States)

    Karmeshu; Gupta, Varun; Kadambari, K V

    2011-06-01

    A single neuronal model incorporating distributed delay (memory)is proposed. The stochastic model has been formulated as a Stochastic Integro-Differential Equation (SIDE) which results in the underlying process being non-Markovian. A detailed analysis of the model when the distributed delay kernel has exponential form (weak delay) has been carried out. The selection of exponential kernel has enabled the transformation of the non-Markovian model to a Markovian model in an extended state space. For the study of First Passage Time (FPT) with exponential delay kernel, the model has been transformed to a system of coupled Stochastic Differential Equations (SDEs) in two-dimensional state space. Simulation studies of the SDEs provide insight into the effect of weak delay kernel on the Inter-Spike Interval(ISI) distribution. A measure based on Jensen-Shannon divergence is proposed which can be used to make a choice between two competing models viz. distributed delay model vis-á-vis LIF model. An interesting feature of the model is that the behavior of (CV(t))((ISI)) (Coefficient of Variation) of the ISI distribution with respect to memory kernel time constant parameter η reveals that neuron can switch from a bursting state to non-bursting state as the noise intensity parameter changes. The membrane potential exhibits decaying auto-correlation structure with or without damped oscillatory behavior depending on the choice of parameters. This behavior is in agreement with empirically observed pattern of spike count in a fixed time window. The power spectral density derived from the auto-correlation function is found to exhibit single and double peaks. The model is also examined for the case of strong delay with memory kernel having the form of Gamma distribution. In contrast to fast decay of damped oscillations of the ISI distribution for the model with weak delay kernel, the decay of damped oscillations is found to be slower for the model with strong delay kernel.

  18. Kramers-Moyal expansion for stochastic differential equations with single and multiple delays: Applications to financial physics and neurophysics

    International Nuclear Information System (INIS)

    Frank, T.D.

    2007-01-01

    We present a generalized Kramers-Moyal expansion for stochastic differential equations with single and multiple delays. In particular, we show that the delay Fokker-Planck equation derived earlier in the literature is a special case of the proposed Kramers-Moyal expansion. Applications for bond pricing and a self-inhibitory neuron model are discussed

  19. Delayed Consensus Problem for Single and Double Integrator Systems

    Directory of Open Access Journals (Sweden)

    Martín Velasco-Villa

    2015-01-01

    Full Text Available This work deals with the analysis of the consensus problem for networks of agents constituted by single and double integrator systems. It is assumed that the communication among agents is affected by a constant time-delay. Previous and numerous analysis of the problem shows that the maximum communication time-delay that can be introduced to the network without affecting the consensus of the group of the agents depends on the considered topology. In this work, a control scheme that is based on the estimation of future states of the agents and that allows increasing the magnitude of a possible time-delay affecting the communication channels is proposed. How the proposed delay compensation strategy is independent of the network topology in the sense that the maximum allowable time-delay that could be supported by the network depends on a design parameter and not on the maximum eigenvalue of the corresponding Laplacian matrix is shown. It is formally proven that, under the proposed prediction scheme, the consensus of the group can be achieved by improving the maximum time-delay bounds previously reported in the literature. Numerical simulations show the effectiveness of the proposed solution.

  20. A mathematical model of a crocodilian population using delay-differential equations.

    Science.gov (United States)

    Gallegos, Angela; Plummer, Tenecia; Uminsky, David; Vega, Cinthia; Wickman, Clare; Zawoiski, Michael

    2008-11-01

    The crocodilia have multiple interesting characteristics that affect their population dynamics. They are among several reptile species which exhibit temperature-dependent sex determination (TSD) in which the temperature of egg incubation determines the sex of the hatchlings. Their life parameters, specifically birth and death rates, exhibit strong age-dependence. We develop delay-differential equation (DDE) models describing the evolution of a crocodilian population. In using the delay formulation, we are able to account for both the TSD and the age-dependence of the life parameters while maintaining some analytical tractability. In our single-delay model we also find an equilibrium point and prove its local asymptotic stability. We numerically solve the different models and investigate the effects of multiple delays on the age structure of the population as well as the sex ratio of the population. For all models we obtain very strong agreement with the age structure of crocodilian population data as reported in Smith and Webb (Aust. Wild. Res. 12, 541-554, 1985). We also obtain reasonable values for the sex ratio of the simulated population.

  1. Embedding the dynamics of a single delay system into a feed-forward ring.

    Science.gov (United States)

    Klinshov, Vladimir; Shchapin, Dmitry; Yanchuk, Serhiy; Wolfrum, Matthias; D'Huys, Otti; Nekorkin, Vladimir

    2017-10-01

    We investigate the relation between the dynamics of a single oscillator with delayed self-feedback and a feed-forward ring of such oscillators, where each unit is coupled to its next neighbor in the same way as in the self-feedback case. We show that periodic solutions of the delayed oscillator give rise to families of rotating waves with different wave numbers in the corresponding ring. In particular, if for the single oscillator the periodic solution is resonant to the delay, it can be embedded into a ring with instantaneous couplings. We discover several cases where the stability of a periodic solution for the single unit can be related to the stability of the corresponding rotating wave in the ring. As a specific example, we demonstrate how the complex bifurcation scenario of simultaneously emerging multijittering solutions can be transferred from a single oscillator with delayed pulse feedback to multijittering rotating waves in a sufficiently large ring of oscillators with instantaneous pulse coupling. Finally, we present an experimental realization of this dynamical phenomenon in a system of coupled electronic circuits of FitzHugh-Nagumo type.

  2. A feedback control model for network flow with multiple pure time delays

    Science.gov (United States)

    Press, J.

    1972-01-01

    A control model describing a network flow hindered by multiple pure time (or transport) delays is formulated. Feedbacks connect each desired output with a single control sector situated at the origin. The dynamic formulation invokes the use of differential difference equations. This causes the characteristic equation of the model to consist of transcendental functions instead of a common algebraic polynomial. A general graphical criterion is developed to evaluate the stability of such a problem. A digital computer simulation confirms the validity of such criterion. An optimal decision making process with multiple delays is presented.

  3. Fuzzy delay model based fault simulator for crosstalk delay fault test ...

    Indian Academy of Sciences (India)

    In this paper, a fuzzy delay model based crosstalk delay fault simulator is proposed. As design .... To find the quality of non-robust tests, a fuzzy delay ..... Dubois D and Prade H 1989 Processing Fuzzy temporal knowledge. IEEE Transactions ...

  4. A distributed delay approach for modeling delayed outcomes in pharmacokinetics and pharmacodynamics studies.

    Science.gov (United States)

    Hu, Shuhua; Dunlavey, Michael; Guzy, Serge; Teuscher, Nathan

    2018-04-01

    A distributed delay approach was proposed in this paper to model delayed outcomes in pharmacokinetics and pharmacodynamics studies. This approach was shown to be general enough to incorporate a wide array of pharmacokinetic and pharmacodynamic models as special cases including transit compartment models, effect compartment models, typical absorption models (either zero-order or first-order absorption), and a number of atypical (or irregular) absorption models (e.g., parallel first-order, mixed first-order and zero-order, inverse Gaussian, and Weibull absorption models). Real-life examples were given to demonstrate how to implement distributed delays in Phoenix ® NLME™ 8.0, and to numerically show the advantages of the distributed delay approach over the traditional methods.

  5. In-core LOCA-s: analytical solution for the delayed mixing model for moderator poison concentration

    International Nuclear Information System (INIS)

    Firla, A.P.

    1995-01-01

    Solutions to dynamic moderator poison concentration model with delayed mixing under single pressure tube / calandria tube rupture scenario are discussed. Such a model is described by a delay differential equation, and for such equations the standard ways of solution are not directly applicable. In the paper an exact, direct time-domain analytical solution to the delayed mixing model is presented and discussed. The obtained solution has a 'marching' form and is easy to calculate numerically. Results of the numerical calculations based on the analytical solution indicate that for the expected range of mixing times the existing uniform mixing model is a good representation of the moderator poison mixing process for single PT/CT breaks. However, for postulated multi-pipe breaks ( which is very unlikely to occur ) the uniform mixing model is not adequate any more; at the same time an 'approximate' solution based on Laplace transform significantly overpredicts the rate of poison concentration decrease, resulting in excessive increase in the moderator dilution factor. In this situation the true, analytical solution must be used. The analytical solution presented in the paper may also serve as a bench-mark test for the accuracy of the existing poison mixing models. Moreover, because of the existing oscillatory tendency of the solution, special care must be taken in using delay differential models in other applications. (author). 3 refs., 3 tabs., 8 figs

  6. Modeling delay in genetic networks: from delay birth-death processes to delay stochastic differential equations.

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Bennett, Matthew R; Josić, Krešimir; Ott, William

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  7. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Bennett, Matthew R. [Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77204, USA and Institute of Biosciences and Bioengineering, Rice University, Houston, Texas 77005 (United States); Josić, Krešimir [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204 (United States)

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  8. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    International Nuclear Information System (INIS)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William; Bennett, Matthew R.; Josić, Krešimir

    2014-01-01

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay

  9. Delay-induced Turing-like waves for one-species reaction-diffusion model on a network

    Science.gov (United States)

    Petit, Julien; Carletti, Timoteo; Asllani, Malbor; Fanelli, Duccio

    2015-09-01

    A one-species time-delay reaction-diffusion system defined on a complex network is studied. Traveling waves are predicted to occur following a symmetry-breaking instability of a homogeneous stationary stable solution, subject to an external nonhomogeneous perturbation. These are generalized Turing-like waves that materialize in a single-species populations dynamics model, as the unexpected byproduct of the imposed delay in the diffusion part. Sufficient conditions for the onset of the instability are mathematically provided by performing a linear stability analysis adapted to time-delayed differential equations. The method here developed exploits the properties of the Lambert W-function. The prediction of the theory are confirmed by direct numerical simulation carried out for a modified version of the classical Fisher model, defined on a Watts-Strogatz network and with the inclusion of the delay.

  10. Modeling and Control of a Single-Phase Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2013-01-01

    This paper presents two model-based control design approaches for a single-phase marine cooling system. Models are derived from first principles and aim at describing significant system dynamics including nonlinearities and transport delays, while keeping the model complexity low. The two...

  11. Membrane potential and microsecond to millisecond delayed light emission after a single excitation flash in isolated chloroplasts

    International Nuclear Information System (INIS)

    Jursinic, P.; Govindjee; Wraight, C.A.

    1978-01-01

    The effect of light-induced and salt-jump induced membrane potential on microsecond and millisecond delayed light emission from chloroplasts, following a single 10 ns flash, have been studied. Microsecond delayed light emission is shown to be independent of the membrane potential contrary to proposals that the activation energy for delayed light emission can be modulated by transmembrane electric fields. This result is discussed in terms of the possible origin of this short-lived emission. Millisecond delayed light after a single excitation flash is enhanced by membrane potential only if a proton gradient is present. By measuring changes in ms delayed light caused by simultaneous injection of KCl and Na-benzoate (which creates a proton gradient) in the presence of valinomycin, the light-induced potential generated across the thylakoid membrane by a single excitation flash was calibrated and found to be 128 +- 10 mV in agreement with the recent measurements of Zickler and Witt, (FEBS Lett. 66, 142-148 (1976)), based on voltage-dependent ionophores. It is concluded that the secondary charges that give rise to ms delayed light, after a single flash, do not fully span the membrane. (author)

  12. Modeling of delays in PKPD: classical approaches and a tutorial for delay differential equations.

    Science.gov (United States)

    Koch, Gilbert; Krzyzanski, Wojciech; Pérez-Ruixo, Juan Jose; Schropp, Johannes

    2014-08-01

    In pharmacokinetics/pharmacodynamics (PKPD) the measured response is often delayed relative to drug administration, individuals in a population have a certain lifespan until they maturate or the change of biomarkers does not immediately affects the primary endpoint. The classical approach in PKPD is to apply transit compartment models (TCM) based on ordinary differential equations to handle such delays. However, an alternative approach to deal with delays are delay differential equations (DDE). DDEs feature additional flexibility and properties, realize more complex dynamics and can complementary be used together with TCMs. We introduce several delay based PKPD models and investigate mathematical properties of general DDE based models, which serve as subunits in order to build larger PKPD models. Finally, we review current PKPD software with respect to the implementation of DDEs for PKPD analysis.

  13. Delay Variation Model with Two Service Queues

    Directory of Open Access Journals (Sweden)

    Filip Rezac

    2010-01-01

    Full Text Available Delay in VoIP technology is very unpleasant issue and therefore a voice packets prioritization must be ensured. To maintain the high call quality a maximum information delivery time from the sender to the recipient is set to 150 ms. This paper focuses on the design of a mathematical model of end-to-end delay of a VoIP connection, in particular on a delay variation. It describes all partial delay components and mechanisms, their generation, facilities and mathematical formulations. A new approach to the delay variation model is presented and its validation has been done by experimention.

  14. Stochastic two-delay differential model of delayed visual feedback effects on postural dynamics.

    Science.gov (United States)

    Boulet, Jason; Balasubramaniam, Ramesh; Daffertshofer, Andreas; Longtin, André

    2010-01-28

    We report on experiments and modelling involving the 'visuo-postural control loop' in the upright stance. We experimentally manipulated an artificial delay to the visual feedback during standing, presented at delays ranging from 0 to 1 s in increments of 250 ms. Using stochastic delay differential equations, we explicitly modelled the centre-of-pressure (COP) and centre-of-mass (COM) dynamics with two independent delay terms for vision and proprioception. A novel 'drifting fixed point' hypothesis was used to describe the fluctuations of the COM with the COP being modelled as a faster, corrective process of the COM. The model was in good agreement with the data in terms of probability density functions, power spectral densities, short- and long-term correlations (Hurst exponents) as well the critical time between the two ranges. This journal is © 2010 The Royal Society

  15. Predictive Models of Duration of Ground Delay Programs in New York Area Airports

    Science.gov (United States)

    Kulkarni, Deepak

    2011-01-01

    Initially planned GDP duration often turns out to be an underestimate or an overestimate of the actual GDP duration. This, in turn, results in avoidable airborne or ground delays in the system. Therefore, better models of actual duration have the potential of reducing delays in the system. The overall objective of this study is to develop such models based on logs of GDPs. In a previous report, we described descriptive models of Ground Delay Programs. These models were defined in terms of initial planned duration and in terms of categorical variables. These descriptive models are good at characterizing the historical errors in planned GDP durations. This paper focuses on developing predictive models of GDP duration. Traffic Management Initiatives (TMI) are logged by Air Traffic Control facilities with The National Traffic Management Log (NTML) which is a single system for automated recoding, coordination, and distribution of relevant information about TMIs throughout the National Airspace System. (Brickman, 2004 Yuditsky, 2007) We use 2008-2009 GDP data from the NTML database for the study reported in this paper. NTML information about a GDP includes the initial specification, possibly one or more revisions, and the cancellation. In the next section, we describe general characteristics of Ground Delay Programs. In the third section, we develop models of actual duration. In the fourth section, we compare predictive performance of these models. The final section is a conclusion.

  16. Modeling On-Body DTN Packet Routing Delay in the Presence of Postural Disconnections

    Directory of Open Access Journals (Sweden)

    Taghizadeh Mahmoud

    2011-01-01

    Full Text Available This paper presents a stochastic modeling framework for store-and-forward packet routing in Wireless Body Area Networks (WBAN with postural partitioning. A prototype WBANs has been constructed for experimentally characterizing and capturing on-body topology disconnections in the presence of ultrashort range radio links, unpredictable RF attenuation, and human postural mobility. Delay modeling techniques for evaluating single-copy on-body DTN routing protocols are then developed. End-to-end routing delay for a series of protocols including opportunistic, randomized, and two other mechanisms that capture multiscale topological localities in human postural movements have been evaluated. Performance of the analyzed protocols are then evaluated experimentally and via simulation to compare with the results obtained from the developed model. Finally, a mechanism for evaluating the topological importance of individual on-body sensor nodes is developed. It is shown that such information can be used for selectively reducing the on-body sensor-count without substantially sacrificing the packet delivery delay.

  17. Modeling On-Body DTN Packet Routing Delay in the Presence of Postural Disconnections.

    Science.gov (United States)

    Quwaider, Muhannad; Taghizadeh, Mahmoud; Biswas, Subir

    2011-01-01

    This paper presents a stochastic modeling framework for store-and-forward packet routing in Wireless Body Area Networks ( WBAN ) with postural partitioning. A prototype WBANs has been constructed for experimentally characterizing and capturing on-body topology disconnections in the presence of ultrashort range radio links, unpredictable RF attenuation, and human postural mobility. Delay modeling techniques for evaluating single-copy on-body DTN routing protocols are then developed. End-to-end routing delay for a series of protocols including opportunistic, randomized, and two other mechanisms that capture multiscale topological localities in human postural movements have been evaluated. Performance of the analyzed protocols are then evaluated experimentally and via simulation to compare with the results obtained from the developed model. Finally, a mechanism for evaluating the topological importance of individual on-body sensor nodes is developed. It is shown that such information can be used for selectively reducing the on-body sensor-count without substantially sacrificing the packet delivery delay.

  18. A random utility model of delay discounting and its application to people with externalizing psychopathology.

    Science.gov (United States)

    Dai, Junyi; Gunn, Rachel L; Gerst, Kyle R; Busemeyer, Jerome R; Finn, Peter R

    2016-10-01

    Previous studies have demonstrated that working memory capacity plays a central role in delay discounting in people with externalizing psychopathology. These studies used a hyperbolic discounting model, and its single parameter-a measure of delay discounting-was estimated using the standard method of searching for indifference points between intertemporal options. However, there are several problems with this approach. First, the deterministic perspective on delay discounting underlying the indifference point method might be inappropriate. Second, the estimation procedure using the R2 measure often leads to poor model fit. Third, when parameters are estimated using indifference points only, much of the information collected in a delay discounting decision task is wasted. To overcome these problems, this article proposes a random utility model of delay discounting. The proposed model has 2 parameters, 1 for delay discounting and 1 for choice variability. It was fit to choice data obtained from a recently published data set using both maximum-likelihood and Bayesian parameter estimation. As in previous studies, the delay discounting parameter was significantly associated with both externalizing problems and working memory capacity. Furthermore, choice variability was also found to be significantly associated with both variables. This finding suggests that randomness in decisions may be a mechanism by which externalizing problems and low working memory capacity are associated with poor decision making. The random utility model thus has the advantage of disclosing the role of choice variability, which had been masked by the traditional deterministic model. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. The application of convolution-based statistical model on the electrical breakdown time delay distributions in neon

    International Nuclear Information System (INIS)

    Maluckov, Cedomir A.; Karamarkovic, Jugoslav P.; Radovic, Miodrag K.; Pejovic, Momcilo M.

    2004-01-01

    The convolution-based model of the electrical breakdown time delay distribution is applied for statistical analysis of experimental results obtained in neon-filled diode tube at 6.5 mbar. At first, the numerical breakdown time delay density distributions are obtained by stochastic modeling as the sum of two independent random variables, the electrical breakdown statistical time delay with exponential, and discharge formative time with Gaussian distribution. Then, the single characteristic breakdown time delay distribution is obtained as the convolution of these two random variables with previously determined parameters. These distributions show good correspondence with the experimental distributions, obtained on the basis of 1000 successive and independent measurements. The shape of distributions is investigated, and corresponding skewness and kurtosis are plotted, in order to follow the transition from Gaussian to exponential distribution

  20. Spiking Activity of a LIF Neuron in Distributed Delay Framework

    Directory of Open Access Journals (Sweden)

    Saket Kumar Choudhary

    2016-06-01

    Full Text Available Evolution of membrane potential and spiking activity for a single leaky integrate-and-fire (LIF neuron in distributed delay framework (DDF is investigated. DDF provides a mechanism to incorporate memory element in terms of delay (kernel function into a single neuron models. This investigation includes LIF neuron model with two different kinds of delay kernel functions, namely, gamma distributed delay kernel function and hypo-exponential distributed delay kernel function. Evolution of membrane potential for considered models is studied in terms of stationary state probability distribution (SPD. Stationary state probability distribution of membrane potential (SPDV for considered neuron models are found asymptotically similar which is Gaussian distributed. In order to investigate the effect of membrane potential delay, rate code scheme for neuronal information processing is applied. Firing rate and Fano-factor for considered neuron models are calculated and standard LIF model is used for comparative study. It is noticed that distributed delay increases the spiking activity of a neuron. Increase in spiking activity of neuron in DDF is larger for hypo-exponential distributed delay function than gamma distributed delay function. Moreover, in case of hypo-exponential delay function, a LIF neuron generates spikes with Fano-factor less than 1.

  1. A new lattice hydrodynamic model based on control method considering the flux change rate and delay feedback signal

    Science.gov (United States)

    Qin, Shunda; Ge, Hongxia; Cheng, Rongjun

    2018-02-01

    In this paper, a new lattice hydrodynamic model is proposed by taking delay feedback and flux change rate effect into account in a single lane. The linear stability condition of the new model is derived by control theory. By using the nonlinear analysis method, the mKDV equation near the critical point is deduced to describe the traffic congestion. Numerical simulations are carried out to demonstrate the advantage of the new model in suppressing traffic jam with the consideration of flux change rate effect in delay feedback model.

  2. Time delays, population, and economic development

    Science.gov (United States)

    Gori, Luca; Guerrini, Luca; Sodini, Mauro

    2018-05-01

    This research develops an augmented Solow model with population dynamics and time delays. The model produces either a single stationary state or multiple stationary states (able to characterise different development regimes). The existence of time delays may cause persistent fluctuations in both economic and demographic variables. In addition, the work identifies in a simple way the reasons why economics affects demographics and vice versa.

  3. Assessment of tropospheric delay mapping function models in Egypt: Using PTD database model

    Science.gov (United States)

    Abdelfatah, M. A.; Mousa, Ashraf E.; El-Fiky, Gamal S.

    2018-06-01

    For space geodetic measurements, estimates of tropospheric delays are highly correlated with site coordinates and receiver clock biases. Thus, it is important to use the most accurate models for the tropospheric delay to reduce errors in the estimates of the other parameters. Both the zenith delay value and mapping function should be assigned correctly to reduce such errors. Several mapping function models can treat the troposphere slant delay. The recent models were not evaluated for the Egyptian local climate conditions. An assessment of these models is needed to choose the most suitable one. The goal of this paper is to test the quality of global mapping function which provides high consistency with precise troposphere delay (PTD) mapping functions. The PTD model is derived from radiosonde data using ray tracing, which consider in this paper as true value. The PTD mapping functions were compared, with three recent total mapping functions model and another three separate dry and wet mapping function model. The results of the research indicate that models are very close up to zenith angle 80°. Saastamoinen and 1/cos z model are behind accuracy. Niell model is better than VMF model. The model of Black and Eisner is a good model. The results also indicate that the geometric range error has insignificant effect on slant delay and the fluctuation of azimuth anti-symmetric is about 1%.

  4. Delayed repair of DNA single-strand breaks does not increase cytogenetic damage

    International Nuclear Information System (INIS)

    Morgan, W.F.; Djordjevic, M.C.; Jostes, R.F.; Pantelias, G.E.

    1985-01-01

    DNA damage and cytogenetic effects of ionizing radiation were investigated in Chinese hamster ovary (CHO) cells and unstimulated human peripheral blood lymphocytes. DNA damage and repair were analysed by alkaline elution under conditions that predominantly measured DNA single-strand breaks (ssb). X-radiation (2.5 Gy) induced ssb in both CHO cells and unstimulated lymphocytes, and the breaks were repaired within 30 and 90 min, respectively. This rapid repair was delayed by the poly(ADP-ribose) polymerase inhibitor, 3-aminobenzamide (3AB). The cytogenetic effects of the 3AB-induced delay in DNA repair were examined by analysing sister chromatid exchange (SCE) frequency in CHO cells and fragmentation of prematurely condensed chromosomes (PCC) in unstimulated human lymphocytes after 2.5 Gy of X-rays. Although 3AB delayed the rejoining of DNA ssb, this delay did not result in increased cytogenetic damage manifested as either SCE or fragmentation of PCC. These results indicate that the rapidly rejoining DNA ssb are not important in the production of chromosome damage. (author)

  5. Modeling Directional Selectivity Using Self-Organizing Delay-Aadaptation Maps

    OpenAIRE

    Tversky, Mr. Tal; Miikkulainen, Dr. Risto

    2002-01-01

    Using a delay adaptation learning rule, we model the activity-dependent development of directionally selective cells in the primary visual cortex. Based on input stimuli, a learning rule shifts delays to create synchronous arrival of spikes at cortical cells. As a result, delays become tuned creating a smooth cortical map of direction selectivity. This result demonstrates how delay adaption can serve as a powerful abstraction for modeling temporal learning in the brain.

  6. The Aviation System Analysis Capability Airport Capacity and Delay Models

    Science.gov (United States)

    Lee, David A.; Nelson, Caroline; Shapiro, Gerald

    1998-01-01

    The ASAC Airport Capacity Model and the ASAC Airport Delay Model support analyses of technologies addressing airport capacity. NASA's Aviation System Analysis Capability (ASAC) Airport Capacity Model estimates the capacity of an airport as a function of weather, Federal Aviation Administration (FAA) procedures, traffic characteristics, and the level of technology available. Airport capacity is presented as a Pareto frontier of arrivals per hour versus departures per hour. The ASAC Airport Delay Model allows the user to estimate the minutes of arrival delay for an airport, given its (weather dependent) capacity. Historical weather observations and demand patterns are provided by ASAC as inputs to the delay model. The ASAC economic models can translate a reduction in delay minutes into benefit dollars.

  7. Quantum delayed-choice experiment with a single neutral atom.

    Science.gov (United States)

    Li, Gang; Zhang, Pengfei; Zhang, Tiancai

    2017-10-01

    We present a proposal to implement a quantum delayed-choice (QDC) experiment with a single neutral atom, such as a rubidium or cesium atom. In our proposal, a Ramsey interferometer is adopted to observe the wave-like or particle-like behaviors of a single atom depending on the existence or absence of the second π/2-rotation. A quantum-controlled π/2-rotation on target atom is realized through a Rydberg-Rydberg interaction by another ancilla atom. It shows that a heavy neutral atom can also have a morphing behavior between the particle and the wave. The realization of the QDC experiment with such heavy neutral atoms not only is significant to understand the Bohr's complementarity principle in matter-wave and matter-particle domains but also has great potential on the quantum information process with neutral atoms.

  8. Extracorporeal shockwave enhanced regeneration of fibrocartilage in a delayed tendon-bone insertion repair model.

    Science.gov (United States)

    Chow, Dick Ho Kiu; Suen, Pui Kit; Huang, Le; Cheung, Wing-Hoi; Leung, Kwok-Sui; Ng, Chun; Shi, San Qiang; Wong, Margaret Wan Nar; Qin, Ling

    2014-04-01

    Fibrous tissue is often formed in delayed healing of tendon bone insertion (TBI) instead of fibrocartilage. Extracorporeal shockwave (ESW) provides mechanical cues and upregulates expression of fibrocartilage-related makers and cytokines. We hypothesized that ESW would accelerate fibrocartilage regeneration at the healing interface in a delayed TBI healing model. Partial patellectomy with shielding at the TBI interface was performed on 32 female New Zealand White Rabbits for establishing this delayed TBI healing model. The rabbits were separated into the control and ESW group for evaluations at postoperative week 8 and 12. Shielding was removed at week 4 and a single ESW treatment was applied at week 6. Fibrocartilage regeneration was evaluated histomorphologically and immunohistochemically. Vickers hardness of the TBI matrix was measured by micro-indentation. ESW group showed higher fibrocartilage area, thickness, and proteoglycan deposition than the control in week 8 and 12. ESW increased expression of SOX9 and collagen II significantly in week 8 and 12, respectively. ESW group showed a gradual transition of hardness from bone to fibrocartilage to tendon, and had a higher Vickers hardness than the control group at week 12. In conclusion, ESW enhanced fibrocartilage regeneration at the healing interface in a delayed TBI healing model. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. Phase delaying the human circadian clock with a single light pulse and moderate delay of the sleep/dark episode: no influence of iris color.

    Science.gov (United States)

    Canton, Jillian L; Smith, Mark R; Choi, Ho-Sun; Eastman, Charmane I

    2009-07-17

    Light exposure in the late evening and nighttime and a delay of the sleep/dark episode can phase delay the circadian clock. This study assessed the size of the phase delay produced by a single light pulse combined with a moderate delay of the sleep/dark episode for one day. Because iris color or race has been reported to influence light-induced melatonin suppression, and we have recently reported racial differences in free-running circadian period and circadian phase shifting in response to light pulses, we also tested for differences in the magnitude of the phase delay in subjects with blue and brown irises. Subjects (blue-eyed n = 7; brown eyed n = 6) maintained a regular sleep schedule for 1 week before coming to the laboratory for a baseline phase assessment, during which saliva was collected every 30 minutes to determine the time of the dim light melatonin onset (DLMO). Immediately following the baseline phase assessment, which ended 2 hours after baseline bedtime, subjects received a 2-hour bright light pulse (~4,000 lux). An 8-hour sleep episode followed the light pulse (i.e. was delayed 4 hours from baseline). A final phase assessment was conducted the subsequent night to determine the phase shift of the DLMO from the baseline to final phase assessment.Phase delays of the DLMO were compared in subjects with blue and brown irises. Iris color was also quantified from photographs using the three dimensions of red-green-blue color axes, as well as a lightness scale. These variables were correlated with phase shift of the DLMO, with the hypothesis that subjects with lighter irises would have larger phase delays. The average phase delay of the DLMO was -1.3 +/- 0.6 h, with a maximum delay of ~2 hours, and was similar for subjects with blue and brown irises. There were no significant correlations between any of the iris color variables and the magnitude of the phase delay. A single 2-hour bright light pulse combined with a moderate delay of the sleep/dark episode

  10. Phase delaying the human circadian clock with a single light pulse and moderate delay of the sleep/dark episode: no influence of iris color

    Directory of Open Access Journals (Sweden)

    Choi Ho-Sun

    2009-07-01

    Full Text Available Abstract Background Light exposure in the late evening and nighttime and a delay of the sleep/dark episode can phase delay the circadian clock. This study assessed the size of the phase delay produced by a single light pulse combined with a moderate delay of the sleep/dark episode for one day. Because iris color or race has been reported to influence light-induced melatonin suppression, and we have recently reported racial differences in free-running circadian period and circadian phase shifting in response to light pulses, we also tested for differences in the magnitude of the phase delay in subjects with blue and brown irises. Methods Subjects (blue-eyed n = 7; brown eyed n = 6 maintained a regular sleep schedule for 1 week before coming to the laboratory for a baseline phase assessment, during which saliva was collected every 30 minutes to determine the time of the dim light melatonin onset (DLMO. Immediately following the baseline phase assessment, which ended 2 hours after baseline bedtime, subjects received a 2-hour bright light pulse (~4,000 lux. An 8-hour sleep episode followed the light pulse (i.e. was delayed 4 hours from baseline. A final phase assessment was conducted the subsequent night to determine the phase shift of the DLMO from the baseline to final phase assessment. Phase delays of the DLMO were compared in subjects with blue and brown irises. Iris color was also quantified from photographs using the three dimensions of red-green-blue color axes, as well as a lightness scale. These variables were correlated with phase shift of the DLMO, with the hypothesis that subjects with lighter irises would have larger phase delays. Results The average phase delay of the DLMO was -1.3 ± 0.6 h, with a maximum delay of ~2 hours, and was similar for subjects with blue and brown irises. There were no significant correlations between any of the iris color variables and the magnitude of the phase delay. Conclusion A single 2-hour bright light

  11. A general formula considering one group delayed neutron under nonequilibrium condition

    International Nuclear Information System (INIS)

    Li Haofeng; Chen Wenzhen; Zhu Qian; Luo Lei

    2008-01-01

    A general neutron breeder formula is developed when the reactor does not reach the steady state and the reactivity changes in phase. This formula can be used to calculate the results of six groups delayed neutron model through a way of amending λ in one group delayed neutron model. The analysis shows that the solution of amended single group delayed neutron model is approximately equal to that of six-group delayed neutron model, and the amended model meets the engineering accuracy. (authors)

  12. Influence on rewetting temperature and wetting delay during rewetting rod bundle by various radial jet models

    Energy Technology Data Exchange (ETDEWEB)

    Debbarma, Ajoy; Pandey, Krishna Murari [National Institute of Technology, Assam (India). Dept. of Mechanical Engineering

    2016-03-15

    Numerical investigation of the rewetting of single sector fuel assembly of Advanced Heavy Water Reactor (AHWR) has been carried out to exhibit the effect of coolant jet diameters (2, 3 and 4 mm) and jet directions (Model: M, X and X2). The rewetting phenomena with various jet models are compared on the basis of rewetting temperature and wetting delay. Temperature-time curve have been evaluated from rods surfaces at different circumference, radial and axial locations of rod bundle. The cooling curve indicated the presence of vapor in respected location, where it prevents the contact between the firm and fluid phases. The peak wall temperature represents as rewetting temperature. The time period observed between initial to rewetting temperature point is wetting delay. It was noted that as improved in various jet models, rewetting temperature and wetting delay reduced, which referred the coolant stipulation in the rod bundle dominant vapor formation.

  13. Influence on rewetting temperature and wetting delay during rewetting rod bundle by various radial jet models

    International Nuclear Information System (INIS)

    Debbarma, Ajoy; Pandey, Krishna Murari

    2016-01-01

    Numerical investigation of the rewetting of single sector fuel assembly of Advanced Heavy Water Reactor (AHWR) has been carried out to exhibit the effect of coolant jet diameters (2, 3 and 4 mm) and jet directions (Model: M, X and X2). The rewetting phenomena with various jet models are compared on the basis of rewetting temperature and wetting delay. Temperature-time curve have been evaluated from rods surfaces at different circumference, radial and axial locations of rod bundle. The cooling curve indicated the presence of vapor in respected location, where it prevents the contact between the firm and fluid phases. The peak wall temperature represents as rewetting temperature. The time period observed between initial to rewetting temperature point is wetting delay. It was noted that as improved in various jet models, rewetting temperature and wetting delay reduced, which referred the coolant stipulation in the rod bundle dominant vapor formation.

  14. Dynamical Models For Prices With Distributed Delays

    Directory of Open Access Journals (Sweden)

    Mircea Gabriela

    2015-06-01

    Full Text Available In the present paper we study some models for the price dynamics of a single commodity market. The quantities of supplied and demanded are regarded as a function of time. Nonlinearities in both supply and demand functions are considered. The inventory and the level of inventory are taken into consideration. Due to the fact that the consumer behavior affects commodity demand, and the behavior is influenced not only by the instantaneous price, but also by the weighted past prices, the distributed time delay is introduced. The following kernels are taken into consideration: demand price weak kernel and demand price Dirac kernel. Only one positive equilibrium point is found and its stability analysis is presented. When the demand price kernel is weak, under some conditions of the parameters, the equilibrium point is locally asymptotically stable. When the demand price kernel is Dirac, the existence of the local oscillations is investigated. A change in local stability of the equilibrium point, from stable to unstable, implies a Hopf bifurcation. A family of periodic orbits bifurcates from the positive equilibrium point when the time delay passes through a critical value. The last part contains some numerical simulations to illustrate the effectiveness of our results and conclusions.

  15. Climate models with delay differential equations.

    Science.gov (United States)

    Keane, Andrew; Krauskopf, Bernd; Postlethwaite, Claire M

    2017-11-01

    A fundamental challenge in mathematical modelling is to find a model that embodies the essential underlying physics of a system, while at the same time being simple enough to allow for mathematical analysis. Delay differential equations (DDEs) can often assist in this goal because, in some cases, only the delayed effects of complex processes need to be described and not the processes themselves. This is true for some climate systems, whose dynamics are driven in part by delayed feedback loops associated with transport times of mass or energy from one location of the globe to another. The infinite-dimensional nature of DDEs allows them to be sufficiently complex to reproduce realistic dynamics accurately with a small number of variables and parameters. In this paper, we review how DDEs have been used to model climate systems at a conceptual level. Most studies of DDE climate models have focused on gaining insights into either the global energy balance or the fundamental workings of the El Niño Southern Oscillation (ENSO) system. For example, studies of DDEs have led to proposed mechanisms for the interannual oscillations in sea-surface temperature that is characteristic of ENSO, the irregular behaviour that makes ENSO difficult to forecast and the tendency of El Niño events to occur near Christmas. We also discuss the tools used to analyse such DDE models. In particular, the recent development of continuation software for DDEs makes it possible to explore large regions of parameter space in an efficient manner in order to provide a "global picture" of the possible dynamics. We also point out some directions for future research, including the incorporation of non-constant delays, which we believe could improve the descriptive power of DDE climate models.

  16. Climate models with delay differential equations

    Science.gov (United States)

    Keane, Andrew; Krauskopf, Bernd; Postlethwaite, Claire M.

    2017-11-01

    A fundamental challenge in mathematical modelling is to find a model that embodies the essential underlying physics of a system, while at the same time being simple enough to allow for mathematical analysis. Delay differential equations (DDEs) can often assist in this goal because, in some cases, only the delayed effects of complex processes need to be described and not the processes themselves. This is true for some climate systems, whose dynamics are driven in part by delayed feedback loops associated with transport times of mass or energy from one location of the globe to another. The infinite-dimensional nature of DDEs allows them to be sufficiently complex to reproduce realistic dynamics accurately with a small number of variables and parameters. In this paper, we review how DDEs have been used to model climate systems at a conceptual level. Most studies of DDE climate models have focused on gaining insights into either the global energy balance or the fundamental workings of the El Niño Southern Oscillation (ENSO) system. For example, studies of DDEs have led to proposed mechanisms for the interannual oscillations in sea-surface temperature that is characteristic of ENSO, the irregular behaviour that makes ENSO difficult to forecast and the tendency of El Niño events to occur near Christmas. We also discuss the tools used to analyse such DDE models. In particular, the recent development of continuation software for DDEs makes it possible to explore large regions of parameter space in an efficient manner in order to provide a "global picture" of the possible dynamics. We also point out some directions for future research, including the incorporation of non-constant delays, which we believe could improve the descriptive power of DDE climate models.

  17. Proposition of delay model for signalized intersections with queueing theory analytical models usage

    Directory of Open Access Journals (Sweden)

    Grzegorz SIERPIŃSKI

    2007-01-01

    Full Text Available Time delay on intersections is a very important transport problem. Thearticle includes a proposition of time delay model. Variance of service times is considered by used average waiting time in queue for queuing system with compressed queuing processes usage as a part of proposed time delays model.

  18. The WS transform for the Kuramoto model with distributed amplitudes, phase lag and time delay

    Science.gov (United States)

    Lohe, M. A.

    2017-12-01

    We apply the Watanabe-Strogatz (WS) transform to a generalized Kuramoto model with distributed parameters describing the amplitude of oscillation, phase lag, and time delay at each node of the system. The model has global coupling and identical frequencies, but allows for repulsive interactions at arbitrary nodes leading to conformist-contrarian phenomena together with variable amplitude and time-delay effects. We show how to determine the initial values of the WS system for any initial conditions for the Kuramoto system, and investigate the asymptotic behaviour of the WS variables. For the case of zero time delay the possible asymptotic configurations are determined by the sign of a single parameter μ which measures whether or not the attractive nodes dominate the repulsive nodes. If μ>0 the system completely synchronizes from general initial conditions, whereas if μ<0 one of two types of phase-locked synchronization occurs, depending on the initial values, while for μ=0 periodic solutions can occur. For the case of arbitrary non-uniform time delays we derive a stability condition for completely synchronized solutions.

  19. Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties.

    Science.gov (United States)

    Li, Zhijun; Su, Chun-Yi

    2013-09-01

    In this paper, adaptive neural network control is investigated for single-master-multiple-slaves teleoperation in consideration of time delays and input dead-zone uncertainties for multiple mobile manipulators carrying a common object in a cooperative manner. Firstly, concise dynamics of teleoperation systems consisting of a single master robot, multiple coordinated slave robots, and the object are developed in the task space. To handle asymmetric time-varying delays in communication channels and unknown asymmetric input dead zones, the nonlinear dynamics of the teleoperation system are transformed into two subsystems through feedback linearization: local master or slave dynamics including the unknown input dead zones and delayed dynamics for the purpose of synchronization. Then, a model reference neural network control strategy based on linear matrix inequalities (LMI) and adaptive techniques is proposed. The developed control approach ensures that the defined tracking errors converge to zero whereas the coordination internal force errors remain bounded and can be made arbitrarily small. Throughout this paper, stability analysis is performed via explicit Lyapunov techniques under specific LMI conditions. The proposed adaptive neural network control scheme is robust against motion disturbances, parametric uncertainties, time-varying delays, and input dead zones, which is validated by simulation studies.

  20. A Cucker--Smale Model with Noise and Delay

    KAUST Repository

    Erban, Radek

    2016-08-09

    A generalization of the Cucker-Smale model for collective animal behavior is investigated. The model is formulated as a system of delayed stochastic differential equations. It incorporates two additional processes which are present in animal decision making, but are often neglected in modeling: (i) stochasticity (imperfections) of individual behavior and (ii) delayed responses of individuals to signals in their environment. Sufficient conditions for flocking for the generalized Cucker-Smale model are derived by using a suitable Lyapunov functional. As a by-product, a new result regarding the asymptotic behavior of delayed geometric Brownian motion is obtained. In the second part of the paper, results of systematic numerical simulations are presented. They not only illustrate the analytical results, but hint at a somehow surprising behavior

  1. A Cucker--Smale Model with Noise and Delay

    KAUST Repository

    Erban, Radek; Haskovec, Jan; Sun, Yongzheng

    2016-01-01

    A generalization of the Cucker-Smale model for collective animal behavior is investigated. The model is formulated as a system of delayed stochastic differential equations. It incorporates two additional processes which are present in animal decision making, but are often neglected in modeling: (i) stochasticity (imperfections) of individual behavior and (ii) delayed responses of individuals to signals in their environment. Sufficient conditions for flocking for the generalized Cucker-Smale model are derived by using a suitable Lyapunov functional. As a by-product, a new result regarding the asymptotic behavior of delayed geometric Brownian motion is obtained. In the second part of the paper, results of systematic numerical simulations are presented. They not only illustrate the analytical results, but hint at a somehow surprising behavior

  2. Noise-induced coherence in bistable systems with multiple time delays

    International Nuclear Information System (INIS)

    Jiang Yu; Dong, Shi-Hai; Lozada-Cassou, M.

    2004-01-01

    We study the correlation properties of noise-driven bistable systems with multiple time-delay feedbacks. For small noisy perturbation and feedback magnitude, we derive the autocorrelation function and the power spectrum based on the two-state model with transition rates depending on the earlier states of the system. A comparison between the single and double time delays reveals that the auto correlation functions exhibit exponential decay with small undulation for the double time delays, in contrast with the remarkable oscillatory behavior at small time lags for the single time delay

  3. Moving source localization with a single hydrophone using multipath time delays in the deep ocean.

    Science.gov (United States)

    Duan, Rui; Yang, Kunde; Ma, Yuanliang; Yang, Qiulong; Li, Hui

    2014-08-01

    Localizing a source of radial movement at moderate range using a single hydrophone can be achieved in the reliable acoustic path by tracking the time delays between the direct and surface-reflected arrivals (D-SR time delays). The problem is defined as a joint estimation of the depth, initial range, and speed of the source, which are the state parameters for the extended Kalman filter (EKF). The D-SR time delays extracted from the autocorrelation functions are the measurements for the EKF. Experimental results using pseudorandom signals show that accurate localization results are achieved by offline iteration of the EKF.

  4. Steady states and outbreaks of two-phase nonlinear age-structured model of population dynamics with discrete time delay.

    Science.gov (United States)

    Akimenko, Vitalii; Anguelov, Roumen

    2017-12-01

    In this paper we study the nonlinear age-structured model of a polycyclic two-phase population dynamics including delayed effect of population density growth on the mortality. Both phases are modelled as a system of initial boundary values problem for semi-linear transport equation with delay and initial problem for nonlinear delay ODE. The obtained system is studied both theoretically and numerically. Three different regimes of population dynamics for asymptotically stable states of autonomous systems are obtained in numerical experiments for the different initial values of population density. The quasi-periodical travelling wave solutions are studied numerically for the autonomous system with the different values of time delays and for the system with oscillating death rate and birth modulus. In both cases it is observed three types of travelling wave solutions: harmonic oscillations, pulse sequence and single pulse.

  5. New Approaches For Asteroid Spin State and Shape Modeling From Delay-Doppler Radar Images

    Science.gov (United States)

    Raissi, Chedy; Lamee, Mehdi; Mosiane, Olorato; Vassallo, Corinne; Busch, Michael W.; Greenberg, Adam; Benner, Lance A. M.; Naidu, Shantanu P.; Duong, Nicholas

    2016-10-01

    Delay-Doppler radar imaging is a powerful technique to characterize the trajectories, shapes, and spin states of near-Earth asteroids; and has yielded detailed models of dozens of objects. Reconstructing objects' shapes and spins from delay-Doppler data is a computationally intensive inversion problem. Since the 1990s, delay-Doppler data has been analyzed using the SHAPE software. SHAPE performs sequential single-parameter fitting, and requires considerable computer runtime and human intervention (Hudson 1993, Magri et al. 2007). Recently, multiple-parameter fitting algorithms have been shown to more efficiently invert delay-Doppler datasets (Greenberg & Margot 2015) - decreasing runtime while improving accuracy. However, extensive human oversight of the shape modeling process is still required. We have explored two new techniques to better automate delay-Doppler shape modeling: Bayesian optimization and a machine-learning neural network.One of the most time-intensive steps of the shape modeling process is to perform a grid search to constrain the target's spin state. We have implemented a Bayesian optimization routine that uses SHAPE to autonomously search the space of spin-state parameters. To test the efficacy of this technique, we compared it to results with human-guided SHAPE for asteroids 1992 UY4, 2000 RS11, and 2008 EV5. Bayesian optimization yielded similar spin state constraints within a factor of 3 less computer runtime.The shape modeling process could be further accelerated using a deep neural network to replace iterative fitting. We have implemented a neural network with a variational autoencoder (VAE), using a subset of known asteroid shapes and a large set of synthetic radar images as inputs to train the network. Conditioning the VAE in this manner allows the user to give the network a set of radar images and get a 3D shape model as an output. Additional development will be required to train a network to reliably render shapes from delay

  6. Modelling biochemical networks with intrinsic time delays: a hybrid semi-parametric approach

    Directory of Open Access Journals (Sweden)

    Oliveira Rui

    2010-09-01

    Full Text Available Abstract Background This paper presents a method for modelling dynamical biochemical networks with intrinsic time delays. Since the fundamental mechanisms leading to such delays are many times unknown, non conventional modelling approaches become necessary. Herein, a hybrid semi-parametric identification methodology is proposed in which discrete time series are incorporated into fundamental material balance models. This integration results in hybrid delay differential equations which can be applied to identify unknown cellular dynamics. Results The proposed hybrid modelling methodology was evaluated using two case studies. The first of these deals with dynamic modelling of transcriptional factor A in mammalian cells. The protein transport from the cytosol to the nucleus introduced a delay that was accounted for by discrete time series formulation. The second case study focused on a simple network with distributed time delays that demonstrated that the discrete time delay formalism has broad applicability to both discrete and distributed delay problems. Conclusions Significantly better prediction qualities of the novel hybrid model were obtained when compared to dynamical structures without time delays, being the more distinctive the more significant the underlying system delay is. The identification of the system delays by studies of different discrete modelling delays was enabled by the proposed structure. Further, it was shown that the hybrid discrete delay methodology is not limited to discrete delay systems. The proposed method is a powerful tool to identify time delays in ill-defined biochemical networks.

  7. A new car-following model with two delays

    International Nuclear Information System (INIS)

    Yu, Lei; Shi, Zhong-ke; Li, Tong

    2014-01-01

    A new car-following model is proposed by taking into account two different time delays in sensing headway and velocity. The effect of time delays on the stability analysis is studied. The theoretical and numerical results show that traffic jams are suppressed efficiently when the difference between two time delays decreases and those can be described by the solution of the modified Korteweg–de Vries (mKdV) equation. Traffic flow is more stable with two delays in headway and velocity than in the case with only one delay in headway. The impact of local small disturbance to the system is also studied.

  8. Imperfect Reworking Process Consideration in Integrated Inventory Model under Permissible Delay in Payments

    Directory of Open Access Journals (Sweden)

    Ming-Cheng Lo

    2008-01-01

    Full Text Available This study develops an improved inventory model to help the enterprises to advance their profit increasing and cost reduction in a single vendor single-buyer environment with general demand curve, adjustable production rate, and imperfect reworking process under permissible delay in payments. For advancing practical use in a real world, we are concerned with the following strategy determining, which includes the buyer's optimal selling price, order quantity, and the number of shipments per production run from the vendor to the buyer. An algorithm and numerical analysis are used to illustrate the solution procedure.

  9. Dynamics of a delayed intraguild predation model with harvesting

    Science.gov (United States)

    Collera, Juancho A.; Balilo, Aldrin T.

    2018-03-01

    In [1], a delayed three-species intraguild predation (IGP) model was considered. This particular tri-trophic community module includes a predator and its prey which share a common basal resource for their sustenance [3]. Here, it is assumed that in the absence of predation, the growth of the basal resource follows the delayed logistic equation. Without delay time, the IGP model in [1] reduces to the system considered in [7] where it was shown that IGP may induce chaos even if the functional responses are linear. Meanwhile, in [2] the delayed IGP model in [1] was generalized to include harvesting. Under the assumption that the basal resource has some economic value, a constant harvesting term on the basal resource was incorporated. However, both models in [1] and [2] use the delay time as the main parameter. In this research, we studied the delayed IGP model in [1] with the addition of linear harvesting term on each of the three species. The dynamical behavior of this system is examined using the harvesting rates as main parameter. In particular, we give conditions on the existence, stability, and bifurcations of equilibrium solutions of this system. This allows us to better understand the effects of harvesting in terms of the survival or extinction of one or more species in our system. Numerical simulations are carried out to illustrate our results. In fact, we show that the chaotic behavior in [7] unfolds when the harvesting rate parameter is varied.

  10. Phase models and clustering in networks of oscillators with delayed coupling

    Science.gov (United States)

    Campbell, Sue Ann; Wang, Zhen

    2018-01-01

    We consider a general model for a network of oscillators with time delayed coupling where the coupling matrix is circulant. We use the theory of weakly coupled oscillators to reduce the system of delay differential equations to a phase model where the time delay enters as a phase shift. We use the phase model to determine model independent existence and stability results for symmetric cluster solutions. Our results extend previous work to systems with time delay and a more general coupling matrix. We show that the presence of the time delay can lead to the coexistence of multiple stable clustering solutions. We apply our analytical results to a network of Morris Lecar neurons and compare these results with numerical continuation and simulation studies.

  11. Delay-Dependent Asymptotic Stability of Cohen-Grossberg Models with Multiple Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liao

    2007-01-01

    Full Text Available Dynamical behavior of a class of Cohen-Grossberg models with multiple time-varying delays is studied in detail. Sufficient delay-dependent criteria to ensure local and global asymptotic stabilities of the equilibrium of this network are derived by constructing suitable Lyapunov functionals. The obtained conditions are shown to be less conservative and restrictive than those reported in the known literature. Some numerical examples are included to demonstrate our results.

  12. A Method to Determine Oscillation Emergence Bifurcation in Time-Delayed LTI System with Single Lag

    Directory of Open Access Journals (Sweden)

    Yu Xiaodan

    2014-01-01

    Full Text Available One type of bifurcation named oscillation emergence bifurcation (OEB found in time-delayed linear time invariant (abbr. LTI systems is fully studied. The definition of OEB is initially put forward according to the eigenvalue variation. It is revealed that a real eigenvalue splits into a pair of conjugated complex eigenvalues when an OEB occurs, which means the number of the system eigenvalues will increase by one and a new oscillation mode will emerge. Next, a method to determine OEB bifurcation in the time-delayed LTI system with single lag is developed based on Lambert W function. A one-dimensional (1-dim time-delayed system is firstly employed to explain the mechanism of OEB bifurcation. Then, methods to determine the OEB bifurcation in 1-dim, 2-dim, and high-dimension time-delayed LTI systems are derived. Finally, simulation results validate the correctness and effectiveness of the presented method. Since OEB bifurcation occurs with a new oscillation mode emerging, work of this paper is useful to explore the complex phenomena and the stability of time-delayed dynamic systems.

  13. Delay estimation on a railway-line with smart use of micro-simulation

    DEFF Research Database (Denmark)

    Cerreto, Fabrizio; Harrod, Steven; Nielsen, Otto Anker

    2017-01-01

    This paper formulates a delay propagation model that estimates total railway line delay as a polynomial function of a single primary delay. The estimate is derived from a finite series of delays over a horizon that spans two dimensions: the length of the railway line and the number of trains in t...

  14. Reduction of structured population models to threshold-type delay equations and functional differential equations: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.L. (Arizona State Univ., Tempe (United States))

    1993-01-01

    It is shown by way of a simple example that certain structured population models lead naturally to differential delay equations of the threshold type and that these equations can be transformed in a natural way to functional differential equations. The model examined can be viewed as a model of competition between adults and juveniles of a single population. The results indicate the possibility that this competition leads to instability. 28 refs., 2 figs.

  15. An approach to normal forms of Kuramoto model with distributed delays and the effect of minimal delay

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Ben, E-mail: niubenhit@163.com [Department of Mathematics, Harbin Institute of Technology, Weihai 264209 (China); Guo, Yuxiao [Department of Mathematics, Harbin Institute of Technology, Weihai 264209 (China); Jiang, Weihua [Department of Mathematics, Harbin Institute of Technology, Harbin 150001 (China)

    2015-09-25

    Heterogeneous delays with positive lower bound (gap) are taken into consideration in Kuramoto model. On the Ott–Antonsen's manifold, the dynamical transitional behavior from incoherence to coherence is mediated by Hopf bifurcation. We establish a perturbation technique on complex domain, by which universal normal forms, stability and criticality of the Hopf bifurcation are obtained. Theoretically, a hysteresis loop is found near the subcritically bifurcated coherent state. With respect to Gamma distributed delay with fixed mean and variance, we find that the large gap decreases Hopf bifurcation value, induces supercritical bifurcations, avoids the hysteresis loop and significantly increases in the number of coexisting coherent states. The effect of gap is finally interpreted from the viewpoint of excess kurtosis of Gamma distribution. - Highlights: • Heterogeneously delay-coupled Kuramoto model with minimal delay is considered. • Perturbation technique on complex domain is established for bifurcation analysis. • Hysteresis phenomenon is investigated in a theoretical way. • The effect of excess kurtosis of distributed delays is discussed.

  16. Response of an oscillatory differential delay equation to a single stimulus.

    Science.gov (United States)

    Mackey, Michael C; Tyran-Kamińska, Marta; Walther, Hans-Otto

    2017-04-01

    Here we analytically examine the response of a limit cycle solution to a simple differential delay equation to a single pulse perturbation of the piecewise linear nonlinearity. We construct the unperturbed limit cycle analytically, and are able to completely characterize the perturbed response to a pulse of positive amplitude and duration with onset at different points in the limit cycle. We determine the perturbed minima and maxima and period of the limit cycle and show how the pulse modifies these from the unperturbed case.

