WorldWideScience

Sample records for simulated spent pwr

  1. Preliminary study on direct recycling of spent PWR fuel in PWR system

    International Nuclear Information System (INIS)

    Waris, Abdul; Nuha; Novitriana; Kurniadi, Rizal; Su'ud, Zaki

    2012-01-01

    Preliminary study on direct recycling of PWR spent fuel to support SUPEL (Straight Utilization of sPEnt LWR fuel in LWR system) scenario has been conducted. Several spent PWR fuel compositions in loaded PWR fuel has been evaluated to obtain the criticality of reactor. The reactor can achieve it criticality for U-235 enrichment in the loaded fresh fuel is at least 4.0 a% with the minimum fraction of the spent fuel in the core is 15.0 %. The neutron spectra become harder with the escalating of U-235 enrichment in the loaded fresh fuel as well as the amount of the spent fuel in the core.

  2. A study on the thermal expansion characteristics of simulated spent fuel and simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Ryu, H. J.; Kim, H. S.; Song, K. C.; Yang, M. S.

    2001-10-01

    Thermal expansions of simulated spent PWR fuel and simulated DUPIC fuel were studied using a dilatometer in the temperature range from 298 to 1900 K. The densities of simulated spent PWR fuel and simulated DUPIC fuel used in the measurement were 10.28 g/cm3 (95.35 % of TD) and 10.26 g/cm3 (95.14 % of TD), respectively. Their linear thermal expansions of simulated fuels are higher than that of UO2, and the difference between these fuels and UO2 increases progressively as temperature increases. However, the difference between simulated spent PWR fuel and simulated DUPIC fuel can hardly be observed. For the temperature range from 298 to 1900 K, the values of the average linear thermal expansion coefficients for simulated spent PWR fuel and simulated DUPIC fuel are 1.391 10-5 and 1.393 10-5 K-1, respectively. As temperature increases to 1900 K, the relative densities of simulated spent PWR fuel and simulated DUPIC fuel decrease to 93.81 and 93.76 % of initial densities at 298 K, respectively

  3. Quantitative analysis technique for Xenon in PWR spent fuel by using WDS

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, H. M.; Kim, D. S.; Seo, H. S.; Ju, J. S.; Jang, J. N.; Yang, Y. S.; Park, S. D. [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    This study includes three processes. First, a peak centering of the X-ray line was performed after a diffraction for Xenon La1 line was installed. Xe La1 peak was identified by a PWR spent fuel sample. Second, standard intensities of Xe was obtained by interpolation of the La1 intensities from a series of elements on each side of xenon. And then Xe intensities across the radial direction of a PWR spent fuel sample were measured by WDS-SEM. Third, the electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program to do matrix correction of a PWR spent fuel sample. Finally, the method and the procedure for local quantitative analysis of Xenon was developed in this study.

  4. Quantitative analysis technique for Xenon in PWR spent fuel by using WDS

    International Nuclear Information System (INIS)

    Kwon, H. M.; Kim, D. S.; Seo, H. S.; Ju, J. S.; Jang, J. N.; Yang, Y. S.; Park, S. D.

    2012-01-01

    This study includes three processes. First, a peak centering of the X-ray line was performed after a diffraction for Xenon La1 line was installed. Xe La1 peak was identified by a PWR spent fuel sample. Second, standard intensities of Xe was obtained by interpolation of the La1 intensities from a series of elements on each side of xenon. And then Xe intensities across the radial direction of a PWR spent fuel sample were measured by WDS-SEM. Third, the electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program to do matrix correction of a PWR spent fuel sample. Finally, the method and the procedure for local quantitative analysis of Xenon was developed in this study

  5. Monte Carlo Simulation of Quantitative Electron Probe Microanalysis of the PWR Spent Fuel with a Pt Coating

    International Nuclear Information System (INIS)

    Kwon, Hyoung Mun; Lee, Hyung Kwon; Son, Young Zoon; Chun, Yong Bum

    2012-01-01

    The PWR spent fuel sample should be coated with conducting material in order to provide a path for electrons and to prevent charging. Generally, the ZAF method has been used for quantitative electron probe microanalysis of conducting samples. However, the coated samples are not applicable for the ZAF method. Probe current, primary electron energy and x-ray produced by the primary beam are attenuated within the coating films. The electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program [2] to evaluate the x-ray attenuation within the Pt coating films. The target samples are the PWR spent fuels with 50 GWd/tU of burnup , 6 years of cooling time and a Pt coating film (3, 5, 7, 10 and 15 nm thickness)

  6. Monte Carlo Simulation of Quantitative Electron Probe Microanalysis of the PWR Spent Fuel with a Pt Coating

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyoung Mun; Lee, Hyung Kwon; Son, Young Zoon; Chun, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The PWR spent fuel sample should be coated with conducting material in order to provide a path for electrons and to prevent charging. Generally, the ZAF method has been used for quantitative electron probe microanalysis of conducting samples. However, the coated samples are not applicable for the ZAF method. Probe current, primary electron energy and x-ray produced by the primary beam are attenuated within the coating films. The electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program [2] to evaluate the x-ray attenuation within the Pt coating films. The target samples are the PWR spent fuels with 50 GWd/tU of burnup , 6 years of cooling time and a Pt coating film (3, 5, 7, 10 and 15 nm thickness)

  7. Thermal analysis of a one-element PWR spent fuel shipping cask

    International Nuclear Information System (INIS)

    Fields, S.R.

    1979-06-01

    The transient thermal behavior of a typical one-element PWR spent fuel shipping cask, following a hypothetical accident and fire, has been simulated. The objectives of the study were to determine the transient behavior of the cask and its spent fuel primary coolant through the pressure relief system and possible fuel pin clad failure due to overheating following loss of coolant. 15 figures, 7 tables

  8. A scheme of better utilization of PWR spent fuels

    International Nuclear Information System (INIS)

    Chung, Bum Jin; Kang, Chang Soon

    1991-01-01

    The recycle of PWR spent fuels in a CANDU reactor, so called the tandem fuel cycle is investigated in this study. This scheme of utilizing PWR spent fuels will ease the shortage of spent fuel storage capacity as well as will improve the use of uranium resources. The minimum modification the design of present CANDU reactor is seeked in the recycle. Nine different fuel types are considered in this work and are classified into two categories: refabrication and reconfiguration. For refabrication, PWR spent fuels are processed and refabricated into the present 37 rod lattice structure of fuel bundle, and for reconfiguration, meanwhile, spent fuels are simply disassembled and rods are cut to fit into the present grid configuration of fuel bundle without refabrication. For each fuel option, the neutronics calculation of lattice was conducted to evaluate the allowable burn up and distribution. The fuel cycle cost of each option was also computed to assess the economic justification. The results show that most tandem fuel cycle option considered in this study are technically feasible as well as economically viable. (Author)

  9. Effects of Burnable Absorbers on PWR Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    O'Leary, P.M.; Pitts, M.L.

    2000-01-01

    Burnup credit is an ongoing issue in designing and licensing transportation and storage casks for spent nuclear fuel (SNF). To address this issue, in July 1999, the U.S. Nuclear Regulatory Commission (NRC), Spent Fuel Project Office, issued Interim Staff Guidance-8 (ISG-8), Revision 1 allowing limited burnup credit for pressurized water reactor (PWR) spent nuclear fuel (SNF) to be used in transport and storage casks. However, one of the key limitations for a licensing basis analysis as stipulated in ISG-8, Revision 1 is that ''burnup credit is restricted to intact fuel assemblies that have not used burnable absorbers''. Because many PWR fuel designs have incorporated burnable-absorber rods for more than twenty years, this restriction places an unnecessary burden on the commercial nuclear power industry. This paper summarizes the effects of in-reactor irradiation on the isotopic inventory of PWR fuels containing different types of integral burnable absorbers (BAs). The work presented is illustrative and intended to represent typical magnitudes of the reactivity effects from depleting PWR fuel with different types of burnable absorbers

  10. The study on radioactivity reduction of spent PWR cladding hull

    International Nuclear Information System (INIS)

    Jung, I. H.; Kim, J. H.; Park, C. J.; Jung, Y. H.; Song, K. C.; Lee, J. W.; Park, J. J.; Yang, M. S.

    2003-01-01

    Hull arising from the spent PWR fuel elements is classified as a high-level radioactive waste. This report describes the radio-chemical characteristics of the hull-from PWR spent fuel of 32,000MWd/tU burn-up and 15 years cooling, discharged from Gori Unit I cycled 4-7-by examination and literature survey. On the basis of the results, a method of degradation to middle and low-level radioactive waste was proposed by dry process such as laser or plasma technique with removing the nuclides deposited on the surface of the hull

  11. Modified ADS molten salt processes for back-end fuel cycle of PWR spent fuel

    International Nuclear Information System (INIS)

    Choi, In-Kyu; Yeon, Jei-Won; Kim, Won-Ho

    2002-01-01

    The back-end fuel cycle concept for PWR spent fuel is explained. This concept is adequate for Korea, which has operated both PWR and CANDU reactors. Molten salt processes for accelerator driven system (ADS) were modified both for the transmutation of long-lived radioisotopes and for the utilisation of the remained fissile uranium in PWR spent fuels. Prior to applying molten salt processes to PWR fuel, hydrofluorination and fluorination processes are applied to obtain uranium hexafluoride from the spent fuel pellet. It is converted to uranium dioxide and fabricated into CANDU fuel. From the remained fluoride compounds, transuranium elements can be separated by the molten salt technology such as electrowinning and reductive extraction processes for transmutation purpose without weakening the proliferation resistance of molten salt technology. The proposed fuel cycle concept using fluorination processes is thought to be adequate for our nuclear program and can replace DUPIC (Direct Use of spent PWR fuel in CANDU reactor) fuel cycle. Each process for the proposed fuel cycle concept was evaluated in detail

  12. PWR and BWR spent fuel assembly gamma spectra measurements

    Energy Technology Data Exchange (ETDEWEB)

    Vaccaro, S. [European Commission, DG Energy, Directorate EURATOM Safeguards Luxembourg (Luxembourg); Tobin, S.J.; Favalli, A. [Los Alamos National Laboratory, Los Alamos, NM (United States); Grogan, B. [Oak Ridge National Laboratory, Oak Ridge (United States); Jansson, P. [Uppsala University, Uppsala (Sweden); Liljenfeldt, H. [Oak Ridge National Laboratory, Oak Ridge (United States); Mozin, V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Hu, J. [Oak Ridge National Laboratory, Oak Ridge (United States); Schwalbach, P. [European Commission, DG Energy, Directorate EURATOM Safeguards Luxembourg (Luxembourg); Sjöland, A. [Swedish Nuclear Fuel and Waste Management Company (SKB) (Sweden); Trellue, H.; Vo, D. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-10-11

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of {sup 137}Cs, {sup 154}Eu, and {sup 134}Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  13. Monte Carlo simulation of the electron and X-ray depth distribution for quantitative electron probe microanalysis of PWR spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyoung Mun; Lee, Hyung Kwon; Son, Young Zoon; Chun, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Electron probe microanalysis requires several corrections to quantify an element of a specimen. The X-rays produced by the primary beam are created at some depth in the specimen. This distribution is usually represented as the function {Phi}(pz), and it is possible to calculate the correction factors for atomic number and absorption effects. The electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program to quantify some elements of the PWR spent fuel with 50 GWd/tU of burnup and 2 years of cooling time

  14. Monte Carlo simulation of the electron and X-ray depth distribution for quantitative electron probe microanalysis of PWR spent fuels

    International Nuclear Information System (INIS)

    Kwon, Hyoung Mun; Lee, Hyung Kwon; Son, Young Zoon; Chun, Yong Bum

    2011-01-01

    Electron probe microanalysis requires several corrections to quantify an element of a specimen. The X-rays produced by the primary beam are created at some depth in the specimen. This distribution is usually represented as the function Φ(pz), and it is possible to calculate the correction factors for atomic number and absorption effects. The electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program to quantify some elements of the PWR spent fuel with 50 GWd/tU of burnup and 2 years of cooling time

  15. Radiation dose rates from commercial PWR and BWR spent fuel elements

    International Nuclear Information System (INIS)

    Willingham, C.E.

    1981-10-01

    Data on measurements of gamma dose rates from commercial reactor spent fuel were collected, and documented calculated gamma dose rates were reviewed. As part of this study, the gamma dose rate from spent fuel was estimated, using computational techniques similar to previous investigations into this problem. Comparison of the measured and calculated dose rates provided a recommended dose rate in air versus distance curve for PWR spent fuel

  16. Thermohydraulic analysis of BWR and PWR spent fuel assemblies contained within square canisters

    International Nuclear Information System (INIS)

    Wiles, L.E.; McCann, R.A.

    1981-09-01

    This report presents the results of several thermohydraulic simulations of spent fuel assembly/canister configurations performed in support of a program investigating the feasibility of storing spent nuclear fuel assemblies in canisters that would be stored in an air environment. Eleven thermohydraulic simulations were performed. Five simulations were performed using a single BWR fuel assembly/canister design. The various cases were defined by changing the canister spacing and the heat generation rate of the fuel assembly. For each simulation a steady-state thermohydraulic solution was achieved for the region inside the canister. Similarly, six simulations were performed for a single PWR fuel assembly/canister design. The square fuel rod arrays were contained in square canisters which would permit closer packing of the canisters in a storage facility. However, closer packing of the canisters would result in higher fuel temperatures which would possibly have an adverse impact on fuel integrity. Thus, the most important aspect of the analysis was to define the peak fuel assembly temperatures for each case. These results are presented along with various temperature profiles, heat flux distributions, and air velocity profiles within the canister. 48 figures, 4 tables

  17. Radionuclide compositions of spent fuel and high level waste for the uranium and plutonium fuelled PWR

    International Nuclear Information System (INIS)

    Fairclough, M.P.; Tymons, B.J.

    1985-06-01

    The activities of a selection of radionuclides are presented for three types of reactor fuel of interest in radioactive waste management. The fuel types are for a uranium 'burning' PWR, a plutonium 'burning' PWR using plutonium recycled from spent uranium fuel and a plutonium 'burning' PWR using plutonium which has undergone multiple recycle. (author)

  18. Estimation of PWR spent fuel composition using SCALE and SWAT code systems

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Sung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kenya, Suyama; Hiroshi, Okuno [Japan Atomic Energy Research Institute, Tokyo (Japan)

    2001-05-01

    The isotopic composition calculations were performed for 26 spent fuel samples from Obrigheim PWR reactor and 55 spent fuel samples from 7 PWR reactors using SCALE4.4 SAS2H with 27, 44 and 238 group cross-section libraries and SWAT with 107 group cross-section library. For convenience, the ratio of the measured to calculated value was used as a parameter. The four kinds of the calculation results were compared with the measured data. For many important nuclides for burnup credit criticality safety evaluation, the four methods applied in this study showed good coincidence with measurements in general. More precise observations showed the following results. Less unity ratios were found for Pu-239 and -241 for selected 16 samples out of the 26 samples from Obrigheim reactor. Larger than unity ratios were found for Am-241 for both the 16 and 55 samples. Larger than unity ratios were found for Sm-149 for the 55 samples. In the case of 26 sample SWAT was generally accompanied by larger ratios than those of SAS2H with some exceptions. Based on the measured-to-calculated ratios for 71 samples of a combined set in which 16 selected samples and 55 samples were included, the correction factors that should be multiplied to the calculated isotopic compositions were generated for a conservative estimate of the neutron multiplication factor of a system containing PWR spent fuel, taking burnup credit into account.

  19. Development of the vacuum drying process for the PWR spent nuclear fuel dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Baeg, Chagn Yeal; Cho, Chun Hyung [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-12-15

    This paper describes the development of a dry operation process for PWR spent nuclear fuel, which is currently stored in the domestic NPP's storage pool, using a dual purpose metal cask. Domestic NNPs have had experience with wet type transportation of PWR spent nuclear fuel between neighboring NPPs since the early 1990s, but no experience with dry type operation. For this reason, we developed a specific operation process and also confirmed the safety of the major cask components and its spent nuclear fuel during the dual purpose metal cask operation process. We also describe the short term operation process that was established to be completed within 21 hours and propose the allowable working time for each step (15 hours for wet process, 3 hours for drain process and 3 hours for vacuum drying process)

  20. Application of burnup credit for PWR spent fuel storage pool

    International Nuclear Information System (INIS)

    Shin, Hee Sung; Ro, Seung-Gy; Bae, Kang Mok; Kim, Ik Soo; Shin, Young Joon

    1999-01-01

    A study on the application of burnup credit for a PWR spent fuel storage pool has been investigated using a computer code system such as CSAS6 module of SCALE 4.3 in association with 44-group SCALE cross-section library. The calculation bias of the code system at a 95% probability with a 95% confidence level seems to be 0.00951 by benchmarking the system for forty six experimental data. With the aid of this computer code system, criticality analysis has been performed for the PWR spent fuel storage pool. Uncertainties due to postulated abnormal and accidental conditions, and manufacturing tolerance such as stainless steel thickness of storage rack, fuel enrichment, fuel density and box size have statistically been combined and resulted in 0.00674. Also, isotopic correction factor which was based on the calculated and measured concentration of 43 isotopes for both selected actinides and fission products important in burnup credit application has been taken into account in the criticality analysis. It is revealed that the minimum burnup with the corrected isotopic concentrations as required for the safe storage is 5,730 MWd/tU in enriched fuel of 5.0 wt%. (author)

  1. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    International Nuclear Information System (INIS)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented

  2. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    International Nuclear Information System (INIS)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented. 6 references, 4 figures

  3. Design of a PWR for long cycle and direct recycling of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Nader M.A., E-mail: mnader73@yahoo.com

    2015-12-15

    Highlights: • Single-batch loading PWR with a new fuel assembly for 36 calendar months cycle was designed. • The new fuel assembly is constructed from a number of CANDU fuel bundles. • This design enables to recycle the spent fuel directly in CANDU reactors for high burnup. • Around 56 MWd/kgU burnup is achieved from fuel that has average enrichment of 4.8 w/o U-235 using this strategy. • Safety parameters such as the power distribution and CANDU coolant void reactivity were considered. - Abstract: In a previous work, a new design was proposed for the Pressurized Water Reactor (PWR) fuel assembly for direct use of the PWR spent fuel without processing. The proposed assembly has four zircaloy-4 tubes contains a number of 61-element CANDU fuel bundles (8 bundles per tube) stacked end to end. The space between the tubes contains 44 lower enriched UO{sub 2} fuel rods and 12 guide tubes. In this paper, this assembly is used to build a single batch loading 36-month PWR and the spent CANDU bundles are recycled in the on power refueling CANDU reactors. The Advanced PWR (APWR) is considered as a reference design. The average enrichment in the core is 4.76%w U-235. IFBA and Gd{sub 2}O{sub 3} as burnable poisons are used for controlling the excess reactivity and to flatten the power distribution. The calculations using MCNPX showed that the PWR will discharge the fuel with average burnup of 31.8 MWd/kgU after 1000 effective full power days. Assuming a 95 days plant outage, 36 calendar months can be achieved with a capacity factor of 91.3%. Good power distribution in the core is obtained during the cycle and the required critical boron concentration is less than 1750 ppm. Recycling of the discharged CANDU fuel bundles that represents 85% of the fuel in the assembly, in CANDU-6 or in 700 MWe Advanced CANDU Reactor (ACR-700), an additional burnup of about 31 or 26 MWd/kgU burnup can be achieved, respectively. Averaging the fuel burnup on the all fuel in the PWR

  4. MELCOR Modeling of Air-Cooled PWR Spent Fuel Assemblies in Water empty Fuel Pools

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, L. E.; Lopez, C.

    2013-07-01

    The OECD Spent Fuel Project (SFP) investigated fuel degradation in case of a complete Loss-Of- Coolant-Accident in a PWR spent fuel pool. Analyses of the SFP PWR ignition tests have been conducted with the 1.86.YT.3084.SFP MELCOR version developed by SNL. The main emphasis has been placed on assessing the MELCOR predictive capability to get reasonable estimates of time-to-ignition and fire front propagation under two configurations: hot neighbor (i.e., adiabatic scenario) and cold neighbor (i.e., heat transfer to adjacent fuel assemblies). A detailed description of hypotheses and approximations adopted in the MELCOR model are provided in the paper. MELCOR results accuracy was notably different between both scenarios. The reasons are highlighted in the paper and based on the results understanding a set of remarks concerning scenarios modeling is given.

  5. PWR core and spent fuel pool analysis using scale and nestle

    International Nuclear Information System (INIS)

    Murphy, J. E.; Maldonado, G. I.; St Clair, R.; Orr, D.

    2012-01-01

    The SCALE nuclear analysis code system [SCALE, 2011], developed and maintained at Oak Ridge National Laboratory (ORNL) is widely recognized as high quality software for analyzing nuclear systems. The SCALE code system is composed of several validated computer codes and methods with standard control sequences, such as the TRITON/NEWT lattice physics sequence, which supplies dependable and accurate analyses for industry, regulators, and academia. Although TRITON generates energy-collapsed and space-homogenized few group cross sections, SCALE does not include a full-core nodal neutron diffusion simulation module within. However, in the past few years, the open-source NESTLE core simulator [NESTLE, 2003], originally developed at North Carolina State Univ. (NCSU), has been updated and upgraded via collaboration between ORNL and the Univ. of Tennessee (UT), so it now has a growingly seamless coupling to the TRITON/NEWT lattice physics [Galloway, 2010]. This study presents the methodology used to couple lattice physics data between TRITON and NESTLE in order to perform a three-dimensional full-core analysis employing a 'real-life' Duke Energy PWR as the test bed. The focus for this step was to compare the key parameters of core reactivity and radial power distribution versus plant data. Following the core analysis, following a three cycle burn, a spent fuel pool analysis was done using information generated from NESTLE for the discharged bundles and was compared to Duke Energy spent fuel pool models. The KENO control module from SCALE was employed for this latter stage of the project. (authors)

  6. PWR core and spent fuel pool analysis using scale and nestle

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J. E.; Maldonado, G. I. [Dept. of Nuclear Engineering, Univ. of Tennessee, Knoxville, TN 37996-2300 (United States); St Clair, R.; Orr, D. [Duke Energy, 526 S. Church St, Charlotte, NC 28202 (United States)

    2012-07-01

    The SCALE nuclear analysis code system [SCALE, 2011], developed and maintained at Oak Ridge National Laboratory (ORNL) is widely recognized as high quality software for analyzing nuclear systems. The SCALE code system is composed of several validated computer codes and methods with standard control sequences, such as the TRITON/NEWT lattice physics sequence, which supplies dependable and accurate analyses for industry, regulators, and academia. Although TRITON generates energy-collapsed and space-homogenized few group cross sections, SCALE does not include a full-core nodal neutron diffusion simulation module within. However, in the past few years, the open-source NESTLE core simulator [NESTLE, 2003], originally developed at North Carolina State Univ. (NCSU), has been updated and upgraded via collaboration between ORNL and the Univ. of Tennessee (UT), so it now has a growingly seamless coupling to the TRITON/NEWT lattice physics [Galloway, 2010]. This study presents the methodology used to couple lattice physics data between TRITON and NESTLE in order to perform a three-dimensional full-core analysis employing a 'real-life' Duke Energy PWR as the test bed. The focus for this step was to compare the key parameters of core reactivity and radial power distribution versus plant data. Following the core analysis, following a three cycle burn, a spent fuel pool analysis was done using information generated from NESTLE for the discharged bundles and was compared to Duke Energy spent fuel pool models. The KENO control module from SCALE was employed for this latter stage of the project. (authors)

  7. Development of a reference spent fuel library of 17x17 PWR fuel assemblies

    International Nuclear Information System (INIS)

    Rossa, Riccardo; Borella, Alessandro; Van der Meer, Klaas

    2013-01-01

    One of the most common ways to investigate new Non-Destructive Assays (NDA) for the spent fuel assemblies are Monte Carlo simulations. In order to build realistic models the user must define in an accurate way the material compositions and the source terms in the system. This information can be obtained using burnup codes such as ORIGEN-ARP and ALEPH2.2, developed at SCK-CEN. These software applications allow the user to select the irradiation history of the fuel assembly and to calculate the corresponding isotopic composition and neutron/gamma emissions as a function of time. In the framework of the development of an innovative NDA for spent fuel verifications, SCK•CEN built an extensive fuel library for 17x17 PWR assemblies, using both ORIGEN-ARP and ALEPH2.2. The parameters considered in the calculations were initial enrichment, discharge burnup, and cooling time. The combination of these variables allows to obtain more than 1500 test cases. Considering the broad range of the parameters, the fuel library can be used for other purposes apart from spent fuel verifications, for instance for the direct disposal in geological repositories. In addition to the isotopic composition of the spent fuel, the neutron and photon emissions were also calculated and compared between the two codes. The comparison of the isotopic composition showed a good agreement between the codes for most of the relevant isotopes in the spent fuel. However, specific isotopes as well as neutron and gamma spectra still need to be investigated in detail.

  8. Determination of burnup, cooling time and initial enrichment of PWR spent fuel by use of gamma-ray activity ratios

    International Nuclear Information System (INIS)

    Min, D.K.; Park, H.J.; Park, K.J.; Ro, S.G.; Park, H.S.

    1999-01-01

    The Korea Atomic Energy Institute has been developing the algorithms for sequential determination of cooling time, initial enrichment and burnup of the PWR spent fuel assembly by use of gamma ratio measurements, i.e. 134 Cs/ 137 Cs, 154 Eu/ 137 Cs and 106 Ru 137 Cs/( 134 Cs) 2 . Calculations were performed by applying the ORIGEN-S code. This method has advantages over combination techniques of neutron and gamma measurement, because of its simplicity and insensitivity to the measurement geometry. For verifying the algorithms an experiment for determining the cooling time, initial enrichment and burnup of the two PWR spent fuel rods was conducted by use of high-resolution gamma detector (HPGe) system only. This paper describes the method used and interim results of the experiment. This method can be applied for spent fuel characterization, burnup credit and safeguards of the spent fuel management facility

  9. SCALE 5.1 Predictions of PWR Spent Nuclear Fuel Isotopic Compositions

    Energy Technology Data Exchange (ETDEWEB)

    Radulescu, Georgeta [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL

    2010-03-01

    The purpose of this calculation report is to document the comparison to measurement of the isotopic concentrations for pressurized water reactor (PWR) spent nuclear fuel determined with the Standardized Computer Analysis for Licensing Evaluation (SCALE) 5.1 (Ref. ) epletion calculation method. Specifically, the depletion computer code and the cross-section library being evaluated are the twodimensional (2-D) transport and depletion module, TRITON/NEWT,2, 3 and the 44GROUPNDF5 (Ref. 4) cross-section library, respectively, in the SCALE .1 code system.

  10. Study on virtual simulation technology for operation and control of PWR

    International Nuclear Information System (INIS)

    Fang Baoguo; Zhang Dafa; Lin Yajun

    2006-01-01

    The way to build graphical models of PWR with MultiGen Creator is discussed, and the three-dimensional model used in the virtual simulation is built. The mathematical simulation model for PWR based on the platform of MFC and Vega is built through the analysis of the mathematical simulation of PWR. The way to perform the virtual effect is introduced associating with the Pressurizer. And, all above parts are connected in one with VC++ to perform the whole virtual simulation of PWR. (authors)

  11. Implementation in free software of the PWR type university nucleo electric simulator (SU-PWR)

    International Nuclear Information System (INIS)

    Valle H, J.; Hidago H, F.; Morales S, J.B.

    2007-01-01

    Presently work is shown like was carried out the implementation of the University Simulator of Nucleo-electric type PWR (SU-PWR). The implementation of the simulator was carried out in a free software simulation platform, as it is Scilab, what offers big advantages that go from the free use and without cost of the product, until the codes modification so much of the system like of the program with the purpose of to improve it or to adapt it to future routines and/or more advanced graphic interfaces. The SU-PWR shows the general behavior of a PWR nuclear plant (Pressurized Water Reactor) describing the dynamics of the plant from the generation process of thermal energy in the nuclear fuel, going by the process of energy transport toward the coolant of the primary circuit the one which in turn transfers this energy to the vapor generators of the secondary circuit where the vapor is expanded by means of turbines that in turn move the electric generator producing in this way the electricity. The pressurizer that is indispensable for the process is also modeled. Each one of these stages were implemented in scicos that is the Scilab tool specialized in the simulation. The simulation was carried out by means of modules that contain the differential equation that mathematically models each stage or equipment of the PWR plant. The result is a series of modules that based on certain entrances and characteristic of the system they generate exits that in turn are the entrance to other module. Because the SU-PWR is an experimental project in early phase, it is even work and modifications to carry out, for what the models that are presented in this work can vary a little the being integrated to the whole system to simulate, but however they already show clearly the operation and the conformation of the plant. (Author)

  12. Preliminary conceptual design of a geological disposal system for high-level wastes from the pyroprocessing of PWR spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui-Joo, E-mail: hjchoi@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daeduk-Daero, Yuseong, Daejon 305-353 (Korea, Republic of); Lee, Minsoo; Lee, Jong Youl [Korea Atomic Energy Research Institute, 1045 Daeduk-Daero, Yuseong, Daejon 305-353 (Korea, Republic of)

    2011-08-15

    Highlights: > A geological disposal system consists of disposal overpacks, a buffer, and a deposition hole or a disposal tunnel for high-level wastes from a pyroprocessing of PWR spent fuels is proposed. The amount and characteristics of high-level wastes are analyzed based on the material balance of pyroprocessing. > Four kinds of deposition methods, two horizontal and two vertical, are proposed. Thermal design is carried out with ABAQUS program. The spacing between the disposal modules is determined for the peak temperature in buffer not to exceed 100 deg. C. > The effect of the double-layered buffer is compared with the traditional single-layered buffer in terms of disposal density. Also, the effect of cooling time (aging) is illustrated. > All the thermal calculations are represented by comparing the disposal area of PWR spent fuels with the same cooling time. - Abstract: The inventories of spent fuels are linearly dependent on the production of electricity generated by nuclear energy. Pyroprocessing of PWR spent fuels is one of promising technologies which can reduce the volume of spent fuels remarkably. The properties of high-level wastes from the pyroprocessing are totally different from those of spent fuels. A geological disposal system is proposed for the high-level wastes from pyroprocessing of spent fuels. The amount and characteristics of high-level wastes are analyzed based on the material balance of pyroprocessing. Around 665 kg of monazite ceramic wastes are expected from the pyroprocessing of 10 MtU of PWR spent fuels. Decay heat from monazite ceramic wastes is calculated using the ORIGEN-ARP program. Disposal modules consisting of storage cans, overpacks, and a deposition hole or a disposal tunnel are proposed. Four kinds of deposition methods are proposed. Thermal design is carried out with ABAQUS program and geological data obtained from the KAERI Underground Research Tunnel. Through the thermal analysis, the spacing between the disposal modules

  13. Analysis of experimental measurements of PWR fresh and spent fuel assemblies using Self-Interrogation Neutron Resonance Densitometry

    Energy Technology Data Exchange (ETDEWEB)

    LaFleur, Adrienne M., E-mail: alafleur@lanl.gov; Menlove, Howard O., E-mail: hmenlove@lanl.gov

    2015-05-01

    Self-Interrogation Neutron Resonance Densitometry (SINRD) is a new NDA technique that was developed at Los Alamos National Laboratory (LANL) to improve existing nuclear safeguards measurements for LWR fuel assemblies. The SINRD detector consists of four fission chambers (FCs) wrapped with different absorber filters to isolate different parts of the neutron energy spectrum and one ion chamber (IC) to measure the gross gamma rate. As a result, two different techniques can be utilized using the same SINRD detector unit and hardware. These techniques are the Passive Neutron Multiplication Counter (PNMC) method and the SINRD method. The focus of the work described in this paper is the analysis of experimental measurements of fresh and spent PWR fuel assemblies that were performed at LANL and the Korea Atomic Energy Research Institute (KAERI), respectively, using the SINRD detector. The purpose of these experiments was to assess the following capabilities of the SINRD detector: 1) reproducibility of measurements to quantify systematic errors, 2) sensitivity to water gap between detector and fuel assembly, 3) sensitivity and penetrability to the removal of fuel rods from the assembly, and 4) use of PNMC/SINRD ratios to quantify neutron multiplication and/or fissile content. The results from these simulations and measurements provide valuable experimental data that directly supports safeguards research and development (R&D) efforts on the viability of passive neutron NDA techniques and detector designs for partial defect verification of spent fuel assemblies. - Highlights: • Experimental measurements of PWR fresh and spent FAs were performed with SINRD. • Good agreement of MCNPX and measured results confirmed accuracy of SINRD model. • For fresh fuel, SINRD and PNMC ratios were not sensitive to water gaps of ≤5-mm. • Practical use of SINRD would be in Fork detector to reduce systematic uncertainties.

  14. Burn-up credit in criticality safety of PWR spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Rowayda F., E-mail: Rowayda_mahmoud@yahoo.com [Metallurgy Department, Nuclear Research Center, Atomic Energy Authority (Egypt); Shaat, Mohamed K. [Nuclear Engineering, Reactors Department, Nuclear Research Center, Atomic Energy Authority (Egypt); Nagy, M.E.; Agamy, S.A. [Professor of Nuclear Engineering, Nuclear and Radiation Department, Alexandria University (Egypt); Abdelrahman, Adel A. [Metallurgy Department, Nuclear Research Center, Atomic Energy Authority (Egypt)

    2014-12-15

    Highlights: • Designing spent fuel wet storage using WIMS-5D and MCNP-5 code. • Studying fresh and burned fuel with/out absorber like “B{sub 4}C and Ag–In–Cd” in racks. • Sub-criticality was confirmed for fresh and burned fuel under specific cases. • Studies for BU credit recommend increasing fuel burn-up to 60.0 GWD/MTU. • Those studies require new core structure materials, fuel composition and cladding. - Abstract: The criticality safety calculations were performed for a proposed design of a wet spent fuel storage pool. This pool will be used for the storage of spent fuel discharged from a typical pressurized water reactor (PWR). The mathematical model based on the international validated codes, WIMS-5 and MCNP-5 were used for calculating the effective multiplication factor, k{sub eff}, for the spent fuel stored in the pool. The data library for the multi-group neutron microscopic cross-sections was used for the cell calculations. The k{sub eff} was calculated for several changes in water density, water level, assembly pitch and burn-up with different initial fuel enrichment and new types and amounts of fixed absorbers. Also, k{sub eff} was calculated for the conservative fresh fuel case. The results of the calculations confirmed that the effective multiplication factor for the spent fuel storage is sub-critical for all normal and abnormal states. The future strategy for the burn-up credit recommends increasing the fuel burn-up to a value >60.0 GWD/MTU, which requires new fuel composition and new fuel cladding material with the assessment of the effects of negative reactivity build up.

  15. Development of a Computer Program for an Analysis of the Logistics and Transportation Costs of the PWR Spent Fuels in Korea

    International Nuclear Information System (INIS)

    Cha, Jeong Hun; Choi, Heui Joo; Lee, Jong Youl; Choi, Jong Won

    2009-01-01

    It is expected that a substantial amount of spent fuels will be transported from the four nuclear power plant (NPP) sites in Korea to a hypothetical centralized interim storage facility or a final repository in the near future. The cost for the transportation is proportional to the amount of spent fuels. In this paper, a cost estimation program is developed based on the conceptual design of a transportation system and a logistics analysis. Using the developed computer program, named as CASK, the minimum capacity of a centralized interim storage facility (CISF) and the transportation cost for PWR spent fuels are calculated. The PWR spent fuels are transported from 4 NPP sites to a final repository (FR) via the CISF. Since NPP sites and the CISF are located along the coast, a sea-transportation is considered and a road-transportation is considered between the CISF and the FR. The result shows that the minimum capacity of the interim storage facility is 15,000 MTU

  16. Evaluation of the heat transfer in a geological repository concept containing PWR, VHTR and hybrid ads-fission spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jonusan, Raoni A.S.; Pereira, Fernando; Velasquez, Carlos E.; Salome, Jean A.D.; Cardoso, Fabiano; Pereira, Claubia; Fortini, Angela, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-11-01

    The investigation of the thermal behavior of spent fuel (SF) materials is essential to determining appropriate potential sites to accommodate geological repositories as well as the design of canisters, considering their potential risk to people health and of environmental contamination. This work presents studies of the temperature in a canister containing spent fuels discharged from Pressurized Water Reactor (PWR), Very High-Temperature Reactor (VHTR) and Accelerator-Driven Subcritical Reactor System (ADS) reactor systems in a geological repository concept. The thermal analyses were performed with the software ANSYS, which is widely used to solve engineering problems through the Finite Element Method. The ANSYS Transient Thermal module was used. The spent nuclear fuels were set as heat sources using data of previous studies derived from decay heat curves. The studies were based on comparison of the mean temperature on a canister surface along the time under geological disposal conditions, for a same amount of each type of spent nuclear fuel evaluated. The results conclude that fuels from VHTR and ADS systems are inappropriate to be disposed in a standardized PWR canister, demanding new studies to determine the optimal amount of spent fuel and new internal canister geometries. It is also possible to conclude that the hypothetical situation of a single type of canister being used to accommodate different types of spent nuclear fuels is not technically feasible. (author)

  17. The latest full-scale PWR simulator in Japan

    International Nuclear Information System (INIS)

    Nishimuru, Y.; Tagi, H.; Nakabayashi, T.

    2004-01-01

    The latest MHI Full-scale Simulator has an excellent system configuration, in both flexibility and extendability, and has highly sophisticated performance in PWR simulation by the adoption of CANAC-II and PRETTY codes. It also has an instructive character to display the plant's internal status, such as RCS condition, through animation. Further, the simulation has been verified to meet a functional examination at model plant, and with a scale model test result in a two-phase flow event, after evaluation for its accuracy. Thus, the Simulator can be devoted to a sophisticated and broad training course on PWR operation. (author)

  18. Implementation in free software of the PWR type university nucleo electric simulator (SU-PWR); Implementacion en software libre del simulador universitario de nucleoelectrica tipo PWR (SU-PWR)

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J.; Hidago H, F.; Morales S, J.B. [UNAM, Laboratorio de Analisis de Ingenieria de Reactores Nucleares DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: julfi_jg@yahoo.com.mx

    2007-07-01

    Presently work is shown like was carried out the implementation of the University Simulator of Nucleo-electric type PWR (SU-PWR). The implementation of the simulator was carried out in a free software simulation platform, as it is Scilab, what offers big advantages that go from the free use and without cost of the product, until the codes modification so much of the system like of the program with the purpose of to improve it or to adapt it to future routines and/or more advanced graphic interfaces. The SU-PWR shows the general behavior of a PWR nuclear plant (Pressurized Water Reactor) describing the dynamics of the plant from the generation process of thermal energy in the nuclear fuel, going by the process of energy transport toward the coolant of the primary circuit the one which in turn transfers this energy to the vapor generators of the secondary circuit where the vapor is expanded by means of turbines that in turn move the electric generator producing in this way the electricity. The pressurizer that is indispensable for the process is also modeled. Each one of these stages were implemented in scicos that is the Scilab tool specialized in the simulation. The simulation was carried out by means of modules that contain the differential equation that mathematically models each stage or equipment of the PWR plant. The result is a series of modules that based on certain entrances and characteristic of the system they generate exits that in turn are the entrance to other module. Because the SU-PWR is an experimental project in early phase, it is even work and modifications to carry out, for what the models that are presented in this work can vary a little the being integrated to the whole system to simulate, but however they already show clearly the operation and the conformation of the plant. (Author)

  19. A Critical Review of Practice of Equating the Reactivity of Spent Fuel to Fresh Fuel in Burnup Credit Criticality Safety Analyses for PWR Spent Fuel Pool Storage

    International Nuclear Information System (INIS)

    Wagner, J.C.; Parks, C.V.

    2000-01-01

    This research examines the practice of equating the reactivity of spent fuel to that of fresh fuel for the purpose of performing burnup credit criticality safety analyses for PWR spent fuel pool (SFP) storage conditions. The investigation consists of comparing k inf estimates based on reactivity equivalent fresh fuel enrichment (REFFE) to k inf estimates using the actual spent fuel isotopics. Analyses of selected storage configurations common in PWR SFPs show that this practice yields nonconservative results (on the order of a few tenths of a percent) in configurations in which the spent fuel is adjacent to higher-reactivity assemblies (e.g., fresh or lower-burned assemblies) and yields conservative results in configurations in which spent fuel is adjacent to lower-reactivity assemblies (e.g., higher-burned fuel or empty cells). When the REFFE is determined based on unborated water moderation, analyses for storage conditions with soluble boron present reveal significant nonconservative results associated with the use of the REFFE. This observation is considered to be important, especially considering the recent allowance of credit for soluble boron up to 5% in reactivity. Finally, it is shown that the practice of equating the reactivity of spent fuel to fresh fuel is acceptable, provided the conditions for which the REFFE was determined remain unchanged. Determination of the REFFE for a reference configuration and subsequent use of the REFFE for different configurations violates the basis used for the determination of the REFFE and, thus, may lead to inaccurate, and possibly, nonconservative estimates of reactivity. A significant concentration (approx. 2000 ppm) of soluble boron is typically (but not necessarily required to be) present in PWR SFPs, of which only a portion (le 500 ppm) may be credited in safety analyses. Thus, a large subcritical margin currently exists that more than accounts for errors or uncertainties associated with the use of the REFFE

  20. State of the art report of exponential experiments with PWR spent nuclear fuel

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Park, Sung Won; Park, Kwang Joon; Kim, Jong Hoon; Hong, Kwon Pyo; Shin, Hee Sung

    2000-09-01

    Exponential experiment method is discussed for verifying the computer code system of the nuclear criticality analysis which makes it possible to apply for the burnup credit in storage, transportation, and handling of spent nuclear fuel. In this report, it is described that the neutron flux density distribution in the exponential experiment system which consists of a PWR spent fuel in a water pool is measured by using 252 Cf neutron source and a mini-fission chamber, and therefrom the exponential decay coefficient is determined. Besides, described is a method for determining the absolute thermal neutron flux density by means of the Cd cut-off technique in association with a gold foil. Also a method is described for analyzing the energy distribution of γ-ray from the gold foil activation detector in detail

  1. Model for transient simulation in a PWR steam circuit

    International Nuclear Information System (INIS)

    Mello, L.A. de.

    1982-11-01

    A computer code (SURF) was developed and used to simulate pressure losses along the tubes of the main steam circuit of a PWR nuclear power plant, and the steam flow through relief and safety valves when pressure reactors its thresholds values. A thermodynamic model of turbines (high and low pressure), and its associated components are simulated too. The SURF computer code was coupled to the GEVAP computer code, complementing the simulation of a PWR nuclear power plant main steam circuit. (Author) [pt

  2. Generation of SCALE 6 Input Data File for Cross Section Library of PWR Spent Fuel

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Cho, Dong Keun

    2010-11-01

    In order to obtain the cross section libraries of the Korean Pressurized water reactor (PWR) spent fuel (SF), SCALE 6 code input files have been generated. The PWR fuel data were obtained from the nuclear design report (NDR) of the current operating PWRs. The input file were prepared for 16 fuel types such as 4 types of Westinghouse 14x14, 3 types of OPR-1000 16x16, 4 types of Westinghouse 16x16, and 6 types of Westinghouse 17x17. For each fuel type, 5 kinds of fuel enrichments have been considered such as 1.5, 2.0 ,3.0, 4.0 and 5.0 wt%. In the SCALE 6 calculation, a ENDF-V 44 group was used. The 25 burnup step until 72000 MWD/T was used. A 1/4 symmetry model was used for 16x16 and 17x17 fuel assembly, and 1/2 symmetry model was used for 14x14 fuel assembly The generated cross section libraries will be used for the source-term analysis of the PWR SF

  3. The simulation research for the dynamic performance of integrated PWR

    International Nuclear Information System (INIS)

    Yuan Jiandong; Xia Guoqing; Fu Mingyu

    2005-01-01

    The mathematical model of the reactor core of integrated PWR has been studied and simplified properly. With the lumped parameter method, authors have established the mathematical model of the reactor core, including the neutron dynamic equation, the feedback reactivities model and the thermo-hydraulic model of the reactor. Based on the above equations and models, the incremental transfer functions of the reactor core model have been built. By simulation experimentation, authors have compared the dynamic characteristics of the integrated PWR with the traditional dispersed PWR. The simulation results show that the mathematical models and equations are correct. (authors)

  4. Cost comparisons of wet and dry interim storage facilities for PWR spent nuclear fuel in Korea

    International Nuclear Information System (INIS)

    Cho, Chun-Hyung; Kim, Tae-Man; Seong, Ki-Yeoul; Kim, Hyung-Jin; Yoon, Jeong-Hyoun

    2011-01-01

    Research highlights: → We compare the costs of wet and dry interim storage facilities for PWR spent fuel. → We use the parametric method and quotations to deduce unknown cost items. → Net present values and levelized unit prices are calculated for cost comparisons. → A system price is the most decisive factor in cost comparisons. - Abstract: As a part of an effort to determine the ideal storage solution for pressurized water reactor (PWR) spent nuclear fuel, a cost assessment was performed to better quantify the competitiveness of several storage types. Several storage solutions were chosen for comparison, including three dry storage concepts and a wet storage concept. The net present value (NPV) and the levelized unit cost (LUC) of each solution were calculated, taking into consideration established scenarios and facility size. Wet storage was calculated to be the most expensive solution for a 1700 MTU facility, and metal cask storage marked the highest cost for a 5000 MTU facility. Sensitivity analyses on discount rate, metal cask price, operation and maintenance cost, and facility size revealed that the system price is the most decisive factor affecting competitiveness among the storage types.

