Salomons, E.M.; Lohman, W.J.A.; Zhou, H.
2016-01-01
Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases:
Direct FVM Simulation for Sound Propagation in an Ideal Wedge
Directory of Open Access Journals (Sweden)
Hongyu Ji
2016-01-01
Full Text Available The sound propagation in a wedge-shaped waveguide with perfectly reflecting boundaries is one of the few range-dependent problems with an analytical solution. This provides a benchmark for the theoretical and computational studies on the simulation of ocean acoustic applications. We present a direct finite volume method (FVM simulation for the ideal wedge problem, and both time and frequency domain results are analyzed. We also study the broadband problem with large-scale parallel simulations. The results presented in this paper validate the accuracy of the numerical techniques and show that the direct FVM simulation could be applied to large-scale complex acoustic applications with a high performance computing platform.
Salomons, Erik M; Lohman, Walter J A; Zhou, Han
2016-01-01
Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing.
Sound propagation in dry granular materials : discrete element simulations, theory, and experiments
Mouraille, O.J.P.
2009-01-01
In this study sound wave propagation through different types of dry confined granular systems is studied. With three-dimensional discrete element simulations, theory and experiments, the influence of several micro-scale properties: friction, dissipation, particle rotation, and contact disorder, on
Salomons, E.; Polinder, H.; Lohman, W.; Zhou, H.; Borst, H.
2009-01-01
A new engineering model for sound propagation in cities is presented. The model is based on numerical and experimental studies of sound propagation between street canyons. Multiple reflections in the source canyon and the receiver canyon are taken into account in an efficient way, while weak
DEFF Research Database (Denmark)
Wahlberg, Magnus; Larsen, Ole Næsbye
2017-01-01
properties can be modified by sound absorption, refraction, and interference from multi paths caused by reflections.The path from the source to the receiver may be bent due to refraction. Besides geometrical attenuation, the ground effect and turbulence are the most important mechanisms to influence...... communication sounds for airborne acoustics and bottom and surface effects for underwater sounds. Refraction becomes very important close to shadow zones. For echolocation signals, geometric attenuation and sound absorption have the largest effects on the signals....
CFD-DEM Simulation of Propagation of Sound Waves in Fluid Particles Fluidised Medium
Directory of Open Access Journals (Sweden)
H Khawaja
2016-09-01
Full Text Available In this work, speed of sound in 2 phase mixture has been explored using CFD-DEM (Computational Fluid Dynamcis - Discrete Element Modelling. In this method volume averaged Navier Stokes, continuity and energy equations are solved for fluid. Particles are simulated as individual entities; their behaviour is captured by Newton's laws of motion and classical contact mechanics. Particle-fluid interaction is captured using drag laws given in literature. The speed of sound in a medium depends on physical properties. It has been found experimentally that speed of sound drops significantly in 2 phase mixture of fluidised particles because of its increased density relative to gas while maintaining its compressibility. Due to the high rate of heat transfer within 2 phase medium as given in Roy et al. (1990, it has been assumed that the fluidised gas-particle medium is isothermal. The similar phenomenon has been tried to be captured using CFD-DEM numerical simulation. The disturbance is introduced and fundamental frequency in the medium is noted to measure the speed of sound for e.g. organ pipe. It has been found that speed of sound is in agreement with the relationship given in Roy et al. (1990. Their assumption that the system is isothermal also appears to be valid.
Efficient Geometric Sound Propagation Using Visibility Culling
Chandak, Anish
2011-07-01
Simulating propagation of sound can improve the sense of realism in interactive applications such as video games and can lead to better designs in engineering applications such as architectural acoustics. In this thesis, we present geometric sound propagation techniques which are faster than prior methods and map well to upcoming parallel multi-core CPUs. We model specular reflections by using the image-source method and model finite-edge diffraction by using the well-known Biot-Tolstoy-Medwin (BTM) model. We accelerate the computation of specular reflections by applying novel visibility algorithms, FastV and AD-Frustum, which compute visibility from a point. We accelerate finite-edge diffraction modeling by applying a novel visibility algorithm which computes visibility from a region. Our visibility algorithms are based on frustum tracing and exploit recent advances in fast ray-hierarchy intersections, data-parallel computations, and scalable, multi-core algorithms. The AD-Frustum algorithm adapts its computation to the scene complexity and allows small errors in computing specular reflection paths for higher computational efficiency. FastV and our visibility algorithm from a region are general, object-space, conservative visibility algorithms that together significantly reduce the number of image sources compared to other techniques while preserving the same accuracy. Our geometric propagation algorithms are an order of magnitude faster than prior approaches for modeling specular reflections and two to ten times faster for modeling finite-edge diffraction. Our algorithms are interactive, scale almost linearly on multi-core CPUs, and can handle large, complex, and dynamic scenes. We also compare the accuracy of our sound propagation algorithms with other methods. Once sound propagation is performed, it is desirable to listen to the propagated sound in interactive and engineering applications. We can generate smooth, artifact-free output audio signals by applying
Underwater Sound Propagation from Marine Pile Driving.
Reyff, James A
2016-01-01
Pile driving occurs in a variety of nearshore environments that typically have very shallow-water depths. The propagation of pile-driving sound in water is complex, where sound is directly radiated from the pile as well as through the ground substrate. Piles driven in the ground near water bodies can produce considerable underwater sound energy. This paper presents examples of sound propagation through shallow-water environments. Some of these examples illustrate the substantial variation in sound amplitude over time that can be critical to understand when computing an acoustic-based safety zone for aquatic species.
Interactive Sound Propagation using Precomputation and Statistical Approximations
Antani, Lakulish
Acoustic phenomena such as early reflections, diffraction, and reverberation have been shown to improve the user experience in interactive virtual environments and video games. These effects arise due to repeated interactions between sound waves and objects in the environment. In interactive applications, these effects must be simulated within a prescribed time budget. We present two complementary approaches for computing such acoustic effects in real time, with plausible variation in the sound field throughout the scene. The first approach, Precomputed Acoustic Radiance Transfer, precomputes a matrix that accounts for multiple acoustic interactions between all scene objects. The matrix is used at run time to provide sound propagation effects that vary smoothly as sources and listeners move. The second approach couples two techniques---Ambient Reverberance, and Aural Proxies---to provide approximate sound propagation effects in real time, based on only the portion of the environment immediately visible to the listener. These approaches lie at different ends of a space of interactive sound propagation techniques for modeling sound propagation effects in interactive applications. The first approach emphasizes accuracy by modeling acoustic interactions between all parts of the scene; the second approach emphasizes efficiency by only taking the local environment of the listener into account. These methods have been used to efficiently generate acoustic walkthroughs of architectural models. They have also been integrated into a modern game engine, and can enable realistic, interactive sound propagation on commodity desktop PCs.
Propagation of sound in oceans
Digital Repository Service at National Institute of Oceanography (India)
Advilkar, P.J.
prestigious institute. I am privileged to express my sincere thanks to JRF’s Roshin Sir, Bajish Sir, for training me both practically and theoretically about various techniques, without which my work would not have reached its completion. I am equally... wrote his Mathematical Principles of Natural Philosophy which included the first mathematical treatment of sound. The modern study of underwater acoustics can be considered to have started in early 19 th century. In 1826, on Lake Geneva, the speed...
Sound Propagation An impedance Based Approach
Kim, Yang-Hann
2010-01-01
In Sound Propagation: An Impedance Based Approach , Professor Yang-Hann Kim introduces acoustics and sound fields by using the concept of impedance. Kim starts with vibrations and waves, demonstrating how vibration can be envisaged as a kind of wave, mathematically and physically. One-dimensional waves are used to convey the fundamental concepts. Readers can then understand wave propagation in terms of characteristic and driving point impedance. The essential measures for acoustic waves, such as dB scale, octave scale, acoustic pressure, energy, and intensity, are explained. These measures are
Sound propagation in elongated superfluid fermionic clouds
International Nuclear Information System (INIS)
Capuzzi, P.; Vignolo, P.; Federici, F.; Tosi, M. P.
2006-01-01
We use hydrodynamic equations to study sound propagation in a superfluid Fermi gas at zero temperature inside a strongly elongated cigar-shaped trap, with main attention to the transition from the BCS to the unitary regime. First, we treat the role of the radial density profile in the limit of a cylindrical geometry and then evaluate numerically the effect of the axial confinement in a configuration in which a hole is present in the gas density at the center of the trap. We find that in a strongly elongated trap the speed of sound in both the BCS and the unitary regime differs by a factor √(3/5) from that in a homogeneous three-dimensional superfluid. The predictions of the theory could be tested by measurements of sound-wave propagation in a setup such as that exploited by Andrews et al. [Phys. Rev. Lett. 79, 553 (1997)] for an atomic Bose-Einstein condensate
Boundary effects on sound propagation in superfluids
International Nuclear Information System (INIS)
Jensen, H.H.; Smith, H.; Woelfle, P.
1983-01-01
The attenuation of fourth sound propagating in a superfluid confined within a channel is determined on a microscopic basis, taking into account the scatter of the quasiparticles from the walls. The Q value of a fourth-sound resonance is shown to be inversely proportional to the stationary flow of thermal excitations through the channel due to an external force. Our theoretical estimates of Q are compared with experimentally observed values for 3 He. The transition between first and fourth sound is studied in detail on the basis of two-fluid hydrodynamics, including the slip of the normal component at the walls. The slip is shown to have a strong influence on the velocity and attenuation in the transition region between first and fourth sound, offering a means to examine the interaction of quasiparticles with a solid surface
The propagation of sound in tunnels
Li, Kai Ming; Iu, King Kwong
2002-11-01
The sound propagation in tunnels is addressed theoretically and experimentally. In many previous studies, the image source method is frequently used. However, these early theoretical models are somewhat inadequate because the effect of multiple reflections in long enclosures is often modeled by the incoherent summation of contributions from all image sources. Ignoring the phase effect, these numerical models are unlikely to be satisfactory for predicting the intricate interference patterns due to contributions from each image source. In the present paper, the interference effect is incorporated by summing the contributions from the image sources coherently. To develop a simple numerical model, tunnels are represented by long rectangular enclosures with either geometrically reflecting or impedance boundaries. Scale model experiments are conducted for the validation of the numerical model. In some of the scale model experiments, the enclosure walls are lined with a carpet for simulating the impedance boundary condition. Large-scale outdoor measurements have also been conducted in two tunnels designed originally for road traffic use. It has been shown that the proposed numerical model agrees reasonably well with experimental data. [Work supported by the Research Grants Council, The Industry Department, NAP Acoustics (Far East) Ltd., and The Hong Kong Polytechnic University.
Effects of lung elasticity on the sound propagation in the lung
International Nuclear Information System (INIS)
Yoneda, Takahiro; Wada, Shigeo; Nakamura, Masanori; Horii, Noriaki; Mizushima, Koichiro
2011-01-01
Sound propagation in the lung was simulated for gaining insight into its acoustic properties. A thorax model consisting of lung parenchyma, thoracic bones, trachea and other tissues was made from human CT images. Acoustic nature of the lung parenchyma and bones was expressed with the Biot model of poroelastic material, whereas trachea and tissues were modeled with gas and an elastic material. A point sound source of white noises was placed in the first bifurcation of trachea. The sound propagation in the thorax model was simulated in a frequency domain. The results demonstrated the significant attenuation of sound especially in frequencies larger than 1,000 Hz. Simulations with a stiffened lung demonstrated suppression of the sound attenuation for higher frequencies observed in the normal lung. These results indicate that the normal lung has the nature of a low-pass filter, and stiffening helps the sound at higher frequencies to propagate without attenuations. (author)
Interactive physically-based sound simulation
Raghuvanshi, Nikunj
The realization of interactive, immersive virtual worlds requires the ability to present a realistic audio experience that convincingly compliments their visual rendering. Physical simulation is a natural way to achieve such realism, enabling deeply immersive virtual worlds. However, physically-based sound simulation is very computationally expensive owing to the high-frequency, transient oscillations underlying audible sounds. The increasing computational power of desktop computers has served to reduce the gap between required and available computation, and it has become possible to bridge this gap further by using a combination of algorithmic improvements that exploit the physical, as well as perceptual properties of audible sounds. My thesis is a step in this direction. My dissertation concentrates on developing real-time techniques for both sub-problems of sound simulation: synthesis and propagation. Sound synthesis is concerned with generating the sounds produced by objects due to elastic surface vibrations upon interaction with the environment, such as collisions. I present novel techniques that exploit human auditory perception to simulate scenes with hundreds of sounding objects undergoing impact and rolling in real time. Sound propagation is the complementary problem of modeling the high-order scattering and diffraction of sound in an environment as it travels from source to listener. I discuss my work on a novel numerical acoustic simulator (ARD) that is hundred times faster and consumes ten times less memory than a high-accuracy finite-difference technique, allowing acoustic simulations on previously-intractable spaces, such as a cathedral, on a desktop computer. Lastly, I present my work on interactive sound propagation that leverages my ARD simulator to render the acoustics of arbitrary static scenes for multiple moving sources and listener in real time, while accounting for scene-dependent effects such as low-pass filtering and smooth attenuation
Surface effects on the propagation of sound in Fermi liquids
International Nuclear Information System (INIS)
Nagai, K.; Woelfle, P.
1981-01-01
The propagation of sound in a resonator is discussed in both the normal and superfluid Fermi liquids. A set of model hydrodynamic equations is developed for describing the transition from the hydrodynamic regime to the collisionless regime. Surface effects are incorporated by using a slip boundary condition. The resonance condition for the sound propagation in a cylindrical resonator is derived
Propagation of Sound in a Bose-Einstein Condensate
International Nuclear Information System (INIS)
Andrews, M.R.; Kurn, D.M.; Miesner, H.; Durfee, D.S.; Townsend, C.G.; Inouye, S.; Ketterle, W.
1997-01-01
Sound propagation has been studied in a magnetically trapped dilute Bose-Einstein condensate. Localized excitations were induced by suddenly modifying the trapping potential using the optical dipole force of a focused laser beam. The resulting propagation of sound was observed using a novel technique, rapid sequencing of nondestructive phase-contrast images. The speed of sound was determined as a function of density and found to be consistent with Bogoliubov theory. This method may generally be used to observe high-lying modes and perhaps second sound. copyright 1997 The American Physical Society
Kinetic-sound propagation in dilute gas mixtures
International Nuclear Information System (INIS)
Campa, A.; Cohen, E.G.D.
1989-01-01
Kinetic sound is predicted in dilute disparate-mass binary gas mixtures, propagating exclusively in the light compound and much faster than ordinary sound. It should be detectable by light-scattering experiments, as an extended shoulder in the scattering cross section for large frequencies. As an example, H 2 -Ar mixtures are discussed
Calculation of sound propagation in fibrous materials
DEFF Research Database (Denmark)
Tarnow, Viggo
1996-01-01
Calculations of attenuation and velocity of audible sound waves in glass wools are presented. The calculations use only the diameters of fibres and the mass density of glass wools as parameters. The calculations are compared with measurements.......Calculations of attenuation and velocity of audible sound waves in glass wools are presented. The calculations use only the diameters of fibres and the mass density of glass wools as parameters. The calculations are compared with measurements....
Propagation of sound waves in ducts
DEFF Research Database (Denmark)
Jacobsen, Finn
2000-01-01
Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described.......Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described....
Measurement of sound propagation in glass wool
DEFF Research Database (Denmark)
Tarnow, Viggo
1995-01-01
A new acoustic method for directly measuring the flow resistance, and the compressibility of fibrous materials such as glass wool, is given. Measured results for monochromatic sound in glass wool are presented and compared with theoretically calculated results. The agreement between experimental...
Search for fourth sound propagation in supersolid 4He
International Nuclear Information System (INIS)
Aoki, Y.; Kojima, H.; Lin, X.
2008-01-01
A systematic study is carried out to search for fourth sound propagation solid 4 He samples below 500 mK down to 40 mK between 25 and 56 bar using the techniques of heat pulse generator and titanium superconducting transition edge bolometer. If solid 4 He is endowed with superfluidity below 200 mK, as indicated by recent torsional oscillator experiments, theories predict fourth sound propagation in such a supersolid state. If found, fourth sound would provide convincing evidence for superfluidity and a new tool for studying the new phase. The search for a fourth sound-like mode is based on the response of the bolometers to heat pulses traveling through cylindrical samples of solids grown with different crystal qualities. Bolometers with increasing sensitivity are constructed. The heater generator amplitude is reduced to the sensitivity limit to search for any critical velocity effects. The fourth sound velocity is expected to vary as ∞ √ Ρ s /ρ. Searches for a signature in the bolometer response with such a characteristic temperature dependence are made. The measured response signal has not so far revealed any signature of a new propagating mode within a temperature excursion of 5 μK from the background signal shape. Possible reasons for this negative result are discussed. Prior to the fourth sound search, the temperature dependence of heat pulse propagation was studied as it transformed from 'second sound' in the normal solid 4 He to transverse ballistic phonon propagation. Our work extends the studies of [V. Narayanamurti and R. C. Dynes, Phys. Rev. B 12, 1731 (1975)] to higher pressures and to lower temperatures. The measured transverse ballistic phonon propagation velocity is found to remain constant (within the 0.3% scatter of the data) below 100 mK at all pressures and reveals no indication of an onset of supersolidity. The overall dynamic thermal response of solid to heat input is found to depend strongly on the sample preparation procedure
The parabolic equation method for outdoor sound propagation
DEFF Research Database (Denmark)
Arranz, Marta Galindo
The parabolic equation method is a versatile tool for outdoor sound propagation. The present study has focused on the Cranck-Nicolson type Parabolic Equation method (CNPE). Three different applications of the CNPE method have been investigated. The first two applications study variations of the g......The parabolic equation method is a versatile tool for outdoor sound propagation. The present study has focused on the Cranck-Nicolson type Parabolic Equation method (CNPE). Three different applications of the CNPE method have been investigated. The first two applications study variations...
Propagation of Finite Amplitude Sound in Multiple Waveguide Modes.
van Doren, Thomas Walter
1993-01-01
This dissertation describes a theoretical and experimental investigation of the propagation of finite amplitude sound in multiple waveguide modes. Quasilinear analytical solutions of the full second order nonlinear wave equation, the Westervelt equation, and the KZK parabolic wave equation are obtained for the fundamental and second harmonic sound fields in a rectangular rigid-wall waveguide. It is shown that the Westervelt equation is an acceptable approximation of the full nonlinear wave equation for describing guided sound waves of finite amplitude. A system of first order equations based on both a modal and harmonic expansion of the Westervelt equation is developed for waveguides with locally reactive wall impedances. Fully nonlinear numerical solutions of the system of coupled equations are presented for waveguides formed by two parallel planes which are either both rigid, or one rigid and one pressure release. These numerical solutions are compared to finite -difference solutions of the KZK equation, and it is shown that solutions of the KZK equation are valid only at frequencies which are high compared to the cutoff frequencies of the most important modes of propagation (i.e., for which sound propagates at small grazing angles). Numerical solutions of both the Westervelt and KZK equations are compared to experiments performed in an air-filled, rigid-wall, rectangular waveguide. Solutions of the Westervelt equation are in good agreement with experiment for low source frequencies, at which sound propagates at large grazing angles, whereas solutions of the KZK equation are not valid for these cases. At higher frequencies, at which sound propagates at small grazing angles, agreement between numerical solutions of the Westervelt and KZK equations and experiment is only fair, because of problems in specifying the experimental source condition with sufficient accuracy.
Noise barriers and the harmonoise sound propagation model
Salomons, E.M.; Maercke, D. van; Randrianoelina, A.
2009-01-01
The Harmonoise sound propagation model ('the Harmonoise engineering model') was developed in the European project Harmonoise (2001-2004) for road and rail traffic noise. In 2008, CSTB Grenoble and TNO Delft have prepared a detailed description of the various steps involved in a calculation with the
Effects of wind turbine wake on atmospheric sound propagation
DEFF Research Database (Denmark)
Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong
2017-01-01
In this paper, we investigate the sound propagation from a wind turbine considering the effects of wake-induced velocity deficit and turbulence. In order to address this issue, an advanced approach was developed in which both scalar and vector parabolic equations in two dimensions are solved. Flow...
Metric approach for sound propagation in nematic liquid crystals
Pereira, E.; Fumeron, S.; Moraes, F.
2013-02-01
In the eikonal approach, we describe sound propagation near topological defects of nematic liquid crystals as geodesics of a non-Euclidian manifold endowed with an effective metric tensor. The relation between the acoustics of the medium and this geometrical description is given by Fermat's principle. We calculate the ray trajectories and propose a diffraction experiment to retrieve information about the elastic constants.
Hart, Carl R; Reznicek, Nathan J; Wilson, D Keith; Pettit, Chris L; Nykaza, Edward T
2016-05-01
Many outdoor sound propagation models exist, ranging from highly complex physics-based simulations to simplified engineering calculations, and more recently, highly flexible statistical learning methods. Several engineering and statistical learning models are evaluated by using a particular physics-based model, namely, a Crank-Nicholson parabolic equation (CNPE), as a benchmark. Narrowband transmission loss values predicted with the CNPE, based upon a simulated data set of meteorological, boundary, and source conditions, act as simulated observations. In the simulated data set sound propagation conditions span from downward refracting to upward refracting, for acoustically hard and soft boundaries, and low frequencies. Engineering models used in the comparisons include the ISO 9613-2 method, Harmonoise, and Nord2000 propagation models. Statistical learning methods used in the comparisons include bagged decision tree regression, random forest regression, boosting regression, and artificial neural network models. Computed skill scores are relative to sound propagation in a homogeneous atmosphere over a rigid ground. Overall skill scores for the engineering noise models are 0.6%, -7.1%, and 83.8% for the ISO 9613-2, Harmonoise, and Nord2000 models, respectively. Overall skill scores for the statistical learning models are 99.5%, 99.5%, 99.6%, and 99.6% for bagged decision tree, random forest, boosting, and artificial neural network regression models, respectively.
WAVE: Interactive Wave-based Sound Propagation for Virtual Environments.
Mehra, Ravish; Rungta, Atul; Golas, Abhinav; Ming Lin; Manocha, Dinesh
2015-04-01
We present an interactive wave-based sound propagation system that generates accurate, realistic sound in virtual environments for dynamic (moving) sources and listeners. We propose a novel algorithm to accurately solve the wave equation for dynamic sources and listeners using a combination of precomputation techniques and GPU-based runtime evaluation. Our system can handle large environments typically used in VR applications, compute spatial sound corresponding to listener's motion (including head tracking) and handle both omnidirectional and directional sources, all at interactive rates. As compared to prior wave-based techniques applied to large scenes with moving sources, we observe significant improvement in runtime memory. The overall sound-propagation and rendering system has been integrated with the Half-Life 2 game engine, Oculus-Rift head-mounted display, and the Xbox game controller to enable users to experience high-quality acoustic effects (e.g., amplification, diffraction low-passing, high-order scattering) and spatial audio, based on their interactions in the VR application. We provide the results of preliminary user evaluations, conducted to study the impact of wave-based acoustic effects and spatial audio on users' navigation performance in virtual environments.
The propagation of sound in narrow street canyons
Iu, K. K.; Li, K. M.
2002-08-01
This paper addresses an important problem of predicting sound propagation in narrow street canyons with width less than 10 m, which are commonly found in a built-up urban district. Major noise sources are, for example, air conditioners installed on building facades and powered mechanical equipment for repair and construction work. Interference effects due to multiple reflections from building facades and ground surfaces are important contributions in these complex environments. Although the studies of sound transmission in urban areas can be traced back to as early as the 1960s, the resulting mathematical and numerical models are still unable to predict sound fields accurately in city streets. This is understandable because sound propagation in city streets involves many intriguing phenomena such as reflections and scattering at the building facades, diffusion effects due to recessions and protrusions of building surfaces, geometric spreading, and atmospheric absorption. This paper describes the development of a numerical model for the prediction of sound fields in city streets. To simplify the problem, a typical city street is represented by two parallel reflecting walls and a flat impedance ground. The numerical model is based on a simple ray theory that takes account of multiple reflections from the building facades. The sound fields due to the point source and its images are summed coherently such that mutual interference effects between contributing rays can be included in the analysis. Indoor experiments are conducted in an anechoic chamber. Experimental data are compared with theoretical predictions to establish the validity and usefulness of this simple model. Outdoor experimental measurements have also been conducted to further validate the model. copyright 2002 Acoustical Society of America.
RASS sound speed profile (SSP) measurements for use in outdoor sound propagation models
Energy Technology Data Exchange (ETDEWEB)
Bradley, S G [Physics Department, University of Auckland (New Zealand); Huenerbein, S v; Waddington, D [Research Institute for the Built and Human Environment, University of Salford (United Kingdom)], E-mail: s.vonhunerbein@salford.ac.uk
2008-05-01
The performance of outdoor sound propagation models depends to a great extent on meteorological input parameters. In an effort to improve speed and accuracy, model output synthetic sound speed profiles (SSP) are commonly used depending on meteorological classification schemes. In order to use SSP measured by RASS in outdoor sound propagation models, the complex profiles need to be simplified. In this paper we extend an investigation on the spatial and temporal characteristics of the meteorological data set required to yield adequate comparisons between models and field measurements, so that the models can be fairly judged. Vertical SSP from RASS, SODAR wind profiles as well as mast wind and temperature data from a flat terrain site and measured over a period of several months are used to evaluate applicability of the logarithmic approximation for a stability classification scheme proposed by the HARMONOISE working group.
RASS sound speed profile (SSP) measurements for use in outdoor sound propagation models
International Nuclear Information System (INIS)
Bradley, S G; Huenerbein, S v; Waddington, D
2008-01-01
The performance of outdoor sound propagation models depends to a great extent on meteorological input parameters. In an effort to improve speed and accuracy, model output synthetic sound speed profiles (SSP) are commonly used depending on meteorological classification schemes. In order to use SSP measured by RASS in outdoor sound propagation models, the complex profiles need to be simplified. In this paper we extend an investigation on the spatial and temporal characteristics of the meteorological data set required to yield adequate comparisons between models and field measurements, so that the models can be fairly judged. Vertical SSP from RASS, SODAR wind profiles as well as mast wind and temperature data from a flat terrain site and measured over a period of several months are used to evaluate applicability of the logarithmic approximation for a stability classification scheme proposed by the HARMONOISE working group
Efficient techniques for wave-based sound propagation in interactive applications
Mehra, Ravish
Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data
Underwater Sound Propagation Modeling Methods for Predicting Marine Animal Exposure.
Hamm, Craig A; McCammon, Diana F; Taillefer, Martin L
2016-01-01
The offshore exploration and production (E&P) industry requires comprehensive and accurate ocean acoustic models for determining the exposure of marine life to the high levels of sound used in seismic surveys and other E&P activities. This paper reviews the types of acoustic models most useful for predicting the propagation of undersea noise sources and describes current exposure models. The severe problems caused by model sensitivity to the uncertainty in the environment are highlighted to support the conclusion that it is vital that risk assessments include transmission loss estimates with statistical measures of confidence.
The Effects of Seamounts on Sound Propagation in Deep Water
International Nuclear Information System (INIS)
Li Wen; Li Zheng-Lin; Zhang Ren-He; Qin Ji-Xing; Li Jun; Nan Ming-Xing
2015-01-01
A propagation experiment was conducted in the South China Sea in 2014 with a flat bottom and seamounts respectively by using explosive sources. The effects of seamounts on sound propagation are analyzed by using the broadband signals. It is observed that the transmission loss (TL) decreases up to 7 dB for the signals in the first shadow zone due to the seamount reflection. Moreover, the TL might increase more than 30 dB in the converge zone due to the shadowing by seamounts. Abnormal TLs and pulse arrival structures at different ranges are explained by using the ray and wave theory. The experimental TLs and arrival pulses are compared with the numerical results and found to be in good agreement. (paper)
Sound propagation in the steam generator - A theoretical approach
International Nuclear Information System (INIS)
Heckl, M.
1990-01-01
In order to assess the suitability of acoustic tomography in the steam generator, detailed information on its acoustic transmission properties is needed. We have developed a model which allows one to calculate the sound field produced by an incident wave in the steam generator. In our model we consider the steam generator as a medium consisting of a two-dimensional array of infinitely long cylindrical tubes. They are thin-walled, made of metal and are immersed in a liquid. Inside them there is a liquid or a gas. The incident wave is plane and perpendicular to the cylindrical tubes. When a sound wave crosses the tube bundle, each individual tube is exposed to a fluctuating pressure field and scatters sound which, together with the incident wave, influences the pressure at all surrounding tubes. The motion of an individual tube is given by differential equations (Heckl 1989) and the pressure difference between inside and outside. The interaction of a tube wall with the fluid inside and outside is treated by imposing suitable boundary conditions. Since the cylinder array is periodic, it can be considered as consisting of a large number of tube rows with a constant distance between adjacent cylinders within a row and constant spacing of the rows. The sound propagates from row to row, each time getting partly transmitted and partly reflected. A single row is similar to a diffraction grating known from optics. The transmission properties of one row or grating depend on the ratio between spacing and wavelength. If the wavelength is larger than the spacing, then the wave is transmitted only in the original direction. However, for wavelengths smaller than the spacing, the transmitted wave has components travelling in several discrete directions. The response of one row to sound scattered from a neighbouring row is calculated from Kirchhoff's theorem. An iteration scheme has been developed to take the reflection and transmission at several rows into account. 7 refs, figs and
Molecular dynamics simulation of propagating cracks
Mullins, M.
1982-01-01
Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.
Long Range Sound Propagation over Sea: Application to Wind Turbine Noise
Energy Technology Data Exchange (ETDEWEB)
Boue, Matieu
2007-12-13
Oeland, an array of 8 microphones created an acoustical antenna directed towards the sound sources. Wind and temperature data was measured at the source location and during one measurement period (June 2005), wind and temperature profiles were also mapped in the reception area. In order to increase the signal to noise ratio different signal enhancement methods were tested including a Kalman Filter technique and periodic time-averaging. The most accurate results were obtained by combining the Kalman Filter model with a Fast Fourier Transform (FFT). Sound pressure levels as low as a few dB could be detected by using this algorithm. The final results expressed as a transmission loss ('damping in sound pressure level corrected for the atmospheric damping') between the source and the receiver, have been compared to simultaneously measured wind and temperature profiles. The transmission loss data have also been expressed as statistical distributions from which e.g. the average value can be obtained. This average, based on data for the summer period June 2005/2006, has been compared with the Swedish Environmental Protection Agency recommendation. It is found that the breaking point for cylindrical propagation is close to 700 m instead of the 200 m assumed in the recommendation. This is a significant difference and it shows that probably the Swedish recommendation uses a too small value for the expected breaking point. Of course in general the value of the breaking point can depend on the location and for which part of the year one takes the average. How large the variation can be due to such factors is today still unknown. Here only more measurements and perhaps simulations combined with the wind data base available in Sweden can provide an answer.
Energy Technology Data Exchange (ETDEWEB)
Makse, Hernan A. [City College of New York, NY (United States). Levich Inst., Dept. of Physcis; Johnson, David L. [Schlumberger-Doll Research, Cambridge, MA (United States)
2014-09-03
This is the final report describing the results of DOE Grant # DE-FG02-03ER15458 with original termination date of April 31, 2013, which has been extended to April 31, 2014. The goal of this project is to develop a theoretical and experimental understanding of sound propagation, elasticity and dissipation in granular materials. The topic is relevant for the efficient production of hydrocarbon and for identifying and characterizing the underground formation for storage of either CO_{2} or nuclear waste material. Furthermore, understanding the basic properties of acoustic propagation in granular media is of importance not only to the energy industry, but also to the pharmaceutical, chemical and agricultural industries. We employ a set of experimental, theoretical and computational tools to develop a study of acoustics and dissipation in granular media. These include the concept effective mass of granular media, normal modes analysis, statistical mechanics frameworks and numerical simulations based on Discrete Element Methods. Effective mass measurements allow us to study the mechanisms of the elastic response and attenuation of acoustic modes in granular media. We perform experiments and simulations under varying conditions, including humidity and vacuum, and different interparticle force-laws to develop a fundamental understanding of the mechanisms of damping and acoustic propagation in granular media. A theoretical statistical approach studies the necessary phase space of configurations in pressure, volume fraction to classify granular materials.
Analytical Lie-algebraic solution of a 3D sound propagation problem in the ocean
Energy Technology Data Exchange (ETDEWEB)
Petrov, P.S., E-mail: petrov@poi.dvo.ru [Il' ichev Pacific Oceanological Institute, 43 Baltiyskaya str., Vladivostok, 690041 (Russian Federation); Prants, S.V., E-mail: prants@poi.dvo.ru [Il' ichev Pacific Oceanological Institute, 43 Baltiyskaya str., Vladivostok, 690041 (Russian Federation); Petrova, T.N., E-mail: petrova.tn@dvfu.ru [Far Eastern Federal University, 8 Sukhanova str., 690950, Vladivostok (Russian Federation)
2017-06-21
The problem of sound propagation in a shallow sea with variable bottom slope is considered. The sound pressure field produced by a time-harmonic point source in such inhomogeneous 3D waveguide is expressed in the form of a modal expansion. The expansion coefficients are computed using the adiabatic mode parabolic equation theory. The mode parabolic equations are solved explicitly, and the analytical expressions for the modal coefficients are obtained using a Lie-algebraic technique. - Highlights: • A group-theoretical approach is applied to a problem of sound propagation in a shallow sea with variable bottom slope. • An analytical solution of this problem is obtained in the form of modal expansion with analytical expressions of the coefficients. • Our result is the only analytical solution of the 3D sound propagation problem with no translational invariance. • This solution can be used for the validation of the numerical propagation models.
Ostashev, Vladimir E; Wilson, D Keith; Muhlestein, Michael B; Attenborough, Keith
2018-02-01
Although sound propagation in a forest is important in several applications, there are currently no rigorous yet computationally tractable prediction methods. Due to the complexity of sound scattering in a forest, it is natural to formulate the problem stochastically. In this paper, it is demonstrated that the equations for the statistical moments of the sound field propagating in a forest have the same form as those for sound propagation in a turbulent atmosphere if the scattering properties of the two media are expressed in terms of the differential scattering and total cross sections. Using the existing theories for sound propagation in a turbulent atmosphere, this analogy enables the derivation of several results for predicting forest acoustics. In particular, the second-moment parabolic equation is formulated for the spatial correlation function of the sound field propagating above an impedance ground in a forest with micrometeorology. Effective numerical techniques for solving this equation have been developed in atmospheric acoustics. In another example, formulas are obtained that describe the effect of a forest on the interference between the direct and ground-reflected waves. The formulated correspondence between wave propagation in discrete and continuous random media can also be used in other fields of physics.
Nonlinear effects in the propagation of shortwave transverse sound in pure superconductors
International Nuclear Information System (INIS)
Gal'perin, Y.
1982-01-01
Various mechanisms are analyzed which lead to nonlinear phenomena (e.g., the dependence of the absorption coefficient and of the velocity of sound on its intensity) in the propagation of transverse shortwave sound in pure superconductors (the wavelength of the sound being much less than the mean free path of the quasiparticles). It is shown that the basic mechanism, over a wide range of superconductor parameters and of the sound intensity, is the so-called momentum nonlinearity. The latter is due to the distortion (induced by the sound wave) of the quasimomentum distribution of resonant electrons interacting with the wave. The dependences of the absorption coefficient and of the sound velocity on its intensity and on the temperature are analyzed in the vicinity of the superconducting transition point. The feasibility of an experimental study of nonlinear acoustic phenomena in the case of transverse sound is considered
Simulation of action potential propagation in plants.
Sukhov, Vladimir; Nerush, Vladimir; Orlova, Lyubov; Vodeneev, Vladimir
2011-12-21
Action potential is considered to be one of the primary responses of a plant to action of various environmental factors. Understanding plant action potential propagation mechanisms requires experimental investigation and simulation; however, a detailed mathematical model of plant electrical signal transmission is absent. Here, the mathematical model of action potential propagation in plants has been worked out. The model is a two-dimensional system of excitable cells; each of them is electrically coupled with four neighboring ones. Ion diffusion between excitable cell apoplast areas is also taken into account. The action potential generation in a single cell has been described on the basis of our previous model. The model simulates active and passive signal transmission well enough. It has been used to analyze theoretically the influence of cell to cell electrical conductivity and H(+)-ATPase activity on the signal transmission in plants. An increase in cell to cell electrical conductivity has been shown to stimulate an increase in the length constant, the action potential propagation velocity and the temperature threshold, while the membrane potential threshold being weakly changed. The growth of H(+)-ATPase activity has been found to induce the increase of temperature and membrane potential thresholds and the reduction of the length constant and the action potential propagation velocity. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sound Propagation Considerations for a Deep-Ocean Acoustic Network
2009-12-01
classic “ tea cup” surveillance volume for a bottom sensor. 27 Figure 18. TL of a 100-Hz, 3995-m source using a 4000-m Munk sound speed profile B...18. LTJG Pongaskorn Sommai, Royal Thai Navy Naval Postgraduate School Monterey, California 19. ENS William Jenkins, USN Naval Postgraduate School
Measurements of anisotropic sound propagation in glass wool
DEFF Research Database (Denmark)
Tarnow, Viggo
2000-01-01
to the glass wool sheets was 75 dB/m, and for propagation parallel with the sheets 57 dB/m. For mass density 30 kg/m3, the corresponding numbers were 140 and 100 dB/m. The measured values were compared with calculated ones taking into account the movements of the fiber skeleton. The calculations need...
Directory of Open Access Journals (Sweden)
Zdeslav Hrepic
2010-09-01
Full Text Available We investigated introductory physics students’ mental models of sound propagation. We used a phenomenographic method to analyze the data in the study. In addition to the scientifically accepted Wave model, students used the “Entity” model to describe the propagation of sound. In this latter model sound is a self-standing entity, different from the medium through which it propagates. All other observed alternative models contain elements of both Entity and Wave models, but at the same time are distinct from each of the constituent models. We called these models “hybrid” or “blend” models. We discuss how students use these models in various contexts before and after instruction and how our findings contribute to the understanding of conceptual change. Implications of our findings for teaching are summarized.
DEFF Research Database (Denmark)
Santillan, Arturo Orozco; Bozhevolnyi, Sergey I.
2014-01-01
We present experimental results demonstrating the phenomenon of acoustic transparency with a significant slowdown of sound propagation realized with a series of paired detuned acoustic resonators (DAR) side-attached to a waveguide. The phenomenon mimics the electromagnetically induced transparency...... than 20 dB on both sides of the transparency window, and we quantify directly (using a pulse propagation) the acoustic slowdown effect, resulting in the sound group velocity of 9.8 m/s (i.e. in the group refractive index of 35). We find very similar values of the group refractive index by using...
Simulation of ultrasound propagation in bone
Kaufman, Jonathan J.; Luo, Gangming; Siffert, Robert S.
2004-10-01
Ultrasound has been proposed as a means to noninvasively assess bone and, particularly, bone strength and fracture risk, as for example in osteoporosis. Because strength is a function of both mineral density and architecture, ultrasound has the potential to provide more accurate measurement of bone integrity than, for example, with x-ray absorptiometric methods. Although some of this potential has already been realized-a number of clinical devices are presently available-there is still much that is unknown regarding the interaction of ultrasound with bone. Because of the inherent complexity of the propagation medium, few analytic solutions exist with practical application. For this reason, ultrasound simulation techniques have been developed and applied to a number of different problems of interest in ultrasonic bone assessment. Both 2D and 3D simulation results will be presented, including the effects of architecture and density on the received waveform, propagation effects of both cortical and trabecular bone, and the relative contributions of scattering and absorption to attenuation in trabecular bone. The results of these simulation studies should lead to improved understanding and ultimately to more effective clinical devices for ultrasound bone assessment. [This work was supported by The Carroll and Milton Petrie Foundation and by SBIR Grant No. 1R43RR16750 from the National Center for Research Resources of the NIH.
Sound Propagation in Shallow Water. Volume 2. Unclassified Papers
1974-11-15
range. If ßj and Bs are given in dB/WL, Eq. 9 becomes a v: Pi n (JU 2n ci(20 Ige C ^ eu 2TTC2 (20 Ige) [ nT1 ] [E, where Ci is the...elementary "resolution cell ". The echo and the reverberation level are thus affected in the same wa; by the variations of propagation loss. The fact that...the area of the resolution cell increases proportionally with the range is more or less compensated by the decrease of the scattering strength which
On propagation of sound waves in Q2D conductors in a quantizing magnetic field
Kirichenko, O V; Galbova, O; Ivanovski, G; Krstovska, D
2003-01-01
The attenuation of sound waves propagating normally to the layers of a Q2D conductor is analysed at low enough temperatures when quantization of the energy of conduction electrons results in an oscillatory dependence of the sound attenuation rate on the inverse magnetic field. The sound wave decrement is found for different orientations of the magnetic field with respect to the layers. A layered conductor is shown to be most transparent in the case when the magnetic field is orthogonal to the layers.
On propagation of sound waves in Q2D conductors in a quantizing magnetic field
International Nuclear Information System (INIS)
Kirichenko, O.V.; Peschansky, V.G.; Galbova, O.; Ivanovski, G.; Krstovska, D.
2003-01-01
The attenuation of sound waves propagating normally to the layers of a Q2D conductor is analysed at low enough temperatures when quantization of the energy of conduction electrons results in an oscillatory dependence of the sound attenuation rate on the inverse magnetic field. The sound wave decrement is found for different orientations of the magnetic field with respect to the layers. A layered conductor is shown to be most transparent in the case when the magnetic field is orthogonal to the layers
The energy transport by the propagation of sound waves in wave guides with a moving medium
le Grand, P.
1977-01-01
The problem of the propagation of sound waves radiated by a source in a fluid moving with subsonic velocity between two parallel walls or inside a cylindrical tube is considered in [2], The most interesting thing of this problem is that waves may occur with constant amplitude coming from infinity.
Isogeometric analysis of sound propagation through laminar flow in 2-dimensional ducts
DEFF Research Database (Denmark)
Nørtoft, Peter; Gravesen, Jens; Willatzen, Morten
2015-01-01
We consider the propagation of sound through a slowly moving fluid in a 2-dimensional duct. A detailed description of a flow-acoustic model of the problem using B-spline based isogeometric analysis is given. The model couples the non-linear, steady-state, incompressible Navier-Stokes equation in ...
Experimental Investigation of Propagation and Reflection Phenomena in Finite Amplitude Sound Beams.
Averkiou, Michalakis Andrea
Measurements of finite amplitude sound beams are compared with theoretical predictions based on the KZK equation. Attention is devoted to harmonic generation and shock formation related to a variety of propagation and reflection phenomena. Both focused and unfocused piston sources were used in the experiments. The nominal source parameters are piston radii of 6-25 mm, frequencies of 1-5 MHz, and focal lengths of 10-20 cm. The research may be divided into two parts: propagation and reflection of continuous-wave focused sound beams, and propagation of pulsed sound beams. In the first part, measurements of propagation curves and beam patterns of focused pistons in water, both in the free field and following reflection from curved targets, are presented. The measurements are compared with predictions from a computer model that solves the KZK equation in the frequency domain. A novel method for using focused beams to measure target curvature is developed. In the second part, measurements of pulsed sound beams from plane pistons in both water and glycerin are presented. Very short pulses (less than 2 cycles), tone bursts (5-30 cycles), and frequency modulated (FM) pulses (10-30 cycles) were measured. Acoustic saturation of pulse propagation in water is investigated. Self-demodulation of tone bursts and FM pulses was measured in glycerin, both in the near and far fields, on and off axis. All pulse measurements are compared with numerical results from a computer code that solves the KZK equation in the time domain. A quasilinear analytical solution for the entire axial field of a self-demodulating pulse is derived in the limit of strong absorption. Taken as a whole, the measurements provide a broad data base for sound beams of finite amplitude. Overall, outstanding agreement is obtained between theory and experiment.
Coupled simulation of meteorological parameters and sound intensity in a narrow valley
Energy Technology Data Exchange (ETDEWEB)
Heimann, D. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Gross, G. [Hannover Univ. (Germany). Inst. fuer Meteorologie und Klimatologie
1997-07-01
A meteorological mesoscale model is used to simulate the inhomogeneous distribution of temperature and the appertaining development of thermal wind systems in a narrow two-dimensional valley during the course of a cloud-free day. A simple sound particle model takes up the simulated meteorological fields and calculates the propagation of noise which originates from a line source at one of the slopes of this valley. The coupled modeling system ensures consistency of topography, meteorological parameters and the sound field. The temporal behaviour of the sound intensity level across the valley is examined. It is only governed by the time-dependent meteorology. The results show remarkable variations of the sound intensity during the course of a day depending on the location in the valley. (orig.) 23 refs.
4He adsorption and third-sound propagation on rough CaF2 surfaces
International Nuclear Information System (INIS)
Herrmann, J.C.; Hallock, R.B.
2003-01-01
We have investigated the propagation of third sound on well characterized rough CaF 2 surfaces as a function of 4 He film thickness. In addition we have measured the adsorption of 4 He to the CaF 2 surfaces using quartz crystal microbalances. We report values for the superfluid depletion thickness D for the three surfaces examined here. A model for the reduction of the third-sound speed due to the increased helium adsorption on rough CaF 2 is explored
Wei, Qi; Tian, Ye; Zuo, Shu-Yu; Cheng, Ying; Liu, Xiao-Jun
2017-03-01
Acoustic topological states support sound propagation along the boundary in a one-way direction with inherent robustness against defects and disorders, leading to the revolution of the manipulation on acoustic waves. A variety of acoustic topological states relying on circulating fluid, chiral coupling, or temporal modulation have been proposed theoretically. However, experimental demonstration has so far remained a significant challenge, due to the critical limitations such as structural complexity and high losses. Here, we experimentally demonstrate an acoustic anomalous Floquet topological insulator in a waveguide network. The acoustic gapless edge states can be found in the band gap when the waveguides are strongly coupled. The scheme features simple structure and high-energy throughput, leading to the experimental demonstration of efficient and robust topologically protected sound propagation along the boundary. The proposal may offer a unique, promising application for design of acoustic devices in acoustic guiding, switching, isolating, filtering, etc.
Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice
Khanikaev, Alexander B.; Fleury, Romain; Mousavi, S. Hossein; Alù, Andrea
2015-10-01
Topological insulators do not allow conduction in the bulk, yet they support edge modes that travel along the boundary only in one direction, determined by the carried electron spin, with inherent robustness to defects and disorder. Topological insulators have inspired analogues in photonics and optics, in which one-way edge propagation in topologically protected two-dimensional materials is achieved breaking time-reversal symmetry with a magnetic bias. Here, we introduce the concept of topological order in classical acoustics, realizing robust topological protection and one-way edge propagation of sound in a suitably designed resonator lattice biased with angular momentum, forming the acoustic analogue of a magnetically biased graphene layer. Extending the concept of an acoustic nonreciprocal circulator based on angular-momentum bias, time-reversal symmetry is broken here using moderate rotational motion of air within each element of the lattice, which takes the role of the electron spin in determining the direction of modal edge propagation.
Numerical simulation methods for wave propagation through optical waveguides
International Nuclear Information System (INIS)
Sharma, A.
1993-01-01
The simulation of the field propagation through waveguides requires numerical solutions of the Helmholtz equation. For this purpose a method based on the principle of orthogonal collocation was recently developed. The method is also applicable to nonlinear pulse propagation through optical fibers. Some of the salient features of this method and its application to both linear and nonlinear wave propagation through optical waveguides are discussed in this report. 51 refs, 8 figs, 2 tabs
Molecular dynamics simulations of classical sound absorption in a monatomic gas
Ayub, M.; Zander, A. C.; Huang, D. M.; Cazzolato, B. S.; Howard, C. Q.
2018-05-01
Sound wave propagation in argon gas is simulated using molecular dynamics (MD) in order to determine the attenuation of acoustic energy due to classical (viscous and thermal) losses at high frequencies. In addition, a method is described to estimate attenuation of acoustic energy using the thermodynamic concept of exergy. The results are compared against standing wave theory and the predictions of the theory of continuum mechanics. Acoustic energy losses are studied by evaluating various attenuation parameters and by comparing the changes in behavior at three different frequencies. This study demonstrates acoustic absorption effects in a gas simulated in a thermostatted molecular simulation and quantifies the classical losses in terms of the sound attenuation constant. The approach can be extended to further understanding of acoustic loss mechanisms in the presence of nanoscale porous materials in the simulation domain.
Simulation of activation and propagation delay during tripolar neural stimulation
Goodall, E.V.; Goodall, Eleanor V.; Kosterman, L. Martin; Struijk, Johannes J.; Struijk, J.J.; Holsheimer, J.
1993-01-01
Computer simulations were perfonned to investigate the influence of stimulus amplitude on cathodal activation delay, propagation delay and blocking during stimulation with a bipolar cuff electrode. Activation and propagation delays were combined in a total delay term which was minimized between the
Investigation of fourth sound propagation in HeII in the presence of superflow
International Nuclear Information System (INIS)
Andrei, Y.E.
1980-01-01
The temperature dependence of a superflow-induced downshift of the fourth sound velocity in HeII confined in various restrictive media was measured. We found that the magnitude of the downshift strongly depends on the restrictive medium, whereas the temperature dependence is universal. The results are interpreted in terms of local superflow velocities approaching the Landau critical velocity. This model provides and understanding of the nature of the downshift and correctly predicts temperature dependence. The results show that the Landau excitation model, even when used at high velocities, where interactions between elementary excitations are substantial, hield good agreement with experiment when a first order correction is introduced to account for these interactions. In a separate series of experiments, fourth sound-like propagation in HeII in a grafoil-filled resonator was observed. The sound velocity was found to be more than an order of magnitude smaller than that of ordinary fourth sound. This significant reduction is explained in terms of a model in which the pore structure in grafoil is pictured as an ensemble of coupled Helmholz resonators
Sprague, Mark W; Luczkovich, Joseph J
2016-01-01
This finite-difference time domain (FDTD) model for sound propagation in very shallow water uses pressure and velocity grids with both 3-dimensional Cartesian and 2-dimensional cylindrical implementations. Parameters, including water and sediment properties, can vary in each dimension. Steady-state and transient signals from discrete and distributed sources, such as the surface of a vibrating pile, can be used. The cylindrical implementation uses less computation but requires axial symmetry. The Cartesian implementation allows asymmetry. FDTD calculations compare well with those of a split-step parabolic equation. Applications include modeling the propagation of individual fish sounds, fish aggregation sounds, and distributed sources.
International Nuclear Information System (INIS)
Kopainsky, J.
1975-01-01
In weakly ionized plasmas the scattering of electromagnetic waves on free electrons (Thompson scattering) can be neglected as compared with the scattering on bound electrons (Rayleigh scattering). If the scattering process can be described by a fluid dynamical model it is caused by sound waves which are generated or annihilated by the incident electromagnetic wave. The propagation of sound waves results in a shift of the scattered line whereas their absorption within the plasma produces the broadening of the scattered line. The theory of propagation of sound in weakly ionized plasmas is developed and extended to Rayleigh scattering. The results are applied to laser scattering in a weakly ionized hydrogen plasma. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Johansson, Lisa
2003-07-01
Low-frequency, long-range sound propagation over a sea surface has been calculated using a wide-angel Cranck-Nicholson Parabolic Equation method. The model is developed to investigate noise from off-shore wind turbines. The calculations are made using normal meteorological conditions of the Baltic Sea. Special consideration has been made to a wind phenomenon called low level jet with strong winds on rather low altitude. The effects of water waves on sound propagation have been incorporated in the ground boundary condition using a boss model. This way of including roughness in sound propagation models is valid for water wave heights that are small compared to the wave length of the sound. Nevertheless, since only low frequency sound is considered, waves up to the mean wave height of the Baltic Sea can be included in this manner. The calculation model has been tested against benchmark cases and agrees well with measurements. The calculations show that channelling of sound occurs at downwind conditions and that the sound propagation tends towards cylindrical spreading. The effects of the water waves are found to be fairly small.
Propagation of sound wave in high density deuterium at high temperatures
International Nuclear Information System (INIS)
Inoue, Kazuko; Ariyasu, Tomio
1986-01-01
The velocity and the attenuation constant of sound wave have been calculated for high density (10 24 ∼ 10 27 /cm 3 ) deuterium at high temperatures (10 -1 ∼ 10 4 eV). This calculation was made to understand the fuel properties in inertial confinement fusion and to obtain the basic data for pellet design. The isentropic sound wave which propagates in deuterium in plasma state at temperature T i = T e , is dealt with. The velocity is derived using the modulus of bulk elasticity of the whole system and the modulus of shear elasticity due to ion-ion interaction. For the calculation of attenuation constant, the bulk and shear viscosity due to ion-ion interaction, the shear viscosity of free electron gas, and the thermal conductivity due to free electrons are considered. The condition of frequency for the existence of such isentropic sound wave is discussed. The possibility of penetration into the fuel pellet in inertial confinement fusion is also discussed. The followings have been found: (1) The sound velocity is determined mainly from the bulk elasticity. The contribution of the shear elasticity is small. The velocity ranges from 2.8 x 10 6 to 1.5 x 10 8 cm/s in the above mentioned temperature and density regions. (2) The coefficient of attenuation constant with respect to ω 2 /2ρu 3 plotted versus temperature with the parameter of density shows a minimum. At temperatures below this minimum, the attenuation comes mainly from the bulk viscosity due to ion-ion interaction and the shear viscosity due to free electron gas. At temperatures above this minimum, the sound is attenuated mainly by the thermal conductivity due to electrons. (3) The condition for the existence of such adiabatic sound wave, is satisfied with the frequency less than 10 10 Hz. But, as for the pellet design, the wave length of sound with frequency less than 10 10 Hz is longer than the diameter of pellet when compressed highly. (author)
International Nuclear Information System (INIS)
Johnson, R.S.
1984-01-01
The propagation of surface waves - that is 'third' sound -on superfluid helium is considered. The fluid is treated as a continuum, using the two-fluid model of Landau, and incorporating the effects of healing, relaxation, thermal conductivity and Newtonian viscosity. A linear theory is developed which includes some discussion of the matching to the outer regions of the vapour. This results in a comprehensive propagation speed for linear waves, although a few properties of the flow are left undetermined at this order. A nonlinear theory is then outlined which leads to the Burgers equation in an appropriate far field, and enables the leading-order theory to be concluded. Some numerical results, for two temperatures, are presented by first recording the Helmholtz free energy as a polynomial in densities, but only the equilibrium state can be satisfactorily reproduced. The propagation speed, as a function of film thickness, is roughly estimated. The looked-for reduction in the predicted speeds is evident, but the magnitude of this reduction is too large for very thin films. However, these analytical results should prove more effective when a complete and accurate description of the Helmholtz free energy is available. (author)
The simulation of acoustic propagation within SG water leak detection system
International Nuclear Information System (INIS)
Suzuki, Takehiko; Shioyama, Tsutomu
1996-01-01
It is important to detect the leak sound signal in a steam generator tube. For this purpose, it is necessary to develop the detection system capable of detecting the leak sound signal buried in external noises. This leak sound signal is measured the acceleration on the wall of the steam generator. The authors used a simulation technique to investigate how the sound generated in a steam generator propagates out of the generator. The results obtained using the simulation technique clarify that the observed signal had many resonation frequency courses due to scattering from complex structures. Therefore, the information of the original signal is lost. However, if the acceleration value many points on the outer wall is detected, and cross-correlation are obtained from each coupled measurement point, it is possible to separate the direct wave from a source point from the scattering waves in a measurement signal. Using the cross-correlation value, the source point of the leak sound signal in a steam generator tube is determined by the synthetic aperture focusing technique
Xinyinqin: a computer-based heart sound simulator.
Zhan, X X; Pei, J H; Xiao, Y H
1995-01-01
"Xinyinqin" is the Chinese phoneticized name of the Heart Sound Simulator (HSS). The "qin" in "Xinyinqin" is the Chinese name of a category of musical instruments, which means that the operation of HSS is very convenient--like playing an electric piano with the keys. HSS is connected to the GAME I/O of an Apple microcomputer. The generation of sound is controlled by a program. Xinyinqin is used as a teaching aid of Diagnostics. It has been applied in teaching for three years. In this demonstration we will introduce the following functions of HSS: 1) The main program has two modules. The first one is the heart auscultation training module. HSS can output a heart sound selected by the student. Another program module is used to test the student's learning condition. The computer can randomly simulate a certain heart sound and ask the student to name it. The computer gives the student's answer an assessment: "correct" or "incorrect." When the answer is incorrect, the computer will output that heart sound again for the student to listen to; this process is repeated until she correctly identifies it. 2) The program is convenient to use and easy to control. By pressing the S key, it is able to output a slow heart rate until the student can clearly identify the rhythm. The heart rate, like the actual rate of a patient, can then be restored by hitting any key. By pressing the SPACE BAR, the heart sound output can be stopped to allow the teacher to explain something to the student. The teacher can resume playing the heart sound again by hitting any key; she can also change the content of the training by hitting RETURN key. In the future, we plan to simulate more heart sounds and incorporate relevant graphs.