  17. Incorporating time-delays in S-System model for reverse engineering genetic networks.

    Science.gov (United States)

    Chowdhury, Ahsan Raja; Chetty, Madhu; Vinh, Nguyen Xuan

    2013-06-18

    In any gene regulatory network (GRN), the complex interactions occurring amongst transcription factors and target genes can be either instantaneous or time-delayed. However, many existing modeling approaches currently applied for inferring GRNs are unable to represent both these interactions simultaneously. As a result, all these approaches cannot detect important interactions of the other type. S-System model, a differential equation based approach which has been increasingly applied for modeling GRNs, also suffers from this limitation. In fact, all S-System based existing modeling approaches have been designed to capture only instantaneous interactions, and are unable to infer time-delayed interactions. In this paper, we propose a novel Time-Delayed S-System (TDSS) model which uses a set of delay differential equations to represent the system dynamics. The ability to incorporate time-delay parameters in the proposed S-System model enables simultaneous modeling of both instantaneous and time-delayed interactions. Furthermore, the delay parameters are not limited to just positive integer values (corresponding to time stamps in the data), but can also take fractional values. Moreover, we also propose a new criterion for model evaluation exploiting the sparse and scale-free nature of GRNs to effectively narrow down the search space, which not only reduces the computation time significantly but also improves model accuracy. The evaluation criterion systematically adapts the max-min in-degrees and also systematically balances the effect of network accuracy and complexity during optimization. The four well-known performance measures applied to the experimental studies on synthetic networks with various time-delayed regulations clearly demonstrate that the proposed method can capture both instantaneous and delayed interactions correctly with high precision. The experiments carried out on two well-known real-life networks, namely IRMA and SOS DNA repair network in

  18. Bifurcation analysis of a delayed mathematical model for tumor growth

    International Nuclear Information System (INIS)

    Khajanchi, Subhas

    2015-01-01

    In this study, we present a modified mathematical model of tumor growth by introducing discrete time delay in interaction terms. The model describes the interaction between tumor cells, healthy tissue cells (host cells) and immune effector cells. The goal of this study is to obtain a better compatibility with reality for which we introduced the discrete time delay in the interaction between tumor cells and host cells. We investigate the local stability of the non-negative equilibria and the existence of Hopf-bifurcation by considering the discrete time delay as a bifurcation parameter. We estimate the length of delay to preserve the stability of bifurcating periodic solutions, which gives an idea about the mode of action for controlling oscillations in the tumor growth. Numerical simulations of the model confirm the analytical findings

  19. Four-channel delay generator model 5740

    International Nuclear Information System (INIS)

    Baumatz, D.; Milner, M.

    1978-01-01

    The 4-channel delay generator model 5740 generates 4-pulse groups in independent channels. The device offers the possibility of controlling both the time intervals between the pulses of a group and the rate of generation of groups

  20. A Data-Driven Air Transportation Delay Propagation Model Using Epidemic Process Models

    Directory of Open Access Journals (Sweden)

    B. Baspinar

    2016-01-01

    Full Text Available In air transport network management, in addition to defining the performance behavior of the system’s components, identification of their interaction dynamics is a delicate issue in both strategic and tactical decision-making process so as to decide which elements of the system are “controlled” and how. This paper introduces a novel delay propagation model utilizing epidemic spreading process, which enables the definition of novel performance indicators and interaction rates of the elements of the air transportation network. In order to understand the behavior of the delay propagation over the network at different levels, we have constructed two different data-driven epidemic models approximating the dynamics of the system: (a flight-based epidemic model and (b airport-based epidemic model. The flight-based epidemic model utilizing SIS epidemic model focuses on the individual flights where each flight can be in susceptible or infected states. The airport-centric epidemic model, in addition to the flight-to-flight interactions, allows us to define the collective behavior of the airports, which are modeled as metapopulations. In network model construction, we have utilized historical flight-track data of Europe and performed analysis for certain days involving certain disturbances. Through this effort, we have validated the proposed delay propagation models under disruptive events.

  1. EOQ Model for Delayed Deteriorating Items with Shortages and Trade Credit Policy

    Directory of Open Access Journals (Sweden)

    R Sundararajan

    2015-08-01

    Full Text Available This paper deals with a deterministic inventory model for deteriorating items under the condition of permissible delay in payments with constant demand rate is a function of time which differs from before and after deterioration for a single item. Shortages are allowed and completely backlogged which is a function of time. Under these assumptions, this paper develops a retailer's model for obtaining an optimal cycle length and ordering quantity in deteriorating items of an inventory model. Thus, our objective is retailer's cost minimization problem to nd an optimal replenishment policy under various parameters. The convexity of the objective function is derived and the numerical examples are provided to support the proposed model. Sensitivity analysis of the optimal solution with respect to major parameters of the model is included and the implications are discussed.

  2. Pattern Formation in Predator-Prey Model with Delay and Cross Diffusion

    Directory of Open Access Journals (Sweden)

    Xinze Lian

    2013-01-01

    Full Text Available We consider the effect of time delay and cross diffusion on the dynamics of a modified Leslie-Gower predator-prey model incorporating a prey refuge. Based on the stability analysis, we demonstrate that delayed feedback may generate Hopf and Turing instability under some conditions, resulting in spatial patterns. One of the most interesting findings is that the model exhibits complex pattern replication: the model dynamics exhibits a delay and diffusion controlled formation growth not only to spots, stripes, and holes, but also to spiral pattern self-replication. The results indicate that time delay and cross diffusion play important roles in pattern formation.

  3. Mixed Modeling of a SAW Delay Line Using VHDL-AMS

    Science.gov (United States)

    Wilson, William C.; Atkinson, Gary M.

    2006-01-01

    To aid in the development of SAW sensors for aerospace applications we have created a model of a SAW Delay line using VHDL. The model implements the Impulse Response method to calculate the frequency response, impedance, and insertion loss. The model includes optimization for the number of finger pairs in the IDTs and for the aperture height. This paper presents the model and the results from the model for a SAW delay line design.

  4. Oscillatory dynamics of an intravenous glucose tolerance test model with delay interval

    Science.gov (United States)

    Shi, Xiangyun; Kuang, Yang; Makroglou, Athena; Mokshagundam, Sriprakash; Li, Jiaxu

    2017-11-01

    Type 2 diabetes mellitus (T2DM) has become prevalent pandemic disease in view of the modern life style. Both diabetic population and health expenses grow rapidly according to American Diabetes Association. Detecting the potential onset of T2DM is an essential focal point in the research of diabetes mellitus. The intravenous glucose tolerance test (IVGTT) is an effective protocol to determine the insulin sensitivity, glucose effectiveness, and pancreatic β-cell functionality, through the analysis and parameter estimation of a proper differential equation model. Delay differential equations have been used to study the complex physiological phenomena including the glucose and insulin regulations. In this paper, we propose a novel approach to model the time delay in IVGTT modeling. This novel approach uses two parameters to simulate not only both discrete time delay and distributed time delay in the past interval, but also the time delay distributed in a past sub-interval. Normally, larger time delay, either a discrete or a distributed delay, will destabilize the system. However, we find that time delay over a sub-interval might not. We present analytically some basic model properties, which are desirable biologically and mathematically. We show that this relatively simple model provides good fit to fluctuating patient data sets and reveals some intriguing dynamics. Moreover, our numerical simulation results indicate that our model may remove the defect in well known Minimal Model, which often overestimates the glucose effectiveness index.

  5. Inverse Problems for Nonlinear Delay Systems

    Science.gov (United States)

    2011-03-15

    population dynamics. We consider the delay between birth and adulthood for neonate pea aphids and present a mathematical model that treats this delay as...which there is currently no known cure. For HIV, the core of the virus is composed of single-stranded viral RNA and protein components. As depicted in...at a CD4 receptor site and the viral core is injected into the cell. Once inside, the protein components enable transcription and integration of the

  6. Modelling the Probability Density Function of IPTV Traffic Packet Delay Variation

    Directory of Open Access Journals (Sweden)

    Michal Halas

    2012-01-01

    Full Text Available This article deals with modelling the Probability density function of IPTV traffic packet delay variation. The use of this modelling is in an efficient de-jitter buffer estimation. When an IP packet travels across a network, it experiences delay and its variation. This variation is caused by routing, queueing systems and other influences like the processing delay of the network nodes. When we try to separate these at least three types of delay variation, we need a way to measure these types separately. This work is aimed to the delay variation caused by queueing systems which has the main implications to the form of the Probability density function.

  7. Local Stability of AIDS Epidemic Model Through Treatment and Vertical Transmission with Time Delay

    Science.gov (United States)

    Novi W, Cascarilla; Lestari, Dwi

    2016-02-01

    This study aims to explain stability of the spread of AIDS through treatment and vertical transmission model. Human with HIV need a time to positively suffer AIDS. The existence of a time, human with HIV until positively suffer AIDS can be delayed for a time so that the model acquired is the model with time delay. The model form is a nonlinear differential equation with time delay, SIPTA (susceptible-infected-pre AIDS-treatment-AIDS). Based on SIPTA model analysis results the disease free equilibrium point and the endemic equilibrium point. The disease free equilibrium point with and without time delay are local asymptotically stable if the basic reproduction number is less than one. The endemic equilibrium point will be local asymptotically stable if the time delay is less than the critical value of delay, unstable if the time delay is more than the critical value of delay, and bifurcation occurs if the time delay is equal to the critical value of delay.

  8. Evaluation of performance of distributed delay model for chemotherapy-induced myelosuppression.

    Science.gov (United States)

    Krzyzanski, Wojciech; Hu, Shuhua; Dunlavey, Michael

    2018-04-01

    The distributed delay model has been introduced that replaces the transit compartments in the classic model of chemotherapy-induced myelosuppression with a convolution integral. The maturation of granulocyte precursors in the bone marrow is described by the gamma probability density function with the shape parameter (ν). If ν is a positive integer, the distributed delay model coincides with the classic model with ν transit compartments. The purpose of this work was to evaluate performance of the distributed delay model with particular focus on model deterministic identifiability in the presence of the shape parameter. The classic model served as a reference for comparison. Previously published white blood cell (WBC) count data in rats receiving bolus doses of 5-fluorouracil were fitted by both models. The negative two log-likelihood objective function (-2LL) and running times were used as major markers of performance. Local sensitivity analysis was done to evaluate the impact of ν on the pharmacodynamics response WBC. The ν estimate was 1.46 with 16.1% CV% compared to ν = 3 for the classic model. The difference of 6.78 in - 2LL between classic model and the distributed delay model implied that the latter performed significantly better than former according to the log-likelihood ratio test (P = 0.009), although the overall performance was modestly better. The running times were 1 s and 66.2 min, respectively. The long running time of the distributed delay model was attributed to computationally intensive evaluation of the convolution integral. The sensitivity analysis revealed that ν strongly influences the WBC response by controlling cell proliferation and elimination of WBCs from the circulation. In conclusion, the distributed delay model was deterministically identifiable from typical cytotoxic data. Its performance was modestly better than the classic model with significantly longer running time.

  9. Delay induced stability switch, multitype bistability and chaos in an intraguild predation model.

    Science.gov (United States)

    Shu, Hongying; Hu, Xi; Wang, Lin; Watmough, James

    2015-12-01

    In many predator-prey models, delay has a destabilizing effect and induces oscillations; while in many competition models, delay does not induce oscillations. By analyzing a rather simple delayed intraguild predation model, which combines both the predator-prey relation and competition, we show that delay in intraguild predation models promotes very complex dynamics. The delay can induce stability switches exhibiting a destabilizing role as well as a stabilizing role. It is shown that three types of bistability are possible: one stable equilibrium coexists with another stable equilibrium (node-node bistability); one stable equilibrium coexists with a stable periodic solution (node-cycle bistability); one stable periodic solution coexists with another stable periodic solution (cycle-cycle bistability). Numerical simulations suggest that delay can also induce chaos in intraguild predation models.

  10. Global Application of TaiWan Ionospheric Model to Single-Frequency GPS Positioning

    Science.gov (United States)

    Macalalad, E.; Tsai, L. C.; Wu, J.

    2012-04-01

    Ionospheric delay is one the major sources of error in GPS positioning and navigation. This error in both pseudorange and phase ranges vary depending on the location of observation, local time, season, solar cycle and geomagnetic activity. For single-frequency receivers, this delay is usually removed using ionospheric models. Two of them are the Klobuchar, or broadcast, model and the global ionosphere map (GIM) provided by the International GNSS Service (IGS). In this paper, a three dimensional ionospheric electron (ne) density model derived from FormoSat3/COSMIC GPS Radio Occultation measurements, called the TaiWan Ionosphere Model, is used. It was used to calculate the slant total electron content (STEC) between receiver and GPS satellites to correct the pseudorange single-frequency observations. The corrected pseudorange for every epoch was used to determine a more accurate position of the receiver. Observations were made in July 2, 2011(Kp index = 0-2) in five randomly selected sites across the globe, four of which are IGS stations (station ID: cnmr, coso, irkj and morp) while the other is a low-cost single-frequency receiver located in Chungli City, Taiwan (ID: isls). It was illustrated that TEC maps generated using TWIM exhibited a detailed structure of the ionosphere, whereas Klobuchar and GIM only provided the basic diurnal and geographic features of the ionosphere. Also, it was shown that for single-frequency static point positioning TWIM provides more accurate and more precise positioning than the Klobuchar and GIM models for all stations. The average %error of the corrections made by Klobuchar, GIM and TWIM in DRMS are 3.88%, 0.78% and 17.45%, respectively. While the average %error in VRMS for Klobuchar, GIM and TWIM are 53.55%, 62.09%, 66.02%, respectively. This shows the capability of TWIM to provide a good global 3-dimensional ionospheric model.

  11. Performance analysis of NOAA tropospheric signal delay model

    International Nuclear Information System (INIS)

    Ibrahim, Hassan E; El-Rabbany, Ahmed

    2011-01-01

    Tropospheric delay is one of the dominant global positioning system (GPS) errors, which degrades the positioning accuracy. Recent development in tropospheric modeling relies on implementation of more accurate numerical weather prediction (NWP) models. In North America one of the NWP-based tropospheric correction models is the NOAA Tropospheric Signal Delay Model (NOAATrop), which was developed by the US National Oceanic and Atmospheric Administration (NOAA). Because of its potential to improve the GPS positioning accuracy, the NOAATrop model became the focus of many researchers. In this paper, we analyzed the performance of the NOAATrop model and examined its effect on ionosphere-free-based precise point positioning (PPP) solution. We generated 3 year long tropospheric zenith total delay (ZTD) data series for the NOAATrop model, Hopfield model, and the International GNSS Services (IGS) final tropospheric correction product, respectively. These data sets were generated at ten IGS reference stations spanning Canada and the United States. We analyzed the NOAATrop ZTD data series and compared them with those of the Hopfield model. The IGS final tropospheric product was used as a reference. The analysis shows that the performance of the NOAATrop model is a function of both season (time of the year) and geographical location. However, its performance was superior to the Hopfield model in all cases. We further investigated the effect of implementing the NOAATrop model on the ionosphere-free-based PPP solution convergence and accuracy. It is shown that the use of the NOAATrop model improved the PPP solution convergence by 1%, 10% and 15% for the latitude, longitude and height components, respectively

  12. EVOLVING TO TYPE Ia SUPERNOVAE WITH SHORT DELAY TIMES

    International Nuclear Information System (INIS)

    Wang Bo; Chen Xuefei; Han Zhanwen; Meng Xiangcun

    2009-01-01

    The single-degenerate model is currently a favorable progenitor model for Type Ia supernovae (SNe Ia). Recent investigations on the white dwarf (WD) + He star channel of the single-degenerate model imply that this channel is noteworthy for producing SNe Ia. In this paper, we studied SN Ia birthrates and delay times of this channel via a detailed binary population synthesis approach. We found that the Galactic SN Ia birthrate from the WD + He star channel is ∼0.3 x 10 -3 yr -1 according to our standard model, and that this channel can explain SNe Ia with short delay times (∼4.5 x 10 7 -1.4 x 10 8 yr). Meanwhile, these WD + He star systems may be related to the young supersoft X-ray sources prior to SN Ia explosions.

  13. Noise-and delay-induced phase transitions of the dimer–monomer surface reaction model

    International Nuclear Information System (INIS)

    Zeng Chunhua; Wang Hua

    2012-01-01

    Highlights: ► We study the dimer–monomer surface reaction model. ► We show that noise induces first-order irreversible phase transition (IPT). ► Combination of noise and time-delayed feedback induce first- and second-order IPT. ► First- and second-order IPT is viewed as noise-and delay-induced phase transitions. - Abstract: The effects of noise and time-delayed feedback in the dimer–monomer (DM) surface reaction model are investigated. Applying small delay approximation, we construct a stochastic delayed differential equation and its Fokker–Planck equation to describe the state evolution of the DM reaction model. We show that the noise can only induce first-order irreversible phase transition (IPT) characteristic of the DM model, however the combination of the noise and time-delayed feedback can simultaneously induce first- and second-order IPT characteristics of the DM model. Therefore, it is shown that the well-known first- and second-order IPT characteristics of the DM model may be viewed as noise-and delay-induced phase transitions.

  14. Nonlinear free vibration control of beams using acceleration delayed-feedback control

    International Nuclear Information System (INIS)

    Alhazza, Khaled A; Alajmi, Mohammed; Masoud, Ziyad N

    2008-01-01

    A single-mode delayed-feedback control strategy is developed to reduce the free vibrations of a flexible beam using a piezoelectric actuator. A nonlinear variational model of the beam based on the von Kàrmàn nonlinear type deformations is considered. Using Galerkin's method, the resulting governing partial differential equations of motion are reduced to a system of nonlinear ordinary differential equations. A linear model using the first mode is derived and is used to characterize the damping produced by the controller as a function of the controller's gain and delay. Three-dimensional figures showing the damping magnitude as a function of the controller gain and delay are presented. The characteristic damping of the controller as predicted by the linear model is compared to that calculated using direct long-time integration of a three-mode nonlinear model. Optimal values of the controller gain and delay using both methods are obtained, simulated and compared. To validate the single-mode approximation, numerical simulations are performed using a three-mode full nonlinear model. Results of the simulations demonstrate an excellent controller performance in mitigating the first-mode vibration

  15. An overview of the recent advances in delay-time-based maintenance modelling

    International Nuclear Information System (INIS)

    Wang, Wenbin

    2012-01-01

    Industrial plant maintenance is an area which has enormous potential to be improved. It is also an area attracted significant attention from mathematical modellers because of the random phenomenon of plant failures. This paper reviews the recent advances in delay-time-based maintenance modelling, which is one of the mathematical techniques for optimising inspection planning and related problems. The delay-time is a concept that divides a plant failure process into two stages: from new until the point of an identifiable defect, and then from this point to failure. The first stage is called the normal working stage and the second stage is called the failure delay-time stage. If the distributions of the two stages can be quantified, the relationship between the number of failures and the inspection interval can be readily established. This can then be used for optimizing the inspection interval and other related decision variables. In this review, we pay particular attention to new methodological developments and industrial applications of the delay-time-based models over the last few decades. The use of the delay-time concept and modeling techniques in other areas rather than in maintenance is also reviewed. Future research directions are also highlighted. - Highlights: ► Reviewed the recent advances in delay-time-based maintenance models and applications. ► Compared the delay-time-based models with other models. ► Focused on methodologies and applications. ► Pointed out future research directions.

  16. Single Agent Polysaccharopeptide Delays Metastases and Improves Survival in Naturally Occurring Hemangiosarcoma

    Directory of Open Access Journals (Sweden)

    Dorothy Cimino Brown

    2012-01-01

    Full Text Available The 2008 World Health Organization World Cancer Report describes global cancer incidence soaring with many patients living in countries that lack resources for cancer control. Alternative treatment strategies that can reduce the global disease burden at manageable costs must be developed. Polysaccharopeptide (PSP is the bioactive agent from the mushroom Coriolus versicolor. Studies indicate PSP has in vitro antitumor activities and inhibits the growth of induced tumors in animal models. Clear evidence of clinically relevant benefits of PSP in cancer patients, however, is lacking. The investment of resources required to complete large-scale, randomized controlled trials of PSP in cancer patients is more easily justified if antitumor and survival benefits are documented in a complex animal model of a naturally occurring cancer that parallels human disease. Because of its high metastatic rate and vascular origin, canine hemangiosarcoma is used for investigations in antimetastatic and antiangiogenic therapies. In this double-blind randomized multidose pilot study, high-dose PSP significantly delayed the progression of metastases and afforded the longest survival times reported in canine hemangiosarcoma. These data suggest that, for those cancer patients for whom advanced treatments are not accessible, PSP as a single agent might offer significant improvements in morbidity and mortality.

  17. Gompertzian stochastic model with delay effect to cervical cancer growth

    International Nuclear Information System (INIS)

    Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti; Bahar, Arifah

    2015-01-01

    In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits

  18. Gompertzian stochastic model with delay effect to cervical cancer growth

    Energy Technology Data Exchange (ETDEWEB)

    Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor and UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2015-02-03

    In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits.

  19. Multiple bifurcations and periodic 'bubbling' in a delay population model

    International Nuclear Information System (INIS)

    Peng Mingshu

    2005-01-01

    In this paper, the flip bifurcation and periodic doubling bifurcations of a discrete population model without delay influence is firstly studied and the phenomenon of Feigenbaum's cascade of periodic doublings is also observed. Secondly, we explored the Neimark-Sacker bifurcation in the delay population model (two-dimension discrete dynamical systems) and the unique stable closed invariant curve which bifurcates from the nontrivial fixed point. Finally, a computer-assisted study for the delay population model is also delved into. Our computer simulation shows that the introduction of delay effect in a nonlinear difference equation derived from the logistic map leads to much richer dynamic behavior, such as stable node → stable focus → an lower-dimensional closed invariant curve (quasi-periodic solution, limit cycle) or/and stable periodic solutions → chaotic attractor by cascading bubbles (the combination of potential period doubling and reverse period-doubling) and the sudden change between two different attractors, etc

  20. Terrestrial Sagnac delay constraining modified gravity models

    Science.gov (United States)

    Karimov, R. Kh.; Izmailov, R. N.; Potapov, A. A.; Nandi, K. K.

    2018-04-01

    Modified gravity theories include f(R)-gravity models that are usually constrained by the cosmological evolutionary scenario. However, it has been recently shown that they can also be constrained by the signatures of accretion disk around constant Ricci curvature Kerr-f(R0) stellar sized black holes. Our aim here is to use another experimental fact, viz., the terrestrial Sagnac delay to constrain the parameters of specific f(R)-gravity prescriptions. We shall assume that a Kerr-f(R0) solution asymptotically describes Earth's weak gravity near its surface. In this spacetime, we shall study oppositely directed light beams from source/observer moving on non-geodesic and geodesic circular trajectories and calculate the time gap, when the beams re-unite. We obtain the exact time gap called Sagnac delay in both cases and expand it to show how the flat space value is corrected by the Ricci curvature, the mass and the spin of the gravitating source. Under the assumption that the magnitude of corrections are of the order of residual uncertainties in the delay measurement, we derive the allowed intervals for Ricci curvature. We conclude that the terrestrial Sagnac delay can be used to constrain the parameters of specific f(R) prescriptions. Despite using the weak field gravity near Earth's surface, it turns out that the model parameter ranges still remain the same as those obtained from the strong field accretion disk phenomenon.

  1. A comparison of cosmological models using time delay lenses

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio, E-mail: jjwei@pmo.ac.cn, E-mail: xfwu@pmo.ac.cn, E-mail: fmelia@email.arizona.edu [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2014-06-20

    The use of time-delay gravitational lenses to examine the cosmological expansion introduces a new standard ruler with which to test theoretical models. The sample suitable for this kind of work now includes 12 lens systems, which have thus far been used solely for optimizing the parameters of ΛCDM. In this paper, we broaden the base of support for this new, important cosmic probe by using these observations to carry out a one-on-one comparison between competing models. The currently available sample indicates a likelihood of ∼70%-80% that the R {sub h} = ct universe is the correct cosmology versus ∼20%-30% for the standard model. This possibly interesting result reinforces the need to greatly expand the sample of time-delay lenses, e.g., with the successful implementation of the Dark Energy Survey, the VST ATLAS survey, and the Large Synoptic Survey Telescope. In anticipation of a greatly expanded catalog of time-delay lenses identified with these surveys, we have produced synthetic samples to estimate how large they would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼150 time-delay lenses would be sufficient to rule out R {sub h} = ct at this level of accuracy, while ∼1000 time-delay lenses would be required to rule out ΛCDM if the real universe is instead R {sub h} = ct. This difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM.

  2. A comparison of cosmological models using time delay lenses

    International Nuclear Information System (INIS)

    Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio

    2014-01-01

    The use of time-delay gravitational lenses to examine the cosmological expansion introduces a new standard ruler with which to test theoretical models. The sample suitable for this kind of work now includes 12 lens systems, which have thus far been used solely for optimizing the parameters of ΛCDM. In this paper, we broaden the base of support for this new, important cosmic probe by using these observations to carry out a one-on-one comparison between competing models. The currently available sample indicates a likelihood of ∼70%-80% that the R h = ct universe is the correct cosmology versus ∼20%-30% for the standard model. This possibly interesting result reinforces the need to greatly expand the sample of time-delay lenses, e.g., with the successful implementation of the Dark Energy Survey, the VST ATLAS survey, and the Large Synoptic Survey Telescope. In anticipation of a greatly expanded catalog of time-delay lenses identified with these surveys, we have produced synthetic samples to estimate how large they would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼150 time-delay lenses would be sufficient to rule out R h = ct at this level of accuracy, while ∼1000 time-delay lenses would be required to rule out ΛCDM if the real universe is instead R h = ct. This difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM.

  3. Acceleration (Deceleration Model Supporting Time Delays to Refresh Data

    Directory of Open Access Journals (Sweden)

    José Gerardo Carrillo González

    2018-04-01

    Full Text Available This paper proposes a mathematical model to regulate the acceleration (deceleration applied by self-driving vehicles in car-following situations. A virtual environment is designed to test the model in different circumstances: (1 the followers decelerate in time if the leader decelerates, considering a time delay of up to 5 s to refresh data (vehicles position coordinates required by the model, (2 with the intention of optimizing space, the vehicles are grouped in platoons, where 3 s of time delay (to update data is supported if the vehicles have a centre-to-centre spacing of 20 m and a time delay of 1 s is supported at a spacing of 6 m (considering a maximum speed of 20 m/s in both cases, and (3 an algorithm is presented to manage the vehicles’ priority at a traffic intersection, where the model regulates the vehicles’ acceleration (deceleration and a balance in the number of vehicles passing from each side is achieved.

  4. Dynamics of a delay differential equation model of hepatitis B virus infection.

    Science.gov (United States)

    Gourley, Stephen A; Kuang, Yang; Nagy, John D

    2008-04-01

    We formulate and systematically study the global dynamics of a simple model of hepatitis B virus in terms of delay differential equations. This model has two important and novel features compared to the well-known basic virus model in the literature. Specifically, it makes use of the more realistic standard incidence function and explicitly incorporates a time delay in virus production. As a result, the infection reproduction number is no longer dependent on the patient liver size (number of initial healthy liver cells). For this model, the existence and the component values of the endemic steady state are explicitly dependent on the time delay. In certain biologically interesting limiting scenarios, a globally attractive endemic equilibrium can exist regardless of the time delay length.

  5. Transmission Delay Modeling of Packet Communication over Digital Subscriber Line

    Directory of Open Access Journals (Sweden)

    Jiri Vodrazka

    2013-01-01

    Full Text Available Certain multimedia and voice services, such as VoIP, IPTV, etc., are significantly delay sensitive and their performance is influenced by the overall transmission delay and its variance. One of the most common solutions used in access networks are xDSL lines, especially ADSL2+ or VDSL2. Although these subscriber lines also use packet communication, there are several differences and mechanisms, which influence their resulting delay. Their delay characteristics are also dependent on the individual settings of each xDSL provider, therefore we decided to investigate this area for typical commercially available lines in Czech Republic. Based on the measured values and experiments with real ADSL2+ lines we also developed a potential modeling method, which is presented in this article as well. The parameters for packet jitter based on the generalized Pareto distribution were modeled.

  6. Survey of time preference, delay discounting models

    Directory of Open Access Journals (Sweden)

    John R. Doyle

    2013-03-01

    Full Text Available The paper surveys over twenty models of delay discounting (also known as temporal discounting, time preference, time discounting, that psychologists and economists have put forward to explain the way people actually trade off time and money. Using little more than the basic algebra of powers and logarithms, I show how the models are derived, what assumptions they are based upon, and how different models relate to each other. Rather than concentrate only on discount functions themselves, I show how discount functions may be manipulated to isolate rate parameters for each model. This approach, consistently applied, helps focus attention on the three main components in any discounting model: subjectively perceived money; subjectively perceived time; and how these elements are combined. We group models by the number of parameters that have to be estimated, which means our exposition follows a trajectory of increasing complexity to the models. However, as the story unfolds it becomes clear that most models fall into a smaller number of families. We also show how new models may be constructed by combining elements of different models. The surveyed models are: Exponential; Hyperbolic; Arithmetic; Hyperboloid (Green and Myerson, Rachlin; Loewenstein and Prelec Generalized Hyperboloid; quasi-Hyperbolic (also known as beta-delta discounting; Benhabib et al's fixed cost; Benhabib et al's Exponential / Hyperbolic / quasi-Hyperbolic; Read's discounting fractions; Roelofsma's exponential time; Scholten and Read's discounting-by-intervals (DBI; Ebert and Prelec's constant sensitivity (CS; Bleichrodt et al.'s constant absolute decreasing impatience (CADI; Bleichrodt et al.'s constant relative decreasing impatience (CRDI; Green, Myerson, and Macaux's hyperboloid over intervals models; Killeen's additive utility; size-sensitive additive utility; Yi, Landes, and Bickel's memory trace models; McClure et al.'s two exponentials; and Scholten and Read's trade

  7. Stability and Hopf bifurcation for a delayed SLBRS computer virus model.

    Science.gov (United States)

    Zhang, Zizhen; Yang, Huizhong

    2014-01-01

    By incorporating the time delay due to the period that computers use antivirus software to clean the virus into the SLBRS model a delayed SLBRS computer virus model is proposed in this paper. The dynamical behaviors which include local stability and Hopf bifurcation are investigated by regarding the delay as bifurcating parameter. Specially, direction and stability of the Hopf bifurcation are derived by applying the normal form method and center manifold theory. Finally, an illustrative example is also presented to testify our analytical results.

  8. Stability and Hopf Bifurcation for a Delayed SLBRS Computer Virus Model

    Directory of Open Access Journals (Sweden)

    Zizhen Zhang

    2014-01-01

    Full Text Available By incorporating the time delay due to the period that computers use antivirus software to clean the virus into the SLBRS model a delayed SLBRS computer virus model is proposed in this paper. The dynamical behaviors which include local stability and Hopf bifurcation are investigated by regarding the delay as bifurcating parameter. Specially, direction and stability of the Hopf bifurcation are derived by applying the normal form method and center manifold theory. Finally, an illustrative example is also presented to testify our analytical results.

  9. Multifractal chaotic attractors in a system of delay-differential equations modeling road traffic.

    Science.gov (United States)

    Safonov, Leonid A.; Tomer, Elad; Strygin, Vadim V.; Ashkenazy, Yosef; Havlin, Shlomo

    2002-12-01

    We study a system of delay-differential equations modeling single-lane road traffic. The cars move in a closed circuit and the system's variables are each car's velocity and the distance to the car ahead. For low and high values of traffic density the system has a stable equilibrium solution, corresponding to the uniform flow. Gradually decreasing the density from high to intermediate values we observe a sequence of supercritical Hopf bifurcations forming multistable limit cycles, corresponding to flow regimes with periodically moving traffic jams. Using an asymptotic technique we find approximately small limit cycles born at Hopf bifurcations and numerically preform their global continuations with decreasing density. For sufficiently large delay the system passes to chaos following the Ruelle-Takens-Newhouse scenario (limit cycles-two-tori-three-tori-chaotic attractors). We find that chaotic and nonchaotic attractors coexist for the same parameter values and that chaotic attractors have a broad multifractal spectrum. (c) 2002 American Institute of Physics.

  10. A cash flow oriented EOQ model under permissible delay in payments

    African Journals Online (AJOL)

    A cash flow oriented EOQ model under permissible delay in payments. RP Tripathi, SS Misra, HS Shukla. Abstract. This study presents an inventory model to determine an optimal ordering policy for non-deteriorating items and timedependent demand rate with delay in payments permitted by the supplier under inflation and ...

  11. Rich dynamics of discrete delay ecological models

    International Nuclear Information System (INIS)

    Peng Mingshu

    2005-01-01

    We study multiple bifurcations and chaotic behavior of a discrete delay ecological model. New form of chaos for the 2-D map is observed: the combination of potential period doubling and reverse period-doubling leads to cascading bubbles

  12. Measuring and Modelling Delays in Robot Manipulators for Temporally Precise Control using Machine Learning

    DEFF Research Database (Denmark)

    Andersen, Thomas Timm; Amor, Heni Ben; Andersen, Nils Axel

    2015-01-01

    and separate. In this paper, we present a data-driven methodology for separating and modelling inherent delays during robot control. We show how both actuation and response delays can be modelled using modern machine learning methods. The resulting models can be used to predict the delays as well...

  13. Distance Dependent Model for the Delay Power Spectrum of In-room Radio Channels

    DEFF Research Database (Denmark)

    Steinböck, Gerhard; Pedersen, Troels; Fleury, Bernard Henri

    2013-01-01

    A model based on experimental observations of the delay power spectrum in closed rooms is proposed. The model includes the distance between the transmitter and the receiver as a parameter which makes it suitable for range based radio localization. The experimental observations motivate the proposed...... model of the delay power spectrum with a primary (early) component and a reverberant component (tail). The primary component is modeled as a Dirac delta function weighted according to an inverse distance power law (d-n). The reverberant component is an exponentially decaying function with onset equal...... to the propagation time between transmitter and receiver. Its power decays exponentially with distance. The proposed model allows for the prediction of e.g. the path loss, mean delay, root mean squared (rms) delay spread, and kurtosis versus the distance. The model predictions are validated by measurements...

  14. Dynamical Analysis of SIR Epidemic Models with Distributed Delay

    Directory of Open Access Journals (Sweden)

    Wencai Zhao

    2013-01-01

    Full Text Available SIR epidemic models with distributed delay are proposed. Firstly, the dynamical behaviors of the model without vaccination are studied. Using the Jacobian matrix, the stability of the equilibrium points of the system without vaccination is analyzed. The basic reproduction number R is got. In order to study the important role of vaccination to prevent diseases, the model with distributed delay under impulsive vaccination is formulated. And the sufficient conditions of globally asymptotic stability of “infection-free” periodic solution and the permanence of the model are obtained by using Floquet’s theorem, small-amplitude perturbation skills, and comparison theorem. Lastly, numerical simulation is presented to illustrate our main conclusions that vaccination has significant effects on the dynamical behaviors of the model. The results can provide effective tactic basis for the practical infectious disease prevention.

  15. Two profitless delays for an SEIRS epidemic disease model with vertical transmission and pulse vaccination

    International Nuclear Information System (INIS)

    Meng Xinzhu; Jiao Jianjun; Chen Lansun

    2009-01-01

    Since the investigation of impulsive delay differential equations is beginning, the literature on delay epidemic models with pulse vaccination is not extensive. In this paper, we propose a new SEIRS epidemic disease model with two profitless delays and vertical transmission, and analyze the dynamics behaviors of the model under pulse vaccination. Using the discrete dynamical system determined by the stroboscopic map, we obtain a 'infection-free' periodic solution, further, show that the 'infection-free' periodic solution is globally attractive when some parameters of the model are under appropriate conditions. Using a new modeling method, we obtain sufficient condition for the permanence of the epidemic model with pulse vaccination. We show that time delays, pulse vaccination and vertical transmission can bring different effects on the dynamics behaviors of the model by numerical analysis. Our results also show the delays are 'profitless'. In this paper, the main feature is to introduce two discrete time delays, vertical transmission and impulse into SEIRS epidemic model and to give pulse vaccination strategies.

  16. Delayed Failure of Hi-Nicalon and Hi-Nicalon S Multi-filament Tows and Single Filaments at Intermediate Temperatures (500 degrees-800 degrees C)

    International Nuclear Information System (INIS)

    Gauthier, W.; Lamon, J.

    2009-01-01

    Previous results have shown that tows of SiC Nicalon fibers are sensitive to the phenomenon of delayed failure, at temperatures below 700 C. The present paper examines the static fatigue of Hi-Nicalon and Hi-Nicalon S when subjected to constant load, at temperatures between 500 and 800 C in air. Multi-filament tows and single filaments were tested. Experimental data show that the rupture times of tows depend on the applied stress according to the conventional power law tσ n =A. In contrast, the stress-rupture time data obtained on single filaments exhibit significant scatter. A model based on slow crack growth in single filaments shows that the stress-rupture of fiber tows follows the conventional time power law. The dependence on temperature was introduced. The model allowed sound calculations of tow lifetimes and characteristics of the slow crack growth phenomenon to be extracted from the tow stress-rupture time data. (authors)

  17. Modelling and tuning for a time-delayed vibration absorber with friction

    Science.gov (United States)

    Zhang, Xiaoxu; Xu, Jian; Ji, Jinchen

    2018-06-01

    This paper presents an integrated analytical and experimental study to the modelling and tuning of a time-delayed vibration absorber (TDVA) with friction. In system modelling, this paper firstly applies the method of averaging to obtain the frequency response function (FRF), and then uses the derived FRF to evaluate the fitness of different friction models. After the determination of the system model, this paper employs the obtained FRF to evaluate the vibration absorption performance with respect to tunable parameters. A significant feature of the TDVA with friction is that its stability is dependent on the excitation parameters. To ensure the stability of the time-delayed control, this paper defines a sufficient condition for stability estimation. Experimental measurements show that the dynamic response of the TDVA with friction can be accurately predicted and the time-delayed control can be precisely achieved by using the modelling and tuning technique provided in this paper.

  18. Influence of delayed neutron parameter calculation accuracy on results of modeled WWER scram experiments

    International Nuclear Information System (INIS)

    Artemov, V.G.; Gusev, V.I.; Zinatullin, R.E.; Karpov, A.S.

    2007-01-01

    Using modeled WWER cram rod drop experiments, performed at the Rostov NPP, as an example, the influence of delayed neutron parameters on the modeling results was investigated. The delayed neutron parameter values were taken from both domestic and foreign nuclear databases. Numerical modeling was carried out on the basis of SAPFIR 9 5andWWERrogram package. Parameters of delayed neutrons were acquired from ENDF/B-VI and BNAB-78 validated data files. It was demonstrated that using delay fraction data from different databases in reactivity meters led to significantly different reactivity results. Based on the results of numerically modeled experiments, delayed neutron parameters providing the best agreement between calculated and measured data were selected and recommended for use in reactor calculations (Authors)

  19. Hopf bifurcation in a delayed reaction-diffusion-advection population model

    Science.gov (United States)

    Chen, Shanshan; Lou, Yuan; Wei, Junjie

    2018-04-01

    In this paper, we investigate a reaction-diffusion-advection model with time delay effect. The stability/instability of the spatially nonhomogeneous positive steady state and the associated Hopf bifurcation are investigated when the given parameter of the model is near the principle eigenvalue of an elliptic operator. Our results imply that time delay can make the spatially nonhomogeneous positive steady state unstable for a reaction-diffusion-advection model, and the model can exhibit oscillatory pattern through Hopf bifurcation. The effect of advection on Hopf bifurcation values is also considered, and our results suggest that Hopf bifurcation is more likely to occur when the advection rate increases.

  20. User Delay Cost Model and Facilities Maintenance Cost Model for a Terminal Control Area : Volume 1. Model Formulation and Demonstration

    Science.gov (United States)

    1978-05-01

    The User Delay Cost Model (UDCM) is a Monte Carlo computer simulation of essential aspects of Terminal Control Area (TCA) air traffic movements that would be affected by facility outages. The model can also evaluate delay effects due to other factors...

  1. Models of the delayed nonlinear Raman response in diatomic gases

    International Nuclear Information System (INIS)

    Palastro, J. P.; Antonsen, T. M. Jr.; Pearson, A.

    2011-01-01

    We examine the delayed response of a diatomic gas to a polarizing laser field with the goal of obtaining computationally efficient methods for use with laser pulse propagation simulations. We demonstrate that for broadband pulses, heavy molecules such as O 2 and N 2 , and typical atmospheric temperatures, the initial delayed response requires only classical physics. The linear kinetic Green's function is derived from the Boltzmann equation and shown to be in excellent agreement with full density-matrix calculations. A straightforward perturbation approach for the fully nonlinear, kinetic impulse response is also presented. With the kinetic theory a reduced fluid model of the diatomic gas' orientation is derived. Transport coefficients are introduced to model the kinetic phase mixing of the delayed response. In addition to computational rapidity, the fluid model provides intuition through the use of familiar macroscopic quantities. Both the kinetic and the fluid descriptions predict a nonlinear steady-state alignment after passage of the laser pulse, which in the fluid model is interpreted as an anisotropic temperature of the diatomic fluid with respect to motion about the polarization axis.

  2. A simple model of carcinogenic mutations with time delay and diffusion.

    Science.gov (United States)

    Piotrowska, Monika Joanna; Foryś, Urszula; Bodnar, Marek; Poleszczuk, Jan

    2013-06-01

    In the paper we consider a system of delay differential equations (DDEs) of Lotka-Volterra type with diffusion reflecting mutations from normal to malignant cells. The model essentially follows the idea of Ahangar and Lin (2003) where mutations in three different environmental conditions, namely favorable, competitive and unfavorable, were considered. We focus on the unfavorable conditions that can result from a given treatment, e.g. chemotherapy. Included delay stands for the interactions between benign and other cells. We compare the dynamics of ODEs system, the system with delay and the system with delay and diffusion. We mainly focus on the dynamics when a positive steady state exists. The system which is globally stable in the case without the delay and diffusion is destabilized by increasing delay, and therefore the underlying kinetic dynamics becomes oscillatory due to a Hopf bifurcation for appropriate values of the delay. This suggests the occurrence of spatially non-homogeneous periodic solutions for the system with the delay and diffusion.

  3. Controlled Nonlinear Stochastic Delay Equations: Part I: Modeling and Approximations

    International Nuclear Information System (INIS)

    Kushner, Harold J.

    2012-01-01

    This two-part paper deals with “foundational” issues that have not been previously considered in the modeling and numerical optimization of nonlinear stochastic delay systems. There are new classes of models, such as those with nonlinear functions of several controls (such as products), each with is own delay, controlled random Poisson measure driving terms, admissions control with delayed retrials, and others. There are two basic and interconnected themes for these models. The first, dealt with in this part, concerns the definition of admissible control. The classical definition of an admissible control as a nonanticipative relaxed control is inadequate for these models and needs to be extended. This is needed for the convergence proofs of numerical approximations for optimal controls as well as to have a well-defined model. It is shown that the new classes of admissible controls do not enlarge the range of the value functions, is closed (together with the associated paths) under weak convergence, and is approximatable by ordinary controls. The second theme, dealt with in Part II, concerns transportation equation representations, and their role in the development of numerical algorithms with much reduced memory and computational requirements.

  4. Development of a subway operation incident delay model using accelerated failure time approaches.

    Science.gov (United States)

    Weng, Jinxian; Zheng, Yang; Yan, Xuedong; Meng, Qiang

    2014-12-01

    This study aims to develop a subway operational incident delay model using the parametric accelerated time failure (AFT) approach. Six parametric AFT models including the log-logistic, lognormal and Weibull models, with fixed and random parameters are built based on the Hong Kong subway operation incident data from 2005 to 2012, respectively. In addition, the Weibull model with gamma heterogeneity is also considered to compare the model performance. The goodness-of-fit test results show that the log-logistic AFT model with random parameters is most suitable for estimating the subway incident delay. First, the results show that a longer subway operation incident delay is highly correlated with the following factors: power cable failure, signal cable failure, turnout communication disruption and crashes involving a casualty. Vehicle failure makes the least impact on the increment of subway operation incident delay. According to these results, several possible measures, such as the use of short-distance and wireless communication technology (e.g., Wifi and Zigbee) are suggested to shorten the delay caused by subway operation incidents. Finally, the temporal transferability test results show that the developed log-logistic AFT model with random parameters is stable over time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Maximal monotone model with delay term of convolution

    Directory of Open Access Journals (Sweden)

    Claude-Henri Lamarque

    2005-01-01

    Full Text Available Mechanical models are governed either by partial differential equations with boundary conditions and initial conditions (e.g., in the frame of continuum mechanics or by ordinary differential equations (e.g., after discretization via Galerkin procedure or directly from the model description with the initial conditions. In order to study dynamical behavior of mechanical systems with a finite number of degrees of freedom including nonsmooth terms (e.g., friction, we consider here problems governed by differential inclusions. To describe effects of particular constitutive laws, we add a delay term. In contrast to previous papers, we introduce delay via a Volterra kernel. We provide existence and uniqueness results by using an Euler implicit numerical scheme; then convergence with its order is established. A few numerical examples are given.

  6. A stochastic delay model for pricing debt and equity: Numerical techniques and applications

    Science.gov (United States)

    Tambue, Antoine; Kemajou Brown, Elisabeth; Mohammed, Salah

    2015-01-01

    Delayed nonlinear models for pricing corporate liabilities and European options were recently developed. Using self-financed strategy and duplication we were able to derive a Random Partial Differential Equation (RPDE) whose solutions describe the evolution of debt and equity values of a corporate in the last delay period interval in the accompanied paper (Kemajou et al., 2012) [14]. In this paper, we provide robust numerical techniques to solve the delayed nonlinear model for the corporate value, along with the corresponding RPDEs modeling the debt and equity values of the corporate. Using financial data from some firms, we forecast and compare numerical solutions from both the nonlinear delayed model and classical Merton model with the real corporate data. From this comparison, it comes up that in corporate finance the past dependence of the firm value process may be an important feature and therefore should not be ignored.

  7. Projects Delay Factors of Saudi Arabia Construction Industry Using PLS-SEM Path Modelling Approach

    Directory of Open Access Journals (Sweden)

    Abdul Rahman Ismail

    2016-01-01

    Full Text Available This paper presents the development of PLS-SEM Path Model of delay factors of Saudi Arabia construction industry focussing on Mecca City. The model was developed and assessed using SmartPLS v3.0 software and it consists of 37 factors/manifests in 7 groups/independent variables and one dependent variable which is delay of the construction projects. The model was rigorously assessed at measurement and structural components and the outcomes found that the model has achieved the required threshold values. At structural level of the model, among the seven groups, the client and consultant group has the highest impact on construction delay with path coefficient β-value of 0.452 and the project management and contract administration group is having the least impact to the construction delay with β-value of 0.016. The overall model has moderate explaining power ability with R2 value of 0.197 for Saudi Arabia construction industry representation. This model will able to assist practitioners in Mecca city to pay more attention in risk analysis for potential construction delay.

  8. Electrical Activity in a Time-Delay Four-Variable Neuron Model under Electromagnetic Induction

    Directory of Open Access Journals (Sweden)

    Keming Tang

    2017-11-01

    Full Text Available To investigate the effect of electromagnetic induction on the electrical activity of neuron, the variable for magnetic flow is used to improve Hindmarsh–Rose neuron model. Simultaneously, due to the existence of time-delay when signals are propagated between neurons or even in one neuron, it is important to study the role of time-delay in regulating the electrical activity of the neuron. For this end, a four-variable neuron model is proposed to investigate the effects of electromagnetic induction and time-delay. Simulation results suggest that the proposed neuron model can show multiple modes of electrical activity, which is dependent on the time-delay and external forcing current. It means that suitable discharge mode can be obtained by selecting the time-delay or external forcing current, which could be helpful for further investigation of electromagnetic radiation on biological neuronal system.

  9. Study on the Calculation Models of Bus Delay at Bays Using Queueing Theory and Markov Chain

    Directory of Open Access Journals (Sweden)

    Feng Sun

    2015-01-01

    Full Text Available Traffic congestion at bus bays has decreased the service efficiency of public transit seriously in China, so it is crucial to systematically study its theory and methods. However, the existing studies lack theoretical model on computing efficiency. Therefore, the calculation models of bus delay at bays are studied. Firstly, the process that buses are delayed at bays is analyzed, and it was found that the delay can be divided into entering delay and exiting delay. Secondly, the queueing models of bus bays are formed, and the equilibrium distribution functions are proposed by applying the embedded Markov chain to the traditional model of queuing theory in the steady state; then the calculation models of entering delay are derived at bays. Thirdly, the exiting delay is studied by using the queueing theory and the gap acceptance theory. Finally, the proposed models are validated using field-measured data, and then the influencing factors are discussed. With these models the delay is easily assessed knowing the characteristics of the dwell time distribution and traffic volume at the curb lane in different locations and different periods. It can provide basis for the efficiency evaluation of bus bays.

  10. STATISTIC MODEL OF DYNAMIC DELAY AND DROPOUT ON CELLULAR DATA NETWORKED CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    MUHAMMAD A. MURTI

    2017-07-01

    Full Text Available Delay and dropout are important parameters influence overall control performance in Networked Control System (NCS. The goal of this research is to find a model of delay and dropout of data communication link in the NCS. Experiments have been done in this research to a water level control of boiler tank as part of the NCS based on internet communication network using High Speed Packet Access (HSPA cellular technology. By this experiments have been obtained closed-loop system response as well as data delay and dropout of data packets. This research contributes on modeling of the NCS which is combination of controlled plant and data communication link. Another contribution is statistical model of delay and dropout on the NCS.

  11. Delayed feedback on the dynamical model of a financial system

    International Nuclear Information System (INIS)

    Son, Woo-Sik; Park, Young-Jai

    2011-01-01

    Research highlights: → Effect of delayed feedbacks on the financial model. → Proof on the occurrence of Hopf bifurcation by local stability analysis. → Numerical bifurcation analysis on delay differential equations. → Observation of supercritical and subcritical Hopf, fold limit cycle, Neimark-Sacker, double Hopf and generalized Hopf bifurcations. - Abstract: We investigate the effect of delayed feedbacks on the financial model, which describes the time variation of the interest rate, the investment demand, and the price index, for establishing the fiscal policy. By local stability analysis, we theoretically prove the occurrences of Hopf bifurcation. Through numerical bifurcation analysis, we obtain the supercritical and subcritical Hopf bifurcation curves which support the theoretical predictions. Moreover, the fold limit cycle and Neimark-Sacker bifurcation curves are detected. We also confirm that the double Hopf and generalized Hopf codimension-2 bifurcation points exist.

  12. Delay Variation Model with RTP Flows Behavior in Accordance with M/D/1 Kendall's Notation

    Directory of Open Access Journals (Sweden)

    Miroslav Voznak

    2010-01-01

    Full Text Available This paper focuses on the design of a mathematical model of end-to-end delay of a VoIP connection, in particular on a delay variation. It describes all partial delay components and mechanisms, its generation, facilities and its mathematical formulations. A new approach to the delay variation model is presented; its validation has been done by an experiment.

  13. Harvesting in delayed food web model with omnivory

    Science.gov (United States)

    Collera, Juancho A.

    2016-02-01

    We consider a tri-trophic community module called intraguild predation (IGP) that includes a prey and its predator which share a common basal resource for their sustenance. The growth of the basal resource in the absence of predation follows the Hutchinson's equation where the delay parameter arises, while functional responses in our model are of Lotka-Volterra type. Moreover, the basal resource is harvested for its economic value with a constant harvesting rate. This work generalizes the previous works on the same model with no harvesting and no time delay. We show that the harvesting rate has to be small enough in order for the equilibria to exist. Moreover, we show that by increasing the delay parameter the stability of the equilibrium solutions may change, and periodic solutions may emerge through Hopf bifurcations. In the case of the positive equilibrium solution, multiple stability switches are obtained, and numerical continuation shows that a stable branch of periodic solutions emerges once the positive equilibrium loses its stability at the first Hopf bifurcation point. This result is important because it gives an alternative for the coexistence of all three species, avoiding extinction of one or more species when the positive equilibrium becomes unstable.

  14. Signal Integrity Analysis in Single and Bundled Carbon Nanotube Interconnects

    International Nuclear Information System (INIS)

    Majumder, M.K.; Pandya, N.D.; Kaushik, B.K.; Manhas, S.K.

    2013-01-01

    Carbon nanotube (CN T) can be considered as an emerging interconnect material in current nano scale regime. They are more promising than other interconnect materials such as Al or Cu because of their robustness to electromigration. This research paper aims to address the crosstalk-related issues (signal integrity) in interconnect lines. Different analytical models of single- (SWCNT), double- (DWCNT), and multiwalled CNTs (MWCNT) are studied to analyze the crosstalk delay at global interconnect lengths. A capacitively coupled three-line bus architecture employing CMOS driver is used for accurate estimation of crosstalk delay. Each line in bus architecture is represented with the equivalent RLC models of single and bundled SWCNT, DWCNT, and MWCNT interconnects. Crosstalk delay is observed at middle line (victim) when it switches in opposite direction with respect to the other two lines (aggressors). Using the data predicted by ITRS 2012, a comparative analysis on the basis of crosstalk delay is performed for bundled SWCNT/DWCNT and single MWCNT interconnects. It is observed that the overall crosstalk delay is improved by 40.92% and 21.37% for single MWCNT in comparison to bundled SWCNT and bundled DWCNT interconnects, respectively.

  15. The ×-BMAP/G/1 Queueing Model: Queue Contents and Delay Analysis

    Directory of Open Access Journals (Sweden)

    Bart Steyaert

    2011-01-01

    Full Text Available We consider a single-server discrete-time queueing system with N sources, where each source is modelled as a correlated Markovian customer arrival process, and the customer service times are generally distributed. We focus on the analysis of the number of customers in the queue, the amount of work in the queue, and the customer delay. For each of these quantities, we will derive an expression for their steady-state probability generating function, and from these results, we derive closed-form expressions for key performance measures such as their mean value, variance, and tail distribution. A lot of emphasis is put on finding closed-form expressions for these quantities that reduce all numerical calculations to an absolute minimum.

  16. A ternary logic model for recurrent neuromime networks with delay.

    Science.gov (United States)

    Hangartner, R D; Cull, P

    1995-07-01

    In contrast to popular recurrent artificial neural network (RANN) models, biological neural networks have unsymmetric structures and incorporate significant delays as a result of axonal propagation. Consequently, biologically inspired neural network models are more accurately described by nonlinear differential-delay equations rather than nonlinear ordinary differential equations (ODEs), and the standard techniques for studying the dynamics of RANNs are wholly inadequate for these models. This paper develops a ternary-logic based method for analyzing these networks. Key to the technique is the realization that a nonzero delay produces a bounded stability region. This result significantly simplifies the construction of sufficient conditions for characterizing the network equilibria. If the network gain is large enough, each equilibrium can be classified as either asymptotically stable or unstable. To illustrate the analysis technique, the swim central pattern generator (CPG) of the sea slug Tritonia diomedea is examined. For wide range of reasonable parameter values, the ternary analysis shows that none of the network equilibria are stable, and thus the network must oscillate. The results show that complex synaptic dynamics are not necessary for pattern generation.

  17. Hopf bifurcation in a environmental defensive expenditures model with time delay

    International Nuclear Information System (INIS)

    Russu, Paolo

    2009-01-01

    In this paper a three-dimensional environmental defensive expenditures model with delay is considered. The model is based on the interactions among visitors V, quality of ecosystem goods E, and capital K, intended as accommodation and entertainment facilities, in Protected Areas (PAs). The tourism user fees (TUFs) are used partly as a defensive expenditure and partly to increase the capital stock. The stability and existence of Hopf bifurcation are investigated. It is that stability switches and Hopf bifurcation occurs when the delay t passes through a sequence of critical values, τ 0 . It has been that the introduction of a delay is a destabilizing process, in the sense that increasing the delay could cause the bio-economics to fluctuate. Formulas about the stability of bifurcating periodic solution and the direction of Hopf bifurcation are exhibited by applying the normal form theory and the center manifold theorem. Numerical simulations are given to illustrate the results.

  18. Framework for determining airport daily departure and arrival delay thresholds: statistical modelling approach.

    Science.gov (United States)

    Wesonga, Ronald; Nabugoomu, Fabian

    2016-01-01

    The study derives a framework for assessing airport efficiency through evaluating optimal arrival and departure delay thresholds. Assumptions of airport efficiency measurements, though based upon minimum numeric values such as 15 min of turnaround time, cannot be extrapolated to determine proportions of delay-days of an airport. This study explored the concept of delay threshold to determine the proportion of delay-days as an expansion of the theory of delay and our previous work. Data-driven approach using statistical modelling was employed to a limited set of determinants of daily delay at an airport. For the purpose of testing the efficacy of the threshold levels, operational data for Entebbe International Airport were used as a case study. Findings show differences in the proportions of delay at departure (μ = 0.499; 95 % CI = 0.023) and arrival (μ = 0.363; 95 % CI = 0.022). Multivariate logistic model confirmed an optimal daily departure and arrival delay threshold of 60 % for the airport given the four probable thresholds {50, 60, 70, 80}. The decision for the threshold value was based on the number of significant determinants, the goodness of fit statistics based on the Wald test and the area under the receiver operating curves. These findings propose a modelling framework to generate relevant information for the Air Traffic Management relevant in planning and measurement of airport operational efficiency.