  5. Cost comparisons of wet and dry interim storage facilities for PWR spent nuclear fuel in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chun-Hyung, E-mail: skycho@krmc.or.kr [Korea Radioactive Waste Management Corporation, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Kim, Tae-Man; Seong, Ki-Yeoul; Kim, Hyung-Jin; Yoon, Jeong-Hyoun [Korea Radioactive Waste Management Corporation, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of)

    2011-05-15

    Research highlights: > We compare the costs of wet and dry interim storage facilities for PWR spent fuel. > We use the parametric method and quotations to deduce unknown cost items. > Net present values and levelized unit prices are calculated for cost comparisons. > A system price is the most decisive factor in cost comparisons. - Abstract: As a part of an effort to determine the ideal storage solution for pressurized water reactor (PWR) spent nuclear fuel, a cost assessment was performed to better quantify the competitiveness of several storage types. Several storage solutions were chosen for comparison, including three dry storage concepts and a wet storage concept. The net present value (NPV) and the levelized unit cost (LUC) of each solution were calculated, taking into consideration established scenarios and facility size. Wet storage was calculated to be the most expensive solution for a 1700 MTU facility, and metal cask storage marked the highest cost for a 5000 MTU facility. Sensitivity analyses on discount rate, metal cask price, operation and maintenance cost, and facility size revealed that the system price is the most decisive factor affecting competitiveness among the storage types.

  6. Simulation model of a PWR power plant

    International Nuclear Information System (INIS)

    Larsen, N.

    1987-03-01

    A simulation model of a hypothetical PWR power plant is described. A large number of disturbances and failures in plant function can be simulated. The model is written as seven modules to the modular simulation system for continuous processes DYSIM and serves also as a user example of this system. The model runs in Fortran 77 on the IBM-PC-AT. (author)

  7. Fabrication of simulated DUPIC fuel

    Science.gov (United States)

    Kang, Kweon Ho; Song, Ki Chan; Park, Hee Sung; Moon, Je Sun; Yang, Myung Seung

    2000-12-01

    Simulated DUPIC fuel provides a convenient way to investigate the DUPIC fuel properties and behavior such as thermal conductivity, thermal expansion, fission gas release, leaching, and so on without the complications of handling radioactive materials. Several pellets simulating the composition and microstructure of DUPIC fuel are fabricated by resintering the powder, which was treated through OREOX process of simulated spent PWR fuel pellets, which had been prepared from a mixture of UO2 and stable forms of constituent nuclides. The key issues for producing simulated pellets that replicate the phases and microstructure of irradiated fuel are to achieve a submicrometre dispersion during mixing and diffusional homogeneity during sintering. This study describes the powder treatment, OREOX, compaction and sintering to fabricate simulated DUPIC fuel using the simulated spent PWR fuel. The homogeneity of additives in the powder was observed after attrition milling. The microstructure of the simulated spent PWR fuel agrees well with the other studies. The leading structural features observed are as follows: rare earth and other oxides dissolved in the UO2 matrix, small metallic precipitates distributed throughout the matrix, and a perovskite phase finely dispersed on grain boundaries.

  8. Analysis of the loss of pool cooling accident in a PWR spent fuel pool with MAAP5

    International Nuclear Information System (INIS)

    Wu, Xiaoli; Li, Wei; Zhang, Yapei; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng

    2014-01-01

    Highlights: • A PWR spent fuel pool was modeled by using MAAP5. • Loss of pool cooling severe accident scenarios were studied. • Loss of pool cooling accidents with two mitigation measures were analyzed. - Abstract: The Fukushima Daiichi nuclear accident shows that it is necessary to study potential severe accidents and corresponding mitigation measures for the spent fuel pool (SFP) of a nuclear power plant (NPP). This paper presents the analysis of loss of pool cooling accident scenarios and the discussion of mitigation measures for the SFP at a pressurized water reactor (PWR) NPP with the MAAP5 code. Analysis of uncompensated loss of water due to the loss of pool cooling with different initial pool water levels of 12.2 m (designated as a reference case) and 10.7 m have been performed based on a MAAP5 input model. Scenarios of the accident such as overheating of uncovered fuel assemblies, oxidation of claddings and hydrogen generation, loss of intactness of fuel rod claddings, and release of radioactive fission products were predicted with the assumption that mitigation measures were unavailable. The results covered a broad spectrum of severe accident evaluations in the SFP. Furthermore, as important mitigation measures, the effects of recovering the SFP cooling system and makeup water in SFP on the accident progressions have also been investigated respectively based on the events of pool water boiling and spent fuels uncovery. Based upon the reference case, three cases with the recovery of SFP cooling system and three other cases with makeup water in SFP have been studied. The results showed that, severe accident might happen if SFP cooling system was not restored timely before the spent fuels started to become uncovered; spent fuels could be completely submerged and severe accident might be avoided if SFP makeup water system provided water with a mass flow rate larger than the average evaporation rate defined as the division of pool water mass above the

  9. Neutron multiplication and shielding problems in PWR spent-fuel shipping casks

    International Nuclear Information System (INIS)

    Devillers, C.

    1976-01-01

    In order to evaluate the degree of accuracy of computational methods used for the shield design of spent-fuel shipping casks, comparisons were made between biological dose rate calculations and measurements at the surface of a cask carrying three PWR fuel assemblies (the fuel being successively wet and dry). The experimental methods used provide ksub(eff) with an accuracy of 0.024. Neutron multiplication coefficients provided by the APOLLO and DOT-3 codes are located within the uncertainty range of the experimentally derived values. The APOLLO plus DOT codes for neutron source calculations and ANISN plus DOT codes for neutron transmission calculations provide neutron dose rate predictions in agreement with measurements to within 10%. The PEPIN 76 code used for deriving fission product γ-rays and the point kernel code MERCURE 4 treating the γ-ray transmission give γ dose rate predictions that generally differ from measurements by less than 25%

  10. SCAR - Post-Accident Simulator SIPA with safety analysis code CATHARE-2 and PWR cold shutdown state simulation

    International Nuclear Information System (INIS)

    Farvacque, M.; Faydide, B.; Dufeil, Ph.; Raimond, E.

    2003-01-01

    The use of Cathare in the simulators of pressurized water reactors has been effective since the beginning of the nineties. Scar project is the second stage of the Cathare strategy for the simulators, its main objective is the extension of the field of simulation to the accident situations in cold shutdown states. Work was carried out in 3 major areas: modelling, optimization and integration in the simulator. Throughout the project, the developments were part of a 3 stages validation strategy: -) elementary tests of the developments of new model on the N4 (1450 MW PWR); -) analytical tests and systems to ensure non regression of the validation of the physical laws of the Cathare code during the modifications carried out within the optimization stage; and -) overall tests of the SIPA-CP1 (900 MW PWR) simulator, controlled automatically by programmed scenarios including the transients which are carried out in PWR, the transients of the Regulatory Guides and the accident transients

  11. PWR plant operator training used full scope simulator incorporated MAAP model

    International Nuclear Information System (INIS)

    Matsumoto, Y.; Tabuchi, T.; Yamashita, T.; Komatsu, Y.; Tsubouchi, K.; Banka, T.; Mochizuki, T.; Nishimura, K.; Iizuka, H.

    2015-01-01

    NTC makes an effort with the understanding of plant behavior of core damage accident as part of our advanced training. For the Fukushima Daiichi Nuclear Power Station accident, we introduced the MAAP model into PWR operator training full scope simulator and also made the Severe Accident Visual Display unit. From 2014, we will introduce new training program for a core damage accident with PWR operator training full scope simulator incorporated the MAAP model and the Severe Accident Visual Display unit. (author)

  12. Quantitative Analysis of Kr-85 Fission Gas Release from Dry Process for the Treatment of Spent PWR Fuel

    International Nuclear Information System (INIS)

    Park, Geun Il; Cho, Kwang Hun; Lee, Dou Youn; Lee, Jung Won; Park, Jang Jin; Song, Kee Chan

    2007-01-01

    As spent UO 2 fuel oxidizes to U 3 O 8 by air oxidation, a corresponding volume expansion separate grains, releasing the grain-boundary inventory of fission gases. Fission products in spent UO 2 fuel can be distributed in three major regions : the inventory in fuel-sheath gap, the inventory on grain boundaries and the inventory in UO 2 matrix. Release characteristic of fission gases depends on its distribution amount in three regions as well as spent fuel burn-up. Oxidation experiments of spent fuel at 500 .deg. C gives the information of fission gases inventory in spent fuel, and further annealing experiments at higher temperature produces matrix inventory of fission gases on segregated grain. In previous study, fractional release characteristics of Kr- 85 during OREOX (Oxidation and REduction of Oxide fuel) treatment as principal key process for recycling spent PWR fuel via DUPIC cycle have already evaluated as a function of fuel burn-up with 27.3, 35 and 65 MWd/tU. In this paper, new release experiment results of Kr-85 using spent fuel with burn- up of 58 GWd/tU are included to evaluate the fission gas release behavior. As a point of summary in fission gases release behavior, the quantitative analysis of Kr- 85 release characteristics from various spent fuels with different burn-up during voloxidation and OREOX process were reviewed

  13. PHEDRE model for the simulation of PWR reactors

    International Nuclear Information System (INIS)

    Bernard, Patrice; Dupraz, Remy; Vasile, Alfredo.

    1979-11-01

    This note presents the model of PHEDRE, simulator of a PWR, set on the hybrid computers of CISI, at the Nuclear Research Center of Cadarache. The model mainly concerns the primary part and the steam production of the PWR constructed in France. It includes an axial modelization of the core, the pressurizer, two loops of steam production and the inlet of the turbine, and the regulations concerning these components. The note presents the equations of the model, the structures of the codes concerning the initialization and the dynamic resolution, and describes the control panel of PHEDRE [fr

  14. Analyses of PWR spent fuel composition using SCALE and SWAT code systems to find correction factors for criticality safety applications adopting burnup credit

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Sung; Suyama, Kenya; Mochizuki, Hiroki; Okuno, Hiroshi; Nomura, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-01-01

    The isotopic composition calculations were performed for 26 spent fuel samples from the Obrigheim PWR reactor and 55 spent fuel samples from 7 PWR reactors using the SAS2H module of the SCALE4.4 code system with 27, 44 and 238 group cross-section libraries and the SWAT code system with the 107 group cross-section library. For the analyses of samples from the Obrigheim PWR reactor, geometrical models were constructed for each of SCALE4.4/SAS2H and SWAT. For the analyses of samples from 7 PWR reactors, the geometrical model already adopted in the SCALE/SAS2H was directly converted to the model of SWAT. The four kinds of calculation results were compared with the measured data. For convenience, the ratio of the measured to calculated values was used as a parameter. When the ratio is less than unity, the calculation overestimates the measurement, and the ratio becomes closer to unity, they have a better agreement. For many important nuclides for burnup credit criticality safety evaluation, the four methods applied in this study showed good coincidence with measurements in general. More precise observations showed, however: (1) Less unity ratios were found for Pu-239 and -241 for selected 16 samples out of the 26 samples from the Obrigheim reactor (10 samples were deselected because their burnups were measured with Cs-137 non-destructive method, less reliable than Nd-148 method the rest 16 samples were measured with); (2) Larger than unity ratios were found for Am-241 and Cm-242 for both the 16 and 55 samples; (3) Larger than unity ratios were found for Sm-149 for the 55 samples; (4) SWAT was generally accompanied by larger ratios than those of SAS2H with some exceptions. Based on the measured-to-calculated ratios for 71 samples of a combined set in which 16 selected samples and 55 samples were included, the correction factors that should be multiplied to the calculated isotopic compositions were generated for a conservative estimate of the neutron multiplication factor

  15. PWR AXIAL BURNUP PROFILE ANALYSIS

    International Nuclear Information System (INIS)

    J.M. Acaglione

    2003-01-01

    The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B andW 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001)

  16. Pre-conceptual design of a spent PWR fuel disposal container

    International Nuclear Information System (INIS)

    Choi, Jong Won; Cho, Dong Keun; Lee, Yang; Choi, Heui Joo; Lee, Jong Youl

    2005-01-01

    In this paper, sets of engineering analyses were conducted to renew the overall dimensions and configurations of a disposal container proposed as a prototype in the previous study. Such efforts and calculation results can provide new design variables such as the inner basket array type and thickness of the outer shell and the lid and bottom of a spent nuclear fuel disposal container. These efforts include radiation shielding and nuclear criticality analyses to check to see whether the dimensions of the container proposed from the mechanical structural analyses can provide a nuclear safety or not. According to the results of the structural analysis of a PWR disposal container by varying the diameter of the container insert. the Maximum Von Mises stress from the 102 cm container meets the safety factor of 2.0 for both extreme and normal load conditions. This container also satisfies the nuclear criticality and radiation safety limits. This decrease in the diameter results in a weight loss of a container by ∼20 tons

  17. Prototypical fabrication of PWR spent fuel shipping cask

    International Nuclear Information System (INIS)

    Kwack, Eun Ho; Kim, Byung Ku; Kang, Hee Yung; Lee, Chung Young; Jeon, Kyeong Lak; Lee, Bum Soo

    1985-02-01

    This report describes about the safety analysis for the spent fuel shipping cask, which is used to transfer a single fuel assembly discharged from PWR in operation in Korea. The contents cover the methods and the results of structural, thermal, thermo-hydraulic, radiation shield and criticality detail analysis. The safety evaluation has been made under the normal transportation and hypothetical accident conditions such as 30ft free drop, puncture, fire, immersion, penetration, corner drop, etc,. Some corrections in design are made, and a brief information for fabrication and transportation are obtained by the use of a 1/6 scale model. The design is based on one year cooling time of the spent fuel with 40,000 MWT/MTU maximum burnup, which gives 7.2KW decay heat and 1.6x10 6 ci/hr radiation intensity. The cask is composed of main body with the double closures, impact limiter and fuel basket. The inner shell, inner closure and valves constitute the pressure boundary of the containment. The inner, intermediate and outer shells, upper and lower forgings are made of stainless steel which compose the main body with lead for gamma shield and 50% ethylene glycol for neutron shield. The impact limiters are made of balsa wood on both end sides of the cask to protect the cask from a sudden shocks in accident during the transportation. The analysis results show that the cask is proved to retain its structural integrity within allowable stress and to be safe under the normal and hypothetical accident conditions, and the maximum dose rates of radiation at 2m distance from the surface of the cask are less than the required values. The weight will be 23.2tons in dry and 27.8 tons in wet with fuel loaded. All the design data, calculated results for the structural integrity, shield and thermal analysis are shown in this report with the basic drawings. (Author)

  18. Castor-V/21 PWR spent fuel storage cask performance test

    International Nuclear Information System (INIS)

    Creer, J.M.; Schoonen, D.H.

    1986-01-01

    Performance testing of a CASTOR-V/21 PWR spent fuel storage cask manufactured by Gesellschaft fur Nuklear Service (GNS) was performed as part of a cooperative program between Virginia Power and the US Department of Energy. The performance test consisted of obtaining cask handling experience and heat transfer, shielding, and limited fuel integrity data. Five heat transfer test runs were performed with 21 Surry reactor spent fuel assemblies generating approximately 28 kW. Test runs were performed vacuum, nitrogen, and helium backfill environments with the cask in both vertical and horizontal orientations. Cask exterior surface gamma and neutron dose rates were measured with the cask fully loaded. Gas samples were obtained at the beginning and end of each run with nitrogen or helium environments to verify fuel integrity. The heat transfer performance of the CASTOR-V/21 cask was exceptionally good. Peak clad temperatures with helium and nitrogen environments with the cask in a vertical orientation and with helium with the cask in a horizontal orientation were less than 380 0 C. Vertical vacuum and horizontal nitrogen test runs resulted in peak clad temperatures over 380 0 , but the temperatures were not excessively high ( 0 C). The shielding performance of the cask met the design goal of less than 200 mrem/hr. Cask surface dose rates of <75 mrem/hr can easily be established with minor gamma shielding design refinements if desired. Gas samples obtained during testing indicated no leaking fuel rods were present in the cask. It was concluded that the cask performed satisfactorily from heat transfer and shielding perspectives

  19. CASTOR-V/21 PWR spent fuel storage cask performance test

    International Nuclear Information System (INIS)

    Creer, J.M.; Schoonen, D.H.

    1986-01-01

    Performance testing of a CASTOR-V/21 PWR spent fuel storage cask manufactured by Gesellschaft fur Nuklear Service (GNS) was performed as part of a cooperative program between Virginia Power and the US Department of Energy. The performance test consisted of obtaining cask handling experience and heat transfer, shielding, and limited fuel integrity data. Five heat transfer test runs were performed with 21 Surry reactor spent fuel assemblies generating approximately 28 kW. Test runs were performed with vacuum, nitrogen, and helium backfills in both vertical and horizontal orientations. Cask exterior surface gamma and neutron dose rates were measured with the cask fully loaded. Gas samples were obtained at the beginning and end of each run with nitrogen or helium backfills to verify fuel integrity. The heat transfer performance of the CASTOR-V/21 cask was exceptionally good. Peak clad temperatures with helium and nitrogen backfills in a vertical orientation and with helium in a horizontal orientation were less than 380 0 C. Vertical vacuum and horizontal nitrogen runs resulted in peak clad temperatures over 380 0 , but the temperatures were not excessively high ( 0 C). The shielding performance of the cask met the design expectation of less than 200 mrem/h. Cask surface dose rates of <75 mrem/h can easily be established with minor gamma shielding design refinements if desired. Gas samples obtained during testing indicated no leaking fuel rods were present in the cask. It was concluded that the cask performed satisfactorily from heat transfer and shielding perspectives

  20. Mathematical modelling of plant transients in the PWR for simulator purposes

    International Nuclear Information System (INIS)

    Hartel, K.

    1984-01-01

    This chapter presents the results of the testing of anticipated and abnormal plant transients in pressurized water reactors (PWRs) of the type WWER 440 by means of the numerical simulation of 32 different, stationary and nonstationary, operational regimes. Topics considered include the formation of the PWR mathematical model, the physical approximation of the reactor core, the structure of the reactor core model, a mathematical approximation of the reactor model, the selection of numerical methods, and a computerized simulation system. The necessity of a PWR simulator in Czechoslovakia is justified by the present status and the outlook for the further development of the Czechoslovak nuclear power complex

  1. Upgrading of PWR plant simulators

    International Nuclear Information System (INIS)

    Wada, Tomonori; Sasaki, Kazunori; Nakaishi, Hirokazu.

    1989-01-01

    For the education and training of operators in electric power plants, simulators have been employed, and it is well known that their effect is great. There are operation training simulators which simulate the dynamic characteristics of plants and all the machinery and equipment that operators handle, and train the procedure of restoration at the time of abnormality in plants, education simulators which can analyze the dynamic characteristics of plants efficiently in a short time, and offer information by visualizing phenomena with three-dimensional display and others so as to be easily understandable, and forecast simulators which do the analysis forecasting plant behavior at the time of abnormality in plants, and investigate the necessity of the guide for operation procedure and the countermeasures at the time of emergency. In this explanation, the upgrading of operation training simulators which have been put already in training is discussed. The constitution of simulator system and the instructor function, the outline of PWR plant simulation models comprising thermal flow model, pump model, leak model and so on, the techniques of increasing simulator speed, and the example of analysis using the NUPAC code are reported. (K.I.)

  2. A study on the direct use of spent PWR fuel in CANDU -A study on the radioactive waste management for DUPIC fuel cycle-

    International Nuclear Information System (INIS)

    Park, Hyun Soo; Jun, Kwan Sik; Nah, Jung Won; Park, Jang Jin; Kim, Jong Hoh; Cho, Yung Hyun; Baek, Seung Woo; Shin, Jin Myung; Yang, Seung Yung

    1994-07-01

    The immobilization materials for radioactive wastes resulting from the DUPIC fuel manufacturing process were selected and their characteristics were evaluated. To predict the trapping behavior of the Ruthenium, a semi-volatile nuclide, its volatility was measured and thermogravimetric analysis were performed with simulated fuel. New Ruthenium trapping material was developed which is deposited on ceramic honey-comb monolith of cordierite. The base glass was manufactured with fly ash added to the borosilicate glass. The composition of the scrap waste was calculated based on the PWR spent fuel which has initial 235 U content of 3.5%, burnup of 35,000 MWD/MTU and cooling time of 10 years. Simulated waste glass was manufactured, and its chemical durability was evaluated by soxhlet leach test. Radioactivity of non-oxidized cladding material were measured. The preliminary design criteria were prepared for off-gas treatment system in IMEF. 31 figs, 42 tabs, 51 refs. (Author)

  3. PWR-to-PWR fuel cycle model using dry process

    International Nuclear Information System (INIS)

    Iqbal, M.; Jeong, Chang Joon; Rho, Gyu Hong

    2002-03-01

    PWR-to-PWR fuel cycle model has been developed to recycle the spent fuel using the dry fabrication process. Two types of fuels were considered; first fuel was based on low initial enrichment with low discharge burnup and second one was based on more initial enrichment with high discharge burnup in PWR. For recycling calculations, the HELIOS code was used, in which all of the available fission products were considered. The decay of 10 years was applied for reuse of the spent fuel. Sensitivity analysis for the fresh feed material enrichment has also been carried out. If enrichment of the mixing material is increased the saving of uranium reserves would be decreased. The uranium saving of low burned fuel increased from 4.2% to 7.4% in fifth recycling step for 5 wt% to 19.00wt% mixing material enrichment. While for high burned fuel, there was no uranium saving, which implies that higher uranium enrichment required than 5 wt%. For mixing of 15 wt% enriched fuel, the required mixing is about 21.0% and 37.0% of total fuel volume for low and high burned fuel, respectively. With multiple recycling, reductions in waste for low and high burned fuel became 80% and 60%, for first recycling, respectively. In this way, waste can be reduced more and the cost of the waste disposal reduction can provide the economic balance

  4. A nodal model for the simulation of a PWR core

    International Nuclear Information System (INIS)

    Souza Pinto, R. de.

    1981-06-01

    A computer program FORTRAN language was developed to simulate the neutronic and thermal-hydraulic transient behaviour of a PWR reactor core. The reator power is calculated using a point kinectics model with six groups of delayed neutron precursors. The fission product decay heat was considered assuming three effective decay heat groups. A nodal model was employed for the treatment of heat transfer in the fuel rod, with integration of the heat equation by the lumped parameter technique. Axial conduction was neglected. A single-channel nodal model was developed for the thermo-hydrodynamic simulation using mass and energy conservation equations for the control volumes. The effect of the axial pressure variation was neglected. The computer program was tested, with good results, through the simulation of the transient behaviour of postulated accidents in a typical PWR. (Author) [pt

  5. CFD simulation of a four-loop PWR at asymmetric operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jian-Ping; Yan, Li-Ming; Li, Feng-Chen, E-mail: lifch@hit.edu.cn

    2016-04-15

    Highlights: • A CFD numerical simulation procedure was established for simulating RPV of VVER-1000. • The established CFD approach was validated by comparing with available data. • Thermal hydraulic characteristics under asymmetric operation condition were investigated. • Apparent influences of the shutdown loop on its neighboring loops were obtained. - Abstract: The pressurized water reactor (PWR) with multiple loops may have abnormal working conditions with coolant pumps out of running in some loops. In this paper, a computational fluid dynamics (CFD) numerical study of the four-loop VVER-1000 PWR pressure vessel model was presented. Numerical simulations of the thermohydrodynamic characteristics in the pressure vessel were carried out at different inlet conditions with four and three loops running, respectively. At normal stead-state condition (four-loop running), different parameters were obtained for the full fluid domain, including pressure losses across different parts, pressure, velocity and temperature distributions in the reactor pressure vessel (RPV) and mass flow distribution of the coolant at the inlet of reactor core. The obtained results for pressure losses matched with the experimental reference values of the VVER-1000 PWR at Tianwan nuclear power plant (NPP). For most fuel assemblies (FAs), the inlet flow rates presented a symmetrical distribution about the center under full-loop operation conditions, which accorded with the practical distribution. These results indicate that it is now possible to study the dynamic transition process between different asymmetric operation conditions in a multi-loop PWR using the established CFD method.

  6. A study on the direct use of spent PWR fuel in CANDU -A study on the radioactive waste management for DUPIC fuel cycle-

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Soo; Jun, Kwan Sik; Nah, Jung Won; Park, Jang Jin; Kim, Jong Hoh; Cho, Yung Hyun; Baek, Seung Woo; Shin, Jin Myung; Yang, Seung Yung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    The immobilization materials for radioactive wastes resulting from the DUPIC fuel manufacturing process were selected and their characteristics were evaluated. To predict the trapping behavior of the Ruthenium, a semi-volatile nuclide, its volatility was measured and thermogravimetric analysis were performed with simulated fuel. New Ruthenium trapping material was developed which is deposited on ceramic honey-comb monolith of cordierite. The base glass was manufactured with fly ash added to the borosilicate glass. The composition of the scrap waste was calculated based on the PWR spent fuel which has initial {sup 235}U content of 3.5%, burnup of 35,000 MWD/MTU and cooling time of 10 years. Simulated waste glass was manufactured, and its chemical durability was evaluated by soxhlet leach test. Radioactivity of non-oxidized cladding material were measured. The preliminary design criteria were prepared for off-gas treatment system in IMEF. 31 figs, 42 tabs, 51 refs. (Author).

  7. Spent fuel and fuel pool component integrity. Annual report, FY 1979

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Bailey, W.J.; Schreiber, R.E.; Kustas, F.M.

    1980-05-01

    International meetings under the BEFAST program and under INFCE Working Group No. 6 during 1978 and 1979 continue to indicate that no cases of fuel cladding degradation have developed on pool-stored fuel from water reactors. A section from a spent fuel rack stand, exposed for 1.5 y in the Yankee Rowe (PWR) pool had 0.001- to 0.003-in.-deep (25- to 75-μm) intergranular corrosion in weld heat-affected zones but no evidence of stress corrosion cracking. A section of a 304 stainless steel spent fuel storage rack exposed 6.67 y in the Point Beach reactor (PWR) spent fuel pool showed no significant corrosion. A section of 304 stainless steel 8-in.-dia pipe from the Three Mile Island No. 1 (PWR) spent fuel pool heat exchanger plumbing developed a through-wall crack. The crack was intergranular, initiating from the inside surface in a weld heat-affected zone. The zone where the crack occurred was severely sensitized during field welding. The Kraftwerk Union (Erlangen, GFR) disassembled a stainless-steel fuel-handling machine that operated for 12 y in a PWR (boric acid) spent fuel pool. There was no evidence of deterioration, and the fuel-handling machine was reassembled for further use. A spent fuel pool at a Swedish PWR was decontaminated. The procedure is outlined in this report

  8. Flexibility of ADS for minor actinides transmutation in different two-stage PWR-ADS fuel cycle scenarios

    International Nuclear Information System (INIS)

    Zhou, Shengcheng; Wu, Hongchun; Zheng, Youqi

    2018-01-01

    Highlights: •ADS reloading scheme is optimized to raise discharge burnup and lower reactivity loss. •ADS is flexible to be combined with various pyro-chemical reprocessing technologies. •ADS is flexible to transmute MAs from different spent PWR fuels. -- Abstract: A two-stage Pressurized Water Reactor (PWR)-Accelerator Driven System (ADS) fuel cycle is proposed as an option to transmute minor actinides (MAs) recovered from the spent PWR fuels in the ADS system. At the second stage, the spent fuels discharged from ADS are reprocessed by the pyro-chemical process and the recovered actinides are mixed with the top-up MAs recovered from the spent PWR fuels to fabricate the new fuels used in ADS. In order to lower the amount of nuclear wastes sent to the geological repository, an optimized scattered reloading scheme for ADS is proposed to maximize the discharge burnup and lower the burnup reactivity loss. Then the flexibility of ADS for MA transmutation is evaluated in this research. Three aspects are discussed, including: different cooling time of spent ADS fuels before reprocessing, different reprocessing loss of spent ADS fuels, and different top-up MAs recovered from different kinds of spent PWR fuels. The ADS system is flexible to be combined with various pyro-chemical reprocessing technologies with specific spent fuels cooling time and unique reprocessing loss. The reduction magnitudes of the long-term decay heat and radiotoxicity of MAs by transmutation depend on the reprocessing loss. The ADS system is flexible to transmute MAs recovered from different kinds of spent PWR fuels, regardless of UOX or MOX fuels. The reduction magnitudes of the long-term decay heat and radiotoxicity of different MAs by transmutation stay on the same order.

  9. A study on the direct use of spent PWR fuel in CANDU reactors. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Soo; Lee, Jae Sul; Choi, Jong Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This report summarizes the second year progress of phase II of DUPIC program which aims to verify experimentally the feasibility of direct use of spent PWR fuel in CANDU reactors. The project is to provide the experimental facilities and technologies that are required to perform the DUPIC experiment. As an early part of the project, engineering analysis of those facilities and construction of mock-up facility are described. Another scope of the project is to assess the DUPIC fuel cycle system and facilitate international cooperation. The progresses in this scope of work made during the fiscal year are also summarized in the report. 38 figs, 44 tabs, 8 refs. (Author).

  10. Development of geological disposal system for spent fuels and high-level radioactive wastes in Korea

    International Nuclear Information System (INIS)

    Choi, Heui Joo; Lee, Jong Youl; Choi, Jong Won

    2013-01-01

    Two different kinds of nuclear power plants produce a substantial amount of spent fuel annually in Korea. According to the current projection, it is expected that around 60,000 MtU of spent fuel will be produced from 36 PWR and APR reactors and 4 CANDU reactors by the end of 2089. In 2006, KAERI proposed a conceptual design of a geological disposal system (called KRS, Korean Reference disposal System for spent fuel) for PWR and CANDU spent fuel, as a product of a 4-year research project from 2003 to 2006. The major result of the research was that it was feasible to construct a direct disposal system for 20,000 MtU of PWR spent fuels and 16,000 MtU of CANDU spent fuel in the Korean peninsula. Recently, KAERI and MEST launched a project to develop an advanced fuel cycle based on the pyroprocessing of PWR spent fuel to reduce the amount of HLW and reuse the valuable fissile material in PWR spent fuel. Thus, KAERI has developed a geological disposal system for high-level waste from the pyroprocessing of PWR spent fuel since 2007. However, since no decision was made for the CANDU spent fuel, KAERI improved the disposal density of KRS by introducing several improved concepts for the disposal canister. In this paper, the geological disposal systems developed so far are briefly outlined. The amount and characteristics of spent fuel and HLW, 4 kinds of disposal canisters, the characteristics of a buffer with domestic Ca-bentonite, and the results of a thermal design of deposition holes and disposal tunnels are described. The different disposal systems are compared in terms of their disposal density.

  11. A study on the expulsion of iodine from spent-fuel solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Tsutomu; Takahashi, Akira; Ishikawa, Niroh [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)] [and others

    1995-02-01

    During dissolution of spent nuclear fuels, some radioiodine remains in spent-fuel solutions. Its expulsion to dissolver off-gas is important to minimize iodine escape to the environment. In our current work, the iodine remaining in spent-fuel solutions varied from 0 to 10% after dissolution of spent PWR-fuel specimens (approximately 3 g each). The amount remaining probably was dependent upon the dissolution time required. The cause is ascribable to the increased nitrous acid concentration that results from NOx generated during dissolution. The presence of nitrous acid was confirmed spectrophotometrically in an NO-HNO{sub 3} system at 100{degrees}C. Experiments examining NOx concentration versus the quantity of iodine in a simulated spent-fuel solution indicate that iodine (I{minus}) in spent fuels is subjected to the following three reactions: (1) oxidation into I{sub 2} by nitric acid, (2) oxidation into I{sub 2} by nitrous acid arising from NOx, and (3) formation of colloidal iodine (AgI, PdI{sub 2}), the major iodine species in a spent-fuel solution. Reaction (2) competes with reaction (3) to control the quantity of iodine remaining in solution. The following two-step expulsion process to remove iodine from a spent-fuel solution was derived from these experiments: Step One - Heat spent-fuel solutions without NOx sparging. When aged colloidal iodine is present, an excess amount of iodate should be added to the solution. Step Two - Sparge the fuel solution with NOx while heating. Effect of this new method was confirmed by use of a spent PWR-fuel solution.

  12. Preliminary neutronics calculation of fusion-fission hybrid reactor breeding spent fuel assembly

    International Nuclear Information System (INIS)

    Ma Xubo; Chen Yixue; Gao Bin

    2013-01-01

    The possibility of using the fusion-fission hybrid reactor breeding spent fuel in PWR was preliminarily studied in this paper. According to the fusion-fission hybrid reactor breeding spent fuel characteristics, PWR assembly including fusion-fission hybrid reactor breeding spent fuel was designed. The parameters such as fuel temperature coefficient, moderator temperature coefficient and their variation were investigated. Results show that the neutron properties of uranium-based assembly and hybrid reactor breeding spent fuel assembly are similar. The design of this paper has a smaller uniformity coefficient of power at the same fissile isotope mass percentage. The results will provide technical support for the future fusion-fission hybrid reactor and PWR combined with cycle system. (authors)

  13. Minor actinide transmutation on PWR burnable poison rods

    International Nuclear Information System (INIS)

    Hu, Wenchao; Liu, Bin; Ouyang, Xiaoping; Tu, Jing; Liu, Fang; Huang, Liming; Fu, Juan; Meng, Haiyan

    2015-01-01

    Highlights: • Key issues associated with MA transmutation are the appropriate loading pattern. • Commercial PWRs are the only choice to transmute MAs in large scale currently. • Considerable amount of MA can be loaded to PWR without disturbing k eff markedly. • Loading MA to PWR burnable poison rods for transmutation is an optimal loading pattern. - Abstract: Minor actinides are the primary contributors to long term radiotoxicity in spent fuel. The majority of commercial reactors in operation in the world are PWRs, so to study the minor actinide transmutation characteristics in the PWRs and ultimately realize the successful minor actinide transmutation in PWRs are crucial problem in the area of the nuclear waste disposal. The key issues associated with the minor actinide transmutation are the appropriate loading patterns when introducing minor actinides to the PWR core. We study two different minor actinide transmutation materials loading patterns on the PWR burnable poison rods, one is to coat a thin layer of minor actinide in the water gap between the zircaloy cladding and the stainless steel which is filled with water, another one is that minor actinides substitute for burnable poison directly within burnable poison rods. Simulation calculation indicates that the two loading patterns can load approximately equivalent to 5–6 PWR annual minor actinide yields without disturbing the PWR k eff markedly. The PWR k eff can return criticality again by slightly reducing the boric acid concentration in the coolant of PWR or removing some burnable poison rods without coating the minor actinide transmutation materials from PWR core. In other words, loading minor actinide transmutation material to PWR does not consume extra neutron, minor actinide just consumes the neutrons which absorbed by the removed control poisons. Both minor actinide loading patterns are technically feasible; most importantly do not need to modify the configuration of the PWR core and

  14. MELCOR/VISOR PWR desktop simulator

    International Nuclear Information System (INIS)

    With, Anka de; Wakker, Pieter

    2010-01-01

    Increasingly, there is a need for a learning support and training tool for nuclear engineers, utilities and students in order to broaden their understanding of advanced nuclear plant characteristics, dynamics, transients and safety features. Nuclear system analysis codes like ASTEC, RELAP5, RETRAN and MELCOR provide calculation results of and visualization tools can be used to graphically represent these results. However, for an efficient education and training a more interactive tool such as a simulator is needed. The simulator connects the graphical tool with the calculation tool in an interactive manner. A small number of desktop simulators exist [1-3]. The existing simulators are capable of representing different types of power plants and various accident conditions. However, they were found to be too general to be used as a reliable plant-specific accident analysis or training tool. A desktop simulator of the Pressurized Water Reactor (PWR) has been created under contract of the Dutch nuclear regulatory body (KFD). The desktop simulator is a software package that provides a close to real simulation of the Dutch nuclear power plant Borssele (KCB) and is used for training of the accident response. The simulator includes the majority of the power plant systems, necessary for the successful simulation of the KCB plant during normal operation, malfunctions and accident situations, and it has been successfully validated against the results of the safety evaluations from the KCB safety report. (orig.)

  15. DEVELOPMENT OF GEOLOGICAL DISPOSAL SYSTEMS FOR SPENT FUELS AND HIGH-LEVEL RADIOACTIVE WASTES IN KOREA

    Directory of Open Access Journals (Sweden)

    HEUI-JOO CHOI

    2013-02-01

    Full Text Available Two different kinds of nuclear power plants produce a substantial amount of spent fuel annually in Korea. According to the current projection, it is expected that around 60,000 MtU of spent fuel will be produced from 36 PWR and APR reactors and 4 CANDU reactors by the end of 2089. In 2006, KAERI proposed a conceptual design of a geological disposal system (called KRS, Korean Reference disposal System for spent fuel for PWR and CANDU spent fuel, as a product of a 4-year research project from 2003 to 2006. The major result of the research was that it was feasible to construct a direct disposal system for 20,000 MtU of PWR spent fuels and 16,000 MtU of CANDU spent fuel in the Korean peninsula. Recently, KAERI and MEST launched a project to develop an advanced fuel cycle based on the pyroprocessing of PWR spent fuel to reduce the amount of HLW and reuse the valuable fissile material in PWR spent fuel. Thus, KAERI has developed a geological disposal system for high-level waste from the pyroprocessing of PWR spent fuel since 2007. However, since no decision was made for the CANDU spent fuel, KAERI improved the disposal density of KRS by introducing several improved concepts for the disposal canister. In this paper, the geological disposal systems developed so far are briefly outlined. The amount and characteristics of spent fuel and HLW, 4 kinds of disposal canisters, the characteristics of a buffer with domestic Ca-bentonite, and the results of a thermal design of deposition holes and disposal tunnels are described. The different disposal systems are compared in terms of their disposal density.

  16. Spent fuel pool thermal-hydraulic analysis using RELAP5-3D

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, M. C.; Fernandes, G.H.N.; Costa, A.L.; Pereira, F.; Pereira, C., E-mail: marc5663@gmail.com, E-mail: ghnfernandes@pq.cnpq.br, E-mail: claubia@nuclear.ufmg.br, E-mail: antonella@nuclear.ufmg.br [Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    In order to analyze the thermo-hydraulic behavior of spent fuel pools, and taking as reference a hypothetic PWR nuclear plant, a model of RELAP-3D for a spent fuel pool has been built. This model has been used to simulate a loss of coolant in SPF. This study focuses on the loss of coolant flow accident in spent fuel storage pool which is modelled by using RELAP5-3D code to observe the coolant level reduction and fuel uncovery because of decay heat generation of the spent fuel in the pool. The results have been compared with the available data. The developed model demonstrated that the RELAP5-3D is capable of reproduce the thermal behavior of SPF in a transient scenario. (author)

  17. PWR station blackout transient simulation in the INER integral system test facility

    International Nuclear Information System (INIS)

    Liu, T.J.; Lee, C.H.; Hong, W.T.; Chang, Y.H.

    2004-01-01

    Station blackout transient (or TMLB' scenario) in a pressurized water reactor (PWR) was simulated using the INER Integral System Test Facility (IIST) which is a 1/400 volumetrically-scaled reduce-height and reduce-pressure (RHRP) simulator of a Westinghouse three-loop PWR. Long-term thermal-hydraulic responses including the secondary boil-off and the subsequent primary saturation, pressurization and core uncovery were simulated based on the assumptions of no offsite and onsite power, feedwater and operator actions. The results indicate that two-phase discharge is the major depletion mode since it covers 81.3% of the total amount of the coolant inventory loss. The primary coolant inventory has experienced significant re-distribution during a station blackout transient. The decided parameter to avoid the core overheating is not the total amount of the coolant inventory remained in the primary core cooling system but only the part of coolant left in the pressure vessel. The sequence of significant events during transient for the IIST were also compared with those of the ROSA-IV large-scale test facility (LSTF), which is a 1/48 volumetrically-scaled full-height and full-pressure (FHFP) simulator of a PWR. The comparison indicates that the sequence and timing of these events during TMLB' transient studied in the RHRP IIST facility are generally consistent with those of the FHFP LSTF. (author)

  18. Reactivity and isotopic composition of spent PWR [pressurized-water-reactor] fuel as a function of initial enrichment, burnup, and cooling time

    International Nuclear Information System (INIS)

    Cerne, S.P.; Hermann, O.W.; Westfall, R.M.

    1987-10-01

    This study presents the reactivity loss of spent PWR fuel due to burnup in terms of the infinite lattice multiplications factor, k/sub ∞/. Calculations were performed using the SAS2 and CSAS1 control modules of the SCALE system. The k/sub ∞/ values calculated for all combinations of six enrichments, seven burnups, and five cooling times. The results are presented as a primary function of enrichment in both tabular and graphic form. An equation has been developed to estimate the tabulated values of k/sub ∞/'s by specifying enrichment, cooling time, and burnup. Atom densities for fresh fuel, and spent fuel at cooling times of 2, 10, and 20 years are included. 13 refs., 8 figs., 8 tabs

  19. Leaching of the simulated borosilicate waste glasses and spent nuclear fuel under a repository condition

    International Nuclear Information System (INIS)

    Kim, Seung Soo; Chun, Kwan Sik; Kang, Chul Hyung; Suh, Hang Suk

    2002-12-01

    Leaching behaviors of simulated waste glass and spent fuel, contacted on bentonite blocks, in synthetic granitic groundwater were investigated in this study. The leach rate of boron from borosilicate waste glass between the compacted bentonite blocks reached about 0.03 gm-2day-1 at 1500 days, like as that of molybdenum. However, the concentration of uranium in leachate pass through bentonite blocks was less than their detection limits of 2 μg/L and whose yellow amorphous compound was found on the surface of glass contacted with the bentonite blocks. The leaching mechanism of waste glasses differed with their composition. The release rate of cesium from PWR spent fuel in the simulated granitic water without bentonite was leas than $1.0x10 -5 fraction/day after 300 days. The retardation factor of cesium by a 10 -mm thickness of bentonite block was more than 100 for 4-years leaching time. The cumulative release fraction of uranium for 954 days was 0.016% (1.7x10 -7 fraction/day) in granitic water without bentonite. The gap inventory of cesium for spent fuel G23-J11 was 0.15∼0.2%. However, the release of cesium from C15-I08 was 0.9% until 60 days and has being continued after that. Gap inventories of strontium and iodine in G23-J11 were 0.033% and below 0.2%, respectively. The sum of fraction of cesium in gap and grain boundary of G23-J11 was suggested below 3% and less

  20. Performance Specification Shippinpark Pressurized Water Reactor Fuel Drying and Canister Inerting System for PWR Core 2 Blanket Fuel Assemblies Stored within Shippingport Spent Fuel Canisters

    International Nuclear Information System (INIS)

    JOHNSON, D.M.

    2000-01-01

    This specification establishes the performance requirements and basic design requirements imposed on the fuel drying and canister inerting system for Shippingport Pressurized Water Reactor (PWR) Core 2 blanket fuel assemblies (BFAs) stored within Shippingport spent fuel (SSFCs) canisters (fuel drying and canister inerting system). This fuel drying and canister inerting system is a component of the U.S. Department of Energy, Richland Operations Office (RL) Spent Nuclear Fuels Project at the Hanford Site. The fuel drying and canister inerting system provides for removing water and establishing an inert environment for Shippingport PWR Core 2 BFAs stored within SSFCs. A policy established by the U.S. Department of Energy (DOE) states that new SNF facilities (this is interpreted to include structures, systems and components) shall achieve nuclear safety equivalence to comparable U.S. Nuclear Regulatory Commission (NRC)-licensed facilities. This will be accomplished in part by applying appropriate NRC requirements for comparable NRC-licensed facilities to the fuel drying and canister inerting system, in addition to applicable DOE regulations and orders

  1. Interface tracking simulations of bubbly flows in PWR relevant geometries

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jun, E-mail: jfang3@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Rasquin, Michel, E-mail: michel.rasquin@colorado.edu [Aerospace Engineering Department, University of Colorado, Boulder, CO 80309 (United States); Bolotnov, Igor A., E-mail: igor_bolotnov@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2017-02-15

    Highlights: • Simulations were performed for turbulent bubbly flows in PWR subchannel geometry. • Liquid turbulence is fully resolved by direct numerical simulation approach. • Bubble behavior is captured using level-set interface tracking method. • Time-averaged single- and two-phase turbulent flow statistical quantities are obtained. - Abstract: The advances in high performance computing (HPC) have allowed direct numerical simulation (DNS) approach coupled with interface tracking methods (ITM) to perform high fidelity simulations of turbulent bubbly flows in various complex geometries. In this work, we have chosen the geometry of the pressurized water reactor (PWR) core subchannel to perform a set of interface tracking simulations (ITS) with fully resolved liquid turbulence. The presented research utilizes a massively parallel finite-element based code, PHASTA, for the subchannel geometry simulations of bubbly flow turbulence. The main objective for this research is to demonstrate the ITS capabilities in gaining new insight into bubble/turbulence interactions and assisting the development of improved closure laws for multiphase computational fluid dynamics (M-CFD). Both single- and two-phase turbulent flows were studied within a single PWR subchannel. The analysis of numerical results includes the mean gas and liquid velocity profiles, void fraction distribution and turbulent kinetic energy profiles. Two sets of flow rates and bubble sizes were used in the simulations. The chosen flow rates corresponded to the Reynolds numbers of 29,079 and 80,775 based on channel hydraulic diameter (D{sub h}) and mean velocity. The finite element unstructured grids utilized for these simulations include 53.8 million and 1.11 billion elements, respectively. This has allowed to fully resolve all the turbulence scales and the deformable interfaces of individual bubbles. For the two-phase flow simulations, a 1% bubble volume fraction was used which resulted in 17 bubbles in

  2. Suggestion on the safety classification of spent fuel dry storage in China’s pressurized water reactor nuclear power plant

    Science.gov (United States)

    Liu, Ting; Qu, Yunhuan; Meng, De; Zhang, Qiaoer; Lu, Xinhua

    2018-01-01

    China’s spent fuel storage in the pressurized water reactors(PWR) is stored with wet storage way. With the rapid development of nuclear power industry, China’s NPPs(NPPs) will not be able to meet the problem of the production of spent fuel. Currently the world’s major nuclear power countries use dry storage as a way of spent fuel storage, so in recent years, China study on additional spent fuel dry storage system mainly. Part of the PWR NPP is ready to apply for additional spent fuel dry storage system. It also need to safety classificate to spent fuel dry storage facilities in PWR, but there is no standard for safety classification of spent fuel dry storage facilities in China. Because the storage facilities of the spent fuel dry storage are not part of the NPP, the classification standard of China’s NPPs is not applicable. This paper proposes the safety classification suggestion of the spent fuel dry storage for China’s PWR NPP, through to the study on China’s safety classification principles of PWR NPP in “Classification for the items of pressurized water reactor nuclear power plants (GB/T 17569-2013)”, and safety classification about spent fuel dry storage system in NUREG/CR - 6407 in the United States.