Hamilton, Mark F.
1990-12-01
This report discusses five projects all of which involve basic theoretical research in nonlinear acoustics: (1) pulsed finite amplitude sound beams are studied with a recently developed time domain computer algorithm that solves the KZK nonlinear parabolic wave equation; (2) nonlinear acoustic wave propagation in a liquid layer is a study of harmonic generation and acoustic soliton information in a liquid between a rigid and a free surface; (3) nonlinear effects in asymmetric cylindrical sound beams is a study of source asymmetries and scattering of sound by sound at high intensity; (4) effects of absorption on the interaction of sound beams is a completed study of the role of absorption in second harmonic generation and scattering of sound by sound; and (5) parametric receiving arrays is a completed study of parametric reception in a reverberant environment.
DEFF Research Database (Denmark)
Santillan, Arturo Orozco; Pedersen, Christian Sejer; Lydolf, Morten
2007-01-01
An experimental implementation of a global sound equalization method in a rectangular room using active control is described in this paper. The main purpose of the work has been to provide experimental evidence that sound can be equalized in a continuous three-dimensional region, the listening zone......, which occupies a considerable part of the complete volume of the room. The equalization method, based on the simulation of a progressive plane wave, was implemented in a room with inner dimensions of 2.70 m x 2.74 m x 2.40 m. With this method,the sound was reproduced by a matrix of 4 x 5 loudspeakers...... in one of the walls. After traveling through the room, the sound wave was absorbed on the opposite wall, which had a similar arrangement of loudspeakers, by means of active control. A set of 40 digital FIR filters was used to modify the original input signal before it was fed to the loudspeakers, one...
International Nuclear Information System (INIS)
Marques, W. Jr.
2008-01-01
We analyse the problem concerning the propagation of sound waves in gases by using the modified hydrodynamic theory proposed recently by Brenner for single-component fluids. The modifications introduced by Brenner are based on his proposal that the translational momentum in fluid motion is not given by the mass flux. Comparison of the sound propagation results derived from Brenner's theory with available experimental data for monatomic gases shows that this modified continuum theory is unable to describe the acoustic measurements not even in the low-frequency limit, a result that from our point of view makes Brenner's proposal questionable
Nonlinear propagation of phase-conjugate focused sound beams in water
Brysev, A. P.; Krutyansky, L. M.; Preobrazhensky, V. L.; Pyl'nov, Yu. V.; Cunningham, K. B.; Hamilton, M. F.
2000-07-01
Nonlinear propagation of phase-conjugate, focused, ultrasound beams is studied. Measurements are presented of harmonic amplitudes along the axis and in the focal plane of the conjugate beam, and of the waveform and spectrum at the focus. A maximum peak pressure of 3.9 MPa was recorded in the conjugate beam. The measurements are compared with simulations based on the KZK equation, and satisfactory agreement is obtained.
Sound field simulation and acoustic animation in urban squares
Kang, Jian; Meng, Yan
2005-04-01
Urban squares are important components of cities, and the acoustic environment is important for their usability. While models and formulae for predicting the sound field in urban squares are important for their soundscape design and improvement, acoustic animation tools would be of great importance for designers as well as for public participation process, given that below a certain sound level, the soundscape evaluation depends mainly on the type of sounds rather than the loudness. This paper first briefly introduces acoustic simulation models developed for urban squares, as well as empirical formulae derived from a series of simulation. It then presents an acoustic animation tool currently being developed. In urban squares there are multiple dynamic sound sources, so that the computation time becomes a main concern. Nevertheless, the requirements for acoustic animation in urban squares are relatively low compared to auditoria. As a result, it is important to simplify the simulation process and algorithms. Based on a series of subjective tests in a virtual reality environment with various simulation parameters, a fast simulation method with acceptable accuracy has been explored. [Work supported by the European Commission.
Simulation of HPIB propagation in biased charge collector
International Nuclear Information System (INIS)
Li Hongyu; Qiu Aici
2004-01-01
A 2.5D PIC simulation using KARAT code for inner charge propagation within biased charge collector for measuring HPIB is presented. The simulation results indicate that the charges were neutralized but the current non-neutralized in the biased charge collector. The influence of ions collected vs biased voltage of the collector was also simulated. -800 V biased voltage can meet the measurement of 500 keV HPIB, and this is consistent with the experimental results
Sound propagation through a rarefied gas. Influence of the gas–surface interaction
International Nuclear Information System (INIS)
Kalempa, Denize; Sharipov, Felix
2012-01-01
Highlights: ► Non-equilibrium gas properties due to sound propagation. ► Influence of gas–surface accommodation coefficients. ► Heat transfer due to thermo-acoustic waves. ► Reciprocal relations. ► Range of validity of the Navier–Stokes equations. - Abstract: Acoustic waves propagating through a rarefied gas between two plates induced by both oscillation and unsteady heating of one of them are considered on the basis of a model of the linearized Boltzmann equation. The gas flow is considered as fully established so that the dependence of all quantities on time is harmonical. The problem is solved for several values of two main parameters determining its solution, namely, the gas rarefaction defined as the ratio of the distance between the plates to the equivalent free path of gaseous molecules, and the oscillation parameter given as the ratio of the intermolecular collision frequency to the wave frequency. The reciprocal relation for such flows is obtained and verified numerically. An influence of the gas–surface accommodation coefficients on the wave characteristics is analyzed by employing the Cercignani–Lampis scattering kernel to the boundary conditions.
A quasi-one-dimensional theory of sound propagation in lined ducts with mean flow
Dokumaci, Erkan
2018-04-01
Sound propagation in ducts with locally-reacting liners has received the attention of many authors proposing two- and three-dimensional solutions of the convected wave equation and of the Pridmore-Brown equation. One-dimensional lined duct models appear to have received less attention. The present paper proposes a quasi-one-dimensional theory for lined uniform ducts with parallel sheared mean flow. The basic assumption of the theory is that the effects of refraction and wall compliance on the fundamental mode remain within ranges in which the acoustic fluctuations are essentially uniform over a duct section. This restricts the model to subsonic low Mach numbers and Helmholtz numbers of less than about unity. The axial propagation constants and the wave transfer matrix of the duct are given by simple explicit expressions and can be applied with no-slip, full-slip or partial slip boundary conditions. The limitations of the theory are discussed and its predictions are compared with the fundamental mode solutions of the convected wave equation, the Pridmore-Brown equation and measurements where available.
Simulation of excitation and propagation of pico-second ultrasound
International Nuclear Information System (INIS)
Yang, Seung Yong; Kim, No Hyu
2016-01-01
This paper presents an analytic and numerical simulation of the generation and propagation of pico-second ultrasound with nano-scale wavelength, enabling the production of bulk waves in thin films. An analytic model of laser-matter interaction and elasto-dynamic wave propagation is introduced to calculate the elastic strain pulse in microstructures. The model includes the laser-pulse absorption on the material surface, heat transfer from a photon to the elastic energy of a phonon, and acoustic wave propagation to formulate the governing equations of ultra-short ultrasound. The excitation and propagation of acoustic pulses produced by ultra-short laser pulses are numerically simulated for an aluminum substrate using the finite-difference method and compared with the analytical solution. Furthermore, Fourier analysis was performed to investigate the frequency spectrum of the simulated elastic wave pulse. It is concluded that a pico-second bulk wave with a very high frequency of up to hundreds of gigahertz is successfully generated in metals using a 100-fs laser pulse and that it can be propagated in the direction of thickness for thickness less than 100 nm
Simulation of excitation and propagation of pico-second ultrasound
Energy Technology Data Exchange (ETDEWEB)
Yang, Seung Yong; Kim, No Hyu [Dept. of Mechanical Engineering, Korea University of Technology and Education, Chunan (Korea, Republic of)
2016-12-15
This paper presents an analytic and numerical simulation of the generation and propagation of pico-second ultrasound with nano-scale wavelength, enabling the production of bulk waves in thin films. An analytic model of laser-matter interaction and elasto-dynamic wave propagation is introduced to calculate the elastic strain pulse in microstructures. The model includes the laser-pulse absorption on the material surface, heat transfer from a photon to the elastic energy of a phonon, and acoustic wave propagation to formulate the governing equations of ultra-short ultrasound. The excitation and propagation of acoustic pulses produced by ultra-short laser pulses are numerically simulated for an aluminum substrate using the finite-difference method and compared with the analytical solution. Furthermore, Fourier analysis was performed to investigate the frequency spectrum of the simulated elastic wave pulse. It is concluded that a pico-second bulk wave with a very high frequency of up to hundreds of gigahertz is successfully generated in metals using a 100-fs laser pulse and that it can be propagated in the direction of thickness for thickness less than 100 nm.
Simulation of excitation and propagation of pico-second ultrasound
Energy Technology Data Exchange (ETDEWEB)
Yang, Seung Yong; Kim, No Kyu [Dept. of Mechanical Engineering, Korea University of Technology and Education, Chunan (Korea, Republic of)
2014-12-15
This paper presents an analytic and numerical simulation of the generation and propagation of pico-second ultrasound with nano-scale wavelength, enabling the production of bulk waves in thin films. An analytic model of laser-matter interaction and elasto-dynamic wave propagation is introduced to calculate the elastic strain pulse in microstructures. The model includes the laser-pulse absorption on the material surface, heat transfer from a photon to the elastic energy of a phonon, and acoustic wave propagation to formulate the governing equations of ultra-short ultrasound. The excitation and propagation of acoustic pulses produced by ultra-short laser pulses are numerically simulated for an aluminum substrate using the finite-difference method and compared with the analytical solution. Furthermore, Fourier analysis was performed to investigate the frequency spectrum of the simulated elastic wave pulse. It is concluded that a pico-second bulk wave with a very high frequency of up to hundreds of gigahertz is successfully generated in metals using a 100-fs laser pulse and that it can be propagated in the direction of thickness for thickness less than 100 nm.
Stress Wave Propagation in Larch Plantation Trees-Numerical Simulation
Fenglu Liu; Fang Jiang; Xiping Wang; Houjiang Zhang; Wenhua Yu
2015-01-01
In this paper, we attempted to simulate stress wave propagation in virtual tree trunks and construct two dimensional (2D) wave-front maps in the longitudinal-radial section of the trunk. A tree trunk was modeled as an orthotropic cylinder in which wood properties along the fiber and in each of the two perpendicular directions were different. We used the COMSOL...
Transmission experiment by the simulated LMFBR model and propagation analysis of acoustic signals
International Nuclear Information System (INIS)
Kobayashi, Kenji; Yasuda, Tsutomu; Araki, Hitoshi.
1981-01-01
Acoustic transducers to detect a boiling of sodium may be installed in the upper structure and at the upper position of reactor vessel wall under constricted conditions. A set of the experiments of transmission of acoustic vibration to various points of the vessel was performed utilizing the half scale-hydraulic flow test facility simulating reactor vessel over the frequency range 20 kHz -- 100 kHz. Acoustic signals from an installed sound source in the core were measured at each point by both hydrophones in the vessel and vibration pickups on the vessel wall. In these experiments transmission of signals to each point of detectors were clearly observed to background noise level. These data have been summarized in terms of the transmission loss and furthermore are compared with background noise level of flow to estimate the feasibility of detection of sodium boiling sound. The ratio of signal to noise was obtained to be about 13 dB by hydrophone in the upper structure, 8 dB by accelerometer and 16 dB by AE-sensor at the upper position on the vessel in experiments used the simulation model. Sound waves emanated due to sodium boiling also propagate along the wall of the vessel may be predicted theoretically. The result of analysis suggests a capability of detection at the upper position of the reactor vessel wall. Leaky Lamb waves of the first symmetric (L 1 ) and of the antisymmetric (F 1 ) mode and shear horizontal wave (SH) have been derived in light of the attenuation due to coupling to liquid sodium as the traveling modes over the frequency range 10 kHz -- 100 kHz up to 50 mm in thickness of the vessel wall. Leaky Lamb wave (L 1 ) and (SH) mode have been proposed theoretically on the some assumption to be most available to detect the boiling sound of sodium propagating along the vessel wall. (author)
Propagation error simulations concerning the CLIC active prealignment
Touzé, T; Missiaen, D
2009-01-01
The CLIC1 components will have to be prealigned within a thirty times more demanding tolerance than the existing CERNmachines. It is a technical challenge and a key issue for the CLIC feasibility. Simulations have been undertaken concerning the propagation error due to the measurement uncertainties of the prealignment systems. The uncertainties of measurement, taken as hypothesis for the simulations, are based on the data obtained on several dedicated facilities. This paper introduces the simulations and the latest results obtained, as well as the facilities.
Simulation of the acoustic wave propagation using a meshless method
Directory of Open Access Journals (Sweden)
Bajko J.
2017-01-01
Full Text Available This paper presents numerical simulations of the acoustic wave propagation phenomenon modelled via Linearized Euler equations. A meshless method based on collocation of the strong form of the equation system is adopted. Moreover, the Weighted least squares method is used for local approximation of derivatives as well as stabilization technique in a form of spatial ltering. The accuracy and robustness of the method is examined on several benchmark problems.
Preston, L. A.
2017-12-01
Marine hydrokinetic (MHK) devices offer a clean, renewable alternative energy source for the future. Responsible utilization of MHK devices, however, requires that the effects of acoustic noise produced by these devices on marine life and marine-related human activities be well understood. Paracousti is a 3-D full waveform acoustic modeling suite that can accurately propagate MHK noise signals in the complex bathymetry found in the near-shore to open ocean environment and considers real properties of the seabed, water column, and air-surface interface. However, this is a deterministic simulation that assumes the environment and source are exactly known. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected noise levels within the marine environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. One method is to use Monte Carlo (MC) techniques where simulation results from a large number of deterministic solutions are aggregated to provide statistical properties of the output signal. However, MC methods can be computationally prohibitive since they can require tens of thousands or more simulations to build up an accurate representation of those statistical properties. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a small fraction of the computational cost of MC. We are developing a SPDE solver for the 3-D acoustic wave propagation problem called Paracousti-UQ to help regulators and operators assess the statistical properties of environmental noise produced by MHK devices. In this presentation, we present the SPDE method and compare statistical distributions of simulated acoustic signals in simple models to MC simulations to show the accuracy and efficiency of the SPDE method. Sandia National Laboratories
Virtual Reality System with Integrated Sound Field Simulation and Reproduction
Directory of Open Access Journals (Sweden)
Ingo Assenmacher
2007-01-01
Full Text Available A real-time audio rendering system is introduced which combines a full room-specific simulation, dynamic crosstalk cancellation, and multitrack binaural synthesis for virtual acoustical imaging. The system is applicable for any room shape (normal, long, flat, coupled, independent of the a priori assumption of a diffuse sound field. This provides the possibility of simulating indoor or outdoor spatially distributed, freely movable sources and a moving listener in virtual environments. In addition to that, near-to-head sources can be simulated by using measured near-field HRTFs. The reproduction component consists of a headphone-free reproduction by dynamic crosstalk cancellation. The focus of the project is mainly on the integration and interaction of all involved subsystems. It is demonstrated that the system is capable of real-time room simulation and reproduction and, thus, can be used as a reliable platform for further research on VR applications.
A model for calculating specular and diffuse reflections in outdoor sound propagation
Salomons, E.M.
2006-01-01
In many practical outdoor situations, the direct sound path between a noise source and a receiver is screened by an obstacle. In these situations indirect sound paths become important, in particular reflections of sound waves. Reflections may occur at objects such as a vertical wall, but also at the
DEFF Research Database (Denmark)
Larsen, Ole Næsbye; Wahlberg, Magnus
2017-01-01
There is no difference in principle between the infrasonic and ultrasonic sounds, which are inaudible to humans (or other animals) and the sounds that we can hear. In all cases, sound is a wave of pressure and particle oscillations propagating through an elastic medium, such as air. This chapter...... is about the physical laws that govern how animals produce sound signals and how physical principles determine the signals’ frequency content and sound level, the nature of the sound field (sound pressure versus particle vibrations) as well as directional properties of the emitted signal. Many...... of these properties are dictated by simple physical relationships between the size of the sound emitter and the wavelength of emitted sound. The wavelengths of the signals need to be sufficiently short in relation to the size of the emitter to allow for the efficient production of propagating sound pressure waves...
International Nuclear Information System (INIS)
Till, Bernie C; Driessen, Peter F
2014-01-01
Starting from first principles, we derive the telegraph equation to describe the propagation of sound waves in rigid tubes by using a simple approach that yields a lossy transmission line model with frequency-independent parameters. The approach is novel in the sense that it has not been found in the literature or textbooks. To derive the lossy acoustic telegraph equation from the lossless wave equation, we need only to relax the assumption that the dynamical variables are constant over the entire cross-sectional area of the tube. In this paper, we do this by introducing a relatively narrow boundary layer at the wall of the tube, over which the dynamical variables decrease linearly from the constant value to zero. This allows us to make very simple corrections to the lossless case, and to express them in terms of two parameters, namely the viscous diffusion time constant and the thermal diffusion time constant. The coefficients of the resulting telegraph equation are frequency-independent. A comparison with the telegraph equation for the electrical transmission line establishes precise relationships between the electrical circuit elements and the physical properties of the fluid. These relationships are thus proven a posteriori rather than asserted a priori. In this way, we arrive at an instructive and useful derivation of the acoustic telegraph equation, which takes viscous damping and thermal dissipation into account, and is accessible to students at the undergraduate level. This derivation does not resort to the combined heavy machinery of fluid dynamics and thermodynamics, does not assume that the waveforms are sinusoidal, and does not assume any particular cross-sectional shape of the tube. Surprisingly, we have been unable to find a comparable treatment in the standard introductory physics and acoustics texts, or in the literature. (paper)
Knutsson, Magnus; Åbom, Mats
2009-02-01
Charge air coolers (CACs) are used on turbocharged internal combustion engines to enhance the overall gas-exchange performance. The cooling of the charged air results in higher density and thus volumetric efficiency. It is also important for petrol engines that the knock margin increases with reduced charge air temperature. A property that is still not very well investigated is the sound transmission through a CAC. The losses, due to viscous and thermal boundary layers as well as turbulence, in the narrow cooling tubes result in frequency dependent attenuation of the transmitted sound that is significant and dependent on the flow conditions. Normally, the cross-sections of the cooling tubes are neither circular nor rectangular, which is why no analytical solution accounting for a superimposed mean flow exists. The cross-dimensions of the connecting tanks, located on each side of the cooling tubes, are large compared to the diameters of the inlet and outlet ducts. Three-dimensional effects will therefore be important at frequencies significantly lower than the cut-on frequencies of the inlet/outlet ducts. In this study the two-dimensional finite element solution scheme for sound propagation in narrow tubes, including the effect of viscous and thermal boundary layers, originally derived by Astley and Cummings [Wave propagation in catalytic converters: Formulation of the problem and finite element scheme, Journal of Sound and Vibration 188 (5) (1995) 635-657] is used to extract two-ports to represent the cooling tubes. The approximate solutions for sound propagation, accounting for viscothermal and turbulent boundary layers derived by Dokumaci [Sound transmission in narrow pipes with superimposed uniform mean flow and acoustic modelling of automobile catalytic converters, Journal of Sound and Vibration 182 (5) (1995) 799-808] and Howe [The damping of sound by wall turbulent shear layers, Journal of the Acoustical Society of America 98 (3) (1995) 1723-1730], are
Sugimoto, Tsuneyoshi; Nakagawa, Yutaka; Shirakawa, Takashi; Sano, Motoaki; Ohaba, Motoyoshi; Shibusawa, Sakae
2013-07-01
We propose a method for the monitoring and imaging of the water distribution in the rooting zone of plants using sound vibration. In this study, the water distribution measurement in the horizontal and vertical directions in the soil layer was examined to confirm whether a temporal change in the volume water content of the soil could be estimated from a temporal changes in propagation velocity. A scanning laser Doppler vibrometer (SLDV) is used for measurement of the vibration velocity of the soil surface, because the highly precise vibration velocity measurement of several many points can be carried out automatically. Sand with a uniform particle size distribution is used for the soil, as it has high plasticity; that is, the sand can return to a dry state easily even if it is soaked with water. A giant magnetostriction vibrator or a flat speaker is used as a sound source. Also, a soil moisture sensor, which measures the water content of the soil using the electric permittivity, is installed in the sand. From the experimental results of the vibration measurement and soil moisture sensors, we can confirm that the temporal changes of the water distribution in sand using the negative pressure irrigation system in both the horizontal and vertical directions can be estimated using the propagation velocity of sound. Therefore, in the future, we plan to develop an insertion-type sound source and receiver using the acceleration sensors, and we intend to examine whether our method can be applied even in commercial soil with growing plants.
Quench propagation and training in simulated superconducting magnet windings
International Nuclear Information System (INIS)
Sampson, W.B.; Garber, M.; Ghosh, A.
1981-01-01
Training behavior similar to that which occurs in full scale superconducting accelerator magnets has been observed in small test windings. The test coils are formed from approximately 20 meters of conductor wound non-inductively, in Bifilar fashion. The resulting racetrack shaped coil is molded at elevated temperature to simulate the construction techniques used for the ISABELLE dipoles. The quench current of such windings has been measured as a function of applied field and the effect of parameters such as mechanical loading and porosity have been investigated. The velocity of propagation of the normal front has been measured both along and transverse to the direction of current flow for several test windings. The minimum energy required to produce a self propagating normal zone has also been determined in an attempt to quantify the relative stability of the coils
Robertson, William C
2003-01-01
Muddled about what makes music? Stuck on the study of harmonics? Dumbfounded by how sound gets around? Now you no longer have to struggle to teach concepts you really don t grasp yourself. Sound takes an intentionally light touch to help out all those adults science teachers, parents wanting to help with homework, home-schoolers seeking necessary scientific background to teach middle school physics with confidence. The book introduces sound waves and uses that model to explain sound-related occurrences. Starting with the basics of what causes sound and how it travels, you'll learn how musical instruments work, how sound waves add and subtract, how the human ear works, and even why you can sound like a Munchkin when you inhale helium. Sound is the fourth book in the award-winning Stop Faking It! Series, published by NSTA Press. Like the other popular volumes, it is written by irreverent educator Bill Robertson, who offers this Sound recommendation: One of the coolest activities is whacking a spinning metal rod...
Frictional Sound Analysis by Simulating the Human Arm Movement
Directory of Open Access Journals (Sweden)
Yosouf Khaldon
2017-03-01
Full Text Available Fabric noise generated by fabric-to-fabric friction is considered as one of the auditory disturbances that can have an impact on the quality of some textile products. For this reason, an instrument has been developed to analyse this phenomenon. The instrument is designed to simulate the relative movement of a human arm when walking. In order to understand the nature of the relative motion of a human arm, films of the upper half of the human body were taken. These films help to define the parameters required for movement simulation. These parameters are movement trajectory, movement velocity, arm pressure applied on the lateral part of the trunk and the friction area. After creating the instrument, a set of soundtracks related to the noise generated by fabric-to-fabric friction was recorded. The recordings were treated with a specific software to extract the sound parameters and the acoustic imprints of fabric were obtained.
Microcrack propagation under multiaxial loading - experiment and simulation
International Nuclear Information System (INIS)
Poetter, K.; Suhartono, A.; Yousefi, F.; Zenner, H.; Duewel, V.; Schram, A.
2000-01-01
The accuracy of lifetime prediction for technical components subjected to cyclic loading is still not satisfying. One essential reason for the deviation between the results of the lifetime calculation and experimental results is that it is not yet possible to generate a model capable to describe the microstructural damage process which occurs in the tested material and to integrate this model in the calculation. All of the present research results recognize that the growth of microcracks is significantly influenced by the microstructure of the material. In order to take into account the influence of the microstructure on the damage process a simulation model is suggested in this paper which considers the local stress state in addition to the random nature of the material structure in the form of grain boundaries and slip systems. The results generated by means of the simulation model are compared and verified with those experiences obtained from multiaxial fatigue testing of the investigated aluminum material. For this purpose the surfaces of the tested specimens are carefully observed to discover and analyze microcracks which are classified according to their number, length, and orientation. Moreover the mechanisms of crack initiation and propagation are major points of interest for the comparison of theoretical and experimental results. The developed computer software is suitable to simulate the microcrack initiation, the propagation and coalescence of microcracks as well as the transition of stage I cracks to stage II cracks for uniaxial and multiaxial loading. Results obtained from the simulation model could be verified with the experiment. The future aim to be emphasized is the utilization of the parameter investigations carried out with the computer simulation model in order to improve the lifetime prediction. (orig.)
SIMULATION OF NEGATIVE PRESSURE WAVE PROPAGATION IN WATER PIPE NETWORK
Directory of Open Access Journals (Sweden)
Tang Van Lam
2017-11-01
Full Text Available Subject: factors such as pipe wall roughness, mechanical properties of pipe materials, physical properties of water affect the pressure surge in the water supply pipes. These factors make it difficult to analyze the transient problem of pressure evolution using simple programming language, especially in the studies that consider only the magnitude of the positive pressure surge with the negative pressure phase being neglected. Research objectives: determine the magnitude of the negative pressure in the pipes on the experimental model. The propagation distance of the negative pressure wave will be simulated by the valve closure scenarios with the help of the HAMMER software and it is compared with an experimental model to verify the quality the results. Materials and methods: academic version of the Bentley HAMMER software is used to simulate the pressure surge wave propagation due to closure of the valve in water supply pipe network. The method of characteristics is used to solve the governing equations of transient process of pressure change in the pipeline. This method is implemented in the HAMMER software to calculate the pressure surge value in the pipes. Results: the method has been applied for water pipe networks of experimental model, the results show the affected area of negative pressure wave from valve closure and thereby we assess the largest negative pressure that may appear in water supply pipes. Conclusions: the experiment simulates the water pipe network with a consumption node for various valve closure scenarios to determine possibility of appearance of maximum negative pressure value in the pipes. Determination of these values in real-life network is relatively costly and time-consuming but nevertheless necessary for identification of the risk of pipe failure, and therefore, this paper proposes using the simulation model by the HAMMER software. Initial calibration of the model combined with the software simulation results and
International Nuclear Information System (INIS)
Uhlmann, G.
1979-01-01
The reaction zone of a small water leak in a sodium-heated steam generator (microleak) has been simulated by jet gassing or argon in water. The bubble diameter distribution in the bubble flow has been measured using a photoelectric method. The bubble size distribution obtained can be approached by an exponential distribution. For this case, phase velocity and sound damping have been calculated in the two-phase mixture. In the case of small ratios of sound frequency to the expected value of bubble resonance frequency, the frequency-independent sound velocity of the homogeneous mixture is obtained as a function of the gas volume fraction. In the case of very high frequencies, the sound velocity of the pure liquid is obtained for any gas volume fractions. In the whole range investigated damping is strongly dependent on the frequency. (author)
Crack propagation and arrest simulation of X90 gas pipe
International Nuclear Information System (INIS)
Yang, Fengping; Huo, Chunyong; Luo, Jinheng; Li, He; Li, Yang
2017-01-01
To determine whether X90 steel pipe has enough crack arrest toughness or not, a damage model was suggested as crack arrest criterion with material parameters of plastic uniform percentage elongation and damage strain energy per volume. Fracture characteristic length which characterizes fracture zone size was suggested to be the largest mesh size on expected cracking path. Plastic uniform percentage elongation, damage strain energy per volume and fracture characteristic length of X90 were obtained by five kinds of tensile tests. Based on this criterion, a length of 24 m, Φ1219 × 16.3 mm pipe segment model with 12 MPa internal gas pressure was built and computed with fluid-structure coupling method in ABAQUS. Ideal gas state equation was used to describe lean gas behavior. Euler grid was used to mesh gas zone inside the pipe while Lagrangian shell element was used to mesh pipe. Crack propagation speed and gas decompression speed were got after computation. The result shows that, when plastic uniform percentage elongation is equal to 0.054 and damage strain energy per volume is equal to 0.64 J/mm"3, crack propagation speed is less than gas decompression speed, which means the simulated X90 gas pipe with 12 MPa internal pressure can arrest cracking itself. - Highlights: • A damage model was suggested as crack arrest criterion. • Plastic uniform elongation and damage strain energy density are material parameters. • Fracture characteristic length is suggested to be largest mesh size in cracking path. • Crack propagating simulation with coupling of pipe and gas was realized in ABAQUS. • A Chinese X90 steel pipe with 12 MPa internal pressure can arrest cracking itself.
Numerical simulation of ultrasonic wave propagation in elastically anisotropic media
International Nuclear Information System (INIS)
Jacob, Victoria Cristina Cheade; Jospin, Reinaldo Jacques; Bittencourt, Marcelo de Siqueira Queiroz
2013-01-01
The ultrasonic non-destructive testing of components may encounter considerable difficulties to interpret some inspections results mainly in anisotropic crystalline structures. A numerical method for the simulation of elastic wave propagation in homogeneous elastically anisotropic media, based on the general finite element approach, is used to help this interpretation. The successful modeling of elastic field associated with NDE is based on the generation of a realistic pulsed ultrasonic wave, which is launched from a piezoelectric transducer into the material under inspection. The values of elastic constants are great interest information that provide the application of equations analytical models, until small and medium complexity problems through programs of numerical analysis as finite elements and/or boundary elements. The aim of this work is the comparison between the results of numerical solution of an ultrasonic wave, which is obtained from transient excitation pulse that can be specified by either force or displacement variation across the aperture of the transducer, and the results obtained from a experiment that was realized in an aluminum block in the IEN Ultrasonic Laboratory. The wave propagation can be simulated using all the characteristics of the material used in the experiment valuation associated to boundary conditions and from these results, the comparison can be made. (author)
Simulation of crack propagation in rock in plasma blasting technology
Ikkurthi, V. R.; Tahiliani, K.; Chaturvedi, S.
Plasma Blasting Technology (PBT) involves the production of a pulsed electrical discharge by inserting a blasting probe in a water-filled cavity drilled in a rock, which produces shocks or pressure waves in the water. These pulses then propagate into the rock, leading to fracture. In this paper, we present the results of two-dimensional hydrodynamic simulations using the SHALE code to study crack propagation in rock. Three separate issues have been examined. Firstly, assuming that a constant pressure P is maintained in the cavity for a time τ , we have determined the P- τ curve that just cracks a given rock into at least two large-sized parts. This study shows that there exists an optimal pressure level for cracking a given rock-type and geometry. Secondly, we have varied the volume of water in which the initial energy E is deposited, which corresponds to different initial peak pressures Ppeak. We have determined the E- Ppeak curve that just breaks the rock into four large-sized parts. It is found that there must be an optimal Ppeak that lowers the energy consumption, but with acceptable probe damage. Thirdly, we have attempted to identify the dominant mechanism of rock fracture. We also highlight some numerical errors that must be kept in mind in such simulations.
Speed of sound as a function of temperature for ultrasonic propagation in soybean oil
Oliveira, P. A.; Silva, R. M. B.; Morais, G. C.; Alvarenga, A. V.; Costa-Félix, R. P. B.
2016-07-01
Ultrasound has been used for characterization of liquid in several productive sectors and research. This work presents the studied about the behavior of the speed of sound in soybean oil with increasing temperature. The pulse echo technique allowed observing that the speed of sound decreases linearly with increasing temperature in the range 20 to 50 °C at 1 MHz. As result, a characteristic function capable to reproduce the speed of sound behavior in soybean oil, as a function of temperature was established, with the respective measurement uncertainty.
Nonlinear effects during sound propagation in n-InSb at 4.20K
International Nuclear Information System (INIS)
Ilisavskij, Yu.V.; Chiplis, D.
1975-01-01
The absorption of transverse sound and the influence of longitudinal electric and magnetic fields thereon were studied in n-InSb at 4.2 0 K over a wide range of frequencies and intensities. The electron absorption of sound was found to depend strongly on input intensity due to the heating of electrons by the sound wave. It was discovered that the observed non-linearity was suppressed by the electric field. On the basis of comparison of the experimental results with the existing theories it is concluded that during the heating of electrons by sound, apart from changes in mobility, the carrier concentration in the conductivity band is also substantially changed. The measurements in the magnetic field agree qualitatively with the two-band conductivity model. (author)
International Nuclear Information System (INIS)
Di Sigalotti, Leonardo G.; Sira, Eloy; Tremola, Ciro
2002-01-01
The propagation of acoustic and thermal waves in a heat conducting, hydrogen plasma, in which photoionization and photorecombination [H + +e - H+hν(χ)] processes are progressing, is re-examined here using linear analysis. The resulting dispersion equation is solved analytically and the results are compared with previous solutions for the same plasma model. In particular, it is found that wave propagation in a slightly and highly ionized hydrogen plasma is affected by crossing between acoustic and thermal modes. At temperatures where the plasma is partially ionized, waves of all frequencies propagate without the occurrence of mode crossing. These results disagree with those reported in previous work, thereby leading to a different physical interpretation of the propagation of small linear disturbances in a conducting, ionizing-recombining, hydrogen plasma
Parallel Reservoir Simulations with Sparse Grid Techniques and Applications to Wormhole Propagation
Wu, Yuanqing
2015-01-01
the traditional simulation technique relying on the Darcy framework, we propose a new framework called Darcy-Brinkman-Forchheimer framework to simulate wormhole propagation. Furthermore, to process the large quantity of cells in the simulation grid and shorten
Kandula, Max
2012-01-01
The Sound attenuation and dispersion in saturated gas-vapor-droplet mixture in the presence of evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson to accommodate the effects of nonlinear particle relaxation processes of mass, momentum and energy transfer on sound attenuation and dispersion. The results indicate the existence of a spectral broadening effect in the attenuation coefficient (scaled with respect to the peak value) with a decrease in droplet mass concentration. It is further shown that for large values of the droplet concentration the scaled attenuation coefficient is characterized by a universal spectrum independent of droplet mass concentration.
Effects of stratification and fluctuations on sound propagation in the deep ocean
International Nuclear Information System (INIS)
March, R.H.
1979-01-01
It is noted that even in a homogeneous ocean, the effects of non-thermal noise and sound absorption limit the maximum effective range of detection of acoustic signals from particle cascades to distances of 2 to 10 kilometers, depending on the surface conditions prevailing and the directional characteristics of the detector. In the present paper, the effects of stratification and fluctuations in the sound velocity profile in the deep ocean over distances of this order are examined. Attention is given to two effects of potential significance, refraction and scintillation. It is found that neither effect has any significant consequences at ranges of less than 10 km
Wave propagation simulation of radio occultations based on ECMWF refractivity profiles
DEFF Research Database (Denmark)
von Benzon, Hans-Henrik; Høeg, Per
2015-01-01
This paper describes a complete radio occultation simulation environment, including realistic refractivity profiles, wave propagation modeling, instrument modeling, and bending angle retrieval. The wave propagator is used to simulate radio occultation measurements. The radio waves are propagated...... of radio occultations. The output from the wave propagator simulator is used as input to a Full Spectrum Inversion retrieval module which calculates geophysical parameters. These parameters can be compared to the ECMWF atmospheric profiles. The comparison can be used to reveal system errors and get...... a better understanding of the physics. The wave propagation simulations will in this paper also be compared to real measurements. These radio occultations have been exposed to the same atmospheric conditions as the radio occultations simulated by the wave propagator. This comparison reveals that precise...
Fully resolved simulations of expansion waves propagating into particle beds
Marjanovic, Goran; Hackl, Jason; Annamalai, Subramanian; Jackson, Thomas; Balachandar, S.
2017-11-01
There is a tremendous amount of research that has been done on compression waves and shock waves moving over particles but very little concerning expansion waves. Using 3-D direct numerical simulations, this study will explore expansion waves propagating into fully resolved particle beds of varying volume fractions and geometric arrangements. The objectives of these simulations are as follows: 1) To fully resolve all (1-way coupled) forces on the particles in a time varying flow and 2) to verify state-of-the-art drag models for such complex flows. We will explore a range of volume fractions, from very low ones that are similar to single particle flows, to higher ones where nozzling effects are observed between neighboring particles. Further, we will explore two geometric arrangements: body centered cubic and face centered cubic. We will quantify the effects that volume fraction and geometric arrangement plays on the drag forces and flow fields experienced by the particles. These results will then be compared to theoretical predictions from a model based on the generalized Faxen's theorem. This work was supported in part by the U.S. Department of Energy under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.
Full wave simulations of lower hybrid wave propagation in tokamaks
International Nuclear Information System (INIS)
Wright, J. C.; Bonoli, P. T.; Phillips, C. K.; Valeo, E.; Harvey, R. W.
2009-01-01
Lower hybrid (LH) waves have the attractive property of damping strongly via electron Landau resonance on relatively fast tail electrons at (2.5-3)xv te , where v te ≡ (2T e /m e ) 1/2 is the electron thermal speed. Consequently these waves are well-suited to driving current in the plasma periphery where the electron temperature is lower, making LH current drive (LHCD) a promising technique for off-axis (r/a≥0.60) current profile control in reactor grade plasmas. Established techniques for computing wave propagation and absorption use WKB expansions with non-Maxwellian self-consistent distributions.In typical plasma conditions with electron densities of several 10 19 m -3 and toroidal magnetic fields strengths of 4 Telsa, the perpendicular wavelength is of the order of 1 mm and the parallel wavelength is of the order of 1 cm. Even in a relatively small device such as Alcator C-Mod with a minor radius of 22 cm, the number of wavelengths that must be resolved requires large amounts of computational resources for the full wave treatment. These requirements are met with a massively parallel version of the TORIC full wave code that has been adapted specifically for the simulation of LH waves [J. C. Wright, et al., Commun. Comput. Phys., 4, 545 (2008), J. C. Wright, et al., Phys. Plasmas 16 July (2009)]. This model accurately represents the effects of focusing and diffraction that occur in LH propagation. It is also coupled with a Fokker-Planck solver, CQL3D, to provide self-consistent distribution functions for the plasma dielectric as well as a synthetic hard X-ray (HXR) diagnostic for direct comparisons with experimental measurements of LH waves.The wave solutions from the TORIC-LH zero FLR model will be compared to the results from ray tracing from the GENRAY/CQL3D code via the synthetic HXR diagnostic and power deposition.
International Nuclear Information System (INIS)
Davidson, Ronald C.; Efthimion, Philip C.; Gilson, Erik; Majeski, Richard; Qin, Hong
2002-01-01
The Paul Trap Simulator Experiment (PTSX) is under construction at the Princeton Plasma Physics Laboratory to simulate intense beam propagation through a periodic quadrupole magnetic field. In the Paul trap configuration, a long nonneutral plasma column is confined axially by dc voltages on end cylinders at z=+L and z=-L, and transverse confinement is provided by segmented cylindrical electrodes with applied oscillatory voltages ±V 0 (t) over 90 deg. segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact laboratory facility. The experimental layout is described, together with the planned experiments to study beam mismatch, envelope instabilities, halo particle production, and collective wave excitations
Davidson, Ronald C.; Efthimion, Philip C.; Gilson, Erik; Majeski, Richard; Qin, Hong
2002-01-01
The Paul Trap Simulator Experiment (PTSX) is under construction at the Princeton Plasma Physics Laboratory to simulate intense beam propagation through a periodic quadrupole magnetic field. In the Paul trap configuration, a long nonneutral plasma column is confined axially by dc voltages on end cylinders at z=+L and z=-L, and transverse confinement is provided by segmented cylindrical electrodes with applied oscillatory voltages ±V0(t) over 90° segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact laboratory facility. The experimental layout is described, together with the planned experiments to study beam mismatch, envelope instabilities, halo particle production, and collective wave excitations.
Simulating the Long-Distance Propagation of Intense Beams in the Paul Trap Simulator Experiment
Gilson, Erik P; Davidson, Ronald C; Efthimion, Philip; Majeski, Richard; Startsev, Edward
2005-01-01
The Paul Trap Simulator Experiment (PTSX) makes use of a compact Paul trap configuration with quadrupolar oscillating wall voltages to simulate the propagation of intense charged particle beams over distances of many kilometers through magnetic alternating-gradient transport systems. The simulation is possible because of the similarity between the transverse dynamics of particles in the two systems. One-component pure cesium ion plasmas have been trapped that correspond to normalized intensity parameters s < 0.8, where s is the ratio of the square of the plasma frequency to twice the square of the average transverse focusing frequency. The PTSX device confines the plasma for hundreds of milliseconds, which is equivalent to beam propagation over tens of kilometers. Results are presented for experiments in which the amplitude of the oscillating confining voltage waveform has been modified as a function of time. A comparison is made between abrupt changes in amplitude and adiabatic changes in amplitude. T...
A Backscattering and Propagation Model for Radar Sounding of Ice Sheets
DEFF Research Database (Denmark)
Dall, Jørgen
2016-01-01
. The scattering and propagation properties of the icesheets are characterized using an empirical approach. The model comprises surface scattering from the air/ice interfaceand the ice/bed interface as well as volume scattering from the firn and the ice. Also specular reflection from the internal layers is modeled...
HF-START: A Regional Radio Propagation Simulator
Hozumi, K.; Maruyama, T.; Saito, S.; Nakata, H.; Rougerie, S.; Yokoyama, T.; Jin, H.; Tsugawa, T.; Ishii, M.
2017-12-01
HF-START (HF Simulator Targeting for All-users' Regional Telecommunications) is a user-friendly simulator developed to meet the needs of space weather users. Prediction of communications failure due to space weather disturbances is of high priority. Space weather users from various backgrounds with high economic impact, i.e. airlines, telecommunication companies, GPS-related companies, insurance companies, international amateur radio union, etc., recently increase. Space weather information provided by Space Weather Information Center of NICT is, however, too professional to be understood and effectively used by the users. To overcome this issue, I try to translate the research level data to the user level data based on users' needs and provide an immediate usable data. HF-START is positioned to be a space weather product out of laboratory based truly on users' needs. It is originally for radio waves in HF band (3-30 MHz) but higher frequencies up to L band are planned to be covered. Regional ionospheric data in Japan and southeast Asia are employed as a reflector of skywave mode propagation. GAIA (Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy) model will be used as ionospheric input for global simulation. To evaluate HF-START, an evaluation campaign for Japan region will be launched in coming months. If the campaign successes, it will be expanded to southeast Asia region as well. The final goal of HF-START is to provide the near-realtime necessary radio parameters as well as the warning message of radio communications failure to the radio and space weather users.
Using cellular automata to simulate forest fire propagation in Portugal
Freire, Joana; daCamara, Carlos
2017-04-01
Wildfires in the Mediterranean region have severe damaging effects mainly due to large fire events [1, 2]. When restricting to Portugal, wildfires have burned over 1:4 million ha in the last decade. Considering the increasing tendency in the extent and severity of wildfires [1, 2], the availability of modeling tools of fire episodes is of crucial importance. Two main types of mathematical models are generally available, namely deterministic and stochastic models. Deterministic models attempt a description of fires, fuel and atmosphere as multiphase continua prescribing mass, momentum and energy conservation, which typically leads to systems of coupled PDEs to be solved numerically on a grid. Simpler descriptions, such as FARSITE, neglect the interaction with atmosphere and propagate the fire front using wave techniques. One of the most important stochastic models are Cellular Automata (CA), in which space is discretized into cells, and physical quantities take on a finite set of values at each cell. The cells evolve in discrete time according to a set of transition rules, and the states of the neighboring cells. In the present work, we implement and then improve a simple and fast CA model designed to operationally simulate wildfires in Portugal. The reference CA model chosen [3] has the advantage of having been applied successfully in other Mediterranean ecosystems, namely to historical fires in Greece. The model is defined on a square grid with propagation to 8 nearest and next-nearest neighbors, where each cell is characterized by 4 possible discrete states, corresponding to burning, not-yet burned, fuel-free and completely burned cells, with 4 possible rules of evolution which take into account fuel properties, meteorological conditions, and topography. As a CA model, it offers the possibility to run a very high number of simulations in order to verify and apply the model, and is easily modified by implementing additional variables and different rules for the
Nonequilibrium temperatures and second-sound propagation along nanowires and thin layers
International Nuclear Information System (INIS)
Jou, D.; Cimmelli, V.A.; Sellitto, A.
2009-01-01
It is shown that the dispersion relation of heat waves along nanowires or thin layers could allow to compare two different definitions of nonequilibrium temperature, since thermal waves are predicted to propagate with different phase speed depending on the definition of nonequilibrium temperature being used. The difference is small, but it could be in principle measurable in nanosystems, as for instance nanowires and thin layers, in a given frequency range. Such an experiment could provide a deeper view on the problem of the definition of temperature in nonequilibrium situations.
Propagation of radar rainfall uncertainty in urban flood simulations
Liguori, Sara; Rico-Ramirez, Miguel
2013-04-01
hydrodynamic sewer network model implemented in the Infoworks software was used to model the rainfall-runoff process in the urban area. The software calculates the flow through the sewer conduits of the urban model using rainfall as the primary input. The sewer network is covered by 25 radar pixels with a spatial resolution of 1 km2. The majority of the sewer system is combined, carrying both urban rainfall runoff as well as domestic and trade waste water [11]. The urban model was configured to receive the probabilistic radar rainfall fields. The results showed that the radar rainfall ensembles provide additional information about the uncertainty in the radar rainfall measurements that can be propagated in urban flood modelling. The peaks of the measured flow hydrographs are often bounded within the uncertainty area produced by using the radar rainfall ensembles. This is in fact one of the benefits of using radar rainfall ensembles in urban flood modelling. More work needs to be done in improving the urban models, but this is out of the scope of this research. The rainfall uncertainty cannot explain the whole uncertainty shown in the flow simulations, and additional sources of uncertainty will come from the structure of the urban models as well as the large number of parameters required by these models. Acknowledgements The authors would like to acknowledge the BADC, the UK Met Office and the UK Environment Agency for providing the various data sets. We also thank Yorkshire Water Services Ltd for providing the urban model. The authors acknowledge the support from the Engineering and Physical Sciences Research Council (EPSRC) via grant EP/I012222/1. References [1] Browning KA, 1978. Meteorological applications of radar. Reports on Progress in Physics 41 761 Doi: 10.1088/0034-4885/41/5/003 [2] Rico-Ramirez MA, Cluckie ID, Shepherd G, Pallot A, 2007. A high-resolution radar experiment on the island of Jersey. Meteorological Applications 14: 117-129. [3] Villarini G, Krajewski WF
FDTD simulation of EM wave propagation in 3-D media
Energy Technology Data Exchange (ETDEWEB)
Wang, T.; Tripp, A.C. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Geology and Geophysics
1996-01-01
A finite-difference, time-domain solution to Maxwell`s equations has been developed for simulating electromagnetic wave propagation in 3-D media. The algorithm allows arbitrary electrical conductivity and permittivity variations within a model. The staggered grid technique of Yee is used to sample the fields. A new optimized second-order difference scheme is designed to approximate the spatial derivatives. Like the conventional fourth-order difference scheme, the optimized second-order scheme needs four discrete values to calculate a single derivative. However, the optimized scheme is accurate over a wider wavenumber range. Compared to the fourth-order scheme, the optimized scheme imposes stricter limitations on the time step sizes but allows coarser grids. The net effect is that the optimized scheme is more efficient in terms of computation time and memory requirement than the fourth-order scheme. The temporal derivatives are approximated by second-order central differences throughout. The Liao transmitting boundary conditions are used to truncate an open problem. A reflection coefficient analysis shows that this transmitting boundary condition works very well. However, it is subject to instability. A method that can be easily implemented is proposed to stabilize the boundary condition. The finite-difference solution is compared to closed-form solutions for conducting and nonconducting whole spaces and to an integral-equation solution for a 3-D body in a homogeneous half-space. In all cases, the finite-difference solutions are in good agreement with the other solutions. Finally, the use of the algorithm is demonstrated with a 3-D model. Numerical results show that both the magnetic field response and electric field response can be useful for shallow-depth and small-scale investigations.
Simulation of reactive nanolaminates using reduced models: II. Normal propagation
Energy Technology Data Exchange (ETDEWEB)
Salloum, Maher; Knio, Omar M. [Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218-2686 (United States)
2010-03-15
Transient normal flame propagation in reactive Ni/Al multilayers is analyzed computationally. Two approaches are implemented, based on generalization of earlier methodology developed for axial propagation, and on extension of the model reduction formalism introduced in Part I. In both cases, the formulation accommodates non-uniform layering as well as the presence of inert layers. The equations of motion for the reactive system are integrated using a specially-tailored integration scheme, that combines extended-stability, Runge-Kutta-Chebychev (RKC) integration of diffusion terms with exact treatment of the chemical source term. The detailed and reduced models are first applied to the analysis of self-propagating fronts in uniformly-layered materials. Results indicate that both the front velocities and the ignition threshold are comparable for normal and axial propagation. Attention is then focused on analyzing the effect of a gap composed of inert material on reaction propagation. In particular, the impacts of gap width and thermal conductivity are briefly addressed. Finally, an example is considered illustrating reaction propagation in reactive composites combining regions corresponding to two bilayer widths. This setup is used to analyze the effect of the layering frequency on the velocity of the corresponding reaction fronts. In all cases considered, good agreement is observed between the predictions of the detailed model and the reduced model, which provides further support for adoption of the latter. (author)
DEFF Research Database (Denmark)
Christensen, Claus Lynge; Rindel, Jens Holger
2006-01-01
The paper describes a new method for simulating the frequency-dependent reflection and transmission of reflector arrays, and the frequency-dependent airborne sound insulation between rooms by means of a room acoustic computer model. The method makes use of a transparency method in the ray...... of the partition, and this is useful for the auralization of sound transmission through different building constructions. The acoustic properties like volume, reverberation time, and the area of the transmitting surfaces are included in the simulation....
Adaptive Modeling of Details for Physically-Based Sound Synthesis and Propagation
2015-03-21
CONTENTS LIST OF TABLES...Rauber, A., and Merkl, D. (2002). Content -based organization and visualization of music archives. In Proceedings of the tenth ACM international...Interactive simulation of complex audiovisual scenes. Presence: Teleoper. Virtual Environ., 13:99–111. van den Doel, K., Kry, P., and Pai, D. (2001
International Nuclear Information System (INIS)
Carlson, C.D.; Babad, H.
1996-05-01
This test plan, prepared at Pacific Northwest National Laboratory for Westinghouse Hanford Company, provides guidance for performing tube propagation experiments on simulated Hanford tank wastes and on actual tank waste samples. Simulant compositions are defined and an experimental logic tree is provided for Fauske and Associates (FAI) to perform the experiments. From this guidance, methods and equipment for small-scale tube propagation experiments to be performed at the Hanford Site on actual tank samples will be developed. Propagation behavior of wastes will directly support the safety analysis (SARR) for the organic tanks. Tube propagation may be the definitive tool for determining the relative reactivity of the wastes contained in the Hanford tanks. FAI have performed tube propagation studies previously on simple two- and three-component surrogate mixtures. The simulant defined in this test plan more closely represents actual tank composition. Data will be used to support preparation of criteria for determining the relative safety of the organic bearing wastes
Physics-based statistical model and simulation method of RF propagation in urban environments
Pao, Hsueh-Yuan; Dvorak, Steven L.
2010-09-14
A physics-based statistical model and simulation/modeling method and system of electromagnetic wave propagation (wireless communication) in urban environments. In particular, the model is a computationally efficient close-formed parametric model of RF propagation in an urban environment which is extracted from a physics-based statistical wireless channel simulation method and system. The simulation divides the complex urban environment into a network of interconnected urban canyon waveguides which can be analyzed individually; calculates spectral coefficients of modal fields in the waveguides excited by the propagation using a database of statistical impedance boundary conditions which incorporates the complexity of building walls in the propagation model; determines statistical parameters of the calculated modal fields; and determines a parametric propagation model based on the statistical parameters of the calculated modal fields from which predictions of communications capability may be made.
ECOLOGY OF FILM SOUND: FROM AUDIOVISUAL IMAGES TO AUDIOVISUAL SIMULATIONAL SOUNDSCAPES
Directory of Open Access Journals (Sweden)
Denikin Anton A.
2015-01-01
Full Text Available The article examines the aesthetic and technological innovations in the modern film sound: it discusses the concept of "simulational soundscapes" and questions on the "acoustic ecology" in films. Expressive techniques are analyzed, by means of which the distance between viewers and cinematographic images is leveled in modern movies, as well as the viewer's physical participation is simulated in the events shown on a screen. The author proposes to expand the conceptual framework and the methodological basis of on-screen sound research using the concepts of acoustic ecology (R.M.Shafer and the "event" sounds (R.Altman.
Investigation of propagation algorithms for ray-tracing simulation of polarized neutrons
DEFF Research Database (Denmark)
Bergbäck Knudsen, Erik; Tranum-Rømer, A.; Willendrup, Peter Kjær
2014-01-01
Ray-tracing of polarized neutrons faces a challenge when the neutron propagates through an inhomogeneous magnetic field. This affects simulations of novel instruments using encoding of energy or angle into the neutron spin. We here present a new implementation of propagation of polarized neutrons...
Improving auscultatory proficiency using computer simulated heart sounds
Directory of Open Access Journals (Sweden)
Hanan Salah EL-Deen Mohamed EL-Halawany
2016-09-01
Full Text Available This study aimed to examine the effects of 'Heart Sounds', a web-based program on improving fifth-year medical students' auscultation skill in a medical school in Egypt. This program was designed for medical students to master cardiac auscultation skills in addition to their usual clinical medical courses. Pre- and post-tests were performed to assess students' auscultation skill improvement. Upon completing the training, students were required to complete a questionnaire to reflect on the learning experience they developed through 'Heart Sounds' program. Results from pre- and post-tests revealed a significant improvement in students' auscultation skills. In examining male and female students' pre- and post-test results, we found that both of male and female students had achieved a remarkable improvement in their auscultation skills. On the other hand, students stated clearly that the learning experience they had with 'Heart Sounds' program was different than any other traditional ways of teaching. They stressed that the program had significantly improved their auscultation skills and enhanced their self-confidence in their ability to practice those skills. It is also recommended that 'Heart Sounds' program learning experience should be extended by assessing students' practical improvement in real life situations.
Propagation Diagnostic Simulations Using High-Resolution Equatorial Plasma Bubble Simulations
Rino, C. L.; Carrano, C. S.; Yokoyama, T.
2017-12-01
In a recent paper, under review, equatorial-plasma-bubble (EPB) simulations were used to conduct a comparative analysis of the EPB spectra characteristics with high-resolution in-situ measurements from the C/NOFS satellite. EPB realizations sampled in planes perpendicular to magnetic field lines provided well-defined EPB structure at altitudes penetrating both high and low-density regions. The average C/NOFS structure in highly disturbed regions showed nearly identical two-component inverse-power-law spectral characteristics as the measured EPB structure. This paper describes the results of PWE simulations using the same two-dimensional cross-field EPB realizations. New Irregularity Parameter Estimation (IPE) diagnostics, which are based on two-dimensional equivalent-phase-screen theory [A theory of scintillation for two-component power law irregularity spectra: Overview and numerical results, by Charles Carrano and Charles Rino, DOI: 10.1002/2015RS005903], have been successfully applied to extract two-component inverse-power-law parameters from measured intensity spectra. The EPB simulations [Low and Midlatitude Ionospheric Plasma DensityIrregularities and Their Effects on Geomagnetic Field, by Tatsuhiro Yokoyama and Claudia Stolle, DOI 10.1007/s11214-016-0295-7] have sufficient resolution to populate the structure scales (tens of km to hundreds of meters) that cause strong scintillation at GPS frequencies. The simulations provide an ideal geometry whereby the ramifications of varying structure along the propagation path can be investigated. It is well known path-integrated one-dimensional spectra increase the one-dimensional index by one. The relation requires decorrelation along the propagation path. Correlated structure would be interpreted as stochastic total-electron-content (TEC). The simulations are performed with unmodified structure. Because the EPB structure is confined to the central region of the sample planes, edge effects are minimized. Consequently
SimProp: a simulation code for ultra high energy cosmic ray propagation
International Nuclear Information System (INIS)
Aloisio, R.; Grillo, A.F.; Boncioli, D.; Petrera, S.; Salamida, F.
2012-01-01
A new Monte Carlo simulation code for the propagation of Ultra High Energy Cosmic Rays is presented. The results of this simulation scheme are tested by comparison with results of another Monte Carlo computation as well as with the results obtained by directly solving the kinetic equation for the propagation of Ultra High Energy Cosmic Rays. A short comparison with the latest flux published by the Pierre Auger collaboration is also presented
Simulation of long-distance beam propagation in the Paul trap simulator experiment
International Nuclear Information System (INIS)
Gilson, Erik P.; Chung, Moses; Davidson, Ronald C.; Efthimion, Philip C.; Majeski, Richard; Startsev, Edward A.