  19. A Heterogeneous Agent Model of Asspet Price with Three Time Delays

    Directory of Open Access Journals (Sweden)

    Akio Matsumoto

    2016-09-01

    Full Text Available This paper considers a continuous-time heterogeneous agent model ofa ...nancial market with one risky asset, two types of agents (i.e., thefundamentalists and the chartists, and three time delays. The chartistdemand is determined through a nonlinear function of the di¤erence be-tween the current price and a weighted moving average of the delayedprices whereas the fundamentalist demand is governed by the di¤erencebetween the current price and the fundamental value. The asset price dy-namics is described by a nonlinear delay di¤erential equation. Two mainresults are analytically and numerically shown:(i the delay destabilizes the market price and generates cyclic oscillationsaround the equilibrium;(ii under multiple delays, stability loss and gain repeatedly occurs as alength of the delay increases.

  20. Stability and Hopf bifurcation in a delayed competitive web sites model

    International Nuclear Information System (INIS)

    Xiao Min; Cao Jinde

    2006-01-01

    The delayed differential equations modeling competitive web sites, based on the Lotka-Volterra competition equations, are considered. Firstly, the linear stability is investigated. It is found that there is a stability switch for time delay, and Hopf bifurcation occurs when time delay crosses through a critical value. Then the direction and stability of the bifurcated periodic solutions are determined, using the normal form theory and the center manifold reduction. Finally, some numerical simulations are carried out to illustrate the results found

  1. Delay model and performance testing for FPGA carry chain TDC

    International Nuclear Information System (INIS)

    Kang Xiaowen; Liu Yaqiang; Cui Junjian Yang Zhangcan; Jin Yongjie

    2011-01-01

    Time-of-flight (TOF) information would improve the performance of PET (position emission tomography). TDC design is a key technique. It proposed Carry Chain TDC Delay model. Through changing the significant delay parameter of model, paper compared the difference of TDC performance, and finally realized Time-to-Digital Convertor (TDC) based on Carry Chain Method using FPGA EP2C20Q240C8N with 69 ps LSB, max error below 2 LSB. Such result could meet the TOF demand. It also proposed a Coaxial Cable Measuring method for TDC testing, without High-precision test equipment. (authors)

  2. An electronic implementation for Liao's chaotic delayed neuron model with non-monotonous activation function

    International Nuclear Information System (INIS)

    Duan Shukai; Liao Xiaofeng

    2007-01-01

    A new chaotic delayed neuron model with non-monotonously increasing transfer function, called as chaotic Liao's delayed neuron model, was recently reported and analyzed. An electronic implementation of this model is described in detail. At the same time, some methods in circuit design, especially for circuit with time delayed unit and non-monotonously increasing activation unit, are also considered carefully. We find that the dynamical behaviors of the designed circuits are closely similar to the results predicted by numerical experiments

  3. Solving the Linear 1D Thermoelasticity Equations with Pure Delay

    Directory of Open Access Journals (Sweden)

    Denys Ya. Khusainov

    2015-01-01

    Full Text Available We propose a system of partial differential equations with a single constant delay τ>0 describing the behavior of a one-dimensional thermoelastic solid occupying a bounded interval of R1. For an initial-boundary value problem associated with this system, we prove a well-posedness result in a certain topology under appropriate regularity conditions on the data. Further, we show the solution of our delayed model to converge to the solution of the classical equations of thermoelasticity as τ→0. Finally, we deduce an explicit solution representation for the delay problem.

  4. Oscillation and stability of delay models in biology

    CERN Document Server

    Agarwal, Ravi P; Saker, Samir H

    2014-01-01

    Environmental variation plays an important role in many biological and ecological dynamical systems. This monograph focuses on the study of oscillation and the stability of delay models occurring in biology. The book presents recent research results on the qualitative behavior of mathematical models under different physical and environmental conditions, covering dynamics including the distribution and consumption of food. Researchers in the fields of mathematical modeling, mathematical biology, and population dynamics will be particularly interested in this material.

  5. Numerical bifurcation analysis of delay differential equations arising from physiological modeling.

    Science.gov (United States)

    Engelborghs, K; Lemaire, V; Bélair, J; Roose, D

    2001-04-01

    This paper has a dual purpose. First, we describe numerical methods for continuation and bifurcation analysis of steady state solutions and periodic solutions of systems of delay differential equations with an arbitrary number of fixed, discrete delays. Second, we demonstrate how these methods can be used to obtain insight into complex biological regulatory systems in which interactions occur with time delays: for this, we consider a system of two equations for the plasma glucose and insulin concentrations in a diabetic patient subject to a system of external assistance. The model has two delays: the technological delay of the external system, and the physiological delay of the patient's liver. We compute stability of the steady state solution as a function of two parameters, compare with analytical results and compute several branches of periodic solutions and their stability. These numerical results allow to infer two categories of diabetic patients for which the external system has different efficiency.

  6. Delayed repair of the peripheral nerve: a novel model in the rat sciatic nerve.

    Science.gov (United States)

    Wu, Peng; Spinner, Robert J; Gu, Yudong; Yaszemski, Michael J; Windebank, Anthony J; Wang, Huan

    2013-03-30

    Peripheral nerve reconstruction is seldom done in the acute phase of nerve injury due to concomitant injuries and the uncertainty of the extent of nerve damage. A proper model that mimics true clinical scenarios is critical but lacking. The aim of this study is to develop a standardized, delayed sciatic nerve repair model in rats and validate the feasibility of direct secondary neurrorraphy after various delay intervals. Immediately or 1, 4, 6, 8 and 12 weeks after sciatic nerve transection, nerve repair was carried out. A successful tension-free direct neurorraphy (TFDN) was defined when the gap was shorter than 4.0 mm and the stumps could be reapproximated with 10-0 stitches without detachment. Compound muscle action potential (CMAP) was recorded postoperatively. Gaps between the two nerve stumps ranged from 0 to 9 mm, the average being 1.36, 2.85, 3.43, 3.83 and 6.4 mm in rats with 1, 4, 6, 8 and 12 week delay, respectively. The rate of successful TFDN was 78% overall. CMAP values of 1 and 4 week delay groups were not different from the immediate repair group, whereas CMAP amplitudes of 6, 8 and 12 week delay groups were significantly lower. A novel, standardized delayed nerve repair model is established. For this model to be sensitive, the interval between nerve injury and secondary repair should be at least over 4 weeks. Thereafter the longer the delay, the more challenging the model is for nerve regeneration. The choice of delay intervals can be tailored to meet specific requirements in future studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. The Dynamical Behaviors for a Class of Immunogenic Tumor Model with Delay

    Directory of Open Access Journals (Sweden)

    Ping Bi

    2017-01-01

    Full Text Available This paper aims at studying the model proposed by Kuznetsov and Taylor in 1994. Inspired by Mayer et al., time delay is introduced in the general model. The dynamic behaviors of this model are studied, which include the existence and stability of the equilibria and Hopf bifurcation of the model with discrete delays. The properties of the bifurcated periodic solutions are studied by using the normal form on the center manifold. Numerical examples and simulations are given to illustrate the bifurcation analysis and the obtained results.

  8. Impact of delay on disease outbreak in a spatial epidemic model

    Science.gov (United States)

    Zhao, Xia-Xia; Wang, Jian-Zhong

    2015-04-01

    One of the central issues in studying epidemic spreading is the mechanism on disease outbreak. In this paper, we investigate the effects of time delay on disease outbreak in spatial epidemics based on a reaction-diffusion model. By mathematical analysis and numerical simulations, we show that when time delay is more than a critical value, the disease outbreaks. The obtained results show that the time delay is an important factor in the spread of the disease, which may provide new insights on disease control.

  9. Delay time in a single barrier for a movable quantum shutter

    International Nuclear Information System (INIS)

    Hernandez, Alberto

    2010-01-01

    The transient solution and delay time for a δ potential scatterer with a movable quantum shutter is calculated by solving analytically the time-dependent Schroedinger equation. The delay time is analyzed as a function of the distance between the shutter and the potential barrier and also as a function of the distance between the potential barrier and the detector. In both cases, it is found that the delay time exhibits a dynamical behavior and that it tends to a saturation value Δt sat in the limit of very short distances, which represents the maximum delay produced by the potential barrier near the interaction region. The phase time τ θ , on the other hand, is not an appropriate time scale for measuring the time delay near the interaction region, except if the shutter is moved far away from the potential. The role played by the antibound state of the system on the behavior of the delay time is also discussed.

  10. Stability analysis for a delay differential equations model of a hydraulic turbine speed governor

    Science.gov (United States)

    Halanay, Andrei; Safta, Carmen A.; Dragoi, Constantin; Piraianu, Vlad F.

    2017-01-01

    The paper aims to study the dynamic behavior of a speed governor for a hydraulic turbine using a mathematical model. The nonlinear mathematical model proposed consists in a system of delay differential equations (DDE) to be compared with already established mathematical models of ordinary differential equations (ODE). A new kind of nonlinearity is introduced as a time delay. The delays can characterize different running conditions of the speed governor. For example, it is considered that spool displacement of hydraulic amplifier might be blocked due to oil impurities in the oil supply system and so the hydraulic amplifier has a time delay in comparison to the time control. Numerical simulations are presented in a comparative manner. A stability analysis of the hydraulic control system is performed, too. Conclusions of the dynamic behavior using the DDE model of a hydraulic turbine speed governor are useful in modeling and controlling hydropower plants.

  11. New Results on Robust Model Predictive Control for Time-Delay Systems with Input Constraints

    Directory of Open Access Journals (Sweden)

    Qing Lu

    2014-01-01

    Full Text Available This paper investigates the problem of model predictive control for a class of nonlinear systems subject to state delays and input constraints. The time-varying delay is considered with both upper and lower bounds. A new model is proposed to approximate the delay. And the uncertainty is polytopic type. For the state-feedback MPC design objective, we formulate an optimization problem. Under model transformation, a new model predictive controller is designed such that the robust asymptotical stability of the closed-loop system can be guaranteed. Finally, the applicability of the presented results are demonstrated by a practical example.

  12. Analysis of actuator delay and its effect on uncertainty quantification for real-time hybrid simulation

    Science.gov (United States)

    Chen, Cheng; Xu, Weijie; Guo, Tong; Chen, Kai

    2017-10-01

    Uncertainties in structure properties can result in different responses in hybrid simulations. Quantification of the effect of these uncertainties would enable researchers to estimate the variances of structural responses observed from experiments. This poses challenges for real-time hybrid simulation (RTHS) due to the existence of actuator delay. Polynomial chaos expansion (PCE) projects the model outputs on a basis of orthogonal stochastic polynomials to account for influences of model uncertainties. In this paper, PCE is utilized to evaluate effect of actuator delay on the maximum displacement from real-time hybrid simulation of a single degree of freedom (SDOF) structure when accounting for uncertainties in structural properties. The PCE is first applied for RTHS without delay to determine the order of PCE, the number of sample points as well as the method for coefficients calculation. The PCE is then applied to RTHS with actuator delay. The mean, variance and Sobol indices are compared and discussed to evaluate the effects of actuator delay on uncertainty quantification for RTHS. Results show that the mean and the variance of the maximum displacement increase linearly and exponentially with respect to actuator delay, respectively. Sensitivity analysis through Sobol indices also indicates the influence of the single random variable decreases while the coupling effect increases with the increase of actuator delay.

  13. Bifurcation and stability of an improved time-delayed fluid flow model in internet congestion control

    International Nuclear Information System (INIS)

    Yu-Liang, Liu; Jie, Zhu; Xiao-Shu, Luo

    2009-01-01

    Based on the fluid flow time-delayed model proposed by Misra et al in internet congestion control, one modified time-delayed model is presented, where the influence of the communication delay on the router queue length is investigated in detail. The main advantage of the new model is that its stability domain is larger even without an extra controller. By linear stability analysis and numerical simulation, the effectiveness and feasibility of the novel model in internet congestion control are verified

  14. Bifurcation and stability of an improved time-delayed fluid flow model in internet congestion control

    Science.gov (United States)

    Liu, Yu-Liang; Zhu, Jie; Luo, Xiao-Shu

    2009-09-01

    Based on the fluid flow time-delayed model proposed by Misra et al in internet congestion control, one modified time-delayed model is presented, where the influence of the communication delay on the router queue length is investigated in detail. The main advantage of the new model is that its stability domain is larger even without an extra controller. By linear stability analysis and numerical simulation, the effectiveness and feasibility of the novel model in internet congestion control are verified.

  15. Persistence and extinction for a stochastic logistic model with infinite delay

    Directory of Open Access Journals (Sweden)

    Chun Lu

    2013-11-01

    Full Text Available This article, studies a stochastic logistic model with infinite delay. Using a phase space, we establish sufficient conditions for the extinction, nonpersistence in the mean, weak persistence, and stochastic permanence. A threshold between weak persistence and extinction is obtained. Our results state that different types of environmental noises have different effects on the persistence and extinction, and that the delay has no impact on the persistence and extinction for the stochastic model in the autonomous case. Numerical simulations illustrate the theoretical results.

  16. Dynamics of a delayed business cycle model with general investment function

    International Nuclear Information System (INIS)

    Riad, Driss; Hattaf, Khalid; Yousfi, Noura

    2016-01-01

    Highlights: • A delayed business cycle model is formulated and rigorously analyzed. • Well-posedness of the model and local stability of the economic equilibrium are determined. • Direction and stability of the Hopf bifurcation are investigated. • Global existence of bifurcating periodic solutions is established. • Numerical simulations are presented to illustrate our theoretical results. - Abstract: The aim of this paper is to study the dynamics of a delayed business cycle model with general investment function. The model describes the interaction of the gross product and capital stock. Furthermore, the delay represents the time between the decision of investment and implementation. Firstly, we show that the model is well posed by proving the global existence and boundedness of solutions. Secondly, we determine the economic equilibrium of the model. By analyzing the characteristic equation, we investigate the stability of the economic equilibrium and the local existence of Hopf bifurcation. Also, the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by applying the normal form method and center manifold theory. Moreover, the global existence of bifurcating periodic solutions is established by using the global Hopf bifurcation theory. Finally, our theoretical results are illustrated with some numerical simulations.

  17. Global model of zenith tropospheric delay proposed based on EOF analysis

    Science.gov (United States)

    Sun, Langlang; Chen, Peng; Wei, Erhu; Li, Qinzheng

    2017-07-01

    Tropospheric delay is one of the main error budgets in Global Navigation Satellite System (GNSS) measurements. Many empirical correction models have been developed to compensate this delay, and models which do not require meteorological parameters have received the most attention. This study established a global troposphere zenith total delay (ZTD) model, called Global Empirical Orthogonal Function Troposphere (GEOFT), based on the empirical orthogonal function (EOF, also known as geographically weighted PCAs) analysis method and the Global Geodetic Observing System (GGOS) Atmosphere data from 2012 to 2015. The results showed that ZTD variation could be well represented by the characteristics of the EOF base function Ek and associated coefficients Pk. Here, E1 mainly signifies the equatorial anomaly; E2 represents north-south asymmetry, and E3 and E4 reflects regional variation. Moreover, P1 mainly reflects annual and semiannual variation components; P2 and P3 mainly contains annual variation components, and P4 displays semiannual variation components. We validated the proposed GEOFT model using tropospheric delay data of GGOS ZTD grid data and the tropospheric product of the International GNSS Service (IGS) over the year 2016. The results showed that GEOFT model has high accuracy with bias and RMS of -0.3 and 3.9 cm, respectively, with respect to the GGOS ZTD data, and of -0.8 and 4.1 cm, respectively, with respect to the global IGS tropospheric product. The accuracy of GEOFT demonstrating that the use of the EOF analysis method to characterize ZTD variation is reasonable.

  18. Stability switches, Hopf bifurcation and chaos of a neuron model with delay-dependent parameters

    International Nuclear Information System (INIS)

    Xu, X.; Hu, H.Y.; Wang, H.L.

    2006-01-01

    It is very common that neural network systems usually involve time delays since the transmission of information between neurons is not instantaneous. Because memory intensity of the biological neuron usually depends on time history, some of the parameters may be delay dependent. Yet, little attention has been paid to the dynamics of such systems. In this Letter, a detailed analysis on the stability switches, Hopf bifurcation and chaos of a neuron model with delay-dependent parameters is given. Moreover, the direction and the stability of the bifurcating periodic solutions are obtained by the normal form theory and the center manifold theorem. It shows that the dynamics of the neuron model with delay-dependent parameters is quite different from that of systems with delay-independent parameters only

  19. Development and validation of double and single Wiebe function for multi-injection mode Diesel engine combustion modelling for hardware-in-the-loop applications

    International Nuclear Information System (INIS)

    Maroteaux, Fadila; Saad, Charbel; Aubertin, Fabrice

    2015-01-01

    Highlights: • Modelling of Diesel engine combustion with multi-injection mode was conducted. • Double and single Wiebe correlations for pilot, main and post combustion processes were calibrated. • Ignition delay time correlations have been developed and calibrated using experimental data for each injection. • The complete in-cylinder model has been applied successfully to real time simulations on HiL test bed. - Abstract: The improvement of Diesel engine performances in terms of fuel consumption and pollutant emissions has a huge impact on management system and diagnostic procedure. Validation and testing of engine performances can benefit from the use of theoretical models, for the reduction of development time and costs. Hardware in the Loop (HiL) test bench is a suitable way to achieve these objectives. However, the increasing complexity of management systems rises challenges for the development of very reduced physical models able to run in real time applications. This paper presents an extension of a previously developed phenomenological Diesel combustion model suitable for real time applications on a HiL test bench. In the earlier study, the modelling efforts have been targeted at high engine speeds with a very short computational time window, and where the engine operates with single injection. In the present work, a modelling of in-cylinder processes at low and medium engine speeds with multi-injection is performed. In order to reach an adequate computational time, the combustion progress during the pilot and main injection periods has been treated through a double Wiebe function, while the post combustion period has required a single Wiebe function. This paper describes the basic system models and their calibration and validation against experimental data. The use of the developed correlations of Wiebe coefficients and ignition delay times for each combustion phase, included in the in-cylinder crank angle global model, is applied for the prediction

  20. Two-actor conflict with time delay: A dynamical model

    Science.gov (United States)

    Qubbaj, Murad R.; Muneepeerakul, Rachata

    2012-11-01

    Recent mathematical dynamical models of the conflict between two different actors, be they nations, groups, or individuals, have been developed that are capable of predicting various outcomes depending on the chosen feedback strategies, initial conditions, and the previous states of the actors. In addition to these factors, this paper examines the effect of time delayed feedback on the conflict dynamics. Our analysis shows that under certain initial and feedback conditions, a stable neutral equilibrium of conflict may destabilize for some critical values of time delay, and the two actors may evolve to new emotional states. We investigate the results by constructing critical delay surfaces for different sets of parameters and analyzing results from numerical simulations. These results provide new insights regarding conflict and conflict resolution and may help planners in adjusting and assessing their strategic decisions.

  1. Supply chain model with price- and trade credit-sensitive demand under two-level permissible delay in payments

    Science.gov (United States)

    Giri, B. C.; Maiti, T.

    2013-05-01

    This article develops a single-manufacturer and single-retailer supply chain model under two-level permissible delay in payments when the manufacturer follows a lot-for-lot policy in response to the retailer's demand. The manufacturer offers a trade credit period to the retailer with the contract that the retailer must share a fraction of the profit earned during the trade credit period. On the other hand, the retailer provides his customer a partial trade credit which is less than that of the manufacturer. The demand at the retailer is assumed to be dependent on the selling price and the trade credit period offered to the customers. The average net profit of the supply chain is derived and an algorithm for finding the optimal solution is developed. Numerical examples are given to demonstrate the coordination policy of the supply chain and examine the sensitivity of key model-parameters.

  2. Hydrodynamic Cucker-Smale model with normalized communication weights and time delay

    KAUST Repository

    Choi, Young-Pil

    2017-07-17

    We study a hydrodynamic Cucker-Smale-type model with time delay in communication and information processing, in which agents interact with each other through normalized communication weights. The model consists of a pressureless Euler system with time delayed non-local alignment forces. We resort to its Lagrangian formulation and prove the existence of its global in time classical solutions. Moreover, we derive a sufficient condition for the asymptotic flocking behavior of the solutions. Finally, we show the presence of a critical phenomenon for the Eulerian system posed in the spatially one-dimensional setting.

  3. The threshold of a stochastic delayed SIR epidemic model with vaccination

    Science.gov (United States)

    Liu, Qun; Jiang, Daqing

    2016-11-01

    In this paper, we study the threshold dynamics of a stochastic delayed SIR epidemic model with vaccination. We obtain sufficient conditions for extinction and persistence in the mean of the epidemic. The threshold between persistence in the mean and extinction of the stochastic system is also obtained. Compared with the corresponding deterministic model, the threshold affected by the white noise is smaller than the basic reproduction number Rbar0 of the deterministic system. Results show that time delay has important effects on the persistence and extinction of the epidemic.

  4. Real-time traffic signal optimization model based on average delay time per person

    Directory of Open Access Journals (Sweden)

    Pengpeng Jiao

    2015-10-01

    Full Text Available Real-time traffic signal control is very important for relieving urban traffic congestion. Many existing traffic control models were formulated using optimization approach, with the objective functions of minimizing vehicle delay time. To improve people’s trip efficiency, this article aims to minimize delay time per person. Based on the time-varying traffic flow data at intersections, the article first fits curves of accumulative arrival and departure vehicles, as well as the corresponding functions. Moreover, this article transfers vehicle delay time to personal delay time using average passenger load of cars and buses, employs such time as the objective function, and proposes a signal timing optimization model for intersections to achieve real-time signal parameters, including cycle length and green time. This research further implements a case study based on practical data collected at an intersection in Beijing, China. The average delay time per person and queue length are employed as evaluation indices to show the performances of the model. The results show that the proposed methodology is capable of improving traffic efficiency and is very effective for real-world applications.

  5. Alternans promotion in cardiac electrophysiology models by delay differential equations.

    Science.gov (United States)

    Gomes, Johnny M; Dos Santos, Rodrigo Weber; Cherry, Elizabeth M

    2017-09-01

    Cardiac electrical alternans is a state of alternation between long and short action potentials and is frequently associated with harmful cardiac conditions. Different dynamic mechanisms can give rise to alternans; however, many cardiac models based on ordinary differential equations are not able to reproduce this phenomenon. A previous study showed that alternans can be induced by the introduction of delay differential equations (DDEs) in the formulations of the ion channel gating variables of a canine myocyte model. The present work demonstrates that this technique is not model-specific by successfully promoting alternans using DDEs for five cardiac electrophysiology models that describe different types of myocytes, with varying degrees of complexity. By analyzing results across the different models, we observe two potential requirements for alternans promotion via DDEs for ionic gates: (i) the gate must have a significant influence on the action potential duration and (ii) a delay must significantly impair the gate's recovery between consecutive action potentials.

  6. Alternans promotion in cardiac electrophysiology models by delay differential equations

    Science.gov (United States)

    Gomes, Johnny M.; dos Santos, Rodrigo Weber; Cherry, Elizabeth M.

    2017-09-01

    Cardiac electrical alternans is a state of alternation between long and short action potentials and is frequently associated with harmful cardiac conditions. Different dynamic mechanisms can give rise to alternans; however, many cardiac models based on ordinary differential equations are not able to reproduce this phenomenon. A previous study showed that alternans can be induced by the introduction of delay differential equations (DDEs) in the formulations of the ion channel gating variables of a canine myocyte model. The present work demonstrates that this technique is not model-specific by successfully promoting alternans using DDEs for five cardiac electrophysiology models that describe different types of myocytes, with varying degrees of complexity. By analyzing results across the different models, we observe two potential requirements for alternans promotion via DDEs for ionic gates: (i) the gate must have a significant influence on the action potential duration and (ii) a delay must significantly impair the gate's recovery between consecutive action potentials.

  7. Bifurcation and Stability in a Delayed Predator-Prey Model with Mixed Functional Responses

    Science.gov (United States)

    Yafia, R.; Aziz-Alaoui, M. A.; Merdan, H.; Tewa, J. J.

    2015-06-01

    The model analyzed in this paper is based on the model set forth by Aziz Alaoui et al. [Aziz Alaoui & Daher Okiye, 2003; Nindjin et al., 2006] with time delay, which describes the competition between the predator and prey. This model incorporates a modified version of the Leslie-Gower functional response as well as that of Beddington-DeAngelis. In this paper, we consider the model with one delay consisting of a unique nontrivial equilibrium E* and three others which are trivial. Their dynamics are studied in terms of local and global stabilities and of the description of Hopf bifurcation at E*. At the third trivial equilibrium, the existence of the Hopf bifurcation is proven as the delay (taken as a parameter of bifurcation) that crosses some critical values.

  8. Hopf Bifurcation and Delay-Induced Turing Instability in a Diffusive lac Operon Model

    Science.gov (United States)

    Cao, Xin; Song, Yongli; Zhang, Tonghua

    In this paper, we investigate the dynamics of a lac operon model with delayed feedback and diffusion effect. If the system is without delay or the delay is small, the positive equilibrium is stable so that there are no spatial patterns formed; while the time delay is large enough the equilibrium becomes unstable so that rich spatiotemporal dynamics may occur. We have found that time delay can not only incur temporal oscillations but also induce imbalance in space. With different initial values, the system may have different spatial patterns, for instance, spirals with one head, four heads, nine heads, and even microspirals.

  9. A scheme to expand the delay-bandwidth product in the resonator-based delay lines by optical OFDM technique

    DEFF Research Database (Denmark)

    Zhu, Jiangbo; Tao, Li; Zhang, Ziran

    2013-01-01

    We propose a novel scheme to expand the inherent limit in the product of the optical delay and the transmission bandwidth in resonator-based delay lines, with the optical orthogonal frequency division multiplexing (OOFDM) technique. The optical group delay properties of a single ring resonator we...

  10. Stability Analysis of Nonlinear Time–Delayed Systems with Application to Biological Models

    Directory of Open Access Journals (Sweden)

    Kruthika H.A.

    2017-03-01

    Full Text Available In this paper, we analyse the local stability of a gene-regulatory network and immunotherapy for cancer modelled as nonlinear time-delay systems. A numerically generated kernel, using the sum-of-squares decomposition of multivariate polynomials, is used in the construction of an appropriate Lyapunov–Krasovskii functional for stability analysis of the networks around an equilibrium point. This analysis translates to verifying equivalent LMI conditions. A delay-independent asymptotic stability of a second-order model of a gene regulatory network, taking into consideration multiple commensurate delays, is established. In the case of cancer immunotherapy, a predator–prey type model is adopted to describe the dynamics with cancer cells and immune cells contributing to the predator–prey population, respectively. A delay-dependent asymptotic stability of the cancer-free equilibrium point is proved. Apart from the system and control point of view, in the case of gene-regulatory networks such stability analysis of dynamics aids mimicking gene networks synthetically using integrated circuits like neurochips learnt from biological neural networks, and in the case of cancer immunotherapy it helps determine the long-term outcome of therapy and thus aids oncologists in deciding upon the right approach.

  11. Hopf bifurcation of a free boundary problem modeling tumor growth with two time delays

    International Nuclear Information System (INIS)

    Xu Shihe

    2009-01-01

    In this paper, a free boundary problem modeling tumor growth with two discrete delays is studied. The delays respectively represents the time taken for cells to undergo mitosis and the time taken for the cell to modify the rate of cell loss due to apoptosis. We show the influence of time delays on the Hopf bifurcation when one of delays as a bifurcation parameter.

  12. Hopf bifurcation in love dynamical models with nonlinear couples and time delays

    International Nuclear Information System (INIS)

    Liao Xiaofeng; Ran Jiouhong

    2007-01-01

    A love dynamical models with nonlinear couples and two delays is considered. Local stability of this model is studied by analyzing the associated characteristic transcendental equation. We find that the Hopf bifurcation occurs when the sum of the two delays varies and passes a sequence of critical values. The stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the center manifold theorem. Numerical example is given to illustrate our results

  13. Reward acts as a signal to control delay-period activity in delayed-response tasks.

    Science.gov (United States)

    Ichihara-Takeda, Satoe; Takeda, Kazuyoshi; Funahashi, Shintaro

    2010-03-31

    Prefrontal delay-period activity represents a neural mechanism for the active maintenance of information and needs to be controlled by some signal to appropriately operate working memory. To examine whether reward-delivery acts as this signal, the effects of delay-period activity in response to unexpected reward-delivery were examined by analyzing single-neuron activity recorded in the primate dorsolateral prefrontal cortex. Among neurons that showed delay-period activity, 34% showed inhibition of this activity in response to unexpected reward-delivery. The delay-period activity of these neurons was affected by the expectation of reward-delivery. The strength of the reward signal in controlling the delay-period activity is related to the strength of the effect of reward information on the delay-period activity. These results indicate that reward-delivery acts as a signal to control delay-period activity.

  14. Knock Prediction Using a Simple Model for Ignition Delay

    KAUST Repository

    Kalghatgi, Gautam

    2016-04-05

    An earlier paper has shown the ability to predict the phasing of knock onset in a gasoline PFI engine using a simple ignition delay equation for an appropriate surrogate fuel made up of toluene and PRF (TPRF). The applicability of this approach is confirmed in this paper in a different engine using five different fuels of differing RON, sensitivity, and composition - including ethanol blends. An Arrhenius type equation with a pressure correction for ignition delay can be found from interpolation of previously published data for any gasoline if its RON and sensitivity are known. Then, if the pressure and temperature in the unburned gas can be estimated or measured, the Livengood-Wu integral can be estimated as a function of crank angle to predict the occurrence of knock. Experiments in a single cylinder DISI engine over a wide operating range confirm that this simple approach can predict knock very accurately. The data presented should enable engineers to study knock or other auto-ignition phenomena e.g. in premixed compression ignition (PCI) engines without explicit chemical kinetic calculations. © Copyright 2016 SAE International.

  15. Analysis of deterministic cyclic gene regulatory network models with delays

    CERN Document Server

    Ahsen, Mehmet Eren; Niculescu, Silviu-Iulian

    2015-01-01

    This brief examines a deterministic, ODE-based model for gene regulatory networks (GRN) that incorporates nonlinearities and time-delayed feedback. An introductory chapter provides some insights into molecular biology and GRNs. The mathematical tools necessary for studying the GRN model are then reviewed, in particular Hill functions and Schwarzian derivatives. One chapter is devoted to the analysis of GRNs under negative feedback with time delays and a special case of a homogenous GRN is considered. Asymptotic stability analysis of GRNs under positive feedback is then considered in a separate chapter, in which conditions leading to bi-stability are derived. Graduate and advanced undergraduate students and researchers in control engineering, applied mathematics, systems biology and synthetic biology will find this brief to be a clear and concise introduction to the modeling and analysis of GRNs.

  16. A Discrete Model for HIV Infection with Distributed Delay

    Directory of Open Access Journals (Sweden)

    Brahim EL Boukari

    2014-01-01

    Full Text Available We give a consistent discretization of a continuous model of HIV infection, with distributed time delays to express the lag between the times when the virus enters a cell and when the cell becomes infected. The global stability of the steady states of the model is determined and numerical simulations are presented to illustrate our theoretical results.

  17. An integrated model of statistical process control and maintenance based on the delayed monitoring

    International Nuclear Information System (INIS)

    Yin, Hui; Zhang, Guojun; Zhu, Haiping; Deng, Yuhao; He, Fei

    2015-01-01

    This paper develops an integrated model of statistical process control and maintenance decision. The proposal of delayed monitoring policy postpones the sampling process till a scheduled time and contributes to ten-scenarios of the production process, where equipment failure may occur besides quality shift. The equipment failure and the control chart alert trigger the corrective maintenance and the predictive maintenance, respectively. The occurrence probability, the cycle time and the cycle cost of each scenario are obtained by integral calculation; therefore, a mathematical model is established to minimize the expected cost by using the genetic algorithm. A Monte Carlo simulation experiment is conducted and compared with the integral calculation in order to ensure the analysis of the ten-scenario model. Another ordinary integrated model without delayed monitoring is also established as comparison. The results of a numerical example indicate satisfactory economic performance of the proposed model. Finally, a sensitivity analysis is performed to investigate the effect of model parameters. - Highlights: • We develop an integrated model of statistical process control and maintenance. • We propose delayed monitoring policy and derive an economic model with 10 scenarios. • We consider two deterioration mechanisms, quality shift and equipment failure. • The delayed monitoring policy will help reduce the expected cost

  18. Source of single photons and interferometry with one photon. From the Young's slit experiment to the delayed choice

    International Nuclear Information System (INIS)

    Jacques, V.

    2007-11-01

    This manuscript is divided in two independent parts. In the first part, we study the wave-particle duality for a single photon emitted by the triggered photoluminescence of a single NV color center in a diamond nano-crystal. We first present the realization of a single-photon interference experiment using a Fresnel's bi-prism, in a scheme equivalent to the standard Young's double-slit textbook experiment. We then discuss the complementarity between interference and which-path information in this two-path interferometer. We finally describe the experimental realization of Wheeler's delayed-choice Gedanken experiment, which is a fascinating and subtle illustration of wave-particle duality. The second part of the manuscript is devoted to the efficiency improvement of single-photon sources. We first describe the implementation of a new single-photon source based on the photoluminescence of a single nickel-related defect center in diamond. The photophysical properties of such defect make this single-photon source well adapted to open-air quantum cryptography. We finally demonstrate an original method that leads to an improvement of single-molecule photo stability at room temperature. (author)

  19. A new model for deteriorating items with inflation under permissible delay in payments

    Directory of Open Access Journals (Sweden)

    R.P. Tripathi

    2014-05-01

    Full Text Available Inflation is an important factor influencing traditional economic order quality models. Marketing strategy depends on inflation due to public demand and availability of the materials. This paper presents an optimal inventory policy for deteriorating items using exponential demand rate under permissible delay in payments. Mathematical model has been derived under two cases: case I: cycle time is greater than or equal to permissible delay period, case II: cycle time is less than permissible delay period by considering holding cost as a function of time. Numerical examples and sensitivity analysis are given to reflect the numerical results. Mathematica software is used for finding optimal solutions.

  20. Periodic and chaotic oscillations in a tumor and immune system interaction model with three delays

    International Nuclear Information System (INIS)

    Bi, Ping; Ruan, Shigui; Zhang, Xinan

    2014-01-01

    In this paper, a tumor and immune system interaction model consisted of two differential equations with three time delays is considered in which the delays describe the proliferation of tumor cells, the process of effector cells growth stimulated by tumor cells, and the differentiation of immune effector cells, respectively. Conditions for the asymptotic stability of equilibria and existence of Hopf bifurcations are obtained by analyzing the roots of a second degree exponential polynomial characteristic equation with delay dependent coefficients. It is shown that the positive equilibrium is asymptotically stable if all three delays are less than their corresponding critical values and Hopf bifurcations occur if any one of these delays passes through its critical value. Numerical simulations are carried out to illustrate the rich dynamical behavior of the model with different delay values including the existence of regular and irregular long periodic oscillations

  1. Dynamical Behaviors in Complex-Valued Love Model With or Without Time Delays

    Science.gov (United States)

    Deng, Wei; Liao, Xiaofeng; Dong, Tao

    2017-12-01

    In this paper, a novel version of nonlinear model, i.e. a complex-valued love model with two time delays between two individuals in a love affair, has been proposed. A notable feature in this model is that we separate the emotion of one individual into real and imaginary parts to represent the variation and complexity of psychophysiological emotion in romantic relationship instead of just real domain, and make our model much closer to reality. This is because love is a complicated cognitive and social phenomenon, full of complexity, diversity and unpredictability, which refers to the coexistence of different aspects of feelings, states and attitudes ranging from joy and trust to sadness and disgust. By analyzing associated characteristic equation of linearized equations for our model, it is found that the Hopf bifurcation occurs when the sum of time delays passes through a sequence of critical value. Stability of bifurcating cyclic love dynamics is also derived by applying the normal form theory and the center manifold theorem. In addition, it is also shown that, for some appropriate chosen parameters, chaotic behaviors can appear even without time delay.

  2. Persistence and extinction for a stochastic logistic model with infinite delay

    OpenAIRE

    Chun Lu; Xiaohua Ding

    2013-01-01

    This article, studies a stochastic logistic model with infinite delay. Using a phase space, we establish sufficient conditions for the extinction, nonpersistence in the mean, weak persistence, and stochastic permanence. A threshold between weak persistence and extinction is obtained. Our results state that different types of environmental noises have different effects on the persistence and extinction, and that the delay has no impact on the persistence and ext...

  3. User Delay Cost Model and Facilities Maintenance Cost Model for a Terminal Control Area : Volume 2. User's Manual and Program Documentation for the User Delay Cost Model

    Science.gov (United States)

    1978-05-01

    The User Delay Cost Model (UDCM) is a Monte Carlo simulation of certain classes of movement of air traffic in the Boston Terminal Control Area (TCA). It incorporates a weather module, an aircraft generation module, a facilities module, and an air con...

  4. Dynamic Delayed Duplicate Detection for External Memory Model Checking

    DEFF Research Database (Denmark)

    Evangelista, Sami

    2008-01-01

    Duplicate detection is an expensive operation of disk-based model checkers. It consists of comparing some potentially new states, the candidate states, to previous visited states. We propose a new approach to this technique called dynamic delayed duplicate detection. This one exploits some typical...

  5. Bifurcation analysis of a delay differential equation model associated with the induction of long-term memory

    International Nuclear Information System (INIS)

    Hao, Lijie; Yang, Zhuoqin; Lei, Jinzhi

    2015-01-01

    Highlights: • A delay differentiation equation model for CREB regulation is developed. • Increasing the time delay can generate various bifurcations. • Increasing the time delay can induce chaos by two routes. - Abstract: The ability to form long-term memories is an important function for the nervous system, and the formation process is dynamically regulated through various transcription factors, including CREB proteins. In this paper, we investigate the dynamics of a delay differential equation model for CREB protein activities, which involves two positive and two negative feedbacks in the regulatory network. We discuss the dynamical mechanisms underlying the induction of long-term memory, in which bistability is essential for the formation of long-term memory, while long time delay can destabilize the high level steady state to inhibit the long-term memory formation. The model displays rich dynamical response to stimuli, including monostability, bistability, and oscillations, and can transit between different states by varying the negative feedback strength. Introduction of a time delay to the model can generate various bifurcations such as Hopf bifurcation, fold limit cycle bifurcation, Neimark–Sacker bifurcation of cycles, and period-doubling bifurcation, etc. Increasing the time delay can induce chaos by two routes: quasi-periodic route and period-doubling cascade.

  6. Global stability for infectious disease models that include immigration of infected individuals and delay in the incidence

    Directory of Open Access Journals (Sweden)

    Chelsea Uggenti

    2018-03-01

    Full Text Available We begin with a detailed study of a delayed SI model of disease transmission with immigration into both classes. The incidence function allows for a nonlinear dependence on the infected population, including mass action and saturating incidence as special cases. Due to the immigration of infectives, there is no disease-free equilibrium and hence no basic reproduction number. We show there is a unique endemic equilibrium and that this equilibrium is globally asymptotically stable for all parameter values. The results include vector-style delay and latency-style delay. Next, we show that previous global stability results for an SEI model and an SVI model that include immigration of infectives and non-linear incidence but not delay can be extended to systems with vector-style delay and latency-style delay.

  7. GPS, BDS and Galileo ionospheric correction models: An evaluation in range delay and position domain

    Science.gov (United States)

    Wang, Ningbo; Li, Zishen; Li, Min; Yuan, Yunbin; Huo, Xingliang

    2018-05-01

    The performance of GPS Klobuchar (GPSKlob), BDS Klobuchar (BDSKlob) and NeQuick Galileo (NeQuickG) ionospheric correction models are evaluated in the range delay and position domains over China. The post-processed Klobuchar-style (CODKlob) coefficients provided by the Center for Orbit Determination in Europe (CODE) and our own fitted NeQuick coefficients (NeQuickC) are also included for comparison. In the range delay domain, BDS total electrons contents (TEC) derived from 20 international GNSS Monitoring and Assessment System (iGMAS) stations and GPS TEC obtained from 35 Crust Movement Observation Network of China (CMONC) stations are used as references. Compared to BDS TEC during the short period (doy 010-020, 2015), GPSKlob, BDSKlob and NeQuickG can correct 58.4, 66.7 and 54.7% of the ionospheric delay. Compared to GPS TEC for the long period (doy 001-180, 2015), the three ionospheric models can mitigate the ionospheric delay by 64.8, 65.4 and 68.1%, respectively. For the two comparison cases, CODKlob shows the worst performance, which only reduces 57.9% of the ionospheric range errors. NeQuickC exhibits the best performance, which outperforms GPSKlob, BDSKlob and NeQuickG by 6.7, 2.1 and 6.9%, respectively. In the position domain, single-frequency stand point positioning (SPP) was conducted at the selected 35 CMONC sites using GPS C/A pseudorange with and without ionospheric corrections. The vertical position error of the uncorrected case drops significantly from 10.3 m to 4.8, 4.6, 4.4 and 4.2 m for GPSKlob, CODKlob, BDSKlob and NeQuickG, however, the horizontal position error (3.2) merely decreases to 3.1, 2.7, 2.4 and 2.3 m, respectively. NeQuickG outperforms GPSKlob and BDSKlob by 5.8 and 1.9% in vertical component, and by 25.0 and 3.2% in horizontal component.

  8. Coherence resonance in an excitable system with time delay

    International Nuclear Information System (INIS)

    Sethia, Gautam C.; Kurths, Juergen; Sen, Abhijit

    2007-01-01

    We study the noise activated dynamics of a model excitable system that consists of a subcritical Hopf oscillator with a time delayed nonlinear feedback. The coherence of the noise driven pulses of the system exhibits a novel double peaked structure as a function of the noise amplitude. The two peaks correspond to separate optimal noise levels for excitation of single spikes and multiple spikes (bursts) respectively. The relative magnitudes of these peaks are found to be a sensitive function of time delay. The physical significance of our results and its practical implications in various real life systems are discussed

  9. Modelling maintenance practice of production plant using the delay-time concept

    NARCIS (Netherlands)

    Christer, A.H.; Wang, Wenbin; Baker, R.D.; Sharp, J.

    1995-01-01

    In this paper we present a study carried out for a copper products manufacturing company, developing and applying the delay-time modelling technique to model and thus optimize preventive maintenance (PM) of the plant. A key machine in the plant is used to illustrate the modelling process and

  10. Isolating behavioral mechanisms of intertemporal choice: nicotine effects on delay discounting and amount sensitivity.

    Science.gov (United States)

    Locey, Matthew L; Dallery, Jesse

    2009-03-01

    Many drugs of abuse produce changes in impulsive choice, that is, choice for a smaller-sooner reinforcer over a larger-later reinforcer. Because the alternatives differ in both delay and amount, it is not clear whether these drug effects are due to the differences in reinforcer delay or amount. To isolate the effects of delay, we used a titrating delay procedure. In phase 1, 9 rats made discrete choices between variable delays (1 or 19 s, equal probability of each) and a delay to a single food pellet. The computer titrated the delay to a single food pellet until the rats were indifferent between the two options. This indifference delay was used as the starting value for the titrating delay for all future sessions. We next evaluated the acute effects of nicotine (subcutaneous 1.0, 0.3, 0.1, and 0.03 mg/kg) on choice. If nicotine increases delay discounting, it should have increased preference for the variable delay. Instead, nicotine had very little effect on choice. In a second phase, the titrated delay alternative produced three food pellets instead of one, which was again produced by the variable delay (1 s or 19 s) alternative. Under this procedure, nicotine increased preference for the one pellet alternative. Nicotine-induced changes in impulsive choice are therefore likely due to differences in reinforcer amount rather than differences in reinforcer delay. In addition, it may be necessary to include an amount sensitivity parameter in any mathematical model of choice when the alternatives differ in reinforcer amount.

  11. End-to-End Delay Model for Train Messaging over Public Land Mobile Networks

    Directory of Open Access Journals (Sweden)

    Franco Mazzenga

    2017-11-01

    Full Text Available Modern train control systems rely on a dedicated radio network for train to ground communications. A number of possible alternatives have been analysed to adopt the European Rail Traffic Management System/European Train Control System (ERTMS/ETCS control system on local/regional lines to improve transport capacity. Among them, a communication system based on public networks (cellular&satellite provides an interesting, effective and alternative solution to proprietary and expensive radio networks. To analyse performance of this solution, it is necessary to model the end-to-end delay and message loss to fully characterize the message transfer process from train to ground and vice versa. Starting from the results of a railway test campaign over a 300 km railway line for a cumulative 12,000 traveled km in 21 days, in this paper, we derive a statistical model for the end-to-end delay required for delivering messages. In particular, we propose a two states model allowing for reproducing the main behavioral characteristics of the end-to-end delay as observed experimentally. Model formulation has been derived after deep analysis of the recorded experimental data. When it is applied to model a realistic scenario, it allows for explicitly accounting for radio coverage characteristics, the received power level, the handover points along the line and for the serving radio technology. As an example, the proposed model is used to generate the end-to-end delay profile in a realistic scenario.

  12. A simple delay model for two-phase flow dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Clausse, A.; Delmastro, D.F.; Juanico`, L.E. [Centro Atomico Bariloche (Argentina)

    1995-09-01

    A model based in delay equations for density-wave oscillations is presented. High Froude numbers and moderate ones were considered. The equations were numerically analyzed and compared with more sophisticated models. The influence of the gravity term was studied. Different kinds of behavior were found, particularly sub-critical and super-critical Hopf bifurcations. Moreover the present approach can be used to better understand the complicated dynamics of boiling flows systems.

  13. Performance evaluation of ionospheric time delay forecasting models using GPS observations at a low-latitude station

    Science.gov (United States)

    Sivavaraprasad, G.; Venkata Ratnam, D.

    2017-07-01

    Ionospheric delay is one of the major atmospheric effects on the performance of satellite-based radio navigation systems. It limits the accuracy and availability of Global Positioning System (GPS) measurements, related to critical societal and safety applications. The temporal and spatial gradients of ionospheric total electron content (TEC) are driven by several unknown priori geophysical conditions and solar-terrestrial phenomena. Thereby, the prediction of ionospheric delay is challenging especially over Indian sub-continent. Therefore, an appropriate short/long-term ionospheric delay forecasting model is necessary. Hence, the intent of this paper is to forecast ionospheric delays by considering day to day, monthly and seasonal ionospheric TEC variations. GPS-TEC data (January 2013-December 2013) is extracted from a multi frequency GPS receiver established at K L University, Vaddeswaram, Guntur station (geographic: 16.37°N, 80.37°E; geomagnetic: 7.44°N, 153.75°E), India. An evaluation, in terms of forecasting capabilities, of three ionospheric time delay models - an Auto Regressive Moving Average (ARMA) model, Auto Regressive Integrated Moving Average (ARIMA) model, and a Holt-Winter's model is presented. The performances of these models are evaluated through error measurement analysis during both geomagnetic quiet and disturbed days. It is found that, ARMA model is effectively forecasting the ionospheric delay with an accuracy of 82-94%, which is 10% more superior to ARIMA and Holt-Winter's models. Moreover, the modeled VTEC derived from International Reference Ionosphere, IRI (IRI-2012) model and new global TEC model, Neustrelitz TEC Model (NTCM-GL) have compared with forecasted VTEC values of ARMA, ARIMA and Holt-Winter's models during geomagnetic quiet days. The forecast results are indicating that ARMA model would be useful to set up an early warning system for ionospheric disturbances at low latitude regions.

  14. Quad nanosecond delay module

    International Nuclear Information System (INIS)

    McDonald, R.J.; Hunter, J.B.; Wozniak, G.J.

    1986-04-01

    Four nanosecond (ns) delay units have been designed to fit in a single-width NIM module. This module is particularly suited for use in conjunction with quad constant fraction timing discriminators (CFTDs) since it has four delay units that can be placed adjacent to the four units of the CFTD. A series of different length cables connected via DIP toggle switches provide delays of 0.60 ns in 4 ns increments. Thus, the CFTD delay can be optimized for pulses of different rise times from approx.10-100 ns. Design work for the PC board and silkscreening of the front panel were done with the MacDraw program on the Apple Mackintosh computer and printed with the Lasewriter printer. 6 refs

  15. Global stability, periodic solutions, and optimal control in a nonlinear differential delay model

    Directory of Open Access Journals (Sweden)

    Anatoli F. Ivanov

    2010-09-01

    Full Text Available A nonlinear differential equation with delay serving as a mathematical model of several applied problems is considered. Sufficient conditions for the global asymptotic stability and for the existence of periodic solutions are given. Two particular applications are treated in detail. The first one is a blood cell production model by Mackey, for which new periodicity criteria are derived. The second application is a modified economic model with delay due to Ramsey. An optimization problem for a maximal consumption is stated and solved for the latter.

  16. Effects of dynamic synapses on noise-delayed response latency of a single neuron

    Science.gov (United States)

    Uzuntarla, M.; Ozer, M.; Ileri, U.; Calim, A.; Torres, J. J.

    2015-12-01

    The noise-delayed decay (NDD) phenomenon emerges when the first-spike latency of a periodically forced stochastic neuron exhibits a maximum for a particular range of noise intensity. Here, we investigate the latency response dynamics of a single Hodgkin-Huxley neuron that is subject to both a suprathreshold periodic stimulus and a background activity arriving through dynamic synapses. We study the first-spike latency response as a function of the presynaptic firing rate f . This constitutes a more realistic scenario than previous works, since f provides a suitable biophysically realistic parameter to control the level of activity in actual neural systems. We first report on the emergence of classical NDD behavior as a function of f for the limit of static synapses. Second, we show that when short-term depression and facilitation mechanisms are included at the synapses, different NDD features can be found due to their modulatory effect on synaptic current fluctuations. For example, an intriguing double NDD (DNDD) behavior occurs for different sets of relevant synaptic parameters. Moreover, depending on the balance between synaptic depression and synaptic facilitation, single NDD or DNDD can prevail, in such a way that synaptic facilitation favors the emergence of DNDD whereas synaptic depression favors the existence of single NDD. Here we report the existence of the DNDD effect in the response latency dynamics of a neuron.

  17. An electronic implementation for Liao's chaotic delayed neuron model with non-monotonous activation function

    Energy Technology Data Exchange (ETDEWEB)

    Duan Shukai [Department of Computer Science and Engineering, Chongqing University, Chongqing 400044 (China); School of Electronic and Information Engineering, Southwest University, Chongqing 400715 (China)], E-mail: duansk@swu.edu.cn; Liao Xiaofeng [Department of Computer Science and Engineering, Chongqing University, Chongqing 400044 (China)], E-mail: xfliao@cqu.edu.cn

    2007-09-10

    A new chaotic delayed neuron model with non-monotonously increasing transfer function, called as chaotic Liao's delayed neuron model, was recently reported and analyzed. An electronic implementation of this model is described in detail. At the same time, some methods in circuit design, especially for circuit with time delayed unit and non-monotonously increasing activation unit, are also considered carefully. We find that the dynamical behaviors of the designed circuits are closely similar to the results predicted by numerical experiments.

  18. A generalized business cycle model with delays in gross product and capital stock

    International Nuclear Information System (INIS)

    Hattaf, Khalid; Riad, Driss; Yousfi, Noura

    2017-01-01

    Highlights: • A generalized business cycle model is proposed and rigorously analyzed. • Well-posedness of the model and local stability of the economic equilibrium are investigated. • Direction of the Hopf bifurcation and stability of the bifurcating periodic solutions are determined. • A special case and some numerical simulations are presented. - Abstract: In this work, we propose a delayed business cycle model with general investment function. The time delays are introduced into gross product and capital stock, respectively. We first prove that the model is mathematically and economically well posed. In addition, the stability of the economic equilibrium and the existence of Hopf bifurcation are investigated. Our main results show that both time delays can cause the macro-economic system to fluctuate and the economic equilibrium to lose or gain its stability. Moreover, the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by means of the normal form method and center manifold theory. Furthermore, the models and results presented in many previous studies are improved and generalized.

  19. Derivation and computation of discrete-delay and continuous-delay SDEs in mathematical biology.

    Science.gov (United States)

    Allen, Edward J

    2014-06-01

    Stochastic versions of several discrete-delay and continuous-delay differential equations, useful in mathematical biology, are derived from basic principles carefully taking into account the demographic, environmental, or physiological randomness in the dynamic processes. In particular, stochastic delay differential equation (SDDE) models are derived and studied for Nicholson's blowflies equation, Hutchinson's equation, an SIS epidemic model with delay, bacteria/phage dynamics, and glucose/insulin levels. Computational methods for approximating the SDDE models are described. Comparisons between computational solutions of the SDDEs and independently formulated Monte Carlo calculations support the accuracy of the derivations and of the computational methods.

  20. Diffusion model of delayed hydride cracking in zirconium alloys

    NARCIS (Netherlands)

    Shmakov, AA; Kalin, BA; Matvienko, YG; Singh, RN; De, PK

    2004-01-01

    We develop a method for the evaluation of the rate of delayed hydride cracking in zirconium alloys. The model is based on the stationary solution of the phenomenological diffusion equation and the detailed analysis of the distribution of hydrostatic stresses in the plane of a sharp tensile crack.

  1. Virtual unit delay for digital frequency adaptive T/4 delay phase-locked loop system

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2016-01-01

    /processor with a fixed sampling rate considering the cost and complexity, where the number of unit delays that have been adopted should be an integer. For instance, in conventional digital control systems, a single-phase T/4 Delay Phase-Locked Loop (PLL) system takes 50 unit delays (i.e., in a 50-Hz system...... Delay PLL system should be done in its implementation. This process will result in performance degradation in the digital control system, as the exactly required number of delays is not realized. Hence, in this paper, a Virtual Unit Delay (VUD) has been proposed to address such challenges to the digital......Digital micro-controllers/processors enable the cost-effective control of grid-connected power converter systems in terms of system monitoring, signal processing (e.g., grid synchronization), control (e.g., grid current and voltage control), etc. Normally, the control is implemented in a micro-controller...

  2. Explaining Variance and Identifying Predictors of Children's Communication via a Multilevel Model of Single-Case Design Research: Brief Report

    Science.gov (United States)

    Ottley, Jennifer Riggie; Ferron, John M.; Hanline, Mary Frances

    2016-01-01

    The purpose of this study was to explain the variability in data collected from a single-case design study and to identify predictors of communicative outcomes for children with developmental delays or disabilities (n = 4). Using SAS® University Edition, we fit multilevel models with time nested within children. Children's level of baseline…

  3. Dynamic Delayed Duplicate Detection for External Memory Model Checking

    DEFF Research Database (Denmark)

    Evangelista, Sami

    2008-01-01

    Duplicate detection is an expensive operation of disk-based model checkers. It consists of comparing some potentially new states, the candidate states, to previous visited states. We propose a new approach to this technique called dynamic delayed duplicate detection. This one exploits some typica...... significantly better than some previously published algorithms....

  4. Attosecond Delays in Molecular Photoionization.

    Science.gov (United States)

    Huppert, Martin; Jordan, Inga; Baykusheva, Denitsa; von Conta, Aaron; Wörner, Hans Jakob

    2016-08-26

    We report measurements of energy-dependent photoionization delays between the two outermost valence shells of N_{2}O and H_{2}O. The combination of single-shot signal referencing with the use of different metal foils to filter the attosecond pulse train enables us to extract delays from congested spectra. Remarkably large delays up to 160 as are observed in N_{2}O, whereas the delays in H_{2}O are all smaller than 50 as in the photon-energy range of 20-40 eV. These results are interpreted by developing a theory of molecular photoionization delays. The long delays measured in N_{2}O are shown to reflect the population of molecular shape resonances that trap the photoelectron for a duration of up to ∼110 as. The unstructured continua of H_{2}O result in much smaller delays at the same photon energies. Our experimental and theoretical methods make the study of molecular attosecond photoionization dynamics accessible.

  5. Asymptotic Behaviour and Extinction of Delay Lotka-Volterra Model with Jump-Diffusion

    Directory of Open Access Journals (Sweden)

    Dan Li

    2014-01-01

    Full Text Available This paper studies the effect of jump-diffusion random environmental perturbations on the asymptotic behaviour and extinction of Lotka-Volterra population dynamics with delays. The contributions of this paper lie in the following: (a to consider delay stochastic differential equation with jumps, we introduce a proper initial data space, in which the initial data may be discontinuous function with downward jumps; (b we show that the delay stochastic differential equation with jumps associated with our model has a unique global positive solution and give sufficient conditions that ensure stochastically ultimate boundedness, moment average boundedness in time, and asymptotic polynomial growth of our model; (c the sufficient conditions for the extinction of the system are obtained, which generalized the former results and showed that the sufficiently large random jump magnitudes and intensity (average rate of jump events arrival may lead to extinction of the population.