  3. Simulation of fission products behavior in severe accidents for advanced passive PWR

    International Nuclear Information System (INIS)

    Tong, L.L.; Huang, G.F.; Cao, X.W.

    2015-01-01

    Highlights: • A fission product analysis model based on thermal hydraulic module is developed. • An assessment method for fission product release and transport is constructed. • Fission products behavior during three modes of containment response is investigated. • Source term results for the three modes of containment response are obtained. - Abstract: Fission product behavior for common Pressurized Water Reactor (PWR) has been studied for many years, and some analytical tools have developed. However, studies specifically on the behavior of fission products related to advanced passive PWR is scarce. In the current study, design characteristics of advanced passive PWR influencing fission product behavior are investigated. An integrated fission products analysis model based on a thermal hydraulic module is developed, and the assessment method for fission products release and transport for advanced passive PWR is constructed. Three modes of containment response are simulated, including intact containment, containment bypass and containment overpressure failure. Fission products release from the core and corium, fission products transport and deposition in the Reactor Coolant System (RCS), fission products transport and deposition in the containment considering fission products retention in the in-containment refueling water storage tank (IRWST) and in the secondary side of steam generators (SGs) are simulated. Source term results of intact containment, containment bypass and containment overpressure failure are obtained, which can be utilized to evaluate the radiological consequences

  4. Conceptual development of a test facility for spent fuel management

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.W.; Lee, H.H.; Lee, J.Y.; Lee, J.S.; Ro, S.G. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Spent fuel management is an important issue for nuclear power program, requiring careful planning and implementation. With the wait-and-see policy on spent fuel management in Korea, research efforts are directed at KAERI to develop advanced technologies for safer and more efficient management of the accumulating spent fuels. In support of these research perspectives, a test facility of pilot scale is being developed with provisions for integral demonstration of a multitude of technical functions required for spent fuel management. The facility, baptized SMART (Spent fuel MAnagement technology Research and Test facility), is to be capable of handling full size assembly of spent PWR fuel (as well as CANDU fuel) with a maximum capacity of 10 MTU/y (about 24 assemblies of PWR type). Major functions of the facility are consolidation of spent PWR fuel assembly into a half-volume package and optionally transformation of the fuel rod into a fuel of CANDU type (called DUPIC). Objectives of these functions are to demonstrate volume reduction of spent fuel (for either longer-term dry storage or direct disposal ) in the former case and direct refabrication of the spent PWR fuel into CANDU-type DUPIC fuel for reuse in CANDU reactors in the latter case, respectively. In addition to these major functions, there are other associated technologies to be demonstrated : such as waste treatment, remote maintenance, safeguards, etc. As the facility is to demonstrate not only the functional processes but also the safety and efficiency of the test operations, engineering criteria equivalent to industrial standards are incorporated in the design concept. The hot cell structure enclosing the radioactive materials is configured in such way to maximize costs within the given functional and operational requirements. (author). 3 tabs., 4 figs.

  5. Conceptual development of a test facility for spent fuel management

    International Nuclear Information System (INIS)

    Park, S.W.; Lee, H.H.; Lee, J.Y.; Lee, J.S.; Ro, S.G.

    1997-01-01

    Spent fuel management is an important issue for nuclear power program, requiring careful planning and implementation. With the wait-and-see policy on spent fuel management in Korea, research efforts are directed at KAERI to develop advanced technologies for safer and more efficient management of the accumulating spent fuels. In support of these research perspectives, a test facility of pilot scale is being developed with provisions for integral demonstration of a multitude of technical functions required for spent fuel management. The facility, baptized SMART (Spent fuel MAnagement technology Research and Test facility), is to be capable of handling full size assembly of spent PWR fuel (as well as CANDU fuel) with a maximum capacity of 10 MTU/y (about 24 assemblies of PWR type). Major functions of the facility are consolidation of spent PWR fuel assembly into a half-volume package and optionally transformation of the fuel rod into a fuel of CANDU type (called DUPIC). Objectives of these functions are to demonstrate volume reduction of spent fuel (for either longer-term dry storage or direct disposal ) in the former case and direct refabrication of the spent PWR fuel into CANDU-type DUPIC fuel for reuse in CANDU reactors in the latter case, respectively. In addition to these major functions, there are other associated technologies to be demonstrated : such as waste treatment, remote maintenance, safeguards, etc. As the facility is to demonstrate not only the functional processes but also the safety and efficiency of the test operations, engineering criteria equivalent to industrial standards are incorporated in the design concept. The hot cell structure enclosing the radioactive materials is configured in such way to maximize costs within the given functional and operational requirements. (author). 3 tabs., 4 figs

  6. Management of Spent Nuclear Fuel from Nuclear Power Plant Reactor

    International Nuclear Information System (INIS)

    Wati, Nurokhim

    2008-01-01

    Management of spent nuclear fuel from Nuclear Power Plant (NPP) reactor had been studied to anticipate program of NPP operation in Indonesia. In this paper the quantity of generated spent nuclear fuel (SNF) is predicted based on the national electrical demand, power grade and type of reactor. Data was estimated using Pressurized Water Reactor (PWR) NPP type 1.000 MWe and the SNF management overview base on the experiences of some countries that have NPP. There are four strategy nuclear fuel cycle which can be developed i.e: direct disposal, reprocessing, DUPlC (Direct Use of Spent PWR Fuel In Candu) and wait and see. There are four alternative for SNF management i.e : storage at the reactor building (AR), away from reactor (AFR) using wet centralized storage, dry centralized storage AFR and prepare for reprocessing facility. For the Indonesian case, centralized facility of the wet type is recommended for PWR or BWR spent fuel. (author)

  7. Alternative Concept to Enhance the Disposal Efficiency for CANDU Spent Fuel Disposal System

    International Nuclear Information System (INIS)

    Lee, Jong Youl; Cho, Dong Geun; Kook, Dong Hak; Lee, Min Soo; Choi, Heui Joo

    2011-01-01

    There are two types of nuclear reactors in Korea and they are PWR type and CANDU type. The safe management of the spent fuels from these reactors is very important factor to maintain the sustainable energy supply with nuclear power plant. In Korea, a reference disposal system for the spent fuels has been developed through a study on the direct disposal of the PWR and CANDU spent fuel. Recently, the research on the demonstration and the efficiency analyses of the disposal system has been performed to make the disposal system safer and more economic. PWR spent fuels which include a lot of reusable material can be considered being recycled and a study on the disposal of HLW from this recycling process is being performed. CANDU spent fuels are considered being disposed of directly in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System (KRS) which was to dispose of both PWR type and CANDU type, the more effective CANDU spent fuel disposal systems were developed. To do this, the disposal canister for CANDU spent fuels was modified to hold the storage basket for 60 bundles which is used in nuclear power plant. With these modified disposal canister concepts, the disposal concepts to meet the thermal requirement that the temperature of the buffer materials should not be over 100 .deg. C were developed. These disposal concepts were reviewed and analyzed in terms of disposal effective factors which were thermal effectiveness, U-density, disposal area, excavation volume, material volume etc. and the most effective concept was proposed. The results of this study will be used in the development of various wastes disposal system together with the HLW wastes from the PWR spent fuel recycling process.

  8. Shipment of Taiwanese research reactor spent nuclear fuel (Phase 2): Environmental assessment

    International Nuclear Information System (INIS)

    1988-06-01

    The proposed action is to transport approximately 1100 spent fuel rods from a foreign research reactor in Taiwan by sea to Hampton Roads, Virginia, and then overland by truck to the receiving basin for offsite fuels at the Savannah River Plant (SRP) for reprocessing to recover uranium and plutonium. The analysis of the impacts of the proposed action have been evaluated and shown to have negligible impact on the local environments. The calculations have been completed using the RADTRAN III code. PWR spent fuel was analyzed as a benchmark to link the calculations in this analysis to those in earlier environmental documentation. Cumulative total, maximum annual, and per shipment risks were calculated. The results indicate that the PWR spent fuel shipment risks are somewhat lower than those previously estimated. The cumulative and maximum annual normal, or incident-free, risks associated with the shipment of Taiwanese research reactor spent fuel is a factor of 10 lower than that for PWR fuel, and the cumulative and maximum annual accident radiological risks are a factor of about 2.2 lower than that for PWR spent fuel. As a result, the port risks are about a factor of 10 larger than the risk of overland transport. All of the risks calculated are small. The PWR risk values are similar to those judged by the NRC to be small enough not to warrant increased stringency in regulations. The Taiwanese research reactor spent fuel shipment risk values are smaller yet. 51 refs., 22 tabs

  9. Design of a PWR emergency core cooling simulator loop

    International Nuclear Information System (INIS)

    Melo, C.A. de.

    1982-12-01

    The preliminary design of a PWR Emergency Core Cooling Simulator Loop for investigations of the phenomena involved in a postulated Loss-of-Coolant Accident, during the Reflooding Phase, is presented. The functions of each component of the loop, the design methods and calculations, the specification of the instrumentation, the system operation sequence, the materials list and a cost assessment are included. (Author) [pt

  10. Contribution to study and design of PWR plant simulation code

    International Nuclear Information System (INIS)

    Delourme, Didier.

    1980-11-01

    This paper presents an improvement of PICOLO, a package for PWR plants simulation. Its describes principally the integration to the code of a primary loop and pressurizer model and the corresponding control loops. Fast transients are tested on the packages and results are compared with real transients obtained on plants [fr

  11. The Effect of Material Homogenization in Calculating the Gamma-Ray dose from Spent PWR Fuel Pins in an Air Medium

    International Nuclear Information System (INIS)

    TH Trumbull

    2005-01-01

    The effect of material homogenization on the calculated dose rate was studied for several arrangements of typical PWR spent fuel pins in an air medium using the Monte Carlo code, MCNP. The models analyzed increased in geometric complexity, beginning with a single fuel pin, progressing to ''small'' lattices, i.e., 3x3, 5x5, 7x7 fuel pins, and culminating with a full 17x17 pin PWR bundle analysis. The fuel pin dimensions and compositions were taken directly from a previous study and efforts were made to parallel this study by specifying identical flux-to-dose functions and gamma-ray source spectra. The analysis shows two competing components to the overall effect of material homogenization on calculated dose rate. Homogenization of pin lattices tends to lower the effect of radiation ''channeling'' but increase the effect of ''source redistribution.'' Depending on the size of the lattice and location of the detectors, the net effect of material homogenization on dose rate can be insignificant or range from a 6% decrease to a 35% increase relative to the detailed geometry model

  12. Plutonium isotopic composition of high burnup spent fuel discharged from light water reactors

    International Nuclear Information System (INIS)

    Nakano, Yoshihiro; Okubo, Tsutomu

    2011-01-01

    Highlights: → Pu isotopic composition of fuel affects FBR core nuclear characteristics very much. → Spent fuel compositions of next generation LWRs with burnup of 70 GWd/t were obtained. → Pu isotopic composition and amount in the spent fuel with 70 GWd/t were evaluated. → Spectral shift rods of high burnup BWR increases the fissile Pu fraction of spent fuel. → Wide fuel rod pitch of high burnup PWR lowers the fissile Pu fraction of spent fuel. - Abstract: The isotopic composition and amount of plutonium (Pu) in spent fuel from a high burnup boiling water reactor (HB-BWR) and a high burnup pressurized water reactor (HB-PWR), each with an average discharge burnup of 70 GWd/t, were estimated, in order to evaluate fast breeder reactor (FBR) fuel composition in the transition period from LWRs to FBRs. The HB-BWR employs spectral shift rods and the neutron spectrum is shifted through the operation cycle. The weight fraction of fissile plutonium (Puf) isotopes to the total plutonium in HB-BWR spent fuel after 5 years cooling is 62%, which is larger than that of conventional BWRs with average burnup of 45 GWd/t, because of the spectral shift operation. The amount of Pu produced in the HB-BWR is also larger than that produced in a conventional BWR. The HB-PWR uses a wider pitch 17 x 17 fuel rod assembly to optimize neutron slowing down. The Puf fraction of HB-PWR spent fuel after 5 years cooling is 56%, which is smaller than that of conventional PWRs with average burnup of 49 GWd/t, mainly because of the wider pitch. The amount of Pu produced in the HB-PWR is also smaller than that in conventional PWRs.

  13. Microcomputer simulation of PWR power plant pressurizer

    International Nuclear Information System (INIS)

    Araujo, L.R.A. de; Calixto Neto, J.; Martinez, A.S.; Schirru, R.

    1990-01-01

    It is presented a method for the simulation of the pressurizer behavior of a PWR power plant. The method was implanted in a microcomputer, and it considers all the devices for the pressure control (spray and relief valves, heaters, controller, etc.). The physical phenomena and the PID (Proportional + Integral + Derivative) controller were mathematically represented by linear relations, uncoupled, discretized in the time. There are three different algorithms which take into account the non-linear effects introduced by the variation of the physical properties due to the temperature and pressure, and also the mutual effects between the physical phenomena and the PID controller. (author)

  14. Heat transfer in a spent fuel pool concept containing PWR, Hybrid ADS-Fission, and VHTR spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Fernando P.; Cardoso, Fabiano; Salomé, Jean A.D.; Velasquez, Carlos E.; Pereira, Claubia, E-mail: fernandopereirabh@gmail.com, E-mail: fabinuclear@yahoo.com.br, E-mail: jadsalome@yahoo.com.br, E-mail: carlosvelcab@hotmail.com, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    Thermal evaluation under wet storage conditions of spent fuels (SF) of the types UO{sub 2} discharged from Pressurized Water Reactor (PWR) and Very High-temperature Reactor (VHTR), and (Th,TRU)O{sub 2} from Accelerator-Driven Subcritical Reactor System (ADS) and VHTR are presented. The analyzes are in the absence of an external cooling system of the pool, and the goal is to compare the water boiling time of the pool storing these different types of SF, at time t=0 year after reactor discharge. Two techniques were implemented. In the first one, all the materials of the fuel elements are considered. In the second, the SF is treated as holes inside the pool, assuming the heat transfer directly from the SF to the water. Results from first technique show that the boiling time (T{sub b}) ranged from 23 minutes for (Th,TRU)O{sub 2} from VHTR to 3 hours for UO{sub 2} from VHTR, while for the second technique, T{sub b} ranged from 10 minutes for (Th,TRU)O{sub 2} from VHTR to 2.7 hours for UO{sub 2} from VHTR. The discrepancies between Tb from both techniques reveal that the pathways considered for the heat transfer are crucial to the results. The thermal studies used the module CFX of the ANSYS Workbench 16.2 - student version. (author)

  15. Spent fuel management in France: Programme status

    International Nuclear Information System (INIS)

    Chaudat, J.P.

    1990-01-01

    France's programme is best characterized as a closed fuel cycle including reprocessing, Plutonium recycling in PWR and use of breeder reactors. The current installed nuclear capacity is 52.5 GWe from 55 units. The spent fuel management scheme chosen is reprocessing. This paper describes the national programme, spent nuclear fuel storage, reprocessing and contracts for reprocessing of spent fuel from various countries. (author). 5 figs, 2 tabs

  16. 2D and 3D thermal simulations for storage systems with internal natural convection for canistered spent fuel

    International Nuclear Information System (INIS)

    Yaksh, M.; Wang, C.

    2004-01-01

    In the US, the number of nuclear plants expected to implement on-site dry storage is increasing each year. As reactors burn advanced fuel assemblies to higher burnups, the dry storage systems will be required to accommodate higher heat loads. This is due to the increasing capacity of the systems and the need to store higher burnup fuel with reasonable cooling periods (i.e., five to six years). As the storage systems heat rejection design must be passive, natural convection is an efficient means for rejection of heat from the spent fuel to the surface of the canister boundary. The design presented in this paper is a canistered system that employs conduction, radiation and convection to reject heat from the canister, which is stored in a vertical concrete cask. The canister containing the spent fuel in this design is a right circular stainless steel vessel capable of storing 37 PWR fuel assemblies with a total canister heat load of 40 kW. Accompanying any design effort is the use of a numerical methodology that can accurately predict the peak-clad temperatures of the fuel and the structural components of the system. The main challenge to any analysis employing internal natural convection may be perceived as a practical limitation due to the size of the model. Since canisters are typically cylindrical, a two-dimensional model can be used to represent the canister. The fuel basket structure, which maintains the configuration of the spent fuel, is an array of square tubes, and is non-axisymmetric. Flow up through the fuel region in the basket encounters a complex cross section due to the fuel assembly rod array (up to 17 x 17). The flow region of the heated gas down the outside of the basket in the annulus between the canister shell and the basket assembly (downcomer) is also an irregular shaped area. To confirm that a two-dimensional (2D) modelling methodology is appropriate, a benchmark using results from a thermal test is required. The thermal test focuses on the

  17. SIVAR - Computer code for simulation of fuel rod behavior in PWR during fast transients

    International Nuclear Information System (INIS)

    Dias, A.F.V.

    1980-10-01

    Fuel rod behavior during a stationary and a transitory operation, is studied. A computer code aiming at simulating PWR type rods, was developed; however, it can be adapted for simulating other type of rods. A finite difference method was used. (E.G.) [pt

  18. Study on advanced nuclear fuel cycle of PWR/CANDU synergism

    International Nuclear Information System (INIS)

    Xie Zhongsheng; Huo Xiaodong

    2002-01-01

    According to the concrete condition that China has both PWR and CANDU reactors, one of the advanced nuclear fuel cycle strategy of PWR/CANDU synergism ws proposed, i.e. the reprocessed uranium of spent PWR fuel was used in CANDU reactor, which will save the uranium resource, increase the energy output, decrease the quantity of spent fuels to be disposed and lower the cost of nuclear power. Because of the inherent flexibility of nuclear fuel cycle in CANDU reactor, the transition from the natural uranium to the recycled uranium (RU) can be completed without any changes of the structure of reactor core and operation mode. Furthermore, because of the low radiation level of RU, which is acceptable for CANDU reactor fuel fabrication, the present product line of fuel elements of CANDU reactor only need to be shielded slightly, also the conditions of transportation, operation and fuel management need not to be changed. Thus this strategy has significant practical and economical benefit

  19. Normality test for determining the correction factor of isotopic composition in PWR spent fuel

    International Nuclear Information System (INIS)

    Lee, Y. H.; Shin, H. S.; Noh, S. K.; Seo, K. S.

    2001-01-01

    Normality test has been carried out for the ratios of the measured-to-calculated isotopic compositions in PWR spent fuel, using Shapiro-Wilk W, Lilliefors D, Cramer-von Mises and Anderson-Darling. All 38 istopices have been evaluated by means of the 1.5xIQR rule and then outliers have been discarded. As result, it seems that only 20 nuclides are satisfied with the normality at significance level 5 %. 18 Nuclides(samples) including U-235 have higher significance probability(p-value) than 25 % in W-test and p-values obtained by other three tests exceed the upper limit. Besides, in 6 nuclides including Pu-239, it seems that the p-values are between 5 % and 25 % in W test. From these results, in order to predict the isotopic compositions in the conservative point of view, it is decided that the correction factors for the nuclides are determined at the 95/95 probability and confidence level by using tolerance limit-methods with the assumption that only 18 nuclides are satisfied with thr normality

  20. Development of a computer code for transients simulation in PWR type reactors

    International Nuclear Information System (INIS)

    Alvim, A.C.M.; Botelho, D.A.; Oliveira Barroso, A.C. de

    1981-01-01

    A computer code for the simulation of operacional-transients and accidents in PWR type reactors is being developed at IEN (Instituto de Engenharia Nuclear). Accidents will be considered in which variations in thermohydraulics parameters of fuel and coolant don't cause nucleate boiling in the reactor core, but, otherwise are sufficiently strong to justify a more detailed simulation than that used in linearized models. (E.G.) [pt

  1. Simulation of small break loss of coolant accident in pressurized water reactor (PWR)

    International Nuclear Information System (INIS)

    Abass, N. M. N.

    2012-02-01

    A major safety concern in pressurized-water-reactor (PWR) design is the loss-of-coolant accident (LOCA),in which a break in the primary coolant circuit leads to depressurization, boiling of the coolant, consequent reduced cooling of the reactor core, and , unless remedial measures are taken, overheating of the fuel rods. This concern has led to the development of several simulators for safety analysis. This study demonstrates how the passive and active safety systems in conventional and advanced PWR behave during the small break loss of Coolant Accident (SBLOCA). The consequences of SBOLOCA have been simulated using IAEA Generic pressurized Water Reactor Simulator (GPWRS) and personal Computer Transient analyzer (PCTRAN) . The results were presented and discussed. The study has confirmed the major safety advantage of passive plants versus conventional PWRs is that the passive safety systems provide long-term core cooling and decay heat removal without the need for operator actions and without reliance on active safety-related system. (Author)

  2. Investigation of modeling and simulation on a PWR power conversion system with RELAP5

    International Nuclear Information System (INIS)

    Rui Gao; Yang Yanhua; Lin Meng; Yuan Minghao; Xie Zhengrui

    2007-01-01

    Based on the power conversion system of nuclear and conventional islands of Dayabay nuclear power station, this paper models the thermal-hydraulic systems for PWR by using the best-estimate program, RELAP5. To simulate the full-scope power conversion system, not only the reactor coolant system (RCP) of nuclear island, but also the main steam system (VVP), turbine steam and drain system (GPV), bypass system (GCT), feedwater system (FW), condensate extraction system (CEX), moisture separator reheater system (GSS), turbine-driven feedwater pump (APP), low-pressure and high-pressure feedwater heater systems (ABP and AHP) of conventional island are considered and modeled. A comparison between the simulated results and the actual data of reactor under full-power demonstrates a fine match for Dayabay, and also manifests the feasibility in simulating full-scope power conversion system of PWR with RELAP5. (author)

  3. Review of Current Criteria of Spent Fuel Rod Integrity during Dry Storage

    International Nuclear Information System (INIS)

    Yang, Yong Sik; Kim, Sun Ki; Bang, Je Geon; Song, Kun Woo

    2006-01-01

    A PWR spent fuel has been stored in a wet storage pool in Korea. However, the amount of spent fuel is expected to exceed the capacity of a wet storage pool within 10∼15 years. From the early 1970's, a research on the PWR spent fuel dry storage started because the dry storage system has been economical compared with the wet storage system. The dry storage technology for Zircaloy-clad fuel was assessed and licensed in many countries such as USA, Canada, FRG and Switzerland. In the dry storage system, a clad temperature may be higher than in the wet storage system and can reach up to 400 .deg.. A higher clad temperature can cause cladding failures during the period of dry storage, and thus a dry storage related research has essentially dealt with the prevention of clad degradation. It is temperature and rod internal pressure that cause cladding failures through the mechanisms such as clad creep rupture, hydride re-orientation, and stress-corrosion cracking etc.. In this paper, the current licensing criteria are summarized for the PWR spent fuel dry storage system, especially on spent fuel rod integrity. And it is investigated that an application propriety of existing criteria to Korea spent fuel dry storage system

  4. Abnormal transient analysis by using PWR plant simulator, (2)

    International Nuclear Information System (INIS)

    Naitoh, Akira; Murakami, Yoshimitsu; Yokobayashi, Masao.

    1983-06-01

    This report describes results of abnormal transient analysis by using a PWR plant simulator. The simulator is based on an existing 822MWe power plant with 3 loops, and designed to cover wide range of plant operation from cold shutdown to full power at EOL. In the simulator, malfunctions are provided for abnormal conditions of equipment failures, and in this report, 17 malfunctions for secondary system and 4 malfunctions for nuclear instrumentation systems were simulated. The abnormal conditions are turbine and generator trip, failure of condenser, feedwater system and valve and detector failures of pressure and water level. Fathermore, failure of nuclear instrumentations are involved such as source range channel, intermediate range channel and audio counter. Transient behaviors caused by added malfunctions were reasonable and detail information of dynamic characteristics for turbine-condenser system were obtained. (author)

  5. Development of a water boil-off spent-fuel calorimeter system

    International Nuclear Information System (INIS)

    Creer, J.M.; Shupe, J.W. Jr.

    1981-05-01

    A calorimeter system was developed to measure decay heat generation rates of unmodified spent fuel assemblies from commercial nuclear reactors. The system was designed, fabricated, and successfully tested using the following specifications: capacity of one BWR or PWR spent fuel assembly; decay heat generation range 0.1 to 2.5 kW; measurement time of < 12 h; and an accuracy of +-10% or better. The system was acceptance tested using a dc reference heater to simulate spent fuel assembly heat generation rates. Results of these tests indicated that the system could be used to measure heat generation rates between 0.5 and 2.5 kW within +- 5%. Measurements of heat generation rates of approx. 0.1 kW were obtained within +- 15%. The calorimeter system has the potential to permit measurements of heat generation rates of spent fuel assemblies and other devices in the 12- to 14-kW range. Results of calorimetry of a Turkey Point spent fuel assembly indicated that the assembly was generating approx. 1.55 kW

  6. Long-Term Dry Storage of High Burn-Up Spent Pressurized Water Reactor (PWR) Fuel in TAD (Transportation, Aging, and Disposal) Containers

    International Nuclear Information System (INIS)

    Hwang, Yong Soo

    2008-12-01

    A TAD canister, in conjunction with specially-designed over-packs can accomplish the functions of transportation, aging, and disposal (TAD) in the management of spent nuclear fuel (SNF). Industrial dry cask systems currently available for SNF are licensed for storage-only or for dual-purpose (i.e., storage and transportation). By extending the function to include the indefinite storage and perhaps, eventual geologic disposal, the TAD canister would have to be designed to enhance, among others, corrosion resistance, thermal stability, and criticality-safety control. This investigative paper introduces the use of these advanced iron-based, corrosion-resistant materials for SNF transportation, aging, and disposal.The objective of this investigative project is to explore the interest that KAERI would research and develop its specific SAM coating materials for the TAD canisters to satisfy the requirements of corrosion-resistance, thermal stability, and criticality-controls for long-term dry storage of high burn-up spent PWR fuel

  7. Investigation of water-logged spent fuel rods under dry storage conditions

    International Nuclear Information System (INIS)

    Kohli, R.; Pasupathi, V.

    1986-09-01

    Tests were conducted to determine the amount of moisture contained in breached, water-logged spent fuel rods and the rate of release. Two well-characterized BWR fuel rods with reactor-induced breaches were tested in a hot cell. These rods contained approximately 6 to 10 g of moisture, most of which was released during heating tests simulating normal cask drying operations. Additional testing with two intentionally defected fuel rods (BWR and PWR) was performed to evaluate the effect of the cladding breach on migration of moisture along the length of the fuel rod. The results showed that the moisture released from reactor-breached spent fuel rods was insufficient to cause degradation of fuel or dry storage system components

  8. Achievement of a training simulator for PWR power plant: application to control parametric studies

    International Nuclear Information System (INIS)

    Salomon-Sigogne, A.

    1982-09-01

    A simulation tool adapted to training tasks is developed. One presents the description of the simulator. One studies the management of a model by NEPTUN X2. A general description of a 900 MW PWR power station and the modelling of the power station are presented. The results obtained on the FIDIANE version of the simulator are finally analyzed [fr

  9. Simulation of differential die-away instrument’s response to asymmetrically burned spent nuclear fuel

    International Nuclear Information System (INIS)

    Martinik, Tomas; Henzl, Vladimir; Grape, Sophie; Svärd, Staffan Jacobsson; Jansson, Peter; Swinhoe, Martyn T.; Tobin, Stephen J.

    2015-01-01

    Previous simulation studies of Differential Die‐Away (DDA) instrument’s response to active interrogation of spent nuclear fuel from a pressurized water reactor (PWR) yielded promising results in terms of its capability to accurately measure or estimate basic spent fuel assembly (SFA) characteristics, such as multiplication, initial enrichment (IE) and burn-up (BU) as well as the total plutonium content. These studies were however performed only for a subset of idealized SFAs with a symmetric BU with respect to its longitudinal axis. Therefore, to complement the previous results, additional simulations have been performed of the DDA instrument’s response to interrogation of asymmetrically burned spent nuclear fuel in order to determine whether detailed assay of SFAs from all 4 sides will be necessary in real life applications or whether a cost and time saving single sided assay could be used to achieve results of similar quality as previously reported in case of symmetrically burned SFAs. The results of this study suggest that DDA instrument response depends on the position of the individual neutron detectors and in fact can be split in two modes. The first mode, measured by the back detectors, is not significantly sensitive to the spatial distribution of fissile isotopes and neutron absorbers, but rather reflects the total amount of both contributors as in the cases of symmetrically burned SFAs. In contrary, the second mode, measured by the front detectors, yields certain sensitivity to the orientation of the asymmetrically burned SFA inside the assaying instrument. This study thus provides evidence that the DDA instrument can potentially be utilized as necessary in both ways, i.e. a quick determination of the average SFA characteristics in a single assay, as well as a more detailed characterization involving several DDA observables through assay of the SFA from all of its four sides that can possibly map the burn-up distribution and/or identify diversion or

  10. Simulation of differential die-away instrument’s response to asymmetrically burned spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Martinik, Tomas, E-mail: tomas.martinik@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516 Sweden, SE-75120 Uppsala (Sweden); Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545 (United States); Henzl, Vladimir [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545 (United States); Grape, Sophie; Svärd, Staffan Jacobsson; Jansson, Peter [Department of Physics and Astronomy, Uppsala University, Box 516 Sweden, SE-75120 Uppsala (Sweden); Swinhoe, Martyn T. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545 (United States); Tobin, Stephen J. [Department of Physics and Astronomy, Uppsala University, Box 516 Sweden, SE-75120 Uppsala (Sweden); Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545 (United States); Swedish Nuclear Fuel and Waste Management Company, Blekholmstorget 30, Box 250, SE-101 24 Stockholm (Sweden)

    2015-07-11

    Previous simulation studies of Differential Die‐Away (DDA) instrument’s response to active interrogation of spent nuclear fuel from a pressurized water reactor (PWR) yielded promising results in terms of its capability to accurately measure or estimate basic spent fuel assembly (SFA) characteristics, such as multiplication, initial enrichment (IE) and burn-up (BU) as well as the total plutonium content. These studies were however performed only for a subset of idealized SFAs with a symmetric BU with respect to its longitudinal axis. Therefore, to complement the previous results, additional simulations have been performed of the DDA instrument’s response to interrogation of asymmetrically burned spent nuclear fuel in order to determine whether detailed assay of SFAs from all 4 sides will be necessary in real life applications or whether a cost and time saving single sided assay could be used to achieve results of similar quality as previously reported in case of symmetrically burned SFAs. The results of this study suggest that DDA instrument response depends on the position of the individual neutron detectors and in fact can be split in two modes. The first mode, measured by the back detectors, is not significantly sensitive to the spatial distribution of fissile isotopes and neutron absorbers, but rather reflects the total amount of both contributors as in the cases of symmetrically burned SFAs. In contrary, the second mode, measured by the front detectors, yields certain sensitivity to the orientation of the asymmetrically burned SFA inside the assaying instrument. This study thus provides evidence that the DDA instrument can potentially be utilized as necessary in both ways, i.e. a quick determination of the average SFA characteristics in a single assay, as well as a more detailed characterization involving several DDA observables through assay of the SFA from all of its four sides that can possibly map the burn-up distribution and/or identify diversion or

  11. Natural-circulation-cooling characteristics during PWR accident simulations

    International Nuclear Information System (INIS)

    Adams, J.P.; McCreery, G.E.; Berta, V.T.

    1983-01-01

    A description of natural circulation cooling characteristics is presented. Data were obtained from several pressurized water reactor accident simulations in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR). The reliability of natural circulation cooling, its cooling effectiveness, and the effect of changing system conditions are described. Quantitative comparison of flow rates and time constants with theory for both single- and two-phase fluid conditions were made. It is concluded that natural circulation cooling can be relied on in plant recovery procedures in the absence of forced convection whenever the steam generator heat sink is available

  12. Transmutation of DUPIC spent fuel in the hyper system

    International Nuclear Information System (INIS)

    Kim, Y.H.; Song, T.Y.

    2005-01-01

    In this paper, the transmutation of TRUs of the DUPIC (Direct Use of Spent PWR Fuel in CANDU) spent fuel has been studied with the HYPER system, which is an LBE-cooled ADS. The DUPIC concept is a synergistic combination of PWRs and CANDUs, in which PWR spent fuels are directly re-utilized in CANDU reactors after a very simple re-fabrication process. In the DUPIC-HYPER fuel cycle, TRUs are recovered by using a pyro-technology and they are incinerated in a metallic fuel form of U-TRU-Zr. The objective of this study is to investigate the TRU transmutation potential of the HYPER core for the DUPIC-HYPER fuel cycle. All the previously-developed HYPER core design concepts were retained except that fuel is composed of TRU from the DUPIC spent fuel. In order to reduce the burnup reactivity swing, a B 4 C burnable absorber is used. The HYPER core characteristics have been analyzed with the REBUS-3/DIF3D code system. (authors)

  13. Numerical simulation of the heating and start-up of PWR nuclear power station

    International Nuclear Information System (INIS)

    Faraco-Medeiros, M.A.; Leite, C.A.T.; Ramalho, F.P.

    1992-01-01

    The start-up of a PWR nuclear power plant must be done within safety criteria and requires a simulation. The design of some equipment, cost and time can be optimized. A computer simulator, which allows control of all the equipment and variables into the operation, has been developed and is presented in this paper. The KWU procedure and an alternative for Angra II were simulated. The results are showed up. 09 refs, 03 figs. (B.C.A.)

  14. Evaluation of burnup credit for accommodating PWR spent nuclear fuel in high-capacity cask designs

    International Nuclear Information System (INIS)

    Wagner, John C.

    2003-01-01

    This paper presents an evaluation of the amount of burnup credit needed for high-density casks to transport the current U.S. inventory of commercial spent nuclear fuel (SNF) assemblies. A prototypic 32-assembly cask and the current regulatory guidance were used as bases for this evaluation. By comparing actual pressurized-water-reactor (PWR) discharge data (i.e., fuel burnup and initial enrichment specifications for fuel assemblies discharged from U.S. PWRs) with actinide-only-based loading curves, this evaluation finds that additional negative reactivity (through either increased credit for fuel burnup or cask design/utilization modifications) is necessary to accommodate the majority of SNF assemblies in high-capacity storage and transportation casks. The impact of varying selected calculational assumptions is also investigated, and considerable improvement in effectiveness is shown with the inclusion of the principal fission products (FPs) and minor actinides and the use of a bounding best-estimate approach for isotopic validation. Given sufficient data for validation, the most significant component that would improve accuracy, and subsequently enhance the utilization of burnup credit, is the inclusion of FPs. (author)

  15. Integrated model of Korean spent fuel and high level waste disposal options - 16091

    International Nuclear Information System (INIS)

    Hwang, Yongsoo; Miller, Ian

    2009-01-01

    This paper describes an integrated model developed by the Korean Atomic Energy Research Institute (KAERI) to simulate options for disposal of spent nuclear fuel (SNF) and reprocessing products in South Korea. A companion paper (Hwang and Miller, 2009) describes a systems-level model of Korean options for spent nuclear fuel (SNF) management in the 21. century. The model addresses alternative design concepts for disposal of SNF of different types (Candu, PWR), high level waste, and fission products arising from a variety of alternative fuel cycle back ends. It uses the GoldSim software to simulate the engineered system, near-field and far-field geosphere, and biosphere, resulting in long-term dose predictions for a variety of receptor groups. The model's results allow direct comparison of alternative repository design concepts, and identification of key parameter uncertainties and contributors to receptor doses. (authors)

  16. The spent fuel safety experiment

    International Nuclear Information System (INIS)

    Harmms, G.A.; Davis, F.J.; Ford, J.T.

    1995-01-01

    The Department of Energy is conducting an ongoing investigation of the consequences of taking fuel burnup into account in the design of spent fuel transportation packages. A series of experiments, collectively called the Spent Fuel Safety Experiment (SFSX), has been devised to provide integral benchmarks for testing computer-generated predictions of spent fuel behavior. A set of experiments is planned in which sections of unirradiated fuel rods are interchanged with similar sections of spent PWR fuel rods in a critical assembly. By determining the critical size of the arrays, one can obtain benchmark data for comparison with criticality safety calculations. The integral reactivity worth of the spent fuel can be assessed by comparing the measured delayed critical fuel loading with and without spent fuel. An analytical effort to model the experiments and anticipate the core loadings required to yield the delayed critical conditions runs in parallel with the experimental effort

  17. An integrated methodology to evaluate a spent nuclear fuel storage system

    International Nuclear Information System (INIS)

    Yoon, Jeong Hyoun

    2008-02-01

    This study introduced a methodology that can be applied for development of a dry storage system for spent nuclear fuels. It consisted of several design activities that includes development of a simplified program to analyze the amount of spent nuclear fuels from reflecting the practical situation in spent nuclear fuel management and a simplified program to evaluate the cost of 4 types of representing storage system to choose the most competitive option considering economic factor. As verification of the implementation of the reference module to practical purpose, a simplified thermal analysis code was suggested that can see fulfillment of limitation of temperature in long term storage and oxidation analysis. From the thermal related results, the reference module can accommodate full range of PHWR spent nuclear fuels and significant portion of PWR ones too. From the results, the reference storage system can be concluded that has fulfilled the important requirements in terms of long term integrity and radiological safety. Also for the purpose of solving scattered radiation along with deep penetration problems in cooling storage system, small but efficient design alternation was suggested together with its efficiency that can reduce scattered radiation by 1/3 from the original design. Along with the countermeasure for the shielding problem, in consideration of PWR spent nuclear fuels, simplified criticality analysis methodology retaining conservativeness was proposed. The results show the reference module is efficient low enrichment PWR spent nuclear fuel and even relatively high enrichment fuels too if burnup credit is taken. As conclusive remark, the methodology is simple but efficient to plan a concept design of convective cooling type of spent nuclear fuels storage. It can be also concluded that the methodology derived in this study and the reference module has feasibility in practical implementation to mitigate the current complex situation in spent fuel

  18. A new model for simulation of pressurizers in PWR power plants

    International Nuclear Information System (INIS)

    Madeira, A.A.

    1981-02-01

    The pressurizer of a PWR type reactor was simulated as a thermodynamical system made up of three regions with movable boundaries. The mechanisms of normal condensation, condensation induced by spray, flashing and heat exchange across the water - steam interface, were studied. Various tests have been carried out and satisfactory results were obtained when compared with those from other models and also with some available experimental data. (E.G.) [pt

  19. Low cycle fatigue behavior of hot-bent 347 stainless steel in a simulated PWR water environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Ho; Seo, Myung Gyu; Jang, Chang Heui [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Hong, Jong Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Tae Soon [Central Research InstituteKorea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2016-11-15

    The effect of hot bending on the Low cycle fatigue (LCF) behavior of 347 SS was evaluated in Room temperature (RT) air and simulated Pressurized water reactor (PWR) water environments. The LCF life of 347 SS in PWR water was shorter than that in RT air for the as-received and hot-bent conditions. The LCF life of hot-bent 347 SS was relatively longer than that of the as-received condition in both RT air and PWR water. Microstructure analysis indicated development of dislocation structure near niobium carbide particles and increase in dislocation density for the hot-bent 347 SS. Such microstructure acted as barriers to dislocation movement during the LCF test, resulting in minimal hardening for the hot-bent 347 SS in RT air.

  20. PKL/K9, Refill and Reflood Experiment in a Simulated PWR Primary System (PKL)

    International Nuclear Information System (INIS)

    1981-01-01

    1 - Description of test facility: PKL-facility simulates the essential primary system components of a typical West German 1300 PWR with regard to their thermohydraulic behaviour. The facility essentially consists of the pressure vessel with the heated bundle, the downcomer simulator, the primary loops with the components steam generator and pump simulator, the injection devices, the break geometry simulator, as well as the separators connected thereto, and the test containment to maintain a back-pressure at the location of break which is expected to be typical for emergency conditions. The number of heater rods and the cross-sections of the testing plant are on a reduced scale 1:134 in comparison with a typical German PWR. The elevations and locations are essentially full scale. Pressure vessel: The space between the pressure vessel and the inner core casing is sealed from the core region and the upper and lower plenum and connected with the upper plenum only by a pressure equalization line. The rod bundle surrounded by the inner core casing consists of 340 rods, 337 of which are indirect electrically heated. The test bundle cross-section as well as a heater element with the measuring elevations, the original-KWU-spacers and the axial power profile (7 power steps) are described. Downcomer: The downcomer is simulated by the downcomer nozzle region and the downcomer U-tube. The cold leg injection takes place both directly in the downcomer nozzle region and in the lines of t he intact single and double loop near to the downcomer nozzle region. A cylindrical insertion and repulsing metal sheets are installed in the downcomer nozzle region in order to avoid the emergency injection points into the broken loop. 2 - Description of test: Test K 9 out of a series PKL-IB was conducted on May 30, 1979 by Kraftwerk Union (KWU) at Erlangen (Germany). The objective of the integral cold leg injection test K 9 (double-ended 200%-break) was to investigate after a LOCA the refill and

  1. Dissolution process for advanced-PWR-type fuels

    International Nuclear Information System (INIS)

    Black, D.E.; Decker, L.A.; Pearson, L.G.

    1979-01-01

    The new Fluorinel Dissolution Process and Fuel Storage (FAST) Facility at ICPP will provide underwater storage of spent PWR fuel and a new head-end process for fuel dissolution. The dissolution will be two-stage, using HF and HNO 3 , with an intermittent H 2 SO 4 dissolution for removing stainless steel components. Equipment operation is described

  2. Burnup credit feasibility for BWR spent fuel shipments

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1990-01-01

    Considerable interest in the allowance of reactivity credit for the exposure history of power reactor fuel currently exists. This ''burnup credit'' issue has the potential to greatly reduce risk and cost when applied to the design and certification of spent of fuel casks used for transportation and storage. Analyses 1 have shown the feasibility estimated the risk and economic incentives for allowing burnup credit in pressurized water reactor (PWR) spent fuel shipping cask applications. This paper summarizes the extension of the previous PWR feasibility assessments to boiling water reactor (BWR) fuel. As with the PWR analysis, the purpose was not verification of burnup credit (see ref. 2 for ongoing work in this area) but a reasonable assessment of the feasibility and potential gains from its use in BWR applications. This feasibility analysis aims to apply simple methods that adequately characterize the time-dependent isotopic compositions of typical BWR fuel. An initial analysis objective was to identify a simple and reliable method for characterizing BWR spent fuel. The method includes characterization of a typical pin-cell spectrum, using a one-dimensional (1-D) model of a BWR assembly. The calculated spectrum allows burnup-dependent few-group material constants to be generated. Point depletion methods were then used to obtain the time-varying characteristics of the fuel. These simple methods were validated, where practical, with multidimensional methods. 6 refs., 1 tab

  3. Bituminization of simulated PWR type reactor wastes, boric evaporator bottons and ion exchange resins, carried out in CNEN/SP using commercial bitumen available in the Brazilian market

    International Nuclear Information System (INIS)

    Grosche Filho, C.E.; Chandra, U.