2005-01-01
The Paul Trap Simulator Experiment (PTSX) simulates the propagation of intense charged particle beams over distances of many kilometers through magnetic alternating-gradient (AG) transport systems by making use of the similarity between the transverse dynamics of particles in the two systems. One-component pure ion plasmas have been trapped that correspond to normalized intensity parameter s-coret=ω p 2 (0)/2ω q 2 = p (r) is the plasma frequency and ω q is the average transverse focusing frequency in the smooth-focusing approximation. The PTSX device confines one-component cesium ion plasmas for hundreds of milliseconds, which is equivalent to beam propagation over 10km. Results are presented for experiments in which the amplitude of the confining voltage waveform has been modified as a function of time. Recent modifications to the device are described, and both the change from a cesium ion source to a barium ion source, and the development of a laser-induced fluorescence diagnostic system are discussed
Yang, Cheng; Fang, Yi; Zhao, Chao; Zhang, Xin
2018-06-01
A duct acoustics model is an essential component of an impedance eduction technique and its computation cost determines the impedance measurement efficiency. In this paper, a model is developed for the sound propagation through a lined duct carrying a uniform mean flow. In contrast to many existing models, the interface between the liner and the duct field is defined with a modified Ingard-Myers boundary condition that takes account of the effect of the boundary layer above the liner. A mode-matching method is used to couple the unlined and lined duct segments for the model development. For the lined duct segment, the eigenvalue problem resulted from the modified boundary condition is solved by an integration scheme which, on the one hand, allows the lined duct modes to be computed in an efficient manner, and on the other hand, orders the modes automatically. The duct acoustics model developed from the solved lined duct modes is shown to converge more rapidly than the one developed from the rigid-walled duct modes. Validation against the experiment data in the literature shows that the proposed model is able to predict more accurately the liner performance measured by the two-source method. This, however, cannot be made by a duct acoustics model associated with the conventional Ingard-Myers boundary condition. The proposed model has the potential to be integrated into an impedance eduction technique for more reliable liner measurement.
Valier-Brasier, Tony; Conoir, Jean-Marc; Coulouvrat, François; Thomas, Jean-Louis
2015-10-01
Sound propagation in dilute suspensions of small spheres is studied using two models: a hydrodynamic model based on the coupled phase equations and an acoustic model based on the ECAH (ECAH: Epstein-Carhart-Allegra-Hawley) multiple scattering theory. The aim is to compare both models through the study of three fundamental kinds of particles: rigid particles, elastic spheres, and viscous droplets. The hydrodynamic model is based on a Rayleigh-Plesset-like equation generalized to elastic spheres and viscous droplets. The hydrodynamic forces for elastic spheres are introduced by analogy with those of droplets. The ECAH theory is also modified in order to take into account the velocity of rigid particles. Analytical calculations performed for long wavelength, low dilution, and weak absorption in the ambient fluid show that both models are strictly equivalent for the three kinds of particles studied. The analytical calculations show that dilatational and translational mechanisms are modeled in the same way by both models. The effective parameters of dilute suspensions are also calculated.
Energy Technology Data Exchange (ETDEWEB)
Luquet, David; Marchiano, Régis; Coulouvrat, François, E-mail: francois.coulouvrat@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005, Paris (France)
2015-10-28
Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D
International Nuclear Information System (INIS)
Luquet, David; Marchiano, Régis; Coulouvrat, François
2015-01-01
Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D
Numerical simulation of transoceanic propagation and run-up of tsunami
Energy Technology Data Exchange (ETDEWEB)
Cho, Yong-Sik; Yoon Sung-Bum [Hanyang University, Seoul(Korea)
2001-04-30
The propagation and associated run-up process of tsunami are numerically investigated in this study. A transoceanic propagation model is first used to simulate the distant propagation of tsunamis. An inundation model is then employed to simulate the subsequent run-up process near coastline. A case study is done for the 1960 Chilean tsunami. A detailed maximum inundation map at Hilo Bay is obtained and compared with field observation and other numerical model, predictions. A very reasonable agreement is observed. (author). refs., tabs., figs.
International Nuclear Information System (INIS)
Zhang, Enlai; Hou, Liang; Shen, Chao; Shi, Yingliang; Zhang, Yaxiang
2016-01-01
To better solve the complex non-linear problem between the subjective sound quality evaluation results and objective psychoacoustics parameters, a method for the prediction of the sound quality is put forward by using a back propagation neural network (BPNN) based on particle swarm optimization (PSO), which is optimizing the initial weights and thresholds of BP network neurons through the PSO. In order to verify the effectiveness and accuracy of this approach, the noise signals of the B-Class vehicles from the idle speed to 120 km h −1 measured by the artificial head, are taken as a target. In addition, this paper describes a subjective evaluation experiment on the sound quality annoyance inside the vehicles through a grade evaluation method, by which the annoyance of each sample is obtained. With the use of Artemis software, the main objective psychoacoustic parameters of each noise sample are calculated. These parameters include loudness, sharpness, roughness, fluctuation, tonality, articulation index (AI) and A-weighted sound pressure level. Furthermore, three evaluation models with the same artificial neural network (ANN) structure are built: the standard BPNN model, the genetic algorithm-back-propagation neural network (GA-BPNN) model and the PSO-back-propagation neural network (PSO-BPNN) model. After the network training and the evaluation prediction on the three models’ network based on experimental data, it proves that the PSO-BPNN method can achieve convergence more quickly and improve the prediction accuracy of sound quality, which can further lay a foundation for the control of the sound quality inside vehicles. (paper)
Fluid simulation for two laser beams co-propagating in underdense plasma
International Nuclear Information System (INIS)
Mahdy, A.I.
2004-09-01
2D simulations code was constructed in order simulate the interactions of two co-propagating laser beams with underdense plasma. Simulations results at different laser intensities and separation-distances between the beams centroids were presented. In the results the effects of the laser intensities on the self-focusing and merging of the propagating beams were shown. In addition, the influence of increasing the separation-distance on the beams stability and trajectories were studied. A comparison with previous simulations at similar conditions was carried out in order to evaluate the numerical technique used to solve the basic equations. (author)
Numerical simulation of stress wave propagation from underground nuclear explosions
Energy Technology Data Exchange (ETDEWEB)
Cherry, J T; Petersen, F L [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)
1970-05-01
This paper presents a numerical model of stress wave propagation (SOC) which uses material properties data from a preshot testing program to predict the stress-induced effects on the rock mass involved in a Plowshare application. SOC calculates stress and particle velocity history, cavity radius, extent of brittle failure, and the rock's efficiency for transmitting stress. The calculations are based on an equation of state for the rock, which is developed from preshot field and laboratory measurements of the rock properties. The field measurements, made by hole logging, determine in situ values of the rock's density, water content, and propagation velocity for elastic waves. These logs also are useful in judging the layering of the rock and in choosing which core samples to test in the laboratory. The laboratory analysis of rock cores includes determination of hydrostatic compressibility to 40 kb, triaxial strength data, tensile strength, Hugoniot elastic limit, and, for the rock near the point of detonation, high-pressure Hugoniot data. Equation-of-state data are presented for rock from three sites subjected to high explosive or underground nuclear shots, including the Hardhat and Gasbuggy sites. SOC calculations of the effects of these two shots on the surrounding rock are compared with the observed effects. In both cases SOC predicts the size of the cavity quite closely. Results of the Gasbuggy calculations indicate that useful predictions of cavity size and chimney height can be made when an adequate preshot testing program is run to determine the rock's equation of state. Seismic coupling is very sensitive to the low-pressure part of the equation of state, and its successful prediction depends on agreement between the logging data and the static compressibility data. In general, it appears that enough progress has been made in calculating stress wave propagation to begin looking at derived numbers, such as number of cracks per zone, for some insight into the
Numerical simulation of stress wave propagation from underground nuclear explosions
International Nuclear Information System (INIS)
Cherry, J.T.; Petersen, F.L.
1970-01-01
This paper presents a numerical model of stress wave propagation (SOC) which uses material properties data from a preshot testing program to predict the stress-induced effects on the rock mass involved in a Plowshare application. SOC calculates stress and particle velocity history, cavity radius, extent of brittle failure, and the rock's efficiency for transmitting stress. The calculations are based on an equation of state for the rock, which is developed from preshot field and laboratory measurements of the rock properties. The field measurements, made by hole logging, determine in situ values of the rock's density, water content, and propagation velocity for elastic waves. These logs also are useful in judging the layering of the rock and in choosing which core samples to test in the laboratory. The laboratory analysis of rock cores includes determination of hydrostatic compressibility to 40 kb, triaxial strength data, tensile strength, Hugoniot elastic limit, and, for the rock near the point of detonation, high-pressure Hugoniot data. Equation-of-state data are presented for rock from three sites subjected to high explosive or underground nuclear shots, including the Hardhat and Gasbuggy sites. SOC calculations of the effects of these two shots on the surrounding rock are compared with the observed effects. In both cases SOC predicts the size of the cavity quite closely. Results of the Gasbuggy calculations indicate that useful predictions of cavity size and chimney height can be made when an adequate preshot testing program is run to determine the rock's equation of state. Seismic coupling is very sensitive to the low-pressure part of the equation of state, and its successful prediction depends on agreement between the logging data and the static compressibility data. In general, it appears that enough progress has been made in calculating stress wave propagation to begin looking at derived numbers, such as number of cracks per zone, for some insight into the
Simulation of partially coherent light propagation using parallel computing devices
Magalhães, Tiago C.; Rebordão, José M.
2017-08-01
Light acquires or loses coherence and coherence is one of the few optical observables. Spectra can be derived from coherence functions and understanding any interferometric experiment is also relying upon coherence functions. Beyond the two limiting cases (full coherence or incoherence) the coherence of light is always partial and it changes with propagation. We have implemented a code to compute the propagation of partially coherent light from the source plane to the observation plane using parallel computing devices (PCDs). In this paper, we restrict the propagation in free space only. To this end, we used the Open Computing Language (OpenCL) and the open-source toolkit PyOpenCL, which gives access to OpenCL parallel computation through Python. To test our code, we chose two coherence source models: an incoherent source and a Gaussian Schell-model source. In the former case, we divided into two different source shapes: circular and rectangular. The results were compared to the theoretical values. Our implemented code allows one to choose between the PyOpenCL implementation and a standard one, i.e using the CPU only. To test the computation time for each implementation (PyOpenCL and standard), we used several computer systems with different CPUs and GPUs. We used powers of two for the dimensions of the cross-spectral density matrix (e.g. 324, 644) and a significant speed increase is observed in the PyOpenCL implementation when compared to the standard one. This can be an important tool for studying new source models.
Directory of Open Access Journals (Sweden)
Song Chul-Gyu
2011-08-01
Full Text Available Abstract Background Radiological scoring methods such as colon transit time (CTT have been widely used for the assessment of bowel motility. However, these radiograph-based methods need cumbersome radiological instruments and their frequent exposure to radiation. Therefore, a non-invasive estimation algorithm of bowel motility, based on a back-propagation neural network (BPNN model of bowel sounds (BS obtained by an auscultation, was devised. Methods Twelve healthy males (age: 24.8 ± 2.7 years and 6 patients with spinal cord injury (6 males, age: 55.3 ± 7.1 years were examined. BS signals generated during the digestive process were recorded from 3 colonic segments (ascending, descending and sigmoid colon, and then, the acoustical features (jitter and shimmer of the individual BS segment were obtained. Only 6 features (J1, 3, J3, 3, S1, 2, S2, 1, S2, 2, S3, 2, which are highly correlated to the CTTs measured by the conventional method, were used as the features of the input vector for the BPNN. Results As a results, both the jitters and shimmers of the normal subjects were relatively higher than those of the patients, whereas the CTTs of the normal subjects were relatively lower than those of the patients (p k-fold cross validation, the correlation coefficient and mean average error between the CTTs measured by a conventional radiograph and the values estimated by our algorithm were 0.89 and 10.6 hours, respectively. Conclusions The jitter and shimmer of the BS signals generated during the peristalsis could be clinically useful for the discriminative parameters of bowel motility. Also, the devised algorithm showed good potential for the continuous monitoring and estimation of bowel motility, instead of conventional radiography, and thus, it could be used as a complementary tool for the non-invasive measurement of bowel motility.
International Nuclear Information System (INIS)
Paćko, P; Bielak, T; Staszewski, W J; Uhl, T; Spencer, A B; Worden, K
2012-01-01
This paper demonstrates new parallel computation technology and an implementation for Lamb wave propagation modelling in complex structures. A graphical processing unit (GPU) and computer unified device architecture (CUDA), available in low-cost graphical cards in standard PCs, are used for Lamb wave propagation numerical simulations. The local interaction simulation approach (LISA) wave propagation algorithm has been implemented as an example. Other algorithms suitable for parallel discretization can also be used in practice. The method is illustrated using examples related to damage detection. The results demonstrate good accuracy and effective computational performance of very large models. The wave propagation modelling presented in the paper can be used in many practical applications of science and engineering. (paper)
Plasma simulation with the Differential Algebraic Cubic Interpolated Propagation scheme
Energy Technology Data Exchange (ETDEWEB)
Utsumi, Takayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-03-01
A computer code based on the Differential Algebraic Cubic Interpolated Propagation scheme has been developed for the numerical solution of the Boltzmann equation for a one-dimensional plasma with immobile ions. The scheme advects the distribution function and its first derivatives in the phase space for one time step by using a numerical integration method for ordinary differential equations, and reconstructs the profile in phase space by using a cubic polynomial within a grid cell. The method gives stable and accurate results, and is efficient. It is successfully applied to a number of equations; the Vlasov equation, the Boltzmann equation with the Fokker-Planck or the Bhatnagar-Gross-Krook (BGK) collision term and the relativistic Vlasov equation. The method can be generalized in a straightforward way to treat cases such as problems with nonperiodic boundary conditions and higher dimensional problems. (author)
International Nuclear Information System (INIS)
Brunner, A.; Nordstrom, R.; Flueeler, P.
1992-01-01
The described investigation of crack formation and crack propagation in mode I (tensile stress) in fibre-reinforced plastic samples, especially uni-directional carbon fibre reinforced polyether-ether ketone (PEEK) has several aims. On the one hand, the phenomena of crack formation and crack propagation in these materials are to be studied, and on the other hand, the draft standards for these tests are to be checked. It was found that the combination of real time X-ray tests and simultaneous sound emission analysis is excellently suited for the basic examination of crack formation and crack propagation in DCB samples. With the aid of picture processing and analysis of the video representation, consistent crack lengths and resulting G IC values can be determined. (orig./RHM) [de
FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma
Wang, Maoyan; Zhang, Meng; Li, Guiping; Jiang, Baojun; Zhang, Xiaochuan; Xu, Jun
2016-08-01
The frequency dependent permittivity for dusty plasmas is provided by introducing the charging response factor and charge relaxation rate of airborne particles. The field equations that describe the characteristics of Terahertz (THz) waves propagation in a dusty plasma sheath are derived and discretized on the basis of the auxiliary differential equation (ADE) in the finite difference time domain (FDTD) method. Compared with numerical solutions in reference, the accuracy for the ADE FDTD method is validated. The reflection property of the metal Aluminum interlayer of the sheath at THz frequencies is discussed. The effects of the thickness, effective collision frequency, airborne particle density, and charge relaxation rate of airborne particles on the electromagnetic properties of Terahertz waves through a dusty plasma slab are investigated. Finally, some potential applications for Terahertz waves in information and communication are analyzed. supported by National Natural Science Foundation of China (Nos. 41104097, 11504252, 61201007, 41304119), the Fundamental Research Funds for the Central Universities (Nos. ZYGX2015J039, ZYGX2015J041), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120185120012)
Wind turbine noise propagation modelling: An unsteady approach
DEFF Research Database (Denmark)
Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong
2016-01-01
Wind turbine sound generation and propagation phenomena are inherently time dependent, hence tools that incorporate the dynamic nature of these two issues are needed for accurate modelling. In this paper, we investigate the sound propagation from a wind turbine by considering the effects of unste...... Pressure Level (SPL).......Wind turbine sound generation and propagation phenomena are inherently time dependent, hence tools that incorporate the dynamic nature of these two issues are needed for accurate modelling. In this paper, we investigate the sound propagation from a wind turbine by considering the effects...... of unsteady flow around it and time dependent source characteristics. For the acoustics modelling we employ the Parabolic Equation (PE) method while Large Eddy Simulation (LES) as well as synthetically generated turbulence fields are used to generate the medium flow upon which sound propagates. Unsteady...
Numerical Model of the Human Cardiovascular System-Korotkoff Sounds Simulation
Czech Academy of Sciences Publication Activity Database
Maršík, František; Převorovská, Světlana; Brož, Z.; Štembera, V.
Vol.4, č. 2 (2004), s. 193-199 ISSN 1432-9077 R&D Projects: GA ČR GA106/03/1073 Institutional research plan: CEZ:AV0Z2076919 Keywords : cardiovascular system * Korotkoff sounds * numerical simulation Subject RIV: BK - Fluid Dynamics
Fukuhara, Keisuke; Morita, Nagayoshi
New FDTD algorithm is proposed for analyzing ultrasonic pulse propagation in the human body, the problem being connected with ESWL (Extracorporeal Shock Wave Lithotripsy). In this method, we do not use plane wave approximation but employ directly the original equations taking account of Lagrangian to derive new FDTD algorithms. This method is applied to an experimental setup and its numerical model that resemble actual treatment situation to compare sound pressure distributions obtained numerically with those obtained experimentally. It is shown that the present method gives clearly better results than the earlier method, in the viewpoint of numerical reappearance of strongly nonlinear waveform.
Discrete Element Simulation of Elastoplastic Shock Wave Propagation in Spherical Particles
Directory of Open Access Journals (Sweden)
M. Shoaib
2011-01-01
Full Text Available Elastoplastic shock wave propagation in a one-dimensional assembly of spherical metal particles is presented by extending well-established quasistatic compaction models. The compaction process is modeled by a discrete element method while using elastic and plastic loading, elastic unloading, and adhesion at contacts with typical dynamic loading parameters. Of particular interest is to study the development of the elastoplastic shock wave, its propagation, and reflection during entire loading process. Simulation results yield information on contact behavior, velocity, and deformation of particles during dynamic loading. Effects of shock wave propagation on loading parameters are also discussed. The elastoplastic shock propagation in granular material has many practical applications including the high-velocity compaction of particulate material.
Simulation error propagation for a dynamic rod worth measurement technique
International Nuclear Information System (INIS)
Kastanya, D.F.; Turinsky, P.J.
1996-01-01
KRSKO nuclear station, subsequently adapted by Westinghouse, introduced the dynamic rod worth measurement (DRWM) technique for measuring pressurized water reactor rod worths. This technique has the potential for reduced test time and primary loop waste water versus alternatives. The measurement is performed starting from a slightly supercritical state with all rods out (ARO), driving a bank in at the maximum stepping rate, and recording the ex-core detectors responses and bank position as a function of time. The static bank worth is obtained by (1) using the ex-core detectors' responses to obtain the core average flux (2) using the core average flux in the inverse point-kinetics equations to obtain the dynamic bank worth (3) converting the dynamic bank worth to the static bank worth. In this data interpretation process, various calculated quantities obtained from a core simulator are utilized. This paper presents an analysis of the sensitivity to the impact of core simulator errors on the deduced static bank worth
Simulating activation propagation in social networks using the graph theory
Directory of Open Access Journals (Sweden)
František Dařena
2010-01-01
Full Text Available The social-network formation and analysis is nowadays one of objects that are in a focus of intensive research. The objective of the paper is to suggest the perspective of representing social networks as graphs, with the application of the graph theory to problems connected with studying the network-like structures and to study spreading activation algorithm for reasons of analyzing these structures. The paper presents the process of modeling multidimensional networks by means of directed graphs with several characteristics. The paper also demonstrates using Spreading Activation algorithm as a good method for analyzing multidimensional network with the main focus on recommender systems. The experiments showed that the choice of parameters of the algorithm is crucial, that some kind of constraint should be included and that the algorithm is able to provide a stable environment for simulations with networks.
Nonlocal Peridynamic Modeling and Simulation on Crack Propagation in Concrete Structures
Directory of Open Access Journals (Sweden)
Dan Huang
2015-01-01
Full Text Available An extended peridynamic approach for crack propagation analysis in concrete structures was proposed. In the peridynamic constitutive model, concrete material was described as a series of interacting particles, and the short-range repulsive force and anisotropic behavior of concrete were taken into account in the expression of the interactive bonding force, which was given in terms of classical elastic constants and peridynamic horizon. The damage of material was defined locally at the level of pairwise bond, and the critical stretch of material bond was described as a function of fracture strength in the classical concrete failure theory. The efficiency and accuracy of the proposed model and algorithms were validated by simulating the propagation of mode I and I-II mixed mode cracks in concrete slabs. Furthermore, crack propagation in a double-edge notched concrete beam subjected to four-point load was simulated, in which the experimental observations are captured naturally as a consequence of the solution.
Directory of Open Access Journals (Sweden)
Mien-Tze Kueh
2009-01-01
Full Text Available Typhoon Bilis which struck Taiwan in July 2006 was chosen to assess the potential impact of GPS radio occultation (RO refractivity soundings on numerical simulation using the WRF model. We found that this case elucidates the impact of the limited GPS RO soundings on typhoon prediction due to their favorable locations. In addition, on top of available precipitable water (PW and near-surface wind speed from SSM/I data, we have also explored their combined impacts on model prediction.
Fully kinetic particle simulations of high pressure streamer propagation
Rose, David; Welch, Dale; Thoma, Carsten; Clark, Robert
2012-10-01
Streamer and leader formation in high pressure devices is a dynamic process involving a hierarchy of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. We have performed 2D and 3D fully EM implicit particle-in-cell simulation model of gas breakdown leading to streamer formation under DC and RF fields. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm [D. R. Welch, et al., J. Comp. Phys. 227, 143 (2007)] that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge. These models are being applied to the analysis of high-pressure gas switches [D. V. Rose, et al., Phys. Plasmas 18, 093501 (2011)] and gas-filled RF accelerator cavities [D. V. Rose, et al. Proc. IPAC12, to appear].
Implicit finite-difference simulations of seismic wave propagation
Chu, Chunlei; Stoffa, Paul L.
2012-01-01
We propose a new finite-difference modeling method, implicit both in space and in time, for the scalar wave equation. We use a three-level implicit splitting time integration method for the temporal derivative and implicit finite-difference operators of arbitrary order for the spatial derivatives. Both the implicit splitting time integration method and the implicit spatial finite-difference operators require solving systems of linear equations. We show that it is possible to merge these two sets of linear systems, one from implicit temporal discretizations and the other from implicit spatial discretizations, to reduce the amount of computations to develop a highly efficient and accurate seismic modeling algorithm. We give the complete derivations of the implicit splitting time integration method and the implicit spatial finite-difference operators, and present the resulting discretized formulas for the scalar wave equation. We conduct a thorough numerical analysis on grid dispersions of this new implicit modeling method. We show that implicit spatial finite-difference operators greatly improve the accuracy of the implicit splitting time integration simulation results with only a slight increase in computational time, compared with explicit spatial finite-difference operators. We further verify this conclusion by both 2D and 3D numerical examples. © 2012 Society of Exploration Geophysicists.
Implicit finite-difference simulations of seismic wave propagation
Chu, Chunlei
2012-03-01
We propose a new finite-difference modeling method, implicit both in space and in time, for the scalar wave equation. We use a three-level implicit splitting time integration method for the temporal derivative and implicit finite-difference operators of arbitrary order for the spatial derivatives. Both the implicit splitting time integration method and the implicit spatial finite-difference operators require solving systems of linear equations. We show that it is possible to merge these two sets of linear systems, one from implicit temporal discretizations and the other from implicit spatial discretizations, to reduce the amount of computations to develop a highly efficient and accurate seismic modeling algorithm. We give the complete derivations of the implicit splitting time integration method and the implicit spatial finite-difference operators, and present the resulting discretized formulas for the scalar wave equation. We conduct a thorough numerical analysis on grid dispersions of this new implicit modeling method. We show that implicit spatial finite-difference operators greatly improve the accuracy of the implicit splitting time integration simulation results with only a slight increase in computational time, compared with explicit spatial finite-difference operators. We further verify this conclusion by both 2D and 3D numerical examples. © 2012 Society of Exploration Geophysicists.
A Monte Carlo approach for simulating the propagation of partially coherent x-ray beams
DEFF Research Database (Denmark)
Prodi, A.; Bergbäck Knudsen, Erik; Willendrup, Peter Kjær
2011-01-01
Advances at SR sources in the generation of nanofocused beams with a high degree of transverse coherence call for effective techniques to simulate the propagation of partially coherent X-ray beams through complex optical systems in order to characterize how coherence properties such as the mutual...
2D full wave simulation on electromagnetic wave propagation in toroidal plasma
International Nuclear Information System (INIS)
Hojo, Hitoshi; Uruta, Go; Nakayama, Kazunori; Mase, Atsushi
2002-01-01
Global full-wave simulation on electromagnetic wave propagation in toroidal plasma with an external magnetic field imaging a tokamak configuration is performed in two dimensions. The temporal behavior of an electromagnetic wave launched into plasma from a wave-guiding region is obtained. (author)
Directory of Open Access Journals (Sweden)
Véronique Vaillancourt
2013-01-01
Full Text Available A technology of backup alarms based on the use of a broadband signal has recently gained popularity in many countries. In this study, the performance of this broadband technology is compared to that of a conventional tonal alarm and a multi-tone alarm from a worker-safety standpoint. Field measurements of sound pressure level patterns behind heavy vehicles were performed in real work environments and psychoacoustic measurements (sound detection thresholds, equal loudness, perceived urgency and sound localization were carried out in the laboratory with human subjects. Compared with the conventional tonal alarm, the broadband alarm generates a much more uniform sound field behind vehicles, is easier to localize in space and is judged slighter louder at representative alarm levels. Slight advantages were found with the tonal alarm for sound detection and for perceived urgency at low levels, but these benefits observed in laboratory conditions would not overcome the detrimental effects associated with the large and abrupt variations in sound pressure levels (up to 15-20 dB within short distances observed in the field behind vehicles for this alarm, which are significantly higher than those obtained with the broadband alarm. Performance with the multi-tone alarm generally fell between that of the tonal and broadband alarms on most measures.
Parallel Reservoir Simulations with Sparse Grid Techniques and Applications to Wormhole Propagation
Wu, Yuanqing
2015-09-08
In this work, two topics of reservoir simulations are discussed. The first topic is the two-phase compositional flow simulation in hydrocarbon reservoir. The major obstacle that impedes the applicability of the simulation code is the long run time of the simulation procedure, and thus speeding up the simulation code is necessary. Two means are demonstrated to address the problem: parallelism in physical space and the application of sparse grids in parameter space. The parallel code can gain satisfactory scalability, and the sparse grids can remove the bottleneck of flash calculations. Instead of carrying out the flash calculation in each time step of the simulation, a sparse grid approximation of all possible results of the flash calculation is generated before the simulation. Then the constructed surrogate model is evaluated to approximate the flash calculation results during the simulation. The second topic is the wormhole propagation simulation in carbonate reservoir. In this work, different from the traditional simulation technique relying on the Darcy framework, we propose a new framework called Darcy-Brinkman-Forchheimer framework to simulate wormhole propagation. Furthermore, to process the large quantity of cells in the simulation grid and shorten the long simulation time of the traditional serial code, standard domain-based parallelism is employed, using the Hypre multigrid library. In addition to that, a new technique called “experimenting field approach” to set coefficients in the model equations is introduced. In the 2D dissolution experiments, different configurations of wormholes and a series of properties simulated by both frameworks are compared. We conclude that the numerical results of the DBF framework are more like wormholes and more stable than the Darcy framework, which is a demonstration of the advantages of the DBF framework. The scalability of the parallel code is also evaluated, and good scalability can be achieved. Finally, a mixed
IST BENOGO (IST – 2001-39184) Deliverable 4.2.2: "Interactive" sound augmentation as room simulation
DEFF Research Database (Denmark)
Nordahl, Rolf
This document describes a special approach to room simulation. Sound created by the user’s own activity and interaction with the room and reflecting characteristics of the room, may support the feeling of presence. We pursue this hypothesis by 1) generating the sound of footsteps induced by the u......This document describes a special approach to room simulation. Sound created by the user’s own activity and interaction with the room and reflecting characteristics of the room, may support the feeling of presence. We pursue this hypothesis by 1) generating the sound of footsteps induced...... to ensure the desired effect....
Yucel, Abdulkadir C.; Sheng, Weitian; Zhou, Chenming; Liu, Yang Z.; Bagci, Hakan; Michielssen, Eric
2018-01-01
A fast and memory efficient 3D full wave simulator for analyzing electromagnetic (EM) wave propagation in electrically large and realistic mine tunnels/galleries loaded with conductors is proposed. The simulator relies on Muller and combined field
Directory of Open Access Journals (Sweden)
Z. Hashemiyan
2016-01-01
Full Text Available Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort.
Packo, P.; Staszewski, W. J.; Uhl, T.
2016-01-01
Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort. PMID:26884808
Numerical simulation of electromagnetic wave propagation using time domain meshless method
International Nuclear Information System (INIS)
Ikuno, Soichiro; Fujita, Yoshihisa; Itoh, Taku; Nakata, Susumu; Nakamura, Hiroaki; Kamitani, Atsushi
2012-01-01
The electromagnetic wave propagation in various shaped wave guide is simulated by using meshless time domain method (MTDM). Generally, Finite Differential Time Domain (FDTD) method is applied for electromagnetic wave propagation simulation. However, the numerical domain should be divided into rectangle meshes if FDTD method is applied for the simulation. On the other hand, the node disposition of MTDM can easily describe the structure of arbitrary shaped wave guide. This is the large advantage of the meshless time domain method. The results of computations show that the damping rate is stably calculated in case with R < 0.03, where R denotes a support radius of the weight function for the shape function. And the results indicate that the support radius R of the weight functions should be selected small, and monomials must be used for calculating the shape functions. (author)
Simulation of propagation along an isolated skeletal muscle fiber in an isotropic volume conductor
DEFF Research Database (Denmark)
Henneberg, Kaj-åge; F.A., Roberge
1997-01-01
This paper describes a model of the frog skeletal muscle fiber that includes the effects of the transverse tubular system (T system) on propagation. Uniform propagation on an isolated fiber suspended in Ringer's solution or in air is simulated by placing the cylindrical fiber model in a concentric...... three-dimensional isotropic volume conductor. The current through the T system outlets at the sarcolemmal surface is comparable in magnitude to the sarcolemmal current density, but is of opposite polarity. When it is added to the sarcolemmal current, the resulting triphasic waveform has a 100% increase...... of the extracellular potential. Compared to an isolated fiber in a large volume of Ringer's solution, uniform propagation within a 2-mu m-thick volume conductor annulus is slowed down from 1.92 to 0.72 m/s, and the extracellular potential is increased from 1 to 108 mV peak to peak, in agreement with published...
Molecular dynamics simulation of effect of hydrogen atoms on crack propagation behavior of α-Fe
Energy Technology Data Exchange (ETDEWEB)
Song, H.Y., E-mail: gsfshy@sohu.com; Zhang, L.; Xiao, M.X.
2016-12-16
The effect of the hydrogen concentration and hydrogen distribution on the mechanical properties of α-Fe with a pre-existing unilateral crack under tensile loading is investigated by molecular dynamics simulation. The results reveal that the models present good ductility when the front region of crack tip has high local hydrogen concentration. The peak stress of α-Fe decreases with increasing hydrogen concentration. The studies also indicate that for the samples with hydrogen atoms, the crack propagation behavior is independent of the model size and boundaries. In addition, the crack propagation behavior is significantly influenced by the distribution of hydrogen atoms. - Highlights: • The distribution of hydrogen plays a critical role in the crack propagation. • The peak stress decrease with the hydrogen concentration increasing. • The crack deformation behavior is disclosed and analyzed.
Kandula, Max
2012-01-01
The Sound attenuation and dispersion in saturated gas-vapor-droplet mixtures with evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson (1975) to accommodate the effects of transpiration on the linear particle relaxation processes of mass, momentum and energy transfer. It is shown that the inclusion of transpiration in the presence of mass transfer improves the agreement between the theory and the experimental data of Cole and Dobbins (1971) for sound attenuation in air-water fogs at low droplet mass concentrations. The results suggest that transpiration has an appreciable effect on both sound absorption and dispersion for both low and high droplet mass concentrations.
Dillon, Christina
2013-01-01
The goal of this project was to design, model, build, and test a flat panel speaker and frame for a spherical dome structure being made into a simulator. The simulator will be a test bed for evaluating an immersive environment for human interfaces. This project focused on the loud speakers and a sound diffuser for the dome. The rest of the team worked on an Ambisonics 3D sound system, video projection system, and multi-direction treadmill to create the most realistic scene possible. The main programs utilized in this project, were Pro-E and COMSOL. Pro-E was used for creating detailed figures for the fabrication of a frame that held a flat panel loud speaker. The loud speaker was made from a thin sheet of Plexiglas and 4 acoustic exciters. COMSOL, a multiphysics finite analysis simulator, was used to model and evaluate all stages of the loud speaker, frame, and sound diffuser. Acoustical testing measurements were utilized to create polar plots from the working prototype which were then compared to the COMSOL simulations to select the optimal design for the dome. The final goal of the project was to install the flat panel loud speaker design in addition to a sound diffuser on to the wall of the dome. After running tests in COMSOL on various speaker configurations, including a warped Plexiglas version, the optimal speaker design included a flat piece of Plexiglas with a rounded frame to match the curvature of the dome. Eight of these loud speakers will be mounted into an inch and a half of high performance acoustic insulation, or Thinsulate, that will cover the inside of the dome. The following technical paper discusses these projects and explains the engineering processes used, knowledge gained, and the projected future goals of this project
Fault Gauge Numerical Simulation : Dynamic Rupture Propagation and Local Energy Partitioning
Mollon, G.
2017-12-01
In this communication, we present dynamic simulations of the local (centimetric) behaviour of a fault filled with a granular gauge submitted to dynamic rupture. The numerical tool (Fig. 1) combines classical Discrete Element Modelling (albeit with the ability to deal with arbitrary grain shapes) for the simualtion of the gauge, and continuous modelling for the simulation of the acoustic waves emission and propagation. In a first part, the model is applied to the simulation of steady-state shearing of the fault under remote displacement boudary conditions, in order to observe the shear accomodation at the interface (R1 cracks, localization, wear, etc.). It also makes it possible to fit to desired values the Rate and State Friction properties of the granular gauge by adapting the contact laws between grains. Such simulations provide quantitative insight in the steady-state energy partitionning between fracture, friction and acoustic emissions as a function of the shear rate. In a second part, the model is submitted to dynamic rupture. For that purpose, the fault is elastically preloaded just below rupture, and a displacement pulse is applied at one end of the sample (and on only one side of the fault). This allows to observe the propagation of the instability along the fault and the interplay between this propagation and the local granular phenomena. Energy partitionning is then observed both in space and time.
Computer Modeling of the Effects of Atmospheric Conditions on Sound Signatures
2016-02-01
simulation. 11 5. References 1. Attenborough K. Sound propagation in the atmosphere. In: Rossing TD, editor. Springer handbook of...ARL-TR-7602 ● FEB 2016 US Army Research Laboratory Computer Modeling of the Effects of Atmospheric Conditions on Sound ...Laboratory Computer Modeling of the Effects of Atmospheric Conditions on Sound Signatures by Sarah Wagner Science and Engineering Apprentice
Directory of Open Access Journals (Sweden)
Ming Chen
Full Text Available Gaussian distribution is used to describe the power law along the propagation path and phase screen of the non-Kolmogorov turbulence is proposed based on the equivalent refractive-index structure constants. Various simulations of Gaussian beam propagation in Kolmogorov and non-Kolmogorov turbulence are used for telling the difference between isotropic and anisotropic turbulence. The results imply that the non-Kolmogorov turbulence makes a great influence on the simulations via power law in spectrum and the number of phase screens. Furthermore, the influence is mainly reflected in light intensity and beam drift. Statistics suggest that when Gaussian beam propagate through single phase screen of non-Kolmogorov, maximum and uniformity of light intensity increase first and then decrease with power law, and beam drift firstly increases and then to stabilize. When Gaussian beam propagate through multiple phase screens, relative errors of beam drift decrease with the number of phase screens. And scintillation indices in non-Kolmogorov turbulence is larger than that in Kolmogorov turbulence when the number is small. When the number is big, the scintillation indices in non-Kolmogorov turbulence is smaller than that in Kolmogorov turbulence. The results shown in this paper demonstrate the effect of the non-Kolmogorov turbulence on laser atmospheric transmissions. Thus, this paper suggests a possible direction of the improvement of the laser transmission accuracy over a long distance through the atmosphere.
Simulation of non-hydrostatic gravity wave propagation in the upper atmosphere
Directory of Open Access Journals (Sweden)
Y. Deng
2014-04-01
Full Text Available The high-frequency and small horizontal scale gravity waves may be reflected and ducted in non-hydrostatic simulations, but usually propagate vertically in hydrostatic models. To examine gravity wave propagation, a preliminary study has been conducted with a global ionosphere–thermosphere model (GITM, which is a non-hydrostatic general circulation model for the upper atmosphere. GITM has been run regionally with a horizontal resolution of 0.2° long × 0.2° lat to resolve the gravity wave with wavelength of 250 km. A cosine wave oscillation with amplitude of 30 m s−1 has been applied to the zonal wind at the low boundary, and both high-frequency and low-frequency waves have been tested. In the high-frequency case, the gravity wave stays below 200 km, which indicates that the wave is reflected or ducted in propagation. The results are consistent with the theoretical analysis from the dispersion relationship when the wavelength is larger than the cutoff wavelength for the non-hydrostatic situation. However, the low-frequency wave propagates to the high altitudes during the whole simulation period, and the amplitude increases with height. This study shows that the non-hydrostatic model successfully reproduces the high-frequency gravity wave dissipation.
Rienstra, S.W.; Eversman, W.
2001-01-01
An explicit, analytical, multiple-scales solution for modal sound transmission through slowly varying ducts with mean flow and acoustic lining is tested against a numerical finite-element solution solving the same potential flow equations. The test geometry taken is representative of a high-bypass
Al-Jabr, Ahmad Ali; Alsunaidi, Mohammad A.; Ng, Tien Khee; Ooi, Boon S.
2013-01-01
In this paper, an finite-difference time-domain (FDTD) algorithm for simulating propagation of EM waves in anisotropic material is presented. The algorithm is based on the auxiliary differential equation and the general polarization formulation. In anisotropic materials, electric fields are coupled and elements in the permittivity tensor are, in general, multiterm dispersive. The presented algorithm resolves the field coupling using a formulation based on electric polarizations. It also offers a simple procedure for the treatment of multiterm dispersion in the FDTD scheme. The algorithm is tested by simulating wave propagation in 1-D magnetized plasma showing excellent agreement with analytical solutions. Extension of the algorithm to multidimensional structures is straightforward. The presented algorithm is efficient and simple compared to other algorithms found in the literature. © 2012 IEEE.
International Nuclear Information System (INIS)
Matsuda, Y.; Crawford, F.W.
1975-01-01
An economical low-noise plasma simulation model originated by Denavit is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation. These tests serve to establish the low-noise features of the model, and to verify the theoretical linear dispersion relation at wave energy levels as low as 10 -6 of the plasma thermal energy: Better quantitative results are obtained, for comparable computing time, than can be obtained by conventional particle simulation models, or direct solution of the Vlasov equation. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories
Al-Jabr, Ahmad Ali
2013-03-01
In this paper, an finite-difference time-domain (FDTD) algorithm for simulating propagation of EM waves in anisotropic material is presented. The algorithm is based on the auxiliary differential equation and the general polarization formulation. In anisotropic materials, electric fields are coupled and elements in the permittivity tensor are, in general, multiterm dispersive. The presented algorithm resolves the field coupling using a formulation based on electric polarizations. It also offers a simple procedure for the treatment of multiterm dispersion in the FDTD scheme. The algorithm is tested by simulating wave propagation in 1-D magnetized plasma showing excellent agreement with analytical solutions. Extension of the algorithm to multidimensional structures is straightforward. The presented algorithm is efficient and simple compared to other algorithms found in the literature. © 2012 IEEE.
The numerical simulation of Lamb wave propagation in laser welding of stainless steel
Zhang, Bo; Liu, Fang; Liu, Chang; Li, Jingming; Zhang, Baojun; Zhou, Qingxiang; Han, Xiaohui; Zhao, Yang
2017-12-01
In order to explore the Lamb wave propagation in laser welding of stainless steel, the numerical simulation is used to show the feature of Lamb wave. In this paper, according to Lamb dispersion equation, excites the Lamb wave on the edge of thin stainless steel plate, and presents the reflection coefficient for quantizing the Lamb wave energy, the results show that the reflection coefficient is increased with the welding width increasing,
Wang, Fei; Toselli, Italo; Korotkova, Olga
2016-02-10
An optical system consisting of a laser source and two independent consecutive phase-only spatial light modulators (SLMs) is shown to accurately simulate a generated random beam (first SLM) after interaction with a stationary random medium (second SLM). To illustrate the range of possibilities, a recently introduced class of random optical frames is examined on propagation in free space and several weak turbulent channels with Kolmogorov and non-Kolmogorov statistics.
International Nuclear Information System (INIS)
Menouillard, T.
2007-09-01
Computerized simulation is nowadays an integrating part of design and validation processes of mechanical structures. Simulation tools are more and more performing allowing a very acute description of the phenomena. Moreover, these tools are not limited to linear mechanics but are developed to describe more difficult behaviours as for instance structures damage which interests the safety domain. A dynamic or static load can thus lead to a damage, a crack and then a rupture of the structure. The fast dynamics allows to simulate 'fast' phenomena such as explosions, shocks and impacts on structure. The application domain is various. It concerns for instance the study of the lifetime and the accidents scenario of the nuclear reactor vessel. It is then very interesting, for fast dynamics codes, to be able to anticipate in a robust and stable way such phenomena: the assessment of damage in the structure and the simulation of crack propagation form an essential stake. The extended finite element method has the advantage to break away from mesh generation and from fields projection during the crack propagation. Effectively, crack is described kinematically by an appropriate strategy of enrichment of supplementary freedom degrees. Difficulties connecting the spatial discretization of this method with the temporal discretization of an explicit calculation scheme has then been revealed; these difficulties are the diagonal writing of the mass matrix and the associated stability time step. Here are presented two methods of mass matrix diagonalization based on the kinetic energy conservation, and studies of critical time steps for various enriched finite elements. The interest revealed here is that the time step is not more penalizing than those of the standard finite elements problem. Comparisons with numerical simulations on another code allow to validate the theoretical works. A crack propagation test in mixed mode has been exploited in order to verify the simulation
Propagation of uncertainty by Monte Carlo simulations in case of basic geodetic computations
Directory of Open Access Journals (Sweden)
Wyszkowska Patrycja
2017-12-01
Full Text Available The determination of the accuracy of functions of measured or adjusted values may be a problem in geodetic computations. The general law of covariance propagation or in case of the uncorrelated observations the propagation of variance (or the Gaussian formula are commonly used for that purpose. That approach is theoretically justified for the linear functions. In case of the non-linear functions, the first-order Taylor series expansion is usually used but that solution is affected by the expansion error. The aim of the study is to determine the applicability of the general variance propagation law in case of the non-linear functions used in basic geodetic computations. The paper presents errors which are a result of negligence of the higher-order expressions and it determines the range of such simplification. The basis of that analysis is the comparison of the results obtained by the law of propagation of variance and the probabilistic approach, namely Monte Carlo simulations. Both methods are used to determine the accuracy of the following geodetic computations: the Cartesian coordinates of unknown point in the three-point resection problem, azimuths and distances of the Cartesian coordinates, height differences in the trigonometric and the geometric levelling. These simulations and the analysis of the results confirm the possibility of applying the general law of variance propagation in basic geodetic computations even if the functions are non-linear. The only condition is the accuracy of observations, which cannot be too low. Generally, this is not a problem with using present geodetic instruments.
Propagation of uncertainty by Monte Carlo simulations in case of basic geodetic computations
Wyszkowska, Patrycja
2017-12-01
The determination of the accuracy of functions of measured or adjusted values may be a problem in geodetic computations. The general law of covariance propagation or in case of the uncorrelated observations the propagation of variance (or the Gaussian formula) are commonly used for that purpose. That approach is theoretically justified for the linear functions. In case of the non-linear functions, the first-order Taylor series expansion is usually used but that solution is affected by the expansion error. The aim of the study is to determine the applicability of the general variance propagation law in case of the non-linear functions used in basic geodetic computations. The paper presents errors which are a result of negligence of the higher-order expressions and it determines the range of such simplification. The basis of that analysis is the comparison of the results obtained by the law of propagation of variance and the probabilistic approach, namely Monte Carlo simulations. Both methods are used to determine the accuracy of the following geodetic computations: the Cartesian coordinates of unknown point in the three-point resection problem, azimuths and distances of the Cartesian coordinates, height differences in the trigonometric and the geometric levelling. These simulations and the analysis of the results confirm the possibility of applying the general law of variance propagation in basic geodetic computations even if the functions are non-linear. The only condition is the accuracy of observations, which cannot be too low. Generally, this is not a problem with using present geodetic instruments.
Numerical simulation of the effects of hanging sound absorbers on TABS cooling performance
DEFF Research Database (Denmark)
Rage, Nils; Kazanci, Ongun Berk; Olesen, Bjarne W.
2016-01-01
simulating a two-person office of 20 m2, with a typical cooling load of 42 W/m2. The results show that covering 60% of the ceiling surface with sound absorbers hanging at 300 mm from the ceiling active deck is expected to reduce the cooling capacity coefficient of TABS by 15.8%. This drops to 25......Recently there has been a considerable increase in the use of Thermally-Active Building Systems (TABS) in Europe as an energy-efficient and economical cooling and heating solution for buildings. However, this widespread solution requires large uncovered hard surfaces indoors, which can lead...... to a degradation of the room acoustic comfort. Therefore, challenges arise when this system has to be combined with acoustic requirements. Soffit-hanging sound absorbers embody a promising solution. This study focuses on quantifying their impact on the cooling performance of TABS, assessed by means of the cooling...
Numerical Simulation of Hydraulic Fracture Propagation Guided by Single Radial Boreholes
Directory of Open Access Journals (Sweden)
Tiankui Guo
2017-10-01
Full Text Available Conventional hydraulic fracturing is not effective in target oil development zones with available wellbores located in the azimuth of the non-maximum horizontal in-situ stress. To some extent, we think that the radial hydraulic jet drilling has the function of guiding hydraulic fracture propagation direction and promoting deep penetration, but this notion currently lacks an effective theoretical support for fracture propagation. In order to verify the technology, a 3D extended finite element numerical model of hydraulic fracturing promoted by the single radial borehole was established, and the influences of nine factors on propagation of hydraulic fracture guided by the single radial borehole were comprehensively analyzed. Moreover, the term ‘Guidance factor (Gf’ was introduced for the first time to effectively quantify the radial borehole guidance. The guidance of nine factors was evaluated through gray correlation analysis. The experimental results were consistent with the numerical simulation results to a certain extent. The study provides theoretical evidence for the artificial control technology of directional propagation of hydraulic fracture promoted by the single radial borehole, and it predicts the guidance effect of a single radial borehole on hydraulic fracture to a certain extent, which is helpful for planning well-completion and fracturing operation parameters in radial borehole-promoted hydraulic fracturing technology.
Physical simulation study on the hydraulic fracture propagation of coalbed methane well
Wu, Caifang; Zhang, Xiaoyang; Wang, Meng; Zhou, Longgang; Jiang, Wei
2018-03-01
As the most widely used technique to modify reservoirs in the exploitation of unconventional natural gas, hydraulic fracturing could effectively raise the production of CBM wells. To study the propagation rules of hydraulic fractures, analyze the fracture morphology, and obtain the controlling factors, a physical simulation experiment was conducted with a tri-axial hydraulic fracturing test system. In this experiment, the fracturing sample - including the roof, the floor, and the surrounding rock - was prepared from coal and similar materials, and the whole fracturing process was monitored by an acoustic emission instrument. The results demonstrated that the number of hydraulic fractures in coal is considerably higher than that observed in other parts, and the fracture morphology was complex. Vertical fractures were interwoven with horizontal fractures, forming a connected network. With the injection of fracturing fluid, a new hydraulic fracture was produced and it extended along the preexisting fractures. The fracture propagation was a discontinuous, dynamic process. Furthermore, in-situ stress plays a key role in fracture propagation, causing the fractures to extend in a direction perpendicular to the minimum principal stress. To a certain extent, the different mechanical properties of the coal and the other components inhibited the vertical propagation of hydraulic fractures. Nonetheless, the vertical stress and the interfacial property are the major factors to influence the formation of the "T" shaped and "工" shaped fractures.
Peter, Daniel; Videau, Brice; Pouget, Kevin; Komatitsch, Dimitri
2015-04-01
Improving the resolution of tomographic images is crucial to answer important questions on the nature of Earth's subsurface structure and internal processes. Seismic tomography is the most prominent approach where seismic signals from ground-motion records are used to infer physical properties of internal structures such as compressional- and shear-wave speeds, anisotropy and attenuation. Recent advances in regional- and global-scale seismic inversions move towards full-waveform inversions which require accurate simulations of seismic wave propagation in complex 3D media, providing access to the full 3D seismic wavefields. However, these numerical simulations are computationally very expensive and need high-performance computing (HPC) facilities for further improving the current state of knowledge. During recent years, many-core architectures such as graphics processing units (GPUs) have been added to available large HPC systems. Such GPU-accelerated computing together with advances in multi-core central processing units (CPUs) can greatly accelerate scientific applications. There are mainly two possible choices of language support for GPU cards, the CUDA programming environment and OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted mainly by AMD graphic cards. In order to employ such hardware accelerators for seismic wave propagation simulations, we incorporated a code generation tool BOAST into an existing spectral-element code package SPECFEM3D_GLOBE. This allows us to use meta-programming of computational kernels and generate optimized source code for both CUDA and OpenCL languages, running simulations on either CUDA or OpenCL hardware accelerators. We show here applications of forward and adjoint seismic wave propagation on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.
National Research Council Canada - National Science Library
Swartout, W; Gratch, J; Hill, R; Hovy, E; Lindheim, R; Marsella, S; Rickel, J; Traum, D
2005-01-01
... from the entertainment industry. The idea was that much more compelling simulations could be developed if researchers who understood state-of-the-art simulation technology worked together with writers and directors who knew...
3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy
Wijerathne, M. L. L.; Hori, Muneo; Sakaguchi, Hide; Oguni, Kenji
2010-06-01
Some experimental observations of Shock Wave Lithotripsy(SWL), which include 3D dynamic crack propagation, are simulated with the aim of reproducing fragmentation of kidney stones with SWL. Extracorporeal shock wave lithotripsy (ESWL) is the fragmentation of kidney stones by focusing an ultrasonic pressure pulse onto the stones. 3D models with fine discretization are used to accurately capture the high amplitude shear shock waves. For solving the resulting large scale dynamic crack propagation problem, PDS-FEM is used; it provides numerically efficient failure treatments. With a distributed memory parallel code of PDS-FEM, experimentally observed 3D photoelastic images of transient stress waves and crack patterns in cylindrical samples are successfully reproduced. The numerical crack patterns are in good agreement with the experimental ones, quantitatively. The results shows that the high amplitude shear waves induced in solid, by the lithotriptor generated shock wave, play a dominant role in stone fragmentation.
Simulation of quasi-static hydraulic fracture propagation in porous media with XFEM
Juan-Lien Ramirez, Alina; Neuweiler, Insa; Löhnert, Stefan
2015-04-01
Hydraulic fracturing is the injection of a fracking fluid at high pressures into the underground. Its goal is to create and expand fracture networks to increase the rock permeability. It is a technique used, for example, for oil and gas recovery and for geothermal energy extraction, since higher rock permeability improves production. Many physical processes take place when it comes to fracking; rock deformation, fluid flow within the fractures, as well as into and through the porous rock. All these processes are strongly coupled, what makes its numerical simulation rather challenging. We present a 2D numerical model that simulates the hydraulic propagation of an embedded fracture quasi-statically in a poroelastic, fully saturated material. Fluid flow within the porous rock is described by Darcy's law and the flow within the fracture is approximated by a parallel plate model. Additionally, the effect of leak-off is taken into consideration. The solid component of the porous medium is assumed to be linear elastic and the propagation criteria are given by the energy release rate and the stress intensity factors [1]. The used numerical method for the spatial discretization is the eXtended Finite Element Method (XFEM) [2]. It is based on the standard Finite Element Method, but introduces additional degrees of freedom and enrichment functions to describe discontinuities locally in a system. Through them the geometry of the discontinuity (e.g. a fracture) becomes independent of the mesh allowing it to move freely through the domain without a mesh-adapting step. With this numerical model we are able to simulate hydraulic fracture propagation with different initial fracture geometries and material parameters. Results from these simulations will also be presented. References [1] D. Gross and T. Seelig. Fracture Mechanics with an Introduction to Micromechanics. Springer, 2nd edition, (2011) [2] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal
Wu, Chensheng; Nelson, William; Davis, Christopher C.
2014-10-01
Plenoptic functions are functions that preserve all the necessary light field information of optical events. Theoretical work has demonstrated that geometric based plenoptic functions can serve equally well in the traditional wave propagation equation known as the "scalar stochastic Helmholtz equation". However, in addressing problems of 3D turbulence simulation, the dominant methods using phase screen models have limitations both in explaining the choice of parameters (on the transverse plane) in real-world measurements, and finding proper correlations between neighboring phase screens (the Markov assumption breaks down). Though possible corrections to phase screen models are still promising, the equivalent geometric approach based on plenoptic functions begins to show some advantages. In fact, in these geometric approaches, a continuous wave problem is reduced to discrete trajectories of rays. This allows for convenience in parallel computing and guarantees conservation of energy. Besides the pairwise independence of simulated rays, the assigned refractive index grids can be directly tested by temperature measurements with tiny thermoprobes combined with other parameters such as humidity level and wind speed. Furthermore, without loss of generality one can break the causal chain in phase screen models by defining regional refractive centers to allow rays that are less affected to propagate through directly. As a result, our work shows that the 3D geometric approach serves as an efficient and accurate method in assessing relevant turbulence problems with inputs of several environmental measurements and reasonable guesses (such as Cn 2 levels). This approach will facilitate analysis and possible corrections in lateral wave propagation problems, such as image de-blurring, prediction of laser propagation over long ranges, and improvement of free space optic communication systems. In this paper, the plenoptic function model and relevant parallel algorithm computing
Energy Technology Data Exchange (ETDEWEB)
Doumic, M
2005-05-15
To simulate the propagation of a monochromatic laser beam in a medium, we use the paraxial approximation of the Klein-Gordon (in the time-varying problem) and of the Maxwell (in the non time-depending case) equations. In a first part, we make an asymptotic analysis of the Klein-Gordon equation. We obtain approximated problems, either of Schroedinger or of transport-Schroedinger type. We prove the existence and uniqueness of a solution for these problems, and estimate the difference between it and the exact solution of the Klein-Gordon equation. In a second part, we study the boundary problem for the advection Schroedinger equation, and show what the boundary condition must be so that the problem on our domain should be the restriction of the problem in the whole space: such a condition is called a transparent or an absorbing boundary condition. In a third part, we use the preceding results to build a numerical resolution method, for which we prove stability and show some simulations. (author)
DEFF Research Database (Denmark)
Kazanci, Ongun Berk; Domínguez, L. Marcos; Rage, Niels
2018-01-01
using TABS, most building simulation models assume an uncovered ceiling; however, this might not be the case in practice, due to the use of free-hanging horizontal (or vertical) sound absorbers for the control of room acoustic conditions. The use of sound absorbers will decrease the performance...... of radiant ceiling cooling systems. Therefore, the quantification of the effects during the design phase is important for predicting the resulting thermal indoor environment and for system dimensioning. In this study, a two-person office room equipped with TABS was simulated using a commercially available...... simulation software with a recently developed plug-in that allows simulating the effects of horizontal sound absorbers on the performance of TABS and on the thermal indoor environment. The change in thermal indoor environment and in performance of TABS were quantified, and the simulation results were...