  6. Estimation of Atmospheric Path Delays in TerraSAR-X Data using Models vs. Measurements

    Directory of Open Access Journals (Sweden)

    Donat Perler

    2008-12-01

    Full Text Available Spaceborne synthetic aperture radar (SAR measurements of the Earth’s surface depend on electromagnetic waves that are subject to atmospheric path delays, in turn affecting geolocation accuracy. The atmosphere influences radar signal propagation by modifying its velocity and direction, effects which can be modeled. We use TerraSAR-X (TSX data to investigate improvements in the knowledge of the scene geometry. To precisely estimate atmospheric path delays, we analyse the signal return of four corner reflectors with accurately surveyed positions (based on differential GPS, placed at different altitudes yet with nearly identical slant ranges to the sensor. The comparison of multiple measurements with path delay models under these geometric conditions also makes it possible to evaluate the corrections for the atmospheric path delay made by the TerraSAR processor and to propose possible improvements.

  7. Methodology for Analysis, Modeling and Simulation of Airport Gate-waiting Delays

    Science.gov (United States)

    Wang, Jianfeng

    availability. Analysis of the worst days at six major airports in the summer of 2007 indicates that major gate-waiting delays are primarily due to operational disruptions---specifically, extended gate occupancy time, reduced gate availability and higher-than-scheduled arrival rate (usually due to arrival delay). Major gate-waiting delays are not a result of over-scheduling. The second part of this dissertation presents a simulation model to evaluate the impact of gate operational disruptions and gate-waiting-delay mitigation strategies, including building new gates, implementing common gates, using overnight off-gate parking and adopting self-docking gates. Simulation results show the following effects of disruptions: (i) The impact of arrival delay in a time window (e.g. 7 pm to 9 pm) on gate-waiting delay is bounded. (ii) The impact of longer-than-scheduled gate-occupancy times in a time window on gate-waiting delay can be unbounded and gate-waiting delay can increase linearly as the disruption level increases. (iii) Small reductions in gate availability have a small impact on gate-waiting delay due to slack gate capacity, while larger reductions have a non-linear impact as slack gate capacity is used up. Simulation results show the following effects of mitigation strategies: (i) Implementing common gates is an effective mitigation strategy, especially for airports with a flight schedule not dominated by one carrier, such as LGA. (ii) The overnight off-gate rule is effective in mitigating gate-waiting delay for flights stranded overnight following departure cancellations. This is especially true at airports where the gate utilization is at maximum overnight, such as LGA and DFW. The overnight off-gate rule can also be very effective to mitigate gate-waiting delay due to operational disruptions in evenings. (iii) Self-docking gates are effective in mitigating gate-waiting delay due to reduced gate availability.

  8. Global Stability of an Eco-Epidemiological Model with Time Delay and Saturation Incidence

    Directory of Open Access Journals (Sweden)

    Shuxue Mao

    2011-01-01

    Full Text Available We investigate a delayed eco-epidemiological model with disease in predator and saturation incidence. First, by comparison arguments, the permanence of the model is discussed. Then, we study the local stability of each equilibrium of the model by analyzing the corresponding characteristic equations and find that Hopf bifurcation occurs when the delay τ passes through a sequence of critical values. Next, by means of an iteration technique, sufficient conditions are derived for the global stability of the disease-free planar equilibrium and the positive equilibrium. Numerical examples are carried out to illustrate the analytical results.

  9. Optical True Time Delay for Phased Array Antennas Composed of 2×2 Optical MEMS Switches and Fiber Delay Lines

    Institute of Scientific and Technical Information of China (English)

    Back-Song; Lee; Jong-Dug; Shin; Boo-Gyoun; Kim

    2003-01-01

    We proposed an optical true time delay (TTD) for phased array antennas (PAAs) composed of 2×2 optical MEMS switches, single-mode fiber delay lines, and a fixed wavelength laser diode. A 3-bit TTD for 10 GHz PAAs was implemented with a time delay error less than ± 0.2 ps.

  10. A Fault Prognosis Strategy Based on Time-Delayed Digraph Model and Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Ningyun Lu

    2012-01-01

    Full Text Available Because of the interlinking of process equipments in process industry, event information may propagate through the plant and affect a lot of downstream process variables. Specifying the causality and estimating the time delays among process variables are critically important for data-driven fault prognosis. They are not only helpful to find the root cause when a plant-wide disturbance occurs, but to reveal the evolution of an abnormal event propagating through the plant. This paper concerns with the information flow directionality and time-delay estimation problems in process industry and presents an information synchronization technique to assist fault prognosis. Time-delayed mutual information (TDMI is used for both causality analysis and time-delay estimation. To represent causality structure of high-dimensional process variables, a time-delayed signed digraph (TD-SDG model is developed. Then, a general fault prognosis strategy is developed based on the TD-SDG model and principle component analysis (PCA. The proposed method is applied to an air separation unit and has achieved satisfying results in predicting the frequently occurred “nitrogen-block” fault.

  11. Electromagnetically induced transparency and reduced speeds for single photons in a fully quantized model

    International Nuclear Information System (INIS)

    Purdy, Thomas; Ligare, Martin

    2003-01-01

    We introduce a simple model for electromagnetically induced transparency in which all fields are treated quantum mechanically. We study a system of three separated atoms at fixed positions in a one-dimensional multimode optical cavity. The first atom serves as the source for a single spontaneously emitted photon; the photon scatters from a three-level 'Λ'-configuration atom which interacts with an additional single-mode field coupling two of the atomic levels; the third atom serves as a detector of the total transmitted field. We find an analytical solution for the quantum dynamics. From the quantum amplitude describing the excitation of the detector atom we extract information that provides exact single-photon analogues to wave delays predicted by semi-classical theories. We also find complementary information in the expectation value of the electric field intensity operator

  12. A two-phase inspection model for a single component system with three-stage degradation

    International Nuclear Information System (INIS)

    Wang, Huiying; Wang, Wenbin; Peng, Rui

    2017-01-01

    This paper presents a two-phase inspection schedule and an age-based replacement policy for a single plant item contingent on a three-stage degradation process. The two phase inspection schedule can be observed in practice. The three stages are defined as the normal working stage, low-grade defective stage and critical defective stage. When an inspection detects that an item is in the low-grade defective stage, we may delay the preventive replacement action if the time to the age-based replacement is less than or equal to a threshold level. However, if it is above this threshold level, the item will be replaced immediately. If the item is found in the critical defective stage, it is replaced immediately. A hybrid bee colony algorithm is developed to find the optimal solution for the proposed model which has multiple decision variables. A numerical example is conducted to show the efficiency of this algorithm, and simulations are conducted to verify the correctness of the model. - Highlights: • A two-phase inspection model is studied. • The failure process has three stages. • The delayed replacement is considered.

  13. The interaction evolution model of mass incidents with delay in a social network

    Science.gov (United States)

    Huo, Liang'an; Ma, Chenyang

    2017-10-01

    Recent years have witnessed rapid development of information technology. Today, modern media is widely used for the purpose of spreading information rapidly and widely. In particular, through micro-blog promotions, individuals tend to express their viewpoints and spread information on the internet, which could easily lead to public opinions. Moreover, government authorities also disseminate official information to guide public opinion and eliminate any incorrect conjecture. In this paper, a dynamical model with two delays is investigated to exhibit the interaction evolution between the public and official opinion fields in network mass incidents. Based on the theory of differential equations, the interaction mechanism between two public opinion fields in a micro-blog environment is analyzed. Two delays are proposed in the model to depict the response delays of public and official opinion fields. Some stable conditions are obtained, which shows that Hopf bifurcation can occur as delays cross critical values. Further, some numerical simulations are carried out to verify theoretical results. Our model indicates that there exists a golden time for government intervention, which should be emphasized given the impact of modern media and inaccurate rumors. If the government releases official information during the golden time, mass incidents on the internet can be controlled effectively.

  14. A Potential Animal Model of Maladaptive Palatable Food Consumption Followed by Delayed Discomfort

    Directory of Open Access Journals (Sweden)

    Lital Moshe

    2017-07-01

    Full Text Available Introduction: Binging is the consumption of larger amounts of food in a briefer period of time than would normally be consumed under similar circumstances. Binging requires palatable food (PF to trigger abnormal eating, probably reflecting gene × environment interactions. In this study we examined the impact of trait binge eating (BE and its compulsive nature on the conflict between hedonic eating of PF and anticipation of a delayed aversive effect. We used female rats as an animal model similar to other models of BE. A novel aspect of this model in this paper is the use of a delayed internal aversive effect produced by lactose ingestion. Establishing this model will allow us to better understand the nature of the conflict between immediate reward and its delayed aversive implications. We hypothesized that BE prone (BEP rats will demonstrate maladaptive decision making, presenting higher motivation toward PF even when this is associated with delayed discomfort.Method: (Phase 1 52 female adult Wistar rats were divided to two eating profiles: resistant and prone binge eaters (BER/BEP based on intake of liquid PF (Ensure. Next, all subjects underwent a Lactose Conditioning Protocol (LCP that included 4 h tests, one baseline and 3 conditioning days (Phase 2, in which solid PF (Oreo cookies was paired with glucose (control-no internal aversive effect or lactose, dissolved in liquid PF. Index for PF motivation was PF consumption during the 4 h LCP. To test for memory of lactose conditioning, we performed another LCP with glucose only (anticipation, but no actual lactose-induced discomfort, a week after the last conditioning session.Results: Lactose conditioned BEP showed higher motivation toward PF compared to lactose conditioned BER faced with delayed aversive effects. Only lactose conditioned BER rats devaluated the PF over LCP days, indicating an association between PF and abdominal discomfort. In addition, only lactose conditioned BER presented

  15. Stability and bifurcation of a discrete BAM neural network model with delays

    International Nuclear Information System (INIS)

    Zheng Baodong; Zhang Yang; Zhang Chunrui

    2008-01-01

    A map modelling a discrete bidirectional associative memory neural network with delays is investigated. Its dynamics is studied in terms of local analysis and Hopf bifurcation analysis. By analyzing the associated characteristic equation, its linear stability is investigated and Hopf bifurcations are demonstrated. It is found that there exist Hopf bifurcations when the delay passes a sequence of critical values. Numerical simulation is performed to verify the analytical results

  16. Separate valuation subsystems for delay and effort decision costs.

    Science.gov (United States)

    Prévost, Charlotte; Pessiglione, Mathias; Météreau, Elise; Cléry-Melin, Marie-Laure; Dreher, Jean-Claude

    2010-10-20

    Decision making consists of choosing among available options on the basis of a valuation of their potential costs and benefits. Most theoretical models of decision making in behavioral economics, psychology, and computer science propose that the desirability of outcomes expected from alternative options can be quantified by utility functions. These utility functions allow a decision maker to assign subjective values to each option under consideration by weighting the likely benefits and costs resulting from an action and to select the one with the highest subjective value. Here, we used model-based neuroimaging to test whether the human brain uses separate valuation systems for rewards (erotic stimuli) associated with different types of costs, namely, delay and effort. We show that humans devalue rewards associated with physical effort in a strikingly similar fashion to those they devalue that are associated with delays, and that a single computational model derived from economics theory can account for the behavior observed in both delay discounting and effort discounting. However, our neuroimaging data reveal that the human brain uses distinct valuation subsystems for different types of costs, reflecting in opposite fashion delayed reward and future energetic expenses. The ventral striatum and the ventromedial prefrontal cortex represent the increasing subjective value of delayed rewards, whereas a distinct network, composed of the anterior cingulate cortex and the anterior insula, represent the decreasing value of the effortful option, coding the expected expense of energy. Together, these data demonstrate that the valuation processes underlying different types of costs can be fractionated at the cerebral level.

  17. Achievable Performance of Zero-Delay Variable-Rate Coding in Rate-Constrained Networked Control Systems with Channel Delay

    DEFF Research Database (Denmark)

    Barforooshan, Mohsen; Østergaard, Jan; Stavrou, Fotios

    2017-01-01

    This paper presents an upper bound on the minimum data rate required to achieve a prescribed closed-loop performance level in networked control systems (NCSs). The considered feedback loop includes a linear time-invariant (LTI) plant with single measurement output and single control input. Moreover......, in this NCS, a causal but otherwise unconstrained feedback system carries out zero-delay variable-rate coding, and control. Between the encoder and decoder, data is exchanged over a rate-limited noiseless digital channel with a known constant time delay. Here we propose a linear source-coding scheme...

  18. Travelling wave and convergence in stage-structured reaction-diffusion competitive models with nonlocal delays

    International Nuclear Information System (INIS)

    Xu Rui; Chaplain, M.A.J.; Davidson, F.A.

    2006-01-01

    In this paper, we first investigate a stage-structured competitive model with time delays, harvesting, and nonlocal spatial effect. By using an iterative technique recently developed by Wu and Zou (Wu J, Zou X. Travelling wave fronts of reaction-diffusion systems with delay. J Dynam Differen Equat 2001;13:651-87), sufficient conditions are established for the existence of travelling front solution connecting the two boundary equilibria in the case when there is no positive equilibrium. The travelling wave front corresponds to an invasion by a stronger species which drives the weaker species to extinction. Secondly, we consider a stage-structured competitive model with time delays and nonlocal spatial effect when the domain is finite. We prove the global stability of each of the nonnegative equilibria and demonstrate that the more complex model studied here admits three possible long term behaviors: coexistence, bistability and dominance as is the case for the standard Lotka-Voltera competitive model

  19. Neimark-Sacker bifurcation for the discrete-delay Kaldor model

    International Nuclear Information System (INIS)

    Dobrescu, Loretti I.; Opris, Dumitru

    2009-01-01

    We consider a discrete-delay time, Kaldor nonlinear business cycle model in income and capital. Given an investment function, resembling the one discussed by Rodano, we use the linear approximation analysis to state the local stability property and local bifurcations, in the parameter space. Finally, we will give some numerical examples to justify the theoretical results.

  20. The Application of Time-Delay Dependent H∞ Control Model in Manufacturing Decision Optimization

    Directory of Open Access Journals (Sweden)

    Haifeng Guo

    2015-01-01

    Full Text Available This paper uses a time-delay dependent H∞ control model to analyze the effect of manufacturing decisions on the process of transmission from resources to capability. We establish a theoretical framework of manufacturing management process based on three terms: resource, manufacturing decision, and capability. Then we build a time-delay H∞ robust control model to analyze the robustness of manufacturing management. With the state feedback controller between manufacturing resources and decision, we find that there is an optimal decision to adjust the process of transmission from resources to capability under uncertain environment. Finally, we provide an example to prove the robustness of this model.

  1. Research on Adaptive Neural Network Control System Based on Nonlinear U-Model with Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Fengxia Xu

    2014-01-01

    Full Text Available U-model can approximate a large class of smooth nonlinear time-varying delay system to any accuracy by using time-varying delay parameters polynomial. This paper proposes a new approach, namely, U-model approach, to solving the problems of analysis and synthesis for nonlinear systems. Based on the idea of discrete-time U-model with time-varying delay, the identification algorithm of adaptive neural network is given for the nonlinear model. Then, the controller is designed by using the Newton-Raphson formula and the stability analysis is given for the closed-loop nonlinear systems. Finally, illustrative examples are given to show the validity and applicability of the obtained results.

  2. The influences of delay time on the stability of a market model with stochastic volatility

    Science.gov (United States)

    Li, Jiang-Cheng; Mei, Dong-Cheng

    2013-02-01

    The effects of the delay time on the stability of a market model are investigated, by using a modified Heston model with a cubic nonlinearity and cross-correlated noise sources. These results indicate that: (i) There is an optimal delay time τo which maximally enhances the stability of the stock price under strong demand elasticity of stock price, and maximally reduces the stability of the stock price under weak demand elasticity of stock price; (ii) The cross correlation coefficient of noises and the delay time play an opposite role on the stability for the case of the delay time τo. Moreover, the probability density function of the escape time of stock price returns, the probability density function of the returns and the correlation function of the returns are compared with other literatures.

  3. Multiple-parameter bifurcation analysis in a Kuramoto model with time delay and distributed shear

    Science.gov (United States)

    Niu, Ben; Zhang, Jiaming; Wei, Junjie

    2018-05-01

    In this paper, time delay effect and distributed shear are considered in the Kuramoto model. On the Ott-Antonsen's manifold, through analyzing the associated characteristic equation of the reduced functional differential equation, the stability boundary of the incoherent state is derived in multiple-parameter space. Moreover, very rich dynamical behavior such as stability switches inducing synchronization switches can occur in this equation. With the loss of stability, Hopf bifurcating coherent states arise, and the criticality of Hopf bifurcations is determined by applying the normal form theory and the center manifold theorem. On one hand, theoretical analysis indicates that the width of shear distribution and time delay can both eliminate the synchronization then lead the Kuramoto model to incoherence. On the other, time delay can induce several coexisting coherent states. Finally, some numerical simulations are given to support the obtained results where several bifurcation diagrams are drawn, and the effect of time delay and shear is discussed.

  4. Hopf bifurcation in a reaction-diffusive two-species model with nonlocal delay effect and general functional response

    International Nuclear Information System (INIS)

    Han, Renji; Dai, Binxiang

    2017-01-01

    Highlights: • We model general two-dimensional reaction-diffusion with nonlocal delay. • The existence of unique positive steady state is studied. • The bilinear form for the proposed system is given. • The existence, direction of Hopf bifurcation are given by symmetry method. - Abstract: A nonlocal delayed reaction-diffusive two-species model with Dirichlet boundary condition and general functional response is investigated in this paper. Based on the Lyapunov–Schmidt reduction, the existence, bifurcation direction and stability of Hopf bifurcating periodic orbits near the positive spatially nonhomogeneous steady-state solution are obtained, where the time delay is taken as the bifurcation parameter. Moreover, the general results are applied to a diffusive Lotka–Volterra type food-limited population model with nonlocal delay effect, and it is found that diffusion and nonlocal delay can also affect the other dynamic behavior of the system by numerical experiments.

  5. Bifurcation and synchronization of synaptically coupled FHN models with time delay

    International Nuclear Information System (INIS)

    Wang Qingyun; Lu Qishao; Chen Guanrong; Feng Zhaosheng; Duan Lixia

    2009-01-01

    This paper presents an investigation of dynamics of the coupled nonidentical FHN models with synaptic connection, which can exhibit rich bifurcation behavior with variation of the coupling strength. With the time delay being introduced, the coupled neurons may display a transition from the original chaotic motions to periodic ones, which is accompanied by complex bifurcation scenario. At the same time, synchronization of the coupled neurons is studied in terms of their mean frequencies. We also find that the small time delay can induce new period windows with the coupling strength increasing. Moreover, it is found that synchronization of the coupled neurons can be achieved in some parameter ranges and related to their bifurcation transition. Bifurcation diagrams are obtained numerically or analytically from the mathematical model and the parameter regions of different behavior are clarified.

  6. Dynamics of Time Delay-Induced Multiple Synchronous Behaviors in Inhibitory Coupled Neurons

    Science.gov (United States)

    Gu, Huaguang; Zhao, Zhiguo

    2015-01-01

    The inhibitory synapse can induce synchronous behaviors different from the anti-phase synchronous behaviors, which have been reported in recent studies. In the present paper, synchronous behaviors are investigated in the motif model composed of reciprocal inhibitory coupled neurons with endogenous bursting and time delay. When coupling strength is weak, synchronous behavior appears at a single interval of time delay within a bursting period. When coupling strength is strong, multiple synchronous behaviors appear at different intervals of time delay within a bursting period. The different bursting patterns of synchronous behaviors, and time delays and coupling strengths that can induce the synchronous bursting patterns can be well interpreted by the dynamics of the endogenous bursting pattern of isolated neuron, which is acquired by the fast-slow dissection method, combined with the inhibitory coupling current. For an isolated neuron, when a negative impulsive current with suitable strength is applied at different phases of the bursting, multiple different bursting patterns can be induced. For a neuron in the motif, the inhibitory coupling current, of which the application time and strength is modulated by time delay and coupling strength, can cause single or multiple synchronous firing patterns like the negative impulsive current when time delay and coupling strength is suitable. The difference compared to the previously reported multiple synchronous behaviors that appear at time delays wider than a period of the endogenous firing is discussed. The results present novel examples of synchronous behaviors in the neuronal network with inhibitory synapses and provide a reasonable explanation. PMID:26394224

  7. High-order harmonic generation spectra and isolated attosecond pulse generation with a two-color time delayed pulse

    International Nuclear Information System (INIS)

    Feng Liqiang; Chu Tianshu

    2012-01-01

    Highlights: ► Investigation of HHG spectra and single isolated attosecond pulse generation. ► Irradiation from a model Ne atom by two-color time delayed pulse. ► Observation of time delay effect and relative phase effect. ► Revelation of the optimal condition for generating isolated attosecond pulse. ► Generation of a single isolated attosecond pulse of 45as. - Abstract: In this paper, we theoretically investigate the delay time effect on the high-order harmonic generation (HHG) when a model Ne atom is exposed to a two-color time delayed pulse, consisting of a 5fs/800 nm fundamental field and a 20fs/2000 nm controlling field. It shows that the HHG spectra are strongly sensitive to the delay time between the two laser fields, in particular, for the zero carrier-envelope phase (CEP) φ case (corresponding to the 800 nm fundamental field), the maximum cutoff energy has been achieved at zero delay time. However, with the introduction of the CEP (φ = 180°), the delay effect on HHG is changed, exhibiting a ‘U’ structure harmonic emission from −1 T to 1 T. In addition, the combinations of different controlling pulse frequencies and pulse intensities have also been considered, showing the similar results as the original controlling field case, but with some characteristics. Finally, by properly superposing the optimal harmonic spectrum, an isolated 45as pulse is generated without phase compensation.

  8. Inventory Model with Partial Backordering When Backordered Customers Delay Purchase after Stockout-Restoration

    Directory of Open Access Journals (Sweden)

    Ren-Qian Zhang

    2016-01-01

    Full Text Available Many inventory models with partial backordering assume that the backordered demand must be filled instantly after stockout restoration. In practice, however, the backordered customers may successively revisit the store because of the purchase delay behavior, producing a limited backorder demand rate and resulting in an extra inventory holding cost. Hence, in this paper we formulate the inventory model with partial backordering considering the purchase delay of the backordered customers and assuming that the backorder demand rate is proportional to the remaining backordered demand. Particularly, we model the problem by introducing a new inventory cost component of holding the backordered items, which has not been considered in the existing models. We propose an algorithm with a two-layer structure based on Lipschitz Optimization (LO to minimize the total inventory cost. Numerical experiments show that the proposed algorithm outperforms two benchmarks in both optimality and efficiency. We also observe that the earlier the backordered customer revisits the store, the smaller the inventory cost and the fill rate are, but the longer the order cycle is. In addition, if the backordered customers revisit the store without too much delay, the basic EOQ with partial backordering approximates our model very well.

  9. High-precision coseismic displacement estimation with a single-frequency GPS receiver

    Science.gov (United States)

    Guo, Bofeng; Zhang, Xiaohong; Ren, Xiaodong; Li, Xingxing

    2015-07-01

    To improve the performance of Global Positioning System (GPS) in the earthquake/tsunami early warning and rapid response applications, minimizing the blind zone and increasing the stability and accuracy of both the rapid source and rupture inversion, the density of existing GPS networks must be increased in the areas at risk. For economic reasons, low-cost single-frequency receivers would be preferable to make the sparse dual-frequency GPS networks denser. When using single-frequency GPS receivers, the main problem that must be solved is the ionospheric delay, which is a critical factor when determining accurate coseismic displacements. In this study, we introduce a modified Satellite-specific Epoch-differenced Ionospheric Delay (MSEID) model to compensate for the effect of ionospheric error on single-frequency GPS receivers. In the MSEID model, the time-differenced ionospheric delays observed from a regional dual-frequency GPS network to a common satellite are fitted to a plane rather than part of a sphere, and the parameters of this plane are determined by using the coordinates of the stations. When the parameters are known, time-differenced ionospheric delays for a single-frequency GPS receiver could be derived from the observations of those dual-frequency receivers. Using these ionospheric delay corrections, coseismic displacements of a single-frequency GPS receiver can be accurately calculated based on time-differenced carrier-phase measurements in real time. The performance of the proposed approach is validated using 5 Hz GPS data collected during the 2012 Nicoya Peninsula Earthquake (Mw 7.6, 2012 September 5) in Costa Rica. This shows that the proposed approach improves the accuracy of the displacement of a single-frequency GPS station, and coseismic displacements with an accuracy of a few centimetres are achieved over a 10-min interval.

  10. Performance enhancement of the single-phase series active filter by employing the load voltage waveform reconstruction and line current sampling delay reduction methods

    DEFF Research Database (Denmark)

    Senturk, O.S.; Hava, A.M.

    2011-01-01

    This paper proposes the waveform reconstruction method (WRM), which is utilized in the single-phase series active filter's (SAF's) control algorithm, in order to extract the load harmonic voltage component of voltage harmonic type single-phase diode rectifier loads. Employing WRM and the line...... current sampling delay reduction method, a single-phase SAF compensated system provides higher harmonic isolation performance and higher stability margins compared to the system using conventional synchronous-reference-frame-based methods. The analytical, simulation, and experimental studies of a 2.5 k...

  11. Neutron stochastic transport theory with delayed neutrons

    International Nuclear Information System (INIS)

    Munoz-Cobo, J.L.; Verdu, G.

    1987-01-01

    From the stochastic transport theory with delayed neutrons, the Boltzmann transport equation with delayed neutrons for the average flux emerges in a natural way without recourse to any approximation. From this theory a general expression is obtained for the Feynman Y-function when delayed neutrons are included. The single mode approximation for the particular case of a subcritical assembly is developed, and it is shown that Y-function reduces to the familiar expression quoted in many books, when delayed neutrons are not considered, and spatial and source effects are not included. (author)

  12. Airport Flight Departure Delay Model on Improved BN Structure Learning

    Science.gov (United States)

    Cao, Weidong; Fang, Xiangnong

    An high score prior genetic simulated annealing Bayesian network structure learning algorithm (HSPGSA) by combining genetic algorithm(GA) with simulated annealing algorithm(SAA) is developed. The new algorithm provides not only with strong global search capability of GA, but also with strong local hill climb search capability of SAA. The structure with the highest score is prior selected. In the mean time, structures with lower score are also could be choice. It can avoid efficiently prematurity problem by higher score individual wrong direct growing population. Algorithm is applied to flight departure delays analysis in a large hub airport. Based on the flight data a BN model is created. Experiments show that parameters learning can reflect departure delay.

  13. Periodic solutions of delayed predator-prey model with the Beddington-DeAngelis functional response

    Energy Technology Data Exchange (ETDEWEB)

    Huo Haifeng [Institute of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050 (China)]. E-mail: hfhuo@lut.cn; Li Wantong [Department of Mathematics, Lanzhou University Lanzhou, Gansu 730000 (China)]. E-mail: wtli@lzu.edu.cn; Nieto, Juan J. [Departamento de Analisis Matematico, Facultad de Matematicas, Universidad de Santiago de Compostela 15782 (Spain)]. E-mail: amnieto@usc.es

    2007-07-15

    By using the continuation theorem based on Gaines and Mawhin's coincidence degree, sufficient and realistic conditions are obtained for the global existence of positive periodic solutions for a delayed predator-prey model with the Beddington-DeAngelis functional response. Our results are applicable to state dependent and distributed delays.

  14. Active control with delay of catastrophic motion and horseshoes chaos in a single well Duffing oscillator

    International Nuclear Information System (INIS)

    Nana Nbendjo, B.R.; Salissou, Y.; Woafo, P.

    2005-01-01

    In this paper, the control of escape and Melnikov chaos of an harmonically excited particle from a catastrophic (unbounded) single well phi 4 potential is considered. In the linear limit, the range of the control gain parameter leading to good control is obtained and the effect of time delays on the control force is taken into account. The approximate critical external forcing amplitudes for catastrophe and chaos are obtained by using the energy and Melnikov methods. The control efficiency is found by analysing the behaviour of the external critical forcing amplitude of the controlled system as compared to that of the uncontrolled system

  15. Development of a Porcine Delayed Wound-Healing Model and Its Use in Testing a Novel Cell-Based Therapy

    International Nuclear Information System (INIS)

    Hadad, Ivan; Johnstone, Brian H.; Brabham, Jeffrey G.; Blanton, Matthew W.; Rogers, Pamela I.; Fellers, Cory; Solomon, James L.; Merfeld-Clauss, Stephanie; DesRosiers, Colleen M.; Dynlacht, Joseph R.; Coleman, John J.; March, Keith L.

    2010-01-01

    Purpose: A delayed full-thickness wound-healing model was developed and used for examining the capacity of adipose-derived stem cells (ASCs), either alone or in platelet-rich fibrin gels, to promote healing. Methods and Materials: Four pigs received electron beam radiation to the dorsal skin surface. Five weeks after radiation, subcutaneous fat was harvested from nonirradiated areas and processed to yield ASCs. Two weeks later, 28 to 30 full-thickness 1.5-cm 2 wounds were made in irradiated and nonirradiated skin. Wounds were treated with either saline solution, ASCs in saline solution, platelet-rich plasma (PRP) fibrin gel, ASCs in PRP, or non-autologous green fluorescence protein-labeled ASCs. Results: The single radiation dose produced a significant loss of dermal microvasculature density (75%) by 7 weeks. There was a significant difference in the rate of healing between irradiated and nonirradiated skin treated with saline solution. The ASCs in PRP-treated wounds exhibited a significant 11.2% improvement in wound healing compared with saline solution. Enhancement was dependent on the combination of ASCs and PRP, because neither ASCs nor PRP alone had an effect. Conclusions: We have created a model that simulates the clinically relevant late radiation effects of delayed wound healing. Using this model, we showed that a combination of ASCs and PRP improves the healing rates of perfusion-depleted tissues, possibly through enhancing local levels of growth factors.

  16. Traveling waves in a delayed SIR model with nonlocal dispersal and nonlinear incidence

    Science.gov (United States)

    Zhang, Shou-Peng; Yang, Yun-Rui; Zhou, Yong-Hui

    2018-01-01

    This paper is concerned with traveling waves of a delayed SIR model with nonlocal dispersal and a general nonlinear incidence. The existence and nonexistence of traveling waves of the system are established respectively by Schauder's fixed point theorem and two-sided Laplace transform. It is also shown that the spread speed c is influenced by the dispersal rate of the infected individuals and the delay τ.

  17. Stability and bifurcation analysis in a kind of business cycle model with delay

    International Nuclear Information System (INIS)

    Zhang Chunrui; Wei Junjie

    2004-01-01

    A kind of business cycle model with delay is considered. Firstly, the linear stability of the model is studied and bifurcation set is drawn in the appropriate parameter plane. It is found that there exist Hopf bifurcations when the delay passes a sequence of critical values. Then the explicit algorithm for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived, using the normal form method and center manifold theorem. Finally, a group conditions to guarantee the global existence of periodic solutions is given, and numerical simulations are performed to illustrate the analytical results found

  18. Complex oscillatory behaviour in a delayed protein cross talk model with periodic forcing

    International Nuclear Information System (INIS)

    Nikolov, Svetoslav

    2009-01-01

    The purpose of this paper is to examine the effects of periodic forcing on the time delay protein cross talk model behaviour. We assume periodic variation for the plasma membrane permeability. The dynamic behaviour of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that periodic forcing can very easily give rise to complex dynamics, including a period-doubling cascade, chaos, quasi-periodic oscillating, and periodic windows. Finally, we calculate the maximal Lyapunov exponent in the regions of the parameter space where chaotic motion of delayed protein cross talk model with periodic forcing exists.

  19. Investigation of the single layer model of GPS ionospheric data processing using IRI-90 and the attached diffusive equilibrium model of plasmaspheric electron density

    Directory of Open Access Journals (Sweden)

    L. Bànyai

    1997-06-01

    Full Text Available The single layer model of GPS ionospheric data processing is compared with the International Reference Ionosphere í 1990 and the attached Diffusive Equilibrium model of Plasmasphere (IRI-90+DEP which proved to be a good supplement to GPS data processing. These models can be used to estimate the single layer height and to improve the mapping function in day-time. The code delays estimated from IRI-90+DEP models are compared with GPS measurements carried out by TurboRogue receiver. These models can be used to estimate the preliminary receiver biases especially in the case of cross-correlation tracking mode. The practical drawback of the IRI-90 model is the sharp discontinuity of the ion components during sunset and sunrise at an elevation of 1000 km, because it also causes a sharp discontinuity in the TEC values computed from the DEP model. The GPS data may be a good source to improve the topside region of the IRI model estimating smooth TEC transition before and after sunrise in the plasmasphere.

  20. Gas-evolution oscillators. 10. A model based on a delay equation

    Energy Technology Data Exchange (ETDEWEB)

    Bar-Eli, K.; Noyes, R.M. [Univ. of Oregon, Eugene, OR (United States)

    1992-09-17

    This paper develops a simplified method to model the behavior of a gas-evolution oscillator with two differential delay equations in two unknowns consisting of the population of dissolved molecules in solution and the pressure of the gas.

  1. Gas-evolution oscillators. 10. A model based on a delay equation

    International Nuclear Information System (INIS)

    Bar-Eli, K.; Noyes, R.M.

    1992-01-01

    This paper develops a simplified method to model the behavior of a gas-evolution oscillator with two differential delay equations in two unknowns consisting of the population of dissolved molecules in solution and the pressure of the gas

  2. The sensitivity of Turing self-organization to biological feedback delays: 2D models of fish pigmentation

    KAUST Repository

    Gaffney, E. A.

    2013-10-01

    © The authors 2013. Turing morphogen models have been extensively explored in the context of large-scale self-organization in multicellular biological systems. However, reconciling the detailed biology of morphogen dynamics, while accounting for time delays associated with gene expression, reveals aberrant behaviours that are not consistent with early developmental self-organization, especially the requirement for exquisite temporal control. Attempts to reconcile the interpretation of Turing\\'s ideas with an increasing understanding of the mechanisms driving zebrafish pigmentation suggests that one should reconsider Turing\\'s model in terms of pigment cells rather than morphogens (Nakamasu et al., 2009, PNAS, 106, 8429-8434; Yamaguchi et al., 2007, PNAS, 104, 4790-4793). Here the dynamics of pigment cells is subject to response delays implicit in the cell cycle and apoptosis. Hence we explore simulations of fish skin patterning, focussing on the dynamical influence of gene expression delays in morphogen-based Turing models and response delays for cell-based Turing models. We find that reconciling the mechanisms driving the behaviour of Turing systems with observations of fish skin patterning remains a fundamental challenge.

  3. Microscopic Control Delay Modeling at Signalized Arterials Using Bluetooth Technology

    OpenAIRE

    Rajasekhar, Lakshmi

    2011-01-01

    Real-time control delay estimation is an important performance measure for any intersection to improve the signal timing plans dynamically in real-time and hence improve the overall system performance. Control delay estimates helps to determine the level-of-service (LOS) characteristics of various approaches at an intersection and takes into account deceleration delay, stopped delay and acceleration delay. All kinds of traffic delay calculation especially control delay calculation has always ...

  4. The Long Time Behavior of a Stochastic Logistic Model with Infinite Delay and Impulsive Perturbation

    OpenAIRE

    Lu, Chun; Wu, Kaining

    2016-01-01

    This paper considers a stochastic logistic model with infinite delay and impulsive perturbation. Firstly, with the space $C_{g}$ as phase space, the definition of solution to a stochastic functional differential equation with infinite delay and impulsive perturbation is established. According to this definition, we show that our model has an unique global positive solution. Then we establish the sufficient and necessary conditions for extinction and stochastic permanence of the...

  5. Nonlinear delay monopoly with bounded rationality

    International Nuclear Information System (INIS)

    Matsumoto, Akio; Szidarovszky, Ferenc

    2012-01-01

    The purpose of this paper is to study the dynamics of a monopolistic firm in a continuous-time framework. The firm is assumed to be boundedly rational and to experience time delays in obtaining and implementing information on output. The dynamic adjustment process is based on the gradient of the expected profit. The paper is divided into three parts: we examine delay effects on dynamics caused by one-time delay and two-time delays in the first two parts. Global dynamics and analytical results on local dynamics are numerically confirmed in the third part. Four main results are demonstrated. First, the stability switch from stability to instability occurs only once in the case of a single delay. Second, the alternation of stability and instability can continue if two time delays are involved. Third, the occurence of Hopf bifurcation is analytically shown if stability is lost. Finally, in a bifurcation process, there are a period-doubling cascade to chaos and a period-halving cascade to the equilibrium point in the case of two time delays if the difference between the two delays is large.

  6. Bubbling in delay-coupled lasers.

    Science.gov (United States)

    Flunkert, V; D'Huys, O; Danckaert, J; Fischer, I; Schöll, E

    2009-06-01

    We theoretically study chaos synchronization of two lasers which are delay coupled via an active or a passive relay. While the lasers are synchronized, their dynamics is identical to a single laser with delayed feedback for a passive relay and identical to two delay-coupled lasers for an active relay. Depending on the coupling parameters the system exhibits bubbling, i.e., noise-induced desynchronization, or on-off intermittency. We associate the desynchronization dynamics in the coherence collapse and low-frequency fluctuation regimes with the transverse instability of some of the compound cavity's antimodes. Finally, we demonstrate how, by using an active relay, bubbling can be suppressed.

  7. Differential modal delay measurements in a graded-index multimode fibre waveguide, using a single-mode fibre pro mode selection

    International Nuclear Information System (INIS)

    Sunak, H.R.D.; Soares, S.M.

    1981-01-01

    Differential model delay (DMD) measurements in graded-index multimode optical fibre waveguides, which are very promising for many types of communication system were carried out. These DMD measurements give a direct indication of the deviation of the refractive index profile, from the optimum value, at a given wavelength. For the first time, by using a single-mode fibre, a few guided modes in the graded-index fibre were selected, in two different ways: launching a few modes at the input end or selecting a few modes at the output end. By doing so important features of propagation in the fibre were revealed, especially the intermodal coupling that may exist. The importance of this determination of intermodal coupling or mode mixing, particularly when many fibres are joined together in a link, and the merits of DMD measurements in general and their importance for the production of high bandwidth graded-index fibres are discussed. (Author) [pt

  8. Incidence and root causes of delays in emergency orthopaedic procedures: a single-centre experience of 36,017 consecutive cases over seven years.

    Science.gov (United States)

    Caesar, Ulla; Karlsson, Jon; Hansson, Elisabeth

    2018-01-01

    Emergency surgery is unplanned by definition and patients are scheduled for surgery with minimal preparation. Some patients who have sustained emergency orthopaedic trauma or other conditions must be operated on immediately or within a few hours, while others can wait until the hospital's resources permit and/or the patients' health status has been optimised as needed. This may affect the prioritisation procedures for both emergency and elective surgery and might result in waiting lists, not only for planned procedures but also for emergencies. The main purpose of this retrospective, observational, single-centre study was to evaluate and describe for the number and reasons of delays, as well as waiting times in emergency orthopaedic surgery using data derived from the hospital's records and registers. All the emergency patients scheduled for emergency surgery whose procedures were rescheduled and delayed between 1 January 2007 and 31 December 2013 were studied. We found that 24% (8474) of the 36,017 patients scheduled for emergency surgeries were delayed and rescheduled at least once, some several times. Eighty per cent of these delays were due to organisational causes. Twenty-one per cent of all the delayed patients had surgery within 24 h, whilst 41% waited for more than 24 h, up to 3 days. A large number of the clinic's emergency orthopaedic procedures were rescheduled and delayed and the majority of the delays were related to organisational reasons. The results can be interpreted in two ways; first, organisational reasons are avoidable and the potential for improvement is great and, secondly and most importantly, the delays might negatively affect patient outcomes.

  9. Hopf Bifurcation in a Cobweb Model with Discrete Time Delays

    Directory of Open Access Journals (Sweden)

    Luca Gori

    2014-01-01

    Full Text Available We develop a cobweb model with discrete time delays that characterise the length of production cycle. We assume a market comprised of homogeneous producers that operate as adapters by taking the (expected profit-maximising quantity as a target to adjust production and consumers with a marginal willingness to pay captured by an isoelastic demand. The dynamics of the economy is characterised by a one-dimensional delay differential equation. In this context, we show that (1 if the elasticity of market demand is sufficiently high, the steady-state equilibrium is locally asymptotically stable and (2 if the elasticity of market demand is sufficiently low, quasiperiodic oscillations emerge when the time lag (that represents the length of production cycle is high enough.

  10. Modelling, simulation and dynamic analysis of the time delay model of the recuperative heat exchanger

    Directory of Open Access Journals (Sweden)

    Debeljković Dragutin Lj.

    2016-01-01

    Full Text Available The heat exchangers are frequently used as constructive elements in various plants and their dynamics is very important. Their operation is usually controlled by manipulating inlet fluid temperatures or mass flow rates. On the basis of the accepted and critically clarified assumptions, a linearized mathematical model of the cross-flow heat exchanger has been derived, taking into account the wall dynamics. The model is based on the fundamental law of energy conservation, covers all heat accumulation storages in the process, and leads to the set of partial differential equations (PDE, which solution is not possible in closed form. In order to overcome this problem the approach based on physical discretization was applied with associated time delay on the positions where it was necessary and unavoidable. This is quite new approach, which represent the further extension of previous results which did not include significant time delay existing in the working media. Simulation results, were derived, showing progress in building such a model suitable for further treatment from the position of analysis as well as the needs for control synthesis problem.

  11. A lossy graph model for delay reduction in generalized instantly decodable network coding

    KAUST Repository

    Douik, Ahmed S.

    2014-06-01

    The problem of minimizing the decoding delay in Generalized instantly decodable network coding (G-IDNC) for both perfect and lossy feedback scenarios is formulated as a maximum weight clique problem over the G-IDNC graph in. In this letter, we introduce a new lossy G-IDNC graph (LG-IDNC) model to further minimize the decoding delay in lossy feedback scenarios. Whereas the G-IDNC graph represents only doubtless combinable packets, the LG-IDNC graph represents also uncertain packet combinations, arising from lossy feedback events, when the expected decoding delay of XORing them among themselves or with other certain packets is lower than that expected when sending these packets separately. We compare the decoding delay performance of LG-IDNC and G-IDNC graphs through extensive simulations. Numerical results show that our new LG-IDNC graph formulation outperforms the G-IDNC graph formulation in all lossy feedback situations and achieves significant improvement in the decoding delay especially when the feedback erasure probability is higher than the packet erasure probability. © 2012 IEEE.

  12. Mathematical model of tuberculosis epidemic with recovery time delay

    Science.gov (United States)

    Iskandar, Taufiq; Chaniago, Natasya Ayuningtia; Munzir, Said; Halfiani, Vera; Ramli, Marwan

    2017-12-01

    Tuberculosis (TB) is a contagious disease which can cause death. The disease is caused by Mycobacterium Tuberculosis which generally affects lungs and other organs such as lymph gland, intestine, kidneys, uterus, bone, and brain. The spread of TB occurs through the bacteria-contaminated air which is inhaled into the lungs. The symptoms of the TB patients are cough, chest pain, shortness of breath, appetite lose, weight lose, fever, cold, and fatigue. World Health Organization (WHO) reported that Indonesia placed the second in term of the most TB cases after India which has 23 % cases while China is reported to have 10 % cases in global. TB has become one of the greatest death threats in global. One way to countermeasure TB disease is by administering vaccination. However, a medication is needed when one has already infected. The medication can generally take 6 months of time which consists of two phases, inpatient and outpatient. Mathematical models to analyze the spread of TB have been widely developed. One of them is the SEIR type model. In this model the population is divided into four groups, which are suspectible (S), exposed (S), infected (I), recovered (R). In fact, a TB patient needs to undergo medication with a period of time in order to recover. This article discusses a model of TB spread with considering the term of recovery (time delay). The model is developed in SIR type where the population is divided into three groups, suspectible (S), infected (I), and recovered (R). Here, the vaccine is given to the susceptible group and the time delay is considered in the group undergoing the medication.

  13. A Time-Delayed Mathematical Model for Tumor Growth with the Effect of a Periodic Therapy.

    Science.gov (United States)

    Xu, Shihe; Wei, Xiangqing; Zhang, Fangwei

    2016-01-01

    A time-delayed mathematical model for tumor growth with the effect of periodic therapy is studied. The establishment of the model is based on the reaction-diffusion dynamics and mass conservation law and is considered with a time delay in cell proliferation process. Sufficient conditions for the global stability of tumor free equilibrium are given. We also prove that if external concentration of nutrients is large the tumor will not disappear and the conditions under which there exist periodic solutions to the model are also determined. Results are illustrated by computer simulations.

  14. A Time-Delayed Mathematical Model for Tumor Growth with the Effect of a Periodic Therapy

    Directory of Open Access Journals (Sweden)

    Shihe Xu

    2016-01-01

    Full Text Available A time-delayed mathematical model for tumor growth with the effect of periodic therapy is studied. The establishment of the model is based on the reaction-diffusion dynamics and mass conservation law and is considered with a time delay in cell proliferation process. Sufficient conditions for the global stability of tumor free equilibrium are given. We also prove that if external concentration of nutrients is large the tumor will not disappear and the conditions under which there exist periodic solutions to the model are also determined. Results are illustrated by computer simulations.

  15. Effects of stochastic time-delayed feedback on a dynamical system modeling a chemical oscillator

    Science.gov (United States)

    González Ochoa, Héctor O.; Perales, Gualberto Solís; Epstein, Irving R.; Femat, Ricardo

    2018-05-01

    We examine how stochastic time-delayed negative feedback affects the dynamical behavior of a model oscillatory reaction. We apply constant and stochastic time-delayed negative feedbacks to a point Field-Körös-Noyes photosensitive oscillator and compare their effects. Negative feedback is applied in the form of simulated inhibitory electromagnetic radiation with an intensity proportional to the concentration of oxidized light-sensitive catalyst in the oscillator. We first characterize the system under nondelayed inhibitory feedback; then we explore and compare the effects of constant (deterministic) versus stochastic time-delayed feedback. We find that the oscillatory amplitude, frequency, and waveform are essentially preserved when low-dispersion stochastic delayed feedback is used, whereas small but measurable changes appear when a large dispersion is applied.

  16. Dynamics of an HBV/HCV infection model with intracellular delay and cell proliferation

    Science.gov (United States)

    Zhang, Fengqin; Li, Jianquan; Zheng, Chongwu; Wang, Lin

    2017-01-01

    A new mathematical model of hepatitis B/C virus (HBV/HCV) infection which incorporates the proliferation of healthy hepatocyte cells and the latent period of infected hepatocyte cells is proposed and studied. The dynamics is analyzed via Pontryagin's method and a newly proposed alternative geometric stability switch criterion. Sharp conditions ensuring stability of the infection persistent equilibrium are derived by applying Pontryagin's method. Using the intracellular delay as the bifurcation parameter and applying an alternative geometric stability switch criterion, we show that the HBV/HCV infection model undergoes stability switches. Furthermore, numerical simulations illustrate that the intracellular delay can induce complex dynamics such as persistence bubbles and chaos.

  17. Dynamic analysis of a stochastic delayed rumor propagation model

    Science.gov (United States)

    Jia, Fangju; Lv, Guangying; Wang, Shuangfeng; Zou, Guang-an

    2018-02-01

    The rapid development of the Internet, especially the emergence of the social networks, has led rumor propagation into a new media era. In this paper, we are concerned with a stochastic delayed rumor propagation model. Firstly, we obtain the existence of the global solution. Secondly, sufficient conditions for extinction of the rumor are established. Lastly, the boundedness of solution is proved and some simulations are given to verify our results.

  18. Relaxation Cycles in a Generalized Neuron Model with Two Delays

    Directory of Open Access Journals (Sweden)

    S. D. Glyzin

    2013-01-01

    Full Text Available A method of modeling the phenomenon of bursting behavior in neural systems based on delay equations is proposed. A singularly perturbed scalar nonlinear differentialdifference equation of Volterra type is a mathematical model of a neuron and a separate pulse containing one function without delay and two functions with different lags. It is established that this equation, for a suitable choice of parameters, has a stable periodic motion with any preassigned number of bursts in the time interval of the period length. To prove this assertion we first go to a relay-type equation and then determine the asymptotic solutions of a singularly perturbed equation. On the basis of this asymptotics the Poincare operator is constructed. The resulting operator carries a closed bounded convex set of initial conditions into itself, which suggests that it has at least one fixed point. The Frechet derivative evaluation of the succession operator, made in the paper, allows us to prove the uniqueness and stability of the resulting relax of the periodic solution.

  19. Stability of a general delayed virus dynamics model with humoral immunity and cellular infection

    Science.gov (United States)

    Elaiw, A. M.; Raezah, A. A.; Alofi, A. S.

    2017-06-01

    In this paper, we investigate the dynamical behavior of a general nonlinear model for virus dynamics with virus-target and infected-target incidences. The model incorporates humoral immune response and distributed time delays. The model is a four dimensional system of delay differential equations where the production and removal rates of the virus and cells are given by general nonlinear functions. We derive the basic reproduction parameter R˜0 G and the humoral immune response activation number R˜1 G and establish a set of conditions on the general functions which are sufficient to determine the global dynamics of the models. We use suitable Lyapunov functionals and apply LaSalle's invariance principle to prove the global asymptotic stability of the all equilibria of the model. We confirm the theoretical results by numerical simulations.

  20. The sensitivity of Turing self-organization to biological feedback delays: 2D models of fish pigmentation.

    Science.gov (United States)

    Gaffney, E A; Lee, S Seirin

    2015-03-01

    Turing morphogen models have been extensively explored in the context of large-scale self-organization in multicellular biological systems. However, reconciling the detailed biology of morphogen dynamics, while accounting for time delays associated with gene expression, reveals aberrant behaviours that are not consistent with early developmental self-organization, especially the requirement for exquisite temporal control. Attempts to reconcile the interpretation of Turing's ideas with an increasing understanding of the mechanisms driving zebrafish pigmentation suggests that one should reconsider Turing's model in terms of pigment cells rather than morphogens (Nakamasu et al., 2009, PNAS, 106: , 8429-8434; Yamaguchi et al., 2007, PNAS, 104: , 4790-4793). Here the dynamics of pigment cells is subject to response delays implicit in the cell cycle and apoptosis. Hence we explore simulations of fish skin patterning, focussing on the dynamical influence of gene expression delays in morphogen-based Turing models and response delays for cell-based Turing models. We find that reconciling the mechanisms driving the behaviour of Turing systems with observations of fish skin patterning remains a fundamental challenge. © The Authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  1. First-Case Operating Room Delays: Patterns Across Urban Hospitals of a Single Health Care System

    Directory of Open Access Journals (Sweden)

    Callie M. Cox Bauer

    2016-08-01

    Full Text Available Purpose: Operating room delays decrease health care system efficiency and increase costs. To improve operating room efficiency in our system, we retrospectively investigated delay frequencies, causes and costs. Methods: We studied all first-of-the-day nonemergent surgical cases performed at three high-volume urban hospitals of a large health system from July 2012 to November 2013. Times for patient flow from arrival to procedure start and documented reasons for delay were obtained from electronic medical records. Delay was defined as patient placement in the operating room later than scheduled surgery time. Effects of patient characteristics, late patient arrival to the hospital, number of planned procedures, years of surgeon experience, service department and hospital facility on odds of delay were examined using logistic regression. Results: Of 5,598 cases examined, 88% were delayed. Patients arrived late to the hospital (surgery in 65% of first cases. Mean time from arrival to scheduled surgery and in-room placement was 104.6 and 127.4 minutes, respectively. Mean delay time was 28.2 minutes. Nearly 60% of delayed cases had no documented reason for delay. For cases with documentation, causes included the physician (52%, anesthesia (15%, patient (13%, staff (9%, other sources (6% and facility (5%. Regression analysis revealed age, late arrival, department and facility as significant predictors of delay. Estimated delay costs, based on published figures and representing lost revenue, were $519,388. Conclusions: To improve operating room efficiency, multidisciplinary strategies are needed for increasing patient adherence to recommended arrival times, documentation of delay by medical staff and consistency in workflow patterns among facilities and departments.

  2. Why trace and delay conditioning are sometimes (but not always) hippocampal dependent: A computational model

    Science.gov (United States)

    Moustafa, Ahmed A.; Wufong, Ella; Servatius, Richard J.; Pang, Kevin C. H.; Gluck, Mark A.; Myers, Catherine E.

    2013-01-01

    A recurrent-network model provides a unified account of the hippocampal region in mediating the representation of temporal information in classical eyeblink conditioning. Much empirical research is consistent with a general conclusion that delay conditioning (in which the conditioned stimulus CS and unconditioned stimulus US overlap and co-terminate) is independent of the hippocampal system, while trace conditioning (in which the CS terminates before US onset) depends on the hippocampus. However, recent studies show that, under some circumstances, delay conditioning can be hippocampal-dependent and trace conditioning can be spared following hippocampal lesion. Here, we present an extension of our prior trial-level models of hippocampal function and stimulus representation that can explain these findings within a unified framework. Specifically, the current model includes adaptive recurrent collateral connections that aid in the representation of intra-trial temporal information. With this model, as in our prior models, we argue that the hippocampus is not specialized for conditioned response timing, but rather is a general-purpose system that learns to predict the next state of all stimuli given the current state of variables encoded by activity in recurrent collaterals. As such, the model correctly predicts that hippocampal involvement in classical conditioning should be critical not only when there is an intervening trace interval, but also when there is a long delay between CS onset and US onset. Our model simulates empirical data from many variants of classical conditioning, including delay and trace paradigms in which the length of the CS, the inter-stimulus interval, or the trace interval is varied. Finally, we discuss model limitations, future directions, and several novel empirical predictions of this temporal processing model of hippocampal function and learning. PMID:23178699

  3. Stability and bifurcation analysis in a delayed SIR model

    International Nuclear Information System (INIS)

    Jiang Zhichao; Wei Junjie

    2008-01-01

    In this paper, a time-delayed SIR model with a nonlinear incidence rate is considered. The existence of Hopf bifurcations at the endemic equilibrium is established by analyzing the distribution of the characteristic values. A explicit algorithm for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by using the normal form and the center manifold theory. Numerical simulations to support the analytical conclusions are carried out

  4. Mathematical Representation of VoIP Connection Delay

    Directory of Open Access Journals (Sweden)

    M. Halas

    2007-09-01

    Full Text Available The main topic of this article is to define mathematical formulation of VoIP connection delay model. It handles about all partial delay components, the mechanism of their generation, facilities and their mathematical formulation. Thereafter based on mathematical formulation of all partial delay components, the final mathematical model of whole VoIP call delay is created. In conclusion of this article the results of the designed mathematical model are compared with the experimentally gained results.

  5. Influence of time delay on fractional-order PI-controlled system for a second-order oscillatory plant model with time delay

    Directory of Open Access Journals (Sweden)

    Sadalla Talar

    2017-12-01

    Full Text Available The paper aims at presenting the influence of an open-loop time delay on the stability and tracking performance of a second-order open-loop system and continuoustime fractional-order PI controller. The tuning method of this controller is based on Hermite- Biehler and Pontryagin theorems, and the tracking performance is evaluated on the basis of two integral performance indices, namely IAE and ISE. The paper extends the results and methodology presented in previous work of the authors to analysis of the influence of time delay on the closed-loop system taking its destabilizing properties into account, as well as concerning possible application of the presented results and used models.

  6. Chaos synchronization in time-delayed systems with parameter mismatches and variable delay times

    International Nuclear Information System (INIS)

    Shahverdiev, E.M.; Nuriev, R.A.; Hashimov, R.H.; Shore, K.A.

    2004-06-01

    We investigate synchronization between two undirectionally linearly coupled chaotic nonidentical time-delayed systems and show that parameter mismatches are of crucial importance to achieve synchronization. We establish that independent of the relation between the delay time in the coupled systems and the coupling delay time, only retarded synchronization with the coupling delay time is obtained. We show that with parameter mismatch or without it neither complete nor anticipating synchronization occurs. We derive existence and stability conditions for the retarded synchronization manifold. We demonstrate our approach using examples of the Ikeda and Mackey Glass models. Also for the first time we investigate chaos synchronization in time-delayed systems with variable delay time and find both existence and sufficient stability conditions for the retarded synchronization manifold with the coupling-delay lag time. (author)

  7. Myocardial delayed-enhancement CT: initial experience in children and young adults

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of)

    2017-10-15

    Clinical utility of myocardial delayed enhancement CT has not been reported in children and young adults. To describe initial experience of myocardial delayed enhancement CT regarding image quality, radiation dose and identification of myocardial lesions in children and young adults. Between August 2013 and November 2016, 29 consecutive children and young adults (median age 16 months) with suspected coronary artery or myocardial abnormality underwent arterial- and delayed-phase cardiac CT at our institution. We measured CT densities in normal myocardium, left ventricular cavity, and arterial and delayed hypo-enhancing and delayed hyperenhancing myocardial lesions. We then compared the extent of delayed hyperenhancing lesions with delayed-enhancement MRI or thallium single-photon emission CT. Normal myocardium and left ventricular cavity showed significantly higher CT numbers on arterial-phase CT than on delayed-phase CT (t-test, P<0.0001). Contrast-to-noise ratios of the arterial and delayed hypo-enhancing and delayed hyperenhancing lesions on CT were 26.7, 17.6 and 18.7, respectively. Delayed-phase CT findings were equivalent to those of delayed-enhancement MRI in all cases (7/7) and to those of thallium single-photon emission CT in 70% (7/10). Myocardial delayed-enhancement CT can be added to evaluate myocardial lesions in select children and young adults with suspected coronary artery or myocardial abnormality. (orig.)