    1986-01-01

    The first results of the study of bituminization of simulated PWR wastes, boric evaporator bottons and spent ion-exclange resins (OH - , H + ) and incinerated ash-wates are presented and discussed. The study consisted of characterization of the commercial bitumen, locally available and bitumen wastes products of varying whight compositions. The characterization was carried out using standard analysis methods of ABNT and ASTM, and included measurement of, penetration, softening point and flash point. In addition, the bitumen samples were analized for their resin and asphaltene contents. For leaching studies, wastes products of bitumen and resin loaded with 134 Cs were utilized. The method used was according to the ISO norms. The simulation of the industrial process was carried out using an extruder-evaporator typically used in the plastic industries offered by Industria de Maquinas Miotto Ltda., Sao Bernardo do Campo - SP. (Author) [pt

  4. Review and evaluation of long-term integrity on metal casks and spent fuels stored in overseas countries

    International Nuclear Information System (INIS)

    Sasahara, Akihiro; Saegusa, Toshiari

    2009-01-01

    Inspection and experimental results on the metal cask and PWR-UO 2 spent fuels practically stored for fifteen years in Idaho National Laboratory (INL) are reviewed. Experimental results on PWR-UO 2 and BWR-MOX spent fuels stored for twenty years under wet or dry condition obtained by Central Research Institute of Electric Power Industry (CRIEPI) are also reviewed. These results show that the integrity of the metal cask and PWR-spent fuels are maintained at least during dry storage for fifteen years and that Japanese electric utilities may start their self-inspection on casks and spent fuels after fifteen-year storage. The gas sampling carrying out in INL can be applied to licensing for interim dry storage facilities in Japan. New program for the fuel integrity for high burn-up fuels (>45 GWd/MTU) at transportation after dry storage has been launched by Nuclear Regulation Commission (NRC), Department of Energy (DOE) and Electric Power Research Institute (EPRI) in USA. (author)

  5. Status analysis for the confinement monitoring technology of PWR spent nuclear fuel dry storage system

    Energy Technology Data Exchange (ETDEWEB)

    Baeg, Chang Yeal; Cho, Chun Hyung [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-03-15

    Leading national R and D project to design a PWR spent nuclear fuel interim dry storage system that has been under development since mid-2009, which consists of a dual purpose metal cask and concrete storage cask. To ensure the safe operation of dry storage systems in foreign countries, major confinement monitoring techniques currently consist of pressure and temperature measurement. In the case of a dual purpose metal cask, a pressure sensor is installed in the interspace of bolted double lid(primary and secondary lid) in order to measure pressure. A concrete storage cask is a canister based system made of double/redundant welded lid to ensure confinement integrity. For this reason, confinement monitoring method is real time temperature measurement by thermocouple placed in the air flow(air intake and exit) of the concrete structure(over pack and module). The use of various monitoring technologies and operating experiences for the interim dry storage system over the last decades in foreign countries were analyzed. On the basis of the analysis above, development of the confinement monitoring technology that can be used optimally in our system will be available in the near future.

  6. Sodium fast reactor: an asset for a PWR UOX/MOX fleet - 5327

    International Nuclear Information System (INIS)

    Tiphine, M.; Coquelet-Pascal, C.; Girieud, R.; Eschbach, R.; Chabert, C.; Grosman, R.

    2015-01-01

    Due to its low fissile content, Pu from spent MOX fuels is sometimes regarded as not recyclable in LWR. Based on the existing French nuclear infrastructure (La Hague reprocessing plant and MELOX MOX manufacturing plant), AREVA and CEA have evaluated the conditions of Pu multi recycling in a 100% LWR fleet. As France is currently supporting a Fast Reactor prototype project, scenario studies have also been conducted to evaluate the contribution of a 600 MWe SFR in the LWR fleet. These scenario studies consider a nuclear fleet composed of 8 PWR 900 MWe, with or without the contribution of a SFR, and aim at evaluating the following points: -) the feasibility of Pu multi-recycling in PWR; -) the impact on the spent fuels storage; -) the reduction of the stored separated Pu; -) the impact on waste management and final disposal. The studies have been conducted with the COSI6 code, developed by CEA Nuclear Energy Direction since 1985, that simulates the evolution over time of a nuclear power plants fleet and of its associated fuel cycle facilities and provides material flux and isotopic compositions at each point of the scenario. To multi-recycle Pu into LWR MOX and to ensure flexibility, different reprocessing strategies were evaluated by adjusting the reprocessing order, the choice of used fuel assemblies according to their burn-up and the UOX/MOX proportions. The improvement of the Pu fissile quality and the kinetic of Pu multi-recycling in SFR depending on the initial Pu quality were also evaluated and led to a reintroduction of Pu in PWR MOX after a single irradiation in SFR, still in dilution with Pu from UOX to maintain a sufficient fissile quality. (authors)

  7. DOMPAC dosimetry experiment. Neutronic simulation of the thickness of a PWR pressure vessel. Irradiation damages

    International Nuclear Information System (INIS)

    Alberman, A.; Faure, M.; Thierry, M.; Hoclet, O.; Le Dieu de Ville, A.; Nimal, J.C.; Soulat, P.

    1979-01-01

    For suitable extrapolation of irradiated PWR ferritic steel results, proper irradiation of the pressure vessel has been 'simulated' in test reactor. For this purpose, a huge steel block (20 cm in depth) was loaded with Saclay's graphite (GAMIN) and tungsten damage detectors. Core-block water gap was optimized through spectrum indexes method, by ANISN and SABINE codes so that spectrum in 1/4 thickness matches with ANISN computations for PWR Fessenheim 1. A good experimental agreement is found with calculated dpa damage gradient. 3D Monte Carlo computation (TRIPOLI), was performed on the DOMPAC device, and spectrum indexes evolution was found consistent with experimental results. Surveillance rigs behind a 'thermal shield' were also simulated, including damage and activation monitors. Dosimetry results give an order of magnitude of accuracies involved in projecting steel sample embrittlement to the pressure vessel [fr

  8. Methodology for the LABIHS PWR simulator modernization

    Energy Technology Data Exchange (ETDEWEB)

    Jaime, Guilherme D.G.; Oliveira, Mauro V., E-mail: gdjaime@ien.gov.b, E-mail: mvitor@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The Human-System Interface Laboratory (LABIHS) simulator is composed by a set of advanced hardware and software components whose goal is to simulate the main characteristics of a Pressured Water Reactor (PWR). This simulator serves for a set of purposes, such as: control room modernization projects; designing of operator aiding systems; providing technological expertise for graphical user interfaces (GUIs) designing; control rooms and interfaces evaluations considering both ergonomics and human factors aspects; interaction analysis between operators and the various systems operated by them; and human reliability analysis in scenarios considering simulated accidents and normal operation. The simulator runs in a PA-RISC architecture server (HPC3700), developed nearby 2000's, using the HP-UX operating system. All mathematical modeling components were written using the HP Fortran-77 programming language with a shared memory to exchange data from/to all simulator modules. Although this hardware/software framework has been discontinued in 2008, with costumer support ceasing in 2013, it is still used to run and operate the simulator. Due to the fact that the simulator is based on an obsolete and proprietary appliance, the laboratory is subject to efficiency and availability issues, such as: downtime caused by hardware failures; inability to run experiments on modern and well known architectures; and lack of choice of running multiple simulation instances simultaneously. This way, there is a need for a proposal and implementation of solutions so that: the simulator can be ported to the Linux operating system, running on the x86 instruction set architecture (i.e. personal computers); we can simultaneously run multiple instances of the simulator; and the operator terminals run remotely. This paper deals with the design stage of the simulator modernization, in which it is performed a thorough inspection of the hardware and software currently in operation. Our goal is to

  9. Methodology for the LABIHS PWR simulator modernization

    Energy Technology Data Exchange (ETDEWEB)

    Jaime, Guilherme D.G.; Oliveira, Mauro V., E-mail: gdjaime@ien.gov.b, E-mail: mvitor@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The Human-System Interface Laboratory (LABIHS) simulator is composed by a set of advanced hardware and software components whose goal is to simulate the main characteristics of a Pressured Water Reactor (PWR). This simulator serves for a set of purposes, such as: control room modernization projects; designing of operator aiding systems; providing technological expertise for graphical user interfaces (GUIs) designing; control rooms and interfaces evaluations considering both ergonomics and human factors aspects; interaction analysis between operators and the various systems operated by them; and human reliability analysis in scenarios considering simulated accidents and normal operation. The simulator runs in a PA-RISC architecture server (HPC3700), developed nearby 2000's, using the HP-UX operating system. All mathematical modeling components were written using the HP Fortran-77 programming language with a shared memory to exchange data from/to all simulator modules. Although this hardware/software framework has been discontinued in 2008, with costumer support ceasing in 2013, it is still used to run and operate the simulator. Due to the fact that the simulator is based on an obsolete and proprietary appliance, the laboratory is subject to efficiency and availability issues, such as: downtime caused by hardware failures; inability to run experiments on modern and well known architectures; and lack of choice of running multiple simulation instances simultaneously. This way, there is a need for a proposal and implementation of solutions so that: the simulator can be ported to the Linux operating system, running on the x86 instruction set architecture (i.e. personal computers); we can simultaneously run multiple instances of the simulator; and the operator terminals run remotely. This paper deals with the design stage of the simulator modernization, in which it is performed a thorough inspection of the hardware and software currently in operation. Our goal is to

  10. Methodology for the LABIHS PWR simulator modernization

    International Nuclear Information System (INIS)

    Jaime, Guilherme D.G.; Oliveira, Mauro V.

    2011-01-01

    The Human-System Interface Laboratory (LABIHS) simulator is composed by a set of advanced hardware and software components whose goal is to simulate the main characteristics of a Pressured Water Reactor (PWR). This simulator serves for a set of purposes, such as: control room modernization projects; designing of operator aiding systems; providing technological expertise for graphical user interfaces (GUIs) designing; control rooms and interfaces evaluations considering both ergonomics and human factors aspects; interaction analysis between operators and the various systems operated by them; and human reliability analysis in scenarios considering simulated accidents and normal operation. The simulator runs in a PA-RISC architecture server (HPC3700), developed nearby 2000's, using the HP-UX operating system. All mathematical modeling components were written using the HP Fortran-77 programming language with a shared memory to exchange data from/to all simulator modules. Although this hardware/software framework has been discontinued in 2008, with costumer support ceasing in 2013, it is still used to run and operate the simulator. Due to the fact that the simulator is based on an obsolete and proprietary appliance, the laboratory is subject to efficiency and availability issues, such as: downtime caused by hardware failures; inability to run experiments on modern and well known architectures; and lack of choice of running multiple simulation instances simultaneously. This way, there is a need for a proposal and implementation of solutions so that: the simulator can be ported to the Linux operating system, running on the x86 instruction set architecture (i.e. personal computers); we can simultaneously run multiple instances of the simulator; and the operator terminals run remotely. This paper deals with the design stage of the simulator modernization, in which it is performed a thorough inspection of the hardware and software currently in operation. Our goal is to

  11. Investigation on spent fuel characteristics of reduced-moderation water reactor (RMWR)

    International Nuclear Information System (INIS)

    Fukaya, Y.; Okubo, T.; Uchikawa, S.

    2008-01-01

    The spent fuel characteristics of the reduced-moderation water reactor (RMWR) have been investigated using the SWAT and ORIGEN codes. RMWR is an advanced LWR concept for plutonium recycling by using the MOX fuel. In the code calculation, the ORIGEN libraries such as one-group cross-section data prepared for RMWR were necessary. Since there were no open libraries for RMWR, they were produced in this study by using the SWAT code. New libraries based on the heterogeneous core modeling in the axial direction and with the variable actinide cross-section (VXSEC) option were produced and selected as the representative ORIGEN libraries for RMWR. In order to investigate the characteristics of the RMWR spent fuel, the decay heat, the radioactivity and the content of each nuclide were evaluated with ORIGEN using these libraries. In this study, the spent fuel characteristics of other types of reactors, such as PWR, BWR, high burn-up PWR, full-MOX-PWR, full-MOX-BWR and FBR, were also evaluated with ORIGEN. It has been found that about a half of the decay heat of the RMWR spent fuel comes from the actinides nuclides. It is the same with the radioactivity. The decay heat and the radioactivity of the RMWR spent fuel are lower than those of full-MOX-LWRs and FBR, and are the same level as those of the high burn-up PWR. The decay heat and the radioactivity from the fission products (FPs) in the spent fuel mainly depend on the burn-up and the burn-up time rather than the reactor type. Therefore, the decay heat and the radioactivity from FPs in the RMWR spent fuel are smaller, reflecting its relatively long burn-up time resulted from its core characteristics with the high conversion ratio. The radioactivity from the actinides in the spent fuel mainly depends on the 241 Pu content in the initial fuel, and the decay heat mainly depends on 238 Pu and 244 Cm. The contribution of 244 Cm is much smaller in RMWR than in MOX-LWRs because of the difference in the spectrum. In addition, from

  12. Investigation on spent fuel characteristics of reduced-moderation water reactor (RMWR)

    Energy Technology Data Exchange (ETDEWEB)

    Fukaya, Y. [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency (JAEA), Oarai-machi, Ibaraki-ken 311-1393 (Japan)], E-mail: fukaya.yuji@jaea.go.jp; Okubo, T.; Uchikawa, S. [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency (JAEA), Oarai-machi, Ibaraki-ken 311-1393 (Japan)

    2008-07-15

    The spent fuel characteristics of the reduced-moderation water reactor (RMWR) have been investigated using the SWAT and ORIGEN codes. RMWR is an advanced LWR concept for plutonium recycling by using the MOX fuel. In the code calculation, the ORIGEN libraries such as one-group cross-section data prepared for RMWR were necessary. Since there were no open libraries for RMWR, they were produced in this study by using the SWAT code. New libraries based on the heterogeneous core modeling in the axial direction and with the variable actinide cross-section (VXSEC) option were produced and selected as the representative ORIGEN libraries for RMWR. In order to investigate the characteristics of the RMWR spent fuel, the decay heat, the radioactivity and the content of each nuclide were evaluated with ORIGEN using these libraries. In this study, the spent fuel characteristics of other types of reactors, such as PWR, BWR, high burn-up PWR, full-MOX-PWR, full-MOX-BWR and FBR, were also evaluated with ORIGEN. It has been found that about a half of the decay heat of the RMWR spent fuel comes from the actinides nuclides. It is the same with the radioactivity. The decay heat and the radioactivity of the RMWR spent fuel are lower than those of full-MOX-LWRs and FBR, and are the same level as those of the high burn-up PWR. The decay heat and the radioactivity from the fission products (FPs) in the spent fuel mainly depend on the burn-up and the burn-up time rather than the reactor type. Therefore, the decay heat and the radioactivity from FPs in the RMWR spent fuel are smaller, reflecting its relatively long burn-up time resulted from its core characteristics with the high conversion ratio. The radioactivity from the actinides in the spent fuel mainly depends on the {sup 241}Pu content in the initial fuel, and the decay heat mainly depends on {sup 238}Pu and {sup 244}Cm. The contribution of {sup 244}Cm is much smaller in RMWR than in MOX-LWRs because of the difference in the spectrum

  13. Development of advanced spent fuel management process. The fabrication and oxidation behavior of simulated metallized spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Seung Gy; Shin, Y.J.; You, G.S.; Joo, J.S.; Min, D.K.; Chun, Y.B.; Lee, E.P.; Seo, H.S.; Ahn, S.B

    1999-03-01

    The simulated metallized spent fuel ingots were fabricated and evaluated the oxidation rates and the activation energies under several temperature conditions to develop an advanced spent fuel management process. It was also checked the alloying characteristics of the some elements with metal uranium. (Author). 3 refs., 1 tab., 36 figs.

  14. Partial Defect Verification of Spent Fuel Assemblies by PDET: Principle and Field Testing in Interim Spent Fuel Storage Facility (CLAB) in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Y.S.; Kerr, P.; Sitaraman, S.; Swan, R. [Global Security Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Rossa, R. [SCK-CEN, Mol (Belgium); Liljenfeldt, H. [SKB in Oskarshamn (Sweden)

    2015-07-01

    The need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called 'difficult-to-access' areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into 'difficult-to-access' areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reported the successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17x17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly burnup levels. (authors)

  15. TRSM-a thermal-hydraulic real-time simulation model for PWR

    International Nuclear Information System (INIS)

    Zhou Weichang

    1997-01-01

    TRSM (a Thermal-hydraulic Real-time Simulation Model) has been developed for PWR real-time simulation and best-estimate prediction of normal operating and abnormal accident conditions. It is a non-equilibrium two phase flow thermal-hydraulic model based on five basic conservation equations. A drift flux model is used to account for the unequal velocities of liquid and gaseous mixture, with or without the presence of the noncondensibles. Critical flow models are applied for break flow and valve flow calculations. A 5-regime two phase heat convection model is applied for clad-to-coolant as well as fluid-to-tubing heat transfer. A rigorous reactor coolant pump model is used to calculate the pressure drop and rise for the suction and discharge ends with complete pump characteristics curves included. The TRSM model has been adapted in the full-scale training simulator of Qinshan Nuclear Power Plant 300 MW unit to simulate the thermal-hydraulic performance of the NSSS. The simulation results of a cold leg LOCA and a steam generator tube rupture (SGTR) accident are presented

  16. Transient analysis of multifailure conditions by using PWR plant simulator

    International Nuclear Information System (INIS)

    Morisaki, Hidetoshi; Yokobayashi, Masao.

    1984-11-01

    This report describes results of the analysis of abnormal transients caused by multifailures using a PWR plant simulator. The simulator is based on an existing 822MWe power plant with 3 loops, and designed to cover wide range of plant operation from cold shutdown to full power at the end of life. Various malfunctions to simulate abnormal conditions caused by equipment failures are provided. In this report, features of abnormal transients caused by concurrence of malfunctions are discussed. The abnormal conditions studied are leak of primary coolant, loss of charging and feedwater flows, and control systems failure. From the results, it was observed that transient responses caused by some of the malfunctions are almost same as the addition of behaviors caused by each single malfunction. Therefore, it can be said that kinds of malfunctions which are concurrent may be estimated from transient characteristics of each single malfunction. (author)

  17. Modeling and simulation of pressurizer dynamic process in PWR nuclear power plant

    International Nuclear Information System (INIS)

    Ma Jin; Liu Changliang; Li Shu'na

    2010-01-01

    By analysis of the actual operating characteristics of pressurizer in pressurized water reactor (PWR) nuclear power plant and based on some reasonable simplification and basic assumptions, the quality and energy conservation equations about pressurizer' s steam zone and the liquid zone are set up. The purpose of this paper is to build a pressurizer model of two imbalance districts. Water level and pressure control system of pressurizer is formed though model encapsulation. Dynamic simulation curves of main parameters are also shown. At last, comparisons between the theoretical analysis and simulation results show that the pressurizer model of two imbalance districts is reasonable. (authors)

  18. Scope and procedures of fuel management for PWR nuclear power plant

    International Nuclear Information System (INIS)

    Yao Zenghua

    1997-01-01

    The fuel management scope of PWR nuclear power plant includes nuclear fuel purchase and spent fuel disposal, ex-core fuel management, in-core fuel management, core management and fuel assembly behavior follow up. A suit of complete and efficient fuel management procedures have to be created to ensure the quality and efficiency of fuel management work. The hierarchy of fuel management procedure is divided into four levels: main procedure, administration procedure, implement procedure and technic procedure. A brief introduction to the fuel management scope and procedures of PWR nuclear power plant are given

  19. Methodology for the economic evaluation of the strategies for spent fuel

    International Nuclear Information System (INIS)

    Zouain, D.M.

    1981-08-01

    A methodology for the economic evaluation of the spent fuel and a comparative analysis of the various available strategies for its treatment, is developed. For the realization of the proposed studies a computer program METACIR was developed, which incorporates the necessary computational methodology, and it was performed a analysis of the present situation and future tendencies of the stages that constitute a PWR nuclear fuel cycle. According to the obtained results, the eternal disposal of the spent fuel is less advantageous than the reprocessing and recycle options; between the last options, the uranium recycle in PWR's is the most attractive until nearly the end of the 1990's, when the uranium and plutonium recycle in LMFBR's becomes the most convenient. The economic value of the spent fuel varies with the reactor discharge date, being considered a onus during the 1980's, and a bonus only in the next decade. (Author) [pt

  20. VOF Simulations of Countercurrent Gas-Liquid Flow in a PWR Hot Leg

    Directory of Open Access Journals (Sweden)

    Michio Murase

    2012-12-01

    Full Text Available In order to evaluate flow patterns and CCFL (countercurrent flow limitation characteristics in a PWR hot leg under reflux condensation, numerical simulations have been done using a two-fluid model and a VOF (volume of fluid method implemented in the CFD software, FLUENT6.3.26. The two-fluid model gave good agreement with CCFL data under low pressure conditions but did not give good results under high pressure steam-water conditions. On the other hand, the VOF method gave good agreement with CCFL data for tests with a rectangular channel but did not give good results for calculations in a circular channel. Therefore, in this paper, the computational grid and schemes were improved in the VOF method, numerical simulations were done for steam-water flows at 1.5 MPa under PWR full-scale conditions with the diameter of 0.75 m, and the calculated results were compared with the UPTF data at 1.5 MPa. As a result, the calculated flow pattern was found to be similar to the flow pattern observed in small-scale air-water tests, and the calculated CCFL characteristics agreed well with the UPTF data at 1.5 MPa except in the region of a large steam volumetric flux.

  1. Development of unfolding method to obtain pin-wise source strength distribution from PWR spent fuel assembly measurement

    International Nuclear Information System (INIS)

    Sitompul, Yos Panagaman; Shin, Hee-Sung; Park, Se-Hwan; Oh, Jong Myeong; Seo, Hee; Kim, Ho Dong

    2013-01-01

    An unfolding method has been developed to obtain a pin-wise source strength distribution of a 14 × 14 pressurized water reactor (PWR) spent fuel assembly. Sixteen measured gamma dose rates at 16 control rod guide tubes of an assembly are unfolded to 179 pin-wise source strengths of the assembly. The method calculates and optimizes five coefficients of the quadratic fitting function for X-Y source strength distribution, iteratively. The pin-wise source strengths are obtained at the sixth iteration, with a maximum difference between two sequential iterations of about 0.2%. The relative distribution of pin-wise source strength from the unfolding is checked using a comparison with the design code (Westinghouse APA code). The result shows that the relative distribution from the unfolding and design code is consistent within a 5% difference. The absolute value of the pin-wise source strength is also checked by reproducing the dose rates at the measurement points. The result shows that the pin-wise source strengths from the unfolding reproduce the dose rates within a 2% difference. (author)

  2. Spent fuel data base: commercial light water reactors. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel.

  3. Commercial Spent Nuclear Fuel Waste Package Misload Analysis

    International Nuclear Information System (INIS)

    J.K. Knudson

    2003-01-01

    The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package design. An example of this type of misload is a fuel assembly designated for the 21-PWR Control Rod waste package being incorrectly loaded into a 21-PWR Absorber Plate waste package. This constitutes a misloaded 21-PWR Absorber Plate waste package, because the reactivity (i.e., enrichment and/or burnup) of a 21-PWR Control Rod waste package fuel assembly is outside the design of a 21-PWR Absorber Plate waste package. These types of misloads (i.e., fuel assembly with enrichment and/or burnup outside waste package design) are the only types that are evaluated in this calculation. This calculation utilizes information from ''Frequency of SNF Misload for Uncanistered Fuel Waste Package'' (CRWMS M and O 1998) as the starting point. The scope of this calculation is limited to the information available. The information is based on the whole population of fuel assemblies and the whole population of waste packages, because there is no information about the arrival of the waste stream at this time. The scope of this calculation deviates from that specified in ''Technical Work Plan for: Risk and Criticality Department'' (BSC 2002a, Section 2.1.30) in that only waste package misload is evaluated. The remaining issues identified (i.e., flooding and geometry reconfiguration) will be addressed elsewhere. The intended use of the calculation is to provide information and inputs to the Preclosure Safety Analysis

  4. General model for Pc-based simulation of PWR and BWR plant components

    Energy Technology Data Exchange (ETDEWEB)

    Ratemi, W M; Abomustafa, A M [Faculty of enginnering, alfateh univerity Tripoli, (Libyan Arab Jamahiriya)

    1995-10-01

    In this paper, we present a basic mathematical model derived from physical principles to suit the simulation of PWR-components such as pressurizer, intact steam generator, ruptured steam generator, and the reactor component of a BWR-plant. In our development, we produced an NMMS-package for nuclear modular modelling simulation. Such package is installed on a personal computer and it is designed to be user friendly through color graphics windows interfacing. The package works under three environments, namely, pre-processor, simulation, and post-processor. Our analysis of results using cross graphing technique for steam generator tube rupture (SGTR) accident, yielded a new proposal for on-line monitoring of control strategy of SGTR-accident for nuclear or conventional power plant. 4 figs.

  5. Disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    1979-12-01

    This report addresses the topic of the mined geologic disposal of spent nuclear fuel from Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). Although some fuel processing options are identified, most of the information in this report relates to the isolation of spent fuel in the form it is removed from the reactor. The characteristics of the waste management system and research which relate to spent fuel isolation are discussed. The differences between spent fuel and processed HLW which impact the waste isolation system are defined and evaluated for the nature and extent of that impact. What is known and what needs to be determined about spent fuel as a waste form to design a viable waste isolation system is presented. Other waste forms and programs such as geologic exploration, site characterization and licensing which are generic to all waste forms are also discussed. R and D is being carried out to establish the technical information to develop the methods used for disposal of spent fuel. All evidence to date indicates that there is no reason, based on safety considerations, that spent fuel should not be disposed of as a waste

  6. Rupther: a simulation approach applied to a PWR vessel failure during a severe accident

    International Nuclear Information System (INIS)

    Mongabure, Ph.; Nicolas, L.; Devos, J.

    2000-01-01

    The Rupther program (Rupture Under Thermal Conditions) is a part of the international researches on severe accidents in the PWR type reactors. The aim of the program is the definition of failure simulation validated by experimental data on vessel steel 16MND5 mechanical properties. The paper presents the program and the first results. (A.L.B.)

  7. Preliminary study of the economics of enriching PWR fuel with a fusion hybrid reactor

    International Nuclear Information System (INIS)

    Kelly, J.L.

    1978-09-01

    This study is a comparison of the economics of enriching uranium oxide for pressurized water reactor (PWR) power plant fuel using a fusion hybrid reactor versus the present isotopic enrichment process. The conclusion is that privately owned hybrid fusion reactors, which simultaneously produce electrical power and enrich fuel, are competitive with the gaseous diffusion enrichment process if spent PWR fuel rods are reenriched without refabrication. Analysis of irradiation damage effects should be performed to determine if the fuel rod cladding can withstand the additional irradiation in the hybrid and second PWR power cycle. The cost competitiveness shown by this initial study clearly justifies further investigations

  8. Development of a water boil-off spent-fuel calorimeter system. [To measure decay heat generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Creer, J.M.; Shupe, J.W. Jr.

    1981-05-01

    A calorimeter system was developed to measure decay heat generation rates of unmodified spent fuel assemblies from commercial nuclear reactors. The system was designed, fabricated, and successfully tested using the following specifications: capacity of one BWR or PWR spent fuel assembly; decay heat generation range 0.1 to 2.5 kW; measurement time of < 12 h; and an accuracy of +-10% or better. The system was acceptance tested using a dc reference heater to simulate spent fuel assembly heat generation rates. Results of these tests indicated that the system could be used to measure heat generation rates between 0.5 and 2.5 kW within +- 5%. Measurements of heat generation rates of approx. 0.1 kW were obtained within +- 15%. The calorimeter system has the potential to permit measurements of heat generation rates of spent fuel assemblies and other devices in the 12- to 14-kW range. Results of calorimetry of a Turkey Point spent fuel assembly indicated that the assembly was generating approx. 1.55 kW.

  9. Experiments for simulating a great leak in the primary coolant circuit of a PWR type reactor

    International Nuclear Information System (INIS)

    Liebig, E.

    1977-01-01

    A loss of coolant accident is to be simulated on a high pressure test rig. The accident is initiated by an externally induced rupture of a pair of rupture-disks installed in a coolant ejection device. Several problems of simulating leaks in the primary coolant circuit of PWR type reactors are dealt with. The selection of appropriate rupture-disks for such experiments is described

  10. Simulation of single-phase rod bundle flow. Comparison between CFD-code ESTET, PWR core code THYC and experimental results

    International Nuclear Information System (INIS)

    Mur, J.; Larrauri, D.

    1998-07-01

    Computer simulation of flow in configurations close to pressurized water reactor (PWR) geometry is of great interest for Electricite de France (EDF). Although simulation of the flow through a whole PWR core with an all purpose CFD-code is not yet achievable, such a tool cna be quite useful to perform numerical experiments in order to try and improve the modeling introduced in computer codes devoted to reactor core thermal-hydraulic analysis. Further to simulation in small bare rod bundle configurations, the present study is focused on the simulation, with CFD-code ESTET and PWR core code THYC, of the flow in the experimental configuration VATICAN-1. ESTET simulation results are compared on the one hand to local velocity and concentration measurements, on the other hand with subchannel averaged values calculated by THYC. As far as the comparison with measurements is concerned, ESTET results are quite satisfactory relatively to available experimental data and their uncertainties. The effect of spacer grids and the prediction of the evolution of an unbalanced velocity profile seem to be correctly treated. As far as the comparison with THYC subchannel averaged values is concerned, the difficulty of a direct comparison between subchannel averaged and local values is pointed out. ESTET calculated local values are close to experimental local values. ESTET subchannel averaged values are also close to THYC calculation results. Thus, THYC results are satisfactory whereas their direct comparison to local measurements could show some disagreement. (author)

  11. Initiation of depleted uranium oxide and spent fuel testing for the spent fuel sabotage aerosol ratio program

    Energy Technology Data Exchange (ETDEWEB)

    Molecke, M.A.; Gregson, M.W.; Sorenson, K.B. [Sandia National Labs. (United States); Billone, M.C.; Tsai, H. [Argonne National Lab. (United States); Koch, W.; Nolte, O. [Fraunhofer Inst. fuer Toxikologie und Experimentelle Medizin (Germany); Pretzsch, G.; Lange, F. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (Germany); Autrusson, B.; Loiseau, O. [Inst. de Radioprotection et de Surete Nucleaire (France); Thompson, N.S.; Hibbs, R.S. [U.S. Dept. of Energy (United States); Young, F.I.; Mo, T. [U.S. Nuclear Regulatory Commission (United States)

    2004-07-01

    We provide a detailed overview of an ongoing, multinational test program that is developing aerosol data for some spent fuel sabotage scenarios on spent fuel transport and storage casks. Experiments are being performed to quantify the aerosolized materials plus volatilized fission products generated from actual spent fuel and surrogate material test rods, due to impact by a high energy density device, HEDD. The program participants in the U.S. plus Germany, France, and the U.K., part of the international Working Group for Sabotage Concerns of Transport and Storage Casks, WGSTSC have strongly supported and coordinated this research program. Sandia National Laboratories, SNL, has the lead role for conducting this research program; test program support is provided by both the U.S. Department of Energy and Nuclear Regulatory Commission. WGSTSC partners need this research to better understand potential radiological impacts from sabotage of nuclear material shipments and storage casks, and to support subsequent risk assessments, modeling, and preventative measures. We provide a summary of the overall, multi-phase test design and a description of all explosive containment and aerosol collection test components used. We focus on the recently initiated tests on ''surrogate'' spent fuel, unirradiated depleted uranium oxide, and forthcoming actual spent fuel tests. The depleted uranium oxide test rodlets were prepared by the Institut de Radioprotection et de Surete Nucleaire, in France. These surrogate test rodlets closely match the diameter of the test rodlets of actual spent fuel from the H.B. Robinson reactor (high burnup PWR fuel) and the Surry reactor (lower, medium burnup PWR fuel), generated from U.S. reactors. The characterization of the spent fuels and fabrication into short, pressurized rodlets has been performed by Argonne National Laboratory, for testing at SNL. The ratio of the aerosol and respirable particles released from HEDD-impacted spent

  12. Development of Integrity Evaluation Technology for the Long-term Spent Fuel Dry Storage System (1st year Report)

    International Nuclear Information System (INIS)

    Choi, Jong Won; Kook, Dong Hak; Kim, Jun Sub

    2010-05-01

    Korea has operated 16 Pressurized Water Reactors(PWR) and has a plan to construct additional nuclear power reactors as only PWR. This causes a big issue of PWR spent fuel accumulation problem now and in the future. KRMC(Korea Radioactive waste Management Coorporation) which was established in 2009 is charged with managing all kinds of radioactive waste that is produced in Korea. KRMC is considering spent fuel dry storage as an option to solve this spent fuel problem and developing the related engineering techniques. KAERI(Korea Atomic Energy Research Institute) also participated in this development and focused on evaluating the spent fuel dry storage system integrity for a long term operation. This report is the first year research product. The aims of the first year work scope are surveying and analyzing models which could anticipate degradation phenomena of the all dry storage components(spent fuel, structure materials, and equipment materials) and selecting items of the tests which are planned to perform in the next project stage. The major work areas consist of 'spent fuel degradation evaluation model development', 'test senario development', 'long-term evaluation of structural material characteristics', and 'dry storage system structure degradation model development'. These works were successfully achieved. This report is expected to contribute for the second year work which includes degradation model development and test senario development, and next project stage

  13. Dissolution studies of spent nuclear fuels

    International Nuclear Information System (INIS)

    1991-02-01

    To obtain quantitative data on the dissolution of high burnup spent nuclear fuel, dissolution study have been carried out at the Department of Chemistry, JAERI, from 1984 under the contract with STA entitled 'Reprocessing Test Study of High Burnup Fuel'. In this study PWR spent fuels of 8,400 to 36,100 MWd/t in averaged burnup were dissolved and the chemical composition and distribution of radioactive nuclides were measured for insoluble residue, cladding material (hull), off-gas and dissolved solution. With these analyses basic data concerning the dissolution and clarification process in the reprocessing plant were accumulated. (author)

  14. A simulated test of physical starting and reactor physics on zero power facility of PWR

    International Nuclear Information System (INIS)

    Yao Zewu; Ji Huaxiang; Chen Zhicheng; Yao Zhiquan; Chen Chen; Li Yuwen

    1995-01-01

    The core neutron economics has been verified through experiments conducted at a zero power reactor with baffles of various thickness. A simulated test of physical starting of Qinshan PWR has been introduced. The feasibility and safety of the programme are verified. The research provides a valuable foundation for developing physical starting programme

  15. Automatic spent fuel ID number reader (I)

    International Nuclear Information System (INIS)

    Tanabe, S.; Kawamoto, H.; Fujimaki, K.; Kobe, A.

    1991-01-01

    An effective and efficient technique has been developed for facilitating identification works of LWR spent fuel stored in large scale spent fuel storage pools of such as processing plants. Experience shows that there are often difficulties in the implementation of operator's nuclear material accountancy and control works as well as safeguards inspections conducted on spent fuel assemblies stored in deep water pool. This paper reports that the technique is realized as an automatic spent fuel ID number reader system installed on fuel handling machine. The ID number reader system consists of an optical sub-system and an image processing sub-system. Thousands of spent fuel assemblies stored in under water open racks in each storage pool could be identified within relatively short time (e.g. within several hours) by using this combination. Various performance tests were carried out on image processing sub-system in 1990 using TV images obtained from different types of spent fuel assemblies stored in various storage pools of PWR and BWR power stations

  16. Material accountancy measurement techniques in dry-powdered processing of nuclear spent fuels

    International Nuclear Information System (INIS)

    Wolf, S. F.

    1999-01-01

    The paper addresses the development of inductively coupled plasma-mass spectrometry (ICPMS), thermal ionization-mass spectrometry (TIMS), alpha-spectrometry, and gamma spectrometry techniques for in-line analysis of highly irradiated (18 to 64 GWD/T) PWR spent fuels in a dry-powdered processing cycle. The dry-powdered technique for direct elemental and isotopic accountancy assay measurements was implemented without the need for separation of the plutonium, uranium and fission product elements in the bulk powdered process. The analyses allow the determination of fuel burn-up based on the isotopic composition of neodymium and/or cesium. An objective of the program is to develop the ICPMS method for direct fissile nuclear materials accountancy in the dry-powdered processing of spent fuel. The ICPMS measurement system may be applied to the KAERI DUPIC (direct use of spent PWR fuel in CANDU reactors) experiment, and in a near-real-time mode for international safeguards verification and non-proliferation policy concerns

  17. Teknologi Pembuatan Cermet Du0¬2 - Steel Untuk Wadah Limbah Bahan Bakar Bekas Pwr

    OpenAIRE

    Alimah, Siti; Budiarto, Budiarto

    2005-01-01

    DUO­2-STEEL CERMET MANUFACTURING TECHNOLOGY FOR PWR Spent Nuclear Fuel (SNF) CASKS. Assessment of DU02 - Steel cermet manufacturing technology for PWR SNF casks has been done. DU02 - Steel cermet consisting of DU02 particulates and other particulates, embedded in a steel matrix. Cermet SNF casks have the potential for superior performance compared with casks constructed of other materials. The addition of DU02 ceramic particulates can increase SNF cask capacity, improve of repository performa...

  18. The prediction of minor actinides amounts accumulated in the spent fuel in China

    International Nuclear Information System (INIS)

    Zhou Peide

    2000-01-01

    The amounts of the Minor Actinides accumulated in the spent fuel are predicted according to the Nuclear Power Plant development plan envisaged in China. The Minor Actinides generated in the spent fuel unloaded from a typical PWR per year are calculated. The decay characteristics of the Minor Actinides during storage and cooling period are also calculated. At last, the Minor Actinides amounts accumulated in all spent fuel which were unloaded before sometime are given

  19. TOPICAL REPORT ON ACTINIDE-ONLY BURNUP CREDIT FOR PWR SPENT NUCLEAR FUEL PACKAGES

    International Nuclear Information System (INIS)

    DOE

    1997-01-01

    A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, k eff , of a spent nuclear fuel package. Fifty-seven UO 2 , UO 2 /Gd 2 O 3 , and UO 2 /PuO 2 critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on k eff (which can be a function of the trending parameters) such that the biased k eff , when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package loading criteria and confirm proper assembly selection

  20. An immersed body method for coupled neutron transport and thermal hydraulic simulations of PWR assemblies

    International Nuclear Information System (INIS)

    Jewer, S.; Buchan, A.G.; Pain, C.C.; Cacuci, D.G.

    2014-01-01

    Highlights: • A new method of coupled radiation transport, heat and momentum exchanges on fluids, and heat transfer simulations. • Simulation of the thermal hydraulics and radiative properties within whole PWR assemblies. • An immersed body method for modelling complex solid domains on practical computational meshes. - Abstract: A recently developed immersed body method is adapted and used to model a typical pressurised water reactor (PWR) fuel assembly. The approach is implemented with the numerical framework of the finite element, transient criticality code, FETCH which is composed of the neutron transport code, EVENT, and the CFD code, FLUIDITY. Within this framework the neutron transport equation, Navier–Stokes equations and a fluid energy conservation equation are solved in a coupled manner on a coincident structured or unstructured mesh. The immersed body method has been used to model the solid fuel pins. The key feature of this method is that the fluid/neutronic domain and the solid domain are represented by overlapping and non-conforming meshes. The main difficulty of this approach, for which a solution is proposed in this work, is the conservative mapping of the energy and momentum exchange between the fluid/neutronic mesh and the solid fuel pin mesh. Three numerical examples are presented which include a validation of the fuel pin submodel against an analytical solution; an uncoupled (no neutron transport solution) PWR fuel assembly model with a specified power distribution which was validated against the COBRA-EN subchannel analysis code; and finally a coupled model of a PWR fuel assembly with reflective neutron boundary conditions. Coupling between the fluid and neutron transport solutions is through the nuclear cross sections dependence on Doppler fuel temperature, coolant density and temperature, which was taken into account by using pre-calculated cross-section lookup tables generated using WIMS9a. The method was found to show good agreement

  1. Equipment designs for the spent LWR fuel dry storage demonstration

    International Nuclear Information System (INIS)

    Steffen, R.J.; Kurasch, D.H.; Hardin, R.T.; Schmitten, P.F.

    1980-01-01

    In conjunction with the Spent Fuel Handling and Packaging Program (SFHPP) equipment has been designed, fabricated and successfully utilized to demonstrate the packaging and interim dry storage of spent LWR fuel. Surface and near surface storage configurations containing PWR fuel assemblies are currently on test and generating baseline data. Specific areas of hardware design focused upon include storage cell components and the support related equipment associated with encapsulation, leak testing, lag storage, and emplacement operations

  2. 21-PWR Waste Package Side and End Impacts

    International Nuclear Information System (INIS)

    V. Delabrosse

    2003-01-01

    The objective of this calculation is to determine the structural response of a 21-Pressurized Water Reactor (PWR) spent nuclear fuel waste package impacting an unyielding surface. A range of initial velocities and initial angles between the waste package and the unyielding surface is studied. The scope of this calculation is limited to estimating the area of the outer shell (OS) where the residual stress exceeds a given limit (hereafter ''damaged area''). The stress limit is defined as a fraction of the yield strength of the OS material, Alloy 22 (SB-575 N06022), at the appropriate temperature. The design of the 21-PWR waste package used in this calculation is that defined in Reference 8. However, a value of 4 mm was used for the gap between the inner shell and the OS, and the thickness of the OS was reduced by 2 mm. The sketch in Attachment I provides additional information not included in Reference 8. All obtained results are valid for this design only. This calculation is associated with the waste package design and was performed by the Specialty Analyses and Waste Package Design Section. The waste package (i.e. uncanistered spent nuclear fuel disposal container) is classified as Quality Level 1

  3. 21-PWR Waste Package Side and End Impacts

    International Nuclear Information System (INIS)

    T. Schmitt

    2005-01-01

    The objective of this calculation is to determine the structural response of a 21-Pressurized Water Reactor (PWR) spent nuclear fuel waste package impacting an unyielding surface. A range of initial velocities and initial angles between the waste package and the unyielding surface is studied. The scope of this calculation is limited to estimating the area of the outer shell (OS) where the residual stress exceeds a given limit (hereafter ''damaged area''). The stress limit is defined as a fraction of the yield strength of the OS material, Alloy 22 (SB-575 N06022), at the appropriate temperature. The design of the 21-PWR waste package used in this calculation is that defined in Reference 8. However, a value of 4 mm was used for the gap between the inner shell and the OS, and the thickness of the OS was reduced by 2 mm. The sketch in Attachment I provides additional information not included in Reference 8. All obtained results are valid for this design only. This calculation is associated with the waste package design and was performed by the Specialty Analyses and Waste Package Design Section. The waste package (i.e. uncanistered spent nuclear fuel disposal container) is classified as Quality Level 1

  4. Comparison of thermal behavior of different PWR fuel rod simulators for LOCA experiments

    International Nuclear Information System (INIS)

    Casal, V.; Malang, S.; Rust, K.

    1982-10-01

    For experimental investigations of a loss-of-coolant accident (LOCA) of a PWR electrical heater rods are applied as thermal fuel rod simulators. To substitute heater rods from the SEMISCALE program by INTERATOM-KfK heater rods in a current experimental program at the Instituut for Energiteknikk-(OECD-Halden), the thermodynamic behavior of different heater rods during a LOCA were compared. The results show, that SEMISCALE-heater rods can be replaced by those fabricated by INTERATOM. (orig.) [de

  5. Radiological characterization of spent control rod assemblies

    International Nuclear Information System (INIS)

    Lepel, E.A.; Robertson, D.E.; Thomas, C.W.; Pratt, S.L.; Haggard, D.L.

    1995-10-01

    This document represents the final report of an ongoing study to provide radiological characterizations, classifications, and assessments in support of the decommissioning of nuclear power stations. This report describes the results of non-destructive and laboratory radionuclide measurements, as well as waste classification assessments, of BWR and PWR spent control rod assemblies. The radionuclide inventories of these spent control rods were determined by three separate methodologies, including (1) direct assay techniques, (2) calculational techniques, and (3) by sampling and laboratory radiochemical analyses. For the BWR control rod blade (CRB) and PWR burnable poison rod assembly (BPRA), 60 Co and 63 Ni, present in the stainless steel cladding, were the most abundant neutron activation products. The most abundant radionuclide in the PWR rod cluster control assembly (RCCA) was 108m Ag (130 yr halflife) produced in the Ag-In-Cd alloy used as the neutron poison. This radionuclide will be the dominant contributor to the gamma dose rate for many hundreds of years. The results of the direct assay methods agree very well (±10%) with the sampling/radiochemical measurements. The results of the calculational methods agreed fairly well with the empirical measurements for the BPRA, but often varied by a factor of 5 to 10 for the CRB and the RCCA assemblies. If concentration averaging and encapsulation, as allowed by 10CFR61.55, is performed, then each of the entire control assemblies would be classified as Class C low-level radioactive waste

  6. Simulating thermal behavior of AECL's spent fuel dry storage system with CATHENA

    International Nuclear Information System (INIS)

    Sabourin, G.