Guo, Changning; Doub, William H; Kauffman, John F
2010-08-01
Monte Carlo simulations were applied to investigate the propagation of uncertainty in both input variables and response measurements on model prediction for nasal spray product performance design of experiment (DOE) models in the first part of this study, with an initial assumption that the models perfectly represent the relationship between input variables and the measured responses. In this article, we discard the initial assumption, and extended the Monte Carlo simulation study to examine the influence of both input variable variation and product performance measurement variation on the uncertainty in DOE model coefficients. The Monte Carlo simulations presented in this article illustrate the importance of careful error propagation during product performance modeling. Our results show that the error estimates based on Monte Carlo simulation result in smaller model coefficient standard deviations than those from regression methods. This suggests that the estimated standard deviations from regression may overestimate the uncertainties in the model coefficients. Monte Carlo simulations provide a simple software solution to understand the propagation of uncertainty in complex DOE models so that design space can be specified with statistically meaningful confidence levels. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Energy Technology Data Exchange (ETDEWEB)
Sonnad, Kiran G., E-mail: kgs52@cornell.edu [CLASSE, Cornell University, Ithaca, NY (United States); Hammond, Kenneth C. [Department of Physics, Harvard University, Cambridge, MA (United States); Schwartz, Robert M. [CLASSE, Cornell University, Ithaca, NY (United States); Veitzer, Seth A. [Tech-X Corporation, Boulder, CO (United States)
2014-08-01
The use of transverse electric (TE) waves has proved to be a powerful, noninvasive method for estimating the densities of electron clouds formed in particle accelerators. Results from the plasma simulation program VSim have served as a useful guide for experimental studies related to this method, which have been performed at various accelerator facilities. This paper provides results of the simulation and modeling work done in conjunction with experimental efforts carried out at the Cornell electron storage ring “Test Accelerator” (CESRTA). This paper begins with a discussion of the phase shift induced by electron clouds in the transmission of RF waves, followed by the effect of reflections along the beam pipe, simulation of the resonant standing wave frequency shifts and finally the effects of external magnetic fields, namely dipoles and wigglers. A derivation of the dispersion relationship of wave propagation for arbitrary geometries in field free regions with a cold, uniform cloud density is also provided.
Ginter, S
2000-07-01
Ultrasound (US) thermotherapy is used to treat tumours, located deep in human tissue, by heat. It features by the application of high intensity focused ultrasound (HIFU), high local temperatures of about 90 degrees C and short treating time of a few seconds. Dosage of the therapy remains a problem. To get it under control, one has to know the heat source, i.e. the amount of absorbed US power, which shows nonlinear influences. Therefore, accurate simulations are essential. In this paper, an improved simulation model is introduced which enables accurate investigations of US thermotherapy. It combines nonlinear US propagation effects, which lead to generation of higher harmonics, with a broadband frequency-power law absorption typical for soft tissue. Only the combination of both provides a reliable calculation of the generated heat. Simulations show the influence of nonlinearities and broadband damping for different source signals on the absorbed US power density distribution.
Numerical simulation of aerodynamic sound radiated from a two-dimensional airfoil
飯田, 明由; 大田黒, 俊夫; 加藤, 千幸; Akiyoshi, Iida; Toshio, Otaguro; Chisachi, Kato; 日立機研; 日立機研; 東大生研; Mechanical Engineering Research Laboratory, Hitachi Ltd.; Mechanical Engineering Research Laboratory, Hitachi Ltd.; University of Tokyo
2000-01-01
An aerodynamic sound radiated from a two-dimensional airfoil has been computed with the Lighthill-Curle's theory. The predicted sound pressure level is agreement with the measured one. Distribution of vortex sound sources is also estimated based on the correlation between the unsteady vorticity fluctuations and the aerodynamic sound. The distribution of vortex sound source reveals that separated shear layers generate aerodynamic sound. This result is help to understand noise reduction method....
Canestrari, Niccolo; Chubar, Oleg; Reininger, Ruben
2014-09-01
X-ray beamlines in modern synchrotron radiation sources make extensive use of grazing-incidence reflective optics, in particular Kirkpatrick-Baez elliptical mirror systems. These systems can focus the incoming X-rays down to nanometer-scale spot sizes while maintaining relatively large acceptance apertures and high flux in the focused radiation spots. In low-emittance storage rings and in free-electron lasers such systems are used with partially or even nearly fully coherent X-ray beams and often target diffraction-limited resolution. Therefore, their accurate simulation and modeling has to be performed within the framework of wave optics. Here the implementation and benchmarking of a wave-optics method for the simulation of grazing-incidence mirrors based on the local stationary-phase approximation or, in other words, the local propagation of the radiation electric field along geometrical rays, is described. The proposed method is CPU-efficient and fully compatible with the numerical methods of Fourier optics. It has been implemented in the Synchrotron Radiation Workshop (SRW) computer code and extensively tested against the geometrical ray-tracing code SHADOW. The test simulations have been performed for cases without and with diffraction at mirror apertures, including cases where the grazing-incidence mirrors can be hardly approximated by ideal lenses. Good agreement between the SRW and SHADOW simulation results is observed in the cases without diffraction. The differences between the simulation results obtained by the two codes in diffraction-dominated cases for illumination with fully or partially coherent radiation are analyzed and interpreted. The application of the new method for the simulation of wavefront propagation through a high-resolution X-ray microspectroscopy beamline at the National Synchrotron Light Source II (Brookhaven National Laboratory, USA) is demonstrated.
Simulating Seismic Wave Propagation in Viscoelastic Media with an Irregular Free Surface
Liu, Xiaobo; Chen, Jingyi; Zhao, Zhencong; Lan, Haiqiang; Liu, Fuping
2018-05-01
In seismic numerical simulations of wave propagation, it is very important for us to consider surface topography and attenuation, which both have large effects (e.g., wave diffractions, conversion, amplitude/phase change) on seismic imaging and inversion. An irregular free surface provides significant information for interpreting the characteristics of seismic wave propagation in areas with rugged or rapidly varying topography, and viscoelastic media are a better representation of the earth's properties than acoustic/elastic media. In this study, we develop an approach for seismic wavefield simulation in 2D viscoelastic isotropic media with an irregular free surface. Based on the boundary-conforming grid method, the 2D time-domain second-order viscoelastic isotropic equations and irregular free surface boundary conditions are transferred from a Cartesian coordinate system to a curvilinear coordinate system. Finite difference operators with second-order accuracy are applied to discretize the viscoelastic wave equations and the irregular free surface in the curvilinear coordinate system. In addition, we select the convolutional perfectly matched layer boundary condition in order to effectively suppress artificial reflections from the edges of the model. The snapshot and seismogram results from numerical tests show that our algorithm successfully simulates seismic wavefields (e.g., P-wave, Rayleigh wave and converted waves) in viscoelastic isotropic media with an irregular free surface.
Fast acceleration of 2D wave propagation simulations using modern computational accelerators.
Directory of Open Access Journals (Sweden)
Wei Wang
Full Text Available Recent developments in modern computational accelerators like Graphics Processing Units (GPUs and coprocessors provide great opportunities for making scientific applications run faster than ever before. However, efficient parallelization of scientific code using new programming tools like CUDA requires a high level of expertise that is not available to many scientists. This, plus the fact that parallelized code is usually not portable to different architectures, creates major challenges for exploiting the full capabilities of modern computational accelerators. In this work, we sought to overcome these challenges by studying how to achieve both automated parallelization using OpenACC and enhanced portability using OpenCL. We applied our parallelization schemes using GPUs as well as Intel Many Integrated Core (MIC coprocessor to reduce the run time of wave propagation simulations. We used a well-established 2D cardiac action potential model as a specific case-study. To the best of our knowledge, we are the first to study auto-parallelization of 2D cardiac wave propagation simulations using OpenACC. Our results identify several approaches that provide substantial speedups. The OpenACC-generated GPU code achieved more than 150x speedup above the sequential implementation and required the addition of only a few OpenACC pragmas to the code. An OpenCL implementation provided speedups on GPUs of at least 200x faster than the sequential implementation and 30x faster than a parallelized OpenMP implementation. An implementation of OpenMP on Intel MIC coprocessor provided speedups of 120x with only a few code changes to the sequential implementation. We highlight that OpenACC provides an automatic, efficient, and portable approach to achieve parallelization of 2D cardiac wave simulations on GPUs. Our approach of using OpenACC, OpenCL, and OpenMP to parallelize this particular model on modern computational accelerators should be applicable to other
Directory of Open Access Journals (Sweden)
Fei Liu
2017-12-01
Full Text Available The propagation of wormhole is vital important for matrix acidizing and acid fracturing in carbonate reservoirs. While the formation of acid dissolved wormhole is derived from heterogeneous physical and chemical transportations and reactions. Alveolate dissolved pores, krast caves, and natural fissures are the major reservoir spaces for the Sinian dolomite formation in the Anyue gas field of the Sichuan Basin. There were four categories of formation, which are matrix dominated, inter-breccia dissolved pore dominated, dissolved pore and cave dominated, and fissure and cave dominated, based on the development intensity and connectedness of caves and fissures. The caves and fissures make the wormhole formation and propagation particularly complicated. Firstly, the 3-D topological structure of dissolved pores, vugs, fissures and throats inside cores is quantitatively scanned by CT imaging technology for its feature of vivid and damage-free. Secondly, 3-D patterns of wormhole are obtained with CT scanning after core flooding by acid. Additionally, the pore-throat network model is reconstructed with digital cores technology. Then, the size and ratio of pore and throat before and after core flooding by acid is analyzed and the absolute permeability of pore scale flow is numerically simulated to understand the fundamental influence of pores and vugs distribution and connectedness on wormhole propagation. Lastly, the wormhole pattern gained by CT scanning and simulating with two-scale model is compared. Meanwhile, the corrected two-scale model is utilized to simulate the wormhole propagation for matrix acidizing and acid fracturing of Sinian fractured-vuggy dolomite in Anyue gas field, Sichuan Basin. The optimized injection rate and volume were in agreement with the characteristic matrix acidizing operating curve, which indicates that the two-scale model was suitable for matrix acidizing optimization design of such formations. In addition, the simulated
Simulation of wave propagation inside a human eye: acoustic eye model (AEM)
Požar, T.; Halilovič, M.; Horvat, D.; Petkovšek, R.
2018-02-01
The design and development of the acoustic eye model (AEM) is reported. The model consists of a computer-based simulation that describes the propagation of mechanical disturbance inside a simplified model of a human eye. The capabilities of the model are illustrated with examples, using different laser-induced initial loading conditions in different geometrical configurations typically occurring in ophthalmic medical procedures. The potential of the AEM is to predict the mechanical response of the treated eye tissue in advance, thus complementing other preliminary procedures preceding medical treatments.
Simulation of laser propagation in a plasma with a frequency wave equation
International Nuclear Information System (INIS)
Desroziers, S.; Nataf, F.; Sentis, R.
2008-01-01
The aim of this work is to perform numerical simulations of the propagation of a laser in a plasma. At each time step, one has to solve a Helmholtz equation in a domain which consists in some hundreds of millions of cells. To solve this huge linear system, we use an iterative Krylov method preconditioned by a separable matrix. The corresponding linear system is solved with a block cyclic reduction method. Some enlightenments on the parallel implementation are also given. Lastly, numerical results are presented including some features concerning the scalability of the numerical method on a parallel architecture. (authors)
DEFF Research Database (Denmark)
Baltser, Jana; Bergbäck Knudsen, Erik; Vickery, Anette
2011-01-01
Compound refractive lenses (CRL) are widely used to manipulate synchrotron radiation beams. Accurate modelling of X-ray beam propagation through individual lenses and through "transfocators" composed of a large number of CRLs is of high importance, since it allows for comprehensive optimization...
Practitioner's guide to laser pulse propagation models and simulation
Energy Technology Data Exchange (ETDEWEB)
Couairon, A. [Centre de Physique Theorique, CNRS, Ecole Polytechnique, 91128 Palaiseau (France); Brambilla, E.; Corti, T. [Department of Physics and Mathematics, University of Insubria, via Vallegio 11, 22100 Como (Italy); Majus, D. [Department of Quantum Electronics, Vilnius University, Sauletekio Avenue 9, Bldg. 3, 10222 Vilnius (Lithuania); Ramirez-Congora, O. de [Departamento de Ciencias Naturales y Matematicas, Pontificia Universidad Javeriana-Cali, Avenida Canas Gordas no 118-250 Cali (Colombia); Kolesik, M. [College of Optical Sciences, Tucson 85721 AZ (United States); Department of Physics, Constantine the Philosopher Uninversity, Nitra (Slovakia)
2011-11-15
The purpose of this article is to provide practical introduction into numerical modeling of ultrashort optical pulses in extreme nonlinear regimes. The theoretic background section covers derivation of modern pulse propagation models starting from Maxwell's equations, and includes both envelope-based models and carrier-resolving propagation equations. We then continue with a detailed description of implementation in software of Nonlinear Envelope Equations as an example of a mixed approach which combines finite-difference and spectral techniques. Fully spectral numerical solution methods for the Unidirectional Pulse Propagation Equation are discussed next. The modeling part of this guide concludes with a brief introduction into efficient implementations of nonlinear medium responses. Finally, we include several worked-out simulation examples. These are mini-projects designed to highlight numerical and modeling issues, and to teach numerical-experiment practices. They are also meant to illustrate, first and foremost for a non-specialist, how tools discussed in this guide can be applied in practical numerical modeling. (authors)
International Nuclear Information System (INIS)
Moll, J; Schulte, R T; Fritzen, C-P; Rezk-Salama, C; Klinkert, T; Kolb, A
2011-01-01
Structural health monitoring systems allow a continuous surveillance of the structural integrity of operational systems. As a result, it is possible to reduce time and costs for maintenance without decreasing the level of safety. In this paper, an integrated simulation and visualization environment is presented that enables a detailed study of Lamb wave propagation in isotropic and anisotropic materials. Thus, valuable information about the nature of Lamb wave propagation and its interaction with structural defects become available. The well-known spectral finite element method is implemented to enable a time-efficient calculation of the wave propagation problem. The results are displayed in an interactive visualization framework accounting for the human perception that is much more sensitive to motion than to changes in color. In addition, measurements have been conducted experimentally to record the full out-of-plane wave-field using a Laser-Doppler vibrometry setup. An aluminum structure with two synthetic cuts has been investigated, where the elongated defects have a different orientation with respect to the piezoelectric actuator. The resulting wave-field is also displayed interactively showing that the scattered wave-field at the defect is highly directional.
A more realistic simulation of the performance of the infra-sound monitoring network
International Nuclear Information System (INIS)
Le Pichon, A.; Vergoz, J.; Blanc, E.
2008-01-01
The first global maps showing the performance of the infra-sound network of the international monitoring system were set in the nineties. Recent measurement of the background noise by the 36 operating stations combined with advanced models of wind give now a more realistic mapping. It has become possible to validate simulations by measuring real events. For instance the explosion that happened in March 2008 in an ammunition storehouse in Albania was detected till Zalesovo (Russia) 4920 km away. These new simulations confirm the detection capability of the network to detect and localize atmospheric explosions whose energy is over 1 kt. It is also shown that the detection performance are very sensitive to both time and places. (A.C.)
Raman Monte Carlo simulation for light propagation for tissue with embedded objects
Periyasamy, Vijitha; Jaafar, Humaira Bte; Pramanik, Manojit
2018-02-01
Monte Carlo (MC) stimulation is one of the prominent simulation technique and is rapidly becoming the model of choice to study light-tissue interaction. Monte Carlo simulation for light transport in multi-layered tissue (MCML) is adapted and modelled with different geometry by integrating embedded objects of various shapes (i.e., sphere, cylinder, cuboid and ellipsoid) into the multi-layered structure. These geometries would be useful in providing a realistic tissue structure such as modelling for lymph nodes, tumors, blood vessels, head and other simulation medium. MC simulations were performed on various geometric medium. Simulation of MCML with embedded object (MCML-EO) was improvised for propagation of the photon in the defined medium with Raman scattering. The location of Raman photon generation is recorded. Simulations were experimented on a modelled breast tissue with tumor (spherical and ellipsoidal) and blood vessels (cylindrical). Results were presented in both A-line and B-line scans for embedded objects to determine spatial location where Raman photons were generated. Studies were done for different Raman probabilities.
Directory of Open Access Journals (Sweden)
Lin Wang
2018-01-01
Full Text Available Monte Carlo simulation of light propagation in turbid medium has been studied for years. A number of software packages have been developed to handle with such issue. However, it is hard to compare these simulation packages, especially for tissues with complex heterogeneous structures. Here, we first designed a group of mesh datasets generated by Iso2Mesh software, and used them to cross-validate the accuracy and to evaluate the performance of four Monte Carlo-based simulation packages, including Monte Carlo model of steady-state light transport in multi-layered tissues (MCML, tetrahedron-based inhomogeneous Monte Carlo optical simulator (TIMOS, Molecular Optical Simulation Environment (MOSE, and Mesh-based Monte Carlo (MMC. The performance of each package was evaluated based on the designed mesh datasets. The merits and demerits of each package were also discussed. Comparative results showed that the TIMOS package provided the best performance, which proved to be a reliable, efficient, and stable MC simulation package for users.
Simulating propagation of coherent light in random media using the Fredholm type integral equation
Kraszewski, Maciej; Pluciński, Jerzy
2017-06-01
Studying propagation of light in random scattering materials is important for both basic and applied research. Such studies often require usage of numerical method for simulating behavior of light beams in random media. However, if such simulations require consideration of coherence properties of light, they may become a complex numerical problems. There are well established methods for simulating multiple scattering of light (e.g. Radiative Transfer Theory and Monte Carlo methods) but they do not treat coherence properties of light directly. Some variations of these methods allows to predict behavior of coherent light but only for an averaged realization of the scattering medium. This limits their application in studying many physical phenomena connected to a specific distribution of scattering particles (e.g. laser speckle). In general, numerical simulation of coherent light propagation in a specific realization of random medium is a time- and memory-consuming problem. The goal of the presented research was to develop new efficient method for solving this problem. The method, presented in our earlier works, is based on solving the Fredholm type integral equation, which describes multiple light scattering process. This equation can be discretized and solved numerically using various algorithms e.g. by direct solving the corresponding linear equations system, as well as by using iterative or Monte Carlo solvers. Here we present recent development of this method including its comparison with well-known analytical results and a finite-difference type simulations. We also present extension of the method for problems of multiple scattering of a polarized light on large spherical particles that joins presented mathematical formalism with Mie theory.
Numerical simulation of seismic wave propagation from land-excited large volume air-gun source
Cao, W.; Zhang, W.
2017-12-01
The land-excited large volume air-gun source can be used to study regional underground structures and to detect temporal velocity changes. The air-gun source is characterized by rich low frequency energy (from bubble oscillation, 2-8Hz) and high repeatability. It can be excited in rivers, reservoirs or man-made pool. Numerical simulation of the seismic wave propagation from the air-gun source helps to understand the energy partitioning and characteristics of the waveform records at stations. However, the effective energy recorded at a distance station is from the process of bubble oscillation, which can not be approximated by a single point source. We propose a method to simulate the seismic wave propagation from the land-excited large volume air-gun source by finite difference method. The process can be divided into three parts: bubble oscillation and source coupling, solid-fluid coupling and the propagation in the solid medium. For the first part, the wavelet of the bubble oscillation can be simulated by bubble model. We use wave injection method combining the bubble wavelet with elastic wave equation to achieve the source coupling. Then, the solid-fluid boundary condition is implemented along the water bottom. And the last part is the seismic wave propagation in the solid medium, which can be readily implemented by the finite difference method. Our method can get accuracy waveform of land-excited large volume air-gun source. Based on the above forward modeling technology, we analysis the effect of the excited P wave and the energy of converted S wave due to different water shapes. We study two land-excited large volume air-gun fields, one is Binchuan in Yunnan, and the other is Hutubi in Xinjiang. The station in Binchuan, Yunnan is located in a large irregular reservoir, the waveform records have a clear S wave. Nevertheless, the station in Hutubi, Xinjiang is located in a small man-made pool, the waveform records have very weak S wave. Better understanding of
Nagatani, Yoshiki; Mizuno, Katsunori; Saeki, Takashi; Matsukawa, Mami; Sakaguchi, Takefumi; Hosoi, Hiroshi
2008-11-01
In cancellous bone, longitudinal waves often separate into fast and slow waves depending on the alignment of bone trabeculae in the propagation path. This interesting phenomenon becomes an effective tool for the diagnosis of osteoporosis because wave propagation behavior depends on the bone structure. Since the fast wave mainly propagates in trabeculae, this wave is considered to reflect the structure of trabeculae. For a new diagnosis method using the information of this fast wave, therefore, it is necessary to understand the generation mechanism and propagation behavior precisely. In this study, the generation process of fast wave was examined by numerical simulations using elastic finite-difference time-domain (FDTD) method and experimental measurements. As simulation models, three-dimensional X-ray computer tomography (CT) data of actual bone samples were used. Simulation and experimental results showed that the attenuation of fast wave was always higher in the early state of propagation, and they gradually decreased as the wave propagated in bone. This phenomenon is supposed to come from the complicated propagating paths of fast waves in cancellous bone.
Modeling and simulation of ocean wave propagation using lattice Boltzmann method
Nuraiman, Dian
2017-10-01
In this paper, we present on modeling and simulation of ocean wave propagation from the deep sea to the shoreline. This requires high computational cost for simulation with large domain. We propose to couple a 1D shallow water equations (SWE) model with a 2D incompressible Navier-Stokes equations (NSE) model in order to reduce the computational cost. The coupled model is solved using the lattice Boltzmann method (LBM) with the lattice Bhatnagar-Gross-Krook (BGK) scheme. Additionally, a special method is implemented to treat the complex behavior of free surface close to the shoreline. The result shows the coupled model can reduce computational cost significantly compared to the full NSE model.
A combined ADER-DG and PML approach for simulating wave propagation in unbounded domains
Amler, Thomas
2012-09-19
In this work, we present a numerical approach for simulating wave propagation in unbounded domains which combines discontinuous Galerkin methods with arbitrary high order time integration (ADER-DG) and a stabilized modification of perfectly matched layers (PML). Here, the ADER-DG method is applied to Bérenger’s formulation of PML. The instabilities caused by the original PML formulation are treated by a fractional step method that allows to monitor whether waves are damped in PML region. In grid cells where waves are amplified by the PML, the contribution of damping terms is neglected and auxiliary variables are reset. Results of 2D simulations in acoustic media with constant and discontinuous material parameters are presented to illustrate the performance of the method.
Kemp, Z. D. C.
2018-04-01
Determining the phase of a wave from intensity measurements has many applications in fields such as electron microscopy, visible light optics, and medical imaging. Propagation based phase retrieval, where the phase is obtained from defocused images, has shown significant promise. There are, however, limitations in the accuracy of the retrieved phase arising from such methods. Sources of error include shot noise, image misalignment, and diffraction artifacts. We explore the use of artificial neural networks (ANNs) to improve the accuracy of propagation based phase retrieval algorithms applied to simulated intensity measurements. We employ a phase retrieval algorithm based on the transport-of-intensity equation to obtain the phase from simulated micrographs of procedurally generated specimens. We then train an ANN with pairs of retrieved and exact phases, and use the trained ANN to process a test set of retrieved phase maps. The total error in the phase is significantly reduced using this method. We also discuss a variety of potential extensions to this work.
3D Orthorhombic Elastic Wave Propagation Pre-Test Simulation of SPE DAG-1 Test
Jensen, R. P.; Preston, L. A.
2017-12-01
A more realistic representation of many geologic media can be characterized as a dense system of vertically-aligned microfractures superimposed on a finely-layered horizontal geology found in shallow crustal rocks. This seismic anisotropy representation lends itself to being modeled as an orthorhombic elastic medium comprising three mutually orthogonal symmetry planes containing nine independent moduli. These moduli can be determined by observing (or prescribing) nine independent P-wave and S-wave phase speeds along different propagation directions. We have developed an explicit time-domain finite-difference (FD) algorithm for simulating 3D elastic wave propagation in a heterogeneous orthorhombic medium. The components of the particle velocity vector and the stress tensor are governed by a set of nine, coupled, first-order, linear, partial differential equations (PDEs) called the velocity-stress system. All time and space derivatives are discretized with centered and staggered FD operators possessing second- and fourth-order numerical accuracy, respectively. Additionally, we have implemented novel perfectly matched layer (PML) absorbing boundary conditions, specifically designed for orthorhombic media, to effectively suppress grid boundary reflections. In support of the Source Physics Experiment (SPE) Phase II, a series of underground chemical explosions at the Nevada National Security Site, the code has been used to perform pre-test estimates of the Dry Alluvium Geology - Experiment 1 (DAG-1). Based on literature searches, realistic geologic structure and values for orthorhombic P-wave and S-wave speeds have been estimated. Results and predictions from the simulations are presented.
Davidson, R C; Majeski, R; Qin, H; Shvets, G
2001-01-01
This paper describes the design concept for a compact Paul trap experimental configuration that fully simulates the collective processes and nonlinear transverse dynamics of an intense charged particle beam that propagates over large distances through a periodic quadrupole magnetic field. To summarize, a long nonneutral plasma column (L>=r sub p) is confined axially by applied DC voltages V[circ]=const. on end cylinders at z=+-L, and transverse confinement is provided by segmented cylindrical electrodes (at radius r sub w) with applied oscillatory voltages +-V sub 0 (t) over 90 deg. segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact experimental facility. The nominal operating parameters in the experimental design are: barium ions (A=137); plasma column length 2L=2 m; wall radius r sub w =10...
Numerical simulation of blast wave propagation in vicinity of standalone prism on flat plate
Valger, Svetlana; Fedorova, Natalya; Fedorov, Alexander
2018-03-01
In the paper, numerical simulation of shock wave propagation in the vicinity of a standalone prism and a prism with a cavity in front of it was carried out. The modeling was based on the solution of 3D Euler equations and Fluent software was used as a main computational tool. The algorithm for local dynamic mesh adaptation to high gradients of pressure was applied. The initial stage of the explosion of condensed explosive was described with the help of "Compressed balloon method". The research allowed describing the characteristic stages of the blast in a semi-closed space, the structure of secondary shock waves and their interaction with obstacles. The numerical approach in Fluent based on combining inviscid gas dynamics methods and "Compressed balloon method" was compared with the method which had been used by the authors earlier with the help of AUTODYN and which is based on the use of the hydrodynamic model of a material to describe state of detonation products. For the problem of shock wave propagation in the vicinity of standalone prism the comparison of the simulation results obtained using both the methods with the experimental data was performed on the dependence of static pressure and effective momentum on time for the characteristic points located on prism walls.
Test-particle simulations of SEP propagation in IMF with large-scale fluctuations
Kelly, J.; Dalla, S.; Laitinen, T.
2012-11-01
The results of full-orbit test-particle simulations of SEPs propagating through an IMF which exhibits large-scale fluctuations are presented. A variety of propagation conditions are simulated - scatter-free, and scattering with mean free path, λ, of 0.3 and 2.0 AU - and the cross-field transport of SEPs is investigated. When calculating cross-field displacements the Parker spiral geometry is accounted for and the role of magnetic field expansion is taken into account. It is found that transport across the magnetic field is enhanced in the λ =0.3 AU and λ =2 AU cases, compared to the scatter-free case, with the λ =2 AU case in particular containing outlying particles that had strayed a large distance across the IMF. Outliers are catergorized by means of Chauvenet's criterion and it is found that typically between 1 and 2% of the population falls within this category. The ratio of latitudinal to longitudinal diffusion coefficient perpendicular to the magnetic field is typically 0.2, suggesting that transport in latitude is less efficient.
Sound-speed structure and propagational characteristics of a cold core eddy in the Bay of Bengal
Digital Repository Service at National Institute of Oceanography (India)
PrasannaKumar, S.; Babu, M.T.; Murty, T.V.R.
reduces by about 20 m across the eddy. Simulation studies showed that the rays passing through the eddy undergoes a reduction in the path length thereby reducing the travel time. Travel time delay causEd. by the eddy is of the order of 200 milliseconds...
Parallel 3D Simulation of Seismic Wave Propagation in the Structure of Nobi Plain, Central Japan
Kotani, A.; Furumura, T.; Hirahara, K.
2003-12-01
We performed large-scale parallel simulations of the seismic wave propagation to understand the complex wave behavior in the 3D basin structure of the Nobi Plain, which is one of the high population cities in central Japan. In this area, many large earthquakes occurred in the past, such as the 1891 Nobi earthquake (M8.0), the 1944 Tonankai earthquake (M7.9) and the 1945 Mikawa earthquake (M6.8). In order to mitigate the potential disasters for future earthquakes, 3D subsurface structure of Nobi Plain has recently been investigated by local governments. We referred to this model together with bouguer anomaly data to construct a detail 3D basin structure model for Nobi plain, and conducted computer simulations of ground motions. We first evaluated the ground motions for two small earthquakes (M4~5); one occurred just beneath the basin edge at west, and the other occurred at south. The ground motions from these earthquakes were well recorded by the strong motion networks; K-net, Kik-net, and seismic intensity instruments operated by local governments. We compare the observed seismograms with simulations to validate the 3D model. For the 3D simulation we sliced the 3D model into a number of layers to assign to many processors for concurrent computing. The equation of motions are solved using a high order (32nd) staggered-grid FDM in horizontal directions, and a conventional (4th-order) FDM in vertical direction with the MPI inter-processor communications between neighbor region. The simulation model is 128km by 128km by 43km, which is discritized at variable grid size of 62.5-125m in horizontal directions and of 31.25-62.5m in vertical direction. We assigned a minimum shear wave velocity is Vs=0.4km/s, at the top of the sedimentary basin. The seismic sources for the small events are approximated by double-couple point source and we simulate the seismic wave propagation at maximum frequency of 2Hz. We used the Earth Simulator (JAMSTEC, Yokohama Inst) to conduct such
Analysis of Fan Waves in a Laboratory Model Simulating the Propagation of Shear Ruptures in Rocks
Tarasov, B. G.; Sadovskii, V. M.; Sadovskaya, O. V.
2017-12-01
The fan-shaped mechanism of rotational motion transmission in a system of elastically bonded slabs on flat surface, simulating the propagation of shear ruptures in super brittle rocks, is analyzed. Such ruptures appear in the Earth's crust at seismogenic depths. They propagate due to the nucleation of oblique tensile microcracks, leading to the formation of a fan domino-structure in the rupture head. A laboratory physical model was created which demonstrates the process of fan-structure wave propagation. Equations of the dynamics of rotational motion of slabs as a mechanical system with a finite number of degrees of freedom are obtained. Based on the Merson method of solving the Cauchy problem for systems of ordinary differential equations, the computational algorithm taking into account contact interaction of slabs is developed. Within the framework of a simplified mathematical model of dynamic behavior of a fan-shaped system in the approximation of a continuous medium, the approximate estimates of the length of a fan depending on the velocity of its motion are obtained. It is shown that in the absence of friction a fan can move with any velocity that does not exceed the critical value, which depends on the size, the moment of inertia of slabs, the initial angle and the elasticity coefficient of bonds. In the presence of friction a fan stops. On the basis of discrete and continuous models, the main qualitative features of the behavior of a fan-structure moving under the action of applied tangential forces, whose values in a laboratory physical model are regulated by a change in the inclination angle of the rupture plane, are analyzed. Comparison of computations and laboratory measurements and observations shows good correspondence between the results.
Hirano, S.
2017-12-01
For some great earthquakes, dynamic rupture propagates unilaterally along a horizontal direction of very-long reverse faults (e.g., the Mw9.1 Sumatra earthquake in 2004, the Mw8.0 Wenchuan earthquake in 2008, and the Mw8.8 Maule earthquake in 2010, etc.). It seems that barriers or creeping sections may not lay along the opposite region of the co-seismically ruptured direction. In fact, in the case of Sumatra, the Mw8.6 earthquake occurred in the opposite region only three months after the mainshock. Mechanism of unilateral mode-II rupture along a material interface has been investigated theoretically and numerically. For mode-II rupture propagating along a material interface, an analytical solution implies that co-seismic stress perturbation depends on the rupture direction (Weertman, 1980 JGR; Hirano & Yamashita, 2016 BSSA), and numerical modeling of plastic yielding contributes to simulating the unilateral rupture (DeDonteny et al., 2011 JGR). However, mode-III rupture may dominate for the very-long reverse faults, and it can be shown that stress perturbation due to mode-III rupture does not depend on the rupture direction. Hence, an effect of the material interface is insufficient to understand the mechanism of unilateral rupture along the very-long reverse faults. In this study, I consider a two-dimensional bimaterial system with interfacial dynamic mode-III rupture under an obliquely pre-stressed configuration (i.e., the maximum shear direction of the background stress is inclined from the interfacial fault). First, I derived an analytical solution of regularized elastic stress field around a steady-state interfacial slip pulse using the method of Rice et al. (2005 BSSA). Then I found that the total stress, which is the sum of the background stress and co-seismic stress perturbation, depends on the rupture direction even in the mode-III case. Second, I executed a finite difference numerical simulation with a plastic yielding model of Andrews (1978 JGR; 2005
Numerical Simulations of Upstream Propagating Solitary Waves and Wave Breaking In A Stratified Fjord
Stastna, M.; Peltier, W. R.
In this talk we will discuss ongoing numerical modeling of the flow of a stratified fluid over large scale topography motivated by observations in Knight Inlet, a fjord in British Columbia, Canada. After briefly surveying the work done on the topic in the past we will discuss our latest set of simulations in which we have observed the gener- ation and breaking of three different types of nonlinear internal waves in the lee of the sill topography. The first type of wave observed is a large lee wave in the weakly strat- ified main portion of the water column, The second is an upward propagating internal wave forced by topography that breaks in the strong, near-surface pycnocline. The third is a train of upstream propagating solitary waves that, in certain circumstances, form as breaking waves consisting of a nearly solitary wave envelope and a highly unsteady core near the surface. Time premitting, we will comment on the implications of these results for our long term goal of quantifying tidally driven mixing in Knight Inlet.
An FDTD algorithm for simulating light propagation in anisotropic dynamic gain media
Al-Jabr, A. A.
2014-05-02
Simulating light propagation in anisotropic dynamic gain media such as semiconductors and solid-state lasers using the finite difference time-domain FDTD technique is a tedious process, as many variables need to be evaluated in the same instant of time. The algorithm has to take care of the laser dynamic gain, rate equations, anisotropy and dispersion. In this paper, to the best of our knowledge, we present the first algorithm that solves this problem. The algorithm is based on separating calculations into independent layers and hence solving each problem in a layer of calculations. The anisotropic gain medium is presented and tested using a one-dimensional set-up. The algorithm is then used for the analysis of a two-dimensional problem.
Mao, Xianhe; Qin, Zhigui; Yuan, Xiaoning; Wang, Chunming; Cai, Xinan; Zhao, Weixia; Zhao, Kang; Yang, Ping; Fan, Xiaoling
2013-11-01
A simulated radioactive soil waste containing cerium as an imitator element has been immobilized by a thermite self-propagating high-temperature synthesis (SHS) process. The compositions, structures, and element leaching rates of products with different cerium contents have been characterized. To investigate the influence of iron on the chemical stability of the immobilized products, leaching tests of samples with different iron contents with different leaching solutions were carried out. The results showed that the imitator element cerium mainly forms the crystalline phases CeAl11O18 and Ce2SiO5. The leaching rate of cerium over a period of 28 days was 10-5-10-6 g/(m2 day). Iron in the reactants, the reaction products, and the environment has no significant effect on the chemical stability of the immobilized SHS products.
Numerical simulations of wave propagation in long bars with application to Kolsky bar testing
Energy Technology Data Exchange (ETDEWEB)
Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-11-01
Material testing using the Kolsky bar, or split Hopkinson bar, technique has proven instrumental to conduct measurements of material behavior at strain rates in the order of 10^{3} s^{-1}. Test design and data reduction, however, remain empirical endeavors based on the experimentalist's experience. Issues such as wave propagation across discontinuities, the effect of the deformation of the bar surfaces in contact with the specimen, the effect of geometric features in tensile specimens (dog-bone shape), wave dispersion in the bars and other particulars are generally treated using simplified models. The work presented here was conducted in Q3 and Q4 of FY14. The objective was to demonstrate the feasibility of numerical simulations of Kolsky bar tests, which was done successfully.
Simulation of crack propagation in fiber-reinforced concrete by fracture mechanics
International Nuclear Information System (INIS)
Zhang Jun; Li, Victor C.
2004-01-01
Mode I crack propagation in fiber-reinforced concrete (FRC) is simulated by a fracture mechanics approach. A superposition method is applied to calculate the crack tip stress intensity factor. The model relies on the fracture toughness of hardened cement paste (K IC ) and the crack bridging law, so-called stress-crack width (σ-δ) relationship of the material, as the fundamental material parameters for model input. As two examples, experimental data from steel FRC beams under three-point bending load are analyzed with the present fracture mechanics model. A good agreement has been found between model predictions and experimental results in terms of flexural stress-crack mouth opening displacement (CMOD) diagrams. These analyses and comparisons confirm that the structural performance of concrete and FRC elements, such as beams in bending, can be predicted by the simple fracture mechanics model as long as the related material properties, K IC and (σ-δ) relationship, are known
International Nuclear Information System (INIS)
Mao, Xianhe; Qin, Zhigui; Yuan, Xiaoning; Wang, Chunming; Cai, Xinan; Zhao, Weixia; Zhao, Kang; Yang, Ping; Fan, Xiaoling
2013-01-01
A simulated radioactive soil waste containing cerium as an imitator element has been immobilized by a thermite self-propagating high-temperature synthesis (SHS) process. The compositions, structures, and element leaching rates of products with different cerium contents have been characterized. To investigate the influence of iron on the chemical stability of the immobilized products, leaching tests of samples with different iron contents with different leaching solutions were carried out. The results showed that the imitator element cerium mainly forms the crystalline phases CeAl 11 O 18 and Ce 2 SiO 5 . The leaching rate of cerium over a period of 28 days was 10 −5 –10 −6 g/(m 2 day). Iron in the reactants, the reaction products, and the environment has no significant effect on the chemical stability of the immobilized SHS products
An FDTD algorithm for simulating light propagation in anisotropic dynamic gain media
Al-Jabr, A. A.; San Roman Alerigi, Damian; Ooi, Boon S.; Alsunaidi, M. A.
2014-01-01
Simulating light propagation in anisotropic dynamic gain media such as semiconductors and solid-state lasers using the finite difference time-domain FDTD technique is a tedious process, as many variables need to be evaluated in the same instant of time. The algorithm has to take care of the laser dynamic gain, rate equations, anisotropy and dispersion. In this paper, to the best of our knowledge, we present the first algorithm that solves this problem. The algorithm is based on separating calculations into independent layers and hence solving each problem in a layer of calculations. The anisotropic gain medium is presented and tested using a one-dimensional set-up. The algorithm is then used for the analysis of a two-dimensional problem.
Ultrasonic Beam Propagation in Highly Anisotropic Materials Simulated by Multi-Gaussian Beams
International Nuclear Information System (INIS)
Jeong, Hyun Jo; Schmerr, Lester W.
2007-01-01
The necessity of nondestructively inspecting fiber-reinforced composites, austenitic steels, and other inherently anisotropic materials has stimulated considerable interest in developing beam models for anisotropic media. The properties of slowness surface play key role in the beam models based on the paraxial approximation. In this paper, we apply a modular multi-Gaussian beam (MMGB) model to study the effects of material anisotropy on ultrasonic beam profile. It is shown that the anisotropic effects of beam skew and excess beam divergence enter into the MMGB model through parameters defining the slope and curvature of the slowness surface. The overall beam profile is found when the quasi longitudinal (qL) beam propagates in the symmetry plane of a transversely isotropic gr/ep composite. Simulation results are presented to illustrate the effects of these parameters on ultrasonic beam diffraction and beam skew. The MMGB calculations are also checked by comparing the anisotropy factor and beam skew angle with other analytical solutions
How to measure propagation velocity in cardiac tissue: a simulation study
Directory of Open Access Journals (Sweden)
Andre C. Linnenbank
2014-07-01
Full Text Available To estimate conduction velocities from activation times in myocardial tissue, the average vector method computes all the local activation directions and velocities from local activation times and estimates the fastest and slowest propagation speed from these local values. The single vector method uses areas of apparent uniform elliptical spread of activation and chooses a single vector for the estimated longitudinal velocity and one for the transversal. A simulation study was performed to estimate the influence of grid size, anisotropy, and vector angle bin size. The results indicate that the average vector method can best be used if the grid- or bin-size is large, although systematic errors occur. The single vector method performs better, but requires human intervention for the definition of fiber direction. The average vector method can be automated.
Energy Technology Data Exchange (ETDEWEB)
López, Rodrigo A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción 4070386 (Chile); Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Viñas, Adolfo F. [Geospace Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Santiago 9170124 (Chile)
2015-09-15
We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity.
International Nuclear Information System (INIS)
López, Rodrigo A.; Muñoz, Víctor; Viñas, Adolfo F.; Valdivia, Juan A.
2015-01-01
We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity
Stochastic self-propagating star formation in three-dimensional disk galaxy simulations
International Nuclear Information System (INIS)
Statler, T.; Comins, N.; Smith, B.F.
1983-01-01
Stochastic self-propagating star formation (SSPSF) is a process of forming new stars through the compression of the interstellar medium by supernova shock waves. Coupling this activity with galactic differential rotation produces spiral structure in two-dimensional disk galaxy simulations. In this paper the first results of a three-dimensional SSPSF simulation of disk galaxies are reported. Our model generates less impressive spirals than do the two-dimensional simulations. Although some spirals do appear in equilibrium, more frequently we observe spirals as non-equilibrium states of the models: as the spiral arms evolve, they widen until the spiral structure is no longer discernible. The two free parameters that we vary in this study are the probability of star formation due to a recent, nearby explosion, and the relaxation time for the interstellar medium to return to a condition of maximum star formation after it has been cleared out by an explosion and subsequent star formation. We find that equilibrium spiral structure is formed over a much smaller range of these parameters in our three-dimensional SSPSF models than in similar two-dimensional models. We discuss possible reasons for these results as well as improvements on the model which are being explored
Directory of Open Access Journals (Sweden)
Chun-Te Chen
2016-06-01
Full Text Available This study used the results from 45 microtremor array measurements to construct a shallow shear wave velocity structure in the western plain of Taiwan. We constructed a complete 3D velocity model based on shallow and tomography models for our numerical simulation. There are three major subsurfaces, engineering bedrock (VS = 600 m s-1, Pliocene formation and Miocene formation, constituted in the shallow model. The constant velocity is given in each subsurface. We employed a 3D-FD (finite-differences method to simulate seismic wave propagation in the western plain. The aim of this study was to perform a quantitative comparison of site amplifications and durations obtained from empirical data and numerical modelling in order to obtain the shallow substructure soil response. Modelling clearly revealed that the shallow substructure plays an important role in strong ground motion prediction using 3D simulation. The results show significant improvements in effective shaking duration and the peak ground velocity (PGV distribution in terms of the accuracy achieved by our developed model. We recommend a high-resolution shallow substructure as an essential component in future seismic hazard analyses.
GPU-based simulation of optical propagation through turbulence for active and passive imaging
Monnier, Goulven; Duval, François-Régis; Amram, Solène
2014-10-01
IMOTEP is a GPU-based (Graphical Processing Units) software relying on a fast parallel implementation of Fresnel diffraction through successive phase screens. Its applications include active imaging, laser telemetry and passive imaging through turbulence with anisoplanatic spatial and temporal fluctuations. Thanks to parallel implementation on GPU, speedups ranging from 40X to 70X are achieved. The present paper gives a brief overview of IMOTEP models, algorithms, implementation and user interface. It then focuses on major improvements recently brought to the anisoplanatic imaging simulation method. Previously, we took advantage of the computational power offered by the GPU to develop a simulation method based on large series of deterministic realisations of the PSF distorted by turbulence. The phase screen propagation algorithm, by reproducing higher moments of the incident wavefront distortion, provides realistic PSFs. However, we first used a coarse gaussian model to fit the numerical PSFs and characterise there spatial statistics through only 3 parameters (two-dimensional displacements of centroid and width). Meanwhile, this approach was unable to reproduce the effects related to the details of the PSF structure, especially the "speckles" leading to prominent high-frequency content in short-exposure images. To overcome this limitation, we recently implemented a new empirical model of the PSF, based on Principal Components Analysis (PCA), ought to catch most of the PSF complexity. The GPU implementation allows estimating and handling efficiently the numerous (up to several hundreds) principal components typically required under the strong turbulence regime. A first demanding computational step involves PCA, phase screen propagation and covariance estimates. In a second step, realistic instantaneous images, fully accounting for anisoplanatic effects, are quickly generated. Preliminary results are presented.
Yılmaz, Bülent; Çiftçi, Emre
2013-06-01
Extracorporeal Shock Wave Lithotripsy (ESWL) is based on disintegration of the kidney stone by delivering high-energy shock waves that are created outside the body and transmitted through the skin and body tissues. Nowadays high-energy shock waves are also used in orthopedic operations and investigated to be used in the treatment of myocardial infarction and cancer. Because of these new application areas novel lithotriptor designs are needed for different kinds of treatment strategies. In this study our aim was to develop a versatile computer simulation environment which would give the device designers working on various medical applications that use shock wave principle a substantial amount of flexibility while testing the effects of new parameters such as reflector size, material properties of the medium, water temperature, and different clinical scenarios. For this purpose, we created a finite-difference time-domain (FDTD)-based computational model in which most of the physical system parameters were defined as an input and/or as a variable in the simulations. We constructed a realistic computational model of a commercial electrohydraulic lithotriptor and optimized our simulation program using the results that were obtained by the manufacturer in an experimental setup. We, then, compared the simulation results with the results from an experimental setup in which oxygen level in water was varied. Finally, we studied the effects of changing the input parameters like ellipsoid size and material, temperature change in the wave propagation media, and shock wave source point misalignment. The simulation results were consistent with the experimental results and expected effects of variation in physical parameters of the system. The results of this study encourage further investigation and provide adequate evidence that the numerical modeling of a shock wave therapy system is feasible and can provide a practical means to test novel ideas in new device design procedures
Energy Technology Data Exchange (ETDEWEB)
Sen, Seema, E-mail: seema.sen@tu-ilmenau.de [Technical University of Ilmenau, Department of Materials for Electronics, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany); Niederrhein University of Applied Science, Department of Mechanical and Process Engineering, Reinarzstraße 49, 47805 Krefeld (Germany); Lake, Markus; Kroppen, Norman; Farber, Peter; Wilden, Johannes [Niederrhein University of Applied Science, Department of Mechanical and Process Engineering, Reinarzstraße 49, 47805 Krefeld (Germany); Schaaf, Peter [Technical University of Ilmenau, Department of Materials for Electronics, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany)
2017-02-28
Highlights: • Development of nanoscale Ti/Al multilayer films with 1:1, 1:2 and 1:3 molar ratios. • Characterization of exothermic reaction propagation by experiments and simulation. • The reaction velocity depends on the ignition potentials and molar ratios of the films. • Only 1Ti/3Al films exhibit the unsteady reaction propagation with ripple formation. • CFD simulation shows the time dependent atom mixing and temperature flow during exothermic reaction. - Abstract: This study describes the self-propagating exothermic reaction in Ti/Al reactive multilayer foils by using experiments and computational fluid dynamics simulation. The Ti/Al foils with different molar ratios of 1Ti/1Al, 1Ti/2Al and 1Ti/3Al were fabricated by magnetron sputtering method. Microstructural characteristics of the unreacted and reacted foils were analyzed by using electronic and atomic force microscopes. After an electrical ignition, the influence of ignition potentials on reaction propagation has been experimentally investigated. The reaction front propagates with a velocity of minimum 0.68 ± 0.4 m/s and maximum 2.57 ± 0.6 m/s depending on the input ignition potentials and the chemical compositions. Here, the 1Ti/3Al reactive foil exhibits both steady state and unsteady wavelike reaction propagation. Moreover, the numerical computational fluid dynamics (CFD) simulation shows the time dependent temperature flow and atomic mixing in a nanoscale reaction zone. The CFD simulation also indicates the potentiality for simulating exothermic reaction in the nanoscale Ti/Al foil.
Simulation of nonlinear propagation of biomedical ultrasound using PZFlex and the KZK Texas code
Qiao, Shan; Jackson, Edward; Coussios, Constantin-C.; Cleveland, Robin
2015-10-01
In biomedical ultrasound nonlinear acoustics can be important in both diagnostic and therapeutic applications and robust simulations tools are needed in the design process but also for day-to-day use such as treatment planning. For most biomedical application the ultrasound sources generate focused sound beams of finite amplitude. The KZK equation is a common model as it accounts for nonlinearity, absorption and paraxial diffraction and there are a number of solvers available, primarily developed by research groups. We compare the predictions of the KZK Texas code (a finite-difference time-domain algorithm) to an FEM-based commercial software, PZFlex. PZFlex solves the continuity equation and momentum conservation equation with a correction for nonlinearity in the equation of state incorporated using an incrementally linear, 2nd order accurate, explicit algorithm in time domain. Nonlinear ultrasound beams from two transducers driven at 1 MHz and 3.3 MHz respectively were simulated by both the KZK Texas code and PZFlex, and the pressure field was also measured by a fibre-optic hydrophone to validate the models. Further simulations were carried out a wide range of frequencies. The comparisons showed good agreement for the fundamental frequency for PZFlex, the KZK Texas code and the experiments. For the harmonic components, the KZK Texas code was in good agreement with measurements but PZFlex underestimated the amplitude: 32% for the 2nd harmonic and 66% for the 3rd harmonic. The underestimation of harmonics by PZFlex was more significant when the fundamental frequency increased. Furthermore non-physical oscillations in the axial profile of harmonics occurred in the PZFlex results when the amplitudes were relatively low. These results suggest that careful benchmarking of nonlinear simulations is important.
Simulation of nonlinear propagation of biomedical ultrasound using PZFlex and the KZK Texas code
Energy Technology Data Exchange (ETDEWEB)
Qiao, Shan, E-mail: shan.qiao@eng.ox.ac.uk; Jackson, Edward; Coussios, Constantin-C; Cleveland, Robin [Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford (United Kingdom)
2015-10-28
In biomedical ultrasound nonlinear acoustics can be important in both diagnostic and therapeutic applications and robust simulations tools are needed in the design process but also for day-to-day use such as treatment planning. For most biomedical application the ultrasound sources generate focused sound beams of finite amplitude. The KZK equation is a common model as it accounts for nonlinearity, absorption and paraxial diffraction and there are a number of solvers available, primarily developed by research groups. We compare the predictions of the KZK Texas code (a finite-difference time-domain algorithm) to an FEM-based commercial software, PZFlex. PZFlex solves the continuity equation and momentum conservation equation with a correction for nonlinearity in the equation of state incorporated using an incrementally linear, 2nd order accurate, explicit algorithm in time domain. Nonlinear ultrasound beams from two transducers driven at 1 MHz and 3.3 MHz respectively were simulated by both the KZK Texas code and PZFlex, and the pressure field was also measured by a fibre-optic hydrophone to validate the models. Further simulations were carried out a wide range of frequencies. The comparisons showed good agreement for the fundamental frequency for PZFlex, the KZK Texas code and the experiments. For the harmonic components, the KZK Texas code was in good agreement with measurements but PZFlex underestimated the amplitude: 32% for the 2nd harmonic and 66% for the 3rd harmonic. The underestimation of harmonics by PZFlex was more significant when the fundamental frequency increased. Furthermore non-physical oscillations in the axial profile of harmonics occurred in the PZFlex results when the amplitudes were relatively low. These results suggest that careful benchmarking of nonlinear simulations is important.
Simulation of nonlinear propagation of biomedical ultrasound using PZFlex and the KZK Texas code
International Nuclear Information System (INIS)
Qiao, Shan; Jackson, Edward; Coussios, Constantin-C; Cleveland, Robin
2015-01-01
In biomedical ultrasound nonlinear acoustics can be important in both diagnostic and therapeutic applications and robust simulations tools are needed in the design process but also for day-to-day use such as treatment planning. For most biomedical application the ultrasound sources generate focused sound beams of finite amplitude. The KZK equation is a common model as it accounts for nonlinearity, absorption and paraxial diffraction and there are a number of solvers available, primarily developed by research groups. We compare the predictions of the KZK Texas code (a finite-difference time-domain algorithm) to an FEM-based commercial software, PZFlex. PZFlex solves the continuity equation and momentum conservation equation with a correction for nonlinearity in the equation of state incorporated using an incrementally linear, 2nd order accurate, explicit algorithm in time domain. Nonlinear ultrasound beams from two transducers driven at 1 MHz and 3.3 MHz respectively were simulated by both the KZK Texas code and PZFlex, and the pressure field was also measured by a fibre-optic hydrophone to validate the models. Further simulations were carried out a wide range of frequencies. The comparisons showed good agreement for the fundamental frequency for PZFlex, the KZK Texas code and the experiments. For the harmonic components, the KZK Texas code was in good agreement with measurements but PZFlex underestimated the amplitude: 32% for the 2nd harmonic and 66% for the 3rd harmonic. The underestimation of harmonics by PZFlex was more significant when the fundamental frequency increased. Furthermore non-physical oscillations in the axial profile of harmonics occurred in the PZFlex results when the amplitudes were relatively low. These results suggest that careful benchmarking of nonlinear simulations is important
International Nuclear Information System (INIS)
Kijanka, P; Radecki, R; Packo, P; Staszewski, W J; Uhl, T
2013-01-01
Temperature has a significant effect on Lamb wave propagation. It is important to compensate for this effect when the method is considered for structural damage detection. The paper explores a newly proposed, very efficient numerical simulation tool for Lamb wave propagation modelling in aluminum plates exposed to temperature changes. A local interaction approach implemented with a parallel computing architecture and graphics cards is used for these numerical simulations. The numerical results are compared with the experimental data. The results demonstrate that the proposed approach could be used efficiently to produce a large database required for the development of various temperature compensation procedures in structural health monitoring applications. (paper)
International Nuclear Information System (INIS)
Wambach, J.
1991-01-01
Nuclei, like more familiar mechanical systems, undergo simple vibrational motion. Among these vibrations, sound modes are of particular interest since they reveal important information on the effective interactions among the constituents and, through extrapolation, on the bulk behaviour of nuclear and neutron matter. Sound wave propagation in nuclei shows strong quantum effects familiar from other quantum systems. Microscopic theory suggests that the restoring forces are caused by the complex structure of the many-Fermion wavefunction and, in some cases, have no classical analogue. The damping of the vibrational amplitude is strongly influenced by phase coherence among the particles participating in the motion. (author)
Shahmirzadi, Danial; Li, Ronny X; Konofagou, Elisa E
2012-11-01
Pulse wave imaging (PWI) is an ultrasound-based method for noninvasive characterization of arterial stiffness based on pulse wave propagation. Reliable numerical models of pulse wave propagation in normal and pathological aortas could serve as powerful tools for local pulse wave analysis and a guideline for PWI measurements in vivo. The objectives of this paper are to (1) apply a fluid-structure interaction (FSI) simulation of a straight-geometry aorta to confirm the Moens-Korteweg relationship between the pulse wave velocity (PWV) and the wall modulus, and (2) validate the simulation findings against phantom and in vitro results. PWI depicted and tracked the pulse wave propagation along the abdominal wall of canine aorta in vitro in sequential Radio-Frequency (RF) ultrasound frames and estimates the PWV in the imaged wall. The same system was also used to image multiple polyacrylamide phantoms, mimicking the canine measurements as well as modeling softer and stiffer walls. Finally, the model parameters from the canine and phantom studies were used to perform 3D two-way coupled FSI simulations of pulse wave propagation and estimate the PWV. The simulation results were found to correlate well with the corresponding Moens-Korteweg equation. A high linear correlation was also established between PWV² and E measurements using the combined simulation and experimental findings (R² = 0.98) confirming the relationship established by the aforementioned equation.