  8. Myocardial delayed-enhancement CT: initial experience in children and young adults

    International Nuclear Information System (INIS)

    Goo, Hyun Woo

    2017-01-01

    Clinical utility of myocardial delayed enhancement CT has not been reported in children and young adults. To describe initial experience of myocardial delayed enhancement CT regarding image quality, radiation dose and identification of myocardial lesions in children and young adults. Between August 2013 and November 2016, 29 consecutive children and young adults (median age 16 months) with suspected coronary artery or myocardial abnormality underwent arterial- and delayed-phase cardiac CT at our institution. We measured CT densities in normal myocardium, left ventricular cavity, and arterial and delayed hypo-enhancing and delayed hyperenhancing myocardial lesions. We then compared the extent of delayed hyperenhancing lesions with delayed-enhancement MRI or thallium single-photon emission CT. Normal myocardium and left ventricular cavity showed significantly higher CT numbers on arterial-phase CT than on delayed-phase CT (t-test, P<0.0001). Contrast-to-noise ratios of the arterial and delayed hypo-enhancing and delayed hyperenhancing lesions on CT were 26.7, 17.6 and 18.7, respectively. Delayed-phase CT findings were equivalent to those of delayed-enhancement MRI in all cases (7/7) and to those of thallium single-photon emission CT in 70% (7/10). Myocardial delayed-enhancement CT can be added to evaluate myocardial lesions in select children and young adults with suspected coronary artery or myocardial abnormality. (orig.)

  9. Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing.

    Science.gov (United States)

    Jäger, Marten; Ott, Claus-Eric; Grünhagen, Johannes; Hecht, Jochen; Schell, Hanna; Mundlos, Stefan; Duda, Georg N; Robinson, Peter N; Lienau, Jasmin

    2011-03-24

    The sheep is an important model organism for many types of medically relevant research, but molecular genetic experiments in the sheep have been limited by the lack of knowledge about ovine gene sequences. Prior to our study, mRNA sequences for only 1,556 partial or complete ovine genes were publicly available. Therefore, we developed a composite de novo transcriptome assembly method for next-generation sequence data to combine known ovine mRNA and EST sequences, mRNA sequences from mouse and cow, and sequences assembled de novo from short read RNA-Seq data into a composite reference transcriptome, and identified transcripts from over 12 thousand previously undescribed ovine genes. Gene expression analysis based on these data revealed substantially different expression profiles in standard versus delayed bone healing in an ovine tibial osteotomy model. Hundreds of transcripts were differentially expressed between standard and delayed healing and between the time points of the standard and delayed healing groups. We used the sheep sequences to design quantitative RT-PCR assays with which we validated the differential expression of 26 genes that had been identified by RNA-seq analysis. A number of clusters of characteristic expression profiles could be identified, some of which showed striking differences between the standard and delayed healing groups. Gene Ontology (GO) analysis showed that the differentially expressed genes were enriched in terms including extracellular matrix, cartilage development, contractile fiber, and chemokine activity. Our results provide a first atlas of gene expression profiles and differentially expressed genes in standard and delayed bone healing in a large-animal model and provide a number of clues as to the shifts in gene expression that underlie delayed bone healing. In the course of our study, we identified transcripts of 13,987 ovine genes, including 12,431 genes for which no sequence information was previously available. This

  10. Ionospheric correction for spaceborne single-frequency GPS based ...

    Indian Academy of Sciences (India)

    The Klobuchar model was used to compute ionospheric delays for the dlft station, and .... dual-frequency GPS receivers; therefore, the iono- ... The mapping function is defined as the ratio of .... eter in the processing of an extended set of single.

  11. Permanence for a Delayed Nonautonomous SIR Epidemic Model with Density-Dependent Birth Rate

    Directory of Open Access Journals (Sweden)

    Li Yingke

    2011-01-01

    Full Text Available Based on some well-known SIR models, a revised nonautonomous SIR epidemic model with distributed delay and density-dependent birth rate was considered. Applying some classical analysis techniques for ordinary differential equations and the method proposed by Wang (2002, the threshold value for the permanence and extinction of the model was obtained.

  12. Development of a Forward Model for the Assimilation of Delay-Doppler Maps (DDMs)

    Science.gov (United States)

    Garrison, J. L.; Huang, F.; Leidner, M.; Annane, B.; Hoffman, R.

    2017-12-01

    Ocean wind measurements from CYGNSS have the potential to improve the observation and analysis of tropical cyclones globally. The standard Level-2 wind product, however, is defined by the 25-km spatial resolution requirement using only 15 out of a total of 187 delay-Doppler bins. The full forward model relating a surface wind field to the delay-Doppler map (DDM) involves a surface integral over the glistening zone (which can be expressed in a variety of more numerically efficient convolutional forms) and incorporates variation of the receiver antenna pattern over the surface. Combined with the well-known ambiguity in the mapping between surface coordinates and delay-Doppler space, this model cannot be inverted to provide wind speed estimates away from the specular point. Two approaches are being studied to improve wind retrievals through use of the full DDM. The first uses sequential DDM measurements which cover a large common area on the sea surface, but provide some variation in geometry due to satellite motion. An Extended Kalman filter (EKF) is used to integrate these sequential observations. Numerical simulations have been performed to show the sensitivity of the filter stability to the initial covariance matrix. Although it was found that the EKF wind field still retains artifacts of the delay-Doppler ambiguity, the wind speed at the specular point can be estimated with lower error than that of the baseline Level 2 products. Another approach is to assimilate DDMs directly into a 2-dimensional, Variational vector wind Analysis Method (VAM). Sample results from this forward model will be generated from idealized and real wind fields, and compared to results from the CYGNSS Science Team End-to-End simulator (E2ES). In both of these approaches, an accurate forward model for the calibrated level 1a DDM data is required. This presentation will emphasize the development of this model and the results of testing the forward model through comparison with early CYGNSS

  13. Positive Almost Periodic Solutions for a Time-Varying Fishing Model with Delay

    Directory of Open Access Journals (Sweden)

    Xia Li

    2011-01-01

    Full Text Available This paper is concerned with a time-varying fishing model with delay. By means of the continuation theorem of coincidence degree theory, we prove that it has at least one positive almost periodic solution.

  14. A dynamic IS-LM business cycle model with two time delays in capital accumulation equation

    Science.gov (United States)

    Zhou, Lujun; Li, Yaqiong

    2009-06-01

    In this paper, we analyze a augmented IS-LM business cycle model with the capital accumulation equation that two time delays are considered in investment processes according to Kalecki's idea. Applying stability switch criteria and Hopf bifurcation theory, we prove that time delays cause the equilibrium to lose or gain stability and Hopf bifurcation occurs.

  15. Analytical applications for delayed neutrons

    International Nuclear Information System (INIS)

    Eccleston, G.W.

    1983-01-01

    Analytical formulations that describe the time dependence of neutron populations in nuclear materials contain delayed-neutron dependent terms. These terms are important because the delayed neutrons, even though their yields in fission are small, permit control of the fission chain reaction process. Analytical applications that use delayed neutrons range from simple problems that can be solved with the point reactor kinetics equations to complex problems that can only be solved with large codes that couple fluid calculations with the neutron dynamics. Reactor safety codes, such as SIMMER, model transients of the entire reactor core using coupled space-time neutronics and comprehensive thermal-fluid dynamics. Nondestructive delayed-neutron assay instruments are designed and modeled using a three-dimensional continuous-energy Monte Carlo code. Calculations on high-burnup spent fuels and other materials that contain a mix of uranium and plutonium isotopes require accurate and complete information on the delayed-neutron periods, yields, and energy spectra. A continuing need exists for delayed-neutron parameters for all the fissioning isotopes

  16. Channel access delay and buffer distribution of two-user opportunistic scheduling schemes in wireless networks

    KAUST Repository

    Hossain, Md Jahangir

    2010-07-01

    In our earlier works, we proposed rate adaptive hierarchical modulation-assisted two-best user opportunistic scheduling (TBS) and hybrid two-user scheduling (HTS) schemes. The proposed schemes are innovative in the sense that they include a second user in the transmission opportunistically using hierarchical modulations. As such the frequency of information access of the users increases without any degradation of the system spectral efficiency (SSE) compared to the classical opportunistic scheduling scheme. In this paper, we analyze channel access delay of an incoming packet at the base station (BS) buffer when our proposed TBS and HTS schemes are employed at the BS. Specifically, using a queuing analytic model we derive channel access delay as well as buffer distribution of the packets that wait at BS buffer for down-link (DL) transmission. We compare performance of the TBS and HTS schemes with that of the classical single user opportunistic schemes namely, absolute carrier-to-noise ratio (CNR)-based single user scheduling (ASS) and normalized CNR-based single user scheduling (NSS). For an independent and identically distributed (i.i.d.) fading environment, our proposed scheme can improve packet\\'s access delay performance compared to the ASS. Selected numerical results in an independent but non-identically distributed (i.n.d.) fading environment show that our proposed HTS achieves overall good channel access delay performance. © 2010 IEEE.

  17. A model for integrating elementary neural functions into delayed-response behavior.

    Directory of Open Access Journals (Sweden)

    Thomas Gisiger

    2006-04-01

    Full Text Available It is well established that various cortical regions can implement a wide array of neural processes, yet the mechanisms which integrate these processes into behavior-producing, brain-scale activity remain elusive. We propose that an important role in this respect might be played by executive structures controlling the traffic of information between the cortical regions involved. To illustrate this hypothesis, we present a neural network model comprising a set of interconnected structures harboring stimulus-related activity (visual representation, working memory, and planning, and a group of executive units with task-related activity patterns that manage the information flowing between them. The resulting dynamics allows the network to perform the dual task of either retaining an image during a delay (delayed-matching to sample task, or recalling from this image another one that has been associated with it during training (delayed-pair association task. The model reproduces behavioral and electrophysiological data gathered on the inferior temporal and prefrontal cortices of primates performing these same tasks. It also makes predictions on how neural activity coding for the recall of the image associated with the sample emerges and becomes prospective during the training phase. The network dynamics proves to be very stable against perturbations, and it exhibits signs of scale-invariant organization and cooperativity. The present network represents a possible neural implementation for active, top-down, prospective memory retrieval in primates. The model suggests that brain activity leading to performance of cognitive tasks might be organized in modular fashion, simple neural functions becoming integrated into more complex behavior by executive structures harbored in prefrontal cortex and/or basal ganglia.

  18. A model for integrating elementary neural functions into delayed-response behavior.

    Science.gov (United States)

    Gisiger, Thomas; Kerszberg, Michel

    2006-04-01

    It is well established that various cortical regions can implement a wide array of neural processes, yet the mechanisms which integrate these processes into behavior-producing, brain-scale activity remain elusive. We propose that an important role in this respect might be played by executive structures controlling the traffic of information between the cortical regions involved. To illustrate this hypothesis, we present a neural network model comprising a set of interconnected structures harboring stimulus-related activity (visual representation, working memory, and planning), and a group of executive units with task-related activity patterns that manage the information flowing between them. The resulting dynamics allows the network to perform the dual task of either retaining an image during a delay (delayed-matching to sample task), or recalling from this image another one that has been associated with it during training (delayed-pair association task). The model reproduces behavioral and electrophysiological data gathered on the inferior temporal and prefrontal cortices of primates performing these same tasks. It also makes predictions on how neural activity coding for the recall of the image associated with the sample emerges and becomes prospective during the training phase. The network dynamics proves to be very stable against perturbations, and it exhibits signs of scale-invariant organization and cooperativity. The present network represents a possible neural implementation for active, top-down, prospective memory retrieval in primates. The model suggests that brain activity leading to performance of cognitive tasks might be organized in modular fashion, simple neural functions becoming integrated into more complex behavior by executive structures harbored in prefrontal cortex and/or basal ganglia.

  19. Delay Mitigation in the Malaysian Housing Industry: A Structural Equation Modelling Approach

    Directory of Open Access Journals (Sweden)

    Chang Saar Chai

    2015-01-01

    Full Text Available The housing industry is one of the major contributors to the economy in Malaysia due to the constantly high housing demand. The housing demand has increased due to the rapid growth in population and urbanisation in the country. One of the major challenges in the housing industry is the late delivery of housing supply, which in some instances leads to sick and abandoned housing projects. Despite being extensively investigated, th in a negative impact, there is a strong need to review the housing delay mitigation measures practised in Malaysia. This paper aims to evaluate the current delay mitigation measures and its main objective is to explore the relationship between the mitigation measures and delay in housing via a Structural Equation Modelling (SEM approach. A questionnaire survey through an online survey tool was conducted across 13 states and three Federal Territories in Malaysia. The target respondents are the local authorities, developers, consultants (principal submitting persons and contractors. The findings show that 17 predictive, preventive, organisational or corrective. This paper demonstrates that preventive measures are the most influential mitigation measures for housing delivery delay.

  20. Study of beta-delayed neutron with proton-neutron QRPA plus statistical model

    International Nuclear Information System (INIS)

    Minato, Futoshi; Iwamoto, Osamu

    2015-01-01

    β-delayed neutron is known to be important for safety operation of nuclear reactor and prediction of elemental abundance after freeze-out of r-process. A lot of researches on it have been performed. However, the experimental data are far from complete since the lifetime of most of the relevant nuclei is so short that one cannot measure in a high efficiency. In order to estimate half-lives and delayed neutron emission probabilities of unexplored nuclei, we developed a new theoretical method which combines a proton-neutron quasi-particle random-phase-approximation and the Hauser-Feshbach statistical model. The present method reproduces experimentally known β-decay half-lives within a factor of 10 and about 40% of within a factor of 2. However it fails to reproduce delayed neutron emission probabilities. We discuss the problems and remedy for them to be made in future. (author)

  1. Picosecond wide-field time-correlated single photon counting fluorescence microscopy with a delay line anode detector

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, Liisa M.; Le Marois, Alix; Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Becker, Wolfgang; Smietana, Stefan [Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Milnes, James; Conneely, Thomas [Photek Ltd., 26 Castleham Rd, Saint Leonards-on-Sea TN38 9NS (United Kingdom); Jagutzki, Ottmar [Institut für Kernphysik, Max-von-Laue-Str. 1, 60438 Frankfurt (Germany)

    2016-08-15

    We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reduced lifetime near the coverslip in TIR compared to epifluorescence FLIM.

  2. Two time-delay dynamic model on the transmission of malicious signals in wireless sensor network

    International Nuclear Information System (INIS)

    Keshri, Neha; Mishra, Bimal Kumar

    2014-01-01

    Highlights: • Role of time delay to reduce the adversary effect in WSN is explored. • Model with two time delays is proposed to analyse spread of malicious signal in WSN. • Dynamical behaviour of worm-free equilibrium and endemic equilibrium is shown. • Threshold condition for switch of stability are obtained analytically. • Relation between stability and the two time delays is also explored. - Abstract: Deployed in a hostile environment, motes of a Wireless sensor network (WSN) could be easily compromised by the attackers because of several constraints such as limited processing capabilities, memory space, and limited battery life time etc. While transmitting the data to their neighbour motes within the network, motes are easily compromised due to resource constraints. Here time delay can play an efficient role to reduce the adversary effect on motes. In this paper, we propose an epidemic model SEIR (Susceptible–Exposed–Infectious–Recovered) with two time delays to describe the transmission dynamics of malicious signals in wireless sensor network. The first delay accounts for an exposed (latent) period while the second delay is for the temporary immunity period due to multiple worm outbreaks. The dynamical behaviour of worm-free equilibrium and endemic equilibrium is shown from the point of stability which switches under some threshold condition specified by the basic reproduction number. Our results show that the global properties of equilibria also depends on the threshold condition and that latent and temporary immunity period in a mote does not affect the stability, but they play a positive role to control malicious attack. Moreover, numerical simulations are given to support the theoretical analysis

  3. Bifurcation analysis on a delayed SIS epidemic model with stage structure

    Directory of Open Access Journals (Sweden)

    Kejun Zhuang

    2007-05-01

    Full Text Available In this paper, a delayed SIS (Susceptible Infectious Susceptible model with stage structure is investigated. We study the Hopf bifurcations and stability of the model. Applying the normal form theory and the center manifold argument, we derive the explicit formulas determining the properties of the bifurcating periodic solutions. The conditions to guarantee the global existence of periodic solutions are established. Also some numerical simulations for supporting the theoretical are given.

  4. Dynamics of a model of two delay-coupled relaxation oscillators

    Science.gov (United States)

    Ruelas, R. E.; Rand, R. H.

    2010-08-01

    This paper investigates the dynamics of a new model of two coupled relaxation oscillators. The model replaces the usual DDE (differential-delay equation) formulation with a discrete-time approach with jumps. Existence, bifurcation and stability of in-phase periodic motions is studied. Simple periodic motions, which involve exactly two jumps per period, are found to have large plateaus in parameter space. These plateaus are separated by regions of complicated dynamics, reminiscent of the Devil's Staircase. Stability of motions in the in-phase manifold are contrasted with stability of motions in the full phase space.

  5. Fuzzy model-based adaptive synchronization of time-delayed chaotic systems

    International Nuclear Information System (INIS)

    Vasegh, Nastaran; Majd, Vahid Johari

    2009-01-01

    In this paper, fuzzy model-based synchronization of a class of first order chaotic systems described by delayed-differential equations is addressed. To design the fuzzy controller, the chaotic system is modeled by Takagi-Sugeno fuzzy system considering the properties of the nonlinear part of the system. Assuming that the parameters of the chaotic system are unknown, an adaptive law is derived to estimate these unknown parameters, and the stability of error dynamics is guaranteed by Lyapunov theory. Numerical examples are given to demonstrate the validity of the proposed adaptive synchronization approach.

  6. On avian influenza epidemic models with time delay.

    Science.gov (United States)

    Liu, Sanhong; Ruan, Shigui; Zhang, Xinan

    2015-12-01

    After the outbreak of the first avian influenza A virus (H5N1) in Hong Kong in 1997, another avian influenza A virus (H7N9) crossed the species barrier in mainland China in 2013 and 2014 and caused more than 400 human cases with a death rate of nearly 40%. In this paper, we take account of the incubation periods of avian influenza A virus and construct a bird-to-human transmission model with different time delays in the avian and human populations combining the survival probability of the infective avian and human populations at the latent time. By analyzing the dynamical behavior of the model, we obtain a threshold value for the prevalence of avian influenza and investigate local and global asymptotical stability of equilibria of the system.

  7. Conduction Delay Learning Model for Unsupervised and Supervised Classification of Spatio-Temporal Spike Patterns.

    Science.gov (United States)

    Matsubara, Takashi

    2017-01-01

    Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning.

  8. Discounting of Monetary Rewards that are Both Delayed and Probabilistic: Delay and Probability Combine Multiplicatively, not Additively

    Science.gov (United States)

    Vanderveldt, Ariana; Green, Leonard; Myerson, Joel

    2014-01-01

    The value of an outcome is affected both by the delay until its receipt (delay discounting) and by the likelihood of its receipt (probability discounting). Despite being well-described by the same hyperboloid function, delay and probability discounting involve fundamentally different processes, as revealed, for example, by the differential effects of reward amount. Previous research has focused on the discounting of delayed and probabilistic rewards separately, with little research examining more complex situations in which rewards are both delayed and probabilistic. In two experiments, participants made choices between smaller rewards that were both immediate and certain and larger rewards that were both delayed and probabilistic. Analyses revealed significant interactions between delay and probability factors inconsistent with an additive model. In contrast, a hyperboloid discounting model in which delay and probability were combined multiplicatively provided an excellent fit to the data. These results suggest that the hyperboloid is a good descriptor of decision making in complicated monetary choice situations like those people encounter in everyday life. PMID:24933696

  9. Global Exponential Stability of Positive Almost Periodic Solutions for a Fishing Model with a Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2014-01-01

    Full Text Available This paper is concerned with a nonautonomous fishing model with a time-varying delay. Under proper conditions, we employ a novel argument to establish a criterion on the global exponential stability of positive almost periodic solutions of the model with almost periodic coefficients and delays. Moreover, an example and its numerical simulation are given to illustrate the main results.

  10. Nuclear size and cell division delay

    International Nuclear Information System (INIS)

    Bird, R.P.

    1986-01-01

    Radiation-induced division delay has been linked to damage at the nuclear envelope. Further, cells in G 2 phase are drastically arrested by high LET radiation such that single particles traversing cell nuclei may produce measurable division delay. A modest effort was initiated using two related cell lines of different size, near-diploid cells and near-tetraploid cells of Chinese hamster origin, to compare their sensitivity for radiation-induced division delay. If the nuclear surface is the critical target, then a larger nuclear cross-section presented to an alpha-particle beam should exhibit delay induced by a lesser particle fluence. Preliminary estimates of the extent of delay in asynchronous cultures following low doses of gamma-irradiation or of alpha-irradiation were made by in-situ observation of the time of onset of mitosis and by fixation and staining of cultures to determine the mitotic index as a function of time after irradiation. The basic approach to evaluating division delay will be to use Colecemid to accumulate mitotic cells over a period of time

  11. Lens Model and Time Delay Predictions for the Sextuply Lensed Quasar SDSS J2222+2745*

    Science.gov (United States)

    Sharon, Keren; Bayliss, Matthew B.; Dahle, Hakon; Florian, Michael K.; Gladders, Michael D.; Johnson, Traci L.; Paterno-Mahler, Rachel; Rigby, Jane R.; Whitaker, Katherine E.; Wuyts, Eva

    2017-01-01

    SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image of the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found T(sub AB) = 47.7 +/- 6.0 days and T(sub AC) = 722 +/- 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are T(sub AD) = 502+/- 68 days, T( sub AE) = 611 +/- 75 days, and T(sub AF) = 415 +/- 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift, indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion.

  12. LENS MODEL AND TIME DELAY PREDICTIONS FOR THE SEXTUPLY LENSED QUASAR SDSS J2222+2745

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Keren; Johnson, Traci L.; Paterno-Mahler, Rachel [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Bayliss, Matthew B. [Colby College, 5800 Mayflower Hill, Waterville, 04901, Maine (United States); Dahle, Håkon [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Florian, Michael K.; Gladders, Michael D. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Rigby, Jane R. [Astrophysics Science Division, Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Whitaker, Katherine E. [Department of Astronomy, University of Massachusetts-Amherst, Amherst, MA 01003 (United States); Wuyts, Eva, E-mail: kerens@umich.edu [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 1, D-85741 Garching (Germany)

    2017-01-20

    SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image of the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found τ {sub AB} = 47.7 ± 6.0 days and τ {sub AC} = −722 ± 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are τ {sub AD} = 502 ± 68 days, τ {sub AE} = 611 ± 75 days, and τ {sub AF} = 415 ± 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift , indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion.

  13. THE NANOGRAV NINE-YEAR DATA SET: MONITORING INTERSTELLAR SCATTERING DELAYS

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Lina; McLaughlin, Maura A.; Palliyaguru, Nipuni; Jones, Megan L. [Department of Physics and Astronomy, West Virginia University, P.O. Box 6315, Morgantown, WV 26505 (United States); Jones, Glenn [Department of Physics, Columbia University, 550 W. 120th Street, New York, NY 10027 (United States); Cordes, James M.; Chatterjee, Shami; Dolch, Timothy; Lam, Michael T. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Stinebring, Daniel R. [Department of Physics and Astronomy, Oberlin College, Oberlin, OH 44074 (United States); Lazio, T. Joseph W.; Ellis, Justin A. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91106 (United States); Arzoumanian, Zaven [Center for Research and Exploration in Space Science and Technology and X-Ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Crowter, Kathryn; Fonseca, Emmanuel; Gonzalez, Marjorie E. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Demorest, Paul B. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM, 87801 (United States); Ferdman, Robert D. [Department of Physics, McGill University, 3600 rue Universite, Montreal, QC H3A 2T8 (Canada); Nice, David J. [Department of Physics, Lafayette College, Easton, PA 18042 (United States); Pennucci, Timothy T. [University of Virginia, Department of Astronomy, P.O. Box 400325 Charlottesville, VA 22904-4325 (United States); and others

    2016-02-20

    We report on an effort to extract and monitor interstellar scintillation parameters in regular timing observations collected for the North American Nanohertz Observatory for Gravitational Waves pulsar timing array. Scattering delays are measured by creating dynamic spectra for each pulsar and observing epoch of wide-band observations centered near 1500 MHz and carried out at the Green Bank Telescope and the Arecibo Observatory. The ∼800 MHz wide frequency bands imply dramatic changes in scintillation bandwidth across the bandpass, and a stretching routine has been included to account for this scaling. For most of the 10 pulsars for which the scaling has been measured, the bandwidths scale with frequency less steeply than expected for a Kolmogorov medium. We find estimated scattering delay values that vary with time by up to an order of magnitude. The mean measured scattering delays are similar to previously published values and are slightly higher than predicted by interstellar medium models. We investigate the possibility of increasing the timing precision by mitigating timing errors introduced by the scattering delays. For most of the pulsars, the uncertainty in the time of arrival of a single timing point is much larger than the maximum variation of the scattering delay, suggesting that diffractive scintillation remains as only a negligible part of their noise budget.

  14. Delay Management with Re-Routing of Passengers

    NARCIS (Netherlands)

    T.A.B. Dollevoet (Twan); D. Huisman (Dennis); M.E. Schmidt (Marie); A. Schöbel (Anita)

    2010-01-01

    textabstractThe question of delay management is whether trains should wait for a delayed feeder train or should depart on time. In classical delay management models passengers always take their originally planned route. In this paper, we propose a model where re-routing of passengers is

  15. Single-tier city logistics model for single product

    Science.gov (United States)

    Saragih, N. I.; Nur Bahagia, S.; Suprayogi; Syabri, I.

    2017-11-01

    This research develops single-tier city logistics model which consists of suppliers, UCCs, and retailers. The problem that will be answered in this research is how to determine the location of UCCs, to allocate retailers to opened UCCs, to assign suppliers to opened UCCs, to control inventory in the three entities involved, and to determine the route of the vehicles from opened UCCs to retailers. This model has never been developed before. All the decisions will be simultaneously optimized. Characteristic of the demand is probabilistic following a normal distribution, and the number of product is single.

  16. Dynamics of a Computer Virus Propagation Model with Delays and Graded Infection Rate

    Directory of Open Access Journals (Sweden)

    Zizhen Zhang

    2017-01-01

    Full Text Available A four-compartment computer virus propagation model with two delays and graded infection rate is investigated in this paper. The critical values where a Hopf bifurcation occurs are obtained by analyzing the distribution of eigenvalues of the corresponding characteristic equation. In succession, direction and stability of the Hopf bifurcation when the two delays are not equal are determined by using normal form theory and center manifold theorem. Finally, some numerical simulations are also carried out to justify the obtained theoretical results.

  17. Modeling community integration in workers with delayed recovery from mild traumatic brain injury

    DEFF Research Database (Denmark)

    Mollayeva, T.; Shapiro, C. M.; Mollayeva, S.

    2015-01-01

    Background: Delayed recovery in persons after mild traumatic brain injury (mTBI) is poorly understood. Community integration (CI) is endorsed by persons with neurological disorders as an important outcome. We aimed to describe CI and its associated factors in insured Ontario workers with delayed...... assessments, and insurers' referral files. Community Integration Questionnaire (CIQ) scores were compared using analysis of variance or Spearman's correlation tests. Stepwise multivariable linear regression models were used to evaluate the associations with CI. Results: Ninety-four workers with mTBI (45...

  18. Stability and Hopf bifurcation in a delayed model for HIV infection of CD4{sup +}T cells

    Energy Technology Data Exchange (ETDEWEB)

    Cai Liming [Department of Mathematics, Xinyang Normal University, Xinyang, 464000 Henan (China); Beijing Institute of Information Control, Beijing 100037 (China)], E-mail: lmcai06@yahoo.com.cn; Li Xuezhi [Department of Mathematics, Xinyang Normal University, Xinyang, 464000 Henan (China)

    2009-10-15

    In this paper, we consider a delayed mathematical model for the interactions of HIV infection and CD4{sup +}T cells. We first investigate the existence and stability of the Equilibria. We then study the effect of the time delay on the stability of the infected equilibrium. Criteria are given to ensure that the infected equilibrium is asymptotically stable for all delay. Moreover, by applying Nyquist criterion, the length of delay is estimated for which stability continues to hold. Finally by using a delay {tau} as a bifurcation parameter, the existence of Hopf bifurcation is also investigated. Numerical simulations are presented to illustrate the analytical results.

  19. Atmospheric Phase Delay in Sentinel SAR Interferometry

    Science.gov (United States)

    Krishnakumar, V.; Monserrat, O.; Crosetto, M.; Crippa, B.

    2018-04-01

    The repeat-pass Synthetic Aperture Radio Detection and Ranging (RADAR) Interferometry (InSAR) has been a widely used geodetic technique for observing the Earth's surface, especially for mapping the Earth's topography and deformations. However, InSAR measurements are prone to atmospheric errors. RADAR waves traverse the Earth's atmosphere twice and experience a delay due to atmospheric refraction. The two major layers of the atmosphere (troposphere and ionosphere) are mainly responsible for this delay in the propagating RADAR wave. Previous studies have shown that water vapour and clouds present in the troposphere and the Total Electron Content (TEC) of the ionosphere are responsible for the additional path delay in the RADAR wave. The tropospheric refractivity is mainly dependent on pressure, temperature and partial pressure of water vapour. The tropospheric refractivity leads to an increase in the observed range. These induced propagation delays affect the quality of phase measurement and introduce errors in the topography and deformation fields. The effect of this delay was studied on a differential interferogram (DInSAR). To calculate the amount of tropospheric delay occurred, the meteorological data collected from the Spanish Agencia Estatal de Meteorología (AEMET) and MODIS were used. The interferograms generated from Sentinel-1 carrying C-band Synthetic Aperture RADAR Single Look Complex (SLC) images acquired on the study area are used. The study area consists of different types of scatterers exhibiting different coherence. The existing Saastamoinen model was used to perform a quantitative evaluation of the phase changes caused by pressure, temperature and humidity of the troposphere during the study. Unless the phase values due to atmospheric disturbances are not corrected, it is difficult to obtain accurate measurements. Thus, the atmospheric error correction is essential for all practical applications of DInSAR to avoid inaccurate height and deformation

  20. ATMOSPHERIC PHASE DELAY IN SENTINEL SAR INTERFEROMETRY

    Directory of Open Access Journals (Sweden)

    V. Krishnakumar

    2018-04-01

    Full Text Available The repeat-pass Synthetic Aperture Radio Detection and Ranging (RADAR Interferometry (InSAR has been a widely used geodetic technique for observing the Earth’s surface, especially for mapping the Earth’s topography and deformations. However, InSAR measurements are prone to atmospheric errors. RADAR waves traverse the Earth’s atmosphere twice and experience a delay due to atmospheric refraction. The two major layers of the atmosphere (troposphere and ionosphere are mainly responsible for this delay in the propagating RADAR wave. Previous studies have shown that water vapour and clouds present in the troposphere and the Total Electron Content (TEC of the ionosphere are responsible for the additional path delay in the RADAR wave. The tropospheric refractivity is mainly dependent on pressure, temperature and partial pressure of water vapour. The tropospheric refractivity leads to an increase in the observed range. These induced propagation delays affect the quality of phase measurement and introduce errors in the topography and deformation fields. The effect of this delay was studied on a differential interferogram (DInSAR. To calculate the amount of tropospheric delay occurred, the meteorological data collected from the Spanish Agencia Estatal de Meteorología (AEMET and MODIS were used. The interferograms generated from Sentinel-1 carrying C-band Synthetic Aperture RADAR Single Look Complex (SLC images acquired on the study area are used. The study area consists of different types of scatterers exhibiting different coherence. The existing Saastamoinen model was used to perform a quantitative evaluation of the phase changes caused by pressure, temperature and humidity of the troposphere during the study. Unless the phase values due to atmospheric disturbances are not corrected, it is difficult to obtain accurate measurements. Thus, the atmospheric error correction is essential for all practical applications of DInSAR to avoid inaccurate

  1. Extracting Models in Single Molecule Experiments

    Science.gov (United States)

    Presse, Steve

    2013-03-01

    Single molecule experiments can now monitor the journey of a protein from its assembly near a ribosome to its proteolytic demise. Ideally all single molecule data should be self-explanatory. However data originating from single molecule experiments is particularly challenging to interpret on account of fluctuations and noise at such small scales. Realistically, basic understanding comes from models carefully extracted from the noisy data. Statistical mechanics, and maximum entropy in particular, provide a powerful framework for accomplishing this task in a principled fashion. Here I will discuss our work in extracting conformational memory from single molecule force spectroscopy experiments on large biomolecules. One clear advantage of this method is that we let the data tend towards the correct model, we do not fit the data. I will show that the dynamical model of the single molecule dynamics which emerges from this analysis is often more textured and complex than could otherwise come from fitting the data to a pre-conceived model.

  2. Delayed behaviour of concrete in nuclear power plant containment: analysis and modelling

    International Nuclear Information System (INIS)

    Granger, L.

    1995-02-01

    The containment of French nuclear power plant of the 1300 and 1400 MWe PWR type are made of prestressed concrete and their delayed behaviour is systematically monitored by a very complete instrumentation. In an accidental phase, the tightness of the 1.2 m thick structure, dimensioned to withstand an internal absolute pressure of 0.5 MPa depends mainly on the residual prestress of concrete. But surveillance devices reveal substantial differences from one site to another, from which the regulation calculation models cannot make satisfactory allowance. For the purpose of improving the management of the population of power stations, EDF in 1992 initiated a large study aimed at predicting the true creep behaviour of the containments already built. This study, more material oriented, includes numerous shrinkage and creep tests on reconstructed concrete in laboratory as well as on cement paste and aggregate. The main results are presented in part one. In the second part, we consider the different delayed strains of concrete one by one. A precise analysis of the physico-chemical phenomena at the origin of the delayed behaviours, leads us to propose a practical modelling of concrete in an overall equivalent continuous material approach. Secondly, the few parameters of the model are determined on the experimental results. In order to do so, two particular finite element programs in CESAR-LCPC have been developed. The first one permits to take into account the non linear diffusion of humidity in concrete as a function of temperature. The diffusion coefficient D(C) (C = water content) is fitted on the loss of weight tests as a function of time. The second step is a creep calculation; first, the program reads back the temperature and humidity results of the previous computations and then calculates the different delayed strains in time. For basic creep, we have chosen a viscoelastic model function of temperature and humidity. The numerical scheme uses the principle of

  3. Delayed emesis: moderately emetogenic chemotherapy (single-day chemotherapy regimens only)

    DEFF Research Database (Denmark)

    Roila, Fausto; Warr, David; Aapro, Matti

    2011-01-01

    An update of the recommendations for the prophylaxis of delayed emesis induced by moderately emetogenic chemotherapy discussed during the third Perugia Consensus Conference (June 2009) sponsored by MASCC-ESMO was presented. The review considered new studies published since the second consensus...

  4. A delay time model for a mission-based system subject to periodic and random inspection and postponed replacement

    International Nuclear Information System (INIS)

    Yang, Li; Ma, Xiaobing; Zhai, Qingqing; Zhao, Yu

    2016-01-01

    We propose an inspection and replacement policy for a single component system that successively executes missions with random durations. The failure process of the system can be divided into two states, namely, normal and defective, following the delay time concept. Inspections are carried out periodically and immediately after the completion of each mission (random inspections). The failed state is always identified immediately, whereas the defective state can only be revealed by an inspection. If the system fails or is defective at a periodic inspection, then replacement is immediate. If, however, the system is defective at a random inspection, then replacement will be postponed if the time to the subsequent periodic inspection is shorter than a pre-determined threshold, and immediate otherwise. We derive the long run expected cost per unit time and then investigate the optimal periodic inspection interval and postponement threshold. A numerical example is presented to demonstrate the applicability of the proposed maintenance policy. - Highlights: • A delay time model of inspection is introduced for mission-based systems. • Periodic and random inspections are performed to check the state. • Replacement of the defective system at a random inspection can be postponed.

  5. An Epidemic Model of Computer Worms with Time Delay and Variable Infection Rate

    Directory of Open Access Journals (Sweden)

    Yu Yao

    2018-01-01

    Full Text Available With rapid development of Internet, network security issues become increasingly serious. Temporary patches have been put on the infectious hosts, which may lose efficacy on occasions. This leads to a time delay when vaccinated hosts change to susceptible hosts. On the other hand, the worm infection is usually a nonlinear process. Considering the actual situation, a variable infection rate is introduced to describe the spread process of worms. According to above aspects, we propose a time-delayed worm propagation model with variable infection rate. Then the existence condition and the stability of the positive equilibrium are derived. Due to the existence of time delay, the worm propagation system may be unstable and out of control. Moreover, the threshold τ0 of Hopf bifurcation is obtained. The worm propagation system is stable if time delay is less than τ0. When time delay is over τ0, the system will be unstable. In addition, numerical experiments have been performed, which can match the conclusions we deduce. The numerical experiments also show that there exists a threshold in the parameter a, which implies that we should choose appropriate infection rate β(t to constrain worm prevalence. Finally, simulation experiments are carried out to prove the validity of our conclusions.

  6. Stability and Sensitive Analysis of a Model with Delay Quorum Sensing

    Directory of Open Access Journals (Sweden)

    Zhonghua Zhang

    2015-01-01

    Full Text Available This paper formulates a delay model characterizing the competition between bacteria and immune system. The center manifold reduction method and the normal form theory due to Faria and Magalhaes are used to compute the normal form of the model, and the stability of two nonhyperbolic equilibria is discussed. Sensitivity analysis suggests that the growth rate of bacteria is the most sensitive parameter of the threshold parameter R0 and should be targeted in the controlling strategies.

  7. A model of a fishery with fish stock involving delay equations.

    Science.gov (United States)

    Auger, P; Ducrot, Arnaud

    2009-12-13

    The aim of this paper is to provide a new mathematical model for a fishery by including a stock variable for the resource. This model takes the form of an infinite delay differential equation. It is mathematically studied and a bifurcation analysis of the steady states is fulfilled. Depending on the different parameters of the problem, we show that Hopf bifurcation may occur leading to oscillating behaviours of the system. The mathematical results are finally discussed.

  8. SIP-Based Single Neuron Stochastic Predictive Control for Non-Gaussian Networked Control Systems with Uncertain Metrology Delays

    Directory of Open Access Journals (Sweden)

    Xinying Xu

    2018-06-01

    Full Text Available In this paper, a novel data-driven single neuron predictive control strategy is proposed for non-Gaussian networked control systems with metrology delays in the information theory framework. Firstly, survival information potential (SIP, instead of minimum entropy, is used to formulate the performance index to characterize the randomness of the considered systems, which is calculated by oversampling method. Then the minimum values can be computed by optimizing the SIP-based performance index. Finally, the proposed strategy, minimum entropy method and mean square error (MSE are applied to a networked motor control system, and results demonstrated the effectiveness of the proposed strategy.

  9. Transcriptional delay stabilizes bistable gene networks.

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Ott, William; Josić, Krešimir; Bennett, Matthew R

    2013-08-02

    Transcriptional delay can significantly impact the dynamics of gene networks. Here we examine how such delay affects bistable systems. We investigate several stochastic models of bistable gene networks and find that increasing delay dramatically increases the mean residence times near stable states. To explain this, we introduce a non-Markovian, analytically tractable reduced model. The model shows that stabilization is the consequence of an increased number of failed transitions between stable states. Each of the bistable systems that we simulate behaves in this manner.

  10. Efficacy of biodegradable curcumin nanoparticles in delaying cataract in diabetic rat model.

    Science.gov (United States)

    Grama, Charitra N; Suryanarayana, Palla; Patil, Madhoosudan A; Raghu, Ganugula; Balakrishna, Nagalla; Kumar, M N V Ravi; Reddy, Geereddy Bhanuprakash

    2013-01-01

    Curcumin, the active principle present in the yellow spice turmeric, has been shown to exhibit various pharmacological actions such as antioxidant, anti-inflammatory, antimicrobial, and anti-carcinogenic activities. Previously we have reported that dietary curcumin delays diabetes-induced cataract in rats. However, low peroral bioavailability is a major limiting factor for the success of clinical utilization of curcumin. In this study, we have administered curcumin encapsulated nanoparticles in streptozotocin (STZ) induced diabetic cataract model. Oral administration of 2 mg/day nanocurcumin was significantly more effective than curcumin in delaying diabetic cataracts in rats. The significant delay in progression of diabetic cataract by nanocurcumin is attributed to its ability to intervene the biochemical pathways of disease progression such as protein insolubilization, polyol pathway, protein glycation, crystallin distribution and oxidative stress. The enhanced performance of nanocurcumin can be attributed probably to its improved oral bioavailability. Together, the results of the present study demonstrate the potential of nanocurcumin in managing diabetic cataract.

  11. Efficacy of biodegradable curcumin nanoparticles in delaying cataract in diabetic rat model.

    Directory of Open Access Journals (Sweden)

    Charitra N Grama

    Full Text Available Curcumin, the active principle present in the yellow spice turmeric, has been shown to exhibit various pharmacological actions such as antioxidant, anti-inflammatory, antimicrobial, and anti-carcinogenic activities. Previously we have reported that dietary curcumin delays diabetes-induced cataract in rats. However, low peroral bioavailability is a major limiting factor for the success of clinical utilization of curcumin. In this study, we have administered curcumin encapsulated nanoparticles in streptozotocin (STZ induced diabetic cataract model. Oral administration of 2 mg/day nanocurcumin was significantly more effective than curcumin in delaying diabetic cataracts in rats. The significant delay in progression of diabetic cataract by nanocurcumin is attributed to its ability to intervene the biochemical pathways of disease progression such as protein insolubilization, polyol pathway, protein glycation, crystallin distribution and oxidative stress. The enhanced performance of nanocurcumin can be attributed probably to its improved oral bioavailability. Together, the results of the present study demonstrate the potential of nanocurcumin in managing diabetic cataract.

  12. Investigation of a delayed feedback controller of MEMS resonators

    KAUST Repository

    Masri, Karim M.

    2013-08-04

    Controlling mechanical systems is an important branch of mechanical engineering. Several techniques have been used to control Microelectromechanical systems (MEMS) resonators. In this paper, we study the effect of a delayed feedback controller on stabilizing MEMS resonators. A delayed feedback velocity controller is implemented through modifying the parallel plate electrostatic force used to excite the resonator into motion. A nonlinear single degree of freedom model is used to simulate the resonator response. Long time integration is used first. Then, a finite deference technique to capture periodic motion combined with the Floquet theory is used to capture the stable and unstable periodic responses. We show that applying a suitable positive gain can stabilize the MEMS resonator near or inside the instability dynamic pull in band. We also study the stability of the resonator by tracking its basins of attraction while sweeping the controller gain and the frequency of excitations. For positive delayed gains, we notice significant enhancement in the safe area of the basins of attraction. Copyright © 2013 by ASME.

  13. Multiple Model-Based Synchronization Approaches for Time Delayed Slaving Data in a Space Launch Vehicle Tracking System

    Directory of Open Access Journals (Sweden)

    Haryong Song

    2016-01-01

    Full Text Available Due to the inherent characteristics of the flight mission of a space launch vehicle (SLV, which is required to fly over very large distances and have very high fault tolerances, in general, SLV tracking systems (TSs comprise multiple heterogeneous sensors such as radars, GPS, INS, and electrooptical targeting systems installed over widespread areas. To track an SLV without interruption and to hand over the measurement coverage between TSs properly, the mission control system (MCS transfers slaving data to each TS through mission networks. When serious network delays occur, however, the slaving data from the MCS can lead to the failure of the TS. To address this problem, in this paper, we propose multiple model-based synchronization (MMS approaches, which take advantage of the multiple motion models of an SLV. Cubic spline extrapolation, prediction through an α-β-γ filter, and a single model Kalman filter are presented as benchmark approaches. We demonstrate the synchronization accuracy and effectiveness of the proposed MMS approaches using the Monte Carlo simulation with the nominal trajectory data of Korea Space Launch Vehicle-I.

  14. A dynamic IS-LM model with delayed taxation revenues

    International Nuclear Information System (INIS)

    De Cesare, Luigi; Sportelli, Mario

    2005-01-01

    Some recent contributions to Economic Dynamics have shown a new interest for delay differential equations. In line with these approaches, we re-proposed the problem of the existence of a finite lag between the accrual and the payment of taxes in a framework where never this type of lag has been considered: the well known IS-LM model. The qualitative study of the system of functional (delay) differential equations shows that the finite lag may give rise to a wide variety of dynamic behaviours. Specifically, varying the length of the lag and applying the 'stability switch criteria', we prove that the equilibrium point may lose or gain its local stability, so that a sequence of alternated stability/instability regions can be observed if some conditions hold. An important scenario arising from the analysis is the existence of limit cycles generated by sub-critical and supercritical Hopf bifurcations. As numerical simulations confirm, if multiple cycles exist, the so called 'crater bifurcation' can also be detected. Economic considerations about a stylized policy analysis stand by qualitative and numerical results in the paper

  15. Using delay differential equations to induce alternans in a model of cardiac electrophysiology.

    Science.gov (United States)

    Eastman, Justin; Sass, Julian; Gomes, Johnny M; Dos Santos, Rodrigo Weber; Cherry, Elizabeth M

    2016-09-07

    Cardiac electrical alternans is a period-2 dynamical behavior with alternating long and short action potential durations (APD) that often precedes dangerous arrhythmias associated with cardiac arrest. Despite the importance of alternans, many current ordinary differential equations models of cardiac electrophysiology do not produce alternans, thereby limiting the use of these models for studying the mechanisms that underlie this condition. Because delay differential equations (DDEs) commonly induce complex dynamics in other biological systems, we investigate whether incorporating DDEs can lead to alternans development in cardiac models by studying the Fox et al. canine ventricular action potential model. After suppressing the alternans in the original model, we show that alternans can be obtained by introducing DDEs in the model gating variables, and we quantitatively compare the DDE-induced alternans with the alternans present in the original model. We analyze the behavior of the voltage, currents, and gating variables of the model to study the effects of the delays and to determine how alternans develops in that setting, and we discuss the mathematical and physiological implications of our findings. In future work, we aim to apply our approach to induce alternans in models that do not naturally exhibit such dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Impulsive control for a Takagi–Sugeno fuzzy model with time-delay and its application to chaotic systems

    International Nuclear Information System (INIS)

    Shi-Guo, Peng; Si-Min, Yu

    2009-01-01

    A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with delay of the Takagi–Sugeno (TS) fuzzy IF–THEN rules and then present a unified TS impulsive fuzzy model with delay for chaos control. Based on the new model, a simple and unified set of conditions for controlling chaotic systems is derived by the Lyapunov–Razumikhin method, and a design procedure for estimating bounds on control matrices is also given. Several numerical examples are presented to illustrate the effectiveness of this method

  17. Isolating the delay component of impulsive choice in adolescent rats

    Directory of Open Access Journals (Sweden)

    Jesse eMcClure

    2014-01-01

    Full Text Available Impulsive choice — the preference for small immediate rewards over larger delayed rewards — has been linked to various psychological conditions ranging from behavioral disorders to addiction. These links highlight the critical need to dissect the various components of this multifaceted behavioral trait. Delay discounting tasks allow researchers to study an important factor of this behavior: how the subjective value of a rewards changes over a delay period. However, existing methods of delay discounting include a confound of modifying reward sizes during the procedure. Here we present a new approach of using a single constant reward size to assess delay discounting. A complementary approach could hold delay constant and assess the utility of changing quantities of a reward. Isolating these behavioral components can advance our ability to explore the behavioral complexity of impulsive choice. We present the methods for isolating delay in detail, and further capitalize on this method by pairing it with a standard peak interval task to test whether individual variation in delay discounting can be explained by differences in perception of time in male and female adolescent rats. We find that rats that were more precise in discriminating time intervals were also less impulsive in their choice. Our data suggest that differences in timing and delay discounting are not causally related, but instead are more likely influenced by a common factor. Further, the mean-level change in our measure between postnatal day 28 and 42 suggests this test may be capturing a developmental change in this factor. In summary, this new method of isolating individual components of impulsive choice (delay or quantity can be efficiently applied in either adolescent or adult animal models and may help elucidate the mechanisms underlying impulsivity and its links to psychological disorders.

  18. Understanding Housing Delays and Relocations Within the Housing First Model.

    Science.gov (United States)

    Zerger, Suzanne; Pridham, Katherine Francombe; Jeyaratnam, Jeyagobi; Hwang, Stephen W; O'Campo, Patricia; Kohli, Jaipreet; Stergiopoulos, Vicky

    2016-01-01

    This study explores factors contributing to delays and relocations during the implementation of the Housing First model in Toronto, Ontario. While interruptions in housing tenure are expected en route to recovery and housing stability, consumer and service provider views on finding and keeping housing remain largely unknown. In-person interviews and focus groups were conducted with 48 study participants, including 23 case managers or housing workers and 25 consumers. The following three factors contributed to housing delays and transfers: (1) the effectiveness of communication and collaboration among consumers and service providers, (2) consumer-driven preferences and ambivalence, and (3) provider prioritization of consumer choice over immediate housing access. Two strategies--targeted communications and consumer engagement in housing searches--supported the housing process. Several factors affect the timing and stability of housing. Communication between and among providers and consumers, and a shared understanding of consumer choice, can further support choice and recovery.

  19. H∞ Filtering for Discrete Markov Jump Singular Systems with Mode-Dependent Time Delay Based on T-S Fuzzy Model

    Directory of Open Access Journals (Sweden)

    Cheng Gong

    2014-01-01

    Full Text Available This paper investigates the H∞ filtering problem of discrete singular Markov jump systems (SMJSs with mode-dependent time delay based on T-S fuzzy model. First, by Lyapunov-Krasovskii functional approach, a delay-dependent sufficient condition on H∞-disturbance attenuation is presented, in which both stability and prescribed H∞ performance are required to be achieved for the filtering-error systems. Then, based on the condition, the delay-dependent H∞ filter design scheme for SMJSs with mode-dependent time delay based on T-S fuzzy model is developed in term of linear matrix inequality (LMI. Finally, an example is given to illustrate the effectiveness of the result.

  20. Precise troposphere delay model for Egypt, as derived from radiosonde data

    Directory of Open Access Journals (Sweden)

    M.A. Abdelfatah

    2015-06-01

    Real GPS data of six stations in 8-day period were used for the assessment of zenith part of PTD model against the available international models. These international models include Saastamoinen, Hopfield, and the local Egyptian dry model proposed by Mousa & El-Fiky. The data were processed using Bernese software version 5.0. The closure error results indicate that the PTD model is the best model in all session, but when the available radiosonde stations are less, the accuracy of PTD model is near to classic models. As radiosonde data for all ten stations are not available every session, it is recommended to use one of the regularization techniques for database to overcome missing data and derive consistent tropospheric delay information.

  1. Delay in the histopathologic diagnosis of mycosis fungoides

    DEFF Research Database (Denmark)

    Guldhammer Skov, Anne; Gniadecki, Robert

    2015-01-01

    The diagnosis of mycosis fungoides (MF) is difficult in early stages and is based on a combination of clinical findings and histopathologic criteria. The aim of this study was to assess the diagnostic delay in MF and to investigate the rationale for multiple biopsies in a single-centre, retrospec......The diagnosis of mycosis fungoides (MF) is difficult in early stages and is based on a combination of clinical findings and histopathologic criteria. The aim of this study was to assess the diagnostic delay in MF and to investigate the rationale for multiple biopsies in a single...

  2. Hopf bifurcations of a ratio-dependent predator–prey model involving two discrete maturation time delays

    International Nuclear Information System (INIS)

    Karaoglu, Esra; Merdan, Huseyin

    2014-01-01

    Highlights: • A ratio-dependent predator–prey system involving two discrete maturation time delays is studied. • Hopf bifurcations are analyzed by choosing delay parameters as bifurcation parameters. • When a delay parameter passes through a critical value, Hopf bifurcations occur. • The direction of bifurcation, the period and the stability of periodic solution are also obtained. - Abstract: In this paper we give a detailed Hopf bifurcation analysis of a ratio-dependent predator–prey system involving two different discrete delays. By analyzing the characteristic equation associated with the model, its linear stability is investigated. Choosing delay terms as bifurcation parameters the existence of Hopf bifurcations is demonstrated. Stability of the bifurcating periodic solutions is determined by using the center manifold theorem and the normal form theory introduced by Hassard et al. Furthermore, some of the bifurcation properties including direction, stability and period are given. Finally, theoretical results are supported by some numerical simulations

  3. Path Tracking Control of Automatic Parking Cloud Model considering the Influence of Time Delay

    Directory of Open Access Journals (Sweden)

    Yiding Hua

    2017-01-01

    Full Text Available This paper establishes the kinematic model of the automatic parking system and analyzes the kinematic constraints of the vehicle. Furthermore, it solves the problem where the traditional automatic parking system model fails to take into account the time delay. Firstly, based on simulating calculation, the influence of time delay on the dynamic trajectory of a vehicle in the automatic parking system is analyzed under the transverse distance Dlateral between different target spaces. Secondly, on the basis of cloud model, this paper utilizes the tracking control of an intelligent path closer to human intelligent behavior to further study the Cloud Generator-based parking path tracking control method and construct a vehicle path tracking control model. Moreover, tracking and steering control effects of the model are verified through simulation analysis. Finally, the effectiveness and timeliness of automatic parking controller in the aspect of path tracking are tested through a real vehicle experiment.

  4. Predicting Freeway Work Zone Delays and Costs with a Hybrid Machine-Learning Model

    Directory of Open Access Journals (Sweden)

    Bo Du

    2017-01-01

    Full Text Available A hybrid machine-learning model, integrating an artificial neural network (ANN and a support vector machine (SVM model, is developed to predict spatiotemporal delays, subject to road geometry, number of lane closures, and work zone duration in different periods of a day and in the days of a week. The model is very user friendly, allowing the least inputs from the users. With that the delays caused by a work zone on any location of a New Jersey freeway can be predicted. To this end, tremendous amounts of data from different sources were collected to establish the relationship between the model inputs and outputs. A comparative analysis was conducted, and results indicate that the proposed model outperforms others in terms of the least root mean square error (RMSE. The proposed hybrid model can be used to calculate contractor penalty in terms of cost overruns as well as incentive reward schedule in case of early work competition. Additionally, it can assist work zone planners in determining the best start and end times of a work zone for developing and evaluating traffic mitigation and management plans.