    1998-01-01

    This paper documents the comparisons between CATHENA predictions and temperature measurements taken at the Gentilly-2 NPP spent fuel dry storage facility and in a mock--up of a storage basket placed inside a storage cylinder. It also presents CATHENA temperature predictions related to the storage of spent fuel in MACSTOR modules as planned for Ignalina NPP, Lithuania. CATHENA has been chosen because it can simulate many noncondensable gases including air and helium, and because of its great flexibility in the representation of the MACSTOR module geometry. The results of the simulations show good agreement with the experimental measurements. The two comparisons indicate that CATHENA can be used to simulate heat transfer from the fuel to the external air circuit of the spent fuel dry storage system. For the Ignalina MACSTOR module, containing RBMK fuel having higher heat release than typical CANDU fuel, CATHENA predicts that the maximum fuel temperature is expected to be around 240 deg C, giving an acceptable margin below the maximum allowed temperature of 300 deg C. In conclusion, this paper shows that the thermalhydraulic code CATHENA can accurately predict the thermal behavior AECL's air cooled spent fuel dry storage system. (author)

  7. Safety research activities for Japanese regulations of spent fuel interim storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Japan Nuclear Energy Safety Organization (JNES) carries out (a) preparation of technical documents, (b) technical evaluations of standards (prepared by academic societies), etc. and (c) other R and D activities, to support Nuclear Regulation Authority (NRA: which controls the regulations for Spent Fuel Interim Storage Facilities). In 2012 fiscal year, JNES carried out dynamic test of spent fuel to examine the integrity of spent fuel under cask drop accidents, and preparation for PWR spent fuel storage test to prove long term integrity of spent fuel and cask itself. Some of these tests will be also carried out in 2013 fiscal year and after. (author)

  8. Optimization of PWR fuel assembly radial enrichment and burnable poison location based on adaptive simulated annealing

    International Nuclear Information System (INIS)

    Rogers, Timothy; Ragusa, Jean; Schultz, Stephen; St Clair, Robert

    2009-01-01

    The focus of this paper is to present a concurrent optimization scheme for the radial pin enrichment and burnable poison location in PWR fuel assemblies. The methodology is based on the Adaptive Simulated Annealing (ASA) technique, coupled with a neutron lattice physics code to update the cost function values. In this work, the variations in the pin U-235 enrichment are variables to be optimized radially, i.e., pin by pin. We consider the optimization of two categories of fuel assemblies, with and without Gadolinium burnable poison pins. When burnable poisons are present, both the radial distribution of enrichment and the poison locations are variables in the optimization process. Results for 15 x 15 PWR fuel assembly designs are provided.

  9. An homogeneous model of steam generator to simulate operational transiento and accidents in PWR nuclear power plants

    International Nuclear Information System (INIS)

    Souza, A.L. de.

    1981-07-01

    GEVAP - A digital computer code was developed to simulate the thermodynamic transient behaviour of steam generators. The steam generator is divided in heating sections. In each section, the conservation equations of mass and energy are integrated numerically, using a predictor-corrector method. As good reslts where obtained, as compared to transients simulated using more detainled codes, it is concluded that GEVAP can be included as the steam generator module of a more complete systems simulation code for PWR's. (E.G.) [pt

  10. The miscibility and oxidation study of the simulated metallic spent fuel for the development of an advanced spent fuel management process

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Y. J.; You, G. S.; Ju, J. S.; Lee, E. P.; Seo, H. S.; Ahn, S. B. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    1999-03-01

    The simulated metallic spent fuel ingots were fabricated and evaluated the oxidation rates and the activation energies under several temperature conditions to develop an advanced spent fuel management process. It was also checked the immiscibility of the some elements with metal uranium. 2 refs., 45 figs. (Author)

  11. Investigating the cooling ability of reactor vessel head injection in the Maanshan PWR using CFD simulation

    International Nuclear Information System (INIS)

    Tseng Yungshin; Lin Chihhung; Wan Jongrong; Shih Chunkuan; Tsai, F. Peter

    2011-01-01

    In order to reduce the crack growth rate on the welding of penetration pipe, Pressurized Water Reactor (PWR) of Maanshan nuclear power plant (NPP) uses vessel head injection to cool vessel lid and control rod driving components. The injection flow from the cold leg is drained by the pressure difference between cold leg and upper internal components. In this study, 10 million meshes model with 4 sub-models have been developed to simulate the thermal-hydraulic behavior by commercial CFD program FLUENT. The results indicate that the injection nozzles can provide good cooling ability to reduce the maximum temperature for lid on the vessel head. The maximum temperature of vessel lid is about 293.81degC. Based on the simulated temperature, ASME CODE N-729-1 was further used to recount the effective degradation years (EDY) and reinspection years (RIY) factors. It demonstrates that the EDY and RIY factors are still less than 1.0. Therefore, the re-inspection period for Maanshan PWR would not be significantly affected by the miner temperature difference. (author)

  12. Simulating the steam generator and the pressurizer of a PWR nuclear power plant

    International Nuclear Information System (INIS)

    De Greef, J.F.

    1985-01-01

    In a PWR nuclear power plant, considered as a power generating device, the steam generator as a subset plays an important role in the generation process, whereas the pressurizer rather acts as a control device for security purposes. Nevertheless, from a thermodynamical point of view, the two subsets behave basically in the same way, so that a common set of basic equations may be suggested to develop for each the proper mathematical simulation model. In this paper the generation of this common set of basic equations is described, from which a specific model for each device is derived. A numerical illustration of the behaviour of the two devices for typical inputs to the derived simulation model is pictured. (author)

  13. Transient performance of flow in PWR reactor circuits

    International Nuclear Information System (INIS)

    Hirdes, V.R.T.R.; Carajilescov, P.

    1988-12-01

    Generally, PWR's are designed with several primary loops, each one provided with a pump to circulate the coolant through the core. If one or more of these pumps fail, there would be a decrease in reactor flow rate which cause coolant phase change in the core and components overheating. The present work establishes a simulation model for pump failure in PWR's and the SARDAN-FLOW computes code was developed, considering any combination of such failures. Based on the data of Angra I, several accident and operational transient conditions were simulated. (author) [pt

  14. Simulation of a severe accident at a typical PWR due to break of a hot leg ECCS line using MELCOR code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Min; Sabundjian, Gaianê, E-mail: smlee@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    The aim of this work was to simulate a severe accident at a typical PWR caused by break in Emergency Core Cooling System (ECCS) line of a hot leg using the MELCOR code. The nodalization of this typical PWR was elaborated by the Global Research for Safety (GRS) and provided to the CNEN for analysis of the severe accidents at the Angra 2, which is similar to that PWR. Although both of them are not identical the results obtained for that typical PWR may be valuable because of the lack of officially published calculation for Angra 2. Relevant parameters such as pressure, temperature and water level in various control volumes after the break in the hot leg were calculated as well as degree of core degradation and hydrogen concentration in containment. The result obtained in this work could be considered satisfactory in the sense that the physical phenomena reproduced by the simulation were in general very reasonable, and most of the events occurred within acceptable time intervals. However, the uncertainty analysis was not carried out in this work. Furthermore, this scenario could be used as a base for the study of the effectiveness of some preventive or/and mitigating measures of Severe Accident Management (SAMG) by adding associated conditions for each measure in its input. (author)

  15. Simulation of a severe accident at a typical PWR due to break of a hot leg ECCS line using MELCOR code

    International Nuclear Information System (INIS)

    Lee, Seung Min; Sabundjian, Gaianê

    2017-01-01

    The aim of this work was to simulate a severe accident at a typical PWR caused by break in Emergency Core Cooling System (ECCS) line of a hot leg using the MELCOR code. The nodalization of this typical PWR was elaborated by the Global Research for Safety (GRS) and provided to the CNEN for analysis of the severe accidents at the Angra 2, which is similar to that PWR. Although both of them are not identical the results obtained for that typical PWR may be valuable because of the lack of officially published calculation for Angra 2. Relevant parameters such as pressure, temperature and water level in various control volumes after the break in the hot leg were calculated as well as degree of core degradation and hydrogen concentration in containment. The result obtained in this work could be considered satisfactory in the sense that the physical phenomena reproduced by the simulation were in general very reasonable, and most of the events occurred within acceptable time intervals. However, the uncertainty analysis was not carried out in this work. Furthermore, this scenario could be used as a base for the study of the effectiveness of some preventive or/and mitigating measures of Severe Accident Management (SAMG) by adding associated conditions for each measure in its input. (author)

  16. Improved and consistent determination of the nuclear inventory of spent PWR-fuel on the basis of time-dependent cell-calculations with KORIGEN

    International Nuclear Information System (INIS)

    Fischer, U.; Wiese, H.W.

    1983-01-01

    For safe handling, processing and storage of spent nuclear fuel a reliable, experimentally validated method is needed to determine fuel and waste characteristics: composition, radioactivity, heat and radiation. For PWR's, a cell-burnup procedure has been developed which is able to calculate the inventory in consistency with cell geometry, initial enrichment, and reactor control. Routine calculations can be performed with KORIGEN using consistent cross-section sets - burnup-dependent and based on the latest Karlsruhe evaluations for actinides - which were calculated previously with the cell-burnup procedure. Extensive comparisons between calculations and experiments validate the presented procedure. For the use of the KORIGEN code the input description and sample problems are added. Improvements in the calculational method and in data are described, results from KORIGEN, ORIGEN and ORIGEN2 calculations are compared. Fuel and waste inventories are given for BIBLIS-type fuel of different burnup. (orig.) [de

  17. Numerical simulation of thermohydraulic behavior of the steam generator of PWR type reactor

    International Nuclear Information System (INIS)

    Braga, C.V.M.; Carajilescov, P.

    1981-01-01

    Generally, 'U' tube steam generators with natural internal recirculation are used in PWR power stations. A thermalhydraulic model is developed for simulation of such components, in steady state. The flow of the secondary cycle fluid is divided in two parts individually homogeneous, allowing for heat and mass exchange between them. The secondary pressure is determined by defining the moisture of the vapor that feeds the turbine. This model is applied to the Angra II steam generator, operating in nominal conditions and with tubing partially plugged. (Author) [pt

  18. SARDAN- A program for the transients simulation in a typical PWR plant

    International Nuclear Information System (INIS)

    Mattos Santos, R.L.P. de.

    1979-10-01

    A program in FORTRAN-IV language was developed that simulates the behaviour of the primary circuit in a typical PWR plant during condition II transients, in particular uncontrolled withdrawal of a control rod set, control rod set drops and uncontrolled boron dilution. It the mathematical model adopted the reactor core, the hot piping to which a pressurizer is coupled, the steam generator and the cold piping are considered. The results obtained in the analysis of the mentioned accidents are compared to those present at the Final Safety Analysis Report (FSAR) of the Angra-1 reactor and are considered satisfactory. (F.E.) [pt

  19. Integrated training support system for PWR operator training simulator

    International Nuclear Information System (INIS)

    Sakaguchi, Junichi; Komatsu, Yasuki

    1999-01-01

    The importance of operator training using operator training simulator has been recognized intensively. Since 1986, we have been developing and providing many PWR simulators in Japan. We also have developed some training support systems connected with the simulator and the integrated training support system to improve training effect and to reduce instructor's workload. This paper describes the concept and the effect of the integrated training support system and of the following sub-systems. We have PES (Performance Enhancement System) that evaluates training performance automatically by analyzing many plant parameters and operation data. It can reduce the deviation of training performance evaluation between instructors. PEL (Parameter and Event data Logging system), that is the subset of PES, has some data-logging functions. And we also have TPES (Team Performance Enhancement System) that is used aiming to improve trainees' ability for communication between operators. Trainee can have conversation with virtual trainees that TPES plays automatically. After that, TPES automatically display some advice to be improved. RVD (Reactor coolant system Visual Display) displays the distributed hydraulic-thermal condition of the reactor coolant system in real-time graphically. It can make trainees understand the inside plant condition in more detail. These sub-systems have been used in a training center and have contributed the improvement of operator training and have gained in popularity. (author)

  20. Reactor-specific spent fuel discharge projections: 1985 to 2020

    International Nuclear Information System (INIS)

    Heeb, C.M.; Libby, R.A.; Walling, R.C.; Purcell, W.L.

    1986-09-01

    The creation of four spent-fuel data bases that contain information on the projected amounts of spent fuel to be discharged from US commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent-fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water reactors (BWR). The projections are based on individual reactor information supplied by the US reactor owners. The basic information is adjusted to conform to Energy Information Agency (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: (1) No New Orders with Extended Burnup, (2) No New Orders with Constant Burnup, (3) Middle Case with Extended Burnup, and (4) Middle Case with Constant Burnup. Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum-at-reactor storage, and for storage requirements assuming maximum-at-reactor plus intra-utility transshipment of spent fuel

  1. ROX PWR

    International Nuclear Information System (INIS)

    Akie, H.; Yamashita, T.; Shirasu, N.; Takano, H.; Anoda, Y.; Kimura, H.

    1999-01-01

    For an efficient burnup of excess plutonium from nuclear reactors spent fuels and dismantled warheads, plutonium rock-like oxide(ROX) fuel has been investigated. The ROX fuel is expected to provide high Pu transmutation capability, irradiation stability and chemical and geological stability. While, a zirconia-based ROX(Zr-ROX)-fueled PWR core has some problems of Doppler reactivity coefficient and power peaking factor. For the improvement of these characteristics, two approaches were considered: the additives such as UO 2 , ThO 2 and Er 2 O 3 , and a heterogeneous core with Zr-ROX and UO 2 assemblies. As a result, the additives UO 2 + Er 2 O 3 are found to sufficiently improve the reactivity coefficients and accident behavior, and to flatten power distribution. On the other hand, in the 1/3Zr-ROX + 2/3UO 2 heterogeneous core, further reduction of power peaking seems necessary. (author)

  2. Modeling on a PWR power conversion system with system program

    International Nuclear Information System (INIS)

    Gao Rui; Yang Yanhua; Lin Meng

    2007-01-01

    Based on the power conversion system of nuclear and conventional islands of Daya Bay Power Station, this paper models the thermal-hydraulic systems of primary and secondary loops for PWR by using the PWR best-estimate program-RELAP5. To simulate the full-scope power conversion system, not only the traditional basic system models of nuclear island, but also the major system models of conventional island are all considered and modeled. A comparison between the calculated results and the actual data of reactor demonstrates a fine match for Daya Bay Nuclear Power Station, and manifests the feasibility in simulating full-scope power conversion system of PWR by RELAP5 at the same time. (authors)

  3. Reactor-specific spent fuel discharge projections, 1987-2020

    International Nuclear Information System (INIS)

    Walling, R.C.; Heeb, C.M.; Purcell, W.L.

    1988-03-01

    The creation of five reactor-specific spent fuel data bases that contain information on the projected amounts of spent fuel to be discharged from U.S. commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water eactors (BWR), and one existing high temperature gas reactor (HTGR). The projections are based on individual reactor information supplied by the U.S. reactor owners. The basic information is adjusted to conform to Energy Information Administration (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: No New Orders (assumes increasing burnup), No New Orders with No Increased Burnup, Upper Reference (assumes increasing burnup), Upper Reference with No Increased Burnup, and Lower Reference (assumes increasing burnup). Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum at-reactor storage, and for storage requirements assuming maximum at-reactor storage plus intra-utility transshipment of spent fuel. 8 refs., 8 figs., 10 tabs

  4. WESTINGHOUSE 17X17 MOX PWR ASSEMBLY - WASTE PACKAGE CRITICALITY ANALYSIS (SCPB: N/A)

    International Nuclear Information System (INIS)

    J.W. Davis

    1996-01-01

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to compare the criticality potential of Westinghouse 17 x 17 mixed oxide (MOX) PWR fuel with the Design Basis spent nuclear fuel (SNF) analyzed previously (Ref. 5.1, 5.2). The basis of comparison will be the conceptual design Multi-Purpose Canister (MPC) PWR waste package concepts. The objectives of this evaluation are to show that the criticality potential of the MOX fuel is equal to or lower than the DBF or, if necessary, indicate what additional measures are required to make it so

  5. A simple analytical scaling method for a scaled-down test facility simulating SB-LOCAs in a passive PWR

    International Nuclear Information System (INIS)

    Lee, Sang Il

    1992-02-01

    A Simple analytical scaling method is developed for a scaled-down test facility simulating SB-LOCAs in a passive PWR. The whole scenario of a SB-LOCA is divided into two phases on the basis of the pressure trend ; depressurization phase and pot-boiling phase. The pressure and the core mixture level are selected as the most critical parameters to be preserved between the prototype and the scaled-down model. In each phase the high important phenomena having the influence on the critical parameters are identified and the scaling parameters governing the high important phenomena are generated by the present method. To validate the model used, Marviken CFT and 336 rod bundle experiment are simulated. The models overpredict both the pressure and two phase mixture level, but it shows agreement at least qualitatively with experimental results. In order to validate whether the scaled-down model well represents the important phenomena, we simulate the nondimensional pressure response of a cold-leg 4-inch break transient for AP-600 and the scaled-down model. The results of the present method are in excellent agreement with those of AP-600. It can be concluded that the present method is suitable for scaling the test facility simulating SB-LOCAs in a passive PWR

  6. Best-estimate LOCA simulation in a PWR-W containment building with a detailed 3D GOTHIC model

    International Nuclear Information System (INIS)

    Jimenez, G.; Fernandez-Cosials, K.; Bocanegra, R.; Lopez-Alonso, E.

    2015-01-01

    The design-basis accidents in a PWR-W containment building are usually simulated with a lumped parameter model, normally used for license analysis. Nevertheless, some phenomenology is difficult to be simulated with a lumped model: the condensation rate in each structure, stagnant water areas, temperature in different compartments, sumps and recirculation pumps disabled because of lack of water, etc. Therefore, for the detailed study of the thermal-hydraulic (TH) behaviour in every room of the containment building could be more appropriate to do it with a detailed 3D representation of the containment building geometry. The main objective of this project has been to build a 3D PWR-W containment model with the GOTHIC code to analyze the detailed behavior during a design basis accident. In the process of the 3D GOTHIC model development some previous steps were necessary: a detailed CAD model of the containment, followed by a simplified model adapted to the GOTHIC geometric capabilities. Once the geometry has been adapted to the GOTHIC requirements, the 3D model is created with this information. A design-basis accident has been simulated with the 3D model (LBLOCA), and the local TH behaviour is analysed. The results show that in comparison with a lumped parameter model, high temperatures are reached locally. Nevertheless the average pressure behaviour is found to be similar to that given by a lumped parameter model. The present paper demonstrates that is possible to build a 3D PWR-W model with the GOTHIC code with enough resolution to analyse the TH behaviour in each one of the containment rooms but at the same time with reasonable computing time. Once the GOTHIC model has been created a new road is opened enabling the simulation of other accidents such as MSLB, a SBLOCA or even a long-term SBO sequence. This document is made up of an abstract and the slides of the presentation. (authors)

  7. Study of the formation and transport of corrosion products in PWR primary circuit simulators

    International Nuclear Information System (INIS)

    Noe, M.; Frejaville, G.; Camp, J.J.

    1983-01-01

    The formation, migration and deposition of corrosion products in PWR primary circuits are studied in out-of-reactor loops. The aim of these studies is to limit the build-up of the radiation fields impinging on out-of-flux walls and to reduce the danger of rapid corrosion of fuel cans, taking into account the tougher conditions imposed on current trends in the operation of such industrial plants. Four simulator loops and their respective possibilities and research methods are described. (author)

  8. Design and simulation experimental study of bracket plates in steam generator for AC600 PWR

    International Nuclear Information System (INIS)

    Zhang Fuyuan; Zhang Wenqi; Ji Quankai; Zeng Xi; Xie Yongyao

    1998-01-01

    Seven-holes type bracket plate at the inlet nozzle and three-holes taper bracket plate at outlet nozzle are designed. According to 'local form and structure change' simulation theory, hydraulic models and simulators for the simulative experiments are designed. Taking water as the medium, the simulative experiments have been completed at the room temperature. The ζ-Re curves (here, ζ is the local pressure loss coefficient at the nozzles after the bracket plates are installed and Re is Reynolds number) have been got. Based on the experimental results, the computation and the analysis have been shown that. If the bracket plates are used in the steam generator (SG) of AC600 PWR, the pressure drop of primary side in the SG is about 14 percent higher than that of the 55/19 B style SG

  9. Simulation of nonlinear dynamics of a PWR core by an improved lumped formulation for fuel heat transfer

    International Nuclear Information System (INIS)

    Su, Jian; Cotta, Renato M.

    2000-01-01

    In this work, thermohydraulic behaviour of PWR, during reactivity insertion and partial loss-of-flow, is simulated by using a simplified mathematical model of reactor core and primary coolant. An improved lumped parameter formulation for transient heat conduction in fuel rod is used for core heat transfer modelling. Transient temperature response of fuel, cladding and coolant is analysed. (author)

  10. ROX PWR

    Energy Technology Data Exchange (ETDEWEB)

    Akie, H.; Yamashita, T.; Shirasu, N.; Takano, H.; Anoda, Y.; Kimura, H. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-12-01

    For an efficient burnup of excess plutonium from nuclear reactors spent fuels and dismantled warheads, plutonium rock-like oxide(ROX) fuel has been investigated. The ROX fuel is expected to provide high Pu transmutation capability, irradiation stability and chemical and geological stability. While, a zirconia-based ROX(Zr-ROX)-fueled PWR core has some problems of Doppler reactivity coefficient and power peaking factor. For the improvement of these characteristics, two approaches were considered: the additives such as UO{sub 2}, ThO{sub 2} and Er{sub 2}O{sub 3}, and a heterogeneous core with Zr-ROX and UO{sub 2} assemblies. As a result, the additives UO{sub 2}+ Er{sub 2}O{sub 3} are found to sufficiently improve the reactivity coefficients and accident behavior, and to flatten power distribution. On the other hand, in the 1/3Zr-ROX + 2/3UO{sub 2} heterogeneous core, further reduction of power peaking seems necessary. (author)

  11. PWR system simulation and parameter estimation with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Akkurt, Hatice; Colak, Uener E-mail: uc@nuke.hacettepe.edu.tr

    2002-11-01

    A detailed nonlinear model for a typical PWR system has been considered for the development of simulation software. Each component in the system has been represented by appropriate differential equations. The SCILAB software was used for solving nonlinear equations to simulate steady-state and transient operational conditions. Overall system has been constructed by connecting individual components to each other. The validity of models for individual components and overall system has been verified. The system response against given transients have been analyzed. A neural network has been utilized to estimate system parameters during transients. Different transients have been imposed in training and prediction stages with neural networks. Reactor power and system reactivity during the transient event have been predicted by the neural network. Results show that neural networks estimations are in good agreement with the calculated response of the reactor system. The maximum errors are within {+-}0.254% for power and between -0.146 and 0.353% for reactivity prediction cases. Steam generator parameters, pressure and water level, are also successfully predicted by the neural network employed in this study. The noise imposed on the input parameters of the neural network deteriorates the power estimation capability whereas the reactivity estimation capability is not significantly affected.

  12. PWR system simulation and parameter estimation with neural networks

    International Nuclear Information System (INIS)

    Akkurt, Hatice; Colak, Uener

    2002-01-01

    A detailed nonlinear model for a typical PWR system has been considered for the development of simulation software. Each component in the system has been represented by appropriate differential equations. The SCILAB software was used for solving nonlinear equations to simulate steady-state and transient operational conditions. Overall system has been constructed by connecting individual components to each other. The validity of models for individual components and overall system has been verified. The system response against given transients have been analyzed. A neural network has been utilized to estimate system parameters during transients. Different transients have been imposed in training and prediction stages with neural networks. Reactor power and system reactivity during the transient event have been predicted by the neural network. Results show that neural networks estimations are in good agreement with the calculated response of the reactor system. The maximum errors are within ±0.254% for power and between -0.146 and 0.353% for reactivity prediction cases. Steam generator parameters, pressure and water level, are also successfully predicted by the neural network employed in this study. The noise imposed on the input parameters of the neural network deteriorates the power estimation capability whereas the reactivity estimation capability is not significantly affected

  13. BR-100 spent fuel shipping cask development

    International Nuclear Information System (INIS)

    McGuinn, E.J.; Childress, P.C.

    1990-01-01

    Continued public acceptance of commercial nuclear power is contingent to a large degree on the US Department of Energy (DOE) establishing an integrated waste management system for spent nuclear fuel. As part of the from-reactor transportation segment of this system, the B ampersand W Fuel Company (BWFC) is under contract to the DOE to develop a spent-fuel cask that is compatible with both rail and barge modes of transportation. Innovative design approaches were the keys to achieving a cask design that maximizes payload capacity and cask performance. The result is the BR-100, a 100-ton rail/barge cask with a capacity of 21 PWR or 52 BWR ten-year cooled, intact fuel assemblies. 3 figs

  14. Open and closed fuel cycle of HWR and PWR. How large is the high-level radioactive wastes repository; Ciclos de combustible abierto y cerrado con HWR y PWR. ?Cuanto mas grande es el repositorio de residuos radiactivos de alta actividad?

    Energy Technology Data Exchange (ETDEWEB)

    Bevilacqua, Arturo M. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1996-07-01

    A conceptual analysis was carried out on the size of a high-level wastes (HLW) repository for the waste arising from once-through and closed fuel cycles with (HLW) and PWR. The mass, the activity and thermal loading was calculated with the ORIGEN2.1 computer code for the spent fuel and for the high-level liquid wastes. It was considered a minimum burnup of 7.000 MW.d/t U and 33.000 MW.d/t U for HWR and PWR respectively, cooling times of 20 and 55 years, reprocessing recovery ratios of 99% and 99.7% and a total electricity production of 81.6 GW(e).a. It was concluded that the cooling time is the most important repository size reproduction parameter for the closed cycles. On the other hand, the spent fuel mass for the once-through cycles does not depend on the cooling time what prevents repository size reduction once a cooling time of 55 years is reached. The repository size reduction in the case of HWR is larger than in the case of PWR, owing to the larger fuel mass required to produce the specific electricity amount. (author)

  15. An axial calculation method for accurate two-dimensional PWR core simulation

    International Nuclear Information System (INIS)

    Grimm, P.

    1985-02-01

    An axial calculation method, which improves the agreement of the multiplication factors determined by two- and three-dimensional PWR neutronic calculations, is presented. The axial buckling is determined at each time point so as to reproduce the increase of the leakage due to the flattening of the axial power distribution and the effect of the axial variation of the group constants of the fuel on the reactivity is taken into account. The results of a test example show that the differences of k-eff and cycle length between two- and three-dimensional calculations, which are unsatisfactorily large if a constant buckling is used, become negligible if the results of the axial calculation are used in the two-dimensional core simulation. (Auth.)

  16. Duo_2-Steel cermet manufacturing technology for PWR Spent Nuclear Fuel (SNF) casks

    International Nuclear Information System (INIS)

    Siti Alimah; Budiarto

    2005-01-01

    Assessment of DUO_2-Steel cermet manufacturing technology for PWR SNF casks has been done. DUO_2-Steel cermet consisting of DUO_2 particulates and other particulates, embedded in a steel matrix. Cermet SNF casks have the potential for superior performance compared with casks constructed of other materials. The addition of DUO_2 ceramic particulates can increase SNF cask capacity, improve of repository performance and disposal of excess depleted uranium as potential waste. Two sets of cermet manufacturing technologies are casting and powder metallurgy. Three casting methods are infusion casting, traditional casting and centrifugal casting. While for powder metallurgy methods there are traditional method and new method. DUO_2-Steel cermet have traditionally been produced by powder metallurgy methods. The production of a cask, however, presents special requirements: the manufacture of an annular object with weights up to 100 tons, and methods are being not to manufacture a cermet of this size and geometry. A new powder metallurgy method, is a method for manufacturing cermet for PWR SNF cask. This powder metallurgy techniques have potentials low costs and provides greater freedom In the design of the cermet cask by allowing variable cermet properties. (author)

  17. Design premises for canister for spent nuclear fuel

    International Nuclear Information System (INIS)

    Werme, L.

    1998-09-01

    The purpose of this report is to establish the basic premises for designing canisters for the disposal of spent nuclear fuel, the requirements for canister characteristics, and the design criteria, and to present alternative canister designs that satisfy these premises. The point of departure for canister design has been that the canister must be able to be used for both BWR and PWR fuel

  18. A digital simulation of a pressurizer in a PWR nuclear power plant

    International Nuclear Information System (INIS)

    Sato, E.F.

    1980-11-01

    A model for pressurizer digital simulation of a PWR nuclear power plant during transients, considering all pressurizer control features, is presented. The pressurizer is divided into two regions separated by a water-vapor interface and non-equilibrium conditions are considered. The particular thermodynamic process followed during insurge and outsurges is determined at each instant of analysis without any previous assumption. The pressure behavior is defined by an explicit equation in any of four possible pressurizer thermodynamic conditions. Thermodynamic properties of steam and water are computed by ASME subroutines and the mathematical formulation presented in this study was programed in FORTRAN IV for a Burroughs-6700 digital computer system. This program was employed to simulate the Shippingport Atomic Power Station and Almirante Alvaro Alberto Nuclear Power Plant - Unit 1 pressurizers. The test results compared with experimental or vendor data show the validity of this analysis method. (Author) [pt

  19. Reactor-specific spent fuel discharge projections: 1986 to 2020

    International Nuclear Information System (INIS)

    Heeb, C.M.; Walling, R.C.; Purcell, W.L.

    1987-03-01

    The creation of five reactor-specific spent fuel data bases that contain information on the projected amounts of spent fuel to be discharged from US commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent-fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water reactors (BWR). The projections are based on individual reactor information supplied by the US reactor owners. The basic information is adjusted to conform to Energy Information Agency (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: (1) No new orders with extended burnup, (2) No new orders with constant burnup, (3) Upper reference (which assumes extended burnup), (4) Upper reference with constant burnup, and (5) Lower reference (which assumes extended burnup). Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum-at-reactor storage, and for storage requirements assuming maximum-at-reactor plus intra-utility transshipment of spent fuel. 6 refs., 8 figs., 8 tabs

  20. Neutronic feasibility of PWR core with mixed oxide fuels in the Republic of Korea

    International Nuclear Information System (INIS)

    Kim, Y.J.; Joo, H.K.; Jung, H.G.; Sohn, D.S.

    1997-01-01

    Neutronic feasibility of a PWR core with mixed oxide (MOX) fuels has been investigated as part of the feasibility study for recycling spent fuels in Korea. A typical 3-loop PWR with 900 MWe capacity is selected as reference plant to develop equilibrium core designs with low-leakage fuel management scheme, while incorporating various MOX loading. The fuel management analyses and limited safety analyses show that, safely stated, MOX recycling with 1/3 reload fraction can be accommodated for both annual and 18 month fuel cycle schemes in Korean PWRs, without major design modifications on the reactor systems. (author). 12 refs, 4 figs, 3 tabs

  1. Simulating thermal behavior of AECL's spent fuel dry storage system with CATHENA

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, G. [Atomic Energy of Canada Limited, Montreal, PQ (Canada)

    1998-07-01

    This paper documents the comparisons between CATHENA predictions and temperature measurements taken at the Gentilly-2 NPP spent fuel dry storage facility and in a mock--up of a storage basket placed inside a storage cylinder. It also presents CATHENA temperature predictions related to the storage of spent fuel in MACSTOR modules as planned for Ignalina NPP, Lithuania. CATHENA has been chosen because it can simulate many noncondensable gases including air and helium, and because of its great flexibility in the representation of the MACSTOR module geometry. The results of the simulations show good agreement with the experimental measurements. The two comparisons indicate that CATHENA can be used to simulate heat transfer from the fuel to the external air circuit of the spent fuel dry storage system. For the Ignalina MACSTOR module, containing RBMK fuel having higher heat release than typical CANDU fuel, CATHENA predicts that the maximum fuel temperature is expected to be around 240 deg C, giving an acceptable margin below the maximum allowed temperature of 300 deg C. In conclusion, this paper shows that the thermalhydraulic code CATHENA can accurately predict the thermal behavior AECL's air cooled spent fuel dry storage system. (author)

  2. Seismic testing of the base-isolated PWR spent-fuel storage rack

    International Nuclear Information System (INIS)

    Fujita, Katsuhisa; Tanaka, Mamoru; Nakamura, Masaaki; Tsujikura, Yonezo.

    1990-01-01

    The present paper aims to verify the seismic safety of the base-isolated spent-fuel storage rack. A series of seismic tests has been conducted using a three-dimensional shaking table. A sliding-type base-isolation system was employed for the prototype rack considering environmental conditions in an actual plant. A non linear seismic response analysis was also performed, and it is verified that the prototype of a base-isolated spent-fuel storage rack has a sufficient seismic safety margin for design seismic conditions from the viewpoint of seismic response. (author)

  3. Effects of cold working ratio and stress intensity factor on intergranular stress corrosion cracking susceptibility of non-sensitized austenitic stainless steels in simulated BWR and PWR primary water

    International Nuclear Information System (INIS)

    Yaguchi, Seiji; Yonezawa, Toshio

    2012-01-01

    To evaluate the effects of cold working ratio, stress intensity factor and water chemistry on an IGSCC susceptibility of non-sensitized austenitic stainless steel, constant displacement DCB specimens were applied to SCC tests in simulated BWR and PWR primary water for the three types of austenitic stainless steels, Types 316L, 347 and 321. IGSCC was observed on the test specimens in simulated BWR and PWR primary water. The observed IGSCC was categorized into the following two types. The one is that the IGSCC observed on the same plane of the pre-fatigue crack plane, and the other is that the IGSCC observed on a plane perpendicular to the pre-fatigue crack plane. The later IGSCC fractured plane is parallel to the rolling plane of a cold rolled material. Two types of IGSCC fractured planes were changed according to the combination of the testing conditions (cold working ratio, stress intensity factor and simulated water). It seems to suggest that the most susceptible plane due to fabrication process of materials might play a significant role of IGSCC for non-sensitized cold worked austenitic stainless steels, especially, in simulated PWR primary water. Based upon evaluating on the reference crack growth rate (R-CGR) of the test specimens, the R-CGR seems to be mainly affected by cold working ratio. In case of simulated PWR primary water, it seems that the effect of metallurgical aspects dominates IGSCC susceptibility. (author)

  4. The determination of magnesium in simulated PWR coolant by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Gatford, C.; Torrance, K.

    1988-06-01

    The determination of magnesium in simulated PWR coolant has been investigated by graphite furnace atomic absorption spectrometry with atomization from a L'vov platform. The presence of boric acid in the coolant suppresses the magnesium absorption to such an extent that removal of the boron is necessary and three variations of a methyl borate volatilization technique for the in situ removal of boron from the sample platform were investigated. This work has shown that dilution of the sample with an equal volume of acidified methanol and volatilization of the methyl borate was adequate for the determination of magnesium in coolant samples containing up to 2000 mg 1 -1 of boron. In simulated coolant samples containing 25 and 4 μg 1 -1 of magnesium, positive biases of about 2 and 0.5 μg 1 -1 were measured and these errors were considered to be due to contamination. The limit of detection in the presence of 100 and 2000 mg 1 -1 boron were 0.14 and 0.93 μg 1 -1 respectively. These performance characteristics suggest the method is completely acceptable for monitoring the chemical purity of PWR coolant and associated waters containing boric acid. If, however, more precise analyses were to be required for research purposes then any significant improvement in the above figures would require increased purity of reagents, clean-room conditions to reduce contamination and a more versatile atomic absorption spectrophotometer. (author)

  5. Development of a Computer Program for the Analysis Logistics of PWR Spent Fuels

    International Nuclear Information System (INIS)

    Choi, Heui Joo; Choi, Jong Won; Cha, Jeong Hun

    2008-01-01

    It is expected that the temporary storage facilities at the nuclear power plants will be full of the spent fuels within 10 years. Provided that a centralized interim storage facility is constructed along the coast of the Korean peninsula to solve this problem, a substantial amount of spent fuels should be transported by sea or by land every year. In this paper we developed a computer program for the analysis of transportation logistics of the spent fuels from 4 different nuclear power plant sites to the hypothetical centralized interim storage facility and the final repository. Mass balance equations were used to analyze the logistics between the nuclear power plants and the interim storage facility. To this end a computer program, CASK, was developed by using the VISUAL BASIC language. The annual transportation rates of spent fuels from the four nuclear power plant sites were determined by using the CASK program. The parameter study with the program illustrated the easiness of logistics analysis. The program could be used for the cost analysis of the spent fuel transportation as well.

  6. Impact of nuclear data uncertainty on safety calculations for spent nuclear fuel geological disposal

    Directory of Open Access Journals (Sweden)

    Herrero J.J.

    2017-01-01

    Full Text Available In the design of a spent nuclear fuel disposal system, one necessary condition is to show that the configuration remains subcritical at time of emplacement but also during long periods covering up to 1,000,000 years. In the context of criticality safety applying burn-up credit, k-eff eigenvalue calculations are affected by nuclear data uncertainty mainly in the burnup calculations simulating reactor operation and in the criticality calculation for the disposal canister loaded with the spent fuel assemblies. The impact of nuclear data uncertainty should be included in the k-eff value estimation to enforce safety. Estimations of the uncertainty in the discharge compositions from the CASMO5 burn-up calculation phase are employed in the final MCNP6 criticality computations for the intact canister configuration; in between, SERPENT2 is employed to get the spent fuel composition along the decay periods. In this paper, nuclear data uncertainty was propagated by Monte Carlo sampling in the burn-up, decay and criticality calculation phases and representative values for fuel operated in a Swiss PWR plant will be presented as an estimation of its impact.

  7. Topical report on actinide-only burnup credit for PWR spent nuclear fuel packages. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1997-04-01

    A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, k{sub eff}, of a spent nuclear fuel package. Fifty-seven UO{sub 2}, UO{sub 2}/Gd{sub 2}O{sub 3}, and UO{sub 2}/PuO{sub 2} critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on k{sub eff} (which can be a function of the trending parameters) such that the biased k{sub eff}, when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package

  8. Secondary water chemistry control practices and results of the Japanese PWR plants

    International Nuclear Information System (INIS)

    Maeda, Akihiro; Shoda, Yasuhiko; Ishihara, Nobuo; Murata, Kazutoyo; Fujiwara, Hiroyuki; Hayakawa, Hitoshi; Matsuda, Tadashi

    2012-09-01

    In Japan, since the start of the operation of the first PWR plant, Mihama Unit-1 in 1970, 24 PWR plants have been built by 2010, and all of them are in operation. Due to the plant-specific needs of management, and by flexibly incorporating the state-of-the-art insights into the design, the system configurations of the plants vary so many as 15 types. Meanwhile, the geographical feature of Japan makes all the Japanese PWR plants to have condensers cooled by sea water, and all the plants have a common system with a full-flow Condensate Polisher System (CPS). To prevent corrosion, continued improvements of the secondary water chemistry management has been performed like other countries, and one of the major features of the Japanese PWR plants is an enhanced provision for the condenser leakage. The water quality of SG (Steam Generator) has been significantly improved by the provision for the sea water leakage, in combination with other improvements in water chemistry management. Also in Japan, almost all of the treatments of the spent polisher resin and the wastewater are performed within the power plant sites. To facilitate the treatment of the waste water and the regeneration of the spent resins, either ammonia or ETA (Ethanol Amine) is selected as the pH adjustment agent for the secondary system water. Also at the ammonia treatment, high pH accomplishes the inhibition of the piping wall thinning and the lower iron transportation into SGs. In addition, the iron transported into the SG is removed by the chemical conditioning treatment called ASCA (Advanced Scale Conditioning Agent). This provides the effective recovery of the SG heat-transfer performance, and the improved SG support plate BEC (Broached Egg Crate) hole blockage rates. Basically in Japan, the secondary water chemistry management has been improved based on a single basic specification, for the variety of the plant configurations, with the plant-specific investigations and analyses. This paper summarizes

  9. Calculation of nuclide inventory, decay power, activity and dose rates for spent nuclear fuel

    International Nuclear Information System (INIS)

    Haakansson, Rune

    2000-03-01

    The nuclide inventory was calculated for a BWR and a PWR fuel element, with burnups of 38 and 55 MWd/kg uranium for the BWR fuel, and 42 and 60 MWd/kg uranium for the PWR fuel. The calculations were performed for decay times of up to 300,000 years. Gamma and neutron dose rates have been calculated at a distance of 1 m from a bare fuel element and outside the spent fuel canister. The calculations were performed using the CASMO-4 code

  10. Parallel GPU implementation of PWR reactor burnup

    International Nuclear Information System (INIS)

    Heimlich, A.; Silva, F.C.; Martinez, A.S.

    2016-01-01

    Highlights: • Three GPU algorithms used to evaluate the burn-up in a PWR reactor. • Exhibit speed improvement exceeding 200 times over the sequential. • The C++ container is expansible to accept new nuclides chains. - Abstract: This paper surveys three methods, implemented for multi-core CPU and graphic processor unit (GPU), to evaluate the fuel burn-up in a pressurized light water nuclear reactor (PWR) using the solutions of a large system of coupled ordinary differential equations. The reactor physics simulation of a PWR reactor spends a long execution time with burnup calculations, so performance improvement using GPU can imply in better core design and thus extended fuel life cycle. The results of this study exhibit speed improvement exceeding 200 times over the sequential solver, within 1% accuracy.

  11. Hot Experiment on Fission Gas Release Behavior from Voloxidation Process using Spent Fuel

    International Nuclear Information System (INIS)

    Park, Geun Il; Park, J. J.; Jung, I. H.; Shin, J. M.; Cho, K. H.; Yang, M. S.; Song, K. C.

    2007-08-01

    Quantitative analysis of the fission gas release characteristics during the voloxidation and OREOX processes of spent PWR fuel was carried out by spent PWR fuel in a hot-cell of the DFDF. The release characteristics of 85 Kr and 14 C fission gases during voloxidation process at 500 .deg. C is closely linked to the degree of conversion efficiency of UO 2 to U 3 O 8 powder, and it can be interpreted that the release from grain-boundary would be dominated during this step. Volatile fission gases of 14 C and 85 Kr were released to near completion during the OREOX process. Both the 14 C and 85 Kr have similar release characteristics under the voloxidation and OREOX process conditions. A higher burn-up spent fuel showed a higher release fraction than that of a low burn-up fuel during the voloxidation step at 500 .deg. C. It was also observed that the release fraction of semi-volatile Cs was about 16% during a reduction at 1,000 .deg. C of the oxidized powder, but over 90% during the voloxidation at 1,250 .deg. C

  12. Design premises for canister for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Werme, L

    1998-09-01

    The purpose of this report is to establish the basic premises for designing canisters for the disposal of spent nuclear fuel, the requirements for canister characteristics, and the design criteria, and to present alternative canister designs that satisfy these premises. The point of departure for canister design has been that the canister must be able to be used for both BWR and PWR fuel 43 refs, 4 figs, 6 tabs

  13. Expansion of the capabilities of the GA-4 legal weight truck spent fuel shipping cask

    International Nuclear Information System (INIS)

    Zimmer, A.; Razvi, J.; Johnson, L.; Welch, B.; Lancaster, D.

    2004-01-01

    General Atomics (GA) has developed the Model GA-4 Legal Weight Truck Spent Fuel Cask, a high capacity cask for the transport of four PWR spent fuel assemblies, and obtained a Certificate of Compliance (CoC No. 9226) in 1998 from the US Nuclear Regulatory Commission (NRC). The currently authorized contents in this CoC however, are much more limiting than the actual capability of the GA-4 cask to transport spent PWR fuel assemblies. The purpose of this paper is to show how the authorized contents can be significantly expanded by additional analyses without any changes to the physical design of the package. Using burnup credit per ISG-8 Rev. 2, the authorized contents can be significantly expanded by increasing the maximum enrichment as the burnup increases. Use of burnup credit eliminates much of the criticality imposed limits on authorized package contents, but shielding still limits the use of the cask for the higher burnup, short cooled fuel. By downloading to two assemblies and using shielding inserts, even the high burnup fuel with reasonable cooling times can be transported

  14. Transient performance of flow in circuits of PWR type reactors

    International Nuclear Information System (INIS)

    Hirdes, V.R.; Carajilescov, P.

    1988-09-01

    Generally, PWR's are designed with several primary loops, each one provided with a pump to circulate the coolant through the core. If one or more of these pumps fail, there would be a decrease in reactor flow rate which could cause coolant phase change in the core and components overheating. The present work establishes a simulation model for pump failure in PWR's and the SARDAN-FLOW computes code was developed, considering any combination of such failures. Based on the data of Angra I, several accident and operational transient conditions were simulated. (author) [pt

  15. Validation of gadolinium burnout using PWR benchmark specification

    Energy Technology Data Exchange (ETDEWEB)

    Oettingen, Mikołaj, E-mail: moettin@agh.edu.pl; Cetnar, Jerzy, E-mail: cetnar@mail.ftj.agh.edu.pl

    2014-07-01

    Graphical abstract: - Highlights: • We present methodology for validation of gadolinium burnout in PWR. • We model 17 × 17 PWR fuel assembly using MCB code. • We demonstrate C/E ratios of measured and calculated concentrations of Gd isotopes. • The C/E for Gd154, Gd156, Gd157, Gd158 and Gd160 shows good agreement of ±10%. • The C/E for Gd152 and Gd155 shows poor agreement below ±10%. - Abstract: The paper presents comparative analysis of measured and calculated concentrations of gadolinium isotopes in spent nuclear fuel from the Japanese Ohi-2 PWR. The irradiation of the 17 × 17 fuel assembly containing pure uranium and gadolinia bearing fuel pins was numerically reconstructed using the Monte Carlo Continuous Energy Burnup Code – MCB. The reference concentrations of gadolinium isotopes were measured in early 1990s at Japan Atomic Energy Research Institute. It seems that the measured concentrations were never used for validation of gadolinium burnout. In our study we fill this gap and assess quality of both: applied numerical methodology and experimental data. Additionally we show time evolutions of infinite neutron multiplication factor K{sub inf}, FIMA burnup, U235 and Gd155–Gd158. Gadolinium-based materials are commonly used in thermal reactors as burnable absorbers due to large neutron absorption cross-section of Gd155 and Gd157.