Cantini, Federico; Pio Rossi, Angelo; Orosei, Roberto; Baumann, Peter; Misev, Dimitar; Oosthoek, Jelmer; Beccati, Alan; Campalani, Piero; Unnithan, Vikram
2014-05-01
MARSIS is an orbital synthetic aperture radar for both ionosphere and subsurface sounding on board ESA's Mars Express (Picardi et al. 2005). It transmits electromagnetic pulses centered at 1.8, 3, 4 or 5 MHz that penetrate below the surface and are reflected by compositional and/or structural discontinuities in the subsurface of Mars. MARSIS data are available as a collection of single orbit data files. The availability of tools for a more effective access to such data would greatly ease data analysis and exploitation by the community of users. For this purpose, we are developing a database built on the raster database management system RasDaMan (e.g. Baumann et al., 1994), to be populated with MARSIS data and integrated in the PlanetServer/EarthServer (e.g. Oosthoek et al., 2013; Rossi et al., this meeting) project. The data (and related metadata) are stored in the db for each frequency used by MARSIS radar. The capability of retrieving data belonging to a certain orbit or to multiple orbit on the base of latitute/longitude boundaries is a key requirement of the db design, allowing, besides the "classical" radargram representation of the data, and in area with sufficiently hight orbit density, a 3D data extraction, subset and analysis of subsurface structures. Moreover the use of the OGC WCPS (Web Coverage Processing Service) standard can allow calculations on database query results for multiple echoes and/or subsets of a certain data product. Because of the low directivity of its dipole antenna, MARSIS receives echoes from portions of the surface of Mars that are distant from nadir and can be mistakenly interpreted as subsurface echoes. For this reason, methods have been developed to simulate surface echoes (e.g. Nouvel et al., 2004), to reveal the true origin of an echo through comparison with instrument data. These simulations are usually time-consuming, and so far have been performed either on a case-by-case basis or in some simplified form. A code for
Uncertainty Propagation Analysis for the Monte Carlo Time-Dependent Simulations
International Nuclear Information System (INIS)
Shaukata, Nadeem; Shim, Hyung Jin
2015-01-01
In this paper, a conventional method to control the neutron population for super-critical systems is implemented. Instead of considering the cycles, the simulation is divided in time intervals. At the end of each time interval, neutron population control is applied on the banked neutrons. Randomly selected neutrons are discarded, until the size of neutron population matches the initial neutron histories at the beginning of time simulation. A time-dependent simulation mode has also been implemented in the development version of SERPENT 2 Monte Carlo code. In this mode, sequential population control mechanism has been proposed for modeling of prompt super-critical systems. A Monte Carlo method has been properly used in TART code for dynamic criticality calculations. For super-critical systems, the neutron population is allowed to grow over a period of time. The neutron population is uniformly combed to return it to the neutron population started with at the beginning of time boundary. In this study, conventional time-dependent Monte Carlo (TDMC) algorithm is implemented. There is an exponential growth of neutron population in estimation of neutron density tally for super-critical systems and the number of neutrons being tracked exceed the memory of the computer. In order to control this exponential growth at the end of each time boundary, a conventional time cut-off controlling population strategy is included in TDMC. A scale factor is introduced to tally the desired neutron density at the end of each time boundary. The main purpose of this paper is the quantification of uncertainty propagation in neutron densities at the end of each time boundary for super-critical systems. This uncertainty is caused by the uncertainty resulting from the introduction of scale factor. The effectiveness of TDMC is examined for one-group infinite homogeneous problem (the rod model) and two-group infinite homogeneous problem. The desired neutron density is tallied by the introduction of
Uncertainty Propagation Analysis for the Monte Carlo Time-Dependent Simulations
Energy Technology Data Exchange (ETDEWEB)
Shaukata, Nadeem; Shim, Hyung Jin [Seoul National University, Seoul (Korea, Republic of)
2015-10-15
In this paper, a conventional method to control the neutron population for super-critical systems is implemented. Instead of considering the cycles, the simulation is divided in time intervals. At the end of each time interval, neutron population control is applied on the banked neutrons. Randomly selected neutrons are discarded, until the size of neutron population matches the initial neutron histories at the beginning of time simulation. A time-dependent simulation mode has also been implemented in the development version of SERPENT 2 Monte Carlo code. In this mode, sequential population control mechanism has been proposed for modeling of prompt super-critical systems. A Monte Carlo method has been properly used in TART code for dynamic criticality calculations. For super-critical systems, the neutron population is allowed to grow over a period of time. The neutron population is uniformly combed to return it to the neutron population started with at the beginning of time boundary. In this study, conventional time-dependent Monte Carlo (TDMC) algorithm is implemented. There is an exponential growth of neutron population in estimation of neutron density tally for super-critical systems and the number of neutrons being tracked exceed the memory of the computer. In order to control this exponential growth at the end of each time boundary, a conventional time cut-off controlling population strategy is included in TDMC. A scale factor is introduced to tally the desired neutron density at the end of each time boundary. The main purpose of this paper is the quantification of uncertainty propagation in neutron densities at the end of each time boundary for super-critical systems. This uncertainty is caused by the uncertainty resulting from the introduction of scale factor. The effectiveness of TDMC is examined for one-group infinite homogeneous problem (the rod model) and two-group infinite homogeneous problem. The desired neutron density is tallied by the introduction of
Experimental simulations of beam propagation over large distances in a compact linear Paul trap
International Nuclear Information System (INIS)
Gilson, Erik P.; Chung, Moses; Davidson, Ronald C.; Dorf, Mikhail; Efthimion, Philip C.; Majeski, Richard
2006-01-01
The Paul Trap Simulator Experiment (PTSX) is a compact laboratory experiment that places the physicist in the frame of reference of a long, charged-particle bunch coasting through a kilometers-long magnetic alternating-gradient (AG) transport system. The transverse dynamics of particles in both systems are described by similar equations, including nonlinear space-charge effects. The time-dependent voltages applied to the PTSX quadrupole electrodes are equivalent to the axially oscillating magnetic fields applied in the AG system. Experiments concerning the quiescent propagation of intense beams over large distances can then be performed in a compact and flexible facility. An understanding and characterization of the conditions required for quiescent beam transport, minimum halo particle generation, and precise beam compression and manipulation techniques, are essential, as accelerators and transport systems demand that ever-increasing amounts of space charge be transported. Application areas include ion-beam-driven high energy density physics, high energy and nuclear physics accelerator systems, etc. One-component cesium plasmas have been trapped in PTSX that correspond to normalized beam intensities, s=ω p 2 (0)/2ω q 2 , up to 80% of the space-charge limit where self-electric forces balance the applied focusing force. Here, ω p (0)=[n b (0)e b 2 /m b ε 0 ] 1/2 is the on-axis plasma frequency, and ω q is the smooth-focusing frequency associated with the applied focusing field. Plasmas in PTSX with values of s that are 20% of the limit have been trapped for times corresponding to equivalent beam propagation over 10 km. Results are presented for experiments in which the amplitude of the quadrupole focusing lattice is modified as a function of time. It is found that instantaneous changes in lattice amplitude can be detrimental to transverse confinement of the charge bunch
Experimental simulations of beam propagation over large distances in a compact linear Paul trapa)
Gilson, Erik P.; Chung, Moses; Davidson, Ronald C.; Dorf, Mikhail; Efthimion, Philip C.; Majeski, Richard
2006-05-01
The Paul Trap Simulator Experiment (PTSX) is a compact laboratory experiment that places the physicist in the frame of reference of a long, charged-particle bunch coasting through a kilometers-long magnetic alternating-gradient (AG) transport system. The transverse dynamics of particles in both systems are described by similar equations, including nonlinear space-charge effects. The time-dependent voltages applied to the PTSX quadrupole electrodes are equivalent to the axially oscillating magnetic fields applied in the AG system. Experiments concerning the quiescent propagation of intense beams over large distances can then be performed in a compact and flexible facility. An understanding and characterization of the conditions required for quiescent beam transport, minimum halo particle generation, and precise beam compression and manipulation techniques, are essential, as accelerators and transport systems demand that ever-increasing amounts of space charge be transported. Application areas include ion-beam-driven high energy density physics, high energy and nuclear physics accelerator systems, etc. One-component cesium plasmas have been trapped in PTSX that correspond to normalized beam intensities, ŝ=ωp2(0)/2ωq2, up to 80% of the space-charge limit where self-electric forces balance the applied focusing force. Here, ωp(0)=[nb(0)eb2/mbɛ0]1/2 is the on-axis plasma frequency, and ωq is the smooth-focusing frequency associated with the applied focusing field. Plasmas in PTSX with values of ŝ that are 20% of the limit have been trapped for times corresponding to equivalent beam propagation over 10km. Results are presented for experiments in which the amplitude of the quadrupole focusing lattice is modified as a function of time. It is found that instantaneous changes in lattice amplitude can be detrimental to transverse confinement of the charge bunch.
International Nuclear Information System (INIS)
Cai Congbo; Chen Zhong; Cai Shuhui; Zhong Jianhui
2005-01-01
In this paper, behaviors of single-quantum coherences and inter-molecular multiple-quantum coherences under restricted diffusion in nuclear magnetic resonance experiments were investigated. The propagator formalism based on the loss of spin phase memory during random motion was applied to describe the diffusion-induced signal attenuation. The exact expression of the signal attenuation under the short gradient pulse approximation for restricted diffusion between two parallel plates was obtained using this propagator method. For long gradient pulses, a modified formalism was proposed. The simulated signal attenuation under the effects of gradient pulses of different width based on the Monte Carlo method agrees with the theoretical predictions. The propagator formalism and computer simulation can provide convenient, intuitive and precise methods for the study of the diffusion behaviors
International Nuclear Information System (INIS)
Valeo, E.J.; Phillips, C.K.; Bonoli, P.T.; Wright, J.C.; Brambilla, M.
2007-01-01
The generation of energetic tails in the electron distribution function is intrinsic to lower-hybrid (LH) heating and current drive in weakly collisional magnetically confined plasma. The effects of these deformations on the RF deposition profile have previously been examined within the ray approximation. Recently, the calculation of full-wave propagation of LH waves in a thermal plasma has been accomplished using an adaptation of the TORIC code. Here, initial results are presented from TORIC simulations of LH propagation in a toroidal plasma with non-thermal electrons. The required efficient computation of the hot plasma dielectric tensor is accomplished using a technique previously demonstrated in full-wave simulations of ICRF propagation in plasma with non-thermal ions
International Nuclear Information System (INIS)
Gelman, David; Schwartz, Steven D.
2010-01-01
The recently developed quantum-classical method has been applied to the study of dissipative dynamics in multidimensional systems. The method is designed to treat many-body systems consisting of a low dimensional quantum part coupled to a classical bath. Assuming the approximate zeroth order evolution rule, the corrections to the quantum propagator are defined in terms of the total Hamiltonian and the zeroth order propagator. Then the corrections are taken to the classical limit by introducing the frozen Gaussian approximation for the bath degrees of freedom. The evolution of the primary part is governed by the corrected propagator yielding the exact quantum dynamics. The method has been tested on two model systems coupled to a harmonic bath: (i) an anharmonic (Morse) oscillator and (ii) a double-well potential. The simulations have been performed at zero temperature. The results have been compared to the exact quantum simulations using the surrogate Hamiltonian approach.
Directory of Open Access Journals (Sweden)
Zvolenský Peter
2018-01-01
Full Text Available Currently, the quality of structural design of a railway coach is evaluated by so called acoustic comfort, which is characterized by achieved levels of internal noise. Therefore, acoustic parameters of car body are being developed purposely. The paper presents the results of the computer simulation of noise transmission through the wagon walls and the use of noise tests from the train running. The acoustic properties of the original and new materials in the care body are compared.
Kagaya, Yutaka; Tabata, Masao; Arata, Yutaro; Kameoka, Junichi; Ishii, Seiichi
2017-08-01
Effectiveness of simulation-based education in cardiac auscultation training is controversial, and may vary among a variety of heart sounds and murmurs. We investigated whether a single auscultation training class using a cardiology patient simulator for medical students provides competence required for clinical clerkship, and whether students' proficiency after the training differs among heart sounds and murmurs. A total of 324 fourth-year medical students (93-117/year for 3 years) were divided into groups of 6-8 students; each group participated in a three-hour training session using a cardiology patient simulator. After a mini-lecture and facilitated training, each student took two different tests. In the first test, they tried to identify three sounds of Category A (non-split, respiratory split, and abnormally wide split S2s) in random order, after being informed that they were from Category A. They then did the same with sounds of Category B (S3, S4, and S3+S4) and Category C (four heart murmurs). In the second test, they tried to identify only one from each of the three categories in random order without any category information. The overall accuracy rate declined from 80.4% in the first test to 62.0% in the second test (pauscultation training. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Yucel, Abdulkadir C.
2018-02-05
A fast and memory efficient 3D full wave simulator for analyzing electromagnetic (EM) wave propagation in electrically large and realistic mine tunnels/galleries loaded with conductors is proposed. The simulator relies on Muller and combined field surface integral equations (SIEs) to account for scattering from mine walls and conductors, respectively. During the iterative solution of the system of SIEs, the simulator uses a fast multipole method - fast Fourier transform (FMM-FFT) scheme to reduce CPU and memory requirements. The memory requirement is further reduced by compressing large data structures via singular value and Tucker decompositions. The efficiency, accuracy, and real-world applicability of the simulator are demonstrated through characterization of EM wave propagation in electrically large mine tunnels/galleries loaded with conducting cables and mine carts.
Bizzarri, A.; Dunham, Eric M.; Spudich, P.
2010-01-01
We study how heterogeneous rupture propagation affects the coherence of shear and Rayleigh Mach wavefronts radiated by supershear earthquakes. We address this question using numerical simulations of ruptures on a planar, vertical strike-slip fault embedded in a three-dimensional, homogeneous, linear elastic half-space. Ruptures propagate spontaneously in accordance with a linear slip-weakening friction law through both homogeneous and heterogeneous initial shear stress fields. In the 3-D homogeneous case, rupture fronts are curved owing to interactions with the free surface and the finite fault width; however, this curvature does not greatly diminish the coherence of Mach fronts relative to cases in which the rupture front is constrained to be straight, as studied by Dunham and Bhat (2008a). Introducing heterogeneity in the initial shear stress distribution causes ruptures to propagate at speeds that locally fluctuate above and below the shear wave speed. Calculations of the Fourier amplitude spectra (FAS) of ground velocity time histories corroborate the kinematic results of Bizzarri and Spudich (2008a): (1) The ground motion of a supershear rupture is richer in high frequency with respect to a subshear one. (2) When a Mach pulse is present, its high frequency content overwhelms that arising from stress heterogeneity. Present numerical experiments indicate that a Mach pulse causes approximately an ω−1.7 high frequency falloff in the FAS of ground displacement. Moreover, within the context of the employed representation of heterogeneities and over the range of parameter space that is accessible with current computational resources, our simulations suggest that while heterogeneities reduce peak ground velocity and diminish the coherence of the Mach fronts, ground motion at stations experiencing Mach pulses should be richer in high frequencies compared to stations without Mach pulses. In contrast to the foregoing theoretical results, we find no average elevation
Fourth sound in relativistic superfluidity theory
International Nuclear Information System (INIS)
Vil'chinskij, S.I.; Fomin, P.I.
1995-01-01
The Lorentz-covariant equations describing propagation of the fourth sound in the relativistic theory of superfluidity are derived. The expressions for the velocity of the fourth sound are obtained. The character of oscillation in sound is determined
Energy Technology Data Exchange (ETDEWEB)
Kowalewski, Markus, E-mail: mkowalew@uci.edu; Mukamel, Shaul, E-mail: smukamel@uci.edu [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States)
2015-07-28
Femtosecond Stimulated Raman Spectroscopy (FSRS) signals that monitor the excited state conical intersections dynamics of acrolein are simulated. An effective time dependent Hamiltonian for two C—H vibrational marker bands is constructed on the fly using a local mode expansion combined with a semi-classical surface hopping simulation protocol. The signals are obtained by a direct forward and backward propagation of the vibrational wave function on a numerical grid. Earlier work is extended to fully incorporate the anharmonicities and intermode couplings.
International Nuclear Information System (INIS)
Kowalewski, Markus; Mukamel, Shaul
2015-01-01
Femtosecond Stimulated Raman Spectroscopy (FSRS) signals that monitor the excited state conical intersections dynamics of acrolein are simulated. An effective time dependent Hamiltonian for two C—H vibrational marker bands is constructed on the fly using a local mode expansion combined with a semi-classical surface hopping simulation protocol. The signals are obtained by a direct forward and backward propagation of the vibrational wave function on a numerical grid. Earlier work is extended to fully incorporate the anharmonicities and intermode couplings
Darian, D.; Marholm, S.; Paulsson, J. J. P.; Miyake, Y.; Usui, H.; Mortensen, M.; Miloch, W. J.
2017-09-01
The charging of a sounding rocket in subsonic and supersonic plasma flows with external magnetic field is studied with numerical particle-in-cell (PIC) simulations. A weakly magnetized plasma regime is considered that corresponds to the ionospheric F2 layer, with electrons being strongly magnetized, while the magnetization of ions is weak. It is demonstrated that the magnetic field orientation influences the floating potential of the rocket and that with increasing angle between the rocket axis and the magnetic field direction the rocket potential becomes less negative. External magnetic field gives rise to asymmetric wake downstream of the rocket. The simulated wake in the potential and density may extend as far as 30 electron Debye lengths; thus, it is important to account for these plasma perturbations when analyzing in situ measurements. A qualitative agreement between simulation results and the actual measurements with a sounding rocket is also shown.
Sound Propagation around Underwater Seamounts
2009-02-01
eikonal and first order transport equations; this is a high-frequency approximation method. These methods will be discussed futher in Section 2.4. A...2.9 and 2.10 can be substituted back into the Helmholtz equation. Separating terms of the same order Lw gives the following eikonal equation, of O(w 2...n= 1,2,... Ray trajectories can be computed by solving the eikonal equation, and ray amplitude can be computed with the first transport equation. 6
Atmospheric Physics and Sound Propagation
1950-09-01
has 2U flush mounting plates into which may be screwed short support rpds on whi.cn ä platform may .he mounted for suppörtihg a person> or longer...particle trhose rest position ig 4 distance x from the source z(0j,t) s Z cos art I Asa parameter (not Travelsngfeh)- £ (A) -» Z (1-eos wiX ) f»,(A
Sound production in recorder-like instruments : II. a simulation model
Verge, M.P.; Hirschberg, A.; Causse, R.
1997-01-01
A simple one-dimensional representation of recorderlike instruments, that can be used for sound synthesis by physical modeling of flutelike instruments, is presented. This model combines the effects on the sound production by the instrument of the jet oscillations, vortex shedding at the edge of the
Estimation of crosstalk in LED fNIRS by photon propagation Monte Carlo simulation
Iwano, Takayuki; Umeyama, Shinji
2015-12-01
fNIRS (functional near-Infrared spectroscopy) can measure brain activity non-invasively and has advantages such as low cost and portability. While the conventional fNIRS has used laser light, LED light fNIRS is recently becoming common in use. Using LED for fNIRS, equipment can be more inexpensive and more portable. LED light, however, has a wider illumination spectrum than laser light, which may change crosstalk between the calculated concentration change of oxygenated and deoxygenated hemoglobins. The crosstalk is caused by difference in light path length in the head tissues depending on wavelengths used. We conducted Monte Carlo simulations of photon propagation in the tissue layers of head (scalp, skull, CSF, gray matter, and white matter) to estimate the light path length in each layers. Based on the estimated path lengths, the crosstalk in fNIRS using LED light was calculated. Our results showed that LED light more increases the crosstalk than laser light does when certain combinations of wavelengths were adopted. Even in such cases, the crosstalk increased by using LED light can be effectively suppressed by replacing the value of extinction coefficients used in the hemoglobin calculation to their weighted average over illumination spectrum.
Mixed finite element-based fully conservative methods for simulating wormhole propagation
Kou, Jisheng; Sun, Shuyu; Wu, Yuanqing
2015-01-01
Wormhole propagation during reactive dissolution of carbonates plays a very important role in the product enhancement of oil and gas reservoir. Because of high velocity and nonuniform porosity, the Darcy–Forchheimer model is applicable for this problem instead of conventional Darcy framework. We develop a mixed finite element scheme for numerical simulation of this problem, in which mixed finite element methods are used not only for the Darcy–Forchheimer flow equations but also for the solute transport equation by introducing an auxiliary flux variable to guarantee full mass conservation. In theoretical analysis aspects, based on the cut-off operator of solute concentration, we construct an analytical function to control and handle the change of porosity with time; we treat the auxiliary flux variable as a function of velocity and establish its properties; we employ the coupled analysis approach to deal with the fully coupling relation of multivariables. From this, the stability analysis and a priori error estimates for velocity, pressure, concentration and porosity are established in different norms. Numerical results are also given to verify theoretical analysis and effectiveness of the proposed scheme.
Mixed finite element-based fully conservative methods for simulating wormhole propagation
Kou, Jisheng
2015-10-11
Wormhole propagation during reactive dissolution of carbonates plays a very important role in the product enhancement of oil and gas reservoir. Because of high velocity and nonuniform porosity, the Darcy–Forchheimer model is applicable for this problem instead of conventional Darcy framework. We develop a mixed finite element scheme for numerical simulation of this problem, in which mixed finite element methods are used not only for the Darcy–Forchheimer flow equations but also for the solute transport equation by introducing an auxiliary flux variable to guarantee full mass conservation. In theoretical analysis aspects, based on the cut-off operator of solute concentration, we construct an analytical function to control and handle the change of porosity with time; we treat the auxiliary flux variable as a function of velocity and establish its properties; we employ the coupled analysis approach to deal with the fully coupling relation of multivariables. From this, the stability analysis and a priori error estimates for velocity, pressure, concentration and porosity are established in different norms. Numerical results are also given to verify theoretical analysis and effectiveness of the proposed scheme.
Modelling the propagation of terahertz radiation through a tissue simulating phantom
International Nuclear Information System (INIS)
Walker, Gillian C; Berry, Elizabeth; Smye, Stephen W; Zinov'ev, Nick N; Fitzgerald, Anthony J; Miles, Robert E; Chamberlain, Martyn; Smith, Michael A
2004-01-01
Terahertz (THz) frequency radiation, 0.1 THz to 20 THz, is being investigated for biomedical imaging applications following the introduction of pulsed THz sources that produce picosecond pulses and function at room temperature. Owing to the broadband nature of the radiation, spectral and temporal information is available from radiation that has interacted with a sample; this information is exploited in the development of biomedical imaging tools and sensors. In this work, models to aid interpretation of broadband THz spectra were developed and evaluated. THz radiation lies on the boundary between regions best considered using a deterministic electromagnetic approach and those better analysed using a stochastic approach incorporating quantum mechanical effects, so two computational models to simulate the propagation of THz radiation in an absorbing medium were compared. The first was a thin film analysis and the second a stochastic Monte Carlo model. The Cole-Cole model was used to predict the variation with frequency of the physical properties of the sample and scattering was neglected. The two models were compared with measurements from a highly absorbing water-based phantom. The Monte Carlo model gave a prediction closer to experiment over 0.1 to 3 THz. Knowledge of the frequency-dependent physical properties, including the scattering characteristics, of the absorbing media is necessary. The thin film model is computationally simple to implement but is restricted by the geometry of the sample it can describe. The Monte Carlo framework, despite being initially more complex, provides greater flexibility to investigate more complicated sample geometries
International Nuclear Information System (INIS)
Gentit, F.-X.
2002-01-01
Litrani is a general purpose Monte-Carlo program simulating light propagation in any type of setup describable by the shapes provided by ROOT. Each shape may be made of a different material. Dielectric constant, absorption length and diffusion length of materials may depend upon wavelength. Dielectric constant and absorption length may be anisotropic. Each face of a volume is either partially or totally in contact with a face of another volume, or covered with some wrapping having defined characteristics of absorption, reflection and diffusion. When in contact with another face of another volume, the possibility exists to have a thin slice of width d and index n between the two faces. The program has various sources of light: spontaneous photons, photons coming from an optical fibre, photons generated by the crossing of particles or photons generated by an electromagnetic shower. The time and wavelength spectra of emitted photons may reproduce any scintillation spectrum. As detectors, phototubes, APD, or any general type of surface or volume detectors may be specified. The aim is to follow each photon until it is absorbed or detected. Quantities to be delivered by the program are the proportion of photons detected, and the time distribution for the arrival of these, or the various ways photons may be lost
Simulation of ultra-high energy photon propagation with PRESHOWER 2.0
Homola, P.; Engel, R.; Pysz, A.; Wilczyński, H.
2013-05-01
In this paper we describe a new release of the PRESHOWER program, a tool for Monte Carlo simulation of propagation of ultra-high energy photons in the magnetic field of the Earth. The PRESHOWER program is designed to calculate magnetic pair production and bremsstrahlung and should be used together with other programs to simulate extensive air showers induced by photons. The main new features of the PRESHOWER code include a much faster algorithm applied in the procedures of simulating the processes of gamma conversion and bremsstrahlung, update of the geomagnetic field model, and a minor correction. The new simulation procedure increases the flexibility of the code so that it can also be applied to other magnetic field configurations such as, for example, encountered in the vicinity of the sun or neutron stars. Program summaryProgram title: PRESHOWER 2.0 Catalog identifier: ADWG_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWG_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3968 No. of bytes in distributed program, including test data, etc.: 37198 Distribution format: tar.gz Programming language: C, FORTRAN 77. Computer: Intel-Pentium based PC. Operating system: Linux or Unix. RAM:probability of the process expected to occur. The new algorithm reduces significantly the number of tracking steps and speeds up the execution of the program. The geomagnetic field model has been updated to IGRF-11, allowing for interpolations up to the year 2015. Numerical Recipes procedures to calculate modified Bessel functions have been replaced with an open source CERN routine DBSKA. One minor bug has been fixed. Restrictions: Gamma conversion into particles other than an electron pair is not considered. Spatial structure of the cascade is neglected. Additional comments
Simulations of intense heavy ion beams propagating through a gaseous fusion target chamber
International Nuclear Information System (INIS)
Welch, D.R.; Rose, D.V.; Oliver, B.V.; Genoni, T.C.; Clark, R.E.; Olson, C.L.; Yu, S.S.
2002-01-01
In heavy-ion inertial confinement fusion (HIF), an ion beam is transported several meters through the reactor chamber to the target. This standoff distance mitigates damage to the accelerator from the target explosion. For the high perveance beams and millimeter-scale targets under consideration, the transport method is largely determined by the degree of ion charge and current neutralization in the chamber. This neutralization becomes increasingly difficult as the beam interacts with the ambient chamber environment and strips to higher charge states. Nearly complete neutralization permits neutralized-ballistic transport (main-line HIF transport method), where the ion beam enters the chamber at roughly 3-cm radius and focuses onto the target. In the backup pinched-transport schemes, the beam is first focused outside the chamber before propagating at small radius to the target. With nearly complete charge neutralization, the large beam divergence is contained by a strong magnetic field resulting from roughly 50-kA net current. In assisted-pinched transport, a preformed discharge channel provides the net current and the discharge plasma provides nearly complete charge and current neutralization of the beam. In self-pinched transport, the residual net current results solely from the beam-driven breakdown of the ambient gas. Using hybrid particle-in-cell simulation codes, the behavior of HIF driver-scale beams in these three transport modes is examined. Simulations of neutralized ballistic transport, at a few-mTorr flibe pressure, show excellent neutralization given a preformed or photoionized (from the heated target) plasma. Two- and three-dimensional simulations of assisted-pinch transport in roughly 1-Torr Xe show the importance of attaining >1-μs magnetic diffusion time to limit self-field effects and achieve good transport efficiency. For Xe gas pressures ranging from 10-150 mTorr, calculations predict a robust self-magnetic force sufficient for self
International Nuclear Information System (INIS)
Parchevsky, K. V.; Kosovichev, A. G.
2009-01-01
Investigation of propagation, conversion, and scattering of MHD waves in the Sun is very important for understanding the mechanisms of observed oscillations and waves in sunspots and active regions. We have developed a three-dimensional linear MHD numerical model to investigate the influence of the magnetic field on excitation and properties of the MHD waves. The results show that surface gravity waves (f-modes) are affected by the background magnetic field more than acoustic-type waves (p-modes). Comparison of our simulations with the time-distance helioseismology results from Solar and Heliospheric Observatory/MDI shows that the amplitude of travel time variations with azimuth around sunspots caused by the inclined magnetic field does not exceed 25% of the observed amplitude even for strong fields of 1400-1900 G. This can be an indication that other effects (e.g., background flows and nonuniform distribution of the magnetic field) can contribute to the observed azimuthal travel time variations. The azimuthal travel time variations caused by the wave interaction with the magnetic field are similar for simulated and observed travel times for strong fields of 1400-1900 G if Doppler velocities are taken at the height of 300 km above the photosphere where the plasma parameter β << 1. For the photospheric level the travel times are systematically smaller by approximately 0.12 minutes than for the height of 300 km above the photosphere for all studied ranges of the magnetic field strength and inclination angles. Numerical MHD wave modeling and new data from the HMI instrument of the Solar Dynamics Observatory will substantially advance our knowledge of the wave interaction with strong magnetic fields on the Sun and improve the local helioseismology diagnostics.
The sound of oscillating air jets: Physics, modeling and simulation in flute-like instruments
de La Cuadra, Patricio
Flute-like instruments share a common mechanism that consists of blowing across one open end of a resonator to produce an air jet that is directed towards a sharp edge. Analysis of its operation involves various research fields including fluid dynamics, aero-acoustics, and physics. An effort has been made in this study to extend this description from instruments with fixed geometry like recorders and organ pipes to flutes played by the lips. An analysis of the jet's response to a periodic excitation is the focus of this study, as are the parameters under the player's control in forming the jet. The jet is excited with a controlled excitation consisting of two loudspeakers in opposite phase. A Schlieren system is used to visualize the jet, and image detection algorithms are developed to extract quantitative information from the images. In order to study the behavior of jets observed in different flute-like instruments, several geometries of the excitation and jet shapes are studied. The obtained data is used to propose analytical models that correctly fit the observed measurements and can be used for simulations. The control exerted by the performer on the instrument is of crucial importance in the quality of the sound produced for a number of flute-like instruments. The case of the transverse flute is experimentally studied. An ensemble of control parameters are measured and visualized in order to describe some aspects of the subtle control attained by an experienced flautist. Contrasting data from a novice flautist are compared. As a result, typical values for several non-dimensional parameters that characterize the normal operation of the instrument have been measured, and data to feed simulations has been collected. The information obtained through experimentation is combined with research developed over the last decades to put together a time-domain simulation. The model proposed is one-dimensional and driven by a single physical input. All the variables in the
Efficient simulation of multimodal nonlinear propagation in step-index fibers
DEFF Research Database (Denmark)
Lægsgaard, Jesper
2017-01-01
A numerical approach to nonlinear propagation in waveguides based on real-space Gaussian quadrature integration of the nonlinear polarization during propagation is investigated and compared with the more conventional approach based on expressing the nonlinear polarization by a sum of mode overlap...
Rudraraju, Siva Shankar; Garikipati, Krishna; Waas, Anthony M.; Bednarcyk, Brett A.
2013-01-01
The phenomenon of crack propagation is among the predominant modes of failure in many natural and engineering structures, often leading to severe loss of structural integrity and catastrophic failure. Thus, the ability to understand and a priori simulate the evolution of this failure mode has been one of the cornerstones of applied mechanics and structural engineering and is broadly referred to as "fracture mechanics." The work reported herein focuses on extending this understanding, in the context of through-thickness crack propagation in cohesive materials, through the development of a continuum-level multiscale numerical framework, which represents cracks as displacement discontinuities across a surface of zero measure. This report presents the relevant theory, mathematical framework, numerical modeling, and experimental investigations of through-thickness crack propagation in fiber-reinforced composites using the Variational Multiscale Cohesive Method (VMCM) developed by the authors.
Directory of Open Access Journals (Sweden)
N. Dadashzadeh
2013-09-01
Full Text Available Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We provide an overview of recent theoretical developments in a numerical modeling of Maxwell's equations to analyze the propagation of short laser pulses in photonic structures. The process of short light pulse propagation through 2D periodic and quasi-periodic photonic structures is simulated based on Finite-Difference Time-Domain calculations of Maxwell’s equations.
DEFF Research Database (Denmark)
Benzon, Hans-Henrik; Bovith, Thomas
2008-01-01
for prediction of this type of weather radar clutter is presented. The method uses a wave propagator to identify areas of potential non-standard propagation. The wave propagator uses a three dimensional refractivity field derived from the geophysical parameters: temperature, humidity, and pressure obtained from......Weather radars are essential sensors for observation of precipitation in the troposphere and play a major part in weather forecasting and hydrological modelling. Clutter caused by non-standard wave propagation is a common problem in weather radar applications, and in this paper a method...... a high-resolution Numerical Weather Prediction (NWP) model. The wave propagator is based on the parabolic equation approximation to the electromagnetic wave equation. The parabolic equation is solved using the well-known Fourier split-step method. Finally, the radar clutter prediction technique is used...
Liu, Heng-Liang; Lin, Chun-Li; Sun, Ming-Tsung; Chang, Yen-Hsiang
2010-06-01
This study investigates micro-crack propagation at the enamel/adhesive interface using finite element (FE) submodeling and element death techniques. A three-dimensional (3D) FE macro-model of the enamel/adhesive/ceramic subjected to shear bond testing was generated and analyzed. A 3D micro-model with interfacial bonding structure was constructed at the upper enamel/adhesive interface where the stress concentration was found from the macro-model results. The morphology of this interfacial bonding structure (i.e., resin tag) was assigned based on resin tag geometry and enamel rod arrangement from a scanning electron microscopy micrograph. The boundary conditions for the micro-model were determined from the macro-model results. A custom iterative code combined with the element death technique was used to calculate the micro-crack propagation. Parallel experiments were performed to validate this FE simulation. The stress concentration within the adhesive occurred mainly at the upper corner near the enamel/adhesive interface and the resin tag base. A simulated fracture path was found at the resin tag base along the enamel/adhesive interface. A morphological observation of the fracture patterns obtained from in vitro testing corresponded with the simulation results. This study shows that the FE submodeling and element death techniques could be used to simulate the 3D micro-stress pattern and the crack propagation noted at the enamel/adhesive interface.
Propagation velocity profile in a cross-section of a cardiac muscle bundle from PSpice simulation
Directory of Open Access Journals (Sweden)
Sperelakis Nicholas
2006-08-01
Full Text Available Abstract Background The effect of depth on propagation velocity within a bundle of cardiac muscle fibers is likely to be an important factor in the genesis of some heart arrhythmias. Model and methods The velocity profile of simulated action potentials propagated down a bundle of parallel cardiac muscle fibers was examined in a cross-section of the bundle using a PSpice model. The model (20 × 10 consisted of 20 chains in parallel, each chain being 10 cells in length. All 20 chains were stimulated simultaneously at the left end of the bundle using rectangular current pulses (0.25 nA, 0.25 ms duration applied intracellularly. The simulated bundle was symmetrical at the top and bottom (including two grounds, and voltage markers were placed intracellularly only in cells 1, 5 and 10 of each chain to limit the total number of traces to 60. All electrical parameters were standard values; the variables were (1 the number of longitudinal gap-junction (G-j channels (0, 1, 10, 100, (2 the longitudinal resistance between the parallel chains (Rol2 (reflecting the closeness of the packing of the chains, and (3 the bundle termination resistance at the two ends of the bundle (RBT. The standard values for Rol2 and RBT were 200 KΩ. Results The velocity profile was bell-shaped when there was 0 or only 1 gj-channel. With standard Rol2 and RBT values, the velocity at the surface of the bundle (θ1 and θ20 was more than double (2.15 × that at the core of the bundle (θ10, θ11. This surface:core ratio of velocities was dependent on the values of Rol2 and RBT. When Rol2 was lowered 10-fold, θ1 increased slightly and θ2decreased slightly. When there were 100 gj-channels, the velocity profile was flat, i.e. the velocity at the core was about the same as that at the surface. Both velocities were more than 10-fold higher than in the absence of gj-channels. Varying Rol2 and RBT had almost no effect. When there were 10 gj-channels, the cross-sectional velocity profile
A finite element beam propagation method for simulation of liquid crystal devices.
Vanbrabant, Pieter J M; Beeckman, Jeroen; Neyts, Kristiaan; James, Richard; Fernandez, F Anibal
2009-06-22
An efficient full-vectorial finite element beam propagation method is presented that uses higher order vector elements to calculate the wide angle propagation of an optical field through inhomogeneous, anisotropic optical materials such as liquid crystals. The full dielectric permittivity tensor is considered in solving Maxwell's equations. The wide applicability of the method is illustrated with different examples: the propagation of a laser beam in a uniaxial medium, the tunability of a directional coupler based on liquid crystals and the near-field diffraction of a plane wave in a structure containing micrometer scale variations in the transverse refractive index, similar to the pixels of a spatial light modulator.
Energy Technology Data Exchange (ETDEWEB)
Menouillard, T
2007-09-15
Computerized simulation is nowadays an integrating part of design and validation processes of mechanical structures. Simulation tools are more and more performing allowing a very acute description of the phenomena. Moreover, these tools are not limited to linear mechanics but are developed to describe more difficult behaviours as for instance structures damage which interests the safety domain. A dynamic or static load can thus lead to a damage, a crack and then a rupture of the structure. The fast dynamics allows to simulate 'fast' phenomena such as explosions, shocks and impacts on structure. The application domain is various. It concerns for instance the study of the lifetime and the accidents scenario of the nuclear reactor vessel. It is then very interesting, for fast dynamics codes, to be able to anticipate in a robust and stable way such phenomena: the assessment of damage in the structure and the simulation of crack propagation form an essential stake. The extended finite element method has the advantage to break away from mesh generation and from fields projection during the crack propagation. Effectively, crack is described kinematically by an appropriate strategy of enrichment of supplementary freedom degrees. Difficulties connecting the spatial discretization of this method with the temporal discretization of an explicit calculation scheme has then been revealed; these difficulties are the diagonal writing of the mass matrix and the associated stability time step. Here are presented two methods of mass matrix diagonalization based on the kinetic energy conservation, and studies of critical time steps for various enriched finite elements. The interest revealed here is that the time step is not more penalizing than those of the standard finite elements problem. Comparisons with numerical simulations on another code allow to validate the theoretical works. A crack propagation test in mixed mode has been exploited in order to verify the simulation
Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation
National Aeronautics and Space Administration — This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are...
Directory of Open Access Journals (Sweden)
P. Mazzanti
2009-11-01
Full Text Available Coastal and subaqueous landslides can be very dangerous phenomena since they are characterised by the additional risk of induced tsunamis, unlike their completely-subaerial counterparts. Numerical modelling of landslides propagation is a key step in forecasting the consequences of landslides. In this paper, a novel approach named Equivalent Fluid/Equivalent Medium (EFEM has been developed. It adapts common numerical models and software that were originally designed for subaerial landslides in order to simulate the propagation of combined subaerial-subaqueous and completely-subaqueous landslides. Drag and buoyancy forces, the loss of energy at the landslide-water impact and peculiar mechanisms like hydroplaning can be suitably simulated by this approach; furthermore, the change in properties of the landslide's mass, which is encountered at the transition from the subaerial to the submerged environment, can be taken into account. The approach has been tested by modelling two documented coastal landslides (a debris flow and a rock slide at Lake Albano using the DAN-W code. The results, which were achieved from the back-analyses, demonstrate the efficacy of the approach to simulate the propagation of different types of coastal landslides.
Abdi, Mohamad; Hajihasani, Mojtaba; Gharibzadeh, Shahriar; Tavakkoli, Jahan
2012-12-01
Ultrasound waves have been widely used in diagnostic and therapeutic medical applications. Accurate and effective simulation of ultrasound beam propagation and its interaction with tissue has been proved to be important. The nonlinear nature of the ultrasound beam propagation, especially in the therapeutic regime, plays an important role in the mechanisms of interaction with tissue. There are three main approaches in current computational fluid dynamics (CFD) methods to model and simulate nonlinear ultrasound beams: macroscopic, mesoscopic and microscopic approaches. In this work, a mesoscopic CFD method based on the Lattice-Boltzmann model (LBM) was investigated. In the developed method, the Boltzmann equation is evolved to simulate the flow of a Newtonian fluid with the collision model instead of solving the Navier-Stokes, continuity and state equations which are used in conventional CFD methods. The LBM has some prominent advantages over conventional CFD methods, including: (1) its parallel computational nature; (2) taking microscopic boundaries into account; and (3) capability of simulating in porous and inhomogeneous media. In our proposed method, the propagating medium is discretized with a square grid in 2 dimensions with 9 velocity vectors for each node. Using the developed model, the nonlinear distortion and shock front development of a finiteamplitude diffractive ultrasonic beam in a dissipative fluid medium was computed and validated against the published data. The results confirm that the LBM is an accurate and effective approach to model and simulate nonlinearity in finite-amplitude ultrasound beams with Mach numbers of up to 0.01 which, among others, falls within the range of therapeutic ultrasound regime such as high intensity focused ultrasound (HIFU) beams. A comparison between the HIFU nonlinear beam simulations using the proposed model and pseudospectral methods in a 2D geometry is presented.
Rudianto, Indra; Sudarmaji
2018-04-01
We present an implementation of the spectral-element method for simulation of two-dimensional elastic wave propagation in fully heterogeneous media. We have incorporated most of realistic geological features in the model, including surface topography, curved layer interfaces, and 2-D wave-speed heterogeneity. To accommodate such complexity, we use an unstructured quadrilateral meshing technique. Simulation was performed on a GPU cluster, which consists of 24 core processors Intel Xeon CPU and 4 NVIDIA Quadro graphics cards using CUDA and MPI implementation. We speed up the computation by a factor of about 5 compared to MPI only, and by a factor of about 40 compared to Serial implementation.
DEFF Research Database (Denmark)
Sonne, Mads Rostgaard; Carlone, P.; Citarella, R.
2015-01-01
This paper deals with a numerical and experimental investigation on the influence of residual stresses on fatigue crack growth in AA2024-T3 friction stir welded butt joints. An integrated FEM-DBEM procedure for the simulation of crack propagation is proposed and discussed. A numerical FEM model...... of the welding process of precipitation hardenable AA2024-T3 aluminum alloy is employed to infer the process induced residual stress field. The reliability of the FEM simulations with respect to the induced residual stresses is assessed comparing numerical outcomes with experimental data obtained by means...
Energy Technology Data Exchange (ETDEWEB)
Park, Sang-Jin; Kim, Hoe-Woong; Joo, Young-Sang; Kim, Sung-Kyun; Kim, Jong-Bum [KAERI, Daejeon (Korea, Republic of)
2016-05-15
This paper introduces the 2-D FEM simulation of the propagation and radiation of the leaky Lamb wave in and from a plate-type ultrasonic waveguide sensor conducted for the radiation beam profile analysis. The FEM simulations are performed with three different excitation frequencies and the radiation beam profiles obtained from FEM simulations are compared with those obtained from corresponding experiments. This paper deals with the 2-D FEM simulation of the propagation and radiation of the leaky Lamb wave in and from a plate-type ultrasonic waveguide sensor conducted to analyze the radiation beam profiles. The radiation beam profile results obtained from the FEM simulation show good agreement with the ones obtained from the experiment. This result will be utilized to improve the performance of the developed waveguide sensor. The quality of the visualized image is mainly affected by beam profile characteristics of the leaky wave radiated from the waveguide sensor. However, the relationships between the radiation beam profile and many parameters of the waveguide sensor are not fully revealed yet. Therefore, further parametric studies are necessary to improve the performance of the sensor and the finite element method (FEM) is one of the most effective tools for the parametric study.
Liao, K; Ciapala, E; Junginger, T; Weingarten, W
2012-01-01
Oscillating Superleak Transducers (OSTs) containing flexible porous membranes are widely used to detect the so-called second sound temperature wave when a quench event occurs in a superconducting RF cavity. In principle, from the measured speed of this wave and the travel time between the quench event and several OSTs, the location of the quench sites can be derived by triangulation. Second sound behaviour has been simulated through different surface mount (SMD) resistors setups on a Superconducting Proton Linac (SPL) test cavity, to help understanding the underlying physics and improve quench localisation. Experiments are described that have been conducted to search for explanation of heat transfer during cavity quench that causes contradictory triangulation results.
2010-01-01
Background The present study compares the value of additional use of computer simulated heart sounds, to conventional bedside auscultation training, on the cardiac auscultation skills of 3rd year medical students at Oslo University Medical School. Methods In addition to their usual curriculum courses, groups of seven students each were randomized to receive four hours of additional auscultation training either employing a computer simulator system or adding on more conventional bedside training. Cardiac auscultation skills were afterwards tested using live patients. Each student gave a written description of the auscultation findings in four selected patients, and was rewarded from 0-10 points for each patient. Differences between the two study groups were evaluated using student's t-test. Results At the auscultation test no significant difference in mean score was found between the students who had used additional computer based sound simulation compared to additional bedside training. Conclusions Students at an early stage of their cardiology training demonstrated equal performance of cardiac auscultation whether they had received an additional short auscultation course based on computer simulated training, or had had additional bedside training. PMID:20082701
Numerical Simulation of the Propagation of Hydraulic and Natural Fracture Using Dijkstra’s Algorithm
Directory of Open Access Journals (Sweden)
Yanfang Wu
2016-07-01
Full Text Available Utilization of hydraulic-fracturing technology is dramatically increasing in exploitation of natural gas extraction. However the prediction of the configuration of propagated hydraulic fracture is extremely challenging. This paper presents a numerical method of obtaining the configuration of the propagated hydraulic fracture into discrete natural fracture network system. The method is developed on the basis of weighted fracture which is derived in combination of Dijkstra’s algorithm energy theory and vector method. Numerical results along with experimental data demonstrated that proposed method is capable of predicting the propagated hydraulic fracture configuration reasonably with high computation efficiency. Sensitivity analysis reveals a number of interesting observation results: the shortest path weight value decreases with increasing of fracture density and length, and increases with increasing of the angle between fractures to the maximum principal stress direction. Our method is helpful for evaluating the complexity of the discrete fracture network, to obtain the extension direction of the fracture.
International Nuclear Information System (INIS)
Gai, W.; Kanareykin, A.D.; Kustov, A.L.; Simpson, J.
1995-01-01
The propagation of an intense electron beam through a long dielectric tube is a critical issue for the success of the dielectric wakefield acceleration scheme. Due to the head-tail instability, a high current charged particle beam cannot propagate long distance without external focusing. In this paper we examine the beam handling and control problem in the dielectric wakefield accelerator. We show that for the designed 15.6 GHz and 20 GHz dielectric structures a 150 MeV, 40 endash 100 nC beam can be controlled and propagate up to 5 meters without significant particle losses by using external applied focusing and defocusing channel (FODO) around the dielectric tube. Particle dynamics of the accelerated beam is also studied. Our results show that for typical dielectric acceleration structures, the head-tail instabilities can be conveniently controlled in the same way as the driver beam. copyright 1995 American Institute of Physics
Simulation of a plane wavefront propagating in cardiac tissue using a cellular automata model
International Nuclear Information System (INIS)
Barbosa, Carlos R Hall
2003-01-01
We present a detailed description of a cellular automata model for the propagation of action potential in a planar cardiac tissue, which is very fast and easy to use. The model incorporates anisotropy in the electrical conductivity and a spatial variation of the refractory time. The transmembrane potential distribution is directly derived from the cell states, and the intracellular and extracellular potential distributions are calculated for the particular case of a plane wavefront. Once the potential distributions are known, the associated current densities are calculated by Ohm's law, and the magnetic field is determined at a plane parallel to the cardiac tissue by applying the law of Biot and Savart. The results obtained for propagation speed and for magnetic field amplitude with the cellular automata model are compared with values predicted by the bidomain formulation, for various angles between wavefront propagation and fibre direction, characterizing excellent agreement between the models
Generation of sound zones in 2.5 dimensions
DEFF Research Database (Denmark)
Jacobsen, Finn; Olsen, Martin; Møller, Martin
2011-01-01
in a certain direction within a certain region of a room and at the same time suppress sound in another region. The method is examined through simulations and experiments. For comparison a simpler method based on the idea of maximising the ratio of the potential acoustic energy in an ensonified zone......Amethod for generating sound zones with different acoustic properties in a room is presented. The method is an extension of the two-dimensional multi-zone sound field synthesis technique recently developed by Wu and Abhayapala; the goal is, for example, to generate a plane wave that propagates...... to the potential acoustic energy in a quiet zone is also examined....
Numerical simulation of the sound reflection effects of noise barriers in near and far field
Lutgendorf, D.; Roo, F. de; Eerden, F.J.M. van der; Jean, P.; Ecotière, D.; Dutilleux, G.
2011-01-01
This paper deals with the first stages of the development of a new test method for evaluating the reflectivity performance of noise barriers. The reflectivity performance describes the increase in sound level at a receiver due to the presence of the noise barrier. First the current test method for
Directory of Open Access Journals (Sweden)
Siham Hairoud
2013-01-01
Full Text Available In order to better assess the behaviours of the propagation channel in a confined environment such as a railway tunnel for subway application, we present an optimization method for a deterministic channel simulator based on 3D ray tracing associated to the geometrical optics laws and the uniform theory of diffraction. This tool requires a detailed description of the environment. Thus, the complexity of this model is directly bound to the complexity of the environment and specifically to the number of facets that compose it. In this paper, we propose an algorithm to identify facets that have no significant impact on the wave propagation. This allows us to simplify the description of the geometry of the modelled environment by removing them and by this way, to reduce the complexity of our model and therefore its computation time. A comparative study between full and simplified environment is led and shows the impact of this proposed method on the characteristic parameters of the propagation channel. Thus computation time obtained from the simplified environment is 6 times lower than the one of the full model without significant degradation of simulation accuracy.
Directory of Open Access Journals (Sweden)
Ding Jun
2014-01-01
Full Text Available This paper reports a numerical simulation procedure to model crack propagation in TGO layer and TGO growth near a surface groove in metal substrate upon multiple thermal-mechanical cycles. The material property change method is employed to model TGO formation cycle by cycle, and the creep properties for constituent materials are also incorporated. Two columns of repeated nodes are placed along the interface of the potential crack, and these nodes are bonded together as one node at a geometrical location. In terms of critical crack opening displacement criterion, onset of crack propagation in TGO layer has been determined by finite element analyses in comparison with that without predefined crack. Then, according to the results from the previous analyses, the input values for the critical failure parameters for the subsequent analyses can be decided. The robust capabilities of restart analysis in ABAQUS help to implement the overall simulation for TGO crack propagation. The comparison of the TGO final deformation profile between numerical and experimental observation shows a good agreement indicating the correctness and effectiveness of the present procedure, which can guide the prediction of the failure in TGO for the future design and optimization for TBC system.
Directory of Open Access Journals (Sweden)
Fiser Ondrej
2011-01-01
Full Text Available Long-term monthly and annual statistics of the attenuation of electromagnetic waves that have been obtained from 6 years of measurements on a free space optical path, 853 meters long, with a wavelength of 850 nm and on a precisely parallel radio path with a frequency of 58 GHz are presented. All the attenuation events observed are systematically classified according to the hydrometeor type causing the particular event. Monthly and yearly propagation statistics on the free space optical path and radio path are obtained. The influence of individual hydrometeors on attenuation is analysed. The obtained propagation statistics are compared to the calculated statistics using ITU-R models. The calculated attenuation statistics both at 850 nm and 58 GHz underestimate the measured statistics for higher attenuation levels. The availability performance of a simulated hybrid FSO/RF system is analysed based on the measured data.
International Nuclear Information System (INIS)
Wang Jianwei; Lu Guocai; Shang Xinchun
2011-01-01
The process of I-mode crack propagations in α-Fe for uniaxial tension experiments are simulated by molecular dynamics (MD) methods. The formation process of dislocation and fracture mechanisms in the crack growing under various temperatures were studied. The results show that the crack propagation is a process of successive emission of dislocation. The dislocation-free zone and the stacking faults were initially formed at crack tip. When the stress K I increased into 0. 566 MPam 1/2 , one layer of atoms near crack tip would be separated into two layers which produced a dislocation. The first dislocation was emitted when stress K I reached 0.669 MPam 1/2 . With the temperature increasing, the critical stress intensity factor decreased gradually and the dislocation emission correspondingly became faster as well. (authors)
International Nuclear Information System (INIS)
Böcklin, Christoph; Baumann, Dirk; Fröhlich, Jürg
2014-01-01
A novel way to attain three dimensional fluence rate maps from Monte-Carlo simulations of photon propagation is presented in this work. The propagation of light in a turbid medium is described by the radiative transfer equation and formulated in terms of radiance. For many applications, particularly in biomedical optics, the fluence rate is a more useful quantity and directly derived from the radiance by integrating over all directions. Contrary to the usual way which calculates the fluence rate from absorbed photon power, the fluence rate in this work is directly calculated from the photon packet trajectory. The voxel based algorithm works in arbitrary geometries and material distributions. It is shown that the new algorithm is more efficient and also works in materials with a low or even zero absorption coefficient. The capabilities of the new algorithm are demonstrated on a curved layered structure, where a non-scattering, non-absorbing layer is sandwiched between two highly scattering layers
Simulation of light propagation in the thin-film waveguide lens
Malykh, M. D.; Divakov, D. V.; Sevastianov, L. A.; Sevastianov, A. L.
2018-04-01
In this paper we investigate the solution of the problem of modeling the propagation of electromagnetic radiation in three-dimensional integrated optical structures, such as waveguide lenses. When propagating through three-dimensional waveguide structures the waveguide modes can be hybridized, so the mathematical model of their propagation must take into account the connection of TE- and TM-mode components. Therefore, an adequate consideration of hybridization of the waveguide modes is possible only in vector formulation of the problem. An example of three-dimensional structure that hybridizes waveguide modes is the Luneburg waveguide lens, which also has focusing properties. If the waveguide lens has a radius of the order of several tens of wavelengths, its variable thickness at distances of the order of several wavelengths is almost constant. Assuming in this case that the electromagnetic field also varies slowly in the direction perpendicular to the direction of propagation, one can introduce a small parameter characterizing this slow varying and decompose the solution in powers of the small parameter. In this approach, in the zeroth approximation, scalar diffraction problems are obtained, the solution of which is less resource-consuming than the solution of vector problems. The calculated first-order corrections of smallness describe the connection of TE- and TM-modes, so the solutions obtained are weakly-hybridized modes. The formulation of problems and methods for their numerical solution in this paper are based on the authors' research on waveguide diffraction on a lens in a scalar formulation.
Yoon, Kyungho; Lee, Wonhye; Croce, Phillip; Cammalleri, Amanda; Yoo, Seung-Schik
2018-05-01
Transcranial focused ultrasound (tFUS) is emerging as a non-invasive brain stimulation modality. Complicated interactions between acoustic pressure waves and osseous tissue introduce many challenges in the accurate targeting of an acoustic focus through the cranium. Image-guidance accompanied by a numerical simulation is desired to predict the intracranial acoustic propagation through the skull; however, such simulations typically demand heavy computation, which warrants an expedited processing method to provide on-site feedback for the user in guiding the acoustic focus to a particular brain region. In this paper, we present a multi-resolution simulation method based on the finite-difference time-domain formulation to model the transcranial propagation of acoustic waves from a single-element transducer (250 kHz). The multi-resolution approach improved computational efficiency by providing the flexibility in adjusting the spatial resolution. The simulation was also accelerated by utilizing parallelized computation through the graphic processing unit. To evaluate the accuracy of the method, we measured the actual acoustic fields through ex vivo sheep skulls with different sonication incident angles. The measured acoustic fields were compared to the simulation results in terms of focal location, dimensions, and pressure levels. The computational efficiency of the presented method was also assessed by comparing simulation speeds at various combinations of resolution grid settings. The multi-resolution grids consisting of 0.5 and 1.0 mm resolutions gave acceptable accuracy (under 3 mm in terms of focal position and dimension, less than 5% difference in peak pressure ratio) with a speed compatible with semi real-time user feedback (within 30 s). The proposed multi-resolution approach may serve as a novel tool for simulation-based guidance for tFUS applications.
Garcia, Ana Maria
2009-01-01
A study of the Currituck Sound was initiated in 2005 to evaluate the water chemistry of the Sound and assess the effectiveness of management strategies. As part of this study, the Soil and Water Assessment Tool (SWAT) model was used to simulate current sediment and nutrient loadings for two distinct watersheds in the Currituck Sound basin and to determine the consequences of different water-quality management scenarios. The watersheds studied were (1) Tull Creek watershed, which has extensive row-crop cultivation and artificial drainage, and (2) West Neck Creek watershed, which drains urban areas in and around Virginia Beach, Virginia. The model simulated monthly streamflows with Nash-Sutcliffe model efficiency coefficients of 0.83 and 0.76 for Tull Creek and West Neck Creek, respectively. The daily sediment concentration coefficient of determination was 0.19 for Tull Creek and 0.36 for West Neck Creek. The coefficient of determination for total nitrogen was 0.26 for both watersheds and for dissolved phosphorus was 0.4 for Tull Creek and 0.03 for West Neck Creek. The model was used to estimate current (2006-2007) sediment and nutrient yields for the two watersheds. Total suspended-solids yield was 56 percent lower in the urban watershed than in the agricultural watershed. Total nitrogen export was 45 percent lower, and total phosphorus was 43 percent lower in the urban watershed than in the agricultural watershed. A management scenario with filter strips bordering the main channels was simulated for Tull Creek. The Soil and Water Assessment Tool model estimated a total suspended-solids yield reduction of 54 percent and total nitrogen and total phosphorus reductions of 21 percent and 29 percent, respectively, for the Tull Creek watershed.