  5. A delay time model with imperfect and failure-inducing inspections

    International Nuclear Information System (INIS)

    Flage, Roger

    2014-01-01

    This paper presents an inspection-based maintenance optimisation model where the inspections are imperfect and potentially failure-inducing. The model is based on the basic delay-time model in which a system has three states: perfectly functioning, defective and failed. The system is deteriorating through these states and to reveal defective systems, inspections are performed periodically using a procedure by which the system fails with a fixed state-dependent probability; otherwise, an inspection identifies a functioning system as defective (false positive) with a fixed probability and a defective system as functioning (false negative) with a fixed probability. The system is correctively replaced upon failure or preventively replaced either at the N'th inspection time or when an inspection reveals the system as defective, whichever occurs first. Replacement durations are assumed to be negligible and costs are associated with inspections, replacements and failures. The problem is to determine the optimal inspection interval T and preventive age replacement limit N that jointly minimise the long run expected cost per unit of time. The system may also be thought of as a passive two-state system subject to random demands; the three states of the model are then functioning, undetected failed and detected failed; and to ensure the renewal property of replacement cycles the demand process generating the ‘delay time’ is then restricted to the Poisson process. The inspiration for the presented model has been passive safety critical valves as used in (offshore) oil and gas production and transportation systems. In light of this the passive system interpretation is highlighted, as well as the possibility that inspection-induced failures are associated with accidents. Two numerical examples are included, and some potential extensions of the model are indicated

  6. The dynamics of p53 in single cells: physiologically based ODE and reaction–diffusion PDE models

    International Nuclear Information System (INIS)

    Eliaš, Ján; Clairambault, Jean; Dimitrio, Luna; Natalini, Roberto

    2014-01-01

    The intracellular signalling network of the p53 protein plays important roles in genome protection and the control of cell cycle phase transitions. Recently observed oscillatory behaviour in single cells under stress conditions has inspired several research groups to simulate and study the dynamics of the protein with the aim of gaining a proper understanding of the physiological meanings of the oscillations. We propose compartmental ODE and PDE models of p53 activation and regulation in single cells following DNA damage and we show that the p53 oscillations can be retrieved by plainly involving p53–Mdm2 and ATM–p53–Wip1 negative feedbacks, which are sufficient for oscillations experimentally, with no further need to introduce any delays into the protein responses and without considering additional positive feedback. (paper)

  7. Coexistence of full which-path information and interference in Wheeler's delayed-choice experiment with photons

    NARCIS (Netherlands)

    Michielsen, K.; Yuan, S.; Zhao, S.; Jin, F.; De Raedt, H.

    We present a computer simulation model that is a one-to-one copy of an experimental realization of Wheeler's delayed-choice experiment that employs a single photon source and a Mach-Zehnder interferometer composed of a 50/50 input beam splitter and a variable output beam splitter with adjustable

  8. The Effects of Test Trial and Processing Level on Immediate and Delayed Retention

    Science.gov (United States)

    Chang, Sau Hou

    2017-01-01

    The purpose of the present study was to investigate the effects of test trial and processing level on immediate and delayed retention. A 2 × 2 × 2 mixed ANOVAs was used with two between-subject factors of test trial (single test, repeated test) and processing level (shallow, deep), and one within-subject factor of final recall (immediate, delayed). Seventy-six college students were randomly assigned first to the single test (studied the stimulus words three times and took one free-recall test) and the repeated test trials (studied the stimulus words once and took three consecutive free-recall tests), and then to the shallow processing level (asked whether each stimulus word was presented in capital letter or in small letter) and the deep processing level (whether each stimulus word belonged to a particular category) to study forty stimulus words. The immediate test was administered five minutes after the trials, whereas the delayed test was administered one week later. Results showed that single test trial recalled more words than repeated test trial in immediate final free-recall test, participants in deep processing performed better than those in shallow processing in both immediate and delayed retention. However, the dominance of single test trial and deep processing did not happen in delayed retention. Additional study trials did not further enhance the delayed retention of words encoded in deep processing, but did enhance the delayed retention of words encoded in shallow processing. PMID:28344679

  9. The Effects of Test Trial and Processing Level on Immediate and Delayed Retention.

    Science.gov (United States)

    Chang, Sau Hou

    2017-03-01

    The purpose of the present study was to investigate the effects of test trial and processing level on immediate and delayed retention. A 2 × 2 × 2 mixed ANOVAs was used with two between-subject factors of test trial (single test, repeated test) and processing level (shallow, deep), and one within-subject factor of final recall (immediate, delayed). Seventy-six college students were randomly assigned first to the single test (studied the stimulus words three times and took one free-recall test) and the repeated test trials (studied the stimulus words once and took three consecutive free-recall tests), and then to the shallow processing level (asked whether each stimulus word was presented in capital letter or in small letter) and the deep processing level (whether each stimulus word belonged to a particular category) to study forty stimulus words. The immediate test was administered five minutes after the trials, whereas the delayed test was administered one week later. Results showed that single test trial recalled more words than repeated test trial in immediate final free-recall test, participants in deep processing performed better than those in shallow processing in both immediate and delayed retention. However, the dominance of single test trial and deep processing did not happen in delayed retention. Additional study trials did not further enhance the delayed retention of words encoded in deep processing, but did enhance the delayed retention of words encoded in shallow processing.

  10. The Effects of Test Trial and Processing Level on Immediate and Delayed Retention

    Directory of Open Access Journals (Sweden)

    Sau Hou Chang

    2017-03-01

    Full Text Available The purpose of the present study was to investigate the effects of test trial and processing level on immediate and delayed retention. A 2 × 2 × 2 mixed ANOVAs was used with two between-subject factors of test trial (single test, repeated test and processing level (shallow, deep, and one within-subject factor of final recall (immediate, delayed. Seventy-six college students were randomly assigned first to the single test (studied the stimulus words three times and took one free-recall test and the repeated test trials (studied the stimulus words once and took three consecutive free-recall tests, and then to the shallow processing level (asked whether each stimulus word was presented in capital letter or in small letter and the deep processing level (whether each stimulus word belonged to a particular category to study forty stimulus words. The immediate test was administered five minutes after the trials, whereas the delayed test was administered one week later. Results showed that single test trial recalled more words than repeated test trial in immediate final free-recall test, participants in deep processing performed better than those in shallow processing in both immediate and delayed retention. However, the dominance of single test trial and deep processing did not happen in delayed retention. Additional study trials did not further enhance the delayed retention of words encoded in deep processing, but did enhance the delayed retention of words encoded in shallow processing.

  11. Nonfragile Robust Model Predictive Control for Uncertain Constrained Systems with Time-Delay Compensation

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2016-01-01

    Full Text Available This study investigates the problem of asymptotic stabilization for a class of discrete-time linear uncertain time-delayed systems with input constraints. Parametric uncertainty is assumed to be structured, and delay is assumed to be known. In Lyapunov stability theory framework, two synthesis schemes of designing nonfragile robust model predictive control (RMPC with time-delay compensation are put forward, where the additive and the multiplicative gain perturbations are, respectively, considered. First, by designing appropriate Lyapunov-Krasovskii (L-K functions, the robust performance index is defined as optimization problems that minimize upper bounds of infinite horizon cost function. Then, to guarantee closed-loop stability, the sufficient conditions for the existence of desired nonfragile RMPC are obtained in terms of linear matrix inequalities (LMIs. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed approaches.

  12. Leveraging delay discounting for health: Can time delays influence food choice?

    Science.gov (United States)

    Appelhans, Bradley M; French, Simone A; Olinger, Tamara; Bogucki, Michael; Janssen, Imke; Avery-Mamer, Elizabeth F; Powell, Lisa M

    2018-03-15

    Delay discounting, the tendency to choose smaller immediate rewards over larger delayed rewards, is theorized to promote consumption of immediately rewarding but unhealthy foods at the expense of long-term weight maintenance and nutritional health. An untested implication of delay discounting models of decision-making is that selectively delaying access to less healthy foods may promote selection of healthier (immediately available) alternatives, even if they may be less desirable. The current study tested this hypothesis by measuring healthy versus regular vending machine snack purchasing before and during the implementation of a 25-s time delay on the delivery of regular snacks. Purchasing was also examined under a $0.25 discount on healthy snacks, a $0.25 tax on regular snacks, and the combination of both pricing interventions with the 25-s time delay. Across 32,019 vending sales from three separate vending locations, the 25-s time delay increased healthy snack purchasing from 40.1% to 42.5%, which was comparable to the impact of a $0.25 discount (43.0%). Combining the delay and the discount had a roughly additive effect (46.0%). However, the strongest effects were seen under the $0.25 tax on regular snacks (53.7%) and the combination of the delay and the tax (50.2%). Intervention effects varied substantially between vending locations. Importantly, time delays did not harm overall vending sales or revenue, which is relevant to the real-world feasibility of this intervention. More investigation is needed to better understand how the impact of time delays on food choice varies across populations, evaluate the effects of time delays on beverage vending choices, and extend this approach to food choices in contexts other than vending machines. ClinicalTrials.gov, NCT02359916. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. A novel approach to delayed-start analyses for demonstrating disease-modifying effects in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Hong Liu-Seifert

    Full Text Available One method for demonstrating disease modification is a delayed-start design, consisting of a placebo-controlled period followed by a delayed-start period wherein all patients receive active treatment. To address methodological issues in previous delayed-start approaches, we propose a new method that is robust across conditions of drug effect, discontinuation rates, and missing data mechanisms. We propose a modeling approach and test procedure to test the hypothesis of noninferiority, comparing the treatment difference at the end of the delayed-start period with that at the end of the placebo-controlled period. We conducted simulations to identify the optimal noninferiority testing procedure to ensure the method was robust across scenarios and assumptions, and to evaluate the appropriate modeling approach for analyzing the delayed-start period. We then applied this methodology to Phase 3 solanezumab clinical trial data for mild Alzheimer's disease patients. Simulation results showed a testing procedure using a proportional noninferiority margin was robust for detecting disease-modifying effects; conditions of high and moderate discontinuations; and with various missing data mechanisms. Using all data from all randomized patients in a single model over both the placebo-controlled and delayed-start study periods demonstrated good statistical performance. In analysis of solanezumab data using this methodology, the noninferiority criterion was met, indicating the treatment difference at the end of the placebo-controlled studies was preserved at the end of the delayed-start period within a pre-defined margin. The proposed noninferiority method for delayed-start analysis controls Type I error rate well and addresses many challenges posed by previous approaches. Delayed-start studies employing the proposed analysis approach could be used to provide evidence of a disease-modifying effect. This method has been communicated with FDA and has been

  14. Data Assimilation by delay-coordinate nudging

    Science.gov (United States)

    Pazo, Diego; Lopez, Juan Manuel; Carrassi, Alberto

    2016-04-01

    A new nudging method for data assimilation, delay-coordinate nudging, is presented. Delay-coordinate nudging makes explicit use of present and past observations in the formulation of the forcing driving the model evolution at each time-step. Numerical experiments with a low order chaotic system show that the new method systematically outperforms standard nudging in different model and observational scenarios, also when using an un-optimized formulation of the delay-nudging coefficients. A connection between the optimal delay and the dominant Lyapunov exponent of the dynamics is found based on heuristic arguments and is confirmed by the numerical results, providing a guideline for the practical implementation of the algorithm. Delay-coordinate nudging preserves the easiness of implementation, the intuitive functioning and the reduced computational cost of the standard nudging, making it a potential alternative especially in the field of seasonal-to-decadal predictions with large Earth system models that limit the use of more sophisticated data assimilation procedures.

  15. Inventory model with cash flow oriented and time-dependent holding cost under permissible delay in payments

    Directory of Open Access Journals (Sweden)

    Tripathi R.P.

    2013-01-01

    Full Text Available This study develops an inventory model for determining an optimal ordering policy for non-deteriorating items and time-dependent holding cost with delayed payments permitted by the supplier under inflation and time-discounting. The discounted cash flows approach is applied to study the problem analysis. Mathematical models have been derived under two different situations i.e. case I: The permissible delay period is less than cycle time for settling the account and case II: The permissible delay period is greater than or equal to cycle time for settling the account. An algorithm is used to obtain minimum total present value of the costs over the time horizon H. Finally, numerical example and sensitivity analysis demonstrate the applicability of the proposed model. The main purpose of this paper is to investigate the optimal cycle time and optimal payment time for an item so that annual total relevant cost is minimized.

  16. Variational calculation of the limit cycle and its frequency in a two-neuron model with delay

    International Nuclear Information System (INIS)

    Brandt, Sebastian F.; Wessel, Ralf; Pelster, Axel

    2006-01-01

    We consider a model system of two coupled Hopfield neurons, which is described by delay differential equations taking into account the finite signal propagation and processing times. When the delay exceeds a critical value, a limit cycle emerges via a supercritical Hopf bifurcation. First, we calculate its frequency and trajectory perturbatively by applying the Poincare-Lindstedt method. Then, the perturbation series are resummed by means of the Shohat expansion in good agreement with numerical values. However, with increasing delay, the accuracy of the results from the Shohat expansion worsens. We thus apply variational perturbation theory (VPT) to the perturbation expansions to obtain more accurate results, which moreover hold even in the limit of large delays

  17. Stability and Bifurcation of a Computer Virus Propagation Model with Delay and Incomplete Antivirus Ability

    Directory of Open Access Journals (Sweden)

    Jianguo Ren

    2014-01-01

    Full Text Available A new computer virus propagation model with delay and incomplete antivirus ability is formulated and its global dynamics is analyzed. The existence and stability of the equilibria are investigated by resorting to the threshold value R0. By analysis, it is found that the model may undergo a Hopf bifurcation induced by the delay. Correspondingly, the critical value of the Hopf bifurcation is obtained. Using Lyapunov functional approach, it is proved that, under suitable conditions, the unique virus-free equilibrium is globally asymptotically stable if R01. Numerical examples are presented to illustrate possible behavioral scenarios of the mode.

  18. Dynamics of Nonlinear Time-Delay Systems

    CERN Document Server

    Lakshmanan, Muthusamy

    2010-01-01

    Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, time-delay systems described by delay differential equations have developed as particularly suitable tools for modeling specific dynamical systems. Indeed, time-delay is ubiquitous in many physical systems, for example due to finite switching speeds of amplifiers in electronic circuits, finite lengths of vehicles in traffic flows, finite signal propagation times in biological networks and circuits, and quite generally whenever memory effects are relevant. This monograph presents the basics of chaotic time-delay systems and their synchronization with an emphasis on the effects of time-delay feedback which give rise to new collective dynamics. Special attention is devoted to scalar chaotic/hyperchaotic time-delay systems, and some higher order models, occurring in different bran...

  19. COSMOLOGY FROM GRAVITATIONAL LENS TIME DELAYS AND PLANCK DATA

    International Nuclear Information System (INIS)

    Suyu, S. H.; Treu, T.; Sonnenfeld, A.; Hilbert, S.; Spiniello, C.; Auger, M. W.; Collett, T.; Blandford, R. D.; Marshall, P. J.; Courbin, F.; Meylan, G.; Tewes, M.; Fassnacht, C. D.; Koopmans, L. V. E.

    2014-01-01

    Under the assumption of a flat ΛCDM cosmology, recent data from the Planck satellite point toward a Hubble constant that is in tension with that measured by gravitational lens time delays and by the local distance ladder. Prosaically, this difference could arise from unknown systematic uncertainties in some of the measurements. More interestingly—if systematics were ruled out—resolving the tension would require a departure from the flat ΛCDM cosmology, introducing, for example, a modest amount of spatial curvature, or a non-trivial dark energy equation of state. To begin to address these issues, we present an analysis of the gravitational lens RXJ1131–1231 that is improved in one particular regard: we examine the issue of systematic error introduced by an assumed lens model density profile. We use more flexible gravitational lens models with baryonic and dark matter components, and find that the exquisite Hubble Space Telescope image with thousands of intensity pixels in the Einstein ring and the stellar velocity dispersion of the lens contain sufficient information to constrain these more flexible models. The total uncertainty on the time-delay distance is 6.6% for a single system. We proceed to combine our improved time-delay distance measurement with the WMAP9 and Planck posteriors. In an open ΛCDM model, the data for RXJ1131–1231 in combination with Planck favor a flat universe with Ω k =0.00 −0.02 +0.01 (68% credible interval (CI)). In a flat wCDM model, the combination of RXJ1131–1231 and Planck yields w=−1.52 −0.20 +0.19 (68% CI)

  20. Representing delayed force feedback as a combination of current and delayed states.

    Science.gov (United States)

    Avraham, Guy; Mawase, Firas; Karniel, Amir; Shmuelof, Lior; Donchin, Opher; Mussa-Ivaldi, Ferdinando A; Nisky, Ilana

    2017-10-01

    To adapt to deterministic force perturbations that depend on the current state of the hand, internal representations are formed to capture the relationships between forces experienced and motion. However, information from multiple modalities travels at different rates, resulting in intermodal delays that require compensation for these internal representations to develop. To understand how these delays are represented by the brain, we presented participants with delayed velocity-dependent force fields, i.e., forces that depend on hand velocity either 70 or 100 ms beforehand. We probed the internal representation of these delayed forces by examining the forces the participants applied to cope with the perturbations. The findings showed that for both delayed forces, the best model of internal representation consisted of a delayed velocity and current position and velocity. We show that participants relied initially on the current state, but with adaptation, the contribution of the delayed representation to adaptation increased. After adaptation, when the participants were asked to make movements with a higher velocity for which they had not previously experienced with the delayed force field, they applied forces that were consistent with current position and velocity as well as delayed velocity representations. This suggests that the sensorimotor system represents delayed force feedback using current and delayed state information and that it uses this representation when generalizing to faster movements. NEW & NOTEWORTHY The brain compensates for forces in the body and the environment to control movements, but it is unclear how it does so given the inherent delays in information transmission and processing. We examined how participants cope with delayed forces that depend on their arm velocity 70 or 100 ms beforehand. After adaptation, participants applied opposing forces that revealed a partially correct representation of the perturbation using the current and the

  1. Piecing together the maternal death puzzle through narratives: the three delays model revisited.

    Directory of Open Access Journals (Sweden)

    Viva Combs Thorsen

    Full Text Available BACKGROUND: In Malawi maternal mortality continues to be a major public health challenge. Going beyond the numbers to form a more complete view of why women die is critical to improving access to and quality of emergency obstetric care. The objective of the current study was to identify the socio-cultural and facility-based factors that contributed to maternal deaths in the district of Lilongwe, Malawi. METHODS: Retrospectively, 32 maternal death cases that occurred between January 1, 2011 and June 30, 2011 were reviewed independently by two gynecologists/obstetricians. Interviews were conducted with healthcare staff, family members, neighbors, and traditional birth attendants. Guided by the grounded theory approach, interview transcripts were analyzed manually and continuously. Emerging, recurring themes were identified and excerpts from the transcripts were categorized according to the Three Delays Model (3Ds. RESULTS: Sixteen deaths were due to direct obstetric complications, sepsis and hemorrhage being most common. Sixteen deaths were due to indirect causes with the main cause being anemia, followed by HIV and heart disease. Lack of recognizing signs, symptoms, and severity of the situation; using traditional Birth Attendant services; low female literacy level; delayed access to transport; hardship of long distance and physical terrain; delayed prompt quality emergency obstetric care; and delayed care while at the hospital due to patient refusal or concealment were observed. According to the 3Ds, the most common delay observed was in receiving treatment upon reaching the facility due to referral delays, missed diagnoses, lack of blood, lack of drugs, or inadequate care, and severe mismanagement.

  2. A novel control framework for nonlinear time-delayed dual-master/single-slave teleoperation.

    Science.gov (United States)

    Ghorbanian, A; Rezaei, S M; Khoogar, A R; Zareinejad, M; Baghestan, K

    2013-03-01

    A novel trilateral control architecture for the Dual-master/Single-slave teleoperation is proposed in this paper. This framework has been used in surgical training and rehabilitation applications. In this structure, the slave motion has been controlled by weighted summation of signals transmitted by the operator referring to task control authority through the dominance factors. The nonlinear dynamics for telemanipulators are considered which were considered as disregarded issues in previous studies of this field. Bounded variable time-delay has been considered which affects the transmitted signals in the communication channels. Two types of controllers have been offered and an appropriate stability analysis for each controller has been demonstrated. The first controller includes Proportional with dissipative gains (P+d). The second one contains Proportional and Derivative with dissipative gains (PD+d). In both cases, the stability of the trilateral control framework is preserved by choosing appropriate controller's gains. It is shown that these controllers attempt to coordinate the positions of telemanipulators in the free motion condition. The stability of the Dual-master/Single-slave teleoperation has been proved by an appropriate Lyapunov like function and the stability conditions have been studied. In addition the proposed PD+d control architecture is modified for trilateral teleoperation with internet communication between telemanipulators that caused such communication complications as packet loss, data duplication and swapping. A number of experiments have been conducted with various levels of dominance factor to validate the effectiveness of the new control architecture. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Study of Relationship Between Illness Perception and Delay in Seeking Help for Breast Cancer Patients Based on Leventhal's Self-Regulation Model.

    Science.gov (United States)

    Attari, Seyedeh Maryam; Ozgoli, Giti; Solhi, Mahnaz; Alavi Majd, Hamid

    2016-01-01

    One of the major causes of morbidity and mortality in breast cancer patients is delay in seeking help. Leventhal's self-regulation model provides an appropriate framework to assess delay in seeking help. The aim of this study was to investigate the relationship between "illness perception" and "help seeking delay" in breast cancer patients based on Leventhal's self-regulation model. In this correlational descriptive study with convenience sampling conducted in 2013, participants were 120 women with breast cancer who were diagnosed in the last year and referred to chemotherapy and radiotherapy centers in Rasht, Iran. Data collection scales included demographic data, Revised Illness Perception Questionnaire (IPQ-R)and a researcher made questionnaire to measure the delay in seeking help. Pre-hospital delay (help seeking delay) was evaluated in 3 phases (assessment, disease, behavior). The data were analyzed using SPSS-19. The mean (SD) age calculated for the patients was 47.3±10.2. Some 43% of the patients had a high school or higher education level and 82% were married. The "pre-hospital delay" was reported ≥3 months. Logistic regression analysis showed that none of the illness perception components were correlated with appraisal and behavioral delay phases. In the illness delay phase, "time line" (p-value =0.04) and "risk factors"(p-value=0.03) had significant effects on reducing and "psychological attributions" had significant effects on increasing the delay (p-value =0.01). "Illness coherence" was correlated with decreased pre-hospital patient delay (p-valueperceptions of breast cancer influences delay in seeking help. In addition to verifying the validity of Leventhal's self-regulation model in explaining delay in seeking help, the results signify the importance of the "illness delay phase" (decision to seek help) and educational interventions-counseling for women in the community.

  4. Using Constant Time Delay to Teach Braille Word Recognition

    Science.gov (United States)

    Hooper, Jonathan; Ivy, Sarah; Hatton, Deborah

    2014-01-01

    Introduction: Constant time delay has been identified as an evidence-based practice to teach print sight words and picture recognition (Browder, Ahlbrim-Delzell, Spooner, Mims, & Baker, 2009). For the study presented here, we tested the effectiveness of constant time delay to teach new braille words. Methods: A single-subject multiple baseline…

  5. Neimark-Sacker bifurcation for the discrete-delay Kaldor-Kalecki model

    International Nuclear Information System (INIS)

    Dobrescu, Loretti I.; Opris, Dumitru

    2009-01-01

    The present work will focus on a Kaldor-Kalecki nonlinear business cycle model in income and capital, with discrete time and delay argument characteristics. What it will state, considering an investment function similar to the one proposed by Rodano and using the linear approximation analysis, are the local stability property and local bifurcations conditions, given the parameter space. Numerical examples will be given in the end, to support the theoretical results obtained.

  6. Output Information Based Fault-Tolerant Iterative Learning Control for Dual-Rate Sampling Process with Disturbances and Output Delay

    Directory of Open Access Journals (Sweden)

    Hongfeng Tao

    2018-01-01

    Full Text Available For a class of single-input single-output (SISO dual-rate sampling processes with disturbances and output delay, this paper presents a robust fault-tolerant iterative learning control algorithm based on output information. Firstly, the dual-rate sampling process with output delay is transformed into discrete system in state-space model form with slow sampling rate without time delay by using lifting technology; then output information based fault-tolerant iterative learning control scheme is designed and the control process is turned into an equivalent two-dimensional (2D repetitive process. Moreover, based on the repetitive process stability theory, the sufficient conditions for the stability of system and the design method of robust controller are given in terms of linear matrix inequalities (LMIs technique. Finally, the flow control simulations of two flow tanks in series demonstrate the feasibility and effectiveness of the proposed method.

  7. Fast Heuristics for Delay Management with Passenger Rerouting

    NARCIS (Netherlands)

    T.A.B. Dollevoet (Twan); D. Huisman (Dennis)

    2011-01-01

    textabstractDelay management models determine which connections should be maintained in case of a delayed feeder train. Recently, delay management models are developed that take into account that passengers will adjust their routes when they miss a connection. However, for large-scale real-world

  8. Time delay and profit accumulation effect on a mine-based uranium market clearing model

    International Nuclear Information System (INIS)

    Auzans, Aris; Teder, Allan; Tkaczyk, Alan H.

    2016-01-01

    Highlights: • Improved version of a mine-based uranium market clearing model for the front-end uranium market and enrichment industries is proposed. • A profit accumulation algorithm and time delay function provides more realistic uranium mine decision making process. • Operational decision delay increased uranium market price volatility. - Abstract: The mining industry faces a number of challenges such as market volatility, investment safety, issues surrounding employment and productivity. Therefore, computer simulations are highly relevant in order to reduce financial risks associated with these challenges. In the mining industry, each firm must compete with other mines and the basic target is profit maximization. The aim of this paper is to evaluate the world uranium (U) supply by simulating financial management challenges faced by an individual U mine that are caused by a variety of regulation issues. In this paper front-end nuclear fuel cycle tool is used to simulate market conditions and the effects they have on the stability of U supply. An individual U mine’s exit or entry in the market might cause changes in the U supply side which can increase or decrease the market price. In this paper we offer a more advanced version of a mine-based U market clearing model. The existing U market model incorporates the market of primary U from uranium mines with secondary uranium (depleted uranium DU), enriched uranium (HEU) and enrichment services. In the model each uranium mine acts as an independent agent that is able to make operational decisions based on the market price. This paper introduces a more realistic decision making algorithm of individual U mine that adds constraints to production decisions. The authors added an accumulated profit model, which allows for the profits accumulated to cover any possible future economic losses and the time-delay algorithm to simulate delayed process of reopening a U mine. The U market simulation covers time period 2010

  9. Time delay and profit accumulation effect on a mine-based uranium market clearing model

    Energy Technology Data Exchange (ETDEWEB)

    Auzans, Aris [Institute of Physics, University of Tartu, Ostwaldi 1, EE-50411 Tartu (Estonia); Teder, Allan [School of Economics and Business Administration, University of Tartu, Narva mnt 4, EE-51009 Tartu (Estonia); Tkaczyk, Alan H., E-mail: alan@ut.ee [Institute of Physics, University of Tartu, Ostwaldi 1, EE-50411 Tartu (Estonia)

    2016-12-15

    Highlights: • Improved version of a mine-based uranium market clearing model for the front-end uranium market and enrichment industries is proposed. • A profit accumulation algorithm and time delay function provides more realistic uranium mine decision making process. • Operational decision delay increased uranium market price volatility. - Abstract: The mining industry faces a number of challenges such as market volatility, investment safety, issues surrounding employment and productivity. Therefore, computer simulations are highly relevant in order to reduce financial risks associated with these challenges. In the mining industry, each firm must compete with other mines and the basic target is profit maximization. The aim of this paper is to evaluate the world uranium (U) supply by simulating financial management challenges faced by an individual U mine that are caused by a variety of regulation issues. In this paper front-end nuclear fuel cycle tool is used to simulate market conditions and the effects they have on the stability of U supply. An individual U mine’s exit or entry in the market might cause changes in the U supply side which can increase or decrease the market price. In this paper we offer a more advanced version of a mine-based U market clearing model. The existing U market model incorporates the market of primary U from uranium mines with secondary uranium (depleted uranium DU), enriched uranium (HEU) and enrichment services. In the model each uranium mine acts as an independent agent that is able to make operational decisions based on the market price. This paper introduces a more realistic decision making algorithm of individual U mine that adds constraints to production decisions. The authors added an accumulated profit model, which allows for the profits accumulated to cover any possible future economic losses and the time-delay algorithm to simulate delayed process of reopening a U mine. The U market simulation covers time period 2010

  10. A bio-economic application to the Cape Rock Lobster resource using a delay difference modelling approach

    Directory of Open Access Journals (Sweden)

    E Roos

    2004-06-01

    Full Text Available In many species, like the Cape Rock Lobster (Jasus lalandii, the life cycles of males and females differ. This may motivate the use of two-sex models in a stock-assessment analysis. It is also true for this resource, that juveniles do not reach sexual maturity immediately. Therefore a delay-difference model is appropriate. In this study we follow a bio-economic approach and use a two-sex delay-difference model to determine a maximum economic yield strategy. Thus we determine an economic optimum steady state solution at which to harvest this resource subject to the biological constraints of the species.

  11. An In-Pile Kinetic Method for Determining the Delayed Neutron Fraction βeff

    International Nuclear Information System (INIS)

    Gilad, E.; Rivin, O.; Ettedgui, H.; Yaar, I.; Geslot, B.; Pepino, A.; Di Salvo, J.; Gruel, A.; Blaise, P.

    2014-01-01

    Delayed neutrons are of fundamental importance in the field of nuclear reactor dynamics and control. Although only a small fraction of the neutrons emitted by fission are not prompt, the knowledge of the delayed neutrons parameters is essential for transient analysis, such as startup or shutdown of the reactor, as well as for accidents analysis and control system design [1]. One of the main delayed neutron parameters used in the point reactor model equations is the effective delayed neutron fraction, which incorporates both delayed neutron spectral properties and core geometrical configuration [1,2]. Additional delayed neutron parameters include the fraction of fission neutrons emitted in each delayed group, and the delayed neutron precursors decay constants . Experimental efforts aimed at determining the value ofβ, which provide experimental support for the evaluation of delayed neutron parameters, are extremely valuable. This is due to the fact that unlike other fields in reactor physics, e.g. criticality safety or shielding, the availability of experimental data and benchmark problems for validating delayed neutron parameters and its implementation in different models is highly limited. Furthermore, the existing experimental data exhibit significant discrepancies between the different sets of parameter, which lead to substantial disparity in the analysis of kinetic experiments and reactor dynamic behavior]. In this work, a method for determining the effective delayed neutron fraction using in-pile reactivity oscillation and Fourier analysis is presented. The method is based on measurements of the reactor's power response to small periodic in-pile reactivity perturbations and utilizes Fourier analysis for reconstruction of the reactor zero power transfer function. Knowledge of the reactor transfer function enables the estimation of theβ value using multi-parameter nonlinear fit. The method accounts for higher harmonics, which are excited by the trapezoidal

  12. Integrodifferential equations and delay models in population dynamics

    CERN Document Server

    Cushing, Jim M

    1977-01-01

    These notes are, for the most part, the result of a course I taught at the University of Arizona during the Spring of 1977. Their main purpose is to inves­ tigate the effect that delays (of Volterra integral type) have when placed in the differential models of mathematical ecology, as far as stability of equilibria and the nature of oscillations of species densities are concerned. A secondary pur­ pose of the course out of which they evolved was to give students an (at least elementary) introduction to some mathematical modeling in ecology as well as to some purely mathematical subjects, such as stability theory for integrodifferentia1 systems, bifurcation theory, and some simple topics in perturbation theory. The choice of topics of course reflects my personal interests; and while these notes were not meant to exhaust the topics covered, I think they and the list of refer­ ences come close to covering the literature to date, as far as integrodifferentia1 models in ecology are concerned. I would like to th...

  13. Effect of delayed response in growth on the dynamics of a chemostat model with impulsive input

    International Nuclear Information System (INIS)

    Jiao Jianjun; Yang Xiaosong; Chen Lansun; Cai Shaohong

    2009-01-01

    In this paper, a chemostat model with delayed response in growth and impulsive perturbations on the substrate is considered. Using the discrete dynamical system determined by the stroboscopic map, we obtain a microorganism-extinction periodic solution, further, the globally attractive condition of the microorganism-extinction periodic solution is obtained. By the use of the theory on delay functional and impulsive differential equation, we also obtain the permanent condition of the investigated system. Our results indicate that the discrete time delay has influence to the dynamics behaviors of the investigated system, and provide tactical basis for the experimenters to control the outcome of the chemostat. Furthermore, numerical analysis is inserted to illuminate the dynamics of the system affected by the discrete time delay.

  14. The effect of a single rectal dose of cisapride on delayed gastric emptying.The effect of a single rectal dose of cisapride on delayed gastric emptying.

    NARCIS (Netherlands)

    Brummer, R.J.M.; Schoenmakers, E.A.J.M.; Kemerink, G.J.; Heidendal, G.A.K.; Sanders, D.G.M.; Stockbrügger, R.W.

    1997-01-01

    Department of Gastroenterology, University Hospital Maastricht, The Netherlands. BACKGROUND: Cisapride has an established prokinetic effect in patients with delayed gastric emptying. However, rectal administration of the drug might be preferred in patients with either dysphagia or nausea due to

  15. A Robust Longitudinal Control Strategy of Platoons under Model Uncertainties and Time Delays

    Directory of Open Access Journals (Sweden)

    Na Chen

    2018-01-01

    Full Text Available Automated vehicles are designed to free drivers from driving tasks and are expected to improve traffic safety and efficiency when connected via vehicle-to-vehicle communication, that is, connected automated vehicles (CAVs. The time delays and model uncertainties in vehicle control systems pose challenges for automated driving in real world. Ignoring them may render the performance of cooperative driving systems unsatisfactory or even unstable. This paper aims to design a robust and flexible platooning control strategy for CAVs. A centralized control method is presented, where the leader of a CAV platoon collects information from followers, computes the desired accelerations of all controlled vehicles, and broadcasts the desired accelerations to followers. The robust platooning is formulated as a Min-Max Model Predictive Control (MM-MPC problem, where optimal accelerations are generated to minimize the cost function under the worst case, where the worst case is taken over the possible models. The proposed method is flexible in such a way that it can be applied to both homogeneous platoon and heterogeneous platoon with mixed human-driven and automated controlled vehicles. A third-order linear vehicle model with fixed feedback delay and stochastic actuator lag is used to predict the platoon behavior. Actuator lag is assumed to vary randomly with unknown distributions but a known upper bound. The controller regulates platoon accelerations over a time horizon to minimize a cost function representing driving safety, efficiency, and ride comfort, subject to speed limits, plausible acceleration range, and minimal net spacing. The designed strategy is tested by simulating homogeneous and heterogeneous platoons in a number of typical and extreme scenarios to assess the system stability and performance. The test results demonstrate that the designed control strategy for CAV can ensure the robustness of stability and performance against model uncertainties

  16. The threshold of a stochastic delayed SIR epidemic model with temporary immunity

    Science.gov (United States)

    Liu, Qun; Chen, Qingmei; Jiang, Daqing

    2016-05-01

    This paper is concerned with the asymptotic properties of a stochastic delayed SIR epidemic model with temporary immunity. Sufficient conditions for extinction and persistence in the mean of the epidemic are established. The threshold between persistence in the mean and extinction of the epidemic is obtained. Compared with the corresponding deterministic model, the threshold affected by the white noise is smaller than the basic reproduction number R0 of the deterministic system.

  17. Model-predictive control based on Takagi-Sugeno fuzzy model for electrical vehicles delayed model

    DEFF Research Database (Denmark)

    Khooban, Mohammad-Hassan; Vafamand, Navid; Niknam, Taher

    2017-01-01

    Electric vehicles (EVs) play a significant role in different applications, such as commuter vehicles and short distance transport applications. This study presents a new structure of model-predictive control based on the Takagi-Sugeno fuzzy model, linear matrix inequalities, and a non......-quadratic Lyapunov function for the speed control of EVs including time-delay states and parameter uncertainty. Experimental data, using the Federal Test Procedure (FTP-75), is applied to test the performance and robustness of the suggested controller in the presence of time-varying parameters. Besides, a comparison...... is made between the results of the suggested robust strategy and those obtained from some of the most recent studies on the same topic, to assess the efficiency of the suggested controller. Finally, the experimental results based on a TMS320F28335 DSP are performed on a direct current motor. Simulation...

  18. Toeless pulse shaping with a single delay-line network

    International Nuclear Information System (INIS)

    Tauhata, L.; Binns, D.C.

    1976-04-01

    New unipolar delay-line clippers producing negligible cancellation remnant have been developed. Near perfect clipping is achieved using a combination of several types of coaxial cable tranformers working as a phase inverter, a new pulse adder, or an impedance transformer. Only passive elements are used in the bridge network. The construction is simple and the performance is extremely stable and wide in dynamic range and frequency band width. Completely symmetrical bipolar pulses are also easily obtained using this technique

  19. A model for Huanglongbing spread between citrus plants including delay times and human intervention

    Science.gov (United States)

    Vilamiu, Raphael G. d'A.; Ternes, Sonia; Braga, Guilherme A.; Laranjeira, Francisco F.

    2012-09-01

    The objective of this work was to present a compartmental deterministic mathematical model for representing the dynamics of HLB disease in a citrus orchard, including delay in the disease's incubation phase in the plants, and a delay period on the nymphal stage of Diaphorina citri, the most important HLB insect vector in Brazil. Numerical simulations were performed to assess the possible impacts of human detection efficiency of symptomatic plants, as well as the influence of a long incubation period of HLB in the plant.

  20. Reduction in the ionospheric error for a single-frequency GPS timing solution using tomography

    Directory of Open Access Journals (Sweden)

    Cathryn N. Mitchell

    2009-06-01

    Full Text Available

    Abstract

    Single-frequency Global Positioning System (GPS receivers do not accurately compensate for the ionospheric delay imposed upon a GPS signal. They rely upon models to compensate for the ionosphere. This delay compensation can be improved by measuring it directly with a dual-frequency receiver, or by monitoring the ionosphere using real-time maps. This investigation uses a 4D tomographic algorithm, Multi Instrument Data Analysis System (MIDAS, to correct for the ionospheric delay and compares the results to existing single and dualfrequency techniques. Maps of the ionospheric electron density, across Europe, are produced by using data collected from a fixed network of dual-frequency GPS receivers. Single-frequency pseudorange observations are corrected by using the maps to find the excess propagation delay on the GPS L1 signals. Days during the solar maximum year 2002 and the October 2003 storm have been chosen to display results when the ionospheric delays are large and variable. Results that improve upon the use of existing ionospheric models are achieved by applying MIDAS to fixed and mobile single-frequency GPS timing solutions. The approach offers the potential for corrections to be broadcast over a local region, or provided via the internet and allows timing accuracies to within 10 ns to be achieved.



  1. Rumor Spreading Model with Immunization Strategy and Delay Time on Homogeneous Networks

    Science.gov (United States)

    Wang, Jing; Wang, Ya-Qi; Li, Ming

    2017-12-01

    In order to prevent and control the spread of rumors, the implementation of immunization strategies for ignorant individuals is very necessary, where the immunization usually means letting them learn the truth of rumors. Considering the facts that there is always a delay time between rumor spreading and implementing immunization, and that the truth of rumors can also be spread out, this paper constructs a novel susceptible-infected-removed (SIR) model. The propagation dynamical behaviors of the SIR model on homogeneous networks are investigated by using the mean-field theory and the Monte Carlo method. Research shows that the greater the delay time, the worse the immune effect of the immunization strategy. It is also found that the spread of the truth can inhibit to some extent the propagation of rumors, and the trend will become more obvious with the increase of reliability of the truth. Moreover, under the influence of delay time, the existence of nodes’ identification force still slightly reduces the propagation degree of rumors. Supported by the National Natural Science Foundation of China under Grant No. 61402531, the Natural Science Basic Research Plan in Shaanxi Province of China under Grant Nos. 2014JQ8358, 2015JQ6231, and 2014JQ8307, the China Postdoctoral Science Foundation under Grant No. 2015M582910, and the Basic Research Foundation of Engineering University of the Chinese People’s Armed Police Force under Grant Nos. WJY201419, WJY201605 and JLX201686

  2. Delay line clipping in a scintillation camera system

    International Nuclear Information System (INIS)

    Hatch, K.F.

    1979-01-01

    The present invention provides a novel base line restoring circuit and a novel delay line clipping circuit in a scintillation camera system. Single and double delay line clipped signal waveforms are generated for increasing the operational frequency and fidelity of data detection of the camera system by base line distortion such as undershooting, overshooting, and capacitive build-up. The camera system includes a set of photomultiplier tubes and associated amplifiers which generate sequences of pulses. These pulses are pulse-height analyzed for detecting a scintillation having an energy level which falls within a predetermined energy range. Data pulses are combined to provide coordinates and energy of photopeak events. The amplifiers are biassed out of saturation over all ranges of pulse energy level and count rate. Single delay line clipping circuitry is provided for narrowing the pulse width of the decaying electrical data pulses which increase operating speed without the occurrence of data loss. (JTA)

  3. Methods to estimate railway capacity and passenger delays

    DEFF Research Database (Denmark)

    Landex, Alex

    that an evaluation of passenger delays obtained with simulation software (in this case RailSys) and the passenger delay model is comparable with the daily operation of the Copenhagen suburban railway network. Using a microscopic simulation model, the thesis demonstrates that it is possible to compare travel times...... of additional travel time. The differences between the different kinds of delay (train delays, passenger delays and scheduled waiting time) are illustrated through simple, but representative, case examples in CHAPTER 10. The examples demonstrate that 3rd generation passenger delay models are more realistic than...... depend on the given infrastructure and timetable and can result in longer travel times for trains and passengers. Furthermore, the thesis shows that the network effects can result in reduced capacity as some trains or train services can make it impossible to operate other planned/desired trains or train...

  4. Subcritical Neutron Multiplication Measurements of HEU Using Delayed Neutrons as the Driving Source

    International Nuclear Information System (INIS)

    Hollas, C.L.; Goulding, C.A.; Myers, W.L.

    1999-01-01

    A new method for the determination of the multiplication of highly enriched uranium systems is presented. The method uses delayed neutrons to drive the HEU system. These delayed neutrons are from fission events induced by a pulsed 14-MeV neutron source. Between pulses, neutrons are detected within a medium efficiency neutron detector using 3 He ionization tubes within polyethylene enclosures. The neutron detection times are recorded relative to the initiation of the 14-MeV neutron pulse, and subsequently analyzed with the Feynman reduced variance method to extract singles, doubles and triples neutron counting rates. Measurements have been made on a set of nested hollow spheres of 93% enriched uranium, with mass values from 3.86 kg to 21.48 kg. The singles, doubles and triples counting rates for each uranium system are compared to calculations from point kinetics models of neutron multiplicity to assign multiplication values. These multiplication values are compared to those from MC NP K-Code calculations

  5. Stability and Hopf bifurcation for a business cycle model with expectation and delay

    Science.gov (United States)

    Liu, Xiangdong; Cai, Wenli; Lu, Jiajun; Wang, Yangyang

    2015-08-01

    According to rational expectation hypothesis, the government will take into account the future capital stock in the process of investment decision. By introducing anticipated capital stock into an economic model with investment delay, we construct a mixed functional differential system including delay and advanced variables. The system is converted to the one containing only delay by variable substitution. The equilibrium point of the system is obtained and its dynamical characteristics such as stability, Hopf bifurcation and its stability and direction are investigated by using the related theories of nonlinear dynamics. We carry out some numerical simulations to confirm these theoretical conclusions. The results indicate that both capital stock's anticipation and investment lag are the certain factors leading to the occurrence of cyclical fluctuations in the macroeconomic system. Moreover, the level of economic fluctuation can be dampened to some extent if investment decisions are made by the reasonable short-term forecast on capital stock.

  6. A Robust Longitudinal Control Strategy of Platoons under Model Uncertainties and Time Delays

    NARCIS (Netherlands)

    Chen, N.; Wang, M.; Alkim, Tom; van Arem, B.

    2018-01-01

    Automated vehicles are designed to free drivers from driving tasks and are expected to improve traffic safety and efficiency when connected via vehicle-to-vehicle communication, that is, connected automated vehicles (CAVs). The time delays and model uncertainties in vehicle control systems pose

  7. Robust stability bounds for multi-delay networked control systems

    Science.gov (United States)

    Seitz, Timothy; Yedavalli, Rama K.; Behbahani, Alireza

    2018-04-01

    In this paper, the robust stability of a perturbed linear continuous-time system is examined when controlled using a sampled-data networked control system (NCS) framework. Three new robust stability bounds on the time-invariant perturbations to the original continuous-time plant matrix are presented guaranteeing stability for the corresponding discrete closed-loop augmented delay-free system (ADFS) with multiple time-varying sensor and actuator delays. The bounds are differentiated from previous work by accounting for the sampled-data nature of the NCS and for separate communication delays for each sensor and actuator, not a single delay. Therefore, this paper expands the knowledge base in multiple inputs multiple outputs (MIMO) sampled-data time delay systems. Bounds are presented for unstructured, semi-structured, and structured perturbations.

  8. Analysis of stability and Hopf bifurcation for a viral infectious model with delay

    International Nuclear Information System (INIS)

    Sun Chengjun; Cao Zhijie; Lin Yiping

    2007-01-01

    In this paper, a four-dimensional viral infectious model with delay is considered. The stability of the two equilibria and the existence of Hopf bifurcation are investigated. It is found that there are stability switches and Hopf bifurcations occur when the delay τ passes through a sequence of critical values. Using the normal form theory and center manifold argument [Hassard B, Kazarino D, Wan Y. Theory and applications of Hopf bifurcation. Cambridge: Cambridge University Press; 1981], the explicit formulaes which determine the stability, the direction and the period of bifurcating periodic solutions are derived. Numerical simulations are carried out to illustrate the validity of the main results

  9. On the effect of ionospheric delay on geodetic relative GPS positioning

    NARCIS (Netherlands)

    Georgiadou, P.Y.; Kleusberg, A.

    1988-01-01

    Uncorrected ionospheric delay is one of the factors limiting the accuracy in geodetic relative positioning with single frequency Global Positioning System (GPS) carrier phase observations. Dual frequency measurements can be combined to eliminate the ionospheric delay in the observations. A

  10. On the impact of information delay on location-based relaying: a markov modeling approach

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen; Olsen, Rasmus Løvenstein; Madsen, Tatiana Kozlova

    2012-01-01

    For centralized selection of communication relays, the necessary decision information needs to be collected from the mobile nodes by the access point (centralized decision point). In mobile scenarios, the required information collection and forwarding delays will affect the reliability of the col......For centralized selection of communication relays, the necessary decision information needs to be collected from the mobile nodes by the access point (centralized decision point). In mobile scenarios, the required information collection and forwarding delays will affect the reliability...... of the collected information and hence will influence the performance of the relay selection method. This paper analyzes this influence in the decision process for the example of a mobile location-based relay selection approach using a continuous time Markov chain model. The model is used to obtain optimal relay...

  11. Stochastic Wilson–Cowan models of neuronal network dynamics with memory and delay

    International Nuclear Information System (INIS)

    Goychuk, Igor; Goychuk, Andriy

    2015-01-01

    We consider a simple Markovian class of the stochastic Wilson–Cowan type models of neuronal network dynamics, which incorporates stochastic delay caused by the existence of a refractory period of neurons. From the point of view of the dynamics of the individual elements, we are dealing with a network of non-Markovian stochastic two-state oscillators with memory, which are coupled globally in a mean-field fashion. This interrelation of a higher-dimensional Markovian and lower-dimensional non-Markovian dynamics is discussed in its relevance to the general problem of the network dynamics of complex elements possessing memory. The simplest model of this class is provided by a three-state Markovian neuron with one refractory state, which causes firing delay with an exponentially decaying memory within the two-state reduced model. This basic model is used to study critical avalanche dynamics (the noise sustained criticality) in a balanced feedforward network consisting of the excitatory and inhibitory neurons. Such avalanches emerge due to the network size dependent noise (mesoscopic noise). Numerical simulations reveal an intermediate power law in the distribution of avalanche sizes with the critical exponent around −1.16. We show that this power law is robust upon a variation of the refractory time over several orders of magnitude. However, the avalanche time distribution is biexponential. It does not reflect any genuine power law dependence. (paper)

  12. Multimoded rf delay line distribution system for the Next Linear Collider

    Directory of Open Access Journals (Sweden)

    S. G. Tantawi

    2002-03-01

    Full Text Available The delay line distribution system is an alternative to conventional pulse compression, which enhances the peak power of rf sources while matching the long pulse of those sources to the shorter filling time of accelerator structures. We present an implementation of this scheme that combines pairs of parallel delay lines of the system into single lines. The power of several sources is combined into a single waveguide delay line using a multimode launcher. The output mode of the launcher is determined by the phase coding of the input signals. The combined power is extracted from the delay line using mode-selective extractors, each of which extracts a single mode. Hence, the phase coding of the sources controls the output port of the combined power. The power is then fed to the local accelerator structures. We present a detailed design of such a system, including several implementation methods for the launchers, extractors, and ancillary high power rf components. The system is designed so that it can handle the 600 MW peak power required by the Next Linear Collider design while maintaining high efficiency.

  13. Delayed hydride cracking: theoretical model testing to predict cracking velocity

    International Nuclear Information System (INIS)

    Mieza, Juan I.; Vigna, Gustavo L.; Domizzi, Gladys

    2009-01-01

    Pressure tubes from Candu nuclear reactors as any other component manufactured with Zr alloys are prone to delayed hydride cracking. That is why it is important to be able to predict the cracking velocity during the component lifetime from parameters easy to be measured, such as: hydrogen concentration, mechanical and microstructural properties. Two of the theoretical models reported in literature to calculate the DHC velocity were chosen and combined, and using the appropriate variables allowed a comparison with experimental results of samples from Zr-2.5 Nb tubes with different mechanical and structural properties. In addition, velocities measured by other authors in irradiated materials could be reproduced using the model described above. (author)

  14. FREQUENCY CATASTROPHE AND CO-EXISTING ATTRACTORS IN A CELL Ca2+ NONLINEAR OSCILLATION MODEL WITH TIME DELAY*

    Institute of Scientific and Technical Information of China (English)

    应阳君; 黄祖洽

    2001-01-01

    Frequency catastrophe is found in a cell Ca2+ nonlinear oscillation model with time delay. The relation of the frequency transition to the time delay is studied by numerical simulations and theoretical analysis. There is a range of parameters in which two kinds of attractors with great frequency differences co-exist in the system. Along with parameter changes, a critical phenomenon occurs and the oscillation frequency changes greatly. This mechanism helps us to deepen the understanding of the complex dynamics of delay systems, and might be of some meaning in cell signalling.

  15. Delay-Dependent Control for Networked Control Systems with Large Delays

    Directory of Open Access Journals (Sweden)

    Yilin Wang

    2013-01-01

    Full Text Available We consider the problems of robust stability and control for a class of networked control systems with long-time delays. Firstly, a nonlinear discrete time model with mode-dependent time delays is proposed by converting the uncertainty of time delay into the uncertainty of parameter matrices. We consider a probabilistic case where the system is switched among different subsystems, and the probability of each subsystem being active is defined as its occurrence probability. For a switched system with a known subsystem occurrence probabilities, we give a stochastic stability criterion in terms of linear matrix inequalities (LMIs. Then, we extend the results to a more practical case where the subsystem occurrence probabilities are uncertain. Finally, a simulation example is presented to show the efficacy of the proposed method.

  16. Effectiveness of a low-cost virtual reality system for children with developmental delay: a preliminary randomised single-blind controlled trial.

    Science.gov (United States)

    Salem, Yasser; Gropack, Stacy Jaffee; Coffin, Dale; Godwin, Ellen M

    2012-09-01

    Physical and occupational therapists have started to use the Nintendo Wii™ gaming system with adults and children as part of their regular treatment. Despite the growing use of the Wii and trend towards evidence-based practice, limited evidence is available on the effectiveness of virtual reality using the Wii for children with developmental delay. The purpose of this study was to determine the feasibility and preliminary effectiveness of a low-cost gaming system for young children with developmental delay. Single-blind, randomised controlled trial. Forty children with developmental delay (age 39 to 58 months) who attended a segregated or integrated preschool participated in this study. All children's parents read and signed an informed consent form approved by the institutional review board. Children were assigned at random to an experimental (Wii) group (n=20) or a control group (n=20). Two weekly sessions for 10 weeks using Nintendo Wii Sports™ and Nintendo Wii Fit™, including balance, strength training and aerobics games. Participants were evaluated 1 week before and 1 week after the programme by a blinded investigator. Primary outcomes were gait speed, timed up and go test, single leg stance test, five-times-sit-to-stand test, timed up and down stairs test, 2-minute walk test and grip strength. The Gross Motor Function Measure (GMFM) was used to assess gross motor skills. The two groups were homogenous regarding all parameters at baseline. The Wii training was feasible and enjoyable for those in the experimental group. There were no adverse effects or injuries reported over 267 training sessions. Comparison of groups following the intervention indicated that the experimental group showed significant improvements compared with the control group in single leg stance test {mean difference 1.03 [standard deviation (SD) 1.7], 95% confidence interval (CI) 0.2 to 1.9; P=0.017}, right grip strength [mean difference 1.11 (SD 1.84), 95% CI 0.15 to 2.06; P=0

  17. Modeling and analysis of energy quantization effects on single electron inverter performance

    Science.gov (United States)

    Dan, Surya Shankar; Mahapatra, Santanu

    2009-08-01

    In this paper, for the first time, the effects of energy quantization on single electron transistor (SET) inverter performance are analyzed through analytical modeling and Monte Carlo simulations. It is shown that energy quantization mainly changes the Coulomb blockade region and drain current of SET devices and thus affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new analytical model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. A compact expression is developed for a novel parameter quantization threshold which is introduced for the first time in this paper. Quantization threshold explicitly defines the maximum energy quantization that an SET inverter logic circuit can withstand before its noise margin falls below a specified tolerance level. It is found that SET inverter designed with CT:CG=1/3 (where CT and CG are tunnel junction and gate capacitances, respectively) offers maximum robustness against energy quantization.

  18. A Dynamic Analysis of the Business Cycle Model with a Fixed-time Delay

    Directory of Open Access Journals (Sweden)

    Yuhang Zheng

    2017-07-01

    Full Text Available In business activities, there is a certain time lag effect in investment and capital stock, which would affect the dynamic behavior of the business cycle model and then complicate the economic stability adjustment made through investment policies. Considering the influence on investment activities caused by the expectation time about capital stock, this paper, employing the Hopf bifurcation theory, with the delay in investment as the bifurcation parameter, not only studies the equilibrium stability of the business cycle model with a fixed-time delay, but also discusses the formation conditions of the business cycle. The research discovers that the investment lag during the investing process and the expectation time about the capital stock are two crucial incentives of the business cycle; meanwhile, the expecting equilibrium target can be met through the adjustment of the government investment policies. These findings may serve as guidelines in stabilizing the business cycle and making relative economic policies. The conclusion is verified through numerical simulation.

  19. Corpuscular event-by-event simulation of quantum optics experiments: application to a quantum-controlled delayed-choice experiment

    International Nuclear Information System (INIS)

    De Raedt, Hans; Delina, M; Jin, Fengping; Michielsen, Kristel

    2012-01-01

    A corpuscular simulation model of optical phenomena that does not require knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory by generating detection events one by one is discussed. The event-based corpuscular model gives a unified description of multiple-beam fringes of a plane parallel plate and a single-photon Mach-Zehnder interferometer, Wheeler's delayed choice, photon tunneling, quantum eraser, two-beam interference, Einstein-Podolsky-Rosen-Bohm and Hanbury Brown-Twiss experiments. The approach is illustrated by applying it to a recent proposal for a quantum-controlled delayed choice experiment, demonstrating that also this thought experiment can be understood in terms of particle processes only.

  20. Delay selection by spike-timing-dependent plasticity in recurrent networks of spiking neurons receiving oscillatory inputs.

    Directory of Open Access Journals (Sweden)

    Robert R Kerr

    Full Text Available Learning rules, such as spike-timing-dependent plasticity (STDP, change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways. First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing fundamental pitch perception in the auditory brainstem.

  1. Modeling delayed neutron monitoring systems for fast breeder reactors

    International Nuclear Information System (INIS)

    Bunch, W.L.; Tang, E.L.

    1983-10-01

    The purpose of the present work was to develop a general expression relating the count rate of a delayed neutron monitoring system to the introduction rate of fission fragments into the sodium coolant of a fast breeder reactor. Most fast breeder reactors include a system for detecting the presence of breached fuel that permits contact between the sodium coolant and the mixed oxide fuel. These systems monitor for the presence of fission fragments in the sodium that emit delayed neutrons. For operational reasons, the goal is to relate the count rate of the delayed neutron monitor to the condition of the breach in order that appropriate action might be taken

  2. Stability Analysis of Networked Control Systems with Random Time Delays and Packet Dropouts Modeled by Markov Chains

    Directory of Open Access Journals (Sweden)

    Li Qiu

    2013-01-01

    unified Markov jump model. The random time delays and packet dropouts existed in feedback communication link are modeled by two independent Markov chains; the resulting closed-loop system is described by a new Markovian jump linear system (MJLS with Markov delays. Sufficient conditions of the stochastic stability for NCSs is obtained by constructing a novel Lyapunov functional, and the mode-dependent output feedback controller design method is presented based on linear matrix inequality (LMI technique. A numerical example is given to illustrate the effectiveness of the proposed method.