  16. Crack growth testing of cold worked stainless steel in a simulated PWR primary water environment to assess susceptibility to stress corrosion cracking

    International Nuclear Information System (INIS)

    Tice, D.R.; Stairmand, J.W.; Fairbrother, H.J.; Stock, A.

    2007-01-01

    Although austenitic stainless steels do not show a high degree of susceptibility to stress corrosion cracking (SCC) in PWR primary environments, there is limited evidence from laboratory testing that crack propagation may occur under some conditions for materials in a cold-worked condition. A test program is therefore underway to examine the factors influencing SCC propagation in good quality PWR primary coolant. Type 304 stainless steel was subjected to cold working by either rolling (at ambient or elevated temperature) or fatigue cycling, to produce a range of yield strengths. Compact tension specimens were fabricated from these materials and tested in simulated high temperature (250-300 o C) PWR primary coolant. It was observed that the degree of crack propagation was influenced by the degree of cold work, the crack growth orientation relative to the rolling direction and the method of working. (author)

  17. Spent-fuel composition: a comparison of predicted and measured data

    International Nuclear Information System (INIS)

    Thomas, C.C. Jr.; Cobb, D.D.; Ostenak, C.A.

    1981-03-01

    The uncertainty in predictions of the nuclear materials content of spent light-water reactor fuel was investigated to obtain guidelines for nondestructive spent-fuel verification and assay. Values predicted by the reactor operator were compared with measured values from fuel reprocessors for six reactors (three PWR and three BWR). The study indicates that total uranium, total plutonium, fissile uranium, fissile plutonium, and total fissile content can be predicted with biases ranging from 1 to 6% and variabilities (1-sigma) ranging from 2 to 7%. The higher values generally are associated with BWRs. Based on the results of this study, nondestructive assay measurements that are accurate and precise to 5 to 10% (1sigma) or better should be useful for quantitative analyses of typical spent fuel

  18. Report of Post Irradiation Examination for Dry Process Fuel

    International Nuclear Information System (INIS)

    Par, Jang Jin; Jung, I. H.; Kang, K. H.; Moon, J. S.; Lee, C. R.; Ryu, H. J.; Song, K. C.; Yang, M. S.; Yoo, B. O.; Jung, Y. H.; Choo, Y. S.

    2006-08-01

    The spent PWR fuel typically contains 0.9 wt.% of fissile uranium and 0.6 wt.% of fissile plutonium, which exceeds the natural uranium fissile content of 0.711 wt.%. The neutron economy of a CANDU reactor is sufficient to utilize the DUPIC fuel, even though the neutron-absorbing fission products contained in the spent PWR fuel were remained in the DUPIC fuel. The DUPIC fuel cycle offers advantages to the countries operating both the PWR and CANDU reactors, such as saving the natural uranium, reducing the spent fuel in both PWR and CANDU, and acquiring the extra energy by reuse of the PWR spent fuel. This report contains the results of post-irradiation examination of the DUPIC fuel irradiated four times at HANARO from May 2000 to August 2006 present except the first irradiation test of simulated DUPIC fuel at HANARO on August 1999

  19. Scaling studies - PWR

    International Nuclear Information System (INIS)

    Sonneck, G.

    1983-05-01

    A RELAP 4/MOD 6 study was made based on the blowdown phase of the intermediate break experiment LOFT L5-1. The method was to set up a base model and to vary parametrically some areas where it is known or suspected that LOFT differs from a commercial PWR. The aim was not to simulate LOFT or a PWR exactly but to understand the influence of the following parameters on the thermohydraulic behaviour of the system and the clad temperature: stored heat in the downcomer (LOFT has rather large filler blocks in this part of the pressure vessel); bypass between downcomer and upper plenum; and core length. The results show that LOFT is prototypical for all calculated blowdowns. As the clad temperatures decrease with decreasing stored energy in the downcomer, increased bypass and increased core length, LOFT results seem to be realistic as long as realistic bypass sizes are considered; they are conservative in the two other areas. (author)

  20. Preliminary performance analysis of exponential experimental system for the determination of neutron effective multiplication factor of PWR spent fuel

    International Nuclear Information System (INIS)

    Shin, Heesung; Lee, Sang-Yun; Ro, Seung-Gy; Seo, Gi-Seok; Kim, Ho-Dong

    2002-01-01

    An exponential experiment system which is composed of neutron detector, signal analysis system and neutron source, 10 mCi Cf-252 has been installed in the storage pool of PIEF at KAERI in order to experimentally determining neutron effective multiplication factors of PWR spent fuel assemblies. Preliminary functional characteristic tests of the experimental system are performed for C15, J14 and J44 assemblies loaded in the pool. As a result of preliminary tests, the average neutron counts obtained for 3 minutes in the plateau of the C15, J14 and J44 assemblies are about 1900, 3800 and 3200, respectively. A dip of the neutron flux density distribution is noticed in the spacer grid position. Neutron counts at those positions appear to be reduced to about 70 % in comparison to the fuel position. The measured axial neutron distribution shapes are compared with the result for the P14 assembly and Cs-137 gamma scanning data performed in KAERI. It is revealed that the spacer grid position measured is consistent with the design specifications within a 2.3 % error. The exponential decay constants for the C15 assembly were determined to be 0.152 and 0.165 for detector and source scanning, respectively. (author)

  1. Characteristics of several equilibrium fuel cycles of PWR

    International Nuclear Information System (INIS)

    Waris, Abdul; Sekimoto, Hiroshi

    2001-01-01

    This paper evaluated the influence of neutron spectrum on characteristics of several equilibrium fuel cycles of pressurized water reactor (PWR). In this study, five kinds of fuel cycles were investigated. Required uranium enrichment, required natural uranium amount, and toxicity of heavy metals (HMs) in spent fuel were presented for comparison. The results showed that the enrichment and the required amount of natural uranium decrease significantly with increasing number of confined heavy nuclides when uranium is discharged from the reactor. On the other hand, when uranium is totally confined, the enrichment becomes extremely high. The confinement of plutonium and minor actinides (MA) seems effective in reducing radio-toxicity of discharged wastes. By confining all heavy nuclides except uranium those three characteristics could be reduced considerably. For this fuel cycle the toxicity of HMs in spent fuel become nearly equal to or less than that of loaded uranium. (author)

  2. A model to simulate the dynamic of a PWR pressurizer using the CSMP program

    International Nuclear Information System (INIS)

    Woiski, E.R.

    1981-01-01

    A mathematical model has been developed to simulate the dynamic behavior of a PWR pressurizer using the CSMP program. A two-control-volume formulation non-equilibrium model has been used for this purpose. Thermodynamic states are obtained after each integration cycle. The code was tested against experimental results of Shippingport and NPD (Nuclear Power Demonstration Plant) pressurizers. It was also tested against available data from Angra I and Angra II/III safety analysis report. Despite the model simplicity, the lack of important data and the low reliability or the experimental curves, the calculated and experimental results compared well. (Author) [pt

  3. Simulation model for the dynamic behavior of the hydraUlic circuito of PWR reactors

    International Nuclear Information System (INIS)

    Hirdes, V.R.T.R.

    1987-01-01

    The present work consist of the development of a computer code for the simulations of hydraulic transients caused by stoppages of the primary coolant pumps of nuclear reactors and it applied to the hydraulic circuits typical of PWR reactor. The code calculates the time-histories of the mass flux, rotation speed, electric and hydraulic torque and dynamic head of the pumps. It can be used for any combination of active and inactive pumps. Several transients were analysed and the results were compared with comparared with data from the Angra-I nuclear power plant. The results were considered satisfactory. (author) [pt

  4. Development of Neutron Energy Spectral Signatures for Passive Monitoring of Spent Nuclear Fuels in Dry Cask Storage

    Science.gov (United States)

    Harkness, Ira; Zhu, Ting; Liang, Yinong; Rauch, Eric; Enqvist, Andreas; Jordan, Kelly A.

    2018-01-01

    Demand for spent nuclear fuel dry casks as an interim storage solution has increased globally and the IAEA has expressed a need for robust safeguards and verification technologies for ensuring the continuity of knowledge and the integrity of radioactive materials inside spent fuel casks. Existing research has been focusing on "fingerprinting" casks based on count rate statistics to represent radiation emission signatures. The current research aims to expand to include neutron energy spectral information as part of the fuel characteristics. First, spent fuel composition data are taken from the Next Generation Safeguards Initiative Spent Fuel Libraries, representative for Westinghouse 17ˣ17 PWR assemblies. The ORIGEN-S code then calculates the spontaneous fission and (α,n) emissions for individual fuel rods, followed by detailed MCNP simulations of neutrons transported through the fuel assemblies. A comprehensive database of neutron energy spectral profiles is to be constructed, with different enrichment, burn-up, and cooling time conditions. The end goal is to utilize the computational spent fuel library, predictive algorithm, and a pressurized 4He scintillator to verify the spent fuel assemblies inside a cask. This work identifies neutron spectral signatures that correlate with the cooling time of spent fuel. Both the total and relative contributions from spontaneous fission and (α,n) change noticeably with respect to cooling time, due to the relatively short half-life (18 years) of the major neutron source 244Cm. Identification of this and other neutron spectral signatures allows the characterization of spent nuclear fuels in dry cask storage.

  5. Advanced three-dimensional thermal modeling of a baseline spent fuel repository

    International Nuclear Information System (INIS)

    Altenbach, T.J.; Lowry, W.E.

    1980-01-01

    A three-dimensional thermal analysis using finite difference techniques was performed to determine the near-field response of a baseline spent fuel repository in a deep geologic salt medium. A baseline design incorporates previous thermal modeling experience and OWI recommendations for areal thermal loading in specifying the waste form properties, package details, and emplacement configuration. The base case in this thermal analysis considers one 10-year old PWR spent fuel assembly emplaced to yield a 36 kW/acre (8.9 W/m 2 ) loading. A unit cell model in an infinite array is used to simplify the problem and provide upper-bound temperatures. Boundary conditions are imposed which allow simulations to 1000 years. Variations studied include a comparison of ventilated and unventilated storage room conditions, emplacement packages with and without air gaps surrounding the canister, and room cool-down scenarios with ventilation following an unventilated state for retrieval purposes. It was found that at this low-power level, ventilating the emplacement room has an immediate cooling influence on the canister and effectively maintains the emplacement room floor near the temperature of the ventilating air

  6. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Shin, Y. J.; Do, J. B.; You, G. S.; Seo, J. S.; Lee, H. G.

    1998-03-01

    This study is to develop an advanced spent fuel management process for countries which have not yet decided a back-end nuclear fuel cycle policy. The aims of this process development based on the pyroreduction technology of PWR spent fuels with molten lithium, are to reduce the storage volume by a quarter and to reduce the storage cooling load in half by the preferential removal of highly radioactive decay-heat elements such as Cs-137 and Sr-90 only. From the experimental results which confirm the feasibility of metallization technology, it is concluded that there are no problems in aspects of reaction kinetics and equilibrium. However, the operating performance test of each equipment on an engineering scale still remain and will be conducted in 1999. (author). 21 refs., 45 tabs., 119 figs

  7. A proposed Regulatory Guide basis for spent fuel decay heat

    International Nuclear Information System (INIS)

    Hermann, O.W.; Parks, C.V.; Renier, J.P.

    1991-01-01

    A proposed revision to Regulatory Guide 3.54, ''Spent Fuel Heat Generation in an Independent Spent Fuel Storage Installation'' has been developed for the US Nuclear Regulatory Commission. The proposed revision includes a data base of decay heat rates calculated as a function of burnup, specific power, cooling time, initial fuel 235 U enrichment and assembly type (i.e., PWR or BWR). Validation of the calculational method was done by comparison with existing measured decay heat rates. Procedures for proper use of the data base, adjustment formulae accounting for effects due to differences in operating history and initial enrichment, and a defensible safety factor were derived. 15 refs., 6 tabs

  8. Laboratory results gained from cold worked type 316Ti under simulated PWR primary environment

    International Nuclear Information System (INIS)

    Devrient, B.; Kilian, R.; Koenig, G.; Widera, M.; Wermelinger, T.

    2015-01-01

    Beginning in 2005, intergranular stress corrosion cracking (IGSCC) of barrel bolts made from cold worked type 316Ti (German Material No. 1.4571 K) was observed in several S/KWU type PWRs. This mechanism was so far less understood for PWR primary conditions. Therefore an extended joint research program was launched by AREVA GmbH and VGB e.V. to clarify the specific conditions which contributed to the observed findings on barrel bolts. In the frame of this research program beneath the evaluation of the operational experience also laboratory tests on the general cracking behavior of cold worked type 316Ti material, which followed the same production line as for barrel bolt manufacturing in the eighties, with different cold work levels covering up to 30 % were performed to determine whether there is a specific susceptibility of cold worked austenitic stainless steel specimens to suffer IGSCC under simulated PWR primary conditions. All these slow strain rate tests on tapered specimens and component specimens came to the results that first, much higher cold work levels than used for the existing barrel bolts are needed for IGSCC initiation. Secondly, additional high active plastic deformation is needed to generate and propagate intergranular cracking. And thirdly, all specimens finally showed ductile fracture at the applied strain rates. (authors)

  9. Two optimal control methods for PWR core control

    International Nuclear Information System (INIS)

    Karppinen, J.; Blomsnes, B.; Versluis, R.M.

    1976-01-01

    The Multistage Mathematical Programming (MMP) and State Variable Feedback (SVF) methods for PWR core control are presented in this paper. The MMP method is primarily intended for optimization of the core behaviour with respect to xenon induced power distribution effects in load cycle operation. The SVF method is most suited for xenon oscillation damping in situations where the core load is unpredictable or expected to stay constant. Results from simulation studies in which the two methods have been applied for control of simple PWR core models are presented. (orig./RW) [de

  10. Spent fuel metal storage cask performance testing and future spent fuel concrete module performance testing

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Creer, J.M.

    1988-10-01

    REA-2023 Gesellshaft fur Nuklear Service (GNS) CASTOR-V/21, Transnuclear TN-24P, and Westinghouse MC-10 metal storage casks, have been performance tested under the guidance of the Pacific Northwest Laboratory to determine their thermal and shielding performance. The REA-2023 cask was tested under Department of Energy (DOE) sponsorship at General Electric's facilities in Morris, Illinois, using BWR spent fuel from the Cooper Reactor. The other three casks were tested under a cooperative agreement between Virginia Power Company and DOE at the Idaho National Engineering Laboratory (INEL) by EGandG Idaho, Inc., using intact spent PWR fuel from the Surry reactors. The Electric Power Research Institute (EPRI) made contributions to both programs. A summary of the various cask designs and the results of the performance tests is presented. The cask designs include: solid and liquid neutron shields; lead, steel, and nodular cast iron gamma shields; stainless steel, aluminum, and copper baskets; and borated materials for criticality control. 4 refs., 8 figs., 6 tabs

  11. CFD Simulation of Heat and Fluid Flow for Spent Fuel in a Dry Storage

    International Nuclear Information System (INIS)

    In, Wangkee; Kwack, Youngkyun; Kook, Donghak; Koo, Yanghyun

    2014-01-01

    A dry storage system is used for the interim storage of spent fuel prior to permanent depository and/or recycling. The spent fuel is initially stored in a water pool for more than 5 years at least after dispatch from the reactor core and is transported to dry storage. The dry cask contains a multiple number of spent fuel assemblies, which are cooled down in the spent fuel pool. The dry cask is usually filled up with helium gas for increasing the heat transfer to the environment outside the cask. The dry storage system has been used for more than a decade in United States of America (USA) and the European Union (EU). Korea is also developing a dry storage system since its spent fuel pool is anticipated to be full within 10 years. The spent fuel will be stored in a dry cask for more than 40 years. The integrity and safety of spent fuel are important for long-term dry storage. The long-term storage will experience the degradation of spent fuel such as the embrittlement of fuel cladding, thermal creep and hydride reorientation. High burn-up fuel may expedite the material degradation. It is known that the cladding temperature has a strong influence on the material degradation. Hence, it is necessary to accurately predict the local distribution of the cladding temperature using the Computational Fluid Dynamics (CFD) approach. The objective of this study is to apply the CFD method for predicting the three-dimensional distribution of fuel temperature in a dry cask. This CFD study simulated the dry cask for containing the 21 fuel assemblies under development in Korea. This paper presents the fluid velocity and temperature distribution as well as the fuel temperature. A two-step CFD approach was applied to simulate the heat and fluid flow in a dry storage of 21 spent fuel assemblies. The first CFD analysis predicted the helium flow and temperature in a dry cask by a assuming porous body of the spent fuel. The second CFD analysis was to simulate a spent fuel assembly in the

  12. Radionuclide compositions of spent fuel and high level waste from commercial nuclear reactors

    International Nuclear Information System (INIS)

    Goodill, D.R.; Tymons, B.J.

    1984-10-01

    This report provides information on radionuclide compositions of spent fuel and high level waste produced during reprocessing. The reactor types considered are Magnox, AGR, PWR and CFR. The activities of the radionuclides are calculated using the FISPIN code. The results are presented in a form suitable for radioactive waste management calculations. (author)

  13. Flow with boiling in four-cusp channels simulating damaged core in PWR type reactors

    International Nuclear Information System (INIS)

    Esteves, M.M.

    1985-01-01

    The study of subcooled nucleate flow boiling in non-circular channels is of great importance to engineering applications in particular to Nuclear Engineering. In the present work, an experimental apparatus, consisting basically of a refrigeration system, running on refrigerant-12, has been developed. Preliminary tests were made with a circular tube. The main objective has been to analyse subcooled flow boiling in four-cusp channels simulating the flow conditions in a PWR core degraded by accident. Correlations were developed for the forced convection film coefficient for both single-phase and subcooled flow boiling. The incipience of boiling in such geometry has also been studied. (author) [pt

  14. Operating function tests of the PWR type RHR pump for engineering safety system under simulated strong ground excitation

    International Nuclear Information System (INIS)

    Uga, Takeo; Shiraki, Kazuhiro; Homma, Toshiaki; Inazuka, Hisashi; Nakajima, Norifumi.

    1979-08-01

    Results are described of operating function verification tests of a PWR RHR pump during an earthquake. Of the active reactor components, the PWR residual heat removal pump was chosen from view points of aseismic classification, safety function, structural complexity and past aseismic tests. Through survey of the service conditions and structure of this pump, seismic test conditions such as acceleration level, simulated seismic wave form and earthquake duration were decided for seismicity of the operating pump. Then, plans were prepared to evaluate vibration chracteristics of the pump and to estimate its aseismic design margins. Subsequently, test facility and instrumentation system were designed and constructed. Experimental results could thus be acquired on vibration characteristics of the pump and its dynamic behavior during different kinds and levels of simulated earthquake. In conclusion: (1) Stiffeners attached to the auxiliary system piping do improve aseismic performance of the pump. (2) The rotor-shaft-bearing system is secure unless it is subjected to transient disturbunces having high frequency content. (3) The motor and pump casing having resonance frequencies much higher than frequency content of the seismic wave show only small amplifications. (4) The RHR pump possesses an aseismic design margin more than 2.6 times the expected ultimate earthquake on design basis. (author)

  15. Simulation of corrosion product activity in ion- exchanger of PWR under acceleration of corrosion and flow rate perturbations

    International Nuclear Information System (INIS)

    Mirza, N.M.; Mirza, S.M.; Rafique, M.

    2005-01-01

    In this paper computer code developed earlier by the authors (CPAIR-P) has been employed to compute corrosion product activity in PWRs for flow rate perturbations. The values of radioactivity in ion exchanger of Pressurized Water Reactor (PWR) under normal and flow rate perturbation conditions have been calculated. For linearly accelerating corrosion rates, activity saturates for removal rate of 600 cm/sup 3// s in primary coolant of PWR. A higher removal rate of 750 cm/sup 3// s was selected for which the saturation value is sufficiently low (0. 28 micro Ci/cm/sup 3/). Simulation results shows that the Fe/sup 59/ Na/sup 24/, Mo/sup 99/, Mn/sup 56/ reaches saturation values with in about 700 hours of reactor operation. However, Co/sup 58/ and Co/sup 60/ keep on accumulating and do not saturate with in 2000 hours of these simulation time. When flow rate is decreased by 10% of rated flow rate after 500 hours of reactor operation, a dip in activity is seen, which reaches to the value of 0.00138 micro Ci cm/sup -3/ then again it begins to rise and reaches saturation value of 0.00147 cm/sup 3//s. (author)

  16. A numerical integration approach suitable for simulating PWR dynamics using a microcomputer system

    International Nuclear Information System (INIS)

    Zhiwei, L.; Kerlin, T.W.

    1983-01-01

    It is attractive to use microcomputer systems to simulate nuclear power plant dynamics for the purpose of teaching and/or control system design. An analysis and a comparison of feasibility of existing numerical integration methods have been made. The criteria for choosing the integration step using various numerical integration methods including the matrix exponential method are derived. In order to speed up the simulation, an approach is presented using the Newton recursion calculus which can avoid convergence limitations in choosing the integration step size. The accuracy consideration will dominate the integration step limited. The advantages of this method have been demonstrated through a case study using CBM model 8032 microcomputer to simulate a reduced order linear PWR model under various perturbations. It has been proven theoretically and practically that the Runge-Kutta method and Adams-Moulton method are not feasible. The matrix exponential method is good at accuracy and fairly good at speed. The Newton recursion method can save 3/4 to 4/5 time compared to the matrix exponential method with reasonable accuracy. Vertical Barhis method can be expanded to deal with nonlinear nuclear power plant models and higher order models as well

  17. The design of the DUPIC spent fuel bundle counter

    International Nuclear Information System (INIS)

    Menlove, H.O.; Rinard, P.M.; Kroncke, K.E.; Lee, Y.G.

    1997-05-01

    A neutron coincidence detector had been designed to measure the amount of curium in the fuel bundles and associated process samples used in the direct use of plutonium in Canadian deuterium-uranium (CANDU) fuel cycle. All of the sample categories are highly radioactive from the fission products contained in the pressurized water reactor (PWR) spent fuel feed stock. Substantial shielding is required to protect the He-3 detectors from the intense gamma rays. The Monte Carlo neutron and photon calculational code has been used to design the counter with a uniform response profile along the length of the CANDU-type fuel bundle. Other samples, including cut PWR rods, process powder, waste, and finished rods, can be measured in the system. This report describes the performance characteristics of the counter and support electronics. 3 refs., 23 figs., 6 tabs

  18. Development of advanced spent fuel management process / criticality safety analysis for integrated mockup and metallized spent fuel storage

    International Nuclear Information System (INIS)

    Ro, Seong Gy; Shin, Hee Sung; Shin, Young Joon; Bae, Kang Mok

    1999-02-01

    Benchmark calculation for SCALE4.3 CSAS6 module and burnup credit criticality analysis performed by CSAS6 module are described in this report. Calculation biases by the SCALE4.3 CSAS6 module for PWR spent fuel, metallized spent fuel and aqueous nuclear materials have been determined on the basis of the benchmark to be 0.011, 0.023 and 0.010, respectively. The maximum allowable multiplication factor for an integrated mockup and metallized spent fuel storage is conservatively determined to be 0.927. With the aid of this code system, K eff values as a function of metallization ratio for the integrated mockup have been calculated. The maximum values of K eff for normal and hypothetical accident conditions are 0.346 and 0.598, respectively, much less than the maximum allowable multiplication factor of 0.927. Besides, burnup credit criticality analysis has been performed for infinite arrays of square and hexagonal canisters containing metallized spent fuel rods with different canister wall thickness, canister surface-to-surface distance and water content. It is revealed that the effective multiplication factor for canister arrays as mentioned above is well below the subcritical limit regardless of external conditions when its wall thickness is over 9 mm. (Author). 37 refs., 27 tabs., 64 figs

  19. VALIDATION OF SIMBAT-PWR USING STANDARD CODE OF COBRA-EN ON REACTOR TRANSIENT CONDITION

    Directory of Open Access Journals (Sweden)

    Muhammad Darwis Isnaini

    2016-03-01

    Full Text Available The validation of Pressurized Water Reactor typed Nuclear Power Plant simulator developed by BATAN (SIMBAT-PWR using standard code of COBRA-EN on reactor transient condition has been done. The development of SIMBAT-PWR has accomplished several neutronics and thermal-hydraulic calculation modules. Therefore, the validation of the simulator is needed, especially in transient reactor operation condition. The research purpose is for characterizing the thermal-hydraulic parameters of PWR1000 core, which be able to be applied or as a comparison in developing the SIMBAT-PWR. The validation involves the calculation of the thermal-hydraulic parameters using COBRA-EN code. Furthermore, the calculation schemes are based on COBRA-EN with fixed material properties and dynamic properties that calculated by MATPRO subroutine (COBRA-EN+MATPRO for reactor condition of startup, power rise and power fluctuation from nominal to over power. The comparison of the temperature distribution at nominal 100% power shows that the fuel centerline temperature calculated by SIMBAT-PWR has 8.76% higher result than COBRA-EN result and 7.70% lower result than COBRA-EN+MATPRO. In general, SIMBAT-PWR calculation results on fuel temperature distribution are mostly between COBRA-EN and COBRA-EN+MATPRO results. The deviations of the fuel centerline, fuel surface, inner and outer cladding as well as coolant bulk temperature in the SIMBAT-PWR and the COBRA-EN calculation, are due to the value difference of the gap heat transfer coefficient and the cladding thermal conductivity.

  20. Source Term Characteristics Analysis for Structural Components in PWR spent fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kook, Dong Hak; Choi, Heui Joo; Cho, Dong Keun [KAERI, Daejeon (Korea, Republic of)

    2010-12-15

    Source terms of metal waste comprising a spent fuel assembly are relatively important when the spent fuel is pyroprocessed, because cesium, strontium, and transuranics are not a concern any more in the aspect of source term of permanent disposal. In this study, characteristics of radiation source terms for each structural component in spent fuel assembly was analyzed by using ORIGEN-S with a assumption that 10 metric tons of uranium is pyroprocessed. At first, mass and volume for each structural component of the fuel assembly were calculated in detail. Activation cross section library was generated by using KENO-VI/ORIGEN-S module for top-end piece and bottom-end piece, because those are located at outer core under different neutron spectrum compared to that of inner core. As a result, values of radioactivity, decay heat, and hazard index were reveled to be 1.32x1015 Bequerels, 238 Watts, 4.32x109 m3 water, respectively, at 10 years after discharge. Those values correspond to 0.6 %, 1.1 %, 0.1 %, respectively, compared to that of spent fuel. Inconel 718 grid plate was shown to be the most important component in the all aspects of radioactivity, decay heat, and hazard index although the mass occupies only 1 % of the total. It was also shown that if the Inconel 718 grid plate is managed separately, the radioactivity and hazard index of metal waste could be decreased to 25{approx}50 % and 35{approx}40 %, respectively. As a whole, decay heat of metal waste was shown to be negligible in the aspect of disposal system design, while the radioactivity and hazard index are important

  1. Thermal analysis for a spent reactor fuel storage test in granite

    International Nuclear Information System (INIS)

    Montan, D.N.

    1980-09-01

    A test is conducted in which spent fuel assemblies from an operating commercial nuclear power reactor are emplaced in the Climax granite at the US Department of Energy's Nevada Test Site. In this generic test, 11 canisters of spent PWR fuel are emplaced vertically along with 6 electrical simulator canisters on 3 m centers, 4 m below the floor of a storage drift which is 420 m below the surface. Two adjacent parallel drifts contain electrical heaters, operated to simulate (in the vicinity of the storage drift) the temperature fields of a large repository. This test, planned for up to five years duration, uses fairly young fuel (2.5 years out of core) so that the thermal peak will occur during the time frame of the test and will not exceed the peak that would not occur until about 40 years of storage had older fuel (5 to 15 years out of core) been used. This paper describes the calculational techniques and summarizes the results of a large number of thermal calculations used in the concept, basic design and final design of the spent fuel test. The results of the preliminary calculations show the effects of spacing and spent fuel age. Either radiation or convection is sufficient to make the drifts much better thermal conductors than the rock that was removed to create them. The combination of radiation and convection causes the drift surfaces to be nearly isothermal even though the heat source is below the floor. With a nominal ventilation rate of 2 m 3 /s and an ambient rock temperature of 23 0 C, the maximum calculated rock temperature (near the center of the heat source) is about 100 0 C while the maximum air temperature in the drift is around 40 0 C. This ventilation (1 m 3 /s through the main drift and 1/2 m 3 /s through each of the side drifts) will remove about 1/3 of the heat generated during the first five years of storage

  2. Thermohydraulic calculations of PWR primary circuits

    International Nuclear Information System (INIS)

    Botelho, D.A.

    1984-01-01

    Some mathematical and numerical models from Retran computer codes aiming to simulate reactor transients, are presented. The equations used for calculating one-dimensional flow are integrated using mathematical methods from Flash code, with steam code to correlate the variables from thermodynamic state. The algorithm obtained was used for calculating a PWR reactor. (E.G.) [pt

  3. Influence of boron reduction strategies on PWR accident management flexibility

    International Nuclear Information System (INIS)

    Papukchiev, Angel Aleksandrov; Liu, Yubo; Schaefer, Anselm

    2007-01-01

    In conventional pressurized water reactor (PWR) designs, soluble boron is used for reactivity control over core fuel cycle. Design changes to reduce boron concentration in the reactor coolant are of general interest regarding three aspects - improved reactivity feedback properties, lower impact of boron dilution scenarios on PWR safety and eventually more flexible accident management procedures. In order to assess the potential advantages through the introduction of boron reduction strategies in current PWRs, two low boron core configurations based on fuel with increased utilization of gadolinium and erbium burnable absorbers have been developed. The new PWR designs permit to reduce the natural boron concentration in reactor coolant at begin of cycle to 518 ppm and 805 ppm. For the assessment of the potential safety advantages of these cores a hypothetical beyond design basis accident has been simulated with the system code ATHLET. The analyses showed improved inherent safety and increased accident management flexibility of the low boron cores in comparison with the standard PWR. (author)

  4. Long-term storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Kempe, T.F.; Martin, A.; Thorne, M.C.

    1980-06-01

    This report presents the results of a study on the storage of spent nuclear fuel, with particular reference to the options which would be available for long-term storage. Two reference programmes of nuclear power generation in the UK are defined and these are used as a basis for the projection of arisings of spent fuel and the storage capacity which might be needed. The characteristics of spent fuel which are relevant to long-term storage include the dimensions, materials and physical construction of the elements, their radioactive inventory and the associated decay heating as a function of time after removal from the reactor. Information on the behaviour of spent fuel in storage ponds is reviewed with particular reference to the corrosion of the cladding. The review indicates that, for long-term storage, both Magnox and AGR fuel would need to be packaged because of the high rate of cladding corrosion and the resulting radiological problems. The position on PWR fuel is less certain. Experience of dry storage is less extensive but it appears that the rate of corrosion of cladding is much lower than in water. Unit costs are discussed. Consideration is given to the radiological impact of fuel storage. (author)

  5. Spent fuel disassembly hardware and other non-fuel bearing components: characterization, disposal cost estimates, and proposed repository acceptance requirements

    Energy Technology Data Exchange (ETDEWEB)

    Luksic, A.T.; McKee, R.W.; Daling, P.M.; Konzek, G.J.; Ludwick, J.D.; Purcell, W.L.

    1986-10-01

    There are two categories of waste considered in this report. The first is the spent fuel disassembly (SFD) hardware. This consists of the hardware remaining after the fuel pins have been removed from the fuel assembly. This includes end fittings, spacer grids, water rods (BWR) or guide tubes (PWR) as appropriate, and assorted springs, fasteners, etc. The second category is other non-fuel-bearing (NFB) components the DOE has agreed to accept for disposal, such as control rods, fuel channels, etc., under Appendix E of the standard utiltiy contract (10 CFR 961). It is estimated that there will be approximately 150 kg of SFD and NFB waste per average metric ton of uranium (MTU) of spent uranium. PWR fuel accounts for approximately two-thirds of the average spent-fuel mass but only 50 kg of the SFD and NFB waste, with most of that being spent fuel disassembly hardware. BWR fuel accounts for one-third of the average spent-fuel mass and the remaining 100 kg of the waste. The relatively large contribution of waste hardware in BWR fuel, will be non-fuel-bearing components, primarily consisting of the fuel channels. Chapters are devoted to a description of spent fuel disassembly hardware and non-fuel assembly components, characterization of activated components, disposal considerations (regulatory requirements, economic analysis, and projected annual waste quantities), and proposed acceptance requirements for spent fuel disassembly hardware and other non-fuel assembly components at a geologic repository. The economic analysis indicates that there is a large incentive for volume reduction.

  6. Simulation of a Nuclear Steam Supply System (NSSS) of a PWR nuclear power plant

    International Nuclear Information System (INIS)

    Reis Martins Junior, L.L. dos.

    1980-01-01

    The following work intends to perform the digital simulation, of the Nuclear Steam Supply System (NSSS) of a PWR nuclear power plant for control systems design and analysis purposes. There are mathematical models for the reactor, the steam generator, the pressurizer and for transport lags of the coolant in the primary circuit. Nevertheless no one control system has been considered to permit any user the inclusion in the more convenient way of the desired control systems' models. The characteristics of the system in consideration are fundamentally equal to the ones of Almirante Alvaro Alberto Nuclear Power Plant, Unit I (Angra I) obtained in the Final Safety Analysis Report at Comissao Nacional de Energia Nuclear. (author)

  7. Full MOX high burn-up PWR

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Tsutomu; Kugo, Teruhiko; Shimada, Shoichiro; Araya, Fumimasa; Ochiai, Masaaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-12-01

    As a part of conceptual investigation on advanced light water reactors for the future, a light water reactor with the high burn-up of 100 GWd/t, the long cycle operation of 3 years and the full MOX core is being studied, aiming at the improvement on economical aspects, the reduction of the spent fuel production, the utilization of Plutonium and so forth. The present report summarizes investigation on PWR-type reactors. The core with the increased moderation of the moderator-to-fuel volume ratio of 2.6 {approx} 3.0 has been proposed be such a core that accomplishes requirements mentioned above. Through the neutronic and the thermo-hydrodynamic evaluation, the performances of the core have been evaluated. Also, the safety designing is underway considering the reactor system with the passive safety features. (author)

  8. Modular simulation of the dynamics of a 925 MWe PWR electronuclear type reactor and design of a multivariable control algorithm

    International Nuclear Information System (INIS)

    Mansouri, S.

    1985-06-01

    This work has been consecrated to the modular simulation of a PWR 925 MWe power plant's dynamic and to the design of a multivariable algorithm control: a mathematical model of a plant type was developed. The programs were written on a structured manner in order to maximize flexibility. A multivariable control algorithm based on pole placement with output feedback was elaborated together with its correspondent program. The simulation results for different normal transients were shown and the capabilities of the new method of multivariable control are illustrated through many examples

  9. PWR: 10 years after and perspectives

    International Nuclear Information System (INIS)

    1990-01-01

    These proceedings of the SFEN days on PWR (Ten years after and perspectives) comprise 13 conferences bearing on: - From the occurential approach to the state approach - Evolution of calculating tools - Human factors and safety - Reactor safety in the PWR 2000 - The PWR and the electrical power grid load follow - Fuel aspect of PWR management - PWR chemistry evolution - Balance of radiation protection - PWR modifications balance and influence on reactor operation - Design and maintenance of reactor components: 4 conferences [fr

  10. Test requirements for the integral effect test to simulate Korean PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chul Hwa; Park, C. K.; Lee, S. J.; Kwon, T. S.; Yun, B. J.; Chung, M. K

    2001-02-01

    In this report, the test requirements are described for the design of the integral effect test facility to simulate Korean PWR plants. Since the integral effect test facility should be designed so as to simulate various thermal hydraulic phenomena, as closely as possible, to be occurred in real plants during operation or anticipated transients, the design and operational characteristics of the reference plants (Korean Standard Nuclear Plant and Korean Next Generation Reactor)were analyzed in order to draw major components, systems, and functions to be satisfied or simulated in the test facility. The test matrix is set up by considering major safety concerns of interest and the test objectives to confirm and enhance the safety of the plants. And the analysis and prioritization of the test matrix leads to the general design requirements of the test facility. Based on the general design requirements, the design criteria is set up for the basic and detailed design of the test facility. And finally it is drawn the design requirements specific to the fluid system and measurement system of the test facility. The test requirements in this report will be used as a guideline to the scaling analysis and basic design of the test facility. The test matrix specified in this report can be modified in the stage of main testing by considering the needs of experiments and circumstances at that time.

  11. Test requirements for the integral effect test to simulate Korean PWR plants

    International Nuclear Information System (INIS)

    Song, Chul Hwa; Park, C. K.; Lee, S. J.; Kwon, T. S.; Yun, B. J.; Chung, M. K.

    2001-02-01

    In this report, the test requirements are described for the design of the integral effect test facility to simulate Korean PWR plants. Since the integral effect test facility should be designed so as to simulate various thermal hydraulic phenomena, as closely as possible, to be occurred in real plants during operation or anticipated transients, the design and operational characteristics of the reference plants (Korean Standard Nuclear Plant and Korean Next Generation Reactor)were analyzed in order to draw major components, systems, and functions to be satisfied or simulated in the test facility. The test matrix is set up by considering major safety concerns of interest and the test objectives to confirm and enhance the safety of the plants. And the analysis and prioritization of the test matrix leads to the general design requirements of the test facility. Based on the general design requirements, the design criteria is set up for the basic and detailed design of the test facility. And finally it is drawn the design requirements specific to the fluid system and measurement system of the test facility. The test requirements in this report will be used as a guideline to the scaling analysis and basic design of the test facility. The test matrix specified in this report can be modified in the stage of main testing by considering the needs of experiments and circumstances at that time

  12. Design of a Prototype Differential Die‐Away Instrument Proposed for Swedish Spent Nuclear Fuel Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Martinik, Tomas, E-mail: tomas.martinik@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Henzl, Vladimir [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Grape, Sophie; Jansson, Peter [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Swinhoe, Martyn T.; Goodsell, Alison V. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Tobin, Stephen J. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Swedish Nuclear Fuel and Waste Management Company, Blekholmstorget 30, Box 250, SE-101 24 Stockholm (Sweden)

    2016-06-11

    As part of the United States (US) Department of Energy's Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project, the traditional Differential Die-Away (DDA) method that was originally developed for waste drum assay has been investigated and modified to provide a novel application to characterize or verify spent nuclear fuel (SNF). Following the promising, yet largely theoretical and simulation based, research of physics aspects of the DDA technique applied to SNF assay during the early stages of the NGSI-SF project, the most recent effort has been focused on the practical aspects of developing the first fully functional and deployable DDA prototype instrument for spent fuel. As a result of the collaboration among US research institutions and Sweden, the opportunity to test the newly proposed instrument's performance with commercial grade SNF at the Swedish Interim Storage Facility (Clab) emerged. Therefore the design of this instrument prototype has to accommodate the requirements of the Swedish regulator as well as specific engineering constrains given by the unique industrial environment. Within this paper, we identify key components of the DDA based instrument and we present methodology for evaluation and the results of a selection of the most relevant design parameters in order to optimize the performance for a given application, i.e. test-deployment, including assay of 50 preselected spent nuclear fuel assemblies of both pressurized (PWR) as well as boiling (BWR) water reactor type.

  13. Comprehensive exergetic and economic comparison of PWR and hybrid fossil fuel-PWR power plants

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn; Sabzaligol, Tooraj

    2010-01-01

    A typical 1000 MW Pressurized Water Reactor (PWR) nuclear power plant and two similar hybrid 1000 MW PWR plants operate with natural gas and coal fired fossil fuel superheater-economizers (Hybrid PWR-Fossil fuel plants) are compared exergetically and economically. Comparison is performed based on energetic and economic features of three systems. In order to compare system at their optimum operating point, three workable base case systems including the conventional PWR, and gas and coal fired hybrid PWR-Fossil fuel power plants considered and optimized in exergetic and exergoeconomic optimization scenarios, separately. The thermodynamic modeling of three systems is performed based on energy and exergy analyses, while an economic model is developed according to the exergoeconomic analysis and Total Revenue Requirement (TRR) method. The objective functions based on exergetic and exergoeconomic analyses are developed. The exergetic and exergoeconomic optimizations are performed using the Genetic Algorithm (GA). Energetic and economic features of exergetic and exergoeconomic optimized conventional PWR and gas and coal fired Hybrid PWR-Fossil fuel power plants are compared and discussed comprehensively.

  14. Radioprotection and safety for a dry storage module for bare PWR fuel elements

    International Nuclear Information System (INIS)

    Tzontlimatzin, E.

    1983-01-01

    A module for dry storage of spent fuel from PWR, after a previous cooling time of 2 years, is examined. Biological protection is obtained by 185 cm of concrete. The safety study shows the impossibility of a fast increase in temperature in case of cooling system failure because in this case the module will be cooled by natural convection or thermosiphon. A project for a storage installation consisting of 5 modules for 1500 irradiated fuel assemblies is described [fr

  15. Effect of DUPIC cycle on CANDU reactor safety parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Nader M. A. [Atomic Energy Authority, ETRR-2, Cairo (Egypt); Badawi, Alya [Dept. of Nuclear and Radiation Engineering, Alexandria University, Alexandria (Egypt)

    2016-10-15

    Although, the direct use of spent pressurized water reactor (PWR) fuel in CANda Deuterium Uranium (CANDU) reactors (DUPIC) cycle is still under investigation, DUPIC cycle is a promising method for uranium utilization improvement, for reduction of high level nuclear waste, and for high degree of proliferation resistance. This paper focuses on the effect of DUPIC cycle on CANDU reactor safety parameters. MCNP6 was used for lattice cell simulation of a typical 3,411 MWth PWR fueled by UO{sub 2} enriched to 4.5w/o U-235 to calculate the spent fuel inventories after a burnup of 51.7 MWd/kgU. The code was also used to simulate the lattice cell of CANDU-6 reactor fueled with spent fuel after its fabrication into the standard 37-element fuel bundle. It is assumed a 5-year cooling time between the spent fuel discharges from the PWR to the loading into the CANDU-6. The simulation was carried out to calculate the burnup and the effect of DUPIC fuel on: (1) the power distribution amongst the fuel elements of the bundle; (2) the coolant void reactivity; and (3) the reactor point-kinetics parameters.

  16. A Preliminary Study on the Reuse of the Recovered Uranium from the Spent CANDU Fuel Using Pyroprocessing

    International Nuclear Information System (INIS)

    Park, C. J.; Na, S. H.; Yang, J. H.; Kang, K. H.; Lee, J. W.

    2009-01-01

    During the pyroprocessing, most of the uranium is gathered in metallic form around a solid cathode during an electro-refining process, which is composed of about 94 weight percent of the spent fuel. In the previous study, a feasibility study has been done to reuse the recovered uranium for the CANDU reactor fuel following the traditional DUPIC (direct use of spent pressurized water reactor fuel into CANDU reactor) fuel fabrication process. However, the weight percent of U-235 in the recovered uranium is about 1 wt% and it is sufficiently re-utilized in a heavy water reactor which uses a natural uranium fuel. The reuse of recovered uranium will bring not only a huge economic profit and saving of uranium resources but also an alleviation of the burden on the management and the disposal of the spent fuel. The research on recycling of recovered uranium was carried out 10 years ago and most of the recovered uranium was assumed to be imported from abroad at that time. The preliminary results showed there is the sufficient possibility to recycle recovered uranium in terms of a reactor's characteristics as well as the fuel performance. However, the spent CANDU fuel is another issue in the storage and disposal problem. At present, most countries are considering that the spent CANDU fuel is disposed directly due to the low enrichment (∼0.5 wt%) of the discharge fissile content and lots of fission products. If mixing the spent CANDU fuel and the spent PWR fuel, the estimated uranium fissile enrichment will be about 0.6 wt% ∼ 1.0 wt% depending on the mixing ratio, which is sufficiently reusable in a CANDU reactor. Therefore, this paper deals with a feasibility study on the recovered uranium of the mixed spent fuel from the pyroprocessing. With the various mixing ratios between the PWR spent fuel and the CANDU spent fuel, a reactor characteristics including the safety parameters of the CANDU reactor was evaluated

  17. Gamma and Neutron Radiolysis in the 21-PWR Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Tang

    2001-05-03

    The objective of this calculation is to compute gamma and neutron dose rates in order to determine the maximum radiolytic production of nitric acid and other chemical species inside the 21-PWR (pressurized-water reactor) waste package (WP). The scope of this calculation is limited to the time period between 5,000 and 100,000 years after emplacement. The information provided by the sketches attached to this calculation is that of the potential design for the type of WP considered in this calculation. The results of this calculation will be used to evaluate nitric acid corrosion of fuel cladding from radiolysis in the 21-PWR WP. This calculation was performed in accordance with the Technical Work Plan for: Waste Package Design Description for LA (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 2000a). AP-3.124, Calculations, is used to perform the calculation and develop the document. This calculation is associated with the total system performance assessment (TSPA) of which the spent fuel cladding integrity is to be evaluated.