Simulations and measurements on muzzle blast mitigation with sound absorbing barriers
Eerden, F.J.M. van der; Berg, F.H.A. van den
2012-01-01
Environmental research is ongoing to predict and to mitigate the noise impact of heavy weapons or explosives. In the densely populated area of the Netherlands this is of particular interest for the Ministry of Defence as the shock waves can propagate over large distances. In this research program
Jones, Joseph L.; Johnson, Kenneth H.; Frans, Lonna M.
2016-08-18
Information about groundwater-flow paths and locations where groundwater discharges at and near Puget Sound Naval Shipyard is necessary for understanding the potential migration of subsurface contaminants by groundwater at the shipyard. The design of some remediation alternatives would be aided by knowledge of whether groundwater flowing at specific locations beneath the shipyard will eventually discharge directly to Sinclair Inlet of Puget Sound, or if it will discharge to the drainage system of one of the six dry docks located in the shipyard. A 1997 numerical (finite difference) groundwater-flow model of the shipyard and surrounding area was constructed to help evaluate the potential for groundwater discharge to Puget Sound. That steady-state, multilayer numerical model with homogeneous hydraulic characteristics indicated that groundwater flowing beneath nearly all of the shipyard discharges to the dry-dock drainage systems, and only shallow groundwater flowing beneath the western end of the shipyard discharges directly to Sinclair Inlet.Updated information from a 2016 regional groundwater-flow model constructed for the greater Kitsap Peninsula was used to update the 1997 groundwater model of the Puget Sound Naval Shipyard. That information included a new interpretation of the hydrogeologic units underlying the area, as well as improved recharge estimates. Other updates to the 1997 model included finer discretization of the finite-difference model grid into more layers, rows, and columns, all with reduced dimensions. This updated Puget Sound Naval Shipyard model was calibrated to 2001–2005 measured water levels, and hydraulic characteristics of the model layers representing different hydrogeologic units were estimated with the aid of state-of-the-art parameter optimization techniques.The flow directions and discharge locations predicted by this updated model generally match the 1997 model despite refinements and other changes. In the updated model, most
Watkins, Wendell R.; Clement, Dieter
The present conference discusses the design of IR imaging radiometers, IR clutter measurements of marine backgrounds, a global evaluation of thermal IR countermeasures, the estimation of scene-correlation lengths, the dimension and lacunarity measurement of IR images using Hilbert scanning, modeling the time-dependent obscuration in simulated imaging of dust and smoke clouds, and the thermal and radiometric modeling of terrain backgrounds. Also discussed are the simulation of partially obscured scenes using the 'radiosity' method, dynamic sea-image generation, atmospheric propagation effects on pattern recognition by neural networks, a thermal model for real-time textured IR background simulation, and interferometric measurements of a high velocity mixing/shear layer. (No individual items are abstracted in this volume)
Watkins, Wendell R.; Zegel, Ferdinand H.; Triplett, Milton J.
1990-09-01
Various papers on the characterization, propagation, and simulation of IR scenes are presented. Individual topics addressed include: total radiant exitance measurements, absolute measurement of diffuse and specular reflectance using an FTIR spectrometer with an integrating sphere, fundamental limits in temperature estimation, incorporating the BRDF into an IR scene-generation system, characterizing IR dynamic response for foliage backgrounds, modeling sea surface effects in FLIR performance codes, automated imaging IR seeker performance evaluation system, generation of signature data bases with fast codes, background measurements using the NPS-IRST system. Also discussed are: naval ocean IR background analysis, camouflage simulation and effectiveness assessment for the individual soldier, discussion of IR scene generators, multiwavelength Scophony IR scene projector, LBIR target generator and calibrator for preflight seeker tests, dual-mode hardware-in-the-loop simulation facility, development of the IR blackbody source of gravity-type heat pipe and study of its characteristic.
Simulation of flanking transmission in super-light structures for airborne and impact sound
DEFF Research Database (Denmark)
Christensen, Jacob Ellehauge; Hertz, Kristian Dahl; Brunskog, Jonas
2012-01-01
. Previously the airborne and impact sound insulation has been measured for a super-light deck element in a laboratory. This paper presents a flanking transmission analysis based on the measured results and are carried out for the Super-light deck elements by means of the acoustical software Bastian...... to design buildings with super-light deck elements while achieving a good acoustical environment in the building, fulfilling various acoustical requirements from the building regulations....
Lattice Boltzmann simulations of sound directivity of a cylindrical pipe with mean flow
International Nuclear Information System (INIS)
Shi, Yong; Scavone, Gary P; Silva, Andrey R da
2013-01-01
This paper proposes a numerical scheme based on the lattice Boltzmann method to tackle the classical problem of sound radiation directivity of pipes issuing subsonic mean flows. The investigation is focused on normal mode radiation, which allows the use of a two-dimensional lattice with an axisymmetric condition at the pipe’s longitudinal axis. The numerical results are initially verified against an exact analytical solution for the sound radiation directivity of an unflanged pipe in the absence of a mean flow, which shows a very good agreement. Thereafter, the sound directivity results in the presence of a subsonic mean flow are compared with both analytical models and experimental data. The results are in good agreement, particularly for low values of the Helmholtz number ka. Moreover, the phenomenon known as ‘zone of relative silence’ was observed, even for mean flows associated with very low Mach numbers, though discrepancies were also observed in the comparison between the numerical results and the analytical predictions. A thorough discussion on the scheme implementation and numerical results is provided in the paper. (paper)
Modelling Hyperboloid Sound Scattering
DEFF Research Database (Denmark)
Burry, Jane; Davis, Daniel; Peters, Brady
2011-01-01
The Responsive Acoustic Surfaces workshop project described here sought new understandings about the interaction between geometry and sound in the arena of sound scattering. This paper reports on the challenges associated with modelling, simulating, fabricating and measuring this phenomenon using...... both physical and digital models at three distinct scales. The results suggest hyperboloid geometry, while difficult to fabricate, facilitates sound scattering....
Baiardi, A.; Paoloni, L.; Barone, V.; Zakrzewski, V.G.; Ortiz, J.V.
2017-01-01
The analysis of photoelectron spectra is usually facilitated by quantum mechanical simulations. Due to the recent improvement of experimental techniques, the resolution of experimental spectra is rapidly increasing, and the inclusion of vibrational effects is usually mandatory to obtain a reliable reproduction of the spectra. With the aim of defining a robust computational protocol, a general time-independent formulation to compute different kinds of vibrationally-resolved electronic spectra has been generalized to support also photoelectron spectroscopy. The electronic structure data underlying the simulation are computed using different electron propagator approaches. In addition to the more standard approaches, a new and robust implementation of the second-order self-energy approximation of the electron propagator based on a transition operator reference (TOEP2) is presented. To validate our implementation, a series of molecules has been used as test cases. The result of the simulations shows that, for ultraviolet photoionization spectra, the more accurate non-diagonal approaches are needed to obtain a reliable reproduction of vertical ionization energies, but diagonal approaches are sufficient for energy gradients and pole strengths. For X-ray photoelectron spectroscopy, the TOEP2 approach, besides being more efficient, is also the most accurate in the reproduction of both vertical ionization energies and vibrationally-resolved bandshapes. PMID:28521087
High-Fidelity Simulations of Electromagnetic Propagation and RF Communication Systems
2017-05-01
Systems T53 Final Report En gi ne er R es ea rc h an d D ev el op m en t Ce nt er Samuel S. Streeter, Daniel J. Breton, Michele L. Maxson, and...Autonomous Navigation Environment ERDC TR-17-2 vii VPUP Vertical Plane Urban Propagation VTRPE Variable Terrain Radio Parabolic Equation WI...two-dimensional (2-D) vertical plane diffraction models (e.g., Longley-Rice, Terrain Integrated Rough Earth Model [TIREM], Variable Terrain Radio
Study on the propagation properties of laser in aerosol based on Monte Carlo simulation
Leng, Kun; Wu, Wenyuan; Zhang, Xi; Gong, Yanchun; Yang, Yuntao
2018-02-01
When laser propagate in the atmosphere, due to aerosol scattering and absorption, laser energy will continue to decline, affecting the effectiveness of the laser effect. Based on the Monte Carlo method, the relationship between the photon spatial energy distributions of the laser wavelengths of 10.6μm in marine, sand-type, water-soluble and soot aerosols ,and the propagation distance, visibility and the divergence angle were studied. The results show that for 10.6μm laser, the maximum number of attenuation of photons arriving at the receiving plane is sand-type aerosol, the minimal attenuation is water soluble aerosol; as the propagation distance increases, the number of photons arriving at the receiving plane decreases; as the visibility increases, the number of photons arriving at the receiving plane increases rapidly and then stabilizes; in the above cases, the photon energy distribution does not deviated from the Gaussian distribution; as the divergence angle increases, the number of photons arriving at the receiving plane is almost unchanged, but the photon energy distribution gradually deviates from the Gaussian distribution.
Combined simulation of fatigue crack nucleation and propagation based on a damage indicator
Directory of Open Access Journals (Sweden)
M. Springer
2016-10-01
Full Text Available Fatigue considerations often distinguish between fatigue crack nucleation and fatigue crack propagation. The current work presents a modeling approach utilizing one Fatigue Damage Indicator to treat both in a unified way. The approach is implemented within the framework of the Finite Element Method. Multiaxial critical plane models with an extended damage accumulation are employed as Fatigue Indicators. Locations of fatigue crack emergence are predicted by these indicators and material degradation is utilized to model local material failure. The cyclic loading is continued on the now degraded structure and the next location prone to material failure is identified and degradation modeled. This way, fatigue crack propagation is represented by an evolving spatial zone of material failure. This propagating damage zone leads to a changing structural response of the pristine structure. By recourse to the Fatigue Damage Indicator a correlation between the number of applied load cycles and the changing structural behavior is established. Finally, the proposed approach is exemplified by cyclic bending experiments in the Low Cycle Fatigue regime
A Monte-Carlo Simulation of Light Propagation in Sea Water
National Research Council Canada - National Science Library
Brennan, Mike
1997-01-01
.... Assumptions made in the implementation of the program are discussed. Results of some initial simulations are presented, together with data obtained during a recent LADS sortie for comparison with the simulations...
Leckey, Cara A C; Wheeler, Kevin R; Hafiychuk, Vasyl N; Hafiychuk, Halyna; Timuçin, Doğan A
2018-03-01
Ultrasonic wave methods constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials, such as carbon fiber reinforced polymer (CFRP) laminates. Computational models of ultrasonic wave excitation, propagation, and scattering in CFRP composites can be extremely valuable in designing practicable NDE and SHM hardware, software, and methodologies that accomplish the desired accuracy, reliability, efficiency, and coverage. The development and application of ultrasonic simulation approaches for composite materials is an active area of research in the field of NDE. This paper presents comparisons of guided wave simulations for CFRP composites implemented using four different simulation codes: the commercial finite element modeling (FEM) packages ABAQUS, ANSYS, and COMSOL, and a custom code executing the Elastodynamic Finite Integration Technique (EFIT). Benchmark comparisons are made between the simulation tools and both experimental laser Doppler vibrometry data and theoretical dispersion curves. A pristine and a delamination type case (Teflon insert in the experimental specimen) is studied. A summary is given of the accuracy of simulation results and the respective computational performance of the four different simulation tools. Published by Elsevier B.V.
Directory of Open Access Journals (Sweden)
Julián A García-Grajales
Full Text Available With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, functions of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells, Neurite, has only very recently been proposed. In this paper, we present the implementation details of this model: a finite difference parallel program for simulating electrical signal propagation along neurites under mechanical loading. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite--explicit and implicit--were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between electrophysiology and mechanics. This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon
Tripathi, B. B.; Espíndola, D.; Pinton, G. F.
2017-11-01
The recent discovery of shear shock wave generation and propagation in the porcine brain suggests that this new shock phenomenology may be responsible for a broad range of traumatic injuries. Blast-induced head movement can indirectly lead to shear wave generation in the brain, which could be a primary mechanism for injury. Shear shock waves amplify the local acceleration deep in the brain by up to a factor of 8.5, which may tear and damage neurons. Currently, there are numerical methods that can model compressional shock waves, such as comparatively well-studied blast waves, but there are no numerical full-wave solvers that can simulate nonlinear shear shock waves in soft solids. Unlike simplified representations, e.g., retarded time, full-wave representations describe fundamental physical behavior such as reflection and heterogeneities. Here we present a piecewise parabolic method-based solver for one-dimensional linearly polarized nonlinear shear wave in a homogeneous medium and with empirical frequency-dependent attenuation. This method has the advantage of being higher order and more directly extendable to multiple dimensions and heterogeneous media. The proposed numerical scheme is validated analytically and experimentally and compared to other shock capturing methods. A Riemann step-shock problem is used to characterize the numerical dissipation. This dissipation is then tuned to be negligible with respect to the physical attenuation by choosing an appropriate grid spacing. The numerical results are compared to ultrasound-based experiments that measure planar polarized shear shock wave propagation in a tissue-mimicking gelatin phantom. Good agreement is found between numerical results and experiment across a 40 mm propagation distance. We anticipate that the proposed method will be a starting point for the development of a two- and three-dimensional full-wave code for the propagation of nonlinear shear waves in heterogeneous media.
STUDY OF THE PROPAGATION OF SHORT PULSE LASER WITH CAVITY USING NUMERICAL SIMULATION SOFTWARE
Directory of Open Access Journals (Sweden)
S. Terniche
2015-07-01
Full Text Available The purpose of this representation is to show the potentialities (Computational Time, access to the dynamic and feasibility of systematic studies of the numerical study of the nonlinear dynamics in laser cavity, assisted by software. We will give as an example, one type of cavity completely fibered composed of several elements and then studying the physical parameters of a pulse propagating into this cavity, determining its characteristics at the output. The results are interesting but we also projects to verify them experimentally by making assemblies similar to this type of cavities.
Manga, Etoungh D; Blasco, Hugues; Da-Costa, Philippe; Drobek, Martin; Ayral, André; Le Clezio, Emmanuel; Despaux, Gilles; Coasne, Benoit; Julbe, Anne
2014-09-02
The present study reports on the development of a characterization method of porous membrane materials which consists of considering their acoustic properties upon gas adsorption. Using acoustic microscopy experiments and atomistic molecular simulations for helium adsorbed in a silicalite-1 zeolite membrane layer, we showed that acoustic wave propagation could be used, in principle, for controlling the membranes operando. Molecular simulations, which were found to fit experimental data, showed that the compressional modulus of the composite system consisting of silicalite-1 with adsorbed He increases linearly with the He adsorbed amount while its shear modulus remains constant in a large range of applied pressures. These results suggest that the longitudinal and Rayleigh wave velocities (VL and VR) depend on the He adsorbed amount whereas the transverse wave velocity VT remains constant.
Directory of Open Access Journals (Sweden)
Tushar Kanti Bera
2011-03-01
Full Text Available A Projection Error Propagation-based Regularization (PEPR method is proposed and the reconstructed image quality is improved in Electrical Impedance Tomography (EIT. A projection error is produced due to the misfit of the calculated and measured data in the reconstruction process. The variation of the projection error is integrated with response matrix in each iterations and the reconstruction is carried out in EIDORS. The PEPR method is studied with the simulated boundary data for different inhomogeneity geometries. Simulated results demonstrate that the PEPR technique improves image reconstruction precision in EIDORS and hence it can be successfully implemented to increase the reconstruction accuracy in EIT.>doi:10.5617/jeb.158 J Electr Bioimp, vol. 2, pp. 2-12, 2011
Plósz, Benedek Gy; De Clercq, Jeriffa; Nopens, Ingmar; Benedetti, Lorenzo; Vanrolleghem, Peter A
2011-01-01
In WWTP models, the accurate assessment of solids inventory in bioreactors equipped with solid-liquid separators, mostly described using one-dimensional (1-D) secondary settling tank (SST) models, is the most fundamental requirement of any calibration procedure. Scientific knowledge on characterising particulate organics in wastewater and on bacteria growth is well-established, whereas 1-D SST models and their impact on biomass concentration predictions are still poorly understood. A rigorous assessment of two 1-DSST models is thus presented: one based on hyperbolic (the widely used Takács-model) and one based on parabolic (the more recently presented Plósz-model) partial differential equations. The former model, using numerical approximation to yield realistic behaviour, is currently the most widely used by wastewater treatment process modellers. The latter is a convection-dispersion model that is solved in a numerically sound way. First, the explicit dispersion in the convection-dispersion model and the numerical dispersion for both SST models are calculated. Second, simulation results of effluent suspended solids concentration (XTSS,Eff), sludge recirculation stream (XTSS,RAS) and sludge blanket height (SBH) are used to demonstrate the distinct behaviour of the models. A thorough scenario analysis is carried out using SST feed flow rate, solids concentration, and overflow rate as degrees of freedom, spanning a broad loading spectrum. A comparison between the measurements and the simulation results demonstrates a considerably improved 1-D model realism using the convection-dispersion model in terms of SBH, XTSS,RAS and XTSS,Eff. Third, to assess the propagation of uncertainty derived from settler model structure to the biokinetic model, the impact of the SST model as sub-model in a plant-wide model on the general model performance is evaluated. A long-term simulation of a bulking event is conducted that spans temperature evolution throughout a summer
Effect of Sound Waves on Decarburization Rate of Fe-C Melt
Komarov, Sergey V.; Sano, Masamichi
2018-02-01
Sound waves have the ability to propagate through a gas phase and, thus, to supply the acoustic energy from a sound generator to materials being processed. This offers an attractive tool, for example, for controlling the rates of interfacial reactions in steelmaking processes. This study investigates the kinetics of decarburization in molten Fe-C alloys, the surface of which was exposed to sound waves and Ar-O2 gas blown onto the melt surface. The main emphasis is placed on clarifying effects of sound frequency, sound pressure, and gas flow rate. A series of water model experiments and numerical simulations are also performed to explain the results of high-temperature experiments and to elucidate the mechanism of sound wave application. This is explained by two phenomena that occur simultaneously: (1) turbulization of Ar-O2 gas flow by sound wave above the melt surface and (2) motion and agitation of the melt surface when exposed to sound wave. It is found that sound waves can both accelerate and inhibit the decarburization rate depending on the Ar-O2 gas flow rate and the presence of oxide film on the melt surface. The effect of sound waves is clearly observed only at higher sound pressures on resonance frequencies, which are defined by geometrical features of the experimental setup. The resonance phenomenon makes it difficult to separate the effect of sound frequency from that of sound pressure under the present experimental conditions.
Sound field reconstruction using acousto-optic tomography
DEFF Research Database (Denmark)
Torras Rosell, Antoni; Barrera Figueroa, Salvador; Jacobsen, Finn
2012-01-01
When sound propagates through a medium, it results in pressure fluctuations that change the instantaneous density of the medium. Under such circumstances, the refractive index that characterizes the propagation of light is not constant, but influenced by the acoustic field. This kind of interaction...... the acousto-optic effect in air, and demonstrates that it can be measured with a laser Doppler vibrometer in the audible frequency range. The tomographic reconstruction is tested by means of computer simulations and measurements. The main features observed in the simulations are also recognized...
Consistent modelling of wind turbine noise propagation from source to receiver
DEFF Research Database (Denmark)
Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong
2017-01-01
The unsteady nature of wind turbine noise is a major reason for annoyance. The variation of far-field sound pressure levels is not only caused by the continuous change in wind turbine noise source levels but also by the unsteady flow field and the ground characteristics between the turbine...... propagation of a 5 MW wind turbine is investigated. Sound pressure level time series evaluated at the source time are studied for varying wind speeds, surface roughness, and ground impedances within a 2000 m radius from the turbine....... and receiver. To take these phenomena into account, a consistent numerical technique that models the sound propagation from the source to receiver is developed. Large eddy simulation with an actuator line technique is employed for the flow modelling and the corresponding flow fields are used to simulate sound...
Turbulence simulations of blob formation and radial propagation in toroidally magnetized plasmas
DEFF Research Database (Denmark)
Garcia, O.E.; Naulin, V.; Nielsen, A.H.
2006-01-01
the presence of long- range correlations in the particle density fluctuations. Finally, conditional statistics of the particle flux demonstrates the intermittency of the turbulent plasma transport and the quasi-periodic apparency of blob structures due to bursting in the global turbulence level....... of particles and heat, which is coupled to a scrape-off layer with linear damping terms for all dependent variables corresponding to transport along open magnetic field lines. The formation of blob structures is related to profile variations caused by bursting in the global turbulence level, which is due...... to a dynamical regulation by self- sustained differential rotation of the plasma layer. Radial propagation of the blob structures follows from a vertical charge polarization due to magnetic guiding centre drifts in the toroidally magnetized plasma. Statistical analysis of the particle density, radial electric...
DEFF Research Database (Denmark)
Henneberg, Kaj-åge; F.A., Roberge
1997-01-01
source current (I-ma) enters the passive tissue as a radial load current (I-ep) while the rest flows longitudinally in the cleft between the active and adjacent passive fibers. The conduction velocity of 1.32 m/s was about 30% lower than on an isolated fiber in a Ringer bath, in close agreement...... rate of rise of the action potential upstroke (V-max) from 512 to 503 V/s. Increasing the phase angle of the passive fiber membrane impedence (Z(m)) increases the phase delay between I-ma and I-ep, thereby increasing phi(epp) which in turn slows down propagation and increases V-max....
A combined ADER-DG and PML approach for simulating wave propagation in unbounded domains
Amler, Thomas; Hoteit, Ibrahim; Alkhalifah, Tariq A.
2012-01-01
cells where waves are amplified by the PML, the contribution of damping terms is neglected and auxiliary variables are reset. Results of 2D simulations in acoustic media with constant and discontinuous material parameters are presented to illustrate
Clement, Dieter; Watkins, Wendell R.
Consideration is given to a characterization of the environmental influence on targets, backgrounds, camouflage, and clutter; modeling of physically based dynamics of scene radiation and its propagation; and the relatively sophisticated real-time simulations/simulators for system observer display and testing of some of these dynamic and varied scene changes. Particular attention is given to the hardware-in-the-loop infrared projector technology, a strategic scene generation model, a comparison of night sky spectral radiance measurements with MODTRAN and LOWTRAN 7 predictions, spatiotemporal models for the simulation of infrared backgrounds, computer-based evaluation of camouflage, dual-band infrared polarization measurements of sun glint from the sea surface, an electron gun IR scenario simulator, relaxation processes of vibrationally excited species in the mesosphere and thermosphere, a fiber-optic-based device for the investigation of aerooptic effects, and luminous intensity measurements of sources using a new detector-based illuminance scale. (For individual items see A93-28623 to A93-28625)
Czech Academy of Sciences Publication Activity Database
Chum, Jaroslav; Bonomi, F. A. M.; Fišer, Jiří; Cabrera, M. A.; Ezquer, R. G.; Burešová, Dalia; Laštovička, Jan; Baše, Jiří; Hruška, František; Molina, M. G.; Ise, J. E.; Cangemi, J. I.; Šindelářová, Tereza
2014-01-01
Roč. 119, č. 8 (2014), s. 6954-6965 ISSN 2169-9380 R&D Projects: GA ČR(CZ) GAP209/12/2440; GA ČR GP13-09778P Institutional support: RVO:68378289 Keywords : low latitude ionosphere * Ionospheric irregularities * equatorial spread F * gravity waves * scintillation * remote sensing * Doppler sounding Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.426, year: 2014 http://onlinelibrary.wiley.com/doi/10.1002/2014JA020184/abstract
Parallel simulation of wormhole propagation with the Darcy-Brinkman-Forchheimer framework
Wu, Yuanqing
2015-07-09
The acid treatment of carbonate reservoirs is a widely practiced oil and gas well stimulation technique. The injected acid dissolves the material near the wellbore and creates flow channels that establish a good connectivity between the reservoir and the well. Such flow channels are called wormholes. Different from the traditional simulation technology relying on Darcy framework, the new Darcy-Brinkman-Forchheimer (DBF) framework is introduced to simulate the wormhole forming procedure. The DBF framework considers both large and small porosity conditions and should output better simulation results than the Darcy framework. To process the huge quantity of cells in the simulation grid and shorten the long simulation time of the traditional serial code, a parallel code with FORTRAN 90 and MPI was developed. The experimenting field approach to set coefficients in the model equations was also introduced. Moreover, a procedure to fill in the coefficient matrix in the linear system in the solver was described. After this, 2D dissolution experiments were carried out. In the experiments, different configurations of wormholes and a series of properties simulated by both frameworks were compared. We conclude that the numerical results of the DBF framework are more like wormholes and more stable than the Darcy framework, which is a demonstration of the advantages of the DBF framework. Finally, the scalability of the parallel code was evaluated, and we conclude that superlinear scalability can be achieved. © 2015 Elsevier Ltd.
International Nuclear Information System (INIS)
Blackwell, David D.; Walker, David N.; Amatucci, William E.
2010-01-01
In previous papers, early whistler propagation measurements were presented [W. E. Amatucci et al., IEEE Trans. Plasma Sci. 33, 637 (2005)] as well as antenna impedance measurements [D. D. Blackwell et al., Phys. Plasmas 14, 092106 (2007)] performed in the Naval Research Laboratory Space Physics Simulation Chamber (SPSC). Since that time there have been major upgrades in the experimental capabilities of the laboratory in the form of improvement of both the plasma source and antennas. This has allowed access to plasma parameter space that was previously unattainable, and has resulted in measurements that provide a significantly clearer picture of whistler propagation in the laboratory environment. This paper presents some of the first whistler experimental results from the upgraded SPSC. Whereas previously measurements were limited to measuring the cyclotron resonance cutoff and elliptical polarization indicative of the whistler mode, now it is possible to experimentally plot the dispersion relation itself. The waves are driven and detected using balanced dipole and loop antennas connected to a network analyzer, which measures the amplitude and phase of the wave in two dimensions (r and z). In addition the frequency of the signals is also swept over a range of several hundreds of megahertz, providing a comprehensive picture of the near and far field antenna radiation patterns over a variety of plasma conditions. The magnetic field is varied from a few gauss to 200 G, with the density variable over at least 3 decades from 10 7 to 10 10 cm -3 . The waves are shown to lie on the dispersion surface for whistler waves, with observation of resonance cones in agreement with theoretical predictions. The waves are also observed to propagate without loss of amplitude at higher power, a result in agreement with previous experiments and the notion of ducted whistlers.
Contributions in Radio Channel Sounding, Modeling, and Estimation
DEFF Research Database (Denmark)
Pedersen, Troels
2009-01-01
This thesis spans over three strongly related topics in wireless communication: channel-sounding, -modeling, and -estimation. Three main problems are addressed: optimization of spatio-temporal apertures for channel sounding; estimation of per-path power spectral densities (psds); and modeling...... relies on a ``propagation graph'' where vertices represent scatterers and edges represent the wave propagation conditions between scatterers. The graph has a recursive structure, which permits modeling of the transfer function of the graph. We derive a closed-form expression of the infinite......-bounce impulse response. This expression is used for simulation of the impulse response of randomly generated propagation graphs. The obtained realizations exhibit the well-observed exponential power decay versus delay and specular-to-diffuse transition....
International Nuclear Information System (INIS)
Abe, Hirotada; Kajitani, Hiroyuki; Itatani, Ryohei.
1977-07-01
A particle simulation model which treats the wave excitation and propagation in the nonuniform density by the external source is developed and applied for study of the lower hybrid heating in a fusion device. As the linear theory predicts, the cold lower hybrid wave is observed to increase its perpendicular wave number as it propagates to the higher density region and to damp away near the turning point. When the wave amplitude is large or the wave energy is about a half of the initial kinetic energy at a surface of plasma, the following features are observed for the increase of the ion and electron kinetic energies. Ion perpendicular energy distributions are observed to be approximated by the two Maxwell distributions or to have the components of the high energy tail, whose parallel velocities satisfy the resonance condition: νparallel = (ω-IOTAΩ sub(iota))/kappa parallel, where ω and kappa parallel the frequency and the parallel wave number of the external source, IOTA is an integer, and Ω sub(iota) is the ion cyclotron frequency. An strong increase of the parallel kinetic energy of the electron is observed near the plasma surface. These are mainly due to the trapped electrons and the collisional heating. (auth.)
Directory of Open Access Journals (Sweden)
P. Y. Rogov
2015-09-01
Full Text Available The paper deals with mathematical model of linear and nonlinear processes occurring at the propagation of femtosecond laser pulses in the vitreous of the human eye. Methods of computing modeling are applied for the nonlinear spectral equation solution describing the dynamics of a two-dimensional TE-polarized radiation in a homogeneous isotropic medium with cubic fast-response nonlinearity without the usage of slowly varying envelope approximation. Environments close to the optical media parameters of the eye were used for the simulation. The model of femtosecond radiation propagation takes into account the process dynamics for dispersion broadening of pulses in time and the occurence of the self-focusing near the retina when passing through the vitreous body of the eye. Dependence between the pulse duration on the retina has been revealed and the duration of the input pulse and the values of power density at which there is self-focusing have been found. It is shown that the main mechanism of radiation damage with the use of titanium-sapphire laser is photoionization. The results coincide with those obtained by the other scientists, and are usable for creation Russian laser safety standards for femtosecond laser systems.
International Nuclear Information System (INIS)
Girardin, G.; Proust, A.; Combrade, P.; Vuillemin, B.; Oltra, R.
2006-01-01
The most frequent case of crevice corrosion concerns passivable alloys, and particularly stainless steels in oxidizing chloride media. In order to be sure that its propagation is not possible, the corrosion potential has to be inferior to a critical value called 're-passivation potential'. An easy and flexible computerized simulation of the propagation of an active crevice in chloride medium has been developed to give a parametric study of the local medium and of the re-passivation conditions. This modeling allows to establish the stability domains of the solid and gaseous phases inside the crevice and to assess the influence of the potential of the free surfaces, of the amount of chloride in the exterior medium and the geometry on the local chemistry. It appears that the deepest crevices are not necessarily the strongest. The introduction, in crevice tip, of an easy re-passivation criteria shows the existence of a re-passivation potential depending of the crevice geometry. (O.M.)
Energy Technology Data Exchange (ETDEWEB)
Chen, Jacqueline H.; Hawkes, Evatt R.; Sankaran, Ramanan [Reacting Flow Research Department, Combustion Research Facility, Sandia National Laboratories, P.O. Box 969 MS 9051, Livermore, CA 94551-0969 (United States); Mason, Scott D. [Lockheed Martin Corporation, Sunnyvale, CA 94089 (United States); Im, Hong G. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125 (United States)
2006-04-15
The influence of thermal stratification on autoignition at constant volume and high pressure is studied by direct numerical simulation (DNS) with detailed hydrogen/air chemistry with a view to providing better understanding and modeling of combustion processes in homogeneous charge compression-ignition engines. Numerical diagnostics are developed to analyze the mode of combustion and the dependence of overall ignition progress on initial mixture conditions. The roles of dissipation of heat and mass are divided conceptually into transport within ignition fronts and passive scalar dissipation, which modifies the statistics of the preignition temperature field. Transport within ignition fronts is analyzed by monitoring the propagation speed of ignition fronts using the displacement speed of a scalar that tracks the location of maximum heat release rate. The prevalence of deflagrative versus spontaneous ignition front propagation is found to depend on the local temperature gradient, and may be identified by the ratio of the instantaneous front speed to the laminar deflagration speed. The significance of passive scalar mixing is examined using a mixing timescale based on enthalpy fluctuations. Finally, the predictions of the multizone modeling strategy are compared with the DNS, and the results are explained using the diagnostics developed. (author)
Wang, Xiang-Hua; Yin, Wen-Yan; Chen, Zhi Zhang David
2013-09-09
The one-step leapfrog alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method is reformulated for simulating general electrically dispersive media. It models material dispersive properties with equivalent polarization currents. These currents are then solved with the auxiliary differential equation (ADE) and then incorporated into the one-step leapfrog ADI-FDTD method. The final equations are presented in the form similar to that of the conventional FDTD method but with second-order perturbation. The adapted method is then applied to characterize (a) electromagnetic wave propagation in a rectangular waveguide loaded with a magnetized plasma slab, (b) transmission coefficient of a plane wave normally incident on a monolayer graphene sheet biased by a magnetostatic field, and (c) surface plasmon polaritons (SPPs) propagation along a monolayer graphene sheet biased by an electrostatic field. The numerical results verify the stability, accuracy and computational efficiency of the proposed one-step leapfrog ADI-FDTD algorithm in comparison with analytical results and the results obtained with the other methods.
Di Sarli, Valeria; Di Benedetto, Almerinda; Russo, Gennaro
2010-08-15
In this work, an assessment of different sub-grid scale (sgs) combustion models proposed for large eddy simulation (LES) of steady turbulent premixed combustion (Colin et al., Phys. Fluids 12 (2000) 1843-1863; Flohr and Pitsch, Proc. CTR Summer Program, 2000, pp. 61-82; Kim and Menon, Combust. Sci. Technol. 160 (2000) 119-150; Charlette et al., Combust. Flame 131 (2002) 159-180; Pitsch and Duchamp de Lageneste, Proc. Combust. Inst. 29 (2002) 2001-2008) was performed to identify the model that best predicts unsteady flame propagation in gas explosions. Numerical results were compared to the experimental data by Patel et al. (Proc. Combust. Inst. 29 (2002) 1849-1854) for premixed deflagrating flame in a vented chamber in the presence of three sequential obstacles. It is found that all sgs combustion models are able to reproduce qualitatively the experiment in terms of step of flame acceleration and deceleration around each obstacle, and shape of the propagating flame. Without adjusting any constants and parameters, the sgs model by Charlette et al. also provides satisfactory quantitative predictions for flame speed and pressure peak. Conversely, the sgs combustion models other than Charlette et al. give correct predictions only after an ad hoc tuning of constants and parameters. Copyright 2010 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Misbah Razzaq
Full Text Available Internet worms are analogous to biological viruses since they can infect a host and have the ability to propagate through a chosen medium. To prevent the spread of a worm or to grasp how to regulate a prevailing worm, compartmental models are commonly used as a means to examine and understand the patterns and mechanisms of a worm spread. However, one of the greatest challenge is to produce methods to verify and validate the behavioural properties of a compartmental model. This is why in this study we suggest a framework based on Petri Nets and Model Checking through which we can meticulously examine and validate these models. We investigate Susceptible-Exposed-Infectious-Recovered (SEIR model and propose a new model Susceptible-Exposed-Infectious-Recovered-Delayed-Quarantined (Susceptible/Recovered (SEIDQR(S/I along with hybrid quarantine strategy, which is then constructed and analysed using Stochastic Petri Nets and Continuous Time Markov Chain. The analysis shows that the hybrid quarantine strategy is extremely effective in reducing the risk of propagating the worm. Through Model Checking, we gained insight into the functionality of compartmental models. Model Checking results validate simulation ones well, which fully support the proposed framework.
A PIC-MCC code for simulation of streamer propagation in air
DEFF Research Database (Denmark)
Chanrion, Olivier Arnaud; Neubert, Torsten
2008-01-01
A particle code has been developed to study the distribution and acceleration of electrons in electric discharges in air. The code can follow the evolution of a discharge from the initial stage of a single free electron in a background electric field to the formation of an electron avalanche...... and its transition into a streamer. The code is in 2D axi-symmetric coordinates, allowing quasi 3D simulations during the initial stages of streamer formation. This is important for realistic simulations of problems where space charge fields are essential such as in streamer formation. The charged...... particles are followed in a Cartesian mesh and the electric field is updated with Poisson's equation from the charged particle densities. Collisional processes between electrons and air molecules are simulated with a Monte Carlo technique, according to cross section probabilities. The code also includes...
International Nuclear Information System (INIS)
Sanfilippo, L.
1987-01-01
A physical model and a computer program have been developed to simulate all the measurement operations involved with the Isotopic Dilution Analysis technique currently applied in the Volume - Concentration method for the Reprocessing Input Accountancy, together with their errors or uncertainties. The simulator is apt to easily solve a number of problems related to the measurement sctivities of the plant operator and the inspector. The program, written in Fortran 77, is based on a particular Montecarlo technique named ''Random Sampling''; a full description of the code is reported
Reverse Monte Carlo simulations of light pulse propagation in nonhomogeneous media
International Nuclear Information System (INIS)
Lu Xiaodong; Hsu Peifeng
2005-01-01
This paper presents a follow-up study of our previous work on the reverse Monte Carlo solution of transient radiation transport in the homogeneous media. In this study, the method is extended to consider nonhomogeneous media, which exist in many practical problems. The transport process of ultra-short light pulse propagation inside the non-emitting, absorbing, and anisotropically scattering multi-layer media is studied. Although only one-dimensional geometry is treated here, the method is applicable and easy to extend to multi-dimensional geometries. In multi-layer media, the time-resolved reflectance exhibits a direct correlation between the signal magnitude and the travel time to the layer interface if the ballistic photons encounter a strongly scattering layer. Furthermore, it is found that even with a symmetric radiative property distribution in a three-layer medium, the reflectance and transmittance signals do not converge at long time when the mid-layer is optically thick. The long time slope of the temporal signal does not provide the specificity required for an inverse analysis parameter as stipulated by earlier studies
International Nuclear Information System (INIS)
Vinai, Paolo; Macian-Juan, Rafael; Chawla, Rakesh
2011-01-01
The paper describes the propagation of void fraction uncertainty, as quantified by employing a novel methodology developed at Paul Scherrer Institut, in the RETRAN-3D simulation of the Peach Bottom turbine trip test. Since the transient considered is characterized by a strong coupling between thermal-hydraulics and neutronics, the accuracy in the void fraction model has a very important influence on the prediction of the power history and, in particular, of the maximum power reached. It has been shown that the objective measures used for the void fraction uncertainty, based on the direct comparison between experimental and predicted values extracted from a database of appropriate separate-effect tests, provides power uncertainty bands that are narrower and more realistic than those based, for example, on expert opinion. The applicability of such an approach to best estimate, nuclear power plant transient analysis has thus been demonstrated.
Cheng, Jiubing; Alkhalifah, Tariq Ali; Wu, Zedong; Zou, Peng; Wang, Chenlong
2016-01-01
In elastic imaging, the extrapolated vector fields are decoupled into pure wave modes, such that the imaging condition produces interpretable images. Conventionally, mode decoupling in anisotropic media is costly because the operators involved are dependent on the velocity, and thus they are not stationary. We have developed an efficient pseudospectral approach to directly extrapolate the decoupled elastic waves using low-rank approximate mixed-domain integral operators on the basis of the elastic displacement wave equation. We have applied k-space adjustment to the pseudospectral solution to allow for a relatively large extrapolation time step. The low-rank approximation was, thus, applied to the spectral operators that simultaneously extrapolate and decompose the elastic wavefields. Synthetic examples on transversely isotropic and orthorhombic models showed that our approach has the potential to efficiently and accurately simulate the propagations of the decoupled quasi-P and quasi-S modes as well as the total wavefields for elastic wave modeling, imaging, and inversion.
Cheng, Jiubing
2016-03-15
In elastic imaging, the extrapolated vector fields are decoupled into pure wave modes, such that the imaging condition produces interpretable images. Conventionally, mode decoupling in anisotropic media is costly because the operators involved are dependent on the velocity, and thus they are not stationary. We have developed an efficient pseudospectral approach to directly extrapolate the decoupled elastic waves using low-rank approximate mixed-domain integral operators on the basis of the elastic displacement wave equation. We have applied k-space adjustment to the pseudospectral solution to allow for a relatively large extrapolation time step. The low-rank approximation was, thus, applied to the spectral operators that simultaneously extrapolate and decompose the elastic wavefields. Synthetic examples on transversely isotropic and orthorhombic models showed that our approach has the potential to efficiently and accurately simulate the propagations of the decoupled quasi-P and quasi-S modes as well as the total wavefields for elastic wave modeling, imaging, and inversion.
A FEM based methodology to simulate multiple crack propagation in friction stir welds
DEFF Research Database (Denmark)
Lepore, Marcello; Carlone, Pierpaolo; Berto, Filippo
2017-01-01
. The residual stress field was inferred by a thermo-mechanical FEM simulation of the process, considering temperature dependent elastic-plastic material properties, material softening and isotropic hardening. Afterwards, cracks introduced in the selected location of FEM computational domain allow stress...
Simulation of crack propagation in steel plate with strain softening model
Energy Technology Data Exchange (ETDEWEB)
Chan, O.B.; Elwi, A.E.; Grondin, G.Y.
2006-05-15
A new material model for simulating the fracture behaviour of structural steel was presented. Recent research on crack initiation and continuum damage mechanics was presented. A modified continuum damage model was also evaluated. Strain softening elements were then used to simulate material cracks in a steel structure. The analysis then compared load versus displacement and load versus clip-gauge displacement curves from various different experimental and numerical studies. A finite element analysis technique was used to simulate the fracture behaviour of 3-points bending specimens. Results of the analysis showed that the model predicted 90 per cent of the load and stress intensity factor at fracture initiation. A BE 365 electric shovel boom was used in the study to simulate fracture behaviour. Coupon test specimens were used to validate analysis predictions. It was concluded that the model was able to reduce the stiffness of the boom when the softening element reached yield strength limits during fracture initiation. 29 refs., 12 tabs., 58 figs.
Lattice Boltzmann simulations of the time-averaged forces on a cylinder in a sound field
International Nuclear Information System (INIS)
Haydock, David
2005-01-01
We show that lattice Boltzmann simulations can be used to model the radiation force on an object in a standing wave acoustic field and comparisons are made to theoretical predictions. We show how viscous effects change the radiation force and predict the motion of a particle placed near a boundary where viscous effects are important
Lattice Boltzmann simulations of the time-averaged forces on a cylinder in a sound field
Energy Technology Data Exchange (ETDEWEB)
Haydock, David [Unilever R and D Colworth, Sharnbrook, Bedford MK44 1LQ (United Kingdom); Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom)
2005-04-15
We show that lattice Boltzmann simulations can be used to model the radiation force on an object in a standing wave acoustic field and comparisons are made to theoretical predictions. We show how viscous effects change the radiation force and predict the motion of a particle placed near a boundary where viscous effects are important.
Energy Technology Data Exchange (ETDEWEB)
Jin, M. [Lockheed Martin Solar and Astrophysics Lab, Palo Alto, CA 94304 (United States); Manchester, W. B.; Holst, B. van der; Sokolov, I.; Tóth, G.; Gombosi, T. I. [Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Vourlidas, A. [The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Koning, C. A. de, E-mail: jinmeng@lmsal.com, E-mail: chipm@umich.edu, E-mail: angelos.vourlidas@jhuapl.edu, E-mail: curt.a.dekoning@noaa.gov [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309 (United States)
2017-01-10
We perform and analyze the results of a global magnetohydrodynamic simulation of the fast coronal mass ejection (CME) that occurred on 2011 March 7. The simulation is made using the newly developed Alfvén Wave Solar Model (AWSoM), which describes the background solar wind starting from the upper chromosphere and extends to 24 R {sub ⊙}. Coupling AWSoM to an inner heliosphere model with the Space Weather Modeling Framework extends the total domain beyond the orbit of Earth. Physical processes included in the model are multi-species thermodynamics, electron heat conduction (both collisional and collisionless formulations), optically thin radiative cooling, and Alfvén-wave turbulence that accelerates and heats the solar wind. The Alfvén-wave description is physically self-consistent, including non-Wentzel–Kramers–Brillouin reflection and physics-based apportioning of turbulent dissipative heating to both electrons and protons. Within this model, we initiate the CME by using the Gibson-Low analytical flux rope model and follow its evolution for days, in which time it propagates beyond STEREO A . A detailed comparison study is performed using remote as well as in situ observations. Although the flux rope structure is not compared directly due to lack of relevant ejecta observation at 1 au in this event, our results show that the new model can reproduce many of the observed features near the Sun (e.g., CME-driven extreme ultraviolet [EUV] waves, deflection of the flux rope from the coronal hole, “double-front” in the white light images) and in the heliosphere (e.g., shock propagation direction, shock properties at STEREO A ).
Six Degree-of-Freedom Haptic Simulation of a Stringed Musical Instrument for Triggering Sounds.
Dangxiao Wang; Xiaohan Zhao; Youjiao Shi; Yuru Zhang; Jing Xiao
2017-01-01
Six degree-of-freedom (DoF) haptic rendering of multi-region contacts between a moving hand avatar and varied-shaped components of a music instrument is fundamental to realizing interactive simulation of music playing. There are two aspects of computational challenges: first, some components have significantly small sizes in some dimensions, such as the strings on a seven-string plucked instrument (e.g., Guqin), which makes it challenging to avoid pop-through during multi-region contact scenarios. Second, deformable strings may produce high-frequency vibration, which requires simulating diversified and subtle force sensations when a hand interacts with strings in different ways. In this paper, we propose a constraint-based approach to haptic interaction and simulation between a moving hand avatar and various parts of a string instrument, using a cylinder model for the string that has a large length-radius ratio and a sphere-tree model for the other parts that have complex shapes. Collision response algorithms based on configuration-based optimization is adapted to solve for the contact configuration of the hand avatar interacting with thin strings without penetration. To simulate the deformation and vibration of a string, a cylindrical volume with variable diameters is defined with response to the interaction force applied by the operator. Experimental results have validated the stability and efficiency of the proposed approach. Subtle force feelings can be simulated to reflect varied interaction patterns, to differentiate collisions between the hand avatar with a static or vibrating string and the effects of various colliding forces and touch locations on the strings.
Numerical Simulation of Wave Propagation and Phase Transition of Tin under Shock-Wave Loading
International Nuclear Information System (INIS)
Hai-Feng, Song; Hai-Feng, Liu; Guang-Cai, Zhang; Yan-Hong, Zhao
2009-01-01
We undertake a numerical simulation of shock experiments on tin reported in the literature, by using a multiphase equation of state (MEOS) and a multiphase Steinberg Guinan (MSG) constitutive model for tin in the β, γ and liquid phases. In the MSG model, the Bauschinger effect is considered to better describe the unloading behavior. The phase diagram and Hugoniot of tin are calculated by MEOS, and they agree well with the experimental data. Combined with the MEOS and MSG models, hydrodynamic computer simulations are successful in reproducing the measured velocity profile of the shock wave experiment. Moreover, by analyzing the mass fraction contour as well as stress and temperature profiles of each phase for tin, we further discuss the complex behavior of tin under shock-wave loading. (condensed matter: structure, mechanical and thermal properties)
DEFF Research Database (Denmark)
He, Xiulan
parameters and model structures, which are the primary focuses of this PhD research. Parameter uncertainty was analyzed using an optimization tool (PEST: Parameter ESTimation) in combination with a random sampling method (LHS: Latin Hypercube Sampling). Model structure, namely geological architecture...... be compensated by model parameters, e.g. when hydraulic heads are considered. However, geological structure is the primary source of uncertainty with respect to simulations of groundwater age and capture zone. Operational MPS based software has been on stage for just around ten years; yet, issues regarding...... geological structures of these three sites provided appropriate conditions for testing the methods. Our study documented that MPS is an efficient approach for simulating geological heterogeneity, especially for non-stationary system. The high resolution of geophysical data such as SkyTEM is valuable both...
Miloichikova, I. A.; Bespalov, V. I.; Krasnykh, A. A.; Stuchebrov, S. G.; Cherepennikov, Yu. M.; Dusaev, R. R.
2018-04-01
Simulation by the Monte Carlo method is widely used to calculate the character of ionizing radiation interaction with substance. A wide variety of programs based on the given method allows users to choose the most suitable package for solving computational problems. In turn, it is important to know exactly restrictions of numerical systems to avoid gross errors. Results of estimation of the feasibility of application of the program PCLab (Computer Laboratory, version 9.9) for numerical simulation of the electron energy distribution absorbed in beryllium, aluminum, gold, and water for industrial, research, and clinical beams are presented. The data obtained using programs ITS and Geant4 being the most popular software packages for solving the given problems and the program PCLab are presented in the graphic form. A comparison and an analysis of the results obtained demonstrate the feasibility of application of the program PCLab for simulation of the absorbed energy distribution and dose of electrons in various materials for energies in the range 1-20 MeV.
A Novel DEM Approach to Simulate Block Propagation on Forested Slopes
Toe, David; Bourrier, Franck; Dorren, Luuk; Berger, Frédéric
2018-03-01
In order to model rockfall on forested slopes, we developed a trajectory rockfall model based on the discrete element method (DEM). This model is able to take the complex mechanical processes at work during an impact into account (large deformations, complex contact conditions) and can explicitly simulate block/soil, block/tree contacts as well as contacts between neighbouring trees. In this paper, we describe the DEM model developed and we use it to assess the protective effect of different types of forest. In addition, we compared it with a more classical rockfall simulation model. The results highlight that forests can significantly reduce rockfall hazard and that the spatial structure of coppice forests has to be taken into account in rockfall simulations in order to avoid overestimating the protective role of these forest structures against rockfall hazard. In addition, the protective role of the forests is mainly influenced by the basal area. Finally, the advantages and limitations of the DEM model were compared with classical rockfall modelling approaches.
De Götzen , Amalia; Mion , Luca; Tache , Olivier
2007-01-01
International audience; We call sound algorithms the categories of algorithms that deal with digital sound signal. Sound algorithms appeared in the very infancy of computer. Sound algorithms present strong specificities that are the consequence of two dual considerations: the properties of the digital sound signal itself and its uses, and the properties of auditory perception.
Locating and classification of structure-borne sound occurrence using wavelet transformation
International Nuclear Information System (INIS)
Winterstein, Martin; Thurnreiter, Martina
2011-01-01
For the surveillance of nuclear facilities with respect to detached or loose parts within the pressure boundary structure-borne sound detector systems are used. The impact of loose parts on the wall causes energy transfer to the wall that is measured a so called singular sound event. The run-time differences of sound signals allow a rough locating of the loose part. The authors performed a finite element based simulation of structure-borne sound measurements using real geometries. New knowledge on sound wave propagation, signal analysis and processing, neuronal networks or hidden Markov models were considered. Using the wavelet transformation it is possible to improve the localization of structure-borne sound events.
Simulation of ultra-high energy photon propagation in the geomagnetic field
Homola, P.; Góra, D.; Heck, D.; Klages, H.; PeĶala, J.; Risse, M.; Wilczyńska, B.; Wilczyński, H.
2005-12-01
The identification of primary photons or specifying stringent limits on the photon flux is of major importance for understanding the origin of ultra-high energy (UHE) cosmic rays. UHE photons can initiate particle cascades in the geomagnetic field, which leads to significant changes in the subsequent atmospheric shower development. We present a Monte Carlo program allowing detailed studies of conversion and cascading of UHE photons in the geomagnetic field. The program named PRESHOWER can be used both as an independent tool or together with a shower simulation code. With the stand-alone version of the code it is possible to investigate various properties of the particle cascade induced by UHE photons interacting in the Earth's magnetic field before entering the Earth's atmosphere. Combining this program with an extensive air shower simulation code such as CORSIKA offers the possibility of investigating signatures of photon-initiated showers. In particular, features can be studied that help to discern such showers from the ones induced by hadrons. As an illustration, calculations for the conditions of the southern part of the Pierre Auger Observatory are presented. Catalogue identifier:ADWG Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWG Program obtainable: CPC Program Library, Quen's University of Belfast, N. Ireland Computer on which the program has been thoroughly tested:Intel-Pentium based PC Operating system:Linux, DEC-Unix Programming language used:C, FORTRAN 77 Memory required to execute with typical data:Recipes, http://www.nr.com]. Nature of the physical problem:Simulation of a cascade of particles initiated by UHE photon passing through the geomagnetic field above the Earth's atmosphere. Method of solution: The primary photon is tracked until its conversion into ee pair or until it reaches the upper atmosphere. If conversion occurred each individual particle in the resultant preshower is checked for either bremsstrahlung radiation (electrons) or
International Nuclear Information System (INIS)
Zaytsev, Kirill I; Katyba, Gleb M; Mukhina, Elena E; Kudrin, Konstantin G; Karasik, Valeriy E; Yurchenko, Stanislav O; Kurlov, Vladimir N; Shikunova, Irina A; Reshetov, Igor V
2016-01-01
Terahertz (THz) waveguiding in sapphire shaped single crystal has been studied using the numerical simulations. The numerical finite-difference analysis has been implemented to characterize the dispersion and loss in the photonic crystalline waveguide containing hollow cylindrical channels, which form the hexagonal lattice. Observed results demonstrate the ability to guide the THz-waves in multi-mode regime in wide frequency range with the minimal power extinction coefficient of 0.02 dB/cm at 1.45 THz. This shows the prospectives of the shaped crystals for highly-efficient THz waveguiding. (paper)
Calibration and Forward Uncertainty Propagation for Large-eddy Simulations of Engineering Flows
Energy Technology Data Exchange (ETDEWEB)
Templeton, Jeremy Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blaylock, Myra L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Domino, Stefan P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hewson, John C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kumar, Pritvi Raj [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ling, Julia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Najm, Habib N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ruiz, Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Safta, Cosmin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sargsyan, Khachik [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stewart, Alessia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wagner, Gregory [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-09-01
The objective of this work is to investigate the efficacy of using calibration strategies from Uncertainty Quantification (UQ) to determine model coefficients for LES. As the target methods are for engineering LES, uncertainty from numerical aspects of the model must also be quantified. 15 The ultimate goal of this research thread is to generate a cost versus accuracy curve for LES such that the cost could be minimized given an accuracy prescribed by an engineering need. Realization of this goal would enable LES to serve as a predictive simulation tool within the engineering design process.
Conflicting audio-haptic feedback in physically based simulation of walking sounds
DEFF Research Database (Denmark)
Turchet, Luca; Serafin, Stefania; Dimitrov, Smilen
2010-01-01
We describe an audio-haptic experiment conducted using a system which simulates in real-time the auditory and haptic sensation of walking on different surfaces. The system is based on physical models, that drive both the haptic and audio synthesizers, and a pair of shoes enhanced with sensors...... and actuators. Such experiment was run to examine the ability of subjects to recognize the different surfaces with both coherent and incoherent audio-haptic stimuli. Results show that in this kind of tasks the auditory modality is dominant on the haptic one....
Electromagnetic Simulations of Ground-Penetrating Radar Propagation near Lunar Pits and Lava Tubes
Zimmerman, M. I.; Carter, L. M.; Farrell, W. M.; Bleacher, J. E.; Petro, N. E.
2013-01-01
Placing an Orion capsule at the Earth-Moon L2 point (EML2) would potentially enable telerobotic operation of a rover on the lunar surface. The Human Exploration Virtual Institute (HEVI) is proposing that rover operations be carried out near one of the recently discovered lunar pits, which may provide radiation shielding for long duration human stays as well as a cross-disciplinary, science-rich target for nearer-term telerobotic exploration. Ground penetrating radar (GPR) instrumentation included onboard a rover has the potential to reveal many details of underground geologic structures near a pit, as well as characteristics of the pit itself. In the present work we employ the full-wave electromagnetic code MEEP to simulate such GPR reflections from a lunar pit and other subsurface features including lava tubes. These simulations will feed forward to mission concepts requiring knowledge of where to hide from harmful radiation and other environmental hazards such as plama charging and extreme diurnal temperatures.
J. Rodnizki, D. Berkovits, K. Lavie, I. Mardor, A. Shor and Y. Yanay (Soreq NRC, Yavne), K. Dunkel, C. Piel (ACCEL, Bergisch Gladbach), A. Facco (INFN/LNL, Legnaro, Padova), V. Zviagintsev (TRIUMF, Vancouver)
AbstractBeam dynamics simulations of SARAF (Soreq Applied Research Accelerator Facility) superconducting RF linear accelerator have been performed in order to establish the accelerator design. The multi-particle simulation includes 3D realistic electromagnetic field distributions, space charge forces and fabrication, misalignment and operation errors. A 4 mA proton or deuteron beam is accelerated up to 40 MeV with a moderated rms emittance growth and a high real-estate gradient of 2 MeV/m. An envelope of 40,000 macro-particles is kept under a radius of 1.1 cm, well below the beam pipe bore radius. The accelerator design of SARAF is proposed as an injector for the EURISOL driver accelerator. The Accel 176 MHZ β0=0.09 and β0=0.15 HWR lattice was extended to 90 MeV based on the LNL 352 MHZ β0=0.31 HWR. The matching between both lattices ensures smooth transition and the possibility to extend the accelerator to the required EURISOL ion energy.
A neural mass model of interconnected regions simulates rhythm propagation observed via TMS-EEG.