  3. Nonresonant Double Hopf Bifurcation in Toxic Phytoplankton-Zooplankton Model with Delay

    Science.gov (United States)

    Yuan, Rui; Jiang, Weihua; Wang, Yong

    This paper investigates a toxic phytoplankton-zooplankton model with Michaelis-Menten type phytoplankton harvesting. The model has rich dynamical behaviors. It undergoes transcritical, saddle-node, fold, Hopf, fold-Hopf and double Hopf bifurcation, when the parameters change and go through some of the critical values, the dynamical properties of the system will change also, such as the stability, equilibrium points and the periodic orbit. We first study the stability of the equilibria, and analyze the critical conditions for the above bifurcations at each equilibrium. In addition, the stability and direction of local Hopf bifurcations, and the completion bifurcation set by calculating the universal unfoldings near the double Hopf bifurcation point are given by the normal form theory and center manifold theorem. We obtained that the stable coexistent equilibrium point and stable periodic orbit alternate regularly when the digestion time delay is within some finite value. That is, we derived the pattern for the occurrence, and disappearance of a stable periodic orbit. Furthermore, we calculated the approximation expression of the critical bifurcation curve using the digestion time delay and the harvesting rate as parameters, and determined a large range in terms of the harvesting rate for the phytoplankton and zooplankton to coexist in a long term.

  4. Bisimulation for Single-Agent Plausibility Models

    DEFF Research Database (Denmark)

    Andersen, Mikkel Birkegaard; Bolander, Thomas; van Ditmarsch, H.

    2013-01-01

    define a proper notion of bisimulation, and prove that bisimulation corresponds to logical equivalence on image-finite models. We relate our results to other epistemic notions, such as safe belief and degrees of belief. Our results imply that there are only finitely many non-bisimilar single......-agent epistemic plausibility models on a finite set of propositions. This gives decidability for single-agent epistemic plausibility planning....

  5. Global existence of periodic solutions on a simplified BAM neural network model with delays

    International Nuclear Information System (INIS)

    Zheng Baodong; Zhang Yazhuo; Zhang Chunrui

    2008-01-01

    A simplified n-dimensional BAM neural network model with delays is considered. Some results of Hopf bifurcations occurring at the zero equilibrium as the delay increases are exhibited. Global existence of periodic solutions are established using a global Hopf bifurcation result of Wu [Wu J. Symmetric functional-differential equations and neural networks with memory. Trans Am Math Soc 1998;350:4799-838], and a Bendixson criterion for higher dimensional ordinary differential equations due to Li and Muldowney [Li MY, Muldowney J. On Bendixson's criterion. J Differ Equations 1994;106:27-39]. Finally, computer simulations are performed to illustrate the analytical results found

  6. Dynamics of the congestion control model in underwater wireless sensor networks with time delay

    International Nuclear Information System (INIS)

    Dong, Tao; Hu, Wenjie; Liao, Xiaofeng

    2016-01-01

    In this paper, a congestion control model in underwater wireless sensor network with time delay is considered. First, the boundedness of the positive equilibrium, where the samples density is positive for each node and the different event flows coexist, is investigated, which implies that the samples density of sensor node cannot exceed the Environmental carrying capacity. Then, by considering the time delay can be regarded as a bifurcating parameter, the dynamical behaviors, which include local stability and Hopf bifurcation, are investigated. It is found that when the communication time delay passes a critical value, the system loses its stability and a Hopf bifurcation occurs, which means the underwater wireless sensor network will be congested, even collapsed. Furthermore, the direction and stability of the bifurcating periodic solutions are derived by applying the normal form theory and the center manifold theorem. Finally, some numerical examples are finally performed to verify the theoretical results.

  7. State-Space Equations and the First-Phase Algorithm for Signal Control of Single Intersections

    Institute of Scientific and Technical Information of China (English)

    LI Jinyuan; PAN Xin; WANG Xiqin

    2007-01-01

    State-space equations were applied to formulate the queuing and delay of traffic at a single intersection in this paper. The signal control of a single intersection was then modeled as a discrete-time optimal control problem, with consideration of the constraints of stream conflicts, saturation flow rate, minimum green time, and maximum green time. The problem cannot be solved directly due to the nonlinear constraints.However, the results of qualitative analysis were used to develop a first-phase signal control algorithm. Simulation results show that the algorithm substantially reduces the total delay compared to fixed-time control.

  8. An immuno-epidemiological model with threshold delay: a study of the effects of multiple exposures to a pathogen.

    Science.gov (United States)

    Qesmi, Redouane; Heffernan, Jane M; Wu, Jianhong

    2015-01-01

    An immuno-epidemiological model of pathogen transmission is developed. This model incorporates two main features: (i) the epidemiological model includes within-host pathogen dynamics for an infectious disease, (ii) the susceptible individuals to the infection experience a series of exposures via the pathogen before becoming infectious. It is shown that this model leads naturally to a system of differential delay equations of the threshold type and that these equations can be transformed, in a biologically natural way, to differential equations with state-dependent delay. An interesting dynamical behavior of the model is the bistability phenomena, when the basic reproductive ratio R0 is less than unity, which raises many new challenges to effective infection control.

  9. Your wish is my command! The influence of symbolic modelling on preschool children’s delay of gratification

    Science.gov (United States)

    Kumst, S

    2015-01-01

    The ability of children to delay gratification is correlated with a range of positive outcomes in adulthood, showing the potential impact of helping young children increase their competence in this area. This study investigated the influence of symbolic models on the self-control of 3-year old children. Eighty-three children were randomly assigned to one of three modelling conditions: personal storytelling, impersonal storytelling, and control. Children were tested on the delay-of-gratification maintenance paradigm both before and after being exposed to a symbolic model or control condition. Repeated measures ANOVA revealed no significant differences between the two storytelling groups and the control group, indicating that the symbolic models did not influence children’s ability to delay gratification. A serendipitous finding showed a positive relationship between the ability of children to wait and their production and accurate use of temporal terms, which was more pronounced in girls than boys. This finding may be an indication that a higher temporal vocabulary is linked to a continuous representation of the self in time, facilitating a child’s representation of the future-self receiving a larger reward than what the present-self could receive. PMID:25737814

  10. Delay and Disruption Tolerant Networking MACHETE Model

    Science.gov (United States)

    Segui, John S.; Jennings, Esther H.; Gao, Jay L.

    2011-01-01

    To verify satisfaction of communication requirements imposed by unique missions, as early as 2000, the Communications Networking Group at the Jet Propulsion Laboratory (JPL) saw the need for an environment to support interplanetary communication protocol design, validation, and characterization. JPL's Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in Simulator of Space Communication Networks (NPO-41373) NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various commercial, non-commercial, and in-house custom tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. As NASA is expanding its Space Communications and Navigation (SCaN) capabilities to support planned and future missions, building infrastructure to maintain services and developing enabling technologies, an important and broader role is seen for MACHETE in design-phase evaluation of future SCaN architectures. To support evaluation of the developing Delay Tolerant Networking (DTN) field and its applicability for space networks, JPL developed MACHETE models for DTN Bundle Protocol (BP) and Licklider/Long-haul Transmission Protocol (LTP). DTN is an Internet Research Task Force (IRTF) architecture providing communication in and/or through highly stressed networking environments such as space exploration and battlefield networks. Stressed networking environments include those with intermittent (predictable and unknown) connectivity, large and/or variable delays, and high bit error rates. To provide its services over existing domain specific protocols, the DTN protocols reside at the application layer of the TCP/IP stack, forming a store-and-forward overlay network. The key capabilities of the Bundle Protocol include custody-based reliability, the ability to cope with intermittent connectivity

  11. Topology identification of the complex networks with non-delayed and delayed coupling

    International Nuclear Information System (INIS)

    Guo Wanli; Chen Shihua; Sun Wen

    2009-01-01

    In practical situation, there exists many uncertain information in complex networks, such as the topological structures. So the topology identification is an important issue in the research of the complex networks. Based on LaSalle's invariance principle, in this Letter, an adaptive controlling method is proposed to identify the topology of a weighted general complex network model with non-delayed and delayed coupling. Finally, simulation results show that the method is effective.

  12. A discrete event simulation model for evaluating time delays in a pipeline network

    Energy Technology Data Exchange (ETDEWEB)

    Spricigo, Deisi; Muggiati, Filipe V.; Lueders, Ricardo; Neves Junior, Flavio [Federal University of Technology of Parana (UTFPR), Curitiba, PR (Brazil)

    2009-07-01

    Currently in the oil industry the logistic chain stands out as a strong candidate to obtain highest profit, since recent studies have pointed out to a cost reduction by adoption of better policies for distribution of oil derivatives, particularly those where pipelines are used to transport products. Although there are models to represent transfers of oil derivatives in pipelines, they are quite complex and computationally burden. In this paper, we are interested on models that are less detailed in terms of fluid dynamics but provide more information about operational decisions in a pipeline network. We propose a discrete event simulation model in ARENA that allows simulating a pipeline network based on average historical data. Time delays for transferring different products can be evaluated through different routes. It is considered that transport operations follow a historical behavior and average time delays can thus be estimated within certain bounds. Due to its stochastic nature, time quantities are characterized by average and dispersion measures. This allows comparing different operational scenarios for product transportation. Simulation results are compared to data obtained from a real world pipeline network and different scenarios of production and demand are analyzed. (author)

  13. Asymptotic solution for the El Niño time delay sea—air oscillator model

    International Nuclear Information System (INIS)

    Mo Jia-Qi; Lin Wan-Tao; Lin Yi-Hua

    2011-01-01

    A sea—air oscillator model is studied using the time delay theory. The aim is to find an asymptotic solving method for the El Niño-southern oscillation (ENSO) model. Employing the perturbed method, an asymptotic solution of the corresponding problem is obtained. Thus we can obtain the prognoses of the sea surface temperature (SST) anomaly and the related physical quantities. (general)

  14. Improved Stabilization Conditions for Nonlinear Systems with Input and State Delays via T-S Fuzzy Model

    Directory of Open Access Journals (Sweden)

    Chang Che

    2018-01-01

    Full Text Available This paper focuses on the problem of nonlinear systems with input and state delays. The considered nonlinear systems are represented by Takagi-Sugeno (T-S fuzzy model. A new state feedback control approach is introduced for T-S fuzzy systems with input delay and state delays. A new Lyapunov-Krasovskii functional is employed to derive less conservative stability conditions by incorporating a recently developed Wirtinger-based integral inequality. Based on the Lyapunov stability criterion, a series of linear matrix inequalities (LMIs are obtained by using the slack variables and integral inequality, which guarantees the asymptotic stability of the closed-loop system. Several numerical examples are given to show the advantages of the proposed results.

  15. Hopf bifurcation of an (n + 1) -neuron bidirectional associative memory neural network model with delays.

    Science.gov (United States)

    Xiao, Min; Zheng, Wei Xing; Cao, Jinde

    2013-01-01

    Recent studies on Hopf bifurcations of neural networks with delays are confined to simplified neural network models consisting of only two, three, four, five, or six neurons. It is well known that neural networks are complex and large-scale nonlinear dynamical systems, so the dynamics of the delayed neural networks are very rich and complicated. Although discussing the dynamics of networks with a few neurons may help us to understand large-scale networks, there are inevitably some complicated problems that may be overlooked if simplified networks are carried over to large-scale networks. In this paper, a general delayed bidirectional associative memory neural network model with n + 1 neurons is considered. By analyzing the associated characteristic equation, the local stability of the trivial steady state is examined, and then the existence of the Hopf bifurcation at the trivial steady state is established. By applying the normal form theory and the center manifold reduction, explicit formulae are derived to determine the direction and stability of the bifurcating periodic solution. Furthermore, the paper highlights situations where the Hopf bifurcations are particularly critical, in the sense that the amplitude and the period of oscillations are very sensitive to errors due to tolerances in the implementation of neuron interconnections. It is shown that the sensitivity is crucially dependent on the delay and also significantly influenced by the feature of the number of neurons. Numerical simulations are carried out to illustrate the main results.

  16. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    Science.gov (United States)

    Cho, Y.; Chang, C.-C.; Wang, L. V.; Zou, J.

    2016-02-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT.

  17. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    International Nuclear Information System (INIS)

    Cho, Y; Chang, C-C; Zou, J; Wang, L V

    2016-01-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT. (paper)

  18. Generalized synchronization-based multiparameter estimation in modulated time-delayed systems

    Science.gov (United States)

    Ghosh, Dibakar; Bhattacharyya, Bidyut K.

    2011-09-01

    We propose a nonlinear active observer based generalized synchronization scheme for multiparameter estimation in time-delayed systems with periodic time delay. A sufficient condition for parameter estimation is derived using Krasovskii-Lyapunov theory. The suggested tool proves to be globally and asymptotically stable by means of Krasovskii-Lyapunov method. With this effective method, parameter identification and generalized synchronization of modulated time-delayed systems with all the system parameters unknown, can be achieved simultaneously. We restrict our study for multiple parameter estimation in modulated time-delayed systems with single state variable only. Theoretical proof and numerical simulation demonstrate the effectiveness and feasibility of the proposed technique. The block diagram of electronic circuit for multiple time delay system shows that the method is easily applicable in practical communication problems.

  19. Parameter Estimation of a Delay Time Model of Wearing Parts Based on Objective Data

    Directory of Open Access Journals (Sweden)

    Y. Tang

    2015-01-01

    Full Text Available The wearing parts of a system have a very high failure frequency, making it necessary to carry out continual functional inspections and maintenance to protect the system from unscheduled downtime. This allows for the collection of a large amount of maintenance data. Taking the unique characteristics of the wearing parts into consideration, we establish their respective delay time models in ideal inspection cases and nonideal inspection cases. The model parameters are estimated entirely using the collected maintenance data. Then, a likelihood function of all renewal events is derived based on their occurring probability functions, and the model parameters are calculated with the maximum likelihood function method, which is solved by the CRM. Finally, using two wearing parts from the oil and gas drilling industry as examples—the filter element and the blowout preventer rubber core—the parameters of the distribution function of the initial failure time and the delay time for each example are estimated, and their distribution functions are obtained. Such parameter estimation based on objective data will contribute to the optimization of the reasonable function inspection interval and will also provide some theoretical models to support the integrity management of equipment or systems.

  20. Extracting the relevant delays in time series modelling

    DEFF Research Database (Denmark)

    Goutte, Cyril

    1997-01-01

    selection, and more precisely stepwise forward selection. The method is compared to other forward selection schemes, as well as to a nonparametric tests aimed at estimating the embedding dimension of time series. The final application extends these results to the efficient estimation of FIR filters on some......In this contribution, we suggest a convenient way to use generalisation error to extract the relevant delays from a time-varying process, i.e. the delays that lead to the best prediction performance. We design a generalisation-based algorithm that takes its inspiration from traditional variable...

  1. A delay differential equation model of follicle waves in women.

    Science.gov (United States)

    Panza, Nicole M; Wright, Andrew A; Selgrade, James F

    2016-01-01

    This article presents a mathematical model for hormonal regulation of the menstrual cycle which predicts the occurrence of follicle waves in normally cycling women. Several follicles of ovulatory size that develop sequentially during one menstrual cycle are referred to as follicle waves. The model consists of 13 nonlinear, delay differential equations with 51 parameters. Model simulations exhibit a unique stable periodic cycle and this menstrual cycle accurately approximates blood levels of ovarian and pituitary hormones found in the biological literature. Numerical experiments illustrate that the number of follicle waves corresponds to the number of rises in pituitary follicle stimulating hormone. Modifications of the model equations result in simulations which predict the possibility of two ovulations at different times during the same menstrual cycle and, hence, the occurrence of dizygotic twins via a phenomenon referred to as superfecundation. Sensitive parameters are identified and bifurcations in model behaviour with respect to parameter changes are discussed. Studying follicle waves may be helpful for improving female fertility and for understanding some aspects of female reproductive ageing.

  2. Dynamics of a viral infection model with delayed CTL response and immune circadian rhythm

    International Nuclear Information System (INIS)

    Bai Zhenguo; Zhou Yicang

    2012-01-01

    This paper studies the global dynamics of a viral infection model that takes into account circadian rhythm and time delay in the CTL response. It is shown that the basic reproduction numbers, R 0 and R 1 , determine the outcome of viral infection. Numerical simulations demonstrate that the changes in the amplitude of lytic component can generate a variety of dynamical patterns, ranging from simple daily oscillation to multi-day dynamics and eventually chaos, whereas time delay can alter the period of oscillation for the larger level of periodic forcing. These results can help to explain the viral oscillation behaviors, which were observed in chronic HBV and HCV infection patients.

  3. RATES AND DELAY TIMES OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Ruiter, Ashley J.; Belczynski, Krzysztof; Fryer, Chris

    2009-01-01

    We analyze the evolution of binary stars to calculate synthetic rates and delay times of the most promising Type Ia Supernovae (SNe Ia) progenitors. We present and discuss evolutionary scenarios in which a white dwarf (WD) reaches the Chandrasekhar mass and potentially explodes in a SNe Ia. We consider Double Degenerate (DDS; merger of two WDs), Single Degenerate (SDS; WD accreting from H-rich companion), and AM Canum Venaticorum (AM CVn; WD accreting from He-rich companion) scenarios. The results are presented for two different star formation histories: burst (elliptical-like galaxies) and continuous (spiral-like galaxies). It is found that delay times for the DDS in our standard model (with common envelope efficiency α CE = 1) follow a power-law distribution. For the SDS we note a wide range of delay times, while AM CVn progenitors produce a short burst of SNe Ia at early times. The DDS median delay time falls between ∼0.5 and 1 Gyr; the SDS between ∼2 and 3 Gyr; and the AM CVn between ∼0.8 and 0.6 Gyr depending on the assumed α CE . For a Milky-Way-like (MW-like) galaxy, we estimate the rates of SNe Ia arising from different progenitors as: ∼10 -4 yr -1 for the SDS and AM CVn, and ∼10 -3 yr -1 for the DDS. We point out that only the rates for two merging carbon-oxygen WDs, the only systems found in the DDS, are consistent with the observed rates for typical MW-like spirals. We also note that DDS progenitors are the dominant population in elliptical galaxies. The fact that the delay time distribution for the DDS follows a power law implies more SNe Ia (per unit mass) in young rather than in aged populations. Our results do not exclude other scenarios, but strongly indicate that the DDS is the dominant channel generating SNe Ia in spiral galaxies, at least in the framework of our adopted evolutionary models. Since it is believed that WD mergers cannot produce a thermonuclear explosion given the current understanding of accreting WDs, either the

  4. The Feedback Control Strategy of the Takagi-Sugeno Fuzzy Car-Following Model with Two Delays

    Directory of Open Access Journals (Sweden)

    Cong Zhai

    2016-01-01

    Full Text Available Considering the driver’s sensing the headway and velocity the different time-varying delays exist, respectively, and the sensitivity of drivers changes with headway and speed. Introducing the fuzzy control theory, a new fuzzy car-following model with two delays is presented, and the feedback control strategy of the new fuzzy car-following model is studied. Based on the Lyapunov function theory and linear matrix inequality (LMI approach, the sufficient condition that the existence of the fuzzy controller is given making the closed-loop system is asymptotic, stable; namely, traffic congestion phenomenon can effectively be suppressed, and the controller gain matrix can be obtained via solving linear matrix inequality. Finally, the simulation examples verify that the method which suppresses traffic congestion and reduces fuel consumption and exhaust emissions is effective.

  5. Small-Signal Modeling, Stability Analysis and Design Optimization of Single-Phase Delay-Based PLLs

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Vidal, Ana

    2016-01-01

    Generally speaking, designing single-phase phaselocked loops (PLLs) is more complicated than three-phase ones, as their implementation often involves the generation of a fictitious orthogonal signal for the frame transformation. In recent years, many approaches to generate the orthogonal signal...... these issues and explore new methods to enhance their performance. The stability analysis, control design guidelines and performance comparison with the state-of-the-art PLLs are presented as well....

  6. A continuous time Cournot duopoly with delays

    International Nuclear Information System (INIS)

    Gori, Luca; Guerrini, Luca; Sodini, Mauro

    2015-01-01

    This paper extends the classical repeated duopoly model with quantity-setting firms of Bischi et al. (1998) by assuming that production of goods is subject to some gestation lags but exchanges take place continuously in the market. The model is expressed in the form of differential equations with discrete delays. By using some recent mathematical techniques and numerical experiments, results show some dynamic phenomena that cannot be observed when delays are absent. In addition, depending on the extent of time delays and inertia, synchronisation failure can arise even in the event of homogeneous firms.

  7. Statistical and non statistical models for delayed neutron emission: applications to nuclei near A = 90

    International Nuclear Information System (INIS)

    De Oliveira, Z.M.

    1980-01-01

    A detailed analysis of the simple statistical model description for delayed neutron emission of 87 Br, 137 I, 85 As and 135 Sb has been performed. In agreement with experimental findings, structure in the #betta#-strength function is required to reproduce the envelope of the neutron spectrum from 87 Br. For 85 As and 135 Sb the model is found incapable of simultaneously reproducing envelopes of delayed neutron spectra and neutron branching ratios to excited states in the final nuclei for any choice of #betta#-strength function. The results indicate that partial widths for neutron emission are not compatible with optical-model transmission coefficients. The simple shell model with pairing is shown to qualitatively describe the main features of the #betta#-strength functions for decay of 87 Br and 91 93 95 97 Rb. It is found that the location of apparent resonances in the experimental data are in rough agreement with the location of centroids of strength calculated with this model. An extension of the shell model picture which includes the Gamow-Teller residual interaction is used to investigate decay properties of 84 86 As, 86 92 Br and 88 102 Rb. For a realistic choice of interaction strength, the half lives of these isotopes are fairly well reproduced and semiquantitative agreement with experimental #betta#-strength functions is found. Delayed neutron emission probabilities are reproduced for precursors nearer stability with systematic deviations being observed for the heavier nuclei. Contrary to the assumption of a structureless Gamow-Teller giant resonance as embodied gross theory of #betta#-decay, we find that structures in the tail of the Gamow-Teller giant resonances are expected which strongly influence the decay properties of nuclides in this region

  8. Modelling Compensation Policy for Quality and Delay Deterioration in Rail Transport

    Directory of Open Access Journals (Sweden)

    Tatiana Molkova

    2013-06-01

    Full Text Available The contribution deals with the customers’ claims on provided services during train delay in personal railway transport. There is comparison between the situation in the Czech Republic (Brno main station and Austria (Wien Westbahnhof in the contribution. Development of the compensation policy cannot be based only on customer requirements. If the railway company focuses on providing compensation for delays, it must follow its economic balance. However, as the passengers' opinion survey showed, the negative impact of delays can be reduced by providing adequate information to passengers. Based on the passengers' opinion survey, it is necessary to consider the Regulation 1371/2007/ES as the minimum of the possible and on the basis of this reasoning to compile a compensation policy. The costs associated with compensation for the delay should be divided according to the causes of the delay among the individual culprits, so that railway undertakings bear the responsibility even for delays arising from reasons that are beyond the control of the railway undertaking itself. 

  9. Single Degenerate Models for Type Ia Supernovae: Progenitor's Evolution and Nucleosynthesis Yields

    Science.gov (United States)

    Nomoto, Ken'ichi; Leung, Shing-Chi

    2018-06-01

    We review how the single degenerate models for Type Ia supernovae (SNe Ia) works. In the binary star system of a white dwarf (WD) and its non-degenerate companion star, the WD accretes either hydrogen-rich matter or helium and undergoes hydrogen and helium shell-burning. We summarize how the stability and non-linear behavior of such shell-burning depend on the accretion rate and the WD mass and how the WD blows strong wind. We identify the following evolutionary routes for the accreting WD to trigger a thermonuclear explosion. Typically, the accretion rate is quite high in the early stage and gradually decreases as a result of mass transfer. With decreasing rate, the WD evolves as follows: (1) At a rapid accretion phase, the WD increase its mass by stable H burning and blows a strong wind to keep its moderate radius. The wind is strong enough to strip a part of the companion star's envelope to control the accretion rate and forms circumstellar matter (CSM). If the WD explodes within CSM, it is observed as an "SN Ia-CSM". (X-rays emitted by the WD are absorbed by CSM.) (2) If the WD continues to accrete at a lower rate, the wind stops and an SN Ia is triggered under steady-stable H shell-burning, which is observed as a super-soft X-ray source: "SN Ia-SSXS". (3) If the accretion continues at a still lower rate, H shell-burning becomes unstable and many flashes recur. The WD undergoes recurrent nova (RN) whose mass ejection is smaller than the accreted matter. Then the WD evolves to an "SN Ia-RN". (4) If the companion is a He star (or a He WD), the accretion of He can trigger He and C double detonations at the sub-Chandrasekhar mass or the WD grows to the Chandrasekhar mass while producing a He-wind: "SN Ia-He CSM". (5) If the accreting WD rotates quite rapidly, the WD mass can exceed the Chandrasekhar mass of the spherical WD, which delays the trigger of an SN Ia. After angular momentum is lost from the WD, the (super-Chandra) WD contracts to become a delayed SN Ia

  10. Hopf bifurcation in a dynamic IS-LM model with time delay

    International Nuclear Information System (INIS)

    Neamtu, Mihaela; Opris, Dumitru; Chilarescu, Constantin

    2007-01-01

    The paper investigates the impact of delayed tax revenues on the fiscal policy out-comes. Choosing the delay as a bifurcation parameter we study the direction and the stability of the bifurcating periodic solutions. We show when the system is stable with respect to the delay. Some numerical examples are given to confirm the theoretical results

  11. GPS data processing of networks with mixed single- and dual-frequency receivers for deformation monitoring

    Science.gov (United States)

    Zou, X.; Deng, Z.; Ge, M.; Dick, G.; Jiang, W.; Liu, J.

    2010-07-01

    In order to obtain crustal deformations of higher spatial resolution, existing GPS networks must be densified. This densification can be carried out using single-frequency receivers at moderate costs. However, ionospheric delay handling is required in the data processing. We adapt the Satellite-specific Epoch-differenced Ionospheric Delay model (SEID) for GPS networks with mixed single- and dual-frequency receivers. The SEID model is modified to utilize the observations from the three nearest dual-frequency reference stations in order to avoid contaminations from more remote stations. As data of only three stations are used, an efficient missing data constructing approach with polynomial fitting is implemented to minimize data losses. Data from large scale reference networks extended with single-frequency receivers can now be processed, based on the adapted SEID model. A new data processing scheme is developed in order to make use of existing GPS data processing software packages without any modifications. This processing scheme is evaluated using a sub-network of the German SAPOS network. The results verify that the new scheme provides an efficient way to densify existing GPS networks with single-frequency receivers.

  12. Assessing Model Characterization of Single Source ...

    Science.gov (United States)

    Aircraft measurements made downwind from specific coal fired power plants during the 2013 Southeast Nexus field campaign provide a unique opportunity to evaluate single source photochemical model predictions of both O3 and secondary PM2.5 species. The model did well at predicting downwind plume placement. The model shows similar patterns of an increasing fraction of PM2.5 sulfate ion to the sum of SO2 and PM2.5 sulfate ion by distance from the source compared with ambient based estimates. The model was less consistent in capturing downwind ambient based trends in conversion of NOX to NOY from these sources. Source sensitivity approaches capture near-source O3 titration by fresh NO emissions, in particular subgrid plume treatment. However, capturing this near-source chemical feature did not translate into better downwind peak estimates of single source O3 impacts. The model estimated O3 production from these sources but often was lower than ambient based source production. The downwind transect ambient measurements, in particular secondary PM2.5 and O3, have some level of contribution from other sources which makes direct comparison with model source contribution challenging. Model source attribution results suggest contribution to secondary pollutants from multiple sources even where primary pollutants indicate the presence of a single source. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, deci

  13. Chaos control in delayed chaotic systems via sliding mode based delayed feedback

    Energy Technology Data Exchange (ETDEWEB)

    Vasegh, Nastaran [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyed Khandan Bridge, Shariati St. 16314, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of)], E-mail: vasegh@eetd.kntu.ac.ir; Sedigh, Ali Khaki [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyed Khandan Bridge, Shariati St. 16314, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of)

    2009-04-15

    This paper investigates chaos control for scalar delayed chaotic systems using sliding mode control strategy. Sliding surface design is based on delayed feedback controller. It is shown that the proposed controller can achieve stability for an arbitrary unstable fixed point (UPF) or unstable periodic orbit (UPO) with arbitrary period. The chaotic system used in this study to illustrate the theoretical concepts is the well known Mackey-Glass model. Simulation results show the effectiveness of the designed nonlinear sliding mode controller.

  14. Chaos control in delayed chaotic systems via sliding mode based delayed feedback

    International Nuclear Information System (INIS)

    Vasegh, Nastaran; Sedigh, Ali Khaki

    2009-01-01

    This paper investigates chaos control for scalar delayed chaotic systems using sliding mode control strategy. Sliding surface design is based on delayed feedback controller. It is shown that the proposed controller can achieve stability for an arbitrary unstable fixed point (UPF) or unstable periodic orbit (UPO) with arbitrary period. The chaotic system used in this study to illustrate the theoretical concepts is the well known Mackey-Glass model. Simulation results show the effectiveness of the designed nonlinear sliding mode controller.

  15. Delay functions in trip assignment for transport planning process

    Science.gov (United States)

    Leong, Lee Vien

    2017-10-01

    In transportation planning process, volume-delay and turn-penalty functions are the functions needed in traffic assignment to determine travel time on road network links. Volume-delay function is the delay function describing speed-flow relationship while turn-penalty function is the delay function associated to making a turn at intersection. The volume-delay function used in this study is the revised Bureau of Public Roads (BPR) function with the constant parameters, α and β values of 0.8298 and 3.361 while the turn-penalty functions for signalized intersection were developed based on uniform, random and overflow delay models. Parameters such as green time, cycle time and saturation flow were used in the development of turn-penalty functions. In order to assess the accuracy of the delay functions, road network in areas of Nibong Tebal, Penang and Parit Buntar, Perak was developed and modelled using transportation demand forecasting software. In order to calibrate the models, phase times and traffic volumes at fourteen signalised intersections within the study area were collected during morning and evening peak hours. The prediction of assigned volumes using the revised BPR function and the developed turn-penalty functions show close agreement to actual recorded traffic volume with the lowest percentage of accuracy, 80.08% and the highest, 93.04% for the morning peak model. As for the evening peak model, they were 75.59% and 95.33% respectively for lowest and highest percentage of accuracy. As for the yield left-turn lanes, the lowest percentage of accuracy obtained for the morning and evening peak models were 60.94% and 69.74% respectively while the highest percentage of accuracy obtained for both models were 100%. Therefore, can be concluded that the development and utilisation of delay functions based on local road conditions are important as localised delay functions can produce better estimate of link travel times and hence better planning for future

  16. Factors affecting delays in first trimester pregnancy termination services in New Zealand.

    Science.gov (United States)

    Silva, Martha; McNeill, Rob; Ashton, Toni

    2011-04-01

    To identify the factors affecting the timeliness of services in first trimester abortion service in New Zealand. Primary data were collected from all patients attending nine abortion clinics between February and May 2009. The outcome measured was delay between the first visit with a referring doctor and the date of the abortion procedure. Patient records (n=2,950) were audited to determine the timeline between the first point of entry to the health system and the date of abortion. Women were also invited to fill out a questionnaire identifying personal factors affecting access to services (n=1,086, response rate = 36.8%). Women who went to private clinic had a significantly shorter delay compared to public clinics. Controlling for clinic type, women who went to clinics that offered medical abortions or clinics that offered single day services experienced less delay. Also, women who had more than one visit with their referring doctor experienced a greater delay than those who had a single visit. The earlier in pregnancy women sought services the longer the delay. Women's decision-making did not have a significant effect on delay. Several clinic level and systemic factors are significantly associated with delay in first trimester abortion services. In order to ensure the best physical and emotional outcomes, timeliness of services must improve. © 2011 The Authors. ANZJPH © 2011 Public Health Association of Australia.

  17. Chaos in the delay logistic equation with discontinuous delays

    International Nuclear Information System (INIS)

    Sen, Ayan; Mukherjee, Debasis

    2009-01-01

    This paper analyzes a delay logistic equation which models a feedback control problem. Interval map associated to the system is derived. By calculating Lyapunov exponent, we indicate stable orbit and chaotic phenomenon respectively. The results are verified through computer simulation. We identify the parameter which controls the dynamics.

  18. The diagnostic value of adding dynamic scintigraphy to standard delayed planar imaging for sentinel node identification in melanoma patients

    DEFF Research Database (Denmark)

    Nielsen, Marie Kristina Rue; Chakera, Annette H; Hesse, Birger

    2011-01-01

    The aim of this study was to compare early dynamic imaging combined with delayed static imaging and single photon emission computed tomography (SPECT)/CT with delayed, planar, static imaging alone for sentinel node (SN) identification in melanoma patients.......The aim of this study was to compare early dynamic imaging combined with delayed static imaging and single photon emission computed tomography (SPECT)/CT with delayed, planar, static imaging alone for sentinel node (SN) identification in melanoma patients....

  19. Exploitation of Digital Filters to Advance the Single-Phase T/4 Delay PLL System

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2016-01-01

    will violate this design rule and it can become a major challenge for digital controllers. To deal with the above issue, this paper first exploits a virtual unit delay (z_v^-1) to emulate the viable sampling behavior in practical digital signal processors with a fixed sampling rate. This exploitation......With the development of digital signal processing technologies, control and monitoring of power electronics conversion systems have been evolving to become fully digital. As the basic element in the design and analysis phase of digital controllers or filters, a number of unit delays (z^-1) have...... been employed, e.g., in a cascaded structure. Practically, the number of unit delays is designed as an integer, which is related to the sampling frequency (e.g., 50 Hz). More common, the sampling frequency is fixed during operation for simplicity and design. Hence, any disturbance in the ac signal...

  20. Penalty model for delay of bidding section construction period in South-to-North Water Diversion Eastern Route Project from perspective of programs

    Directory of Open Access Journals (Sweden)

    Jing-chun Feng

    2012-09-01

    Full Text Available According to the multi-project and program management theory, this paper analyzes the program generation principle and establishes a program based on progress goals. On the basis of the present situation of calculation of penalty for delay of the bidding section construction period with the critical path method, we studied the effects of contractor-induced delay of the bidding section construction period in detail, including the effects on the construction period of the bidding section itself, the earliest start times of the next bidding section and other subsequent bidding sections, and the construction period of the program, and then constructed a penalty model for delay of the bidding section construction period from the perspective of programs. Using the penalty model, we conducted a practical analysis of penalty for delay of the construction period of the Baoying station program in the South-to-North Water Diversion Project. The model can help determine the amount of penalty for delay of the construction period in bidding sections scientifically and reasonably.

  1. Use of one delayed-neutron precursor group in transient analysis

    International Nuclear Information System (INIS)

    Diamond, D.J.

    1983-01-01

    In most reactor dynamics calculations six groups of delayed-neutron precursors are usually accounted for. However, under certain circumstances it may be advantageous to simplify the calculation and utilize a single delayed-neutron group. The motivation for going to one precursor group is economy. For LWR transient codes that use point kinetics the equations are solved very rapidly and six precursor groups should always be used. However, codes with spatially dependent neutron kinetics are very long running and the use of one precursor group may save computer costs and not impair the accuracy of the results significantly. Furthermore, in some codes, the elimation of five presursor groups makes additional memory available which may be used to give a net increase in the accuracy of the calculations, e.g., by allowing for an increase in mesh density. In order to use one delayed neutron precursor group it is necessary to derive a single decay constant, 6 lambda-, which, along with the total (or one group) delayed neutron fraction β = Σ/sub i = 1/β/sub i/, will adequately describe the transeint precursor behavior. The present summary explains how a recommendation for lambda- was derived

  2. Delay Induced Hopf Bifurcation of an Epidemic Model with Graded Infection Rates for Internet Worms

    Directory of Open Access Journals (Sweden)

    Tao Zhao

    2017-01-01

    Full Text Available A delayed SEIQRS worm propagation model with different infection rates for the exposed computers and the infectious computers is investigated in this paper. The results are given in terms of the local stability and Hopf bifurcation. Sufficient conditions for the local stability and the existence of Hopf bifurcation are obtained by using eigenvalue method and choosing the delay as the bifurcation parameter. In particular, the direction and the stability of the Hopf bifurcation are investigated by means of the normal form theory and center manifold theorem. Finally, a numerical example is also presented to support the obtained theoretical results.

  3. Influence of distributed delays on the dynamics of a generalized immune system cancerous cells interactions model

    Science.gov (United States)

    Piotrowska, M. J.; Bodnar, M.

    2018-01-01

    We present a generalisation of the mathematical models describing the interactions between the immune system and tumour cells which takes into account distributed time delays. For the analytical study we do not assume any particular form of the stimulus function describing the immune system reaction to presence of tumour cells but we only postulate its general properties. We analyse basic mathematical properties of the considered model such as existence and uniqueness of the solutions. Next, we discuss the existence of the stationary solutions and analytically investigate their stability depending on the forms of considered probability densities that is: Erlang, triangular and uniform probability densities separated or not from zero. Particular instability results are obtained for a general type of probability densities. Our results are compared with those for the model with discrete delays know from the literature. In addition, for each considered type of probability density, the model is fitted to the experimental data for the mice B-cell lymphoma showing mean square errors at the same comparable level. For estimated sets of parameters we discuss possibility of stabilisation of the tumour dormant steady state. Instability of this steady state results in uncontrolled tumour growth. In order to perform numerical simulation, following the idea of linear chain trick, we derive numerical procedures that allow us to solve systems with considered probability densities using standard algorithm for ordinary differential equations or differential equations with discrete delays.

  4. Travelling wave solutions in delayed cooperative systems

    International Nuclear Information System (INIS)

    Li, Bingtuan; Zhang, Liang

    2011-01-01

    We establish the existence of travelling wave solutions for delayed cooperative recursions that are allowed to have more than two equilibria. We define an important extended real number that is used to determine the speeds of travelling wave solutions. The results can be applied to a large class of delayed cooperative reaction–diffusion models. We show that for a delayed Lotka–Volterra reaction–diffusion competition model, there exists a finite positive number c * + that can be characterized as the slowest speed of travelling wave solutions connecting two mono-culture equilibria or connecting a mono-culture with the coexistence equilibrium

  5. Variance Function Partially Linear Single-Index Models1.

    Science.gov (United States)

    Lian, Heng; Liang, Hua; Carroll, Raymond J

    2015-01-01

    We consider heteroscedastic regression models where the mean function is a partially linear single index model and the variance function depends upon a generalized partially linear single index model. We do not insist that the variance function depend only upon the mean function, as happens in the classical generalized partially linear single index model. We develop efficient and practical estimation methods for the variance function and for the mean function. Asymptotic theory for the parametric and nonparametric parts of the model is developed. Simulations illustrate the results. An empirical example involving ozone levels is used to further illustrate the results, and is shown to be a case where the variance function does not depend upon the mean function.

  6. Dynamic Analysis for a Kaldor–Kalecki Model of Business Cycle with Time Delay and Diffusion Effect

    Directory of Open Access Journals (Sweden)

    Wenjie Hu

    2018-01-01

    Full Text Available The dynamics behaviors of Kaldor–Kalecki business cycle model with diffusion effect and time delay under the Neumann boundary conditions are investigated. First the conditions of time-independent and time-dependent stability are investigated. Then, we find that the time delay can give rise to the Hopf bifurcation when the time delay passes a critical value. Moreover, the normal form of Hopf bifurcations is obtained by using the center manifold theorem and normal form theory of the partial differential equation, which can determine the bifurcation direction and the stability of the periodic solutions. Finally, numerical results not only validate the obtained theorems, but also show that the diffusion coefficients play a key role in the spatial pattern. With the diffusion coefficients increasing, different patterns appear.

  7. Equivalence of two models in single-phase multicomponent flow simulations

    KAUST Repository

    Wu, Yuanqing

    2016-02-28

    In this work, two models to simulate the single-phase multicomponent flow in reservoirs are introduced: single-phase multicomponent flow model and two-phase compositional flow model. Because the single-phase multicomponent flow is a special case of the two-phase compositional flow, the two-phase compositional flow model can also simulate the case. We compare and analyze the two models when simulating the single-phase multicomponent flow, and then demonstrate the equivalence of the two models mathematically. An experiment is also carried out to verify the equivalence of the two models.

  8. Equivalence of two models in single-phase multicomponent flow simulations

    KAUST Repository

    Wu, Yuanqing; Sun, Shuyu

    2016-01-01

    In this work, two models to simulate the single-phase multicomponent flow in reservoirs are introduced: single-phase multicomponent flow model and two-phase compositional flow model. Because the single-phase multicomponent flow is a special case of the two-phase compositional flow, the two-phase compositional flow model can also simulate the case. We compare and analyze the two models when simulating the single-phase multicomponent flow, and then demonstrate the equivalence of the two models mathematically. An experiment is also carried out to verify the equivalence of the two models.

  9. A multi-component and multi-failure mode inspection model based on the delay time concept

    International Nuclear Information System (INIS)

    Wang Wenbin; Banjevic, Dragan; Pecht, Michael

    2010-01-01

    The delay time concept and the techniques developed for modelling and optimising plant inspection practices have been reported in many papers and case studies. For a system comprised of many components and subject to many different failure modes, one of the most convenient ways to model the inspection and failure processes is to use a stochastic point process for defect arrivals and a common delay time distribution for the duration between defect the arrival and failure of all defects. This is an approximation, but has been proven to be valid when the number of components is large. However, for a system with just a few key components and subject to few major failure modes, the approximation may be poor. In this paper, a model is developed to address this situation, where each component and failure mode is modelled individually and then pooled together to form the system inspection model. Since inspections are usually scheduled for the whole system rather than individual components, we then formulate the inspection model when the time to the next inspection from the point of a component failure renewal is random. This imposes some complication to the model, and an asymptotic solution was found. Simulation algorithms have also been proposed as a comparison to the analytical results. A numerical example is presented to demonstrate the model.

  10. The role of cooperation and parasites in non-linear replicator delayed extinctions

    International Nuclear Information System (INIS)

    Sardanyes, Josep; Sole, Ricard V.

    2007-01-01

    In the present work we study the role of cooperation and parasites on extinction delayed transitions for self-replicating species with catalytic activity. We first use a one-dimensional continuous equation to study the dynamics of both single autocatalytic replicator and symmetric two-member hypercycles, where two well-defined phases involving survival and extinction of replicators are shown to exist. Extinction dynamics is analyzed numerically and analytically and under both deterministic and stochastic scenarios. A ghost is also found for the single autocatalytic replicator and for the asymmetric hypercycle, with an extinction time delay following the square-root scaling law near bifurcation threshold. We find that the extinction delay is longer for the two-member hypercycle than for the single autocatalytic species, indicating that cooperation among replicators might involve to spend a longer time in the bottle-neck region of the ghost. The asymmetry of the network is shown to prolong the extinction time. We also show that an attached parasite decreases the time spent in the bottle-neck region of the ghost, thus accelerating extinction in these systems of replicators. Nevertheless the effect of the parasite is not so important when replicators catalytically cooperate, being the two-member hypercycle less sensitive to the parasite than the autocatalytic species. Here the hypercycle asymmetry can also significantly increase the delaying capacity. These features make the hypercycle to undergo a longer extinction delay, thus increasing the memory effect of the ghost. We finally explore the role of the ghost in fluctuating media, where the extinction delayed transition is shown to increase the survival probability of cooperating catalytic species

  11. Investigation of the network delay on Profibus-DP based network

    OpenAIRE

    Yılmaz, C.; Gürdal, O.; Sayan, H.H.

    2008-01-01

    The mathematical model of the network-induced delay control systems (NDCS) is given. Also the role of the NDCS’s components such as controller, sensor and network environment on the network-induced delay are included in the mathematical model of the system. The network delay is investigated on Profibus-DP based network application and experimental results obtained are presented graphically. The experimental results obtained show that the network induced delay is randomly changed according to ...

  12. Diesel ignition delay and lift-off length through different methodologies using a multi-hole injector

    International Nuclear Information System (INIS)

    Payri, Raúl; Salvador, F.J.; Manin, Julien; Viera, Alberto

    2016-01-01

    Highlights: • Lift-off length and ignition delay are measured through different methodologies. • Oxygen concentration, temperature and injection pressure sweeps are performed. • A multi hole injector is compared with an equivalent single hole injector. • Multi hole injector has shorter ignition delay and lift-off length than single hole. • Empirical correlations were calculated for an analytical description of the results. - Abstract: In this paper, lift-off length has been measured via both broadband luminosity and OH chemiluminescence. In addition, ignition delay has also been measured via broadband chemiluminescence and Schlieren imaging. A 3 orifice injector from the Engine Combustion Network (ECN) set, referred to as Spray B, and a single component fuel (n-dodecane) was used. Experiments were carried out in a constant flow and pressure facility, that allowed to reproduce engine-like thermodynamic conditions, and enabled the study to be performed over a wide range of test conditions with a very high repetition rate. Data obtained was also compared with results from a single orifice injector also from the Engine Combustion Network, with analog orifice characteristics (90 μm outlet diameter and convergent shape) and technology as the injector used. Results showed that there is good correlation between the ignition delay measured through both methodologies, that oxygen concentration and injection pressure plays a minor role in the ignition delay, being ambient temperature and density the parameters with the highest influence. Lift-off length measurements showed significant differences between methodologies. Minor deviation was observed between injectors with different nozzle geometry (seat inclination angle), due to temperature variations along the chamber, highlighting the importance of temperature distribution along combustion vessels. Empirical correlations for lift-off and ignition delay were calculated, underlining the effect of the conditions on

  13. Psychosexual therapy for delayed ejaculation based on the Sexual Tipping Point model

    Science.gov (United States)

    2016-01-01

    The Sexual Tipping Point® (STP) model is an integrated approach to the etiology, diagnosis and treatment of men with delayed ejaculation (DE), including all subtypes manifesting ejaculatory delay or absence [registered trademark owned by the MAP Educational Fund, a 501(c)(3) public charity]. A single pathogenetic pathway does not exist for sexual disorders generally and that is also true for DE specifically. Men with DE have various bio-psychosocial-behavioral & cultural predisposing, precipitating, maintaining, and contextual factors which trigger, reinforce, or worsen the probability of DE occurring. Regardless of the degree of organic etiology present, DE is exacerbated by insufficient stimulation: an inadequate combination of “friction and fantasy”. High frequency negative thoughts may neutralize erotic cognitions (fantasy) and subsequently delay, ameliorate, or inhibit ejaculation, while partner stimulation (friction) may prove unsatisfying. Assessment requires a thorough sexual history including inquiry into masturbatory methods. Many men with DE engage in an idiosyncratic masturbatory style, defined as a masturbation technique not easily duplicated by the partner’s hand, mouth, or vagina. The clinician’s most valuable diagnostic tool is a focused sex history (sex status). Differentiate DE from other sexual problems and review the conditions under which the man can ejaculate. Perceived partner attractiveness, the use of fantasy during sex, anxiety-surrounding coitus and masturbatory patterns require meticulous exploration. Identify important DE causes by juxtaposing an awareness of his cognitions and the sexual stimulation experienced during masturbation, versus a partnered experience. Assist the man in identifying behaviors that enhance immersion in excitation and minimize inhibiting thoughts, in order to reach ejaculation in his preferred manner. Discontinuing, reducing or altering masturbation is often required, which evokes patient resistance

  14. Bifurcation Analysis for an SEIRS-V Model with Delays on the Transmission of Worms in a Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Zizhen Zhang

    2017-01-01

    Full Text Available Hopf bifurcation for an SEIRS-V model with delays on the transmission of worms in a wireless sensor network is investigated. We focus on existence of the Hopf bifurcation by regarding the diverse delay as a bifurcation parameter. The results show that propagation of worms in the wireless sensor network can be controlled when the delay is suitably small under some certain conditions. Then, we study properties of the Hopf bifurcation by using the normal form theory and center manifold theorem. Finally, we give a numerical example to support the theoretical results.

  15. The Effects of Test Trial and Processing Level on Immediate and Delayed Retention

    OpenAIRE

    Chang, Sau Hou

    2017-01-01

    The purpose of the present study was to investigate the effects of test trial and processing level on immediate and delayed retention. A 2 × 2 × 2 mixed ANOVAs was used with two between-subject factors of test trial (single test, repeated test) and processing level (shallow, deep), and one within-subject factor of final recall (immediate, delayed). Seventy-six college students were randomly assigned first to the single test (studied the stimulus words three times and took one free-recall test...

  16. Improved Delayed-Neutron Spectroscopy Using Trapped Ions

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Eric

    2018-04-24

    The neutrons emitted following the  decay of fission fragments (known as delayed neutrons because they are emitted after fission on a timescale of the -decay half-lives) play a crucial role in reactor performance and control. Reviews of delayed-neutron properties highlight the need for high-quality data for a wide variety of delayed-neutron emitters to better understand the timedependence and energy spectrum of the neutrons as these properties are essential for a detailed understanding of reactor kinetics needed for reactor safety and to understand the behavior of these reactors under various accident and component-failure scenarios. For fast breeder reactors, criticality calculations require accurate delayed-neutron energy spectra and approximations that are acceptable for light-water reactors such as assuming the delayed-neutron and fission-neutron energy spectra are identical are not acceptable and improved -delayed neutron data is needed for safety and accident analyses for these reactors. With improved nuclear data, the delayedneutrons flux and energy spectrum could be calculated from the contributions from individual isotopes and therefore could be accurately modeled for any fuel-cycle concept, actinide mix, or irradiation history. High-quality -delayed neutron measurements are also critical to constrain modern nuclear-structure calculations and empirical models that predict the decay properties for nuclei for which no data exists and improve the accuracy and flexibility of the existing empirical descriptions of delayed neutrons from fission such as the six-group representation

  17. H∞ Consensus for Multiagent Systems with Heterogeneous Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Beibei Wang

    2013-01-01

    Full Text Available We apply the linear matrix inequality method to consensus and H∞ consensus problems of the single integrator multiagent system with heterogeneous delays in directed networks. To overcome the difficulty caused by heterogeneous time-varying delays, we rewrite the multiagent system into a partially reduced-order system and an integral system. As a result, a particular Lyapunov function is constructed to derive sufficient conditions for consensus of multiagent systems with fixed (switched topologies. We also apply this method to the H∞ consensus of multiagent systems with disturbances and heterogeneous delays. Numerical examples are given to illustrate the theoretical results.

  18. H∞ Control for a Networked Control Model of Systems with Two Additive Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Hanyong Shao

    2014-01-01

    Full Text Available This paper is concerned with H∞ control for a networked control model of systems with two additive time-varying delays. A new Lyapunov functional is constructed to make full use of the information of the delays, and for the derivative of the Lyapunov functional a novel technique is employed to compute a tighter upper bound, which is dependent on the two time-varying delays instead of the upper bounds of them. Then the convex polyhedron method is proposed to check the upper bound of the derivative of the Lyapunov functional. The resulting stability criteria have fewer matrix variables but less conservatism than some existing ones. The stability criteria are applied to designing a state feedback controller, which guarantees that the closed-loop system is asymptotically stable with a prescribed H∞ disturbance attenuation level. Finally examples are given to show the advantages of the stability criteria and the effectiveness of the proposed control method.

  19. Delayed contrast enhancement imaging of a murine model for ischemia reperfusion with carbon nanotube micro-CT.

    Directory of Open Access Journals (Sweden)

    Laurel M Burk

    Full Text Available We aim to demonstrate the application of free-breathing prospectively gated carbon nanotube (CNT micro-CT by evaluating a myocardial infarction model with a delayed contrast enhancement technique. Evaluation of murine cardiac models using micro-CT imaging has historically been limited by extreme imaging requirements. Newly-developed CNT-based x-ray sources offer precise temporal resolution, allowing elimination of physiological motion through prospective gating. Using free-breathing, cardiac-gated CNT micro-CT, a myocardial infarction model can be studied non-invasively and with high resolution. Myocardial infarction was induced in eight male C57BL/6 mice aged 8-12 weeks. The ischemia reperfusion model was achieved by surgically occluding the LAD artery for 30 minutes followed by 24 hours of reperfusion. Tail vein catheters were placed for contrast administration. Iohexol 300 mgI/mL was administered followed by images obtained in diastole. Iodinated lipid blood pool contrast agent was then administered, followed with images at systole and diastole. Respiratory and cardiac signals were monitored externally and used to gate the scans of free-breathing subjects. Seven control animals were scanned using the same imaging protocol. After imaging, the heart was harvested, cut into 1mm slices and stained with TTC. Post-processing analysis was performed using ITK-Snap and MATLAB. All animals demonstrated obvious delayed contrast enhancement in the left ventricular wall following the Iohexol injection. The blood pool contrast agent revealed significant changes in cardiac function quantified by 3-D volume ejection fractions. All subjects demonstrated areas of myocardial infarct in the LAD distribution on both TTC staining and micro-CT imaging. The CNT micro-CT system aids straightforward, free-breathing, prospectively-gated 3-D murine cardiac imaging. Delayed contrast enhancement allows identification of infarcted myocardium after a myocardial ischemic

  20. The delay function in finite difference models for nuclear channels thermo-hydraulic transients

    International Nuclear Information System (INIS)

    Agazzi, A.

    1977-01-01

    The study of the thermo-hydraulic transients in a nuclear reactor core often requires a bi- or tri-dimensional mathematical simulation of a reactor channel. The equations involved are generally solved by means of finite-difference methods. The determination of the spatial mesh-width and the time interval is strongly conditioned by the necessity of a good accuracy in the description of the delay function which defines the transfer of thermal perturbations along the cooling channel. In this paper the effects of both space and time discretization on the delay function are considered and for the classical cases of inlet temperature step and ramp universal functions and diagrams are given in order to make possible the determination of optimal spatial mesh-width and time interval, once the requested accuracy of the model is fixed in advance

  1. Optimal harvesting of a stochastic delay tri-trophic food-chain model with Lévy jumps

    Science.gov (United States)

    Qiu, Hong; Deng, Wenmin

    2018-02-01

    In this paper, the optimal harvesting of a stochastic delay tri-trophic food-chain model with Lévy jumps is considered. We introduce two kinds of environmental perturbations in this model. One is called white noise which is continuous and is described by a stochastic integral with respect to the standard Brownian motion. And the other one is jumping noise which is modeled by a Lévy process. Under some mild assumptions, the critical values between extinction and persistent in the mean of each species are established. The sufficient and necessary criteria for the existence of optimal harvesting policy are established and the optimal harvesting effort and the maximum of sustainable yield are also obtained. We utilize the ergodic method to discuss the optimal harvesting problem. The results show that white noises and Lévy noises significantly affect the optimal harvesting policy while time delays is harmless for the optimal harvesting strategy in some cases. At last, some numerical examples are introduced to show the validity of our results.

  2. Experimental Evaluation of Novel Master-Slave Configurations for Position Control under Random Network Delay and Variable Load for Teleoperation

    Directory of Open Access Journals (Sweden)

    Ahmet Kuzu

    2014-01-01

    Full Text Available This paper proposes two novel master-slave configurations that provide improvements in both control and communication aspects of teleoperation systems to achieve an overall improved performance in position control. The proposed novel master-slave configurations integrate modular control and communication approaches, consisting of a delay regulator to address problems related to variable network delay common to such systems, and a model tracking control that runs on the slave side for the compensation of uncertainties and model mismatch on the slave side. One of the configurations uses a sliding mode observer and the other one uses a modified Smith predictor scheme on the master side to ensure position transparency between the master and slave, while reference tracking of the slave is ensured by a proportional-differentiator type controller in both configurations. Experiments conducted for the networked position control of a single-link arm under system uncertainties and randomly varying network delays demonstrate significant performance improvements with both configurations over the past literature.

  3. Bifurcation analysis of a delay reaction-diffusion malware propagation model with feedback control

    Science.gov (United States)

    Zhu, Linhe; Zhao, Hongyong; Wang, Xiaoming

    2015-05-01

    With the rapid development of network information technology, information networks security has become a very critical issue in our work and daily life. This paper attempts to develop a delay reaction-diffusion model with a state feedback controller to describe the process of malware propagation in mobile wireless sensor networks (MWSNs). By analyzing the stability and Hopf bifurcation, we show that the state feedback method can successfully be used to control unstable steady states or periodic oscillations. Moreover, formulas for determining the properties of the bifurcating periodic oscillations are derived by applying the normal form method and center manifold theorem. Finally, we conduct extensive simulations on large-scale MWSNs to evaluate the proposed model. Numerical evidences show that the linear term of the controller is enough to delay the onset of the Hopf bifurcation and the properties of the bifurcation can be regulated to achieve some desirable behaviors by choosing the appropriate higher terms of the controller. Furthermore, we obtain that the spatial-temporal dynamic characteristics of malware propagation are closely related to the rate constant for nodes leaving the infective class for recovered class and the mobile behavior of nodes.