  18. Gamma and Neutron Radiolysis in the 21-PWR Waste Package

    International Nuclear Information System (INIS)

    J.S. Tang

    2001-01-01

    The objective of this calculation is to compute gamma and neutron dose rates in order to determine the maximum radiolytic production of nitric acid and other chemical species inside the 21-PWR (pressurized-water reactor) waste package (WP). The scope of this calculation is limited to the time period between 5,000 and 100,000 years after emplacement. The information provided by the sketches attached to this calculation is that of the potential design for the type of WP considered in this calculation. The results of this calculation will be used to evaluate nitric acid corrosion of fuel cladding from radiolysis in the 21-PWR WP. This calculation was performed in accordance with the Technical Work Plan for: Waste Package Design Description for LA (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000a). AP-3.124, Calculations, is used to perform the calculation and develop the document. This calculation is associated with the total system performance assessment (TSPA) of which the spent fuel cladding integrity is to be evaluated

  19. Parametric Analysis of PWR Spent Fuel Depletion Parameters for Long-Term-Disposal Criticality Safety

    International Nuclear Information System (INIS)

    DeHart, M.D.

    1999-01-01

    Utilization of burnup credit in criticality safety analysis for long-term disposal of spent nuclear fuel allows improved design efficiency and reduced cost due to the large mass of fissile material that will be present in the repository. Burnup-credit calculations are based on depletion calculations that provide a conservative estimate of spent fuel contents (in terms of criticality potential), followed by criticality calculations to assess the value of the effective neutron multiplication factor (k(sub)eff) for the a spent fuel cask or a fuel configuration under a variety of probabilistically derived events. In order to ensure that the depletion calculation is conservative, it is necessary to both qualify and quantify assumptions that can be made in depletion models

  20. Management of spent fuel in Republic of Korea

    International Nuclear Information System (INIS)

    Pak, Hyun-Soo; Seo, In-Seok; Pak, Sang-Ki.

    1989-01-01

    At present in Republic of Korea, 8 PWR and 1 CANDU power plants are in operation or under construction, and the total capacity of power generation facilities has become 7.6 GWe. In addition, two PWRs of more than 900 MWe each are expected to be constructed by mid 1990s. More than 50 % of the electric power demand was supplied by nuclear power generation since 1987, but the spent fuel generated in nuclear power plants is stored in storage water tanks in respective reactor sites. The total capacity of spent fuel to be stored in the AR facilities of 9 nuclear power plants is about 2730 MTU, and the spent fuel released from these reactors since 1980 is about 810 MTU. The present capacity of AR storage pools seems to be used up by mid 1990s. According to the revised Atomic Energy Acts in May, 1986, the government is to take the responsibility of spent fuel management, and the policy of constructing the storage facilities outside reactor sites by the end of 1997 was established by the Atomic Energy Commission. The responsibility of the management of spent fuel that exceeds the present capacity of AR pools is to be taken by KEPCO, therefore the preliminary analysis of the feasible option on the extension of AR facilities and the comprehensive management plan for spent fuel placing emphasis on the research and development of away-from-reactor storage were decided. (Kako, I.)

  1. Simulation of the mechanical behavior of a spent fuel shipping cask in a rail accident environment

    International Nuclear Information System (INIS)

    Fields, S.R.

    1977-02-01

    A preliminary mathematical model has been developed to simulate the dynamic mechanical response of a large spent fuel shipping cask to the impact experienced in a hypothetical rail accident. The report was written to record the status of the development of the mechanical response model and to supplement an earlier report on spent fuel shipping cask accident evaluation

  2. Dissolution experiments of commercial PWR (52 MWd/kgU) and BWR (53 MWd/kgU) spent nuclear fuel cladded segments in bicarbonate water under oxidizing conditions. Experimental determination of matrix and instant release fraction

    Science.gov (United States)

    González-Robles, E.; Serrano-Purroy, D.; Sureda, R.; Casas, I.; de Pablo, J.

    2015-10-01

    The denominated instant release fraction (IRF) is considered in performance assessment (PA) exercises to govern the dose that could arise from the repository. A conservative definition of IRF comprises the total inventory of radionuclides located in the gap, fractures, and the grain boundaries and, if present, in the high burn-up structure (HBS). The values calculated from this theoretical approach correspond to an upper limit that likely does not correspond to what it will be expected to be instantaneously released in the real system. Trying to ascertain this IRF from an experimental point of view, static leaching experiments have been carried out with two commercial UO2 spent nuclear fuels (SNF): one from a pressurized water reactor (PWR), labelled PWR, with an average burn-up (BU) of 52 MWd/kgU and fission gas release (FGR) of 23.1%, and one from a boiling water reactor (BWR), labelled BWR, with an average BU of and 53 MWd/kgU and FGR of 3.9%. One sample of each SNF, consisting of fuel and cladding, has been leached in bicarbonate water during one year under oxidizing conditions at room temperature (25 ± 5)°C. The behaviour of the concentration measured in solution can be divided in two according to the release rate. All radionuclides presented an initial release rate that after some days levels down to a slower second one, which remains constant until the end of the experiment. Cumulative fraction of inventory in aqueous phase (FIAPc) values has been calculated. Results show faster release in the case of the PWR SNF. In both cases Np, Pu, Am, Cm, Y, Tc, La and Nd dissolve congruently with U, while dissolution of Zr, Ru and Rh is slower. Rb, Sr, Cs and Mo, dissolve faster than U. The IRF of Cs at 10 and 200 days has been calculated, being (3.10 ± 0.62) and (3.66 ± 0.73) for PWR fuel, and (0.35 ± 0.07) and (0.51 ± 0.10) for BWR fuel.

  3. Assessment of TRAC-PF1/MOD1 code for large break LOCA in PWR

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Ohnuki, Akira; Murao, Yoshio; Abe, Yutaka.

    1993-03-01

    As the first step of the REFLA/TRAC code development, the TRAC/PF1/MOD1 code has been assessed for various experiments that simulate postulated large-break loss-of-coolant accident (LBLOCA) in PWR to understand the predictive capability and to identify the problem areas of the code. The assessment calculations were performed for separate effect tests for critical flow, counter current flow, condensation at cold leg and reflood as well as integral tests to understand predictability for individual phenomena. This report summarizes results from the assessment calculations of the TRAC-PF1/MOD1 code for LBLOCA in PWR. The assessment calculations made clear the predictive capability and problem areas of the TRAC-PF1/MOD1 code for LBLOCA in PWR. The areas, listed below, should be improved for more realistic and effective simulation of LBLOCA in PWR: (1) core heat transfer model during blowdown, (2) ECC bypass model at downcomer during refill, (3) condensation model during accumulator injection, and (4) core thermal hydraulic model during reflood. (author) 57 refs

  4. Analytical technical of lightning surges induced on grounding mesh of PWR nuclear power plant

    International Nuclear Information System (INIS)

    Ikeda, I.; Tani, M.; Yonezawa, T.

    1990-01-01

    An analytical lightning surge technique is needed to make a qualitative and predictive evaluation of transient voltages induced on local grounding meshes and instrumentation cables by a lightning strike on a lightning rod in a PWR plant. This paper discusses an experiment with lightning surge impulses in a PWR plant which was setup to observe lightning caused transient voltages. Experimental data when compared with EMTP simulation results improved the simulation method. The improved method provides a good estimation of induced voltages on grounding meshes and instrumentation cables

  5. Time/motion observations and dose analysis of reactor loading, transportation, and dry unloading of an overweight truck spent fuel shipment

    International Nuclear Information System (INIS)

    Hostick, C.J.; Lavender, J.C.; Wakeman, B.H.

    1992-04-01

    This document presents observed activity durations and radiation dose analyses for an overweight truck shipment of pressurized water reactor (PWR) spent fuel from the Surry Power Station in Virginia to the Idaho National Engineering Laboratory. The shipment consisted of a TN-8L shipping cask carrying three 9-year-old PWR spent fuel assemblies. Handling times and dose analyses for at-reactor activities were completed by Virginia Electric and Power Company (Virginia Power) personnel. Observations of in-transit and unloading activities were made by Pacific Northwest Laboratory (PNL) personnel, who followed the shipment for approximately 2800 miles and observed cask unloading activities. In-transit dose estimates were calculated using dose rate maps provided by Virginia Power for a fully loaded TN-8L shipping cask. The dose analysis for the cask unloading operations is based on the observations of PNL personnel

  6. Thermal-hydraulic analyses of the TN-24P cask loaded with consolidated and unconsolidated spent nuclear fuel

    International Nuclear Information System (INIS)

    Michener, T.E.; McKinnon, M.A.; Rector, D.R.; Creer, J.M.

    1989-06-01

    This paper presents the results of comparisons of COBRA-SFS (spent fuel storage) temperature predictions with experimental data from the TN-24P (Transnuclear) spent fuel storage cask loaded with unconsolidated and consolidated spent PWR fuel. Peak cladding temperature predictions using the COBRA-SFS code are compared with test data and predicted axial and radial temperature distributions are compared with measured temperature profiles. The pre-test accuracy of the COBRA-SFS code in predicting temperature distributions is discussed, along with the effect of post-test model improvements on temperature predictions. This paper also briefly describes the COBRA-SFS code, which is designed to accurately predict flow and temperature distributions in spent nuclear fuel storage and transportation systems. 6 refs., 14 figs

  7. Simulation of a Nuclear Steam Supply System (NSSS) of a PWR nuclear power plant. Simulacao do sistema nuclear de geracao de vapor de uma central PWR

    Energy Technology Data Exchange (ETDEWEB)

    Reis Martins Junior, L.L. dos.

    1980-01-01

    The following work intends to perform the digital simulation, of the Nuclear Steam Supply System (NSSS) of a PWR nuclear power plant for control systems design and analysis purposes. There are mathematical models for the reactor, the steam generator, the pressurizer and for transport lags of the coolant in the primary circuit. Nevertheless no one control system has been considered to permit any user the inclusion in the more convenient way of the desired control systems' models. The characteristics of the system in consideration are fundamentally equal to the ones of Almirante Alvaro Alberto Nuclear Power Plant, Unit I (Angra I) obtained in the Final Safety Analysis Report at Comissao Nacional de Energia Nuclear. (author).

  8. Gamma ray benchmark on the spent fuel shipping cask TN 12

    International Nuclear Information System (INIS)

    Blum, P.; Cagnon, R.; Cladel, C.; Ermont, G.; Nimal, J.C.

    1983-05-01

    The purpose of this benchmark is to compare measurements and calculation of gamma-ray dose rates around a shipping cask loaded with 12 spent fuel elements of FESSENHEIM PWR type. The benchmark provides a means to verify gamma-ray sources and gamma-ray transport calculation methods in shipping cask configurations. The comparison between measurements and calculations shows a good agreement except near the fuel element top where the discrepancy reaches a factor 2

  9. Developing Spent Fuel Assembly for Advanced NDA Instrument Calibration - NGSI Spent Fuel Project

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Banfield, James [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Skutnik, Steven [Univ. of Tennessee, Knoxville, TN (United States)

    2014-02-01

    This report summarizes the work by Oak Ridge National Laboratory to investigate the application of modeling and simulation to support the performance assessment and calibration of the advanced nondestructive assay (NDA) instruments developed under the Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) Project. Advanced NDA instrument calibration will likely require reference spent fuel assemblies with well-characterized nuclide compositions that can serve as working standards. Because no reference spent fuel standard currently exists, and the practical ability to obtain direct measurement of nuclide compositions using destructive assay (DA) measurements of an entire fuel assembly is prohibitive in the near term due to the complexity and cost of spent fuel experiments, modeling and simulation will be required to construct such reference fuel assemblies. These calculations will be used to support instrument field tests at the Swedish Interim Storage Facility (Clab) for Spent Nuclear Fuel.

  10. Maturity of the PWR

    International Nuclear Information System (INIS)

    Bacher, P.; Rapin, M.; Aboudarham, L.; Bitsch, D.

    1983-03-01

    Figures illustrating the predominant position of the PWR system are presented. The question is whether on the basis of these figures the PWR can be considered to have reached maturity. The following analysis, based on the French program experience, is an attempt to pinpoint those areas in which industrial maturity of the PWR has been attained, and in which areas a certain evolution can still be expected to take place

  11. Multi-Pack Disposal Concepts for Spent Fuel (Revision 1)

    International Nuclear Information System (INIS)

    Hardin, Ernest; Matteo, Edward N.; Hadgu, Teklu

    2016-01-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media. Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all "enclosed,"whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative "open"modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design. Thermal analysis showed that if "enclosed"concepts are constrained by peak package/buffer temperature, that waste package capacity is limited to 4 PWR assemblies (or 9 BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems. This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).

  12. Multi-Pack Disposal Concepts for Spent Fuel (Revision 1)

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Matteo, Edward N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media. Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design. Thermal analysis showed that if “enclosed” concepts are constrained by peak package/buffer temperature, that waste package capacity is limited to 4 PWR assemblies (or 9 BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems. This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).

  13. Analysis of the risk of transporting spent nuclear fuel by train

    Energy Technology Data Exchange (ETDEWEB)

    Elder, H.K.

    1981-09-01

    This report uses risk analyses to analyze the safety of transporting spent nuclear fuel for commercial rail shipping systems. The rail systems analyzed are those expected to be used in the United States when the total electricity-generating capacity by nuclear reactors is 100 GW in the late 1980s. Risk as used in this report is the product of the probability of a release of material to the environment and the consequences resulting from the release. The analysis includes risks in terms of expected fatalities from release of radioactive materials due to transportation accidents involving PWR spent fuel shipped in rail casks. The expected total risk from such shipments is 1.3 x 10/sup -4/ fatalities per year. Risk spectrums are developed for shipments of spent fuel that are 180 days and 4 years out-of-reactor. The risk from transporting spent fuel by train is much less (by 2 to 4 orders of magnitude) than the risk to society from other man-caused events such as dam failure.

  14. The verification of PWR-fuel code for PWR in-core fuel management

    International Nuclear Information System (INIS)

    Surian Pinem; Tagor M Sembiring; Tukiran

    2015-01-01

    In-core fuel management for PWR is not easy because of the number of fuel assemblies in the core as much as 192 assemblies so many possibilities for placement of the fuel in the core. Configuration of fuel assemblies in the core must be precise and accurate so that the reactor operates safely and economically. It is necessary for verification of PWR-FUEL code that will be used in-core fuel management for PWR. PWR-FUEL code based on neutron transport theory and solved with the approach of multi-dimensional nodal diffusion method many groups and diffusion finite difference method (FDM). The goal is to check whether the program works fine, especially for the design and in-core fuel management for PWR. Verification is done with equilibrium core search model at three conditions that boron free, 1000 ppm boron concentration and critical boron concentration. The result of the average burn up fuel assemblies distribution and power distribution at BOC and EOC showed a consistent trend where the fuel with high power at BOC will produce a high burn up in the EOC. On the core without boron is obtained a high multiplication factor because absence of boron in the core and the effect of fission products on the core around 3.8 %. Reactivity effect at 1000 ppm boron solution of BOC and EOC is 6.44 % and 1.703 % respectively. Distribution neutron flux and power density using NODAL and FDM methods have the same result. The results show that the verification PWR-FUEL code work properly, especially for core design and in-core fuel management for PWR. (author)

  15. The PWR cores management

    International Nuclear Information System (INIS)

    Barral, J.C.; Rippert, D.; Johner, J.

    2000-01-01

    During the meeting of the 25 january 2000, organized by the SFEN, scientists and plant operators in the domain of the PWR debated on the PWR cores management. The five first papers propose general and economic information on the PWR and also the fast neutron reactors chains in the electric power market: statistics on the electric power industry, nuclear plant unit management, the ITER project and the future of the thermonuclear fusion, the treasurer's and chairman's reports. A second part offers more technical papers concerning the PWR cores management: performance and optimization, in service load planning, the cores management in the other countries, impacts on the research and development programs. (A.L.B.)

  16. Essays of leaching in cemented products containing simulated waste from evaporator concentrated of PWR reactor

    International Nuclear Information System (INIS)

    Haucz, Maria Judite A.; Calabria, Jaqueline A. Almeida; Tello, Cledola Cassia O.; Candido, Francisco Donizete; Seles, Sandro Rogerio Novaes

    2011-01-01

    This paper evaluated the results from leaching resistance essays of cemented products, prepared from three distinct formulations, containing simulated waste of concentrated from the PWR reactor evaporator. The leaching rate is a parameter of qualification of solidified products containing radioactive waste and is determined in accordance with regulation ISO 6961. This procedure evaluates the capacity of transfer organic and inorganic substances presents in the waste through dissolution in the extractor medium. For the case of radioactive waste it is reached the more retention of contaminants in the cemented product, i.e.the lesser value of lixiviation rate. Therefore, this work evaluated among the proposed formulation that one which attend the criterion established in the regulation CNEN-NN-6.09

  17. Databook of the isotopic composition of spent fuel in light water reactors

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Kurosawa, Masayoshi; Kaneko, Toshiyuki.

    1993-03-01

    In the framework of the activity of the nuclide production evaluation WG in the sigma committee, we summarized the measurement data of the isotopic composition of LWR spent fuels necessary to evaluate the accuracy of the burnup calculation codes. The collected data were arranged to be classified into the irradiation history of the fuel samples, the composition of the fuel assemblies, the sampling position and the isotopic composition of the fuel samples, in order to supply the information necessary to the benchmark calculation. This report describes the data collected from the 13 LWRs including the 9 LWRs (5 PWR and 4 BWR) in Europe and the USA, the 4 LWRs (2 PWR and 2 BWR) in Japan. Finally, the study on the burnup characteristics of the U, Pu isotopes is described. (author)

  18. SCC growth behaviors of austenitic stainless steels in simulated PWR primary water

    Science.gov (United States)

    Terachi, T.; Yamada, T.; Miyamoto, T.; Arioka, K.

    2012-07-01

    The rates of SCC growth were measured under simulated PWR primary water conditions (500 ppm B + 2 ppm Li + 30 cm3/kg-H2O-STP DH2) using cold worked 316SS and 304SS. The direct current potential drop method was applied to measure the crack growth rates for 53 specimens. Dependence of the major engineering factors, such as yield strength, temperature and stress intensity was systematically examined. The rates of crack growth were proportional to the 2.9 power of yield strength, and directly proportional to the apparent yield strength. The estimated apparent activation energy was 84 kJ/mol. No significant differences in the SCC growth rates and behaviors were identified between 316SS and 304SS. Based on the measured results, an empirical equation for crack growth rate was proposed for engineering applications. Although there were deviations, 92.8% of the measured crack growth rates did not exceed twice the value calculated by the empirical equation.

  19. A safety study on the wet storage of spent fuel

    International Nuclear Information System (INIS)

    Chun, Kwan Sik; Whang, Joo Ho; Lee, Hoo Kun; Choi, Jong Won; Lee, Jong Geun

    1989-02-01

    This study is to provide data related with a basic design of the spent fuel storage facility in the field of radiation and to establish the safety assessment methodology of away from reactor spent fuel storage facility. This is in progress and continue upto the year of 1991. The mathematical model which predict the quantity of environmental release of fission and corrosion products from spent fuel received and stored in wet storage facility operated in normal conditions was prepared. The decay characteristic of domestic spent fuels are analysed and then the coefficients for the prediction of the decay heat by simple formular was determined. This correlations could predict decay heat of spent fuel with ±10% difference from ORIGEN2 results. The release factor of cobalt out of PWR spent fuel in PIE pool is 7.97 x 10-12∼8.49 x 10-11 Ci/ sec-rod, which appears to be linear without being connected with the types of fuel defects, but that of cesium varies with the defect type and the exposure time in water. In water condition, release factor of uranium out of CANDU fuel pellets appears to be about 5 x 10-8/day, whose tendency is similar to that of cesium of the latter half of the exposure time of water. (Author)

  20. Development of Experimental Facilities for Advanced Spent Fuel Management Technology

    Energy Technology Data Exchange (ETDEWEB)

    You, G. S.; Jung, W. M.; Ku, J. H. [and others

    2004-07-01

    The advanced spent fuel management process(ACP), proposed to reduce the overall volume of the PWR spent fuel and improve safety and economy of the long-term storage of spent fuel, is under research and development. This technology convert spent fuels into pure metal-base uranium with removing the highly heat generating materials(Cs, Sr) efficiently and reducing of the decay heat, volume, and radioactivity from spent fuel by 1/4. In the next phase(2004{approx}2006), the demonstration of this technology will be carried out for verification of the ACP in a laboratory scale. For this demonstration, the hot cell facilities of {alpha}-{gamma} type and auxiliary facilities are required essentially for safe handling of high radioactive materials. As the hot cell facilities for demonstration of the ACP, a existing hot cell of {beta}-{gamma} type will be refurbished to minimize construction expenditures of hot cell facility. In this study, the design requirements are established, and the process detail work flow was analysed for the optimum arrangement to ensure effective process operation in hot cell. And also, the basic and detail design of hot cell facility and process, and safety analysis was performed to secure conservative safety of hot cell facility and process.

  1. Modelling activity transport behavior in PWR plant

    International Nuclear Information System (INIS)

    Henshaw, Jim; McGurk, John; Dickinson, Shirley; Burrows, Robert; Hinds, Kelvin; Hussey, Dennis; Deshon, Jeff; Barrios Figueras, Joan Pau; Maldonado Sanchez, Santiago; Fernandez Lillo, Enrique; Garbett, Keith

    2012-09-01

    The activation and transport of corrosion products around a PWR circuit is a major concern to PWR plant operators as these may give rise to high personnel doses. The understanding of what controls dose rates on ex-core surfaces and shutdown releases has improved over the years but still several questions remain unanswered. For example the relative importance of particle and soluble deposition in the core to activity levels in the plant is not clear. Wide plant to plant and cycle to cycle variations are noted with no apparent explanations why such variations are observed. Over the past few years this group have been developing models to simulate corrosion product transport around a PWR circuit. These models form the basis for the latest version of the BOA code and simulate the movement of Fe and Ni around the primary circuit. Part of this development is to include the activation and subsequent transport of radioactive species around the circuit and this paper describes some initial modelling work in this area. A simple model of activation, release and deposition is described and then applied to explain the plant behaviour at Sizewell B and Vandellos II. This model accounts for activation in the core, soluble and particulate activity movement around the circuit and for activity capture ex-core on both the inner and outer oxides. The model gives a reasonable comparison with plant observations and highlights what controls activity transport in these plants and importantly what factors can be ignored. (authors)

  2. Spent fuel storage and isolation

    International Nuclear Information System (INIS)

    Bensky, M.S.; Kurzeka, W.J.; Bauer, A.A.; Carr, J.A.; Matthews, S.C.

    1979-02-01

    The principal spent fuel activities conducted within the commercial waste and spent fuel within the Commercial Waste and Spent Fuel Packaging Program are: simulated near-surface (drywell) storage demonstrations at Hanford and the Nevada Test Site; surface (sealed storage cask) and drywell demonstrations at the Nevada Test Site; and spent fuel receiving and packaging facility conceptual design. These investigations are described

  3. Feasibility assessment of burnup credit in the criticality analysis of shipping casks with boiling water reactor spent fuel

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1991-08-01

    Considerable interest in the allowance of reactivity credit for the exposure history of power reactor fuel currently exists. This ''burnup credit'' issue has the potential to greatly reduce risk and cost when applied to the design and certification of spent fuel casks used for transportation and storage. Recently, analyses have demonstrated the technical feasibility and estimated the risk and economic incentives for allowing burnup credit in pressurized water reactor (PWR) spent fuel shipping cask applications. This report summarizes the extension of the previous PWR technical feasibility assessment to boiling water reactor (BWR) fuel. This feasibility analysis aims to apply simple methods that adequately characterize the time-dependent isotopic compositions of typical BWR fuel. An initial analysis objective was to identify a simple and reliable method for characterizing BWR spent fuel. Two different aspects of fuel characterization were considered:l first, the generation of burn- up dependent material interaction probabilities; second, the prediction of material inventories over time (depletion). After characterizing the spent fuel at various stages of exposure and decay, three dimensional (3-D) models for an infinite array of assemblies and, in several cases, infinite arrays of assemblies in a typical shipping cask basket were analyzed. Results for assemblies without a basket provide reactivity control requirements as a function of burnup and decay, while results including the basket allow assessment of typical basket configurations to provide sufficient reactivity control for spent BWR fuel. Resulting basket worths and reactivity trends over time are then evaluated to determine whether burnup credit is needed and feasible in BWR applications

  4. Bias identification in PWR pressurizer instrumentation using the generalized liklihood-ratio technique

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1981-01-01

    A method for detecting and identifying biases in the pressure and level sensors of a pressurized water reactor (PWR) pressurizer is described. The generalized likelihood ratio (GLR) technique performs statistical tests on the innovations sequence of a Kalman filter state estimator and is capable of determining when a bias appears, in what sensor the bias exists, and estimating the bias magnitude. Simulation results using a second-order linear, discrete PWR pressurizer model demonstrate the capabilities of the GLR method

  5. Calculation of source term in spent PWR fuel assemblies for dry storage and shipping cask design

    International Nuclear Information System (INIS)

    Fernandez, J. L.; Lopez, J.

    1986-01-01

    Using the ORIGEN-2 Coda, the decay heat and neutron and photon sources for an irradiated PWR fuel element have been calculated. Also, parametric studies on the behaviour of the magnitudes with the burn-up, linear heat power and irradiation and cooling times were performed. Finally, a comparison between our results and other design calculations shows a good agreement and confirms the validity of the used method. (Author) 6 refs

  6. Analysis of spent fuel assay with a lead slowing down spectrometer

    International Nuclear Information System (INIS)

    Gavron, A.; Smith, L. Eric; Ressler, Jennifer J.

    2009-01-01

    Assay of fissile materials in spent fuel that are produced or depleted during the operation of a reactor, is of paramount importance to nuclear materials accounting, verification of the reactor operation history, as well as for criticality considerations for storage. In order to prevent future proliferation following the spread of nuclear energy, we must develop accurate methods to assay large quantities of nuclear fuels. We analyze the potential of using a Lead Slowing Down Spectrometer for assaying spent fuel. We conclude that it possible to design a system that will provide around 1% statistical precision in the determination of the 239 Pu, 241 Pu and 235 U concentrations in a PWR spent-fuel assembly, for intermediate-to-high burnup levels, using commercial neutron sources, and a system of 238 U threshold fission detectors. Pending further analysis of systematic errors, it is possible that missing pins can be detected, as can asymmetry in the fuel bundle. (author)

  7. Economic Analysis on Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors - I: DUPIC Fuel Fabrication Cost

    International Nuclear Information System (INIS)

    Choi, Hangbok; Ko, Won Il; Yang, Myung Seung

    2001-01-01

    A preliminary conceptual design of a Direct Use of spent Pressurized water reactor (PWR) fuel In Canada deuterium uranium (CANDU) reactors (DUPIC) fuel fabrication plant was studied, which annually converts spent PWR fuel of 400 tonnes heavy element (HE) into CANDU fuel. The capital and operating costs were estimated from the viewpoint of conceptual design. Assuming that the annual discount rate is 5% during the construction (5 yr) and operation period (40 yr) and contingency is 25% of the capital cost, the levelized unit cost (LUC) of DUPIC fuel fabrication was estimated to be 616 $/kg HE, which is mostly governed by annual operation and maintenance costs that correspond to 63% of LUC. Among the operation and maintenance cost components being considered, the waste disposal cost has the dominant effect on LUC (∼49%). From sensitivity analyses of production capacity, discount rate, and contingency, it was found that the production capacity of the plant is the major parameter that affects the LUC

  8. Design and static simulation of secondary loop of small PWR nuclear power plants

    International Nuclear Information System (INIS)

    Martin Lopez, L.A.N.

    1989-01-01

    A computer program that has been developed with the purpose of making easier the decisions concerning the design of the secondary loop of small PWR nuclear power plants through numerical experiments of low running costs and short time is presented. Initially, the first part of the computer program is described. It aims to preliminarily design several major components of the secondary circuit from user-defined design conditions. Next, the second part of the computer program is presented. It simulates the steady state operation at part-load conditions of the preliminary design of the plant by generating and solving systems of simultaneous nonlinear algebraic equations, their number varying from 17 to 107. The computer program has been tested for several application cases. The program results are discussed in the last part of the work, along with several aspects to be added to the program in future works. (author)

  9. HEXBU-3D, a three-dimensional PWR-simulator program for hexagonal fuel assemblies

    International Nuclear Information System (INIS)

    Karvinen, E.

    1981-06-01

    HEXBU-3D is a three-dimensional nodal simulator program for PWR reactors. It is designed for a reactor core that consists of hexagonal fuel assemblies and of big follower-type control assemblies. The program solves two-group diffusion equations in homogenized fuel assembly geometry by a sophisticated nodal method. The treatment of feedback effects from xenon-poisoning, fuel temperature, moderator temperature and density and soluble boron concentration are included in the program. The nodal equations are solved by a fast two-level iteration technique and the eigenvalue can be either the effective multiplication factor or the boron concentration of the moderator. Burnup calculations are performed by tabulated sets of burnup-dependent cross sections evaluated by a cell burnup program. HEXBY-3D has been originally programmed in FORTRAN V for the UNIVAC 1108 computer, but there is also another version which is operable on the CDC CYBER 170 computer. (author)

  10. Evaluation of full MOX core capability for a 900 MWe PWR

    International Nuclear Information System (INIS)

    Joo, Hyung-Kook; Kim, Young-Jin; Jung, Hyung-Guk; Kim, Young-Il; Sohn, Dong-Seong

    1996-01-01

    Full MOX capability of a PWR core with 900 MWe capacity has been evaluated in view of plutonium consumption and design feasibility as an effective means for spent fuel management. Three full MOX cores have been conceptually designed; for annual cycle, for 18-month cycle, and for 18-month cycle with high moderation lattice. Fissile and total plutonium quantities at discharge are significantly reduced to 60% and 70% respectively of initial value for standard full MOX cores. It is estimated that one full MOX core demands about 1 tonne of plutonium per year to be reloaded, which is equivalent to reprocessing of spent nuclear fuels discharged from five nuclear reactors operating with uranium fuels. With low-leakage loading scheme, a full MOX core with either annual or 18-month cycle can be designed satisfactorily by installing additional rod cluster control system and modifying soluble boron system. Overall high moderation lattice case promises better core nuclear characteristics. (author)

  11. Development of the down-ender and the spent fuel rod cutting device

    International Nuclear Information System (INIS)

    Kim, S. H.; Yoon, Ji Sup; Kim, Young Hwan; Hoo, Jung Jae; Hong, Dong Hee; Kim, Do Woo

    2000-07-01

    It is necessary to disassemble the spent fuel assembly for the recycling of the PWR spent fuels. The spent fuel disassembling process includes transportation and handling of the spent fuel assembly, extraction and cutting of the spent fuel rods, and extraction of the spent fuel pellets(decladding). In this study, the downender of the spent fuel assembly and the spent fuel rod cutting device have been developed. The downender is used to change the posture of the spent fuel assembly from the vertical to the horizontal directions, prior to extracting the fuel rods. The concepts of the remote operation and maintenance has been introduced in the design of the downender. Also, the several design consideration has been given such as the reliable adaptation of the vertically accessing the assembly to the device, the minimization of the shock force when settling down the assembly, and the interface with the rod extraction device without intermittent operation. The spent fuel rod cutting device using a tube cutter is developed for cutting the fuel rods to the suitable size. In designing this device, the mechanical property of the spent fuel rod is examined such as the strength of the clad material and the optimal size of the rod for the extracting process. Also, several cutting methods, which are commercially available, are investigated and tested in terms of the durability, the deformation on the cutting surface of the rods, and the amount of the generated debris, and the fire risk. As like the downender, the design of this device accommodates the concepts of the remote operation and maintenance

  12. The security management of spent filter cartridge in Qinshan phase 3 (heavy water reactor) nuclear power plant

    International Nuclear Information System (INIS)

    Xue Dahai

    2005-01-01

    Qinshan phase 3 nuclear power plant is the first CANDU plant that China fetched in from Canada, and both two units operate under well condition up to now. The radioactive wastes produced during the unit operation mainly include technical waste, spent resin, and spent filter cartridge. The spent filter cartridge is one important part both in the volume and radioactivity of the radioactive waste, and it is the important content of radioactive waste management. Different from PWR, part of high radioactive spent filter in CANDU unit comes from heavy water system such as moderator system. It has to be dried through blowing before replaced from the system. But this working procedure result the filtrate dreg become flexible, and it can bring on the risk of internal or external exposure. It is very important to pay high attention to control the contamination spread during spent filter inside transfer. (authors)

  13. Calculation of axial hydrogen redistribution on the spent fuels during interim dry storage

    International Nuclear Information System (INIS)

    Sasahara, Akihiro; Matsumura, Tetsuo

    2006-01-01

    One of the phenomena that will affect fuel integrity during a spent fuel dry storage is a hydrogen axial migration in cladding. If there is a hydrogen pickup in cladding in reactor operation, hydrogen will move from hotter to colder cladding region in the axial direction under fuel temperature gradient during dry storage. Then hydrogen beyond solubility limit in colder region will be precipitated as hydride, and consequently hydride embrittlement may take place in the cladding. In this study, hydrogen redistribution experiments were carried out to obtain the data related to hydrogen axial migration by using actually twenty years dry (air) stored spent PWR-UO 2 fuel rods of which burn-ups were 31 and 58 MWd/kg HM. From the hydrogen redistribution experiments, the heat of transport of hydrogen of zircaloy-4 cladding from twenty years dry stored spent PWR-UO 2 fuel rods were from 10.1 to 18.6 kcal/mol and they were significantly larger than that of unirradiated zircaloy-4 cladding. This means that hydrogen in irradiated cladding can move easier than that in unirradiated cladding. In the hydrogen redistribution experiments, hydrogen diffusion coefficients and solubility limit were also obtained. There are few differences in the diffusion coefficients and solubility limits between the irradiated cladding and unirradiated cladding. The hydrogen redistribution in the cladding after dry storage for forty years was evaluated by one-dimensional diffusion calculation using the measured values. The maximum values as the heat of transports, diffusion coefficients and solubility limits of the irradiated cladding and various spent fuel temperature profiles reported were used in the calculation. The axial hydrogen migration was not significant after dry storage for forty years in helium atmosphere and the maximum values as the heat of transports, diffusion coefficients and solubility limits of the unirradiated cladding gave conservative evaluation for hydrogen redistribution

  14. Uncertainty and sensitivity analysis in the neutronic parameters generation for BWR and PWR coupled thermal-hydraulic–neutronic simulations

    International Nuclear Information System (INIS)

    Ánchel, F.; Barrachina, T.; Miró, R.; Verdú, G.; Juanas, J.; Macián-Juan, R.

    2012-01-01

    Highlights: ► Best-estimate codes are affected by the uncertainty in the methods and the models. ► Influence of the uncertainty in the macroscopic cross-sections in a BWR and PWR RIA accidents analysis. ► The fast diffusion coefficient, the scattering cross section and both fission cross sections are the most influential factors. ► The absorption cross sections very little influence. ► Using a normal pdf the results are more “conservative” comparing the power peak reached with uncertainty quantified with a uniform pdf. - Abstract: The Best Estimate analysis consists of a coupled thermal-hydraulic and neutronic description of the nuclear system's behavior; uncertainties from both aspects should be included and jointly propagated. This paper presents a study of the influence of the uncertainty in the macroscopic neutronic information that describes a three-dimensional core model on the most relevant results of the simulation of a Reactivity Induced Accident (RIA). The analyses of a BWR-RIA and a PWR-RIA have been carried out with a three-dimensional thermal-hydraulic and neutronic model for the coupled system TRACE-PARCS and RELAP-PARCS. The cross section information has been generated by the SIMTAB methodology based on the joint use of CASMO-SIMULATE. The statistically based methodology performs a Monte-Carlo kind of sampling of the uncertainty in the macroscopic cross sections. The size of the sampling is determined by the characteristics of the tolerance intervals by applying the Noether–Wilks formulas. A number of simulations equal to the sample size have been carried out in which the cross sections used by PARCS are directly modified with uncertainty, and non-parametric statistical methods are applied to the resulting sample of the values of the output variables to determine their intervals of tolerance.

  15. Multi-pack Disposal Concepts for Spent Fuel (Rev. 0)

    Energy Technology Data Exchange (ETDEWEB)

    Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Matteo, Edward N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media (Hardin et al., 2012). Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design (CRWMS M&O, 1999). Thermal analysis showed that, if “enclosed” concepts are constrained by peak package/buffer temperature, waste package capacity is limited to 4 PWR assemblies (or 9-BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems (EnergySolution, 2015). This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).

  16. Evaluation of CRUDTRAN code to predict transport of corrosion products and radioactivity in the PWR primary coolant system

    International Nuclear Information System (INIS)

    Lee, C.B.

    2002-01-01

    CRUDTRAN code is to predict transport of the corrosion products and their radio-activated nuclides such as cobalt-58 and cobalt-60 in the PWR primary coolant system. In CRUDTRAN code the PWR primary circuit is divided into three principal sections such as the core, the coolant and the steam generator. The main driving force for corrosion product transport in the PWR primary coolant comes from coolant temperature change throughout the system and a subsequent change in corrosion product solubility. As the coolant temperature changes around the PWR primary circuit, saturation status of the corrosion products in the coolant also changes such that under-saturation in steam generator and super-saturation in the core. CRUDTRAN code was evaluated by comparison with the results of the in-reactor loop tests simulating the PWR primary coolant system and PWR plant data. It showed that CRUDTRAN could predict variations of cobalt-58 and cobalt-60 radioactivity with time, plant cycle and coolant chemistry in the PWR plant. (author)

  17. Resfria - a computational routine for thermal-hydraulic analysis of a cooldown in the PWR

    International Nuclear Information System (INIS)

    Silva Neto, A.J. da; Maciel Filho, L.A.

    1989-01-01

    This paper presents the computer code RESFRIA, designed to calculate the process parameters in a PWR nuclear power plant during a cooldown normal procedure. The procedure is described and some of the models developed to the simulation of systems and equipments are presented. A simplified flowchart of the computational routine and the results in the form of a diagram, for a typical PWR nuclear power plant, are also presented. (author)

  18. The influence of near field hydrogen on actinide solubilities and spent fuel leaching

    International Nuclear Information System (INIS)

    Spahiu, K.; Werme, L.; Eklund, U.B.

    2000-01-01

    Large amounts of hydrogen are produced as a result of the anoxic corrosion of iron in the proposed container materials for some geologic repositories. Another hydrogen source, less important than the anoxic corrosion of iron, is the radiolysis of water by the spent fuel radiation. Gas phase formation occurs when the pressure of the hydrogen equals at least the hydrostatic pressure, around 5 MPa at 500 meters depth. The effects of 5 MPa hydrogen pressure on spent PWR fuel leaching and on uranium oxide solubility have been studied in carbonated solutions at 70 C. The experiments were performed in a 1 liter autoclave, filled with 950 ml of a solution 10 mM NaCl, 2 mM NaHCO 3 and with hydrogen at a pressure of 5 MPa in the remaining 50 ml free volume. The leaching behavior of 2 g PWR spent fuel powder of the 0.25-0.50 mm fraction, placed in a gold basket was studied during several months by analyzing 10 ml solution samples taken after regular time intervals. A few experiments were performed also with unirradiated U(IV) oxide. In both cases extremely low concentrations of uranium (less than 10 -9 M) were measured in the solution samples. Furthermore the uranium levels in solution remained practically constant during the whole leaching period (more than one year), indicating the absence of any oxidative dissolution of the spent fuel matrix. The same conclusion is confirmed by the constant (within analytical errors) levels of strontium, cesium, molybdenum, iodine and technetium during the whole leaching period. These results have been compared with the ones obtained during the leaching of a spent fuel pin in anoxic conditions, where the uranium and other radionuclides levels are several orders of magnitude higher. The surface of spent fuel or U(IV) oxide is partially oxidized during storage, giving rise to relatively high levels of U(VI) in solution even during leaching in anoxic conditions. No such effect could be observed in the presence of 5 MPa hydrogen, indicating

  19. Usage Inspection of KN-12 Spent Fuel Transport Cask

    International Nuclear Information System (INIS)

    Lee, J. C.; Seo, K. S.; Bang, K. S.; Cho, I. J.; Kim, D. H.; Min, D. K.

    2007-03-01

    The usage inspection of the KN-12 spent nuclear fuel transport package was performed to receive the license for reuse. According to the Korea Atomic Energy Act, all type B transport package should receive and pass the usage inspection every five years. The KN-12 transport cask was designed to transport twelve spent PWR fuel assemblies under wet and dry conditions. The cask was developed and licensed in 2002 in accordance with the Korea and the IAEA's safe transport regulations. The areas of usage inspection include: visual inspection, nondestructive weld inspection, load test, maximum operating pressure test, leakage test, shielding test, thermal test, external surface contamination test. In the results of the usage inspection, the damage or defect could not found out and the performance of the cask was maintained according to the requirements of the regulation. Therefore, the usage inspection was successfully performed to acquire the license for the reuse

  20. Measurement techniques in dry-powdered processing of spent nuclear fuels

    International Nuclear Information System (INIS)

    Bowers, D. L.; Hong, J.-S.; Kim, H.-D.; Persiani, P. J.; Wolf, S. F.

    1999-01-01

    High-performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICPMS) detection, α-spectrometry (α-S), and γ-spectrometry (γ-S) were used for the determination of nuclide content in five samples excised from a high-burnup fuel rod taken from a pressurized water reactor (PWR). The samples were prepared for analysis by dissolution of dry-powdered samples. The measurement techniques required no separation of the plutonium, uranium, and fission products. The sample preparation and analysis techniques showed promise for in-line analysis of highly-irradiated spent fuels in a dry-powdered process. The analytical results allowed the determination of fuel burnup based on 148 Nd, Pu, and U content. A goal of this effort is to develop the HPLC-ICPMS method for direct fissile material accountancy in the dry-powdered processing of spent nuclear fuel

  1. Sensitivity Verification of PWR Monitoring System Using Neuro-Expert For LOCA Detection

    International Nuclear Information System (INIS)

    Muhammad Subekti

    2009-01-01

    Sensitivity Verification of PWR Monitoring System Using Neuro-Expert For LOCA Detection. The present research was done for verification of previous developed method on Loss of Coolant Accident (LOCA) detection and perform simulations for knowing the sensitivity of the PWR monitoring system that applied neuro-expert method. The previous research continuing on present research, has developed and has tested the neuro-expert method for several anomaly detections in Nuclear Power Plant (NPP) typed Pressurized Water Reactor (PWR). Neuro-expert can detect the LOCA anomaly with sensitivity of primary coolant leakage of 7 gallon/min and the conventional method could not detect the primary coolant leakage of 30 gallon/min. Neuro expert method detects significantly LOCA anomaly faster than conventional system in Surry-1 NPP as well so that the impact risk is reducible. (author)

  2. Some implications of batch average burnup calculations on predicted spent fuel compositions

    International Nuclear Information System (INIS)

    Alexander, C.W.; Croff, A.G.

    1984-01-01

    The accuracy of using batch-averaged burnups to determine spent fuel characteristics (such as isotopic composition, activity, etc.) was examined for a typical pressurized-water reactor (PWR) fuel discharge batch by comparing characteristics computed by (a) performing a single depletion calculation using the average burnup of the spent fuel and (b) performing separate depletion calculations based on the relative amounts of spent fuel in each of twelve burnup ranges and summing the results. The computations were done using ORIGEN 2. Procedure (b) showed a significant shift toward a greater quantity of the heavier transuranics, which derive from multiple neutron captures, and a corresponding decrease in the amounts of lower transuranics. Those characteristics which derive primarily from fission products, such as total radioactivity and total thermal power, are essentially identical for the two procedures. Those characteristics that derive primarily from the heavier transuranics, such as spontaneous fission neutrons, are underestimated by procedure (a)

  3. An independent spent-fuel storage installation at Surry Station: Design and operation

    International Nuclear Information System (INIS)

    McKay, H.S.; Wakeman, B.H.; Pickworth, J.M.; Routh, S.D.; Hopkins, W.C.