Cona, F; Zavaglia, M; Massimini, M; Rosanova, M; Ursino, M
2011-08-01
Knowledge of cortical rhythms represents an important aspect of modern neuroscience, to understand how the brain realizes its functions. Recent data suggest that different regions in the brain may exhibit distinct electroencephalogram (EEG) rhythms when perturbed by Transcranial Magnetic Stimulation (TMS) and that these rhythms can change due to the connectivity among regions. In this context, in silico simulations may help the validation of these hypotheses that would be difficult to be verified in vivo. Neural mass models can be very useful to simulate specific aspects of electrical brain activity and, above all, to analyze and identify the overall frequency content of EEG in a cortical region of interest (ROI). In this work we implemented a model of connectivity among cortical regions to fit the impulse responses in three ROIs recorded during a series of TMS/EEG experiments performed in five subjects and using three different impulse intensities. In particular we investigated Brodmann Area (BA) 19 (occipital lobe), BA 7 (parietal lobe) and BA 6 (frontal lobe). Results show that the model can reproduce the natural rhythms of the three regions quite well, acting on a few internal parameters. Moreover, the model can explain most rhythm changes induced by stimulation of another region, and inter-subject variability, by estimating just a few long-range connectivity parameters among ROIs. Copyright © 2011 Elsevier Inc. All rights reserved.
Large and Dense Swarms: Simulation of a Shortest Path Alarm Propagation
Directory of Open Access Journals (Sweden)
Claudia Snels
2015-07-01
Full Text Available This paper deals with the transmission of alarm messages in large and dense underwater swarms of Autonomous Underwater Vehicles (AUVs and describes the verification process of the derived algorithm results by means of two simulation tools realized by the authors. A collision-free communication protocol has been developed, tailored to a case where a single AUV needs to send a message to a specific subset of swarm members regarding a perceived danger. The protocol includes a handshaking procedure that creates a silence region before the transmission of the message obtained through specific acoustic tones out of the normal transmission frequencies or through optical signals. This region will include all members of the swarm involved in the alarm message and their neighbours, preventing collisions between them. The AUV sending messages to a target area computes a delay function on appropriate arcs and runs a Dijkstra-like algorithm obtaining a multicast tree. After an explanation of the whole building of this collision-free multicast tree, a simulation has been carried out assuming different scenarios relevant to swarm density, signal power of the modem and the geometrical configuration of the nodes.
International Nuclear Information System (INIS)
Stoeckl, H.
1991-06-01
Numerical simulations of fracture-mechanical experiments with the aim of determining the stress intensity factor and its relation to the fracture velocity from the measured data of the crack length are problematic with the conventional DCB specimen loaded through wedge and bolt namely because of the not clearly definable limiting conditions. Experiments were therefore carried out with modified DCB specimens made of ARALDIT B, with the loading wedge pressed directly into the crack mouth. In the case of suitable specimen dimensions, K I already in the initial phase of crack propagation before arrival of the first reflected waves covers a great part of the relevant range. Numerical simulations agree well with the shadow-optical measurements in this phase. A specimen variant with T-shaped extension at the counterbearing is suitable especially for crack arrest investigations, since high fracture velocities and brief crack jump lengths can be combined in tests with this specimen. The constant member in the series development of the stress distribution at the crack tip according to Williams determines the directional stability of the crack. The theories established by Cotterell, Schindler, Streit and Finnie are discussed by means of the kinking cracks observed during some experiments. (orig.) [de
Non-local model analysis of heat pulse propagation and simulation of experiments in W7-AS
International Nuclear Information System (INIS)
Iwasaki, Takuya; Itoh, Sanae-I.; Yagi, Masatoshi; Itoh, Kimitaka; Stroth, U.
1999-01-01
A new model equation which includes the non-local effect in the hear flux is introduced to study the transient transport phenomena. A non-local heat flux, which is expressed in terms of the integral equation, is superimposed on the conventional form of the heat flux. This model is applied to describe the experimental results from the power switching [U. Stroth et al.: Plasma Phys. Control. Fusion 38 (1996) 1087] and the power modulation experiments [L. Giannone et al.: Nucl. Fusion 32 (1992) 1985] in the W7-AS stellarator. A small fraction of non-local component in the heat flux is found to be very effective in modifying the response against an external modulation. The transient feature of the transport property, which are observed in the response of heat pulse propagation, are qualitatively reproduced by the transport simulations based on this model. A possibility is discussed to estimate the correlation length of the non-local effect experimentally by use of the results of transport simulations. (author)
Pan, Boan; Fang, Xiang; Liu, Weichao; Li, Nanxi; Zhao, Ke; Li, Ting
2018-02-01
Near infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) has been used to measure brain activation, which are clinically important. Monte Carlo simulation has been applied to the near infrared light propagation model in biological tissue, and has the function of predicting diffusion and brain activation. However, previous studies have rarely considered hair and hair follicles as a contributing factor. Here, we attempt to use MCVM (Monte Carlo simulation based on 3D voxelized media) to examine light transmission, absorption, fluence, spatial sensitivity distribution (SSD) and brain activation judgement in the presence or absence of the hair follicles. The data in this study is a series of high-resolution cryosectional color photograph of a standing Chinse male adult. We found that the number of photons transmitted under the scalp decreases dramatically and the photons exported to detector is also decreasing, as the density of hair follicles increases. If there is no hair follicle, the above data increase and has the maximum value. Meanwhile, the light distribution and brain activation have a stable change along with the change of hair follicles density. The findings indicated hair follicles make influence of NIRS in light distribution and brain activation judgement.
Sound transmission in porcine thorax through airway insonification
Dai, Zoujun; Mansy, Hansen A.; Henry, Brian M.; Sandler, Richard H.; Balk, Robert A.; Royston, Thomas J.
2015-01-01
Many pulmonary injuries and pathologies may lead to structural and functional changes in the lungs resulting in measurable sound transmission changes on the chest surface. Additionally, noninvasive imaging of externally driven mechanical wave motion in the chest (e.g., using magnetic resonance elastography) can provide information about lung structural property changes and, hence, may be of diagnostic value. In the present study, a comprehensive computational simulation (in silico) model was developed to simulate sound wave propagation in the airways, lung, and chest wall under normal and pneumothorax conditions. Experiments were carried out to validate the model. Here, sound waves with frequency content from 50 to 700 Hz were introduced into airways of five porcine subjects via an endotracheal tube, and transmitted waves were measured by scanning laser Doppler vibrometry at the chest wall surface. The computational model predictions of decreased sound transmission with pneumothorax were consistent with experimental measurements. The in silico model can also be used to visualize wave propagation inside and on the chest wall surface for other pulmonary pathologies, which may help in developing and interpreting diagnostic procedures that utilize sound and vibration. PMID:26280512
Sound transmission in porcine thorax through airway insonification.
Peng, Ying; Dai, Zoujun; Mansy, Hansen A; Henry, Brian M; Sandler, Richard H; Balk, Robert A; Royston, Thomas J
2016-04-01
Many pulmonary injuries and pathologies may lead to structural and functional changes in the lungs resulting in measurable sound transmission changes on the chest surface. Additionally, noninvasive imaging of externally driven mechanical wave motion in the chest (e.g., using magnetic resonance elastography) can provide information about lung structural property changes and, hence, may be of diagnostic value. In the present study, a comprehensive computational simulation (in silico) model was developed to simulate sound wave propagation in the airways, lung, and chest wall under normal and pneumothorax conditions. Experiments were carried out to validate the model. Here, sound waves with frequency content from 50 to 700 Hz were introduced into airways of five porcine subjects via an endotracheal tube, and transmitted waves were measured by scanning laser Doppler vibrometry at the chest wall surface. The computational model predictions of decreased sound transmission with pneumothorax were consistent with experimental measurements. The in silico model can also be used to visualize wave propagation inside and on the chest wall surface for other pulmonary pathologies, which may help in developing and interpreting diagnostic procedures that utilize sound and vibration.
Energy Technology Data Exchange (ETDEWEB)
Wang, S.; Chen, Z. Y.; Wang, X. H., E-mail: xhw@mail.xjtu.edu.cn; Li, D.; Yang, A. J.; Liu, D. X.; Rong, M. Z. [State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, H. L. [Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia 23508 (United States); Kong, M. G. [State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi' an Jiaotong University, Xi' an 710049 (China); Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia 23508 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States)
2015-11-28
Cold atmospheric-pressure plasmas have potential to be used for endoscope sterilization. In this study, a long quartz tube was used as the simulated endoscope channel, and an array of electrodes was warped one by one along the tube. Plasmas were generated in the inner channel of the tube, and their propagation characteristics in He+O{sub 2} feedstock gases were studied as a function of the oxygen concentration. It is found that each of the plasmas originates at the edge of an instantaneous cathode, and then it propagates bidirectionally. Interestingly, a plasma head with bright spots is formed in the hollow instantaneous cathode and moves towards its center part, and a plasma tail expands through the electrode gap and then forms a swallow tail in the instantaneous anode. The plasmas are in good axisymmetry when [O{sub 2}] ≤ 0.3%, but not for [O{sub 2}] ≥ 1%, and even behave in a stochastic manner when [O{sub 2}] = 3%. The antibacterial agents are charged species and reactive oxygen species, so their wall fluxes represent the “plasma dosage” for the sterilization. Such fluxes mainly act on the inner wall in the hollow electrode rather than that in the electrode gap, and they get to the maximum efficiency when the oxygen concentration is around 0.3%. It is estimated that one can reduce the electrode gap and enlarge the electrode width to achieve more homogenous and efficient antibacterial effect, which have benefits for sterilization applications.
Consistent modelling of wind turbine noise propagation from source to receiver.
Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong; Dag, Kaya O; Moriarty, Patrick
2017-11-01
The unsteady nature of wind turbine noise is a major reason for annoyance. The variation of far-field sound pressure levels is not only caused by the continuous change in wind turbine noise source levels but also by the unsteady flow field and the ground characteristics between the turbine and receiver. To take these phenomena into account, a consistent numerical technique that models the sound propagation from the source to receiver is developed. Large eddy simulation with an actuator line technique is employed for the flow modelling and the corresponding flow fields are used to simulate sound generation and propagation. The local blade relative velocity, angle of attack, and turbulence characteristics are input to the sound generation model. Time-dependent blade locations and the velocity between the noise source and receiver are considered within a quasi-3D propagation model. Long-range noise propagation of a 5 MW wind turbine is investigated. Sound pressure level time series evaluated at the source time are studied for varying wind speeds, surface roughness, and ground impedances within a 2000 m radius from the turbine.
Energy Technology Data Exchange (ETDEWEB)
Kim, Jihoon; Moridis, George J.
2013-10-01
We developed a hydraulic fracturing simulator by coupling a flow simulator to a geomechanics code, namely T+M simulator. Modeling of the vertical fracture development involves continuous updating of the boundary conditions and of the data connectivity, based on the finite element method for geomechanics. The T+M simulator can model the initial fracture development during the hydraulic fracturing operations, after which the domain description changes from single continuum to double or multiple continua in order to rigorously model both flow and geomechanics for fracture-rock matrix systems. The T+H simulator provides two-way coupling between fluid-heat flow and geomechanics, accounting for thermoporomechanics, treats nonlinear permeability and geomechanical moduli explicitly, and dynamically tracks changes in the fracture(s) and in the pore volume. We also fully accounts for leak-off in all directions during hydraulic fracturing. We first validate the T+M simulator, matching numerical solutions with the analytical solutions for poromechanical effects, static fractures, and fracture propagations. Then, from numerical simulation of various cases of the planar fracture propagation, shear failure can limit the vertical fracture propagation of tensile failure, because of leak-off into the reservoirs. Slow injection causes more leak-off, compared with fast injection, when the same amount of fluid is injected. Changes in initial total stress and contributions of shear effective stress to tensile failure can also affect formation of the fractured areas, and the geomechanical responses are still well-posed.
Validation of Acoustical Simulations in the "Bell Labs Box"
Tsingos , Nicolas; Carlbom , Ingrid; Elko , Gary; Funkhouser , Thomas; Kubli , Robert
2002-01-01
International audience; Computer simulated sound propagation through 3D environments is important in many applications, including computer-aided de-sign, training, and virtual reality. In many cases, the accuracy of the acoustical simulation is critical to the success of the application. For example, in concert hall and factory design (where OSHA sound limits must be met), the accuracy of the simulation may save costly re-engineering after construction. In virtual environments, experiments ha...
Kolyaie, S.; Yaghooti, M.; Majidi, G.
2011-12-01
This paper is a part of an ongoing research to examine the capability of geostatistical analysis for mobile networks coverage prediction, simulation and tuning. Mobile network coverage predictions are used to find network coverage gaps and areas with poor serviceability. They are essential data for engineering and management in order to make better decision regarding rollout, planning and optimisation of mobile networks.The objective of this research is to evaluate different interpolation techniques in coverage prediction. In method presented here, raw data collected from drive testing a sample of roads in study area is analysed and various continuous surfaces are created using different interpolation methods. Two general interpolation methods are used in this paper with different variables; first, Inverse Distance Weighting (IDW) with various powers and number of neighbours and second, ordinary kriging with Gaussian, spherical, circular and exponential semivariogram models with different number of neighbours. For the result comparison, we have used check points coming from the same drive test data. Prediction values for check points are extracted from each surface and the differences with actual value are computed. The output of this research helps finding an optimised and accurate model for coverage prediction.
Basu, S.
2017-01-01
Accurate simulation and forecasting of over-the-horizon propagation events are essential for various civilian and defense applications. We demonstrate the prowess of a newly proposed coupled mesoscale modeling and ray tracing framework in reproducing such an event. Wherever possible, routinely
Reis, T.; Dellar, P.J.
2011-01-01
Lattice Boltzmann models that recover a macroscopic description of multiphase flow of immiscible liquids typically represent the boundaries between phases using a scalar function, the phase field, that varies smoothly over several grid points. Attempts to tune the model parameters to minimise the widths of these interfaces typically lead to the interfaces becoming fixed to the underlying grid instead of advecting with the fluid velocity. This phenomenon, known as lattice pinning, is strikingly similar to that associated with the numerical simulation of conservation laws coupled to stiff algebraic source terms. We present a lattice Boltzmann formulation of the model problem proposed by LeVeque and Yee (1990) [3] to study the latter phenomenon in the context of computational combustion, and offer a volume-conserving extension in multiple space dimensions. Inspired by the random projection method of Bao and Jin (2000) [1] we further generalise this formulation by introducing a uniformly distributed quasi-random variable into the term responsible for the sharpening of phase boundaries. This method is mass conserving, gives correct average propagation speeds over many timesteps, and is shown to significantly delay the onset of pinning as the interface width is reduced. © 2010 Elsevier Ltd.
Reis, T.
2011-07-01
Lattice Boltzmann models that recover a macroscopic description of multiphase flow of immiscible liquids typically represent the boundaries between phases using a scalar function, the phase field, that varies smoothly over several grid points. Attempts to tune the model parameters to minimise the widths of these interfaces typically lead to the interfaces becoming fixed to the underlying grid instead of advecting with the fluid velocity. This phenomenon, known as lattice pinning, is strikingly similar to that associated with the numerical simulation of conservation laws coupled to stiff algebraic source terms. We present a lattice Boltzmann formulation of the model problem proposed by LeVeque and Yee (1990) [3] to study the latter phenomenon in the context of computational combustion, and offer a volume-conserving extension in multiple space dimensions. Inspired by the random projection method of Bao and Jin (2000) [1] we further generalise this formulation by introducing a uniformly distributed quasi-random variable into the term responsible for the sharpening of phase boundaries. This method is mass conserving, gives correct average propagation speeds over many timesteps, and is shown to significantly delay the onset of pinning as the interface width is reduced. © 2010 Elsevier Ltd.
Hazza, Muataz Hazza F. Al; Adesta, Erry Y. T.; Riza, Muhammad
2013-12-01
High speed milling has many advantages such as higher removal rate and high productivity. However, higher cutting speed increase the flank wear rate and thus reducing the cutting tool life. Therefore estimating and predicting the flank wear length in early stages reduces the risk of unaccepted tooling cost. This research presents a neural network model for predicting and simulating the flank wear in the CNC end milling process. A set of sparse experimental data for finish end milling on AISI H13 at hardness of 48 HRC have been conducted to measure the flank wear length. Then the measured data have been used to train the developed neural network model. Artificial neural network (ANN) was applied to predict the flank wear length. The neural network contains twenty hidden layer with feed forward back propagation hierarchical. The neural network has been designed with MATLAB Neural Network Toolbox. The results show a high correlation between the predicted and the observed flank wear which indicates the validity of the models.
Mukherjee, Arnab; Ankit, Kumar; Selzer, Michael; Nestler, Britta
2018-04-01
We employ the phase-field method to assess electromigration (EM) damage in wide polycrystalline interconnects due to grain-boundary grooving. An interplay of surface and grain-boundary diffusion is shown to drastically influence the mode of progressive EM damage. Rapid atomic transport along the surface leads to shape-preserving surface drift reminiscent of Blech drift-velocity experiments. On the other hand, a comparatively faster grain-boundary transport localizes the damage, resulting in the proliferation of intergranular slits with a shape-preserving tip. At steady state, the two regimes exhibit exponents of 1 and 3 /2 , respectively, in Black's law. While surface drift obeys an inverse scaling with grain size, slits exhibit a direct relationship at small sizes, with the dependence becoming weaker at larger ones. Furthermore, we explain the influence of curvature- or EM-mediated healing fluxes running along the surface on groove replenishment. Insights derived from phase-field simulations of EM in bicrystals are extended to investigate the multiphysics of mixed-mode damage of a polycrystalline interconnect line that is characterized by a drift of small grain surfaces, slit propagation, and coarsening. The triple and quadruple junctions are identified as prominent sites of failure.
International Nuclear Information System (INIS)
Al Hazza, Muataz Hazza F; Adesta, Erry Y T; Riza, Muhammad
2013-01-01
High speed milling has many advantages such as higher removal rate and high productivity. However, higher cutting speed increase the flank wear rate and thus reducing the cutting tool life. Therefore estimating and predicting the flank wear length in early stages reduces the risk of unaccepted tooling cost. This research presents a neural network model for predicting and simulating the flank wear in the CNC end milling process. A set of sparse experimental data for finish end milling on AISI H13 at hardness of 48 HRC have been conducted to measure the flank wear length. Then the measured data have been used to train the developed neural network model. Artificial neural network (ANN) was applied to predict the flank wear length. The neural network contains twenty hidden layer with feed forward back propagation hierarchical. The neural network has been designed with MATLAB Neural Network Toolbox. The results show a high correlation between the predicted and the observed flank wear which indicates the validity of the models
Study of phonon propagation in water using picosecond ultrasonics
International Nuclear Information System (INIS)
Yang, F; Atay, T; Dang, C H; Grimsley, T J; Che, S; Ma, J; Zhang, Q; Nurmikko, A V; Maris, H J
2007-01-01
The propagation of ultra-short sound pulses in water is studied by using the picosecond ultrasonic technique. A sound pulse is generated when light is absorbed in a metal transducer film deposited onto a substrate. The sound propagates across a thin layer of water and is then reflected back to the surface at which it was generated. The efficiency of optoacoustic detection of the reflected sound is enhanced through the use of a resonant optical cavity. We show that the variation of the shape of the returning sound pulse with propagation distance agrees with that calculated by using the attenuation of sound in water that has been measured at lower frequencies
DEFF Research Database (Denmark)
Trento, Stefano; Götzen, Amalia De
2011-01-01
This paper is an initial attempt to study the world of sound effects for motion pictures, also known as Foley sounds. Throughout several audio and audio-video tests we have compared both Foley and real sounds originated by an identical action. The main purpose was to evaluate if sound effects...
Measurement of sound velocity profiles in fluids for process monitoring
International Nuclear Information System (INIS)
Wolf, M; Kühnicke, E; Lenz, M; Bock, M
2012-01-01
In ultrasonic measurements, the time of flight to the object interface is often the only information that is analysed. Conventionally it is only possible to determine distances or sound velocities if the other value is known. The current paper deals with a novel method to measure the sound propagation path length and the sound velocity in media with moving scattering particles simultaneously. Since the focal position also depends on sound velocity, it can be used as a second parameter. Via calibration curves it is possible to determine the focal position and sound velocity from the measured time of flight to the focus, which is correlated to the maximum of averaged echo signal amplitude. To move focal position along the acoustic axis, an annular array is used. This allows measuring sound velocity locally resolved without any previous knowledge of the acoustic media and without a reference reflector. In previous publications the functional efficiency of this method was shown for media with constant velocities. In this work the accuracy of these measurements is improved. Furthermore first measurements and simulations are introduced for non-homogeneous media. Therefore an experimental set-up was created to generate a linear temperature gradient, which also causes a gradient of sound velocity.
Directory of Open Access Journals (Sweden)
Denikin Anton A.
2012-12-01
Full Text Available The article considers the aesthetical and practical possibilities for sounds (sound design in video games and interactive applications. Outlines the key features of the game sound, such as simulation, representativeness, interactivity, immersion, randomization, and audio-visuality. The author defines the basic terminology in study of game audio, as well as identifies significant aesthetic differences between film sounds and sounds in video game projects. It is an attempt to determine the techniques of art analysis for the approaches in study of video games including aesthetics of their sounds. The article offers a range of research methods, considering the video game scoring as a contemporary creative practice.
International Nuclear Information System (INIS)
Ferrie, Emilie; Buffiere, Jean-Yves; Ludwig, Wolfgang; Gravouil, Anthony; Edwards, Lyndon
2006-01-01
The propagation of a semi-elliptical crack in the bulk of an ultrafine-grained Al-Li alloy has been investigated using synchrotron radiation X-ray microtomography. In this material, the studied crack, despite its small dimension, can be considered as 'microstructurally long' and described in the frame of the linear elastic fracture mechanics. The extended finite element method is used to calculate the stress intensity factors along the crack front taking into account the three-dimensional geometry extracted from the tomographic images. For the same nominal value of the stress intensity factor range, crack propagation is faster in the bulk than at the surface. The observed anisotropy is attributed to the variation of the closure stress along the crack front between surface and bulk. The experimentally observed fatigue crack propagation is compared to numerical simulations. Good agreement is found when a linear variation of closure stress along the crack front is taken into account in the '3D crack propagation law' used for the simulation
Application of acoustic radiosity methods to noise propagation within buildings
Muehleisen, Ralph T.; Beamer, C. Walter
2005-09-01
The prediction of sound pressure levels in rooms from transmitted sound is a difficult problem. The sound energy in the source room incident on the common wall must be accurately predicted. In the receiving room, the propagation of sound from the planar wall source must also be accurately predicted. The radiosity method naturally computes the spatial distribution of sound energy incident on a wall and also naturally predicts the propagation of sound from a planar area source. In this paper, the application of the radiosity method to sound transmission problems is introduced and explained.
International Nuclear Information System (INIS)
Hermansson, B.R.
1989-01-01
The main part of this thesis consists of 15 published papers, in which the numerical Beam Propagating Method (BPM) is investigated, verified and used in a number of applications. In the introduction a derivation of the nonlinear Schroedinger equation is presented to connect the beginning of the soliton papers with Maxwell's equations including a nonlinear polarization. This thesis focuses on the wide use of the BPM for numerical simulations of propagating light and particle beams through different types of structures such as waveguides, fibers, tapers, Y-junctions, laser arrays and crystalline solids. We verify the BPM in the above listed problems against other numerical methods for example the Finite-element Method, perturbation methods and Runge-Kutta integration. Further, the BPM is shown to be a simple and effective way to numerically set up the Green's function in matrix form for periodic structures. The Green's function matrix can then be diagonalized with matrix methods yielding the eigensolutions of the structure. The BPM inherent transverse periodicity can be untied, if desired, by for example including an absorptive refractive index at the computational window edges. The interaction of two first-order soliton pulses is strongly dependent on the phase relationship between the individual solitons. When optical phase shift keying is used in coherent one-carrier wavelength communication, the fiber attenuation will suppress or delay the nonlinear instability. (orig.)
DEFF Research Database (Denmark)
Grimshaw, Mark; Garner, Tom Alexander
2014-01-01
We make the case in this essay that sound that is imagined is both a perception and as much a sound as that perceived through external stimulation. To argue this, we look at the evidence from auditory science, neuroscience, and philosophy, briefly present some new conceptual thinking on sound...... that accounts for this view, and then use this to look at what the future might hold in the context of imagining sound and developing technology....
International Nuclear Information System (INIS)
Wu Gong-Tao; Lü Yong-Jun; Liu Peng-Fei; Li Yi-Ning; Shi Qing-Fan
2012-01-01
The velocity of sound in soap foams at high gas volume fractions is experimentally studied by using the time difference method. It is found that the sound velocities increase with increasing bubble diameter, and asymptotically approach to the value in air when the diameter is larger than 12.5 mm. We propose a simple theoretical model for the sound propagation in a disordered foam. In this model, the attenuation of a sound wave due to the scattering of the bubble wall is equivalently described as the effect of an additional length. This simplicity reasonably reproduces the sound velocity in foams and the predicted results are in good agreement with the experiments. Further measurements indicate that the increase of frequency markedly slows down the sound velocity, whereas the latter does not display a strong dependence on the solution concentration
International Nuclear Information System (INIS)
Richardson, W.J.; Greene, C.R.; Koski, W.R.; Smultea, M.A.; Cameron, G.
1991-10-01
The report concerns the effects of underwater noise from simulated oil production operations on the movements and behavior of bowhead and white whales migrating around northern Alaska in spring. An underwater sound projector suspended from pack ice was used to introduce recorded drilling noise and other test sounds into leads through the pack ice. These sounds were received and measured at various distances to determine the rate of sound attenuation with distance and frequency. The movements and behavior of bowhead and white whales approaching the operating projector were studied by aircraft- and ice-based observers. Some individuals of both species were observed to approach well within the ensonified area. However, behavioral changes and avoidance reactions were evident when the received sound level became sufficiently high. Reactions to aircraft are also discussed
Sound intensity as a function of sound insulation partition
Cvetkovic , S.; Prascevic , R.
1994-01-01
In the modern engineering practice, the sound insulation of the partitions is the synthesis of the theory and of the experience acquired in the procedure of the field and of the laboratory measurement. The science and research public treat the sound insulation in the context of the emission and propagation of the acoustic energy in the media with the different acoustics impedance. In this paper, starting from the essence of physical concept of the intensity as the energy vector, the authors g...
Attenborough, Keith; Horoshenkov, Kirill
2014-01-01
1. Introduction 2. The Propagation of Sound Near Ground Surfaces in a Homogeneous Medium 3. Predicting the Acoustical Properties of Outdoor Ground Surfaces 4. Measurements of the Acoustical Properties of Ground Surfaces and Comparisons with Models 5. Predicting Effects of Source Characteristics on Outdoor Sound 6. Predictions, Approximations and Empirical Results for Ground Effect Excluding Meteorological Effects 7. Influence of Source Motion on Ground Effect and Diffraction 8. Predicting Effects of Mixed Impedance Ground 9. Predicting the Performance of Outdoor Noise Barriers 10. Predicting Effects of Vegetation, Trees and Turbulence 11. Analytical Approximations including Ground Effect, Refraction and Turbulence 12. Prediction Schemes 13. Predicting Sound in an Urban Environment.
Modeling of Nonlinear Propagation in Multi-layer Biological Tissues for Strong Focused Ultrasound
International Nuclear Information System (INIS)
Ting-Bo, Fan; Zhen-Bo, Liu; Zhe, Zhang; Dong, Zhang; Xiu-Fen, Gong
2009-01-01
A theoretical model of the nonlinear propagation in multi-layered tissues for strong focused ultrasound is proposed. In this model, the spheroidal beam equation (SBE) is utilized to describe the nonlinear sound propagation in each layer tissue, and generalized oblique incidence theory is used to deal with the sound transmission between two layer tissues. Computer simulation is performed on a fat-muscle-liver tissue model under the irradiation of a 1 MHz focused transducer with a large aperture angle of 35°. The results demonstrate that the tissue layer would change the amplitude of sound pressure at the focal region and cause the increase of side petals. (fundamental areas of phenomenology (including applications))
A problem-based approach to elastic wave propagation: the role of constraints
International Nuclear Information System (INIS)
Fazio, Claudio; Guastella, Ivan; Tarantino, Giovanni
2009-01-01
A problem-based approach to the teaching of mechanical wave propagation, focused on observation and measurement of wave properties in solids and on modelling of these properties, is presented. In particular, some experimental results, originally aimed at measuring the propagation speed of sound waves in metallic rods, are used in order to deepen the role of constraints in mechanical wave propagation. Interpretative models of the results obtained in the laboratory are built and implemented by using a well-known simulation environment. The simulation results are, then, compared with experimental data. The approach has been developed and experimented in the context of a workshop on mechanical wave propagation of the two-year Graduate Program for Physics Teacher Education at University of Palermo.
International Nuclear Information System (INIS)
Gastineau, B.
2000-06-01
Sacral Theater has been developed for the toroid magnet Atlas of the CERN LHC project. This three dimensional calculations code calculates the propagation of the transition of a superconducting coil in 25 m long hippodrome. Procedures to study low currents have been included. This work is a part of the magnet safety system because the coils protection is made by warmers activating the quench propagation in case of default detection. This allows the complete dissipation of storage energy that can reach 1080 MJ on Atlas. (N.C.)
Nagaso, Masaru; Komatitsch, Dimitri; Moysan, Joseph; Lhuillier, Christian
2018-01-01
ASTRID project, French sodium cooled nuclear reactor of 4th generation, is under development at the moment by Alternative Energies and Atomic Energy Commission (CEA). In this project, development of monitoring techniques for a nuclear reactor during operation are identified as a measure issue for enlarging the plant safety. Use of ultrasonic measurement techniques (e.g. thermometry, visualization of internal objects) are regarded as powerful inspection tools of sodium cooled fast reactors (SFR) including ASTRID due to opacity of liquid sodium. In side of a sodium cooling circuit, heterogeneity of medium occurs because of complex flow state especially in its operation and then the effects of this heterogeneity on an acoustic propagation is not negligible. Thus, it is necessary to carry out verification experiments for developments of component technologies, while such kind of experiments using liquid sodium may be relatively large-scale experiments. This is why numerical simulation methods are essential for preceding real experiments or filling up the limited number of experimental results. Though various numerical methods have been applied for a wave propagation in liquid sodium, we still do not have a method for verifying on three-dimensional heterogeneity. Moreover, in side of a reactor core being a complex acousto-elastic coupled region, it has also been difficult to simulate such problems with conventional methods. The objective of this study is to solve these 2 points by applying three-dimensional spectral element method. In this paper, our initial results on three-dimensional simulation study on heterogeneous medium (the first point) are shown. For heterogeneity of liquid sodium to be considered, four-dimensional temperature field (three spatial and one temporal dimension) calculated by computational fluid dynamics (CFD) with Large-Eddy Simulation was applied instead of using conventional method (i.e. Gaussian Random field). This three-dimensional numerical
DEFF Research Database (Denmark)
Knakkergaard, Martin
2016-01-01
This article discusses the change in premise that digitally produced sound brings about and how digital technologies more generally have changed our relationship to the musical artifact, not simply in degree but in kind. It demonstrates how our acoustical conceptions are thoroughly challenged...... by the digital production of sound and, by questioning the ontological basis for digital sound, turns our understanding of the core term substance upside down....
Harris, Peter; Philip, Rachel; Robinson, Stephen; Wang, Lian
2016-01-01
Monitoring ocean acoustic noise has been the subject of considerable recent study, motivated by the desire to assess the impact of anthropogenic noise on marine life. A combination of measuring ocean sound using an acoustic sensor network and modelling sources of sound and sound propagation has been proposed as an approach to estimating the acoustic noise map within a region of interest. However, strategies for developing a monitoring network are not well established. In this paper, considerations for designing a network are investigated using a simulated scenario based on the measurement of sound from ships in a shipping lane. Using models for the sources of the sound and for sound propagation, a noise map is calculated and measurements of the noise map by a sensor network within the region of interest are simulated. A compressive sensing algorithm, which exploits the sparsity of the representation of the noise map in terms of the sources, is used to estimate the locations and levels of the sources and thence the entire noise map within the region of interest. It is shown that although the spatial resolution to which the sound sources can be identified is generally limited, estimates of aggregated measures of the noise map can be obtained that are more reliable compared with those provided by other approaches. PMID:27011187
Fuchs, H. V.; Möser, M.
Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.
Hampp, R.; Babbick, M.
Previous microarray studies with cell cultures of Arabidopsis thaliana cv Columbia have shown responses in gene expression which were partly specific to exposure to microgravity sounding rocket experiment TEXUS In order to get access to early responses upon changes in gravitational fields we used exposure times as short as 2 min For this purpose we selected a range of genes which code for different groups of transcription factors WRKY ERF MYB MADS Samples were taken in 5-min clinorotation 2- and 3-dimensional hypergravity 8g and 2-min intervals sounding rocket experiment Amounts of transcripts were determined by quantitative RT PCR Most transcripts showed a significant transient change in content within a time frame of up to 30 min after changing the external gravitational field strength They could be grouped into 1 basic stress responses which occurred under all conditions 2 clinorotation-related effects which were either identical or opposite between 2D 60 rpm 4x10 -2 g and 3D clinorotation random positioning machine and 3 alterations specific to the microgravity exposure under sounding rocket conditions MAXUS The data are discussed in relation to gravitation-dependent signalling chains and with regard to the simulation of microgravity by means of clinorotation Supported by a grant from the Deutsches Zentrum f u r Luft- und Raumfahrt e V grant no 50 WB 0143
Ahuja, K. K.; Tanna, H. K.; Tester, B. J.
1981-01-01
When a free jet (or open jet) is used as a wind tunnel to simulate the effects of flight on model noise sources, it is necessary to calibrate out the effects of the free jet shear layer on the transmitted sound, since the shear layer is absent in the real flight case. In this paper, a theoretical calibration procedure for this purpose is first summarized; following this, the results of an experimental program, designed to test the validity of the various components of the calibration procedure, are described. The experiments are conducted by using a point sound source located at various axial positions within the free jet potential core. By using broadband excitation and cross-correlation methods, the angle changes associated with ray paths across the shear layer are first established. Measurements are then made simultaneously inside and outside the free jet along the proper ray paths to determine the amplitude changes across the shear layer. It is shown that both the angle and amplitude changes can be predicted accurately by theory. It is also found that internal reflection at the shear layer is significant only for large ray angles in the forward quadrant where total internal reflection occurs. Finally, the effects of sound absorption and scattering by the shear layer turbulence are also examined experimentally.
Yang, Guowei; You, Shengzui; Bi, Meihua; Fan, Bing; Lu, Yang; Zhou, Xuefang; Li, Jing; Geng, Hujun; Wang, Tianshu
2017-09-10
Free-space optical (FSO) communication utilizing a modulating retro-reflector (MRR) is an innovative way to convey information between the traditional optical transceiver and the semi-passive MRR unit that reflects optical signals. The reflected signals experience turbulence-induced fading in the double-pass channel, which is very different from that in the traditional single-pass FSO channel. In this paper, we consider the corner cube reflector (CCR) as the retro-reflective device in the MRR. A general geometrical model of the CCR is established based on the ray tracing method to describe the ray trajectory inside the CCR. This ray tracing model could treat the general case that the optical beam is obliquely incident on the hypotenuse surface of the CCR with the dihedral angle error and surface nonflatness. Then, we integrate this general CCR model into the wave-optics (WO) simulation to construct the double-pass beam propagation simulation. This double-pass simulation contains the forward propagation from the transceiver to the MRR through the atmosphere, the retro-reflection of the CCR, and the backward propagation from the MRR to the transceiver, which can be realized by a single-pass WO simulation, the ray tracing CCR model, and another single-pass WO simulation, respectively. To verify the proposed CCR model and double-pass WO simulation, the effective reflection area, the incremental phase, and the reflected beam spot on the transceiver plane of the CCR are analyzed, and the numerical results are in agreement with the previously published results. Finally, we use the double-pass WO simulation to investigate the double-pass channel in the MRR FSO systems. The histograms of the turbulence-induced fading in the forward and backward channels are obtained from the simulation data and are fitted by gamma-gamma (ΓΓ) distributions. As the two opposite channels are highly correlated, we model the double-pass channel fading by the product of two correlated
Musical Sound, Instruments, and Equipment
Photinos, Panos
2017-12-01
'Musical Sound, Instruments, and Equipment' offers a basic understanding of sound, musical instruments and music equipment, geared towards a general audience and non-science majors. The book begins with an introduction of the fundamental properties of sound waves, and the perception of the characteristics of sound. The relation between intensity and loudness, and the relation between frequency and pitch are discussed. The basics of propagation of sound waves, and the interaction of sound waves with objects and structures of various sizes are introduced. Standing waves, harmonics and resonance are explained in simple terms, using graphics that provide a visual understanding. The development is focused on musical instruments and acoustics. The construction of musical scales and the frequency relations are reviewed and applied in the description of musical instruments. The frequency spectrum of selected instruments is explored using freely available sound analysis software. Sound amplification and sound recording, including analog and digital approaches, are discussed in two separate chapters. The book concludes with a chapter on acoustics, the physical factors that affect the quality of the music experience, and practical ways to improve the acoustics at home or small recording studios. A brief technical section is provided at the end of each chapter, where the interested reader can find the relevant physics and sample calculations. These quantitative sections can be skipped without affecting the comprehension of the basic material. Questions are provided to test the reader's understanding of the material. Answers are given in the appendix.
ALBERTO CARLOS DE QUEIROZ PINTO; VICTOR GALÁN SAÚCO; SISIR KUMAR MITRA; FRANCISCO RICARDO FERREIRA
2018-01-01
ABSTRACT This Chapter has the objectives to search, through the review of the available literature, important informations on the evolution of mango propagation regarding theoretical and practical aspects from cellular base of sexual propagation, nursery structures and organizations, substrate compositions and uses, importance of rootstock and scion selections, also it will be described the preparation and transport of the grafts (stem and bud) as well as the main asexual propagation methods...
Maeda, Takuto; Takemura, Shunsuke; Furumura, Takashi
2017-07-01
We have developed an open-source software package, Open-source Seismic Wave Propagation Code (OpenSWPC), for parallel numerical simulations of seismic wave propagation in 3D and 2D (P-SV and SH) viscoelastic media based on the finite difference method in local-to-regional scales. This code is equipped with a frequency-independent attenuation model based on the generalized Zener body and an efficient perfectly matched layer for absorbing boundary condition. A hybrid-style programming using OpenMP and the Message Passing Interface (MPI) is adopted for efficient parallel computation. OpenSWPC has wide applicability for seismological studies and great portability to allowing excellent performance from PC clusters to supercomputers. Without modifying the code, users can conduct seismic wave propagation simulations using their own velocity structure models and the necessary source representations by specifying them in an input parameter file. The code has various modes for different types of velocity structure model input and different source representations such as single force, moment tensor and plane-wave incidence, which can easily be selected via the input parameters. Widely used binary data formats, the Network Common Data Form (NetCDF) and the Seismic Analysis Code (SAC) are adopted for the input of the heterogeneous structure model and the outputs of the simulation results, so users can easily handle the input/output datasets. All codes are written in Fortran 2003 and are available with detailed documents in a public repository.[Figure not available: see fulltext.
Berkhoff, Arthur P.
2008-01-01
A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided
Berkhoff, Arthur P.
2010-01-01
A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided
Berkhoff, Arthur P.
2007-01-01
A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided
Czech Academy of Sciences Publication Activity Database
Kvičera, V.; Grábner, M.; Fišer, Ondřej
2011-01-01
Roč. 2011, - (2011), 435262/1-435262/9 ISSN 1687-1499 R&D Projects: GA ČR GA102/08/0851 Grant - others:GA MŠk(CZ) OC09076 Institutional research plan: CEZ:AV0Z30420517 Keywords : Free space optics * Atmospheric attenuation * Propagation models Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.873, year: 2011 http://downloads.hindawi.com/ journal s/wcn/2011/435262.pdf
P. Mazzanti; F. Bozzano
2009-01-01
Coastal and subaqueous landslides can be very dangerous phenomena since they are characterised by the additional risk of induced tsunamis, unlike their completely-subaerial counterparts. Numerical modelling of landslides propagation is a key step in forecasting the consequences of landslides. In this paper, a novel approach named Equivalent Fluid/Equivalent Medium (EFEM) has been developed. It adapts common numerical models and software that were originally designed for subaerial landslides i...
International Nuclear Information System (INIS)
Ferrand, Adrien; Darmon, Michel; Chatillon, Sylvain; Deschamps, Marc
2014-01-01
The Time of Flight Diffraction (TOFD) technique is a classical ultrasonic method used in ultrasonic non-destructive evaluation, which allows a precise positioning and a quantitative size evaluation of cracks in the inspected material. Among the typical phenomena arising in the current TOFD inspection, the so-called 'head wave' is the first contribution reaching the receiver. The head wave propagation on a planar interface is well known and identified as a critical refraction taking place on the material surface. On irregular surfaces, it has been shown that the head wave results from the melting of surface and bulk waves mechanisms and that surface irregularities are responsible for numerous diffractions of the incident head wave. To simulate such behaviour, a model has been developed using a ray tracing technique based on time of flight minimization (generalized Fermat's principle). It enables the calculation of the ray path and the corresponding time of flight of all waves propagating in the material, including the head wave. To obtain a complete propagation model for these waves (both trajectory and amplitude), the integration of Geometrical Theory of Diffraction (GTD) models is currently performed by coupling them with the ray-based approach discussed above.
Ferrand, Adrien; Darmon, Michel; Chatillon, Sylvain; Deschamps, Marc
2014-04-01
The Time of Flight Diffraction (TOFD) technique is a classical ultrasonic method used in ultrasonic non-destructive evaluation, which allows a precise positioning and a quantitative size evaluation of cracks in the inspected material. Among the typical phenomena arising in the current TOFD inspection, the so-called "head wave" is the first contribution reaching the receiver. The head wave propagation on a planar interface is well known and identified as a critical refraction taking place on the material surface. On irregular surfaces, it has been shown that the head wave results from the melting of surface and bulk waves mechanisms and that surface irregularities are responsible for numerous diffractions of the incident head wave. To simulate such behaviour, a model has been developed using a ray tracing technique based on time of flight minimization (generalized Fermat's principle). It enables the calculation of the ray path and the corresponding time of flight of all waves propagating in the material, including the head wave. To obtain a complete propagation model for these waves (both trajectory and amplitude), the integration of Geometrical Theory of Diffraction (GTD) models is currently performed by coupling them with the ray-based approach discussed above.
Assessing and optimizing infra-sound networks to monitor volcanic eruptions
International Nuclear Information System (INIS)
Tailpied, Dorianne
2016-01-01
Understanding infra-sound signals is essential to monitor compliance with the Comprehensive Nuclear-Test ban Treaty, and also to demonstrate the potential of the global monitoring infra-sound network for civil and scientific applications. The main objective of this thesis is to develop a robust tool to estimate and optimize the performance of any infra-sound network to monitor explosive sources such as volcanic eruptions. Unlike previous studies, the developed method has the advantage to consider realistic atmospheric specifications along the propagation path, source frequency and noise levels at the stations. It allows to predict the attenuation and the minimum detectable source amplitude. By simulating the performances of any infra-sound networks, it is then possible to define the optimal configuration of the network to monitor a specific region, during a given period. When carefully adding a station to the existing network, performance can be improved by a factor of 2. However, it is not always possible to complete the network. A good knowledge of detection capabilities at large distances is thus essential. To provide a more realistic picture of the performance, we integrate the atmospheric longitudinal variability along the infra-sound propagation path in our simulations. This thesis also contributes in providing a confidence index taking into account the uncertainties related to propagation and atmospheric models. At high frequencies, the error can reach 40 dB. Volcanic eruptions are natural, powerful and valuable calibrating sources of infra-sound, worldwide detected. In this study, the well instrumented volcanoes Yasur, in Vanuatu, and Etna, in Italy, offer a unique opportunity to validate our attenuation model. In particular, accurate comparisons between near-field recordings and far-field detections of these volcanoes have helped to highlight the potential of our simulation tool to remotely monitor volcanoes. Such work could significantly help to prevent
Numerical Analysis of Indoor Sound Quality Evaluation Using Finite Element Method
Directory of Open Access Journals (Sweden)
Yu-Tuan Chou
2013-01-01
Full Text Available Indoors sound field distribution is important to Room Acoustics, but the field suffers numerous problems, for example, multipath propagation and scattering owing to sound absorption by furniture and other aspects of décor. Generally, an ideal interior space must have a sound field with clear quality. This provides both the speaker and the listener with a pleasant conversational environment. This investigation uses the Finite Element Method to assess the acoustic distribution based on the indoor space and chamber volume. In this situation, a fixed sound source at different frequencies is used to simulate the acoustic characteristics of the indoor space. This method considers the furniture and decoration sound absorbing material and thus different sound absorption coefficients and configurations. The preliminary numerical simulation provides a method that can forecast the distribution of sound in an indoor room in complex situations. Consequently, it is possible to arrange interior furnishings and appliances to optimize acoustic distribution and environmental friendliness. Additionally, the analytical results can also be used to calculate the Reverberation Time and speech intelligibility for specified indoor space.
Reddy, A.; Sonwalkar, V. S.; Huba, J. D.
2018-02-01
Knowledge of field-aligned electron and ion distributions is necessary for understanding the physical processes causing variations in field-aligned electron and ion densities. Using whistler mode sounding by Radio Plasma Imager/Imager for Magnetopause-to-Aurora Global Exploration (RPI/IMAGE), we determined the evolution of dayside electron and ion densities along L ˜ 2 and L ˜ 3 (90-4,000 km) during a 7 day (21-27 November 2005) geomagnetically quiet to moderately active period. Over this period the O+/H+ transition height was ˜880 ± 60 km and ˜1000 ± 100 km, respectively, at L ˜ 2 and L ˜ 3. The electron density varied in a complex manner; it was different at L ˜ 2 and L ˜ 3 and below and above the O+/H+ transition height. The measured electron and ion densities are consistent with those from Challenging Minisatellite Payload (CHAMP) and Defense Meteorological Satellite Program (DMSP) and other past measurements, but they deviated from bottomside sounding and International Reference Ionosphere (IRI) 2012 empirical model results. Using SAMI2 (Naval Research Laboratory (NRL) ionosphere model) with reasonably adjusted values of inputs (neutral densities, winds, electric fields, and photoelectron heating), we simulated the evolution of O+/H+ transition height and field-aligned electron and ion densities so that a fair agreement was obtained between the simulation results and observations. Simulation studies indicated that reduced neutral densities (H and/or O) with time limited O+-H charge exchange process. This reduction in neutral densities combined with changes in neutral winds and plasma temperature led to the observed variations in the electron and ion densities. The observation/simulation method presented here can be extended to investigate the role of neutral densities and composition, disturbed winds, and prompt penetration electric fields in the storm time ionosphere/plasmasphere dynamics.
The Development of a Finite Volume Method for Modeling Sound in Coastal Ocean Environment
Energy Technology Data Exchange (ETDEWEB)
Long, Wen; Yang, Zhaoqing; Copping, Andrea E.; Jung, Ki Won; Deng, Zhiqun
2015-10-28
: As the rapid growth of marine renewable energy and off-shore wind energy, there have been concerns that the noises generated from construction and operation of the devices may interfere marine animals’ communication. In this research, a underwater sound model is developed to simulate sound prorogation generated by marine-hydrokinetic energy (MHK) devices or offshore wind (OSW) energy platforms. Finite volume and finite difference methods are developed to solve the 3D Helmholtz equation of sound propagation in the coastal environment. For finite volume method, the grid system consists of triangular grids in horizontal plane and sigma-layers in vertical dimension. A 3D sparse matrix solver with complex coefficients is formed for solving the resulting acoustic pressure field. The Complex Shifted Laplacian Preconditioner (CSLP) method is applied to efficiently solve the matrix system iteratively with MPI parallelization using a high performance cluster. The sound model is then coupled with the Finite Volume Community Ocean Model (FVCOM) for simulating sound propagation generated by human activities in a range-dependent setting, such as offshore wind energy platform constructions and tidal stream turbines. As a proof of concept, initial validation of the finite difference solver is presented for two coastal wedge problems. Validation of finite volume method will be reported separately.
DEFF Research Database (Denmark)
Møller, Martin Bo; Olsen, Martin
2017-01-01
Sound zones, i.e. spatially confined regions of individual audio content, can be created by appropriate filtering of the desired audio signals reproduced by an array of loudspeakers. The challenge of designing filters for sound zones is twofold: First, the filtered responses should generate...... an acoustic separation between the control regions. Secondly, the pre- and post-ringing as well as spectral deterioration introduced by the filters should be minimized. The tradeoff between acoustic separation and filter ringing is the focus of this paper. A weighted L2-norm penalty is introduced in the sound...
Chin, Siu A.
2014-03-01
The sign-problem in PIMC simulations of non-relativistic fermions increases in serverity with the number of fermions and the number of beads (or time-slices) of the simulation. A large of number of beads is usually needed, because the conventional primitive propagator is only second-order and the usual thermodynamic energy-estimator converges very slowly from below with the total imaginary time. The Hamiltonian energy-estimator, while more complicated to evaluate, is a variational upper-bound and converges much faster with the total imaginary time, thereby requiring fewer beads. This work shows that when the Hamiltonian estimator is used in conjunction with fourth-order propagators with optimizable parameters, the ground state energies of 2D parabolic quantum-dots with approximately 10 completely polarized electrons can be obtain with ONLY 3-5 beads, before the onset of severe sign problems. This work was made possible by NPRP GRANT #5-674-1-114 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the author.
Photoacoustic Sounds from Meteors.
Energy Technology Data Exchange (ETDEWEB)
Spalding, Richard E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tencer, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sweatt, William C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hogan, Roy E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Spurny, Pavel [Academy of Sciences of the Czech Republic (ASCR), Prague (Czech Republic)
2015-03-01
High-speed photometric observations of meteor fireballs have shown that they often produce high-amplitude light oscillations with frequency components in the kHz range, and in some cases exhibit strong millisecond flares. We built a light source with similar characteristics and illuminated various materials in the laboratory, generating audible sounds. Models suggest that light oscillations and pulses can radiatively heat dielectric materials, which in turn conductively heats the surrounding air on millisecond timescales. The sound waves can be heard if the illuminated material is sufficiently close to the observer’s ears. The mechanism described herein may explain many reports of meteors that appear to be audible while they are concurrently visible in the sky and too far away for sound to have propagated to the observer. This photoacoustic (PA) explanation provides an alternative to electrophonic (EP) sounds hypothesized to arise from electromagnetic coupling of plasma oscillation in the meteor wake to natural antennas in the vicinity of an observer.
Nguyen, Vu-Hieu; Naili, Salah
2012-08-01
This paper deals with the modeling of guided waves propagation in in vivo cortical long bone, which is known to be anisotropic medium with functionally graded porosity. The bone is modeled as an anisotropic poroelastic material by using Biot's theory formulated in high frequency domain. A hybrid spectral/finite element formulation has been developed to find the time-domain solution of ultrasonic waves propagating in a poroelastic plate immersed in two fluid halfspaces. The numerical technique is based on a combined Laplace-Fourier transform, which allows to obtain a reduced dimension problem in the frequency-wavenumber domain. In the spectral domain, as radiation conditions representing infinite fluid halfspaces may be exactly introduced, only the heterogeneous solid layer needs to be analyzed by using finite element method. Several numerical tests are presented showing very good performance of the proposed procedure. A preliminary study on the first arrived signal velocities computed by using equivalent elastic and poroelastic models will be presented. Copyright © 2012 John Wiley & Sons, Ltd.
DEFF Research Database (Denmark)
Crocker, Malcolm J.; Jacobsen, Finn
1998-01-01
This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....
DEFF Research Database (Denmark)
Crocker, M.J.; Jacobsen, Finn
1997-01-01
This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....
Directory of Open Access Journals (Sweden)
Louena Shtrepi
2017-02-01
Full Text Available Simulations of the acoustic effects that diffusive surfaces have on the objective acoustic parameters and on sound perception have not yet been fully understood. To this end, acoustic simulations have been performed in Odeon in the model of a variable-acoustic concert hall. This paper is presented as a follow-up study to a previous paper that dealt with in-field measurements only. As in measurements, a diffusive and a reflective condition of one of the lateral walls have been considered in the room models. Two modeling alternatives of the diffusive condition, that is, (a a flat surface with high scattering coefficient applied; and (b a triangular relief modeled including edge diffraction, have been investigated. Objective acoustic parameters, such as early decay time (EDT, reverberation time (T30, clarity (C80, definition (D50, and interaural cross correlation (IACC, have been compared between the two conditions. Moreover, an auditory experiment has been performed to determine the maximum distance from a diffusive surface at which the simulated acoustic scattering effects are still audible. Although the simulated objective results showed a good match with measured values, the subjective results showed that the differences between the diffuse and reflective conditions become significant when model (b is used.
Directory of Open Access Journals (Sweden)
ALBERTO CARLOS DE QUEIROZ PINTO
2018-03-01
Full Text Available ABSTRACT This Chapter has the objectives to search, through the review of the available literature, important informations on the evolution of mango propagation regarding theoretical and practical aspects from cellular base of sexual propagation, nursery structures and organizations, substrate compositions and uses, importance of rootstock and scion selections, also it will be described the preparation and transport of the grafts (stem and bud as well as the main asexual propagation methods their uses and practices. Finally, pattern and quality of graft mangos and their commercialization aspects will be discussed in this Chapter.
A novel method for direct localized sound speed measurement using the virtual source paradigm
DEFF Research Database (Denmark)
Byram, Brett; Trahey, Gregg E.; Jensen, Jørgen Arendt
2007-01-01
) mediums. The inhomogeneous mediums were arranged as an oil layer, one 6 mm thick and the other 11 mm thick, on top of a water layer. To complement the phantom studies, sources of error for spatial registration of virtual detectors were simulated. The sources of error presented here are multiple sound...... registered virtual detector. Between a pair of registered virtual detectors a spherical wave is propagated. By beamforming the received data the time of flight between the two virtual sources can be calculated. From this information the local sound speed can be estimated. Validation of the estimator used...... both phantom and simulation results. The phantom consisted of two wire targets located near the transducer's axis at depths of 17 and 28 mm. Using this phantom the sound speed between the wires was measured for a homogeneous (water) medium and for two inhomogeneous (DB-grade castor oil and water...
On the absorption of a sound in helium 2
International Nuclear Information System (INIS)
Matveev, Yu.A.
1977-01-01
A theory is developed which describes the propagation of high frequency sound in helium 2 at low temperatures (T 15 atm.) pressures when the phonon energy spectrum becomes stable. The absorption and sound dispersion coefficients under these conditions are calculated. The dependence of the velocity of second sound on frequency is determined. The resonance properties of the solution obtained are discussed
International Nuclear Information System (INIS)
Okano, Yasushi; Yamano, Hidemasa
2016-01-01
A new method has been developed to assess potential challenges by forest fire smoke on a cooling function of a decay heat removal system (DHRS) of a sodium-cooled fast reactor. Combinational numerical simulations of a forest fire propagation and a smoke transport were performed to evaluate a cumulative amount of smoke captured on air filters of the DHRS. The forest fire propagation simulations were performed using FARSITE code to evaluate a temporal increase of a forest fire spread area, a frontal fireline location, reaction intensity, and fireline intensity. Peripheral boundary of the forest fire spread area is shaped like an ellipse on the terrain, and the active forest fire area from which smoke is produced as a forest fire product is increased with forest fire spread. The smoke transport simulations were performed using ALOFT-FT code where a spatial distribution of smoke density, especially of particle matter (PM), is evaluated. The snapshot (i.e. at a certain time step) outputs by FARSITE on the reaction intensity and the fireline intensity were utilized as the input data for ALOFT-FT, while it was conservatively assumed that the smoke generated from the active forest fire area along the periphery boundary rises up from the frontal fireline location nearest to a nuclear power plant (NPP) and that prevailing wind transports all smoke to an NPP in the leeward side. The evaluated time-dependent changes of spatial PM density were utilized to calculate a cumulative amount of PM captured on the air filters of the DHRS. Sensitivity analysis was performed on prevailing wind speed to which both the fireline intensity and the smoke transport behavior are sensitive. The total amount of PM on the air filters was conservatively estimated around several hundred grams per m 2 which is well below the utilization limit. (author)
Al-Jabr, Ahmad Ali; Alsunaidi, Mohammad A.; Ooi, Boon S.
2013-01-01
This paper presents methods of simulating gain media in the finite difference time-domain (FDTD) algorithm utilizing a generalized polarization formulation. The gain can be static or dynamic. For static gain, Lorentzian and non-Lorentzian models are presented and tested. For the dynamic gain, rate equations for two-level and four-level models are incorporated in the FDTD scheme. The simulation results conform with the expected behavior of wave amplification and dynamic population inversion.