  4. Super-transient scaling in time-delay autonomous Boolean network motifs

    Energy Technology Data Exchange (ETDEWEB)

    D' Huys, Otti, E-mail: otti.dhuys@phy.duke.edu; Haynes, Nicholas D. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Lohmann, Johannes [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Gauthier, Daniel J. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2016-09-15

    Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.

  5. Estimation of Individual Cylinder Air-Fuel Ratio in Gasoline Engine with Output Delay

    Directory of Open Access Journals (Sweden)

    Changhui Wang

    2016-01-01

    Full Text Available The estimation of the individual cylinder air-fuel ratio (AFR with a single universal exhaust gas oxygen (UEGO sensor installed in the exhaust pipe is an important issue for the cylinder-to-cylinder AFR balancing control, which can provide high-quality torque generation and reduce emissions in multicylinder engine. In this paper, the system dynamic for the gas in exhaust pipe including the gas mixing, gas transport, and sensor dynamics is described as an output delay system, and a new method using the output delay system observer is developed to estimate the individual cylinder AFR. With the AFR at confluence point augmented as a system state, an observer for the augmented discrete system with output delay is designed to estimate the AFR at confluence point. Using the gas mixing model, a method with the designed observer to estimate the individual cylinder AFR is presented. The validity of the proposed method is verified by the simulation results from a spark ignition gasoline engine from engine software enDYNA by Tesis.

  6. Synchronization of Markovian jumping stochastic complex networks with distributed time delays and probabilistic interval discrete time-varying delays

    International Nuclear Information System (INIS)

    Li Hongjie; Yue Dong

    2010-01-01

    The paper investigates the synchronization stability problem for a class of complex dynamical networks with Markovian jumping parameters and mixed time delays. The complex networks consist of m modes and the networks switch from one mode to another according to a Markovian chain with known transition probability. The mixed time delays are composed of discrete and distributed delays, the discrete time delay is assumed to be random and its probability distribution is known a priori. In terms of the probability distribution of the delays, the new type of system model with probability-distribution-dependent parameter matrices is proposed. Based on the stochastic analysis techniques and the properties of the Kronecker product, delay-dependent synchronization stability criteria in the mean square are derived in the form of linear matrix inequalities which can be readily solved by using the LMI toolbox in MATLAB, the solvability of derived conditions depends on not only the size of the delay, but also the probability of the delay-taking values in some intervals. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.

  7. System dynamics modeling in the evaluation of delays of care in ST-segment elevation myocardial infarction patients within a tiered health system.

    Directory of Open Access Journals (Sweden)

    Luciano de Andrade

    Full Text Available Mortality rates amongst ST segment elevation myocardial infarction (STEMI patients remain high, especially in developing countries. The aim of this study was to evaluate the factors related with delays in the treatment of STEMI patients to support a strategic plan toward structural and personnel modifications in a primary hospital aligning its process with international guidelines.The study was conducted in a primary hospital localized in Foz do Iguaçu, Brazil. We utilized a qualitative and quantitative integrated analysis including on-site observations, interviews, medical records analysis, Qualitative Comparative Analysis (QCA and System Dynamics Modeling (SD. Main cause of delays were categorized into three themes: a professional, b equipment and c transportation logistics. QCA analysis confirmed four main stages of delay to STEMI patient's care in relation to the 'Door-in-Door-out' time at the primary hospital. These stages and their average delays in minutes were: a First Medical Contact (From Door-In to the first contact with the nurse and/or physician: 7 minutes; b Electrocardiogram acquisition and review by a physician: 28 minutes; c ECG transmission and Percutaneous Coronary Intervention Center team feedback time: 76 minutes; and d Patient's Transfer Waiting Time: 78 minutes. SD baseline model confirmed the system's behavior with all occurring delays and the need of improvements. Moreover, after model validation and sensitivity analysis, results suggested that an overall improvement of 40% to 50% in each of these identified stages would reduce the delay.This evaluation suggests that investment in health personnel training, diminution of bureaucracy, and management of guidelines might lead to important improvements decreasing the delay of STEMI patients' care. In addition, this work provides evidence that SD modeling may highlight areas where health system managers can implement and evaluate the necessary changes in order to improve the

  8. Impact of delayed information in sub-second complex systems

    Directory of Open Access Journals (Sweden)

    Pedro D. Manrique

    Full Text Available What happens when you slow down the delivery of information in large-scale complex systems that operate faster than the blink of an eye? This question just adopted immediate commercial, legal and political importance following U.S. regulators’ decision to allow an intentional 350 microsecond delay to be added in the ultrafast network of financial exchanges. However there is still no scientific understanding available to policymakers of the potential system-wide impact of such delays. Here we take a first step in addressing this question using a minimal model of a population of competing, heterogeneous, adaptive agents which has previously been shown to produce similar statistical features to real markets. We find that while certain extreme system-level behaviors can be prevented by such delays, the duration of others is increased. This leads to a highly non-trivial relationship between delays and system-wide instabilities which warrants deeper empirical investigation. The generic nature of our model suggests there should be a fairly wide class of complex systems where such delay-driven extreme behaviors can arise, e.g. sub-second delays in brain function possibly impacting individuals’ behavior, and sub-second delays in navigational systems potentially impacting the safety of driverless vehicles. Keywords: Ultra-fast networks, Temporal perturbation, Competition, Modeling

  9. A mathematical model for the control of carrier-dependent infectious diseases with direct transmission and time delay

    International Nuclear Information System (INIS)

    Misra, A.K.; Mishra, S.N.; Pathak, A.L.; Srivastava, P.K.; Chandra, Peeyush

    2013-01-01

    In this paper, a non-linear delay mathematical model for the control of carrier-dependent infectious diseases through insecticides is proposed and analyzed. In the modeling process, it is assumed that disease spreads due to direct contact between susceptibles and infectives as well as through carriers (indirect contact). Further, it is assumed that insecticides are used to kill carriers and the rate of introduction of insecticides is proportional to the density of carriers with some time lag. The model analysis suggests that as delay in using insecticides exceeds some critical value, the system loses its stability and Hopf-bifurcation occurs. The direction, stability and period of the bifurcating periodic solutions arising through Hopf-bifurcation are also analyzed using normal form concept and center manifold theory. Numerical simulation is carried out to confirm the obtained analytical results

  10. Dynamics in a Delayed Neural Network Model of Two Neurons with Inertial Coupling

    Directory of Open Access Journals (Sweden)

    Changjin Xu

    2012-01-01

    Full Text Available A delayed neural network model of two neurons with inertial coupling is dealt with in this paper. The stability is investigated and Hopf bifurcation is demonstrated. Applying the normal form theory and the center manifold argument, we derive the explicit formulas for determining the properties of the bifurcating periodic solutions. An illustrative example is given to demonstrate the effectiveness of the obtained results.

  11. A Delay Discounting Model of Psychotherapy Termination

    Science.gov (United States)

    Swift, Joshua K.; Callahan, Jennifer L.

    2009-01-01

    Delay discounting (DD) procedures are emerging as an important new method for psychotherapy researchers. In this paper a framework for conceptualizing existing, seemingly discrepant, research findings on termination is introduced and new directions for research are described. To illustrate the value of a DD framework, the common psychotherapy…

  12. Learning monopolies with delayed feedback on price expectations

    Science.gov (United States)

    Matsumoto, Akio; Szidarovszky, Ferenc

    2015-11-01

    We call the intercept of the price function with the vertical axis the maximum price and the slope of the price function the marginal price. In this paper it is assumed that a monopolistic firm has full information about the marginal price and its own cost function but is uncertain on the maximum price. However, by repeated interaction with the market, the obtained price observations give a basis for an adaptive learning process of the maximum price. It is also assumed that the price observations have fixed delays, so the learning process can be described by a delayed differential equation. In the cases of one or two delays, the asymptotic behavior of the resulting dynamic process is examined, stability conditions are derived. Three main results are demonstrated in the two delay learning processes. First, it is possible to stabilize the equilibrium which is unstable in the one delay model. Second, complex dynamics involving chaos, which is impossible in the one delay model, can emerge. Third, alternations of stability and instability (i.e., stability switches) occur repeatedly.

  13. Truncated predictor feedback for time-delay systems

    CERN Document Server

    Zhou, Bin

    2014-01-01

    This book provides a systematic approach to the design of predictor based controllers for (time-varying) linear systems with either (time-varying) input or state delays. Differently from those traditional predictor based controllers, which are infinite-dimensional static feedback laws and may cause difficulties in their practical implementation, this book develops a truncated predictor feedback (TPF) which involves only finite dimensional static state feedback. Features and topics: A novel approach referred to as truncated predictor feedback for the stabilization of (time-varying) time-delay systems in both the continuous-time setting and the discrete-time setting is built systematically Semi-global and global stabilization problems of linear time-delay systems subject to either magnitude saturation or energy constraints are solved in a systematic manner Both stabilization of a single system and consensus of a group of systems (multi-agent systems) are treated in a unified manner by applying the truncated pre...

  14. Effect of a single intraoperative high-dose ATG-Fresenius on delayed graft function in donation after cardiac-death donor renal allograft recipients: a randomized study.

    Science.gov (United States)

    van den Hoogen, Martijn W F; Kho, Marcia M L; Abrahams, Alferso C; van Zuilen, Arjan D; Sanders, Jan-Stephan; van Dijk, Marja; Hilbrands, Luuk B; Weimar, Willem; Hoitsma, Andries J

    2013-04-01

    Reducing the incidence of delayed graft function after transplant with donation after cardiac death donor renal allografts would facilitate managing recipients during their first weeks after a transplant. To reduce this incidence, in most studies, induction therapy with depleting anti-T-lymphocyte antibodies is coupled with a reduction of the dosage of the calcineurin inhibitor. The separate effect of anti-T-cell therapy on the incidence and duration of delayed graft function is therefore difficult to assess. We performed a randomized study to evaluate the effect of a single intraoperative high-dose of anti-T-lymphocyte immunoglobulin (ATG)-Fresenius (9 mg/kg body weight) on the incidence of delayed graft function. Eligible adult recipients of a first donation after cardiac death donor renal allograft were randomly assigned to ATG-Fresenius or no induction therapy. Maintenance immunosuppression consisted of tacrolimus, in an unadjusted dose, mycophenolate mofetil, and steroids. The study was prematurely terminated because of a lower-than-anticipated inclusion rate. Baseline characteristics were comparable in the ATG-Fresenius group (n=28) and the control group (n=24). Twenty-two patients in the ATG-Fresenius group (79%) had delayed graft function, compared with 13 in the control group (54%; P = .06). Allograft and patient survival were comparable in both groups. Serious adverse events occurred more frequently in the ATG-Fresenius group than they did in the control group (57% vs 29%; P Fresenius in donation after cardiac death donor renal allograft recipients, followed by triple immunosuppression with an unadjusted tacrolimus dose, seems ineffective to reduce the incidence of delayed graft function. Moreover, this was associated with a higher rate of serious adverse events (EudraCT-number, 2007-000210-36.).

  15. New Delay-Dependent Stability Criteria for Uncertain Neutral Systems with Mixed Time-Varying Delays and Nonlinear Perturbations

    Directory of Open Access Journals (Sweden)

    Hamid Reza Karimi

    2009-01-01

    Full Text Available The problem of stability analysis for a class of neutral systems with mixed time-varying neutral, discrete and distributed delays and nonlinear parameter perturbations is addressed. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor model transformation, the Leibniz-Newton formula, some free-weighting matrices, and a suitable change of variables, new sufficient conditions are established for the stability of the considered system, which are neutral-delay-dependent, discrete-delay-range-dependent, and distributed-delay-dependent. The conditions are presented in terms of linear matrix inequalities (LMIs and can be efficiently solved using convex programming techniques. Two numerical examples are given to illustrate the efficiency of the proposed method.

  16. Time-delayed feedback control of diffusion in random walkers

    Science.gov (United States)

    Ando, Hiroyasu; Takehara, Kohta; Kobayashi, Miki U.

    2017-07-01

    Time delay in general leads to instability in some systems, while specific feedback with delay can control fluctuated motion in nonlinear deterministic systems to a stable state. In this paper, we consider a stochastic process, i.e., a random walk, and observe its diffusion phenomenon with time-delayed feedback. As a result, the diffusion coefficient decreases with increasing delay time. We analytically illustrate this suppression of diffusion by using stochastic delay differential equations and justify the feasibility of this suppression by applying time-delayed feedback to a molecular dynamics model.

  17. The effects of the framing of time on delay discounting.

    Science.gov (United States)

    DeHart, William Brady; Odum, Amy L

    2015-01-01

    We examined the effects of the framing of time on delay discounting. Delay discounting is the process by which delayed outcomes are devalued as a function of time. Time in a titrating delay discounting task is often framed in calendar units (e.g., as 1 week, 1 month, etc.). When time is framed as a specific date, delayed outcomes are discounted less compared to the calendar format. Other forms of framing time; however, have not been explored. All participants completed a titrating calendar unit delay-discounting task for money. Participants were also assigned to one of two delay discounting tasks: time as dates (e.g., June 1st, 2015) or time in units of days (e.g., 5000 days), using the same delay distribution as the calendar delay-discounting task. Time framed as dates resulted in less discounting compared to the calendar method, whereas time framed as days resulted in greater discounting compared to the calendar method. The hyperboloid model fit best compared to the hyperbola and exponential models. How time is framed may alter how participants attend to the delays as well as how the delayed outcome is valued. Altering how time is framed may serve to improve adherence to goals with delayed outcomes. © Society for the Experimental Analysis of Behavior.

  18. WINKLER'S SINGLE-PARAMETER SUBGRADE MODEL FROM ...

    African Journals Online (AJOL)

    Preferred Customer

    Page 1 ... corresponding single-parameter Winkler model presented in this work. Keywords: Heterogeneous subgrade, Reissner's simplified continuum, Shear interaction, Simplified continuum, Winkler ... model in practical applications and its long time familiarity among practical engineers, its usage has endured to this date ...

  19. Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system

    Directory of Open Access Journals (Sweden)

    Han Ruolan

    2008-04-01

    Full Text Available Abstract Background Cancer treatment with a variety of chemotherapeutic agents often is associated with delayed adverse neurological consequences. Despite their clinical importance, almost nothing is known about the basis for such effects. It is not even known whether the occurrence of delayed adverse effects requires exposure to multiple chemotherapeutic agents, the presence of both chemotherapeutic agents and the body's own response to cancer, prolonged damage to the blood-brain barrier, inflammation or other such changes. Nor are there any animal models that could enable the study of this important problem. Results We found that clinically relevant concentrations of 5-fluorouracil (5-FU; a widely used chemotherapeutic agent were toxic for both central nervous system (CNS progenitor cells and non-dividing oligodendrocytes in vitro and in vivo. Short-term systemic administration of 5-FU caused both acute CNS damage and a syndrome of progressively worsening delayed damage to myelinated tracts of the CNS associated with altered transcriptional regulation in oligodendrocytes and extensive myelin pathology. Functional analysis also provided the first demonstration of delayed effects of chemotherapy on the latency of impulse conduction in the auditory system, offering the possibility of non-invasive analysis of myelin damage associated with cancer treatment. Conclusions Our studies demonstrate that systemic treatment with a single chemotherapeutic agent, 5-FU, is sufficient to cause a syndrome of delayed CNS damage and provide the first animal model of delayed damage to white-matter tracts of individuals treated with systemic chemotherapy. Unlike that caused by local irradiation, the degeneration caused by 5-FU treatment did not correlate with either chronic inflammation or extensive vascular damage and appears to represent a new class of delayed degenerative damage in the CNS.

  20. Single-cluster dynamics for the random-cluster model

    NARCIS (Netherlands)

    Deng, Y.; Qian, X.; Blöte, H.W.J.

    2009-01-01

    We formulate a single-cluster Monte Carlo algorithm for the simulation of the random-cluster model. This algorithm is a generalization of the Wolff single-cluster method for the q-state Potts model to noninteger values q>1. Its results for static quantities are in a satisfactory agreement with those

  1. Measuring and modeling the interaction among reward size, delay to reward, and satiation level on motivation in monkeys.

    Science.gov (United States)

    Minamimoto, Takafumi; La Camera, Giancarlo; Richmond, Barry J

    2009-01-01

    Motivation is usually inferred from the likelihood or the intensity with which behavior is carried out. It is sensitive to external factors (e.g., the identity, amount, and timing of a rewarding outcome) and internal factors (e.g., hunger or thirst). We trained macaque monkeys to perform a nonchoice instrumental task (a sequential red-green color discrimination) while manipulating two external factors: reward size and delay-to-reward. We also inferred the state of one internal factor, level of satiation, by monitoring the accumulated reward. A visual cue indicated the forthcoming reward size and delay-to-reward in each trial. The fraction of trials completed correctly by the monkeys increased linearly with reward size and was hyperbolically discounted by delay-to-reward duration, relations that are similar to those found in free operant and choice tasks. The fraction of correct trials also decreased progressively as a function of the satiation level. Similar (albeit noiser) relations were obtained for reaction times. The combined effect of reward size, delay-to-reward, and satiation level on the proportion of correct trials is well described as a multiplication of the effects of the single factors when each factor is examined alone. These results provide a quantitative account of the interaction of external and internal factors on instrumental behavior, and allow us to extend the concept of subjective value of a rewarding outcome, usually confined to external factors, to account also for slow changes in the internal drive of the subject.

  2. Enhancing the accuracy of GPS point positioning by converting the single frequency data to dual frequency data

    Directory of Open Access Journals (Sweden)

    Aly M. El-naggar

    2011-09-01

    Full Text Available The global positioning system (GPS has been used to support a wide variety of applications, such as high-accuracy positioning and navigation. Differential GPS techniques can largely eliminate common-mode errors between the reference and the rover GPS stations resulting from ionospheric and tropospheric refraction and delays, satellite and receiver clock biases, and orbital errors [1]. The ionospheric delay in the propagation of global positioning system (GPS signals is one of the main sources of error in GPS precise positioning and navigation. A dual-frequency GPS receiver can eliminate (to the first order the ionospheric delay through a linear combination of the L1 and L2 observations [2]. The most significant effect of ionospheric delay appear in case of using single frequency data. In this paper the single frequency data of concerned station are converted to dual frequency data by employing dual frequency data from 11 regional GPS stations distributed around it. Total electron content (TEC was calculated at every GPS station to produce the mathematical model of TEC which is a function of latitude (Φ and longitude (λ. By using this mathematical model the values of TEC and L2 can be predicted at the single frequency GPS station for each satellite, after that the comparison between predicted and observation values of TEC and L2 was performed. The estimation method and test results of the proposed method indicates that the difference between predicted and observation values is very small.

  3. Determination of Uncalibrated Phase Delays for Real-Time PPP

    Science.gov (United States)

    Hinterberger, Fabian; Weber, Robert; Huber, Katrin; Lesjak, Roman

    2014-05-01

    Today PPP is a well-known technique of GNSS based positioning used for a wide range of post-processing applications. Using observations of a single GNSS receiver and applying precise orbit and clock information derived from global GNSS networks highly precise positions can be obtained. The atmospheric delays are usually mitigated by linear combination (ionosphere) and parameter estimation (troposphere). Within the last years also the demand for real-time PPP increased. In 2012, the IGS real-time working group started a pilot project to broadcast real-time precise orbits and clock correction streams. Nevertheless, real-time PPP is in its starting phase and currently only few applications make use of the technique although SSR-Messages are already implemented in RTCM3.1. The problems of still limited accuracy compared to Network-RTK as well as long convergence times might be solved by almost instantaneous integer ambiguity resolution at zero-difference level which is a major topic of current scientific investigations. Therefore a national consortium has carried out over the past 2 years the research project PPP-Serve (funded by the Austrian Research Promotion Agency - FFG), which aimed at the development of appropriate algorithms for real-time PPP with special emphasis on the ambiguity resolution of zero-difference observations. We have established a module which calculates based on GPS-reference station data-streams of a dense network (obtained from IGS via BKG) so-called wide-lane and narrow-lane satellite specific calibration phase delays. While the wide-lane phase delays are almost stable over longer periods, the estimation of narrow-lane phase delays has to be re-established every 24 hours. These phase-delays are submitted via a real-time module to the rover where they are used for point positioning via a PPP-model. This presentation deals with the process and obstacles of calculating the wide-lane and narrow-lane phase-delays (based on SD -observations between

  4. Delays and networked control systems

    CERN Document Server

    Hetel, Laurentiu; Daafouz, Jamal; Johansson, Karl

    2016-01-01

    This edited monograph includes state-of-the-art contributions on continuous time dynamical networks with delays. The book is divided into four parts. The first part presents tools and methods for the analysis of time-delay systems with a particular attention on control problems of large scale or infinite-dimensional systems with delays. The second part of the book is dedicated to the use of time-delay models for the analysis and design of Networked Control Systems. The third part of the book focuses on the analysis and design of systems with asynchronous sampling intervals which occur in Networked Control Systems. The last part of the book exposes several contributions dealing with the design of cooperative control and observation laws for networked control systems. The target audience primarily comprises researchers and experts in the field of control theory, but the book may also be beneficial for graduate students. .

  5. Studying Validity of Single-Fluid Model in Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    Gu Jian-Fa; Fan Zheng-Feng; Dai Zhen-Sheng; Ye Wen-Hua; Pei Wen-Bing; Zhu Shao-Ping

    2014-01-01

    The validity of single-fluid model in inertial confinement fusion simulations is studied by comparing the results of the multi- and single-fluid models. The multi-fluid model includes the effects of collision and interpenetration between fluid species. By simulating the collision of fluid species, steady-state shock propagation into the thin DT gas and expansion of hohlraum Au wall heated by lasers, the results show that the validity of single-fluid model is strongly dependent on the ratio of the characteristic length of the simulated system to the particle mean free path. When the characteristic length L is one order larger than the mean free path λ, the single-fluid model's results are found to be in good agreement with the multi-fluid model's simulations, and the modeling of single-fluid remains valid. If the value of L/λ is lower than 10, the interpenetration between fluid species is significant, and the single-fluid simulations show some unphysical results; while the multi-fluid model can describe well the interpenetration and mix phenomena, and give more reasonable results. (physics of gases, plasmas, and electric discharges)

  6. Hepatobiliary system functional analysis by blood flow and clearance delay model

    International Nuclear Information System (INIS)

    Aboltins, A.; Reinholds, E.

    2002-01-01

    A mathematical model for describing liver uptake-excretion is developed and approved. Model is based on different timing delays in hepatobiliary and blood flow system elements. Series of scintigraphic images with 99m Tc-mebrofenins or 99m Tc-HIDA taken with standard nuclear medicine gamma camera are used as the real data for calculations. The time-activity curves are obtained from many regions of human body - heart, liver, gallbladder, spleen, aorta, vein, etc. Both first pass and dynamic acquisition data are used. Results are calculated using real system parameters and compared to real scintigraphy data. Mathematical simulations are made to show difference of hepatobiliary system function at three main points: normal function, good blood flow with bad hepatic function and bad blood flow with good hepatic function. (authors)

  7. Quad delay gate generator (LBL No. 21X6691 P-2)

    International Nuclear Information System (INIS)

    McDonald, R.J.; Maier, M.R.; Landis, D.A.; Wozniak, G.J.

    1986-08-01

    A quad delay gate generator has been designed and packaged in a single-width NIM module. Both delay times and gate widths may be set continuously from 25 ns to 120 μsec. In normal operation, the gate follows the delay time unless a ''stop'' pulse cuts it short. Alternatively, the module may be operated in a bipolar mode, where the delay time is set by the input ''start'' pulse and reset by the input ''stop'' pulse. Modes and coarse time ranges are set via an octal DIP switch on the front panel. Fine adjustments of the delay and gate width are made via two twenty-turn potentiometers. Stability over a several day period was measured at ∼ 250 ps on the 120 ns full scale range. LEDs gives a visual indication of both the input rate and the dead time

  8. The role of delay in the dynamics of nuclear reactors

    International Nuclear Information System (INIS)

    Svitra, D.; Bucys, K.

    1999-01-01

    The stability of nuclear reactors based on nonlinear models of reactor dynamics including the action of delayed neutrons is analysed. The point model of reactor dynamics with the system of seven nonlinear simple differential equations was changed to the system of two nonlinear differential equations including the action of delay. The method of the theory of bifurcations for nonlinear differential equations with delay is used. (author)

  9. Graphical models for inferring single molecule dynamics

    Directory of Open Access Journals (Sweden)

    Gonzalez Ruben L

    2010-10-01

    Full Text Available Abstract Background The recent explosion of experimental techniques in single molecule biophysics has generated a variety of novel time series data requiring equally novel computational tools for analysis and inference. This article describes in general terms how graphical modeling may be used to learn from biophysical time series data using the variational Bayesian expectation maximization algorithm (VBEM. The discussion is illustrated by the example of single-molecule fluorescence resonance energy transfer (smFRET versus time data, where the smFRET time series is modeled as a hidden Markov model (HMM with Gaussian observables. A detailed description of smFRET is provided as well. Results The VBEM algorithm returns the model’s evidence and an approximating posterior parameter distribution given the data. The former provides a metric for model selection via maximum evidence (ME, and the latter a description of the model’s parameters learned from the data. ME/VBEM provide several advantages over the more commonly used approach of maximum likelihood (ML optimized by the expectation maximization (EM algorithm, the most important being a natural form of model selection and a well-posed (non-divergent optimization problem. Conclusions The results demonstrate the utility of graphical modeling for inference of dynamic processes in single molecule biophysics.

  10. Comment on ‘Time delays in molecular photoionization’

    Science.gov (United States)

    Baykusheva, Denitsa; Wörner, Hans Jakob

    2017-04-01

    In a recent article by Hockett et al (2016 J. Phys. B: At. Mol. Opt. Phys. 49 095602), time delays arising in the context of molecular single-photon ionization are investigated from a theoretical point of view. We argue that one of the central equations given in this article is incorrect and present a reformulation that is consistent with the established treatment of angle-dependent scattering delays (Eisenbud 1948 PhD Thesis Princeton University; Wigner 1955 Phys. Rev. 98 145-7 Smith 1960 Phys. Rev. 118 349-6 Nussenzveig 1972 Phys. Rev. D 6 1534-42).

  11. A Discrete Events Delay Differential System Model for Transmission of Vancomycin-Resistant Enterococcus (VRE) in Hospitals

    Science.gov (United States)

    2010-09-19

    estimated directly form the surveillance data Infection control measures were implemented in the form of health care worker hand - hygiene before and after...hospital infections , is used to motivate possibilities of modeling nosocomial infec- tion dynamics. This is done in the context of hospital monitoring and...model development. Key Words: Delay equations, discrete events, nosocomial infection dynamics, surveil- lance data, inverse problems, parameter

  12. Nested sparse grid collocation method with delay and transformation for subsurface flow and transport problems

    Science.gov (United States)

    Liao, Qinzhuo; Zhang, Dongxiao; Tchelepi, Hamdi

    2017-06-01

    In numerical modeling of subsurface flow and transport problems, formation properties may not be deterministically characterized, which leads to uncertainty in simulation results. In this study, we propose a sparse grid collocation method, which adopts nested quadrature rules with delay and transformation to quantify the uncertainty of model solutions. We show that the nested Kronrod-Patterson-Hermite quadrature is more efficient than the unnested Gauss-Hermite quadrature. We compare the convergence rates of various quadrature rules including the domain truncation and domain mapping approaches. To further improve accuracy and efficiency, we present a delayed process in selecting quadrature nodes and a transformed process for approximating unsmooth or discontinuous solutions. The proposed method is tested by an analytical function and in one-dimensional single-phase and two-phase flow problems with different spatial variances and correlation lengths. An additional example is given to demonstrate its applicability to three-dimensional black-oil models. It is found from these examples that the proposed method provides a promising approach for obtaining satisfactory estimation of the solution statistics and is much more efficient than the Monte-Carlo simulations.

  13. Factors affecting GEBV accuracy with single-step Bayesian models.

    Science.gov (United States)

    Zhou, Lei; Mrode, Raphael; Zhang, Shengli; Zhang, Qin; Li, Bugao; Liu, Jian-Feng

    2018-01-01

    A single-step approach to obtain genomic prediction was first proposed in 2009. Many studies have investigated the components of GEBV accuracy in genomic selection. However, it is still unclear how the population structure and the relationships between training and validation populations influence GEBV accuracy in terms of single-step analysis. Here, we explored the components of GEBV accuracy in single-step Bayesian analysis with a simulation study. Three scenarios with various numbers of QTL (5, 50, and 500) were simulated. Three models were implemented to analyze the simulated data: single-step genomic best linear unbiased prediction (GBLUP; SSGBLUP), single-step BayesA (SS-BayesA), and single-step BayesB (SS-BayesB). According to our results, GEBV accuracy was influenced by the relationships between the training and validation populations more significantly for ungenotyped animals than for genotyped animals. SS-BayesA/BayesB showed an obvious advantage over SSGBLUP with the scenarios of 5 and 50 QTL. SS-BayesB model obtained the lowest accuracy with the 500 QTL in the simulation. SS-BayesA model was the most efficient and robust considering all QTL scenarios. Generally, both the relationships between training and validation populations and LD between markers and QTL contributed to GEBV accuracy in the single-step analysis, and the advantages of single-step Bayesian models were more apparent when the trait is controlled by fewer QTL.

  14. A dynamic P53-MDM2 model with time delay

    Energy Technology Data Exchange (ETDEWEB)

    Mihalas, Gh.I. [Department of Biophysics and Medical Informatics, University of Medicine and Pharmacy, Piata Eftimie Murgu, nr. 3, 300041 Timisoara (Romania)]. E-mail: mihalas@medinfo.umft.ro; Neamtu, M. [Department of Forecasting, Economic Analysis, Mathematics and Statistics, West University of Timisoara, Str. Pestalozzi, nr. 14A, 300115 Timisoara (Romania)]. E-mail: mihaela.neamtu@fse.uvt.ro; Opris, D. [Department of Applied Mathematics, West University of Timisoara, Bd. V. Parvan, nr. 4, 300223 Timisoara (Romania)]. E-mail: opris@math.uvt.ro; Horhat, R.F. [Department of Biophysics and Medical Informatics, University of Medicine and Pharmacy, Piata Eftimie Murgu, nr. 3, 300041 Timisoara (Romania)]. E-mail: rhorhat@yahoo.com

    2006-11-15

    Specific activator and repressor transcription factors which bind to specific regulator DNA sequences, play an important role in gene activity control. Interactions between genes coding such transcription factors should explain the different stable or sometimes oscillatory gene activities characteristic for different tissues. Starting with the model P53-MDM2 described into [Mihalas GI, Simon Z, Balea G, Popa E. Possible oscillatory behaviour in P53-MDM2 interaction computer simulation. J Biol Syst 2000;8(1):21-9] and the process described into [Kohn KW, Pommier Y. Molecular interaction map of P53 and MDM2 logic elements, which control the off-on switch of P53 in response to DNA damage. Biochem Biophys Res Commun 2005;331:816-27] we enveloped a new model of this interaction. Choosing the delay as a bifurcation parameter we study the direction and stability of the bifurcating periodic solutions. Some numerical examples are finally given for justifying the theoretical results.

  15. A dynamic P53-MDM2 model with time delay

    International Nuclear Information System (INIS)

    Mihalas, Gh.I.; Neamtu, M.; Opris, D.; Horhat, R.F.

    2006-01-01

    Specific activator and repressor transcription factors which bind to specific regulator DNA sequences, play an important role in gene activity control. Interactions between genes coding such transcription factors should explain the different stable or sometimes oscillatory gene activities characteristic for different tissues. Starting with the model P53-MDM2 described into [Mihalas GI, Simon Z, Balea G, Popa E. Possible oscillatory behaviour in P53-MDM2 interaction computer simulation. J Biol Syst 2000;8(1):21-9] and the process described into [Kohn KW, Pommier Y. Molecular interaction map of P53 and MDM2 logic elements, which control the off-on switch of P53 in response to DNA damage. Biochem Biophys Res Commun 2005;331:816-27] we enveloped a new model of this interaction. Choosing the delay as a bifurcation parameter we study the direction and stability of the bifurcating periodic solutions. Some numerical examples are finally given for justifying the theoretical results

  16. Optimal Joint Expected Delay Forwarding in Delay Tolerant Networks

    OpenAIRE

    Jia Xu; Xin Feng; Wen Jun Yang; Ru Chuan Wang; Bing Qing Han

    2013-01-01

    Multicopy forwarding schemes have been employed in delay tolerant network (DTN) to improve the delivery delay and delivery rate. Much effort has been focused on reducing the routing cost while retaining high performance. This paper aims to provide an optimal joint expected delay forwarding (OJEDF) protocol which minimizes the expected delay while satisfying a certain constant on the number of forwardings per message. We propose a comprehensive forwarding metric called joint expected delay (JE...

  17. Using GPS RO L1 data for calibration of the atmospheric path delay model for data reduction of the satellite altimetery observations.

    Science.gov (United States)

    Petrov, L.

    2017-12-01

    Processing satellite altimetry data requires the computation of path delayin the neutral atmosphere that is used for correcting ranges. The path delayis computed using numerical weather models and the accuracy of its computationdepends on the accuracy of numerical weather models. Accuracy of numerical modelsof numerical weather models over Antarctica and Greenland where there is a very sparse network of ground stations, is not well known. I used the dataset of GPS RO L1 data, computed predicted path delay for ROobservations using the numerical whether model GEOS-FPIT, formed the differences with observed path delay and used these differences for computationof the corrections to the a priori refractivity profile. These profiles wereused for computing corrections to the a priori zenith path delay. The systematic patter of these corrections are used for de-biasing of the the satellite altimetry results and for characterization of the systematic errorscaused by mismodeling atmosphere.

  18. The effective delayed neutron fraction for bare-metal criticals

    International Nuclear Information System (INIS)

    Pearlstein, S.

    1999-01-01

    Given sufficient material, a large number of actinides could be used to form bare-metal criticals. The effective delayed neutron fraction for a bare critical comprised of a fissile material is comparable with the absolute delayed neutron fraction. The effective delayed neutron fraction for a bare critical composed of a fissionable material is reduced by factors of 2 to 10 when compared with the absolute delayed neutron fraction. When the effective delayed neutron fraction is small, the difference between delayed and prompt criticality is small, and extreme caution must be used in critical assemblies of these materials. This study uses an approximate but realistic model to survey the actinide region to compare effective delayed neutron fractions with absolute delayed neutron fractions

  19. MeshTree: A Delay optimised Overlay Multicast Tree Building Protocol

    OpenAIRE

    Tan, Su-Wei; Waters, A. Gill; Crawford, John

    2005-01-01

    We study decentralised low delay degree-constrained overlay multicast tree construction for single source real-time applications. This optimisation problem is NP-hard even if computed centrally. We identify two problems in traditional distributed solutions, namely the greedy problem and delay-cost trade-off. By offering solutions to these problems, we propose a new self-organising distributed tree building protocol called MeshTree. The main idea is to embed the delivery tree in a degree-bound...

  20. Test of statistical models of the ν-delayed neutron emission by application of the Monte Carlo method

    International Nuclear Information System (INIS)

    Ohm, H.

    1982-01-01

    Using the example of the delayed neutron spectrum of 24 s- 137 I the statistical model is tested in view of its applicability. A computer code was developed which simulates delayed neutron spectra by the Monte Carlo method under the assumption that the transition probabilities of the ν and the neutron decays obey the Porter-Thomas distribution while the distances of the neutron emitting levels are Wigner distribution. Gramow-Teller ν-transitions and simply forbidden ν-transitions from the preceding nucleus to the emitting nucleus were regarded. (orig./HSI) [de

  1. Global existence of periodic solutions in a simplified four-neuron BAM neural network model with multiple delays

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We consider a simplified bidirectional associated memory (BAM neural network model with four neurons and multiple time delays. The global existence of periodic solutions bifurcating from Hopf bifurcations is investigated by applying the global Hopf bifurcation theorem due to Wu and Bendixson's criterion for high-dimensional ordinary differential equations due to Li and Muldowney. It is shown that the local Hopf bifurcation implies the global Hopf bifurcation after the second critical value of the sum of two delays. Numerical simulations supporting the theoretical analysis are also included.

  2. Introduction to Focus Issue: Time-delay dynamics

    Science.gov (United States)

    Erneux, Thomas; Javaloyes, Julien; Wolfrum, Matthias; Yanchuk, Serhiy

    2017-11-01

    The field of dynamical systems with time delay is an active research area that connects practically all scientific disciplines including mathematics, physics, engineering, biology, neuroscience, physiology, economics, and many others. This Focus Issue brings together contributions from both experimental and theoretical groups and emphasizes a large variety of applications. In particular, lasers and optoelectronic oscillators subject to time-delayed feedbacks have been explored by several authors for their specific dynamical output, but also because they are ideal test-beds for experimental studies of delay induced phenomena. Topics include the control of cavity solitons, as light spots in spatially extended systems, new devices for chaos communication or random number generation, higher order locking phenomena between delay and laser oscillation period, and systematic bifurcation studies of mode-locked laser systems. Moreover, two original theoretical approaches are explored for the so-called Low Frequency Fluctuations, a particular chaotical regime in laser output which has attracted a lot of interest for more than 30 years. Current hot problems such as the synchronization properties of networks of delay-coupled units, novel stabilization techniques, and the large delay limit of a delay differential equation are also addressed in this special issue. In addition, analytical and numerical tools for bifurcation problems with or without noise and two reviews on concrete questions are proposed. The first review deals with the rich dynamics of simple delay climate models for El Nino Southern Oscillations, and the second review concentrates on neuromorphic photonic circuits where optical elements are used to emulate spiking neurons. Finally, two interesting biological problems are considered in this Focus Issue, namely, multi-strain epidemic models and the interaction of glucose and insulin for more effective treatment.

  3. Cross-cultural comparisons of delay discounting of gain and loss.

    Science.gov (United States)

    Ishii, Keiko; Gang, Lili; Takahashi, Taiki

    2016-11-01

    People generally tend to discount future outcomes in favor of smaller but immediate gains (i.e., delay discounting). The present research examined cultural similarities and differences in delay discounting of gain and loss between Chinese and Japanese, based on a q-exponential model of intertemporal choice. Using a hypothetical situation, we asked 65 Japanese participants and 51 Chinese participants to choose between receiving (or paying) a different amount of money immediately or with a specified delay (1 week, 2 weeks, 1 month, 6 months, 1 year, 5 years, and 25 years). For each delay, participants completed a series of 40 binary choices for gain or loss. Regardless of cultures, the q-exponential model was the optimal model. Both impulsivity and time-inconsistency were higher for future gains than for future losses. In addition to the cultural similarities, Chinese participants discounted future gains and losses more steeply than did Japanese. In contrast, Japanese participants were more time-inconsistent in delay discounting than were Chinese, suggesting that the reduction in their subjective value depended relatively on delay.

  4. Antiarrhythmic properties of a rapid delayed-rectifier current activator in rabbit models of acquired long QT syndrome

    DEFF Research Database (Denmark)

    Diness, Thomas G; Yeh, Yung-Hsin; Qi, Xiao Yan

    2008-01-01

    effect of a novel compound (NS1643) that activates the rapid delayed-rectifier K+ current, I(Kr), in two rabbit models of acquired LQTS. METHODS AND RESULTS: We used two clinically relevant in vivo rabbit models of TdP in which we infused NS1643 or vehicle: (i) three-week atrioventricular block...

  5. A dual-process approach to exploring the role of delay discounting in obesity.

    Science.gov (United States)

    Price, Menna; Higgs, Suzanne; Maw, James; Lee, Michelle

    2016-08-01

    Delay discounting of financial rewards has been related to overeating and obesity. Neuropsychological evidence supports a dual-system account of both discounting and overeating behaviour where the degree of impulsive decision making is determined by the relative strength of reward desire and executive control. A dual-parameter model of discounting behaviour is consistent with this theory. In this study, the fit of the commonly used one-parameter model was compared to a new dual-parameter model for the first time in a sample of adults with wide ranging BMI. Delay discounting data from 79 males and females (males=26) across a wide age (M=28.44years (SD=8.81)) and BMI range (M=25.42 (SD=5.16)) was analysed. A dual-parameter model (saturating-hyperbolic; Doya, [Doya (2008) ]) was applied to the data and compared on model fit indices to the single-parameter model. Discounting was significantly greater in the overweight/obese participants using both models, however, the two parameter model showed a superior fit to data (pdual-system account of inter-temporal choice behaviour. The dual-parameter model showed superior fit to data and the two parameters were shown to be related yet distinct indices sensitive to differences between weight groups. Findings are discussed in terms of the impulsive reward and executive control systems that contribute to unhealthy food choice and within the context of obesity related research. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. A New Delay Connection for Long Short-Term Memory Networks.

    Science.gov (United States)

    Wang, Jianyong; Zhang, Lei; Chen, Yuanyuan; Yi, Zhang

    2017-12-17

    Connections play a crucial role in neural network (NN) learning because they determine how information flows in NNs. Suitable connection mechanisms may extensively enlarge the learning capability and reduce the negative effect of gradient problems. In this paper, a new delay connection is proposed for Long Short-Term Memory (LSTM) unit to develop a more sophisticated recurrent unit, called Delay Connected LSTM (DCLSTM). The proposed delay connection brings two main merits to DCLSTM with introducing no extra parameters. First, it allows the output of the DCLSTM unit to maintain LSTM, which is absent in the LSTM unit. Second, the proposed delay connection helps to bridge the error signals to previous time steps and allows it to be back-propagated across several layers without vanishing too quickly. To evaluate the performance of the proposed delay connections, the DCLSTM model with and without peephole connections was compared with four state-of-the-art recurrent model on two sequence classification tasks. DCLSTM model outperformed the other models with higher accuracy and F1[Formula: see text]score. Furthermore, the networks with multiple stacked DCLSTM layers and the standard LSTM layer were evaluated on Penn Treebank (PTB) language modeling. The DCLSTM model achieved lower perplexity (PPL)/bit-per-character (BPC) than the standard LSTM model. The experiments demonstrate that the learning of the DCLSTM models is more stable and efficient.

  7. Gain scheduling for non-linear time-delay systems using approximated model

    NARCIS (Netherlands)

    Pham, H.T.; Lim, J.T

    2012-01-01

    The authors investigate a regulation problem of non-linear systems driven by an exogenous signal and time-delay in the input. In order to compensate for the input delay, they propose a reduction transformation containing the past information of the control input. Then, by utilising the Euler

  8. Delay chemical master equation: direct and closed-form solutions.

    Science.gov (United States)

    Leier, Andre; Marquez-Lago, Tatiana T

    2015-07-08

    The stochastic simulation algorithm (SSA) describes the time evolution of a discrete nonlinear Markov process. This stochastic process has a probability density function that is the solution of a differential equation, commonly known as the chemical master equation (CME) or forward-Kolmogorov equation. In the same way that the CME gives rise to the SSA, and trajectories of the latter are exact with respect to the former, trajectories obtained from a delay SSA are exact representations of the underlying delay CME (DCME). However, in contrast to the CME, no closed-form solutions have so far been derived for any kind of DCME. In this paper, we describe for the first time direct and closed solutions of the DCME for simple reaction schemes, such as a single-delayed unimolecular reaction as well as chemical reactions for transcription and translation with delayed mRNA maturation. We also discuss the conditions that have to be met such that such solutions can be derived.

  9. Cucker-Smale model with normalized communication weights and time delay

    KAUST Repository

    Choi, Young-Pil

    2017-03-06

    We study a Cucker-Smale-type system with time delay in which agents interact with each other through normalized communication weights. We construct a Lyapunov functional for the system and provide sufficient conditions for asymptotic flocking, i.e., convergence to a common velocity vector. We also carry out a rigorous limit passage to the mean-field limit of the particle system as the number of particles tends to infinity. For the resulting Vlasov-type equation we prove the existence, stability and large-time behavior of measure-valued solutions. This is, to our best knowledge, the first such result for a Vlasov-type equation with time delay. We also present numerical simulations of the discrete system with few particles that provide further insights into the flocking and oscillatory behaviors of the particle velocities depending on the size of the time delay.

  10. Extinction and permanence in delayed stage-structure predator-prey system with impulsive effects

    International Nuclear Information System (INIS)

    Pang Guoping; Wang Fengyan; Chen Lansun

    2009-01-01

    Based on the classical stage-structured model and Lotka-Volterra predator-prey model, an impulsive delayed differential equation to model the process of periodically releasing natural enemies at fixed times for pest control is proposed and investigated. We show that the conditions for global attractivity of the 'pest-extinction' ('prey-eradication') periodic solution and permanence of the population of the model depend on time delay. We also show that constant maturation time delay and impulsive releasing for the predator can bring great effects on the dynamics of system by numerical analysis. As a result, the pest maturation time delay is considered to establish a procedure to maintain the pests at an acceptably low level in the long term. In this paper, the main feature is that we introduce time delay and pulse into the predator-prey (natural enemy-pest) model with age structure, exhibit a new modelling method which is applied to investigate impulsive delay differential equations, and give some reasonable suggestions for pest management.

  11. Modeling endocrine regulation of the menstrual cycle using delay differential equations.

    Science.gov (United States)

    Harris, Leona A; Selgrade, James F

    2014-11-01

    This article reviews an effective mathematical procedure for modeling hormonal regulation of the menstrual cycle of adult women. The procedure captures the effects of hormones secreted by several glands over multiple time scales. The specific model described here consists of 13 nonlinear, delay, differential equations with 44 parameters and correctly predicts blood levels of ovarian and pituitary hormones found in the biological literature for normally cycling women. In addition to this normal cycle, the model exhibits another stable cycle which may describe a biologically feasible "abnormal" condition such as polycystic ovarian syndrome. Model simulations illustrate how one cycle can be perturbed to the other cycle. Perturbations due to the exogenous administration of each ovarian hormone are examined. This model may be used to test the effects of hormone therapies on abnormally cycling women as well as the effects of exogenous compounds on normally cycling women. Sensitive parameters are identified and bifurcations in model behavior with respect to parameter changes are discussed. Modeling various aspects of menstrual cycle regulation should be helpful in predicting successful hormone therapies, in studying the phenomenon of cycle synchronization and in understanding many factors affecting the aging of the female reproductive endocrine system. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Permissible Delay in Payments

    Directory of Open Access Journals (Sweden)

    Yung-Fu Huang

    2007-01-01

    Full Text Available The main purpose of this paper wants to investigate the optimal retailer's lot-sizing policy with two warehouses under partially permissible delay in payments within the economic order quantity (EOQ framework. In this paper, we want to extend that fully permissible delay in payments to the supplier would offer the retailer partially permissible delay in payments. That is, the retailer must make a partial payment to the supplier when the order is received. Then the retailer must pay off the remaining balance at the end of the permissible delay period. In addition, we want to add the assumption that the retailer's storage space is limited. That is, the retailer will rent the warehouse to store these exceeding items when the order quantity is larger than retailer's storage space. Under these conditions, we model the retailer's inventory system as a cost minimization problem to determine the retailer's optimal cycle time and optimal order quantity. Three theorems are developed to efficiently determine the optimal replenishment policy for the retailer. Finally, numerical examples are given to illustrate these theorems and obtained a lot of managerial insights.

  13. Singular Perturbation Analysis and Gene Regulatory Networks with Delay

    Science.gov (United States)

    Shlykova, Irina; Ponosov, Arcady

    2009-09-01

    There are different ways of how to model gene regulatory networks. Differential equations allow for a detailed description of the network's dynamics and provide an explicit model of the gene concentration changes over time. Production and relative degradation rate functions used in such models depend on the vector of steeply sloped threshold functions which characterize the activity of genes. The most popular example of the threshold functions comes from the Boolean network approach, where the threshold functions are given by step functions. The system of differential equations becomes then piecewise linear. The dynamics of this system can be described very easily between the thresholds, but not in the switching domains. For instance this approach fails to analyze stationary points of the system and to define continuous solutions in the switching domains. These problems were studied in [2], [3], but the proposed model did not take into account a time delay in cellular systems. However, analysis of real gene expression data shows a considerable number of time-delayed interactions suggesting that time delay is essential in gene regulation. Therefore, delays may have a great effect on the dynamics of the system presenting one of the critical factors that should be considered in reconstruction of gene regulatory networks. The goal of this work is to apply the singular perturbation analysis to certain systems with delay and to obtain an analog of Tikhonov's theorem, which provides sufficient conditions for constracting the limit system in the delay case.

  14. Inter-electrode delay estimators for electrohysterographic propagation analysis

    International Nuclear Information System (INIS)

    Rabotti, Chiara; Mischi, Massimo; Bergmans, Jan W M; Van Laar, Judith O E H; Oei, Guid S

    2009-01-01

    Premature birth is a major cause of mortality and permanent dysfunctions. Several parameters derived from single channel electrohysterographic (EHG) signals have been considered to determine contractions leading to preterm delivery. The results are promising, but improvements are needed. As effective uterine contractions result from a proper action potential propagation, in this paper we focus on the propagation properties of EHG signals, which can be predictive of preterm delivery. Two standard delay estimators, namely maximization of the cross-correlation function and spectral matching, are adapted and implemented for the assessment of inter-electrode delays of propagating EHG signals. The accuracy of the considered standard estimators might be hampered by a poor inter-channel correlation. An improved dedicated approach is therefore proposed. By simultaneous adaptive estimation of the volume conductor transfer function and the delay, a dedicated method is conceived for improving the inter-channel signal similarity during delay calculation. Furthermore, it provides delay estimates without resolution limits and it is suitable for low sampling rates, which are appropriate for EHG recording. The three estimators were evaluated on EHG signals recorded on seven women. The dedicated approach provided more accurate estimates due to a 22% improvement of the initial average inter-channel correlation

  15. Asymptotic Behaviour and Extinction of Delay Lotka-Volterra Model with Jump-Diffusion

    OpenAIRE

    Dan Li; Jing’an Cui; Guohua Song

    2014-01-01

    This paper studies the effect of jump-diffusion random environmental perturbations on the asymptotic behaviour and extinction of Lotka-Volterra population dynamics with delays. The contributions of this paper lie in the following: (a) to consider delay stochastic differential equation with jumps, we introduce a proper initial data space, in which the initial data may be discontinuous function with downward jumps; (b) we show that the delay stochastic differential equation with jumps associate...

  16. Direct determination of scattering time delays using the R-matrix propagation method

    International Nuclear Information System (INIS)

    Walker, R.B.; Hayes, E.F.

    1989-01-01

    A direct method for determining time delays for scattering processes is developed using the R-matrix propagation method. The procedure involves the simultaneous generation of the global R matrix and its energy derivative. The necessary expressions to obtain the energy derivative of the S matrix are relatively simple and involve many of the same matrix elements required for the R-matrix propagation method. This method is applied to a simple model for a chemical reaction that displays sharp resonance features. The test results of the direct method are shown to be in excellent agreement with the traditional numerical differentiation method for scattering energies near the resonance energy. However, for sharp resonances the numerical differentiation method requires calculation of the S-matrix elements at many closely spaced energies. Since the direct method presented here involves calculations at only a single energy, one is able to generate accurate energy derivatives and time delays much more efficiently and reliably

  17. Language Delay and Externalizing Problems in Preschool Age: A Prospective Cohort Study.

    Science.gov (United States)

    Wang, Mari Vaage; Aarø, Leif Edvard; Ystrom, Eivind

    2018-01-10

    This study sought to examine the direction of causation between language delay and two externalizing problems; inattention and aggression. Autoregressive fixed effects models were fitted to data from 25,474 children (age 1.5 to 5 years; 50.8% boys) in the population-based longitudinal Norwegian Mother and Child Cohort Study (MoBa), to model the direction of causality for language delay and inattention and aggression, respectively. The most parsimonious model for the relationship between language delay and inattention was one where both common factors and reciprocal causation were estimated. Adjusted for common factors, language delay was estimated to have a non-significant effect on inattention by b = 0.12 (p = 0.06), and inattention to have a significant effect on language delay by b = 0.19 (p = 0.03). The most parsimonious model for the direction of causality for language delay and aggression was one where the entire association could be explained by language delay having effect on aggression b = 0.12 (p language delay can best be conceptualized as an epiphenomenon of inattention partly related to both common factors and causal processes, aggression can best be conceptualized as caused by language delay. This illumination of the hypothetical causal links between two common problem domains in preschool-aged children has clear implications on where to implement interventions to prevent co-occurrence of language delay and externalizing problems.

  18. Imprints of the quasar structure in time-delay light curves: Microlensing-aided reverberation mapping

    Science.gov (United States)

    Sluse, D.; Tewes, M.

    2014-11-01

    The advent of large area photometric surveys has raised a great deal of interest in the possibility of using broadband photometric data, instead of spectra, to measure the size of the broad line region of active galactic nuclei. We describe here a new method that uses time-delay lensed quasars where one or several images are affected by microlensing due to stars in the lensing galaxy. Because microlensing decreases (or increases) the flux of the continuum compared to the broad line region, it changes the contrast between these two emission components. We show that this effect can be used to effectively disentangle the intrinsic variability of those two regions, offering the opportunity to perform reverberation mapping based on single-band photometric data. Based on simulated light curves generated using a damped random walk model of quasar variability, we show that measurement of the size of the broad line region can be achieved using this method, provided one spectrum has been obtained independently during the monitoring. This method is complementary to photometric reverberation mapping and could also be extended to multi-band data. Because the effect described above produces a variability pattern in difference light curves between pairs of lensed images that is correlated with the time-lagged continuum variability, it can potentially produce systematic errors in measurement of time delays between pairs of lensed images. Simple simulations indicate that time-delay measurement techniques that use a sufficiently flexible model for the extrinsic variability are not affected by this effect and produce accurate time delays.

  19. Probabilistic delay differential equation modeling of event-related potentials.

    Science.gov (United States)

    Ostwald, Dirk; Starke, Ludger

    2016-08-01

    "Dynamic causal models" (DCMs) are a promising approach in the analysis of functional neuroimaging data due to their biophysical interpretability and their consolidation of functional-segregative and functional-integrative propositions. In this theoretical note we are concerned with the DCM framework for electroencephalographically recorded event-related potentials (ERP-DCM). Intuitively, ERP-DCM combines deterministic dynamical neural mass models with dipole-based EEG forward models to describe the event-related scalp potential time-series over the entire electrode space. Since its inception, ERP-DCM has been successfully employed to capture the neural underpinnings of a wide range of neurocognitive phenomena. However, in spite of its empirical popularity, the technical literature on ERP-DCM remains somewhat patchy. A number of previous communications have detailed certain aspects of the approach, but no unified and coherent documentation exists. With this technical note, we aim to close this gap and to increase the technical accessibility of ERP-DCM. Specifically, this note makes the following novel contributions: firstly, we provide a unified and coherent review of the mathematical machinery of the latent and forward models constituting ERP-DCM by formulating the approach as a probabilistic latent delay differential equation model. Secondly, we emphasize the probabilistic nature of the model and its variational Bayesian inversion scheme by explicitly deriving the variational free energy function in terms of both the likelihood expectation and variance parameters. Thirdly, we detail and validate the estimation of the model with a special focus on the explicit form of the variational free energy function and introduce a conventional nonlinear optimization scheme for its maximization. Finally, we identify and discuss a number of computational issues which may be addressed in the future development of the approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A joint spare part and maintenance inspection optimisation model using the Delay-Time concept

    International Nuclear Information System (INIS)

    Wang Wenbin

    2011-01-01

    Spare parts and maintenance are closely related logistics activities where maintenance generates the need for spare parts. When preventive maintenance is present, it may need more spare parts at one time because of the planned preventive maintenance activities. This paper considers the joint optimisation of three decision variables, e.g., the ordering quantity, ordering interval and inspection interval. The model is constructed using the well-known Delay-Time concept where the failure process is divided into a two-stage process. The objective function is the long run expected cost per unit time in terms of the three decision variables to be optimised. Here we use a block-based inspection policy where all components are inspected at the same time regardless of the ages of the components. This creates a situation that the time to failure since the immediate previous inspection is random and has to be modelled by a distribution. This time is called the forward time and a limiting but closed form of such distribution is obtained. We develop an algorithm for the optimal solution of the decision process using a combination of analytical and enumeration approaches. The model is demonstrated by a numerical example. - Highlights: → Joint optimisation of maintenance and spare part inventory. → The use of the Delay-Time concept. → Block-based inspection. → Fixed order interval but variable order quantity.