DEFF Research Database (Denmark)
Zanotto, Damiano; Turchet, Luca; Boggs, Emily Marie
2014-01-01
This paper introduces the design of SoleSound, a wearable system designed to deliver ecological, audio-tactile, underfoot feedback. The device, which primarily targets clinical applications, uses an audio-tactile footstep synthesis engine informed by the readings of pressure and inertial sensors...... embedded in the footwear to integrate enhanced feedback modalities into the authors' previously developed instrumented footwear. The synthesis models currently implemented in the SoleSound simulate different ground surface interactions. Unlike similar devices, the system presented here is fully portable...
The first-to-zero-sound transition in non-superfluid liquid 4He
International Nuclear Information System (INIS)
Woods, A.D.B.; Svensson, E.C.; Martel, P.
1976-01-01
Neutron inelastic scattering from 4 He at T=2.3 K shows that for Q -1 'sound-wave' excitations propagate with the characteristics of ordinary or first sound while for Q > approximately 3nm -1 they propagate with the characteristics of zero sound. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Canneviere, K.
2003-12-15
This work is devoted to the study of the propagation and the structure of two-phases turbulent flames. To this end, Direct Numerical Simulations (DNS) are used. First, numerical systems for two-phases flow simulations is presented along with a specific chemical model. Then, a study of laminar spray flames is carried out. An analytical study related to the dynamics of evaporation of droplets is first proposed where the influence on the equivalence ratio of the ratio between the heating delay of the droplet and the evaporation delay is detailed. The simulation of a propagating flame through a cloud of droplets is carried out and a pulsating behavior is highlighted. A study of these flames according to the topology of liquid fuel enabled us to characterize a double flame structure composed of a premixed flame and a diffusion flame. Our last study is devoted to spray turbulent flames. Two-phase combustion of turbulent jets has been simulated. By varying the spray injection parameters (density, equivalence ratio), a database has been generated. This database allowed us to describe local and global flame regimes appearing in the combustion of sprays. They have been categorized in four main structures: open and closed external regime, group combustion and mixed combustion. Eventually, a combustion diagram has been developed. It involves the spray vaporization time, the mean inter-space between droplets or group of droplets and eventually the injected equivalence ratio. (author)
Canestrari, N.; Bisogni, V.; Walter, A.; Zhu, Y.; Dvorak, J.; Vescovo, E.; Chubar, O.
2014-09-01
A "source-to-sample" wavefront propagation analysis of the Electron Spectro-Microscopy (ESM) UV / soft X-ray beamline, which is under construction at the National Synchrotron Light Source II (NSLS-II) in the Brookhaven National Laboratory, has been conducted. All elements of the beamline - insertion device, mirrors, variable-line-spacing gratings and slits - are included in the simulations. Radiation intensity distributions at the sample position are displayed for representative photon energies in the UV range (20 - 100 eV) where diffraction effects are strong. The finite acceptance of the refocusing mirrors is the dominating factor limiting the spatial resolution at the sample (by ~3 μm at 20 eV). Absolute estimates of the radiation flux and energy resolution at the sample are also obtained from the electromagnetic calculations. The analysis of the propagated UV range undulator radiation at different deflection parameter values demonstrates that within the beamline angular acceptance a slightly "red-shifted" radiation provides higher flux at the sample and better energy resolution compared to the on-axis resonant radiation of the fundamental harmonic.
Sound Clocks and Sonic Relativity
Todd, Scott L.; Menicucci, Nicolas C.
2017-10-01
Sound propagation within certain non-relativistic condensed matter models obeys a relativistic wave equation despite such systems admitting entirely non-relativistic descriptions. A natural question that arises upon consideration of this is, "do devices exist that will experience the relativity in these systems?" We describe a thought experiment in which `acoustic observers' possess devices called sound clocks that can be connected to form chains. Careful investigation shows that appropriately constructed chains of stationary and moving sound clocks are perceived by observers on the other chain as undergoing the relativistic phenomena of length contraction and time dilation by the Lorentz factor, γ , with c the speed of sound. Sound clocks within moving chains actually tick less frequently than stationary ones and must be separated by a shorter distance than when stationary to satisfy simultaneity conditions. Stationary sound clocks appear to be length contracted and time dilated to moving observers due to their misunderstanding of their own state of motion with respect to the laboratory. Observers restricted to using sound clocks describe a universe kinematically consistent with the theory of special relativity, despite the preferred frame of their universe in the laboratory. Such devices show promise in further probing analogue relativity models, for example in investigating phenomena that require careful consideration of the proper time elapsed for observers.
DEFF Research Database (Denmark)
Explorations and analysis of soundscapes have, since Canadian R. Murray Schafer's work during the early 1970's, developed into various established research - and artistic disciplines. The interest in sonic environments is today present within a broad range of contemporary art projects and in arch......Explorations and analysis of soundscapes have, since Canadian R. Murray Schafer's work during the early 1970's, developed into various established research - and artistic disciplines. The interest in sonic environments is today present within a broad range of contemporary art projects...... and in architectural design. Aesthetics, psychoacoustics, perception, and cognition are all present in this expanding field embracing such categories as soundscape composition, sound art, sonic art, sound design, sound studies and auditory culture. Of greatest significance to the overall field is the investigation...
Vorlander, Michael
2007-01-01
"Auralization" is the technique of creation and reproduction of sound on the basis of computer data. With this tool is it possible to predict the character of sound signals which are generated at the source and modified by reinforcement, propagation and transmission in systems such as rooms, buildings, vehicles or other technical devices. This book is organized as a comprehensive collection of the basics of sound and vibration, acoustic modelling, simulation, signal processing and audio reproduction. Implementations of the auralization technique are described using examples drawn from various fields in acoustic’s research and engineering, architecture, sound design and virtual reality.
DEFF Research Database (Denmark)
Mortensen, Peder Duelund; Hornyanszky, Elisabeth Dalholm; Larsen, Jacob Norvig
2013-01-01
Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice......Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice...
DEFF Research Database (Denmark)
Santillan, Arturo Orozco
2013-01-01
, and the complete equations of conservation of mass and conservation of momentum were used together with the state equation for and adiabatic process in and ideal gas. Thermal effects were neglected to simplify the problem. The obtained numerical results illustrate the applicability of the method. The simulations...
Churchfield, Matthew J; Li, Ye; Moriarty, Patrick J
2013-02-28
This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally periodic precursor simulation is performed to create turbulent flow data. Then those data are used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modelled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. We found that staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement. For example, using a larger precursor domain would better capture elongated turbulent structures, and including salinity and temperature equations would account for density stratification and its effect on turbulence. Additionally, the wall shear stress modelling could be improved, and more array configurations could be examined.
Alastruey, Jordi; Khir, Ashraf W; Matthys, Koen S; Segers, Patrick; Sherwin, Spencer J; Verdonck, Pascal R; Parker, Kim H; Peiró, Joaquim
2011-08-11
The accuracy of the nonlinear one-dimensional (1-D) equations of pressure and flow wave propagation in Voigt-type visco-elastic arteries was tested against measurements in a well-defined experimental 1:1 replica of the 37 largest conduit arteries in the human systemic circulation. The parameters required by the numerical algorithm were directly measured in the in vitro setup and no data fitting was involved. The inclusion of wall visco-elasticity in the numerical model reduced the underdamped high-frequency oscillations obtained using a purely elastic tube law, especially in peripheral vessels, which was previously reported in this paper [Matthys et al., 2007. Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements. J. Biomech. 40, 3476-3486]. In comparison to the purely elastic model, visco-elasticity significantly reduced the average relative root-mean-square errors between numerical and experimental waveforms over the 70 locations measured in the in vitro model: from 3.0% to 2.5% (p<0.012) for pressure and from 15.7% to 10.8% (p<0.002) for the flow rate. In the frequency domain, average relative errors between numerical and experimental amplitudes from the 5th to the 20th harmonic decreased from 0.7% to 0.5% (p<0.107) for pressure and from 7.0% to 3.3% (p<10(-6)) for the flow rate. These results provide additional support for the use of 1-D reduced modelling to accurately simulate clinically relevant problems at a reasonable computational cost. Copyright © 2011 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Mortensen, Peder Duelund; Hornyanszky, Elisabeth Dalholm; Larsen, Jacob Norvig
2013-01-01
Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 6. Second Sound - The Role of Elastic Waves. R Srinivasan. General Article Volume 4 Issue 6 June 1999 pp 15-19. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/004/06/0015-0019 ...
International Nuclear Information System (INIS)
Dieckmann, M.E.
1999-01-01
In this work the emission of high amplitude wave packets into a plasma is examined. The plasma is modelled by an 1 1/2D electromagnetic and relativistic particle in cell code. The antenna is modelled by applying forced electrostatic field oscillations to a subset of the simulation grid cells. The emitted wave packets are followed in space and time. It is investigated how the wave packets are affected by instabilities. The detected instabilities affecting ECH waves have been identified as wave decay, nonlinear damping due to trapping and modulational instabilities. These instabilities have been discussed with hindsight to the plasma sounding experiment. A plasma sounder is an experiment emitting short wave packets into the ambient plasma and then it listens to the response. The assumption that the emitted waves are linear waves then allows to determine the plasma magnetic field strength, the electron density and possibly the electron thermal velocity from the response spectrum. The impact of the non-linear instabilities on the plasma wave response spectrum provided by a sounder have been predicted in this work and the predictions have been shown to match a wide range of experimental observations. A dependence of the instabilities on the simulation noise levels, for example the dependence of the wave interaction time in a wave decay on the noise electric field amplitudes, required it to investigate the simulation noise properties (spectral distribution) and to compare it to real plasma thermal noise. It has also been examined how a finite length antenna would filter the simulation noise. (author)
Improvement of methods for calculation of sound insulation in buildings
Mašović, Draško B.
2015-01-01
The main object of this work are the methods for calculation of sound insulation based on the classical model of sound propagation in buildings and single-number rating of sound insulation. The aim of the work is inspection of the possibilities for improvement of standard methods for quantification and calculation of sound insulation, in order to achieve higher accuracy of the obtained numerical values and their correlation with subjective impression of the acoustic comfort in buildings. Proc...
Lehnert, H.; Blauert, Jens; Pompetzki, W.
1991-01-01
In every-day listening the auditory event perceived by a listener is determined not only by the sound signal that a sound emits but also by a variety of environmental parameters. These parameters are the position, orientation and directional characteristics of the sound source, the listener's position and orientation, the geometrical and acoustical properties of surfaces which affect the sound field and the sound propagation properties of the surrounding fluid. A complete set of these parameters can be called an Acoustic Environment. If the auditory event perceived by a listener is manipulated in such a way that the listener is shifted acoustically into a different acoustic environment without moving himself physically, a Virtual Acoustic Environment has been created. Here, we deal with a special technique to set up nearly arbitrary Virtual Acoustic Environments, the Binaural Room Simulation. The purpose of the Binaural Room Simulation is to compute the binaural impulse response related to a virtual acoustic environment taking into account all parameters mentioned above. One possible way to describe a Virtual Acoustic Environment is the concept of the virtual sound sources. Each of the virtual sources emits a certain signal which is correlated but not necessarily identical with the signal emitted by the direct sound source. If source and receiver are non moving, the acoustic environment becomes a linear time-invariant system. Then, the Binaural Impulse Response from the source to a listener' s eardrums contains all relevant auditory information related to the Virtual Acoustic Environment. Listening into the simulated environment can easily be achieved by convolving the Binaural Impulse Response with dry signals and representing the results via headphones.
Lee, Monghyeon; Chun, Yongwan; Griffith, Daniel A
2018-04-01
Lead poisoning produces serious health problems, which are worse when a victim is younger. The US government and society have tried to prevent lead poisoning, especially since the 1970s; however, lead exposure remains prevalent. Lead poisoning analyses frequently use georeferenced blood lead level data. Like other types of data, these spatial data may contain uncertainties, such as location and attribute measurement errors, which can propagate to analysis results. For this paper, simulation experiments are employed to investigate how selected uncertainties impact regression analyses of blood lead level data in Syracuse, New York. In these simulations, location error and attribute measurement error, as well as a combination of these two errors, are embedded into the original data, and then these data are aggregated into census block group and census tract polygons. These aggregated data are analyzed with regression techniques, and comparisons are reported between the regression coefficients and their standard errors for the error added simulation results and the original results. To account for spatial autocorrelation, the eigenvector spatial filtering method and spatial autoregressive specifications are utilized with linear and generalized linear models. Our findings confirm that location error has more of an impact on the differences than does attribute measurement error, and show that the combined error leads to the greatest deviations. Location error simulation results show that smaller administrative units experience more of a location error impact, and, interestingly, coefficients and standard errors deviate more from their true values for a variable with a low level of spatial autocorrelation. These results imply that uncertainty, especially location error, has a considerable impact on the reliability of spatial analysis results for public health data, and that the level of spatial autocorrelation in a variable also has an impact on modeling results.
Qiao, Shan; Jackson, Edward; Coussios, Constantin C; Cleveland, Robin O
2016-09-01
Nonlinear acoustics plays an important role in both diagnostic and therapeutic applications of biomedical ultrasound and a number of research and commercial software packages are available. In this manuscript, predictions of two solvers available in a commercial software package, pzflex, one using the finite-element-method (FEM) and the other a pseudo-spectral method, spectralflex, are compared with measurements and the Khokhlov-Zabolotskaya-Kuznetsov (KZK) Texas code (a finite-difference time-domain algorithm). The pzflex methods solve the continuity equation, momentum equation and equation of state where they account for nonlinearity to second order whereas the KZK code solves a nonlinear wave equation with a paraxial approximation for diffraction. Measurements of the field from a single element 3.3 MHz focused transducer were compared with the simulations and there was good agreement for the fundamental frequency and the harmonics; however the FEM pzflex solver incurred a high computational cost to achieve equivalent accuracy. In addition, pzflex results exhibited non-physical oscillations in the spatial distribution of harmonics when the amplitudes were relatively low. It was found that spectralflex was able to accurately capture the nonlinear fields at reasonable computational cost. These results emphasize the need to benchmark nonlinear simulations before using codes as predictive tools.
PREFACE: Aerodynamic sound Aerodynamic sound
Akishita, Sadao
2010-02-01
The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the
International Nuclear Information System (INIS)
Berne, A.
2001-01-01
Quantitative determinations of many radioactive analytes in environmental samples are based on a process in which several independent measurements of different properties are taken. The final results that are calculated using the data have to be evaluated for accuracy and precision. The estimate of the standard deviation, s, also called the combined standard uncertainty (CSU) associated with the result of this combined measurement can be used to evaluate the precision of the result. The CSU can be calculated by applying the law of propagation of uncertainty, which is based on the Taylor series expansion of the equation used to calculate the analytical result. The estimate of s can also be obtained from a Monte Carlo simulation. The data used in this simulation includes the values resulting from the individual measurements, the estimate of the variance of each value, including the type of distribution, and the equation used to calculate the analytical result. A comparison is made between these two methods of estimating the uncertainty of the calculated result. (author)
Energy Technology Data Exchange (ETDEWEB)
Rongere, F X; Gibault, J
1994-05-01
Electricite de France, wishing to limit the accidental unavailability of its nuclear plants and to ensure their safety rigorously takes particular care to reduce the risk of fire. In this context, the Heat Transfer and Aerodynamics Branch of the Research and Development Division has been in charge of the design of numerical tools to simulate the fire propagation in buildings since 1985. Its program is articulated towards three axes which include : the development of the MAGIC software program, the characterization of the combustibles present in power plants, the development of methods for the use of the computer codes in the design of plants. This paper gives on overview of the activity in progress in this research fields. It illustrates also the applications performed and anticipated at Electricite de France of the numerical simulation in fire safety design. We discuss at the end of it the limitations and the development factors of these tool use. One of the later is the association of MAGIC software and the FIVE method. (authors). 15 refs., 10 figs., 2 tabs.
Dolenc, Peter
2013-01-01
This thesis contains a description of a construction of subwoofer case that has an extra functionality of being able to produce special visual effects and display visualizations that match the currently playing sound. For this reason, multiple lighting elements made out of LED (Light Emitting Diode) diodes were installed onto the subwoofer case. The lighting elements are controlled by dedicated software that was also developed. The software runs on STM32F4-Discovery evaluation board inside a ...
Song, Sung-Jin; Kim, Chang-Hwan
2002-05-01
Phased array transducers are quite often mounted on solid wedges with specific angles in many practical ultrasonic inspections of thin plates phased array techniques with testing set-up, it is essential to have thorough understanding on the characteristics of radiation beam pattern produced in the interrogated medium. To address such a need, this paper proposes a systematic way to calculate full 3-D radiation beam patterns produced in the interrogated solid medium by phased array transducers mounted on a solid wedge. In order to investigate the characteristics of radiation beam patterns in steel, simulation is carried out for 7.5 MHz array transducers mounted on an acrylic wedge with the angle of 15.45 degrees with various of steering angles and/or focal planes.
Pflugbeil, Thomas; Pöschke, Franziska; Noffke, Anna; Winde, Vera; Wolf, Thomas
2017-04-01
Lake Constance is one of most important drinking water resources in southern Germany. Furthermore, the lake and its catchment is a meaningful natural habitat as well as economical and cultural area. In this context, sustainable development and conservation of the lake ecosystem and drinking water quality is of high importance. However, anthropogenic pressures (e.g. waste water, land use, industry in catchment area) on the lake itself and its external inflows are high. The project "SeeZeichen" (ReWaM-project cluster by BMBF, funding number 02WRM1365) is investigating different immission pathways (groundwater, river, superficial inputs) and their impact on the water quality of Lake Constance. The investigation includes the direct inflow areas as well as the lake-wide context. The present simulation study investigates the mixing dynamics of Lake Constance and its impacts on river inflows and vice versa. It considers different seasonal (mixing and stratification periods), hydrological (flood events, average and low discharge) and transport conditions (sediment loads). The simulations are focused on two rivers: The River Alpenrhein delivers about 60 % of water and material input into Lake Constance. The River Schussen was chosen since it is highly anthropogenic influenced. For this purpose, a high-resolution three-dimensional hydrodynamic model of the Lake Constance is set up with Delft3D-Flow model system. The model is calibrated and validated with long term data sets of water levels, discharges and temperatures. The model results will be analysed for residence times of river water within the lake and particle distributions to evaluate potential impacts of river plume water constituents on the general water quality of the lake.
International Nuclear Information System (INIS)
Radicke, Marcus
2009-01-01
The method presented in this thesis combines ultrasound techniques with the magnetic-resonance tomography (MRT). An ultrasonic wave generates in absorbing media a static force in sound-propagation direction. The force leads at sound intensities of some W/cm 2 and a sound frequency in the lower MHz range to a tissue shift in the micrometer range. This tissue shift depends on the sound power, the sound frequency, the sound absorption, and the elastic properties of the tissue. A MRT sequence of the Siemens Healthcare AG was modified so that it measures (indirectly) the tissue shift, codes as grey values, and presents as 2D picture. By means of the grey values the sound-beam slope in the tissue can be visualized, and so additionally sound obstacles (changes of the sound impedance) can be detected. By the MRT images token up spatial changes of the tissue parameters sound absorption and elasticity can be detected. In this thesis measurements are presented, which show the feasibility and future chances of this method especially for the mammary-cancer diagnostics. [de
Poppe, Christian; Dörr, Dominik; Henning, Frank; Kärger, Luise
2018-05-01
Wet compression moulding (WCM) provides large-scale production potential for continuously fiber reinforced components as a promising alternative to resin transfer moulding (RTM). Lower cycle times are possible due to parallelization of the process steps draping, infiltration and curing during moulding (viscous draping). Experimental and theoretical investigations indicate a strong mutual dependency between the physical mechanisms, which occur during draping and mould filling (fluid-structure-interaction). Thus, key process parameters, like fiber orientation, fiber volume fraction, cavity pressure and the amount and viscosity of the resin are physically coupled. To enable time and cost efficient product and process development throughout all design stages, accurate process simulation tools are desirable. Separated draping and mould filling simulation models, as appropriate for the sequential RTM-process, cannot be applied for the WCM process due to the above outlined physical couplings. Within this study, a two-dimensional Darcy-Propagation-Element (DPE-2D) based on a finite element formulation with additional control volumes (FE/CV) is presented, verified and applied to forming simulation of a generic geometry, as a first step towards a fluid-structure-interaction model taking into account simultaneous resin infiltration and draping. The model is implemented in the commercial FE-Solver Abaqus by means of several user subroutines considering simultaneous draping and 2D-infiltration mechanisms. Darcy's equation is solved with respect to a local fiber orientation. Furthermore, the material model can access the local fluid domain properties to update the mechanical forming material parameter, which enables further investigations on the coupled physical mechanisms.
Passone,Luca
2011-08-01
Ground motion estimation and subsurface exploration are main research areas in computational seismology, they are fundamental for implementing earthquake engineering requirements and for modern subsurface reservoir assessment. In this study we propose a workflow for discretizing, simulating and visualizing near source ground motion due to earthquake rupture. For data generation we use an elastic wave equation solver called SeisSol based on the Discontinuous Galerkin formulation with Arbitrary high-order DERivatives (ADER-DG). SeisSol is capable of highly accurate treatment of any earthquake source characterization, occurring on geometrically complex fault systems embedded in geologically complicated earth structures. We then visualize the results with two tools: VisIt (“a free interactive parallel visualization and graphical analysis tool for viewing scientific data”) and Avizo (“The 3D Analysis Software for Scientific and Industrial data”). We investigate each approach, include our experiences from model generation to visualization in highly immersive environments and conclude with a set of general recommendations for earthquake visualization.
Ye, W; Bel-Brunon, A; Catheline, S; Combescure, A; Rochette, M
2018-01-01
In this study, visco-hyperelastic Landau's model, which is widely used in acoustical physic field, is introduced into a finite element formulation. It is designed to model the nonlinear behaviour of finite amplitude shear waves in soft solids, typically, in biological tissues. This law is used in finite element models based on elastography, experiments reported in Jacob et al, the simulations results show a good agreement with the experimental study: It is observed in both that a plane shear wave generates only odd harmonics and a nonplane wave generates both odd and even harmonics in the spectral domain. In the second part, a parametric study is performed to analyse the influence of different factors on the generation of odd harmonics of plane wave. A quantitative relation is fitted between the odd harmonic amplitudes and the non-linear elastic parameter of Landau's model, which provides a practical guideline to identify the non-linearity of homogeneous tissues using elastography experiment. Copyright © 2017 John Wiley & Sons, Ltd.
Wave propagation in a magnetically structured atmosphere. Pt. 2
International Nuclear Information System (INIS)
Roberts, B.
1981-01-01
Magnetic fields may introduce structure (inhomogeneity) into an otherwise uniform medium and thus change the nature of wave propagation in that medium. As an example of such structuring, wave propagation in an isolated magnetic slab is considered. It is supposed that disturbances outside the slab are laterally non-propagating. The effect of gravity is ignored. The field can support the propagation of both body and surface waves. The existence and nature of these waves depends upon the relative magnitudes of the sound speed c 0 and Alfven speed upsilonsub(A) inside the slab, and the sound speed csub(e) in the field-free environment. (orig./WL)
DEFF Research Database (Denmark)
Nordahl, Rolf; Turchet, Luca; Serafin, Stefania
2011-01-01
We propose a system that affords real-time sound synthesis of footsteps on different materials. The system is based on microphones, which detect real footstep sounds from subjects, from which the ground reaction force (GRF) is estimated. Such GRF is used to control a sound synthesis engine based ...... a soundscape significantly improves the recognition of the simulated environment....
Broadband unidirectional ultrasound propagation
Sinha, Dipen N.; Pantea, Cristian
2017-12-12
A passive, linear arrangement of a sonic crystal-based apparatus and method including a 1D sonic crystal, a nonlinear medium, and an acoustic low-pass filter, for permitting unidirectional broadband ultrasound propagation as a collimated beam for underwater, air or other fluid communication, are described. The signal to be transmitted is first used to modulate a high-frequency ultrasonic carrier wave which is directed into the sonic crystal side of the apparatus. The apparatus processes the modulated signal, whereby the original low-frequency signal exits the apparatus as a collimated beam on the side of the apparatus opposite the sonic crystal. The sonic crystal provides a bandpass acoustic filter through which the modulated high-frequency ultrasonic signal passes, and the nonlinear medium demodulates the modulated signal and recovers the low-frequency sound beam. The low-pass filter removes remaining high-frequency components, and contributes to the unidirectional property of the apparatus.
Energy Technology Data Exchange (ETDEWEB)
Scheider, I.
2001-07-01
This thesis introduces a concept for fracture mechanical assessment of structures with heterogenuous material properties like weldments. It is based on the cohesive zone model for numerical crack propagation analysis. With that model the failure of examined structures due to fracture can be determined. One part of the thesis contains the extension of the capabilities of the cohesive zone model regarding modelling threedimensional problems, shear fracture and unloading. In a second part new methods are developed for determination of elastic-plastic and fracture mechanical material properties, resp., which are based on optical determination of the specimen deformation. The whole concept has been used successfully for the numerical simulation of small laser welded specimens. (orig.) [German] In der vorliegenden Arbeit wird ein Konzept vorgestellt, mit dem es moeglich ist, Bauteile mit heterogenen Materialeigenschaften, wie z.B. Schweissverbindungen, bruchmechanisch zu bewerten. Es basiert auf einem Modell zur numerischen Rissfortschrittsimulation, dem Kohaesivzonenmodell, um das Versagen des zu untersuchenden Bauteils infolge von Bruch zu bestimmen. Ein Teil der Arbeit umfasst die Weiterentwicklung des Kohaesivzonenmodells zur Vorhersage des Bauteilversagens in Bezug auf die Behandlung dreidimensionaler Probleme, Scherbuch und Entlastung. In einem zweiten Teil werden Methoden zur Bestimmung sowohl der elastischplastischen als auch der bruchmechanischen Materialparameter entwickelt, die zum grossen Teil auf optischen Auswertungsmethoden der Deformationen beruhen. Das geschlossene Konzept wird erfolgreich auf lasergeschweisste Kleinproben angewendet. (orig.)
Glushko, O; Meisels, R; Kuchar, F
2010-03-29
The plane-wave expansion method (PWEM), the multiple-scattering method (MSM) and the 3D finite-difference time-domain method (FDTD) are applied for simulations of propagation of electromagnetic waves through 3D colloidal photonic crystals. The system investigated is not a "usual" artificial opal with close-packed fcc lattice but a dilute bcc structure which occurs due to long-range repulsive interaction between electrically charged colloidal particles during the growth process. The basic optical properties of non-close-packed colloidal PhCs are explored by examining the band structure and reflection spectra for a bcc lattice of silica spheres in an aqueous medium. Finite size effects and correspondence between the Bragg model, band structure and reflection spectra are discussed. The effects of size, positional and missing-spheres disorder are investigated. In addition, by analyzing the results of experimental work we show that the fabricated structures have reduced plane-to-plane distance probably due to the effect of gravity during growth.
Energy Technology Data Exchange (ETDEWEB)
Sidler, Rolf, E-mail: rsidler@gmail.com [Center for Research of the Terrestrial Environment, University of Lausanne, CH-1015 Lausanne (Switzerland); Carcione, José M. [Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42c, 34010 Sgonico, Trieste (Italy); Holliger, Klaus [Center for Research of the Terrestrial Environment, University of Lausanne, CH-1015 Lausanne (Switzerland)
2013-02-15
We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge–Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid–solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.
Energy Technology Data Exchange (ETDEWEB)
Leutbecher, M. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere
1998-07-01
Flow over mountains in the stably stratified atmosphere excites gravity waves. The three-dimensional propagation of these waves into the stratosphere is studied using linear theority as well as idealized and realistic numerical simulations. Stagnation, momentum fluxes and temperature anomalies are analyzed for idealized types of flow. Isolated mountains with elliptical contours are considered. The unperturbed atmosphere has constant wind speed and constant static stability or two layers (troposphere/stratosphere) of constant stability each. Real flow over orography is investigated where gravity waves in the stratosphere have been observed. Characteristics of the gravity wave event over the southern tip of Greenland on 6 January 1992 were recorded on a flight of the ER-2 at an altitude of 20 km. In the second case polar stratospheric clouds (PSC) were observed by an airborne Lidar over Northern Scandinavia on 9 January 1997. The PSC were induced by temperature anomalies in orographic gravity waves. (orig.)
Acoustic propagation mode in a cylindrical plasma
International Nuclear Information System (INIS)
Ishida, Yoshio; Idehara, Toshitaka; Inada, Hideyo
1975-01-01
The sound velocity in a cylindrical plasma produced by a high frequency discharge is measured by an interferometer system. The result shows that the acoustic wave guide effect does exist in a neutral gas and in a plasma. It is found that the wave propagates in the mode m=2 in a rigid boundary above the cut-off frequency fsub(c) and in the mode m=0 below fsub(c). Because the mode m=0 is identical to a plane wave, the sound velocity in free space can be evaluated exactly. In the mode m=2, the sound velocity approaches the free space value, when the frequency increases sufficiently. (auth.)
Sound Performance – Experience and Event
DEFF Research Database (Denmark)
Holmboe, Rasmus
. The present paper draws on examples from my ongoing PhD-project, which is connected to Museum of Contemporary Art in Roskilde, Denmark, where I curate a sub-programme at ACTS 2014 – a festival for performative arts. The aim is to investigate, how sound performance can be presented and represented - in real....... In itself – and as an artistic material – sound is always already process. It involves the listener in a situation that is both filled with elusive presence and one that evokes rooted memory. At the same time sound is bodily, social and historical. It propagates between individuals and objects, it creates...
International Nuclear Information System (INIS)
Ondoh, Tadanori; Nakamura, Yoshikatsu; Koseki, Teruo; Watanabe, Sigeaki; Murakami, Toshimitsu
1977-01-01
Radio sounding of the plasmapause from a geostationary satellite has been investigated to observe time variations of the plasmapause structure and effects of the plasma convection. In the equatorial plane, the plasmapause is located, on the average, at 4 R sub(E) (R sub(E); Earth radius), and the plasma density drops outwards from 10 2 -10 3 /cm 3 to 1-10/cm 3 in the plasmapause width of about 600 km. Plasmagrams showing a relation between the virtual range and sounding frequencies are computed by ray tracing of LF-VLF waves transmitted from a geostationary satellite, using model distributions of the electron density in the vicinity of the plasmapause. The general features of the plasmagrams are similar to the topside ionograms. The plasmagram has no penetration frequency such as f 0 F 2 , but the virtual range of the plasmagram increases rapidly with frequency above 100 kHz, since the distance between a satellite and wave reflection point increases rapidly with increasing the electron density inside the plasmapause. The plasmapause sounder on a geostationary satellite has been designed by taking account of an average propagation distance of 2 x 2.6 R sub(E) between a satellite (6.6 R sub(E)) and the plasmapause (4.0 R sub(E)), background noise, range resolution, power consumption, and receiver S/N of 10 dB. The 13-bit Barker coded pulses of baud length of 0.5 msec should be transmitted in direction parallel to the orbital plane at frequencies for 10 kHz-2MHz in a pulse interval of 0.5 sec. The transmitter peak power of 70 watts and 700 watts are required respectively in geomagnetically quiet and disturbed (strong nonthermal continuum emissions) conditions for a 400 meter cylindrical dipole of 1.2 cm diameter on the geostationary satellite. This technique will open new area of radio sounding in the magnetosphere. (auth.)
Nonlinear acoustic wave propagating in one-dimensional layered system
International Nuclear Information System (INIS)
Yun, Y.; Miao, G.Q.; Zhang, P.; Huang, K.; Wei, R.J.
2005-01-01
The propagation of finite-amplitude plane sound in one-dimensional layered media is studied by the extended method of transfer matrix formalism. For the periodic layered system consisting of two alternate types of liquid, the energy distribution and the phase vectors of the interface vibration are computed and analyzed. It is found that in the pass-band, the second harmonic of sound wave can propagate with the characteristic modulation
DEFF Research Database (Denmark)
Kauffmann, Lene Teglhus
as knowledge based on reflexive practices. I chose ‘health promotion’ as the field for my research as it utilises knowledge produced in several research disciplines, among these both quantitative and qualitative. I mapped out the institutions, actors, events, and documents that constituted the field of health...... of the research is to investigate what is considered to ‘work as evidence’ in health promotion and how the ‘evidence discourse’ influences social practices in policymaking and in research. From investigating knowledge practices in the field of health promotion, I develop the concept of sound knowledge...... result of a rigorous and standardized research method. However, this anthropological analysis shows that evidence and evidence-based is a hegemonic ‘way of knowing’ that sometimes transposes everyday reasoning into an epistemological form. However, the empirical material shows a variety of understandings...
Tables of the velocity of sound in sea water
Bark, L S; Meister, N A
1964-01-01
Tables of the Velocity of Sound in Sea Water contains tables of the velocity of sound in sea water computed on a ""Strela-3"" high-speed electronic computer and a T-5 tabulator at the Computational Center of the Academy of Sciences. Knowledge of the precise velocity of sound in sea water is of great importance when investigating sound propagations in the ocean and when solving practical problems involving the use of hydro-acoustic devices. This book demonstrates the computations made for the velocity of sound in sea water, which can be found in two ways: by direct measurement with the aid of s
Antenna for Ultrawideband Channel Sounding
DEFF Research Database (Denmark)
Zhekov, Stanislav Stefanov; Tatomirescu, Alexandru; Pedersen, Gert F.
2016-01-01
A novel compact antenna for ultrawideband channel sounding is presented. The antenna is composed of a symmetrical biconical antenna modified by adding a cylinder and a ring to each cone. A feeding coaxial cable is employed during the simulations in order to evaluate and reduce its impact on the a......A novel compact antenna for ultrawideband channel sounding is presented. The antenna is composed of a symmetrical biconical antenna modified by adding a cylinder and a ring to each cone. A feeding coaxial cable is employed during the simulations in order to evaluate and reduce its impact...
DEFF Research Database (Denmark)
2006-01-01
Sound search is provided by the major search engines, however, indexing is text based, not sound based. We will establish a dedicated sound search services with based on sound feature indexing. The current demo shows the concept of the sound search engine. The first engine will be realased June...
Zero sound in a two-dimensional dipolar Fermi gas
Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.
2013-01-01
We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both
Acoustic wave propagation in fluids with coupled chemical reactions
International Nuclear Information System (INIS)
Margulies, T.S.; Schwarz, W.H.
1984-08-01
This investigation presents a hydroacoustic theory which accounts for sound absorption and dispersion in a multicomponent mixture of reacting fluids (assuming a set of first-order acoustic equations without diffusion) such that several coupled reactions can occur simultaneously. General results are obtained in the form of a biquadratic characteristic equation (called the Kirchhoff-Langevin equation) for the complex propagation variable chi = - (α + iω/c) in which α is the attenuation coefficient, c is the phase speed of the progressive wave and ω is the angular frequency. Computer simulations of sound absorption spectra have been made for three different chemical systems, each comprised of two-step chemical reactions using physico-chemical data available in the literature. The chemical systems studied include: (1) water-dioxane, (2) aqueous solutions of glycine and (3) cobalt polyphosphate mixtures. Explicit comparisons are made between the exact biquadratic characteristic solution and the approximate equation (sometimes referred to as a Debye equation) previously applied to interpret the experimental data for the chemical reaction contribution to the absorption versus frequency. The relative chemical reaction and classical viscothermal contributions to the sound absorption are also presented. Several discrepancies that can arise when estimating thermodynamic data (chemical reaction heats or volume changes) for multistep chemical reaction systems when making dilute solution or constant density assumptions are discussed
Effects of small variations of speed of sound in optoacoustic tomographic imaging
International Nuclear Information System (INIS)
Deán-Ben, X. Luís; Ntziachristos, Vasilis; Razansky, Daniel
2014-01-01
Purpose: Speed of sound difference in the imaged object and surrounding coupling medium may reduce the resolution and overall quality of optoacoustic tomographic reconstructions obtained by assuming a uniform acoustic medium. In this work, the authors investigate the effects of acoustic heterogeneities and discuss potential benefits of accounting for those during the reconstruction procedure. Methods: The time shift of optoacoustic signals in an acoustically heterogeneous medium is studied theoretically by comparing different continuous and discrete wave propagation models. A modification of filtered back-projection reconstruction is subsequently implemented by considering a straight acoustic rays model for ultrasound propagation. The results obtained with this reconstruction procedure are compared numerically and experimentally to those obtained assuming a heuristically fitted uniform speed of sound in both full-view and limited-view optoacoustic tomography scenarios. Results: The theoretical analysis showcases that the errors in the time-of-flight of the signals predicted by considering the straight acoustic rays model tend to be generally small. When using this model for reconstructing simulated data, the resulting images accurately represent the theoretical ones. On the other hand, significant deviations in the location of the absorbing structures are found when using a uniform speed of sound assumption. The experimental results obtained with tissue-mimicking phantoms and a mouse postmortem are found to be consistent with the numerical simulations. Conclusions: Accurate analysis of effects of small speed of sound variations demonstrates that accounting for differences in the speed of sound allows improving optoacoustic reconstruction results in realistic imaging scenarios involving acoustic heterogeneities in tissues and surrounding media
Fifth sound in superfluid 4He below 1 K
International Nuclear Information System (INIS)
Williams, G.A.; Rosenbaum, R.
1979-01-01
Fifth-sound propagation has been studied in He II adsorbed on large-diameter alumina (Al 2 O 3 ) powder grains below 1 K. The velocity of the fifth-sound mode in 4 He remains in good agreement with the theoretical value c 2 5 =rho/sub n//rhoc 2 2 . Using tabulated values for rho/sub n//rho, values of the second-sound velocity are obtained
National Aeronautics and Space Administration — NASA has released a series of space sounds via sound cloud. We have abstracted away some of the hassle in accessing these sounds, so that developers can play with...
Mondal, Ashok; Bhattacharya, P S; Saha, Goutam
2011-01-01
During the recording time of lung sound (LS) signals from the chest wall of a subject, there is always heart sound (HS) signal interfering with it. This obscures the features of lung sound signals and creates confusion on pathological states, if any, of the lungs. A novel method based on empirical mode decomposition (EMD) technique is proposed in this paper for reducing the undesired heart sound interference from the desired lung sound signals. In this, the mixed signal is split into several components. Some of these components contain larger proportions of interfering signals like heart sound, environmental noise etc. and are filtered out. Experiments have been conducted on simulated and real-time recorded mixed signals of heart sound and lung sound. The proposed method is found to be superior in terms of time domain, frequency domain, and time-frequency domain representations and also in listening test performed by pulmonologist.
Karapetsas, Nikolaos; Skoulikaris, Charalampos; Katsogiannos, Fotis; Zalidis, George; Alexandridis, Thomas
2013-04-01
The use of satellite remote sensing products, such as Digital Elevation Models (DEMs), under specific computational interfaces of Geographic Information Systems (GIS) has fostered and facilitated the acquisition of data on specific hydrologic features, such as slope, flow direction and flow accumulation, which are crucial inputs to hydrology or hydraulic models at the river basin scale. However, even though DEMs of different resolution varying from a few km up to 20m are freely available for the European continent, these remotely sensed elevation data are rather coarse in cases where large flat areas are dominant inside a watershed, resulting in an unsatisfactory representation of the terrain characteristics. This scientific work aims at implementing a combing interpolation technique for the amelioration of the analysis of a DEM in order to be used as the input ground model to a hydraulic model for the assessment of potential flood events propagation in plains. More specifically, the second version of the ASTER Global Digital Elevation Model (GDEM2), which has an overall accuracy of around 20 meters, was interpolated with a vast number of aerial control points available from the Hellenic Mapping and Cadastral Organization (HMCO). The uncertainty that was inherent in both the available datasets (ASTER & HMCO) and the appearance of uncorrelated errors and artifacts was minimized by incorporating geostatistical filtering. The resolution of the produced DEM was approximately 10 meters and its validation was conducted with the use of an external dataset of 220 geodetic survey points. The derived DEM was then used as an input to the hydraulic model InfoWorks RS, whose operation is based on the relief characteristics contained in the ground model, for defining, in an automated way, the cross section parameters and simulating the flood spatial distribution. The plain of Serres, which is located in the downstream part of the Struma/Strymon transboundary river basin shared
Acoustic transparency and slow sound using detuned acoustic resonators
DEFF Research Database (Denmark)
Santillan, Arturo Orozco; Bozhevolnyi, Sergey I.
2011-01-01
We demonstrate that the phenomenon of acoustic transparency and slowsound propagation can be realized with detuned acoustic resonators (DAR), mimicking thereby the effect of electromagnetically induced transparency (EIT) in atomic physics. Sound propagation in a pipe with a series of side...
Healing and relaxation in flows of helium II. Part II. First, second, and fourth sound
International Nuclear Information System (INIS)
Hills, R.N.; Roberts, P.H.
1978-01-01
In Part I of this series, a theory of helium II incorporating the effects of quantum healing and relaxation was developed. In this paper, the propagation of first, second, and fourth sound is discussed. Particular attention is paid to sound propagation in the vicinity of the lambda point where the effects of relaxation and quantum healing become important
International Nuclear Information System (INIS)
Sassi, Paola; D'Elia, Valerio; Cataliotti, Rosario Sergio
2003-01-01
The hydrodynamic behaviour in the GHz frequency region has been analzsed for the non-ideal CH 3 CN-CCl 4 liquid mixture around the azeotropic composition. Rayleigh-Brillouin spectra have been measured as a function of temperature and composition, at fixed value of transferred wave vector in the 90 deg. scattering geometry, and also at different scattering angles to study dispersion with frequency of the spectral observables. These measurements have been complemented by those of refractive index, density and viscosity at the same temperatures and mole fraction values. Very interesting behaviour of the classic Brillouin spectral observables, such as the hypersonic propagation speeds and the acoustic absorption coefficients, has been revealed near the azeotropic composition of the mixture at the investigated temperatures, namely 15 deg. C, 25 deg. C, 40 deg. C and 60 deg. C. These effects have been interpreted at the light of the Mountain and Deutch theory of binary solutions and the forecast behaviour of the intermolecular forces around the azeotropic point composition of these very different molecular liquids
Nordahl, Rolf; Turchet, Luca; Serafin, Stefania
2011-09-01
We propose a system that affords real-time sound synthesis of footsteps on different materials. The system is based on microphones, which detect real footstep sounds from subjects, from which the ground reaction force (GRF) is estimated. Such GRF is used to control a sound synthesis engine based on physical models. Two experiments were conducted. In the first experiment, the ability of subjects to recognize the surface they were exposed to was assessed. In the second experiment, the sound synthesis engine was enhanced with environmental sounds. Results show that, in some conditions, adding a soundscape significantly improves the recognition of the simulated environment.
Directory of Open Access Journals (Sweden)
L. S. Konev
2015-09-01
Full Text Available Numerical method for calculation of forward and backward waves of intense few-cycle laser pulses propagating in an optical waveguide with dispersion and cubic nonlinearity of electronic and electronic-vibration nature is described. Simulations made with the implemented algorithm show that accounting for Raman nonlinearity does not lead to qualitative changes in behavior of the backward wave. Speaking about quantitative changes, the increase of efficiency of energy transfer from the forward wave to the backward wave is observed. Presented method can be also used to simulate interaction of counterpropagating pulses.
Miah, Khalid; Bellefleur, Gilles
2014-05-01
The global demand for base metals, uranium and precious metals has been pushing mineral explorations at greater depth. Seismic techniques and surveys have become essential in finding and extracting mineral rich ore bodies, especially for deep VMS mining camps. Geophysical parameters collected from borehole logs and laboratory measurements of core samples provide preliminary information about the nature and type of subsurface lithologic units. Alteration halos formed during the hydrothermal alteration process contain ore bodies, which are of primary interests among geologists and mining industries. It is known that the alteration halos are easier to detect than the ore bodies itself. Many 3D geological models are merely projection of 2D surface geology based on outcrop inspections and geochemical analysis of a small number of core samples collected from the area. Since a large scale 3D multicomponent seismic survey can be prohibitively expensive, performance analysis of such geological models can be helpful in reducing exploration costs. In this abstract, we discussed challenges and constraints encountered in geophysical modelling of ore bodies and surrounding geologic structures from the available coarse 3D geological models of the Lalor Lake mining camp, located in northern Manitoba, Canada. Ore bodies in the Lalor lake VMS camp are rich in gold, zinc, lead and copper, and have an approximate weight of 27 Mt. For better understanding of physical parameters of these known ore bodies and potentially unknown ones at greater depth, we constructed a fine resolution 3D seismic model with dimensions: 2000 m (width), 2000 m (height), and 1500 m (vertical depth). Seismic properties (P-wave, S-wave velocities, and density) were assigned based on a previous rock properties study of the same mining camp. 3D finite-difference elastic wave propagation simulation was performed in the model using appropriate parameters. The generated synthetic 3D seismic data was then compared to
Observation of a second-sound-like mode in superfluid-filled aerogel
International Nuclear Information System (INIS)
McKenna, M.J.; Slawecki, T.; Maynard, J.D.
1991-01-01
Superfluid 4 He is interesting acoustically because it can support more than one mode of sound propagation, and these can be used to study critical properties. Recently, there has been interest in superfluid-filled aerogels, but for such compressible materials one does not observe the ordinary (fourth) sound; instead there is a mode intermediate between first and fourth sound and a second-sound-like mode. We present a theory for the modes and the first observation of the aerogel second-sound-like mode, which is important because it propagates near the critical temperature
Merwade, Venkatesh; Eichinger, David; Harriger, Bradley; Doherty, Erin; Habben, Ryan
2014-01-01
While the science of sound can be taught by explaining the concept of sound waves and vibrations, the authors of this article focused their efforts on creating a more engaging way to teach the science of sound--through engineering design. In this article they share the experience of teaching sound to third graders through an engineering challenge…
Sounds Exaggerate Visual Shape
Sweeny, Timothy D.; Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Suzuki, Satoru
2012-01-01
While perceiving speech, people see mouth shapes that are systematically associated with sounds. In particular, a vertically stretched mouth produces a /woo/ sound, whereas a horizontally stretched mouth produces a /wee/ sound. We demonstrate that hearing these speech sounds alters how we see aspect ratio, a basic visual feature that contributes…
Deal, Walter F., III
2007-01-01
Sound provides and offers amazing insights into the world. Sound waves may be defined as mechanical energy that moves through air or other medium as a longitudinal wave and consists of pressure fluctuations. Humans and animals alike use sound as a means of communication and a tool for survival. Mammals, such as bats, use ultrasonic sound waves to…
Radio wave propagation and parabolic equation modeling
Apaydin, Gokhan
2018-01-01
A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various v rtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenari...
Two-dimensional wave propagation in layered periodic media
Quezada de Luna, Manuel
2014-09-16
We study two-dimensional wave propagation in materials whose properties vary periodically in one direction only. High order homogenization is carried out to derive a dispersive effective medium approximation. One-dimensional materials with constant impedance exhibit no effective dispersion. We show that a new kind of effective dispersion may arise in two dimensions, even in materials with constant impedance. This dispersion is a macroscopic effect of microscopic diffraction caused by spatial variation in the sound speed. We analyze this dispersive effect by using highorder homogenization to derive an anisotropic, dispersive effective medium. We generalize to two dimensions a homogenization approach that has been used previously for one-dimensional problems. Pseudospectral solutions of the effective medium equations agree to high accuracy with finite volume direct numerical simulations of the variable-coeffi cient equations.
APPARENT CROSS-FIELD SUPERSLOW PROPAGATION OF MAGNETOHYDRODYNAMIC WAVES IN SOLAR PLASMAS
Energy Technology Data Exchange (ETDEWEB)
Kaneko, T.; Yokoyama, T. [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Goossens, M.; Doorsselaere, T. Van [Centre for Mathematical Plasma Astrophysics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, Bus 2400, B-3001 Herverlee (Belgium); Soler, R.; Terradas, J. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Wright, A. N., E-mail: kaneko@eps.s.u-tokyo.ac.jp [School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS (United Kingdom)
2015-10-20
In this paper we show that the phase-mixing of continuum Alfvén waves and/or continuum slow waves in the magnetic structures of the solar atmosphere as, e.g., coronal arcades, can create the illusion of wave propagation across the magnetic field. This phenomenon could be erroneously interpreted as fast magnetosonic waves. The cross-field propagation due to the phase-mixing of continuum waves is apparent because there is no real propagation of energy across the magnetic surfaces. We investigate the continuous Alfvén and slow spectra in two-dimensional (2D) Cartesian equilibrium models with a purely poloidal magnetic field. We show that apparent superslow propagation across the magnetic surfaces in solar coronal structures is a consequence of the existence of continuum Alfvén waves and continuum slow waves that naturally live on those structures and phase-mix as time evolves. The apparent cross-field phase velocity is related to the spatial variation of the local Alfvén/slow frequency across the magnetic surfaces and is slower than the Alfvén/sound velocities for typical coronal conditions. Understanding the nature of the apparent cross-field propagation is important for the correct analysis of numerical simulations and the correct interpretation of observations.
Waichman, Karol; Barmashenko, Boris D.; Rosenwaks, Salman
2017-10-01
Analysis of beam propagation, kinetic and fluid dynamic processes in Cs diode pumped alkali lasers (DPALs), using wave optics model and gasdynamic code, is reported. The analysis is based on a three-dimensional, time-dependent computational fluid dynamics (3D CFD) model. The Navier-Stokes equations for momentum, heat and mass transfer are solved by a commercial Ansys FLUENT solver based on the finite volume discretization technique. The CFD code which solves the gas conservation equations includes effects of natural convection and temperature diffusion of the species in the DPAL mixture. The DPAL kinetic processes in the Cs/He/C2H6 gas mixture dealt with in this paper involve the three lowest energy levels of Cs, (1) 62S1/2, (2) 62P1/2 and (3) 62P3/2. The kinetic processes include absorption due to the 1->3 D2 transition followed by relaxation the 3 to 2 fine structure levels and stimulated emission due to the 2->1 D1 transition. Collisional quenching of levels 2 and 3 and spontaneous emission from these levels are also considered. The gas flow conservation equations are coupled to fast-Fourier-transform algorithm for transverse mode propagation to obtain a solution of the scalar paraxial propagation equation for the laser beam. The wave propagation equation is solved by the split-step beam propagation method where the gain and refractive index in the DPAL medium affect the wave amplitude and phase. Using the CFD and beam propagation models, the gas flow pattern and spatial distributions of the pump and laser intensities in the resonator were calculated for end-pumped Cs DPAL. The laser power, DPAL medium temperature and the laser beam quality were calculated as a function of pump power. The results of the theoretical model for laser power were compared to experimental results of Cs DPAL.
Making sound vortices by metasurfaces
Energy Technology Data Exchange (ETDEWEB)
Ye, Liping; Qiu, Chunyin, E-mail: cyqiu@whu.edu.cn; Lu, Jiuyang; Tang, Kun; Ke, Manzhu; Peng, Shasha [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Jia, Han [State Key Laboratory of Acoustics and Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Zhengyou [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Institute for Advanced Studies, Wuhan University, Wuhan 430072 (China)
2016-08-15
Based on the Huygens-Fresnel principle, a metasurface structure is designed to generate a sound vortex beam in airborne environment. The metasurface is constructed by a thin planar plate perforated with a circular array of deep subwavelength resonators with desired phase and amplitude responses. The metasurface approach in making sound vortices is validated well by full-wave simulations and experimental measurements. Potential applications of such artificial spiral beams can be anticipated, as exemplified experimentally by the torque effect exerting on an absorbing disk.
Directory of Open Access Journals (Sweden)
Baker M. Bani-Khair
2017-10-01
Full Text Available The Spider and the Fly You little spider, To death you aspire... Or seeking a web wider, To death all walking, No escape you all fighters… Weak and fragile in shape and might, Whatever you see in the horizon, That is destiny whatever sight. And tomorrow the spring comes, And the flowers bloom, And the grasshopper leaps high, And the frogs happily cry, And the flies smile nearby, To that end, The spider has a plot, To catch the flies by his net, A mosquito has fallen down in his net, Begging him to set her free, Out of that prison, To her freedom she aspires, Begging...Imploring...crying, That is all what she requires, But the spider vows never let her free, His power he admires, Turning blind to light, And with his teeth he shall bite, Leaving her in desperate might, Unable to move from site to site, Tied up with strings in white, Wrapped up like a dead man, Waiting for his grave at night, The mosquito says, Oh little spider, A stronger you are than me in power, But listen to my words before death hour, Today is mine and tomorrow is yours, No escape from death... Whatever the color of your flower… Little sounds The Ant The ant is a little creature with a ferocious soul, Looking and looking for more and more, You can simply crush it like dead mold, Or you can simply leave it alone, I wonder how strong and strong they are! Working day and night in a small hole, Their motto is work or whatever you call… A big boon they have and joy in fall, Because they found what they store, A lesson to learn and memorize all in all, Work is something that you should not ignore! The butterfly: I’m the butterfly Beautiful like a blue clear sky, Or sometimes look like snow, Different in colors, shapes and might, But something to know that we always die, So fragile, weak and thin, Lighter than a glimpse and delicate as light, Something to know for sure… Whatever you have in life and all these fields, You are not happier than a butterfly
Atomistics of crack propagation
International Nuclear Information System (INIS)
Sieradzki, K.; Dienes, G.J.; Paskin, A.; Massoumzadeh, B.
1988-01-01
The molecular dynamic technique is used to investigate static and dynamic aspects of crack extension. The material chosen for this study was the 2D triangular solid with atoms interacting via the Johnson potential. The 2D Johnson solid was chosen for this study since a sharp crack in this material remains stable against dislocation emission up to the critical Griffith load. This behavior allows for a meaningful comparison between the simulation results and continuum energy theorems for crack extension by appropriately defining an effective modulus which accounts for sample size effects and the non-linear elastic behavior of the Johnson solid. Simulation results are presented for the stress fields of moving cracks and these dynamic results are discussed in terms of the dynamic crack propagation theories, of Mott, Eshelby, and Freund
Zang, Qing; Bai, Xiangxing; Ma, Ping; Huang, Jie; Ma, Jing; Yu, Siyuan; Shi, Hongyan; Sun, Xiudong; Liu, Yang; Lu, Yueguang
2017-02-15
The optical communication method has potential for solving the blackout problem, which is a big challenge faced in the development of aerospace. Two laser transmission systems were set up to explore the influence of the plasma and the ablation particles on the propagation of the laser. The experimental results indicate that the laser can transmit through the plasma with little attenuation. When there are ablation particles of ZrB2-SiC-C added in the plasma, the intensity of the laser has fluctuations. The work introduced in this Letter can be regarded as basic research of the propagation characters of the laser through plasma sheaths.
Koettig, T; Avellino, S; Junginger, T; Bremer, J
2015-01-01
Oscillating Superleak Transducers (OSTs) can be used to localize quenches of superconducting radio-frequency cavities. Local hot spots at the cavity surface initiate temperature waves in the surrounding superfluid helium that acts as cooling fluid at typical temperatures in the range of 1.6 K to 2 K. The temperature wave is characterised by the properties of superfluid helium such as the second sound velocity. For high heat load densities second sound velocities greater than the standard literature values are observed. This fast propagation has been verified in dedicated small scale experiments. Resistors were used to simulate the quench spots under controlled conditions. The three dimensional propagation of second sound is linked to OST signals. The aim of this study is to improve the understanding of the OST signal especially the incident angle dependency. The characterised OSTs are used as a tool for quench localisation on a real size cavity. Their sensitivity as well as the time resolution was proven to b...
Misconceptions About Sound Among Engineering Students
Pejuan, Arcadi; Bohigas, Xavier; Jaén, Xavier; Periago, Cristina
2012-12-01
Our first objective was to detect misconceptions about the microscopic nature of sound among senior university students enrolled in different engineering programmes (from chemistry to telecommunications). We sought to determine how these misconceptions are expressed (qualitative aspect) and, only very secondarily, to gain a general idea of the extent to which they are held (quantitative aspect). Our second objective was to explore other misconceptions about wave aspects of sound. We have also considered the degree of consistency in the model of sound used by each student. Forty students answered a questionnaire including open-ended questions. Based on their free, spontaneous answers, the main results were as follows: a large majority of students answered most of the questions regarding the microscopic model of sound according to the scientifically accepted model; however, only a small number answered consistently. The main model misconception found was the notion that sound is propagated through the travelling of air particles, even in solids. Misconceptions and mental-model inconsistencies tended to depend on the engineering programme in which the student was enrolled. However, students in general were inconsistent also in applying their model of sound to individual sound properties. The main conclusion is that our students have not truly internalised the scientifically accepted model that they have allegedly learnt. This implies a need to design learning activities that take these findings into account in order to be truly efficient.
International Nuclear Information System (INIS)
Picard, R.R.
1989-01-01
Topics covered in this chapter include a discussion of exact results as related to nuclear materials management and accounting in nuclear facilities; propagation of error for a single measured value; propagation of error for several measured values; error propagation for materials balances; and an application of error propagation to an example of uranium hexafluoride conversion process