    1989-07-01

    Design and licensing of the Surry Power Station Independent Spent Fuel Storage Installation (ISFSI) was initiated in 1982 by Virginia Power as part of a comprehensive strategy to increase spent fuel storage capacity at the Station. Designed to use large, metal dry storage casks, the Surry ISFSI will accommodate 84 such casks with a total storage capacity of 811 MTU of spent PWR fuel assemblies. The ISFSI is located at the Surry Station in a wooded area approximately 1000 meters (3300 feet) east of the reactor facilities. Construction of the first of three reinforced concrete storage pads and its associated support systems was completed in March 1986. The operating license and Technical Specifications were issued by the US NRC on July 2, 1986. Initial loading operations of a General Nuclear Systems, Inc., CASTOR V/21 storage cask began in September 1986. The first two CASTOR V/21 casks were placed in storage at the ISFSI in December 1986. 16 refs., 33 figs., 16 tabs

  4. The role of Monte Carlo burnup calculations in quantifying plutonium mass in spent fuel assemblies with non-destructive assay

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, Jack D.; Tobin, Stephen J.; Trellue, Holly R.; Fensin, Michael L. [Los Alamos National Laboratory, Los Alamos, (United States)

    2011-12-15

    The Next Generation Safeguards Initiate (NGSI) of the United States Department of Energy has funded a multi-laboratory/university collaboration to quantify plutonium content in spent fuel (SF) with non-destructive assay (NDA) techniques and quantify the capability of these NDA techniques to detect pin diversions from SF assemblies. The first Monte Carlo based spent fuel library (SFL) developed for the NGSI program contained information for 64 different types of SF assemblies (four initial enrichments, burnups, and cooling times). The maximum amount of fission products allowed to still model a 17x17 Westinghouse pressurized water reactor (PWR) fuel assembly with four regions per fuel pin was modelled. The number of fission products tracked was limited by the available memory. Studies have since indicated that additional fission product inclusion and asymmetric burning of the assembly is desired. Thus, an updated SFL has been developed using an enhanced version of MCNPX, more powerful computing resources, and the Monte Carlo-based burnup code Monteburns, which links MCNPX to a depletion code and models a representative 1 Division-Slash 8 core geometry containing one region per fuel pin in the assemblies of interest, including a majority of the fission products with available cross sections. Often in safeguards, the limiting factor in the accuracy of NDA instruments is the quality of the working standard used in calibration. In the case of SF this is anticipated to also be true, particularly for several of the neutron techniques. The fissile isotopes of interest are co-mingled with neutron absorbers that alter the measured count rate. This paper will quantify how well working standards can be generated for PWR spent fuel assemblies and also describe the spatial plutonium distribution across an assembly. More specifically we will demonstrate how Monte Carlo gamma measurement simulations and a Monte Carlo burnup code can be used to characterize the emitted gamma

  5. Automatic Gamma-Scanning System for Measurement of Residual Heat in Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Osifo, Otasowie

    2007-03-01

    In Sweden, spent nuclear fuel will be encapsulated and placed in a deep geological repository. In this procedure, reliable and accurate spent fuel data such as discharge burnup, cooling time and residual heat must be available. The gamma scanning method was proposed in earlier work as a fast and reliable method for the experimental determination of such spent fuel data. This thesis is focused on the recent achievements in the development of a pilot gamma scanning system and its application in measuring spent fuel residual heat. The achievements include the development of dedicated spectroscopic data-acquisition and analysis software and the use of a specially designed calorimeter for calibrating the gamma scanning system. The pilot system is described, including an evaluation of the performance of the spectrum analysis software. Also described are the gamma-scanning measurements on 31 spent PWR fuel assemblies performed using the pilot system. The results obtained for the determination of residual heat are presented, showing an agreement of (2-3) % with both calorimetric and calculated data. In addition, the ability to verify declared data such as discharge burnup and cooling time is demonstrated

  6. Three-dimensional thermal analysis of a baseline spent fuel repository

    International Nuclear Information System (INIS)

    Altenbach, T.J.; Lowry, W.E.

    1980-01-01

    A three-dimensional thermal analysis has been performed using finite difference techniques to determine the near-field response of a baseline spent fuel repository in a deep geologic salt medium. A baseline design incorporates previous thermal modeling experience and OWI recommendations for areal thermal loading in specifying the waste form properties, package details, and emplacement configuration. The base case in this thermal analysis considers one 10-year old PWR spent fuel assembly emplaced to yield a 36 kw/acre (8.9 w/m 2 ) loading. A unit cell model in an infinite array is used to simplify the problem and provide upper-bound temperatures. Boundary conditions are imposed which allow simulations to 1000 years. Variations studied include a comparison of ventilated and unventilated storage room conditions, emplacement packages with and without air gaps surrounding the canister, and room cool-down scenarios with ventilation following an unventilated state for retrieval purposes. At this low power level ventilating the emplacement room has an immediate cooling influence on the canister and effectively maintains the emplacement room floor near the temperature of the ventilating air. The annular gap separating the canister and sleeve causes the peak temperature of the canister surface to rise by 10 0 F (5.6 0 C) over that from a no gap case assuming perfect thermal contact. It was also shown that the time required for the emplacement room to cool down to 100 0 F (38 0 C) from an unventilated state ranged from 2 weeks to 6 months; when ventilation initiated after times of 5 years to 50 years, respectively. As the work was performed for the Nuclear Regulatory Commission, these results provide a significant addition to the regulatory data base for spent fuel performance in a geologic repository

  7. Development of a computer program for the cost analysis of spent fuel management

    International Nuclear Information System (INIS)

    Choi, Heui Joo; Lee, Jong Youl; Choi, Jong Won; Cha, Jeong Hun; Whang, Joo Ho

    2009-01-01

    So far, a substantial amount of spent fuels have been generated from the PWR and CANDU reactors. They are being temporarily stored at the nuclear power plant sites. It is expected that the temporary storage facility will be full of spent fuels by around 2016. The government plans to solve the problem by constructing an interim storage facility soon. The radioactive management act was enacted in 2008 to manage the spent fuels safety in Korea. According to the act, the radioactive waste management fund which will be used for the transportation, interim storage, and the final disposal of spent fuels has been established. The cost for the management of spent fuels is surprisingly high and could include a lot of uncertainty. KAERI and Kyunghee University have developed cost estimation tools to evaluate the cost for a spent fuel management based on an engineering design and calculation. It is not easy to develop a tool for a cost estimation under the situation that the national policy on a spent fuel management has not yet been fixed at all. Thus, the current version of the computer program is based on the current conceptual design of each management system. The main purpose of this paper is to introduce the computer program developed for the cost analysis of a spent fuel management. In order to show the application of the program, a spent fuel management scenario is prepared, and the cost for the scenario is estimated

  8. Sensitivity and parametric evaluations of significant aspects of burnup credit for PWR spent fuel packages

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, M.D.

    1996-05-01

    Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports.

  9. Sensitivity and parametric evaluations of significant aspects of burnup credit for PWR spent fuel packages

    International Nuclear Information System (INIS)

    DeHart, M.D.

    1996-05-01

    Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports

  10. Prototypical spent nuclear fuel rod consolidation equipment: Phase 2, Final design report: Volume 4, Appendices: Part 3

    International Nuclear Information System (INIS)

    Ciez, A.P.

    1987-01-01

    The purpose of this manual is to provide assembly, installation, operation, maintenance, and off-normal recovery procedures for the Consolidation Equipment. The Consolidation System is a horizontal, dry system capable of processing one Pressurized Water Reactor (PWR) fuel assembly or one Boiling Water Reactor (BWR) fuel assembly at a time. The system will process all spent PWR and BWR fuels from the commercial US nuclear power reactor industry. Component changeouts for various fuel types have been minimized to reduce costs, required in-cell module storage space, and to increase efficiency by decreasing set-up time between fuel consolidation campaigns. The most important feature of the Westinghouse system is the ability to control the fuel rods at all times during the consolidation process from rod extraction, through canister loading. This features assures that the rods from two PWR fuel assemblies or four BWR fuel assemblies (minimum) can be loaded into one consolidated rods canister

  11. Post irradiation test report of irradiated DUPIC simulated fuel

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Jung, I. H.; Moon, J. S. and others

    2001-12-01

    The post-irradiation examination of irradiated DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactors) simulated fuel in HANARO was performed at IMEF (Irradiated Material Examination Facility) in KAERI during 6 months from October 1999 to March 2000. The objectives of this post-irradiation test are i) the integrity of the capsule to be used for DUPIC fuel, ii) ensuring the irradiation requirements of DUPIC fuel at HANARO, iii) performance verification in-core behavior at HANARO of DUPIC simulated fuel, iv) establishing and improvement the data base for DUPIC fuel performance verification codes, and v) establishing the irradiation procedure in HANARO for DUPIC fuel. The post-irradiation examination performed are γ-scanning, profilometry, density, hardness, observation the microstructure and fission product distribution by optical microscope and electron probe microanalyser (EPMA)

  12. Criticality calculations of a generic fuel container for fuel assemblies PWR, by means of the code MCNP; Calculos de criticidad de un contenedor de combustible generico para ensambles combustibles PWR, mediante el codigo MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Vargas E, S.; Esquivel E, J.; Ramirez S, J. R., E-mail: samuel.vargas@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    The purpose of the concept of burned consideration (Burn-up credit) is determining the capacity of the calculation codes, as well as of the nuclear data associates to predict the isotopic composition and the corresponding neutrons effective multiplication factor in a generic container of spent fuel during some time of relevant storage. The present work has as objective determining this capacity of the calculation code MCNP in the prediction of the neutrons effective multiplication factor for a fuel assemblies arrangement type PWR inside a container of generic storage. The calculations are divided in two parts, the first, in the decay calculations with specified nuclide concentrations by the reference for a pressure water reactor (PWR) with enriched fuel to 4.5% and a discharge burned of 50 GW d/Mtu. The second, in criticality calculations with isotopic compositions dependent of the time for actinides and important fission products, taking 30 time steps, for two actinide groups and fission products. (Author)

  13. Development of the graphic design and control system based on a graphic simulator for the spent fuel dismantling equipment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. Y.; Kim, S. H.; Song, T. G.; Yoon, J. S

    2000-06-01

    In this study, the graphic design system is developed for designing the spent fuel rod consolidation and the dismantling processes. This system is used throughout the design stages from the conceptual design to the motion analysis. Also, the real-time control system of the rod extracting equipment is developed. This system utilizes the graphic simulator which simulates the motion of the equipment in real time by synchronously connecting the control PC with the graphic server through the TCP/IP network. The developed system is expected to be used as an effective tool in designing the process equipment for the spent fuel management. And the real-time graphic control system can be effectively used to enhance the reliability and safety of the spent fuel handling process by providing the remote monitoring function of the process.

  14. Development of the graphic design and control system based on a graphic simulator for the spent fuel dismantling equipment

    International Nuclear Information System (INIS)

    Lee, J. Y.; Kim, S. H.; Song, T. G.; Yoon, J. S.

    2000-06-01

    In this study, the graphic design system is developed for designing the spent fuel rod consolidation and the dismantling processes. This system is used throughout the design stages from the conceptual design to the motion analysis. Also, the real-time control system of the rod extracting equipment is developed. This system utilizes the graphic simulator which simulates the motion of the equipment in real time by synchronously connecting the control PC with the graphic server through the TCP/IP network. The developed system is expected to be used as an effective tool in designing the process equipment for the spent fuel management. And the real-time graphic control system can be effectively used to enhance the reliability and safety of the spent fuel handling process by providing the remote monitoring function of the process

  15. Simulation of interim spent fuel storage system with discrete event model

    International Nuclear Information System (INIS)

    Yoon, Wan Ki; Song, Ki Chan; Lee, Jae Sol; Park, Hyun Soo

    1989-01-01

    This paper describes dynamic simulation of the spent fuel storage system which is described by statistical discrete event models. It visualizes flow and queue of system over time, assesses the operational performance of the system activities and establishes the system components and streams. It gives information on system organization and operation policy with reference to the design. System was tested and analyzed over a number of critical parameters to establish the optimal system. Workforce schedule and resources with long processing time dominate process. A combination of two workforce shifts a day and two cooling pits gives the optimal solution of storage system. Discrete system simulation is an useful tool to get information on optimal design and operation of the storage system. (Author)

  16. Investigation of irradiation induced inter-granular stress corrosion cracking susceptibility on austenitic stainless steels for PWR by simulated radiation induced segregation materials

    Energy Technology Data Exchange (ETDEWEB)

    Yonezawa, Toshio; Fujimoto, Koji; Kanasaki, Hiroshi; Iwamura, Toshihiko [Mitsubishi Heavy Industries Ltd., Takasago R and D Center, Takasago, Hyogo (Japan); Nakada, Shizuo; Ajiki, Kazuhide [Mitsubishi Heavy Industries Ltd., Kobe Shipyard and Machinery Works, Kobe, Hyogo (Japan); Urata, Sigeru [General Office of Nuclear and Fossil Power Production, Kansai Electric Power Co., Inc., Osaka (Japan)

    2000-07-01

    An Irradiation Assisted Stress Corrosion Cracking (IASCC) has not been found in Pressurized Water Reactors (PWRs). However, the authors have investigated on the possibility of IASCC so as to be able to estimate the degradation of PWR plants up to the end of their lifetime. In this study, the authors melted the test alloys whose bulk compositions simulated the grain boundary compositions of irradiated Type 304 and Type 316 CW stainless steels. Low chromium, high nickel and silicon (12%Cr-28%Ni-3%Si) steel showed high susceptibility to PWSCC (Primary Water Stress Corrosion Cracking) by SSRT (Slow Strain Rate Tensile) test in simulated PWR primary water. PWSCC susceptibility of the test steels increases with a decrease of chromium content and a increase of nickel and silicon contents. The aged test steel included coherent M{sub 23}C{sub 6} carbides with matrices at the grain boundaries showed low PWSCC susceptibility. This tendency is in very good agreement with that of the PWSCC susceptibility of nickel based alloys X-750 and 690. From these results, if there is the possibility of IASCC for austenitic stainless steels in PWRs, in the future, the IASCC shall be caused by the PWSCC as a result of irradiation induced grain boundary segregation. (author)

  17. Analysis of accidental loss of pool coolant due to leakage in a PWR SFP

    International Nuclear Information System (INIS)

    Wu, Xiaoli; Li, Wei; Zhang, Yapei; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng

    2015-01-01

    Highlights: • Accidental loss of pool coolant due to leakage in a PWR SFP was studied using MAAP5. • The effect of emergency ventilation on the accident progression was investigated. • The effect of emergency injection on the accident progression was discussed. - Abstract: A large loss of pool coolant/water accident may be caused by extreme accidents such as the pool wall or bottom floor punctures due to a large aircraft strike. The safety of SFP under this circumstance is very important. Large amounts of radioactive materials would be easily released into the environment if a severe accident happened in the SFP, because the spent fuel pool (SFP) in a PWR nuclear power station (NPS) is often located in the fuel handing building outside the reactor containment. To gain insight into the loss of pool coolant accident progression for a pressurized water reactor (PWR) SFP, a computational model was established by using the Modular Accident Analysis Program (MAAP5). Important factors such as Zr oxidation by air, air natural circulation and thermal radiation were considered for partial and complete drainage accidents without mitigation measures. The calculation indicated that even if the residual water level was in the active fuel region, there was a chance to effectively remove the decay heat through axial heat conduction (if the pool cooling system failed) or steam cooling (if the pool cooling system was working). For sensitivity study, the effects of emergency ventilation and water injection on the accident progression were analyzed. The analysis showed that for the current configuration of high-density storage racks, it was difficult to cool the spent fuels by air natural circulation. Enlarging the space between the adjacent assemblies was a way of increasing air natural circulation flow rate and maintaining the coolability of SFP. Water injection to the bottom of the SFP helped to recover water inventory, quenching the high temperature assemblies to prevent

  18. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mertyurek, Ugur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  19. Next generation PWR

    International Nuclear Information System (INIS)

    Tanaka, Toshihiko; Fukuda, Toshihiko; Usui, Shuji

    2001-01-01

    Development of LWR for power generation in Japan has been intended to upgrade its reliability, safety, operability, maintenance and economy as well as to increase its capacity in order, since nuclear power generation for commercial use was begun on 1970, to steadily increase its generation power. And, in Japan, ABWR (advanced BWR) of the most promising LWR in the world, was already used actually and APWR (advanced PWR) with the largest output in the world is also at a step of its actual use. And, development of the APWR in Japan was begun on 1980s, and is at a step of plan on construction of its first machine at early of this century. However, by large change of social affairs, economy of nuclear power generation is extremely required, to be positioned at an APWR improved development reactor promoted by collaboration of five PWR generation companies and the Mitsubishi Electric Co., Ltd. Therefore, on its development, investigation on effect of change in social affairs on nuclear power stations was at first carried out, to establish a design requirement for the next generation PWR. Here were described on outline, reactor core design, safety concept, and safety evaluation of APWR+ and development of an innovative PWR. (G.K.)

  20. Microstructural characteristics of PWR [pressurized water reactor] spent fuel relative to its leaching behavior

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1986-01-01

    Microstructural, compositional and thermochemical properties of spent nuclear fuel are discussed relative to its potential performance as a high-level waste form under proposed Nevada Nuclear Waste Storage Investigations Project tuff repository conditions. Pressurized water reactor spent fuel specimens with various artificially induced cladding defects were leach tested in deionized water and in a reference tuff groundwater under ambient hot cell air and temperature conditions. Greater fractional actinide release was observed with bare fuel than with clad fuel leached through a cladding defect. Congruent actinide release and preferential release of cesium and technetium were observed in both water types. Selected summary radionuclide release data are presented and correlated to pre- and post-test microstructural characterization data

  1. Calculation of drop course of control rod assembly in PWR

    International Nuclear Information System (INIS)

    Zhou Xiaojia; Mao Fei; Min Peng; Lin Shaoxuan

    2013-01-01

    The validation of control rod drop performance is an important part of safety analysis of nuclear power plant. Development of computer code for calculating control rod drop course will be useful for validating and improving the design of control rod drive line. Based on structural features of the drive line, the driving force on moving assembly was analyzed and decomposed, the transient value of each component of the driving force was calculated by choosing either theoretical method or numerical method, and the simulation code for calculating rod cluster control assembly (RCCA) drop course by time step increase was achieved. The analysis results of control rod assembly drop course calculated by theoretical model and numerical method were validated by comparing with RCCA drop test data of Qinshan Phase Ⅱ 600 MW PWR. It is shown that the developed RCCA drop course calculation code is suitable for RCCA in PWR and can correctly simulate the drop course and the stress of RCCA. (authors)

  2. Standard casks for the transport of LWR spent fuel. Storage/transport casks for long cooled spent fuel

    International Nuclear Information System (INIS)

    Blum, P.; Sert, G.; Gagnon, R.

    1983-01-01

    During the past decade, TRANSNUCLEAIRE has developed, licensed and marketed a family of standard casks for the transport of spent fuel from LWR reactors to reprocessing plants and the ancillary equipments necessary for their operation and transport. A large number of these casks are presently used for European and intercontinental transports and manufactured under TRANSNUCLEAIRE supervision in different countries. The main advantages of these casks are: - large payload for considered modes of transport, - moderate cost, - reliability due to the large experience gained by TRANSNUCLEAIRE as concerns fabrication and operation problems, - standardization faciliting fabrication, operation and spare part supply. Recently, TRANSNUCLEAIRE also developed a new generation of casks for the dry storage and occasional transport of LWR spent fuel which has been cooled for 5 years or 7 years in case of consolidated fuel rods. These casks have an optimum payload which takes into account the shielding requirements and the weight limitations at most sites. This paper deals more particularly with the TN 24 model which exists in 4 versions among which one for 24 PWR 900 fuel assemblies and another one for the consolidated fuel rods from 48 of same fuel assemblies

  3. Usage Inspection of KN-12 Spent Fuel Transport Cask

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. C.; Seo, K. S.; Bang, K. S.; Cho, I. J.; Kim, D. H.; Min, D. K

    2007-03-15

    The usage inspection of the KN-12 spent nuclear fuel transport package was performed to receive the license for reuse. According to the Korea Atomic Energy Act, all type B transport package should receive and pass the usage inspection every five years. The KN-12 transport cask was designed to transport twelve spent PWR fuel assemblies under wet and dry conditions. The cask was developed and licensed in 2002 in accordance with the Korea and the IAEA's safe transport regulations. The areas of usage inspection include: visual inspection, nondestructive weld inspection, load test, maximum operating pressure test, leakage test, shielding test, thermal test, external surface contamination test. In the results of the usage inspection, the damage or defect could not found out and the performance of the cask was maintained according to the requirements of the regulation. Therefore, the usage inspection was successfully performed to acquire the license for the reuse.

  4. Spent fuel transport cask thermal evaluation under normal and accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, G. [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy); Lo Frano, R., E-mail: rosa.lofrano@ing.unipi.i [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy); Forasassi, G. [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy)

    2010-06-15

    The casks used for transport of nuclear materials, especially the spent fuel element (SPE), must be designed according to rigorous acceptance criteria and standards requirements, e.g. the International Atomic Energy Agency ones, in order to provide protection to people and environment against radiation exposure particularly in a severe accident scenario. The aim of this work was the evaluation of the integrity of a spent fuel cask under both normal and accident scenarios transport conditions, such as impact and rigorous fire events, in according to the IAEA accident test requirements. The thermal behaviour and the temperatures distribution of a Light Water Reactor (LWR) spent fuel transport cask are presented in this paper, especially with reference to the Italian cask designed by AGN, which was characterized by a cylindrical body, with water or air inside the internal cavity, and two lateral shock absorbers. Using the finite element code ANSYS a series of thermal analyses (steady-state and transient thermal analyses) were carried out in order to obtain the maximum fuel temperature and the temperatures field in the body of the cask, both in normal and in accidents scenario, considering all the heat transfer modes between the cask and the external environment (fire in the test or air in the normal conditions) as well as inside the cask itself. In order to follow the standards requirements, the thermal analyses in accidents scenarios were also performed adopting a deformed shape of the shock absorbers to simulate the mechanical effects of a previous IAEA 9 m drop test event. Impact tests on scale models of the shock absorbers have already been conducted in the past at the Department of Mechanical, Nuclear and Production Engineering, University of Pisa, in the '80s. The obtained results, used for possible new licensing approval purposes by the Italian competent Authority of the cask for PWR spent fuel cask transport by the Italian competent Authority, are

  5. Four-fluid model of PWR degraded cores

    International Nuclear Information System (INIS)

    Dearing, J.F.

    1985-01-01

    This paper describes the new two-dimensional, four-fluid fluid dynamics and heat transfer (FLUIDS) module of the MELPROG code. MELPROG is designed to give an integrated, mechanistic treatment of pressurized water reactor (PWR) core meltdown accidents from accident initiation to vessel melt-through. The code has a modular data storage and transfer structure, with each module providing the others with boundary conditions at each computational time step. Thus the FLUIDS module receives mass and energy source terms from the fuel pin module, the structures module, and the debris bed module, and radiation energy source terms from the radiation module. MELPROG, which models the reactor vessel, is also designed to model the vessel as a component in the TRAC/PF1 networking solution of a PWR reactor coolant system (RCS). The coupling between TRAC and MELPROG is implicit in the fluid dynamics of the reactor coolant (liquid water and steam) allowing an accurate simulation of the coupling between the vessel and the rest of the RCS during an accident. This paper deals specifically with the numerical model of fluid dynamics and heat transfer within the reactor vessel, which allows a much more realistic simulation (with less restrictive assumptions on physical behavior) of the accident than has been possible before

  6. Best estimate plus uncertainty analysis of departure from nucleate boiling limiting case with CASL core simulator VERA-CS in response to PWR main steam line break event

    Energy Technology Data Exchange (ETDEWEB)

    Brown, C.S., E-mail: csbrown3@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, 2500 Stinson Drive, Raleigh, NC 27695-7909 (United States); Zhang, H., E-mail: Hongbin.Zhang@inl.gov [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3870 (United States); Kucukboyaci, V., E-mail: kucukbvn@westinghouse.com [Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States); Sung, Y., E-mail: sungy@westinghouse.com [Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2016-12-01

    Highlights: • Best estimate plus uncertainty (BEPU) analyses of PWR core responses under main steam line break (MSLB) accident. • CASL’s coupled neutron transport/subchannel code VERA-CS. • Wilks’ nonparametric statistical method. • MDNBR 95/95 tolerance limit. - Abstract: VERA-CS (Virtual Environment for Reactor Applications, Core Simulator) is a coupled neutron transport and thermal-hydraulics subchannel code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS was applied to simulate core behavior of a typical Westinghouse-designed 4-loop pressurized water reactor (PWR) with 17 × 17 fuel assemblies in response to two main steam line break (MSLB) accident scenarios initiated at hot zero power (HZP) at the end of the first fuel cycle with the most reactive rod cluster control assembly stuck out of the core. The reactor core boundary conditions at the most DNB limiting time step were determined by a system analysis code. The core inlet flow and temperature distributions were obtained from computational fluid dynamics (CFD) simulations. The two MSLB scenarios consisted of the high and low flow situations, where reactor coolant pumps either continue to operate with offsite power or do not continue to operate since offsite power is unavailable. The best estimate plus uncertainty (BEPU) analysis method was applied using Wilks’ nonparametric statistical approach. In this demonstration of BEPU application, 59 full core simulations were performed for each accident scenario to provide the minimum departure from nucleate boiling ratio (MDNBR) at the 95/95 (95% probability with 95% confidence level) tolerance limit. A parametric goodness-of-fit approach was also applied to the results to obtain the MDNBR value at the 95/95 tolerance limit. Initial sensitivity analysis was performed with the 59 cases per accident scenario by use of Pearson correlation coefficients. The results show that this typical PWR core

  7. Best estimate plus uncertainty analysis of departure from nucleate boiling limiting case with CASL core simulator VERA-CS in response to PWR main steam line break event

    International Nuclear Information System (INIS)

    Brown, C.S.; Zhang, H.; Kucukboyaci, V.; Sung, Y.

    2016-01-01

    Highlights: • Best estimate plus uncertainty (BEPU) analyses of PWR core responses under main steam line break (MSLB) accident. • CASL’s coupled neutron transport/subchannel code VERA-CS. • Wilks’ nonparametric statistical method. • MDNBR 95/95 tolerance limit. - Abstract: VERA-CS (Virtual Environment for Reactor Applications, Core Simulator) is a coupled neutron transport and thermal-hydraulics subchannel code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS was applied to simulate core behavior of a typical Westinghouse-designed 4-loop pressurized water reactor (PWR) with 17 × 17 fuel assemblies in response to two main steam line break (MSLB) accident scenarios initiated at hot zero power (HZP) at the end of the first fuel cycle with the most reactive rod cluster control assembly stuck out of the core. The reactor core boundary conditions at the most DNB limiting time step were determined by a system analysis code. The core inlet flow and temperature distributions were obtained from computational fluid dynamics (CFD) simulations. The two MSLB scenarios consisted of the high and low flow situations, where reactor coolant pumps either continue to operate with offsite power or do not continue to operate since offsite power is unavailable. The best estimate plus uncertainty (BEPU) analysis method was applied using Wilks’ nonparametric statistical approach. In this demonstration of BEPU application, 59 full core simulations were performed for each accident scenario to provide the minimum departure from nucleate boiling ratio (MDNBR) at the 95/95 (95% probability with 95% confidence level) tolerance limit. A parametric goodness-of-fit approach was also applied to the results to obtain the MDNBR value at the 95/95 tolerance limit. Initial sensitivity analysis was performed with the 59 cases per accident scenario by use of Pearson correlation coefficients. The results show that this typical PWR core

  8. Design and Development of Virtual Reactivity System for PWR

    International Nuclear Information System (INIS)

    Anwar, M. I.

    2012-01-01

    The reactivity monitoring and investigation is an important mean to ensure the safety operation of a nuclear power plant. But the reactivity of the nuclear reactor usually cannot be directly measured. It should be computed with certain estimation method. In this thesis, an effort has been made using an artificial neural network and highly fluctuating experimental data for predicting the total reactivity of the nuclear reactor based on all components of net reactivity. This virtual reactivity system is designed by taking advantage of neural network's nonlinear mapping capability. Based on analysis of the reactivity contributing factors, several neural network models are built separately for control rod, boron, poisons, fuel Doppler Effect and moderator effect. Extensive simulation and validation tests for PWR show that satisfied results have been obtained with the proposed approach. It presents a new idea to estimate the PWR's reactivity using artificial intelligence. All the design and simulation work is carried out in MATLAB and a real time programming environment is chosen for the computation and prediction of reactivity. (author)

  9. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    Science.gov (United States)

    Corletti, Michael M.; Lau, Louis K.; Schulz, Terry L.

    1993-01-01

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  10. Data assimilation and PWR primary measurement

    International Nuclear Information System (INIS)

    Mercier, Thibaud

    2015-01-01

    A Pressurized Water Reactor (PWR) Reactor Coolant System (RCS) is a highly complex physical process: heterogeneous power, flow and temperature distributions are difficult to be accurately measured, since instrumentations are limited in number, thus leading to the relevant safety and protection margins. EDF R and D is seeking to assess the potential benefits of applying Data Assimilation to a PWR's RCS (Reactor Coolant System) measurements, in order to improve the estimators for parameters of a reactor's operating setpoint, i.e. improving accuracy and reducing uncertainties and biases of measured RCS parameters. In this thesis, we define a 0D semi-empirical model for RCS, satisfying the description level usually chosen by plant operators, and construct a Monte-Carlo Method (inspired from Ensemble Methods) in order to use this model with Data Assimilation tools. We apply this method on simulated data in order to assess the reduction of uncertainties on key parameters: results are beyond expectations, however strong hypothesis are required, implying a careful preprocessing of input data. (author)

  11. Temperature escalation in PWR fuel rod simulators due to the zircaloy/steam reaction: Tests ESSI-1,2,3

    International Nuclear Information System (INIS)

    Hagen, S.; Malauschek, H.; Wallenfels, K.P.; Peck, S.O.

    1983-08-01

    This report discusses the test conduct, results, and posttest appearance of three scoping tests (ESSI-1,2,3) investigating temperature escalation in zircaloy clad fuel rods. The experiments are part of an out-of-pile program using electrically heated fuel rod simulators to investigate PWR fuel element behavior up to temperatures of 2000 0 C. These experiments are part of the PNS Severe Fuel Damage Program. The temperature escalation is caused by the exothermal zircaloy/steam reaction, whose reaction rate increases exponentially with the temperature. The tests were performed using different initial oxide layers as a major parameter, obtained by varying the heatup rates and steam exposure times. (orig./RW) [de

  12. A Qualitative Analysis of the Neutron Population in Fresh and Spent Fuel Assemblies during Simulated Interrogation using the Differential Die-Away Technique

    International Nuclear Information System (INIS)

    Lundkvista, Niklas; Goodsell, Alison V.; Grapea, Sophie; Hendricksb, John S.; Henzlb, Vladimir; Swinhoe, Martyn T.; Tobin, Stephen J.

    2015-01-01

    Monte Carlo simulations were performed for the differential die-away (DDA) technique to analyse the time-dependent behaviour of the neutron population in fresh and spent nuclear fuel assemblies as part of the Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) Project. Simulations were performed to investigate both a possibly portable as well as a permanent DDA instrument. Taking advantage of a custom made modification to the MCNPX code, the variation in the neutron population, simultaneously in time and space, was examined. The motivation for this research was to improve the design of the DDA instrument, as it is being considered for possible deployment at the Central Storage of Spent Nuclear Fuel and Encapsulation Plant in Sweden (Clab), as well as to assist in the interpretation of the both simulated and measured signals.

  13. Nonlinear Fuzzy Model Predictive Control for a PWR Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Xiangjie Liu

    2014-01-01

    Full Text Available Reliable power and temperature control in pressurized water reactor (PWR nuclear power plant is necessary to guarantee high efficiency and plant safety. Since the nuclear plants are quite nonlinear, the paper presents nonlinear fuzzy model predictive control (MPC, by incorporating the realistic constraints, to realize the plant optimization. T-S fuzzy modeling on nuclear power plant is utilized to approximate the nonlinear plant, based on which the nonlinear MPC controller is devised via parallel distributed compensation (PDC scheme in order to solve the nonlinear constraint optimization problem. Improved performance compared to the traditional PID controller for a TMI-type PWR is obtained in the simulation.

  14. Comparative study of the contribution of various PWR spacer grid components to hydrodynamic and wall pressure characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Saptarshi, E-mail: saptarshi.bhattacharjee@outlook.com [Alternative Energies and Atomic Energy Commission (CEA) – Cadarache, DEN/DTN/STCP/LHC, 13108 Saint Paul lez Durance Cedex (France); Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2), UMR7340 CNRS, Aix-Marseille Université, Centrale Marseille, 13451 Marseille Cedex (France); Ricciardi, Guillaume [Alternative Energies and Atomic Energy Commission (CEA) – Cadarache, DEN/DTN/STCP/LHC, 13108 Saint Paul lez Durance Cedex (France); Viazzo, Stéphane [Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2), UMR7340 CNRS, Aix-Marseille Université, Centrale Marseille, 13451 Marseille Cedex (France)

    2017-06-15

    Highlights: • Complex geometry inside a PWR fuel assembly is simulated using simplified 3D models. • Structured meshes are generated as far as possible. • Fluctuating hydrodynamic and wall pressure field are analyzed using LES. • Comparative studies between square spacer grid, circular spacer grid and mixing vanes are presented. • Simulations are compared with experimental data. - Abstract: Flow-induced vibrations in a pressurized water reactor (PWR) core can cause fretting wear in fuel rods. These vibrations can compromise safety of a nuclear reactor. So, it is necessary to know the random fluctuating forces acting on the rods which cause these vibrations. In this paper, simplified 3D models like square spacer grid, circular spacer grid and symmetric mixing vanes have been used inside an annular pipe. Hydrodynamic and wall pressure characteristics are evaluated using large eddy simulations (LES). Structured meshes are generated as far as possible. Simulations are compared with an experiment. Results show that the grid and vanes have a combined effect: grid accelerates the flow whereas the vanes contribute to the swirl structures. Spectral analysis of the simulations illustrate vortex shedding phenomenon in the wake of spacer grids. This initial study opens up interesting perspectives towards improving the modeling strategy and understanding the complex phenomenon inside a PWR core.

  15. Comparative study of the contribution of various PWR spacer grid components to hydrodynamic and wall pressure characteristics

    International Nuclear Information System (INIS)

    Bhattacharjee, Saptarshi; Ricciardi, Guillaume; Viazzo, Stéphane

    2017-01-01

    Highlights: • Complex geometry inside a PWR fuel assembly is simulated using simplified 3D models. • Structured meshes are generated as far as possible. • Fluctuating hydrodynamic and wall pressure field are analyzed using LES. • Comparative studies between square spacer grid, circular spacer grid and mixing vanes are presented. • Simulations are compared with experimental data. - Abstract: Flow-induced vibrations in a pressurized water reactor (PWR) core can cause fretting wear in fuel rods. These vibrations can compromise safety of a nuclear reactor. So, it is necessary to know the random fluctuating forces acting on the rods which cause these vibrations. In this paper, simplified 3D models like square spacer grid, circular spacer grid and symmetric mixing vanes have been used inside an annular pipe. Hydrodynamic and wall pressure characteristics are evaluated using large eddy simulations (LES). Structured meshes are generated as far as possible. Simulations are compared with an experiment. Results show that the grid and vanes have a combined effect: grid accelerates the flow whereas the vanes contribute to the swirl structures. Spectral analysis of the simulations illustrate vortex shedding phenomenon in the wake of spacer grids. This initial study opens up interesting perspectives towards improving the modeling strategy and understanding the complex phenomenon inside a PWR core.

  16. Aging management of PWR reactor internals in U.S. plants

    International Nuclear Information System (INIS)

    Amberge, K.J.; Demma, A.

    2015-01-01

    This paper describes the development, aging management strategies and inspection results of the Pressurized Water Reactor (PWR) vessel internals inspection and evaluation guidelines. The goal of these guidelines is to provide PWR owners with robust aging management strategies to monitor degradation of internals components to support life extension as well as the current period of operation and power up-rate activities. The implementation of these guidelines began in 2010 within the U.S. PWR fleet and several examinations have been performed since. Examples of inspection results are presented for selected vessel internals components and are compared with simulation results. In summary, to date there have been no observations of austenitic stainless steel stress corrosion cracking (SCC), which is consistent with expectations based on the current understanding of the mechanism. Observations of irradiation assisted stress corrosion cracking (IASCC) have been limited and only found in baffle former bolting. Additionally, no macroscopic effects or global observations of void swelling impacts on general conditions of reactor internal hardware have been observed. (authors)

  17. Casting technology for manufacturing metal rods from simulated metallic spent fuels

    Science.gov (United States)

    Leeand, Y. S.; Lee, D. B.; Kim, C. K.; Shin, Y. J.; Lee, J. H.

    2000-09-01

    A uranium metal rod 13.5 mm in diameter and 1,150 mm long was produced from simulated metallic spent fuels with advanced casting equipment using the directional-solidification method. A vacuum casting furnace equipped with a four-zone heater to prevent surface oxidation and the formation of surface shrinkage holes was designed. By controlling the axial temperature gradient of the casting furnace, deformation by the surface shrinkage phenomena was diminished, and a sound rod was manufactured. The cooling behavior of the molten uranium was analyzed using the computer software package MAGMAsoft.

  18. The KINA neutronic module of the LEGO code for steady-state and transient PWR plant simulations

    International Nuclear Information System (INIS)

    Nicolopoulos, D.; Pollacchini, L.; Vimercati, G.; Spelta, S.

    1989-01-01

    The Automation Research Center (CRA) of ENEl has implemented some models for analyzing both incidental and operational transients in PWR power plants. For such models an axial neutron kinetics module characterized by high computational efficency with adequate results accuracy was called for. CISE has been entrusted with the task of implementing such a module named KINA and based on IQS (Improved Quasi Static) method, to be included in the library of LEGO modular code used by CRA to set up PWR power models. Moreover, The KINA module has been adapted to the neutron constants computing model developed by the EdF-SEPTEN, which has been using and improving the LEGO code for a long time in cooperation with ENEL-CRA. In this paper, after some remarks on the LEGO code, a general description of KINA neutronic module is given. The resylts of a preliminary validation activity of KINA for an EdF 1300 MWe PWR plant are also presented

  19. 3-D full core calculations for the long-term behaviour of PWR's

    International Nuclear Information System (INIS)

    Winter, H.J.; Koebke, K.; Wagner, M.R.

    1987-01-01

    Presently, the most realistic simulation of a PWR core is by means of three-dimensional (3-D) full core calculations. Only by such 3-D representations can the large scope of axial effects be treated in an accurate and direct way, without the need to perform various auxiliary calculations. Although the computationally efficient burnup-corrected nodal expansion method (NEM-BC) is used, the computing effort for 3-D reactor calculations becomes rather high, e.g. a storage of about 320000 words is required to describe a 1300 MWe PWR. NEM-BC was introduced (1979) into KWU's package of PWR design codes because of its high accuracy and the great reduction of computing time and storage requirements in comparison to other methods. The application of NEM-BC to 3-dimensional PWR design is strongly correlated with the progress achieved in the solution of the homogenization and dehomogenization problem. By means of suitable methods (equivalence theory) the transport-theoretical information of the pinwise power and burnup distribution for the heterogeneous fuel assemblies is transferred in a consistent manner to the full core reactor solution. The new methods and the corresponding code system are explained in some detail. (orig.)

  20. PWR secondary water chemistry guidelines

    International Nuclear Information System (INIS)

    Bell, M.J.; Blomgren, J.C.; Fackelmann, J.M.

    1982-10-01

    Steam generators in pressurized water reactor (PWR) nuclear power plants have experienced tubing degradation by a variety of corrosion-related mechanisms which depend directly on secondary water chemistry. As a result of this experience, the Steam Generator Owners Group and EPRI have sponsored a major program to provide solutions to PWR steam generator problems. This report, PWR Secondary Water Chemistry Guidelines, in addition to presenting justification for water chemistry control parameters, discusses available analytical methods, data management and surveillance, and the management philosophy required to successfully implement the guidelines

  1. Criteria for safety-related nuclear-power-plant operator actions: 1982 pressurized-water-reactor (PWR) simulator exercises

    International Nuclear Information System (INIS)

    Crowe, D.S.; Beare, A.N.; Kozinsky, E.J.; Haas, P.M.

    1983-06-01

    The primary objective of the Safety-Related Operator Action (SROA) Program at Oak Ridge National Laboratory is to provide a data base to support development of criteria for safety-related actions by nuclear power plant operators. When compared to field data collected on similar events, a base of operator performance data developed from the simulator experiments can then be used to establish safety-related operator action design evaluation criteria, evaluate the effects of performance shaping factors, and support safety/risk assessment analyses. This report presents data obtained from refresher training exercises conducted in a pressurized water reactor (PWR) power plant control room simulator. The 14 exercises were performed by 24 teams of licensed operators from one utility, and operator performance was recorded by an automatic Performance Measurement System. Data tapes were analyzed to extract operator response times (RTs) and error rate information. Demographic and subjective data were collected by means of brief questionnaires and analyzed in an attempt to evaluate the effects of selected performance shaping factors on operator performance

  2. Spent fuel transport and storage system for NOK: The TN52L, TN97L, TN24 BHL and TN24 GB casks

    International Nuclear Information System (INIS)

    Wattez, L.; Verdier, A.; Monsigny, P.-A.

    2007-01-01

    NOK nuclear power plants in Switzerland, LEIBSTADT (KKL) BWR nuclear power plant and BEZNAU (KKB) PWR nuclear power plant have opted to ship spent fuel to a central facility called ZWILAG for interim storage. In the mid-nineties, COGEMA LOGISTICS was contracted by KKL for the supply of the TN52L and TN97L transport and storage casks for BWR fuel types. In 2003, KKL also ordered from COGEMA LOGISTICS the supply of six TN24 BHL transport and storage casks. This paper shows how all the three cask designs have responded to the KKL needs to ship and store BWR spent fuel. In addition, it highlights the already significant operational feedback of the TN52L and TN97L casks by the KKL and ZWILAG operators. In 2004, NOK also ordered three TN24 GB transport and storage casks for PWR fuel types. These casks are presently being manufactured. (author)

  3. The new lattice code Paragon and its qualification for PWR core applications

    International Nuclear Information System (INIS)

    Ouisloumen, M.; Huria, H.C.; Mayhue, L.T.; Smith, R.M.; Kichty, M.J.; Matsumoto, H.; Tahara, Y.

    2003-01-01

    Paragon is a new two-dimensional transport code based on collision probability with interface current method and written entirely in Fortran 90/95. The qualification of Paragon has been completed and the results are very good. This qualification included a number of critical experiments. Comparisons to the Monte Carlo code MCNP for a wide variety of PWR assembly lattice types were also performed. In addition, Paragon-based core simulator models have been compared against PWR plant startup and operational data for a large number of plants. Some results of these calculations and also comparisons against models developed with a licensed Westinghouse lattice code, Phoenix-P, are presented. The qualification described in this paper provided the basis for the qualification of Paragon both as a validated transport code and as the nuclear data source for core simulator codes

  4. AGR v PWR

    International Nuclear Information System (INIS)

    Green, D.

    1986-01-01

    When the Central Electricity Generating Board (CEGB) invited tenders and placed a contract for the Advanced Gas Cooled Reactor (AGR) at Dungeness B in 1965 -preferring it to the Pressurised Water Reactor (PWR) -the AGR was lamentably ill developed. The effects of the decision were widely felt, for it took the British nuclear industry off the light water reactor highway of world reactor business and up and idiosyncratic private highway of its own, excluding it altogether from any material export business in the two decades which followed. Yet although the UK may have made wrong decisions in rejecting the PWR in 1965, that does not mean that it can necessarily now either correct them, or redeem their consequence, by reversing the choice in 1985. In the 20 years since 1965 the whole world economic and energy picture has been transformed and the national picture with it. Picking up the PWR now could prove as big a disaster as rejecting it may have been in 1965. (author)

  5. Fuel rod D07/B15 from Ringhals 2 PWR: Source material for corrosion/leach tests in groundwater. Fuel rod/pellet characterization program. Pt. 1

    International Nuclear Information System (INIS)

    Forsyth, R.

    1987-03-01

    A joint SKB/STUDSVIK experimental program to determine the corrosion rates and to establish the corrosion mechanisms of spent UO 2 fuel in groundwater under both oxidizing and reducing conditions is in progress in the Hot Cell Laboratory of Studsvik Energiteknik AB. High burnup fuel of both BWR and PWR type are studied. Characterization of the spent fuel at both rod and pellet level is an important part of the experimental program. Experiments on PWR fuel have been concentrated so far on specimens from one rod, manufacturer's number 03688, which had occupied position B15 in assembly D07. This assembly had been irradiated for 5 cycles in the Ringhals 2 reactor between 1977 and 1983. The calculated assembly burnup was 41.3 MWd/kg U. The present report is a collection of separate reports describing those items in the characterization program which have been performed so far. No overall summary of the experimental results is given here, and the report should be viewed as a collection of reference data. (orig.)

  6. Spent fuel storage requirements

    International Nuclear Information System (INIS)

    Fletcher, J.

    1982-06-01

    Spent fuel storage requirements, as projected through the year 2000 for U.S. LWRs, were calculated using information supplied by the utilities reflecting plant status as of December 31, 1981. Projections through the year 2000 combined fuel discharge projections of the utilities with the assumed discharges of typical reactors required to meet the nuclear capacity of 165 GWe projected by the Energy Information Administration (EIA) for the year 2000. Three cases were developed and are summarized. A reference case, or maximum at-reactor (AR) capacity case, assumes that all reactor storage pools are increased to their maximum capacities as estimated by the utilities for spent fuel storage utilizing currently licensed technologies. The reference case assumes no transshipments between pools except as currently licensed by the Nuclear Regulatory Commission (NRC). This case identifies an initial requirement for 13 MTU of additional storage in 1984, and a cumulative requirement for 14,490 MTU additional storage in the year 2000. The reference case is bounded by two alternative cases. One, a current capacity case, assumes that only those pool storage capacity increases currently planned by the operating utilities will occur. The second, or maximum capacity with transshipment case, assumes maximum development of pool storage capacity as described above and also assumes no constraints on transshipment of spent fuel among pools of reactors of like type (BWR, PWR) within a given utility. In all cases, a full core discharge capability (full core reserve or FCR) is assumed to be maintained for each reactor, except that only one FCR is maintained when two reactors share a common pool. For the current AR capacity case the indicated storage requirements in the year 2000 are indicated to be 18,190 MTU; for the maximum capacity with transshipment case they are 11,320 MTU

  7. Improvement of numerical simulation methods on safety assessment of the spent fuel storage facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Improvement of numerical simulation methods on safety assessment of the spent fuel storage facility is one of main objectives of JNES activities. For the thermal and structural analyses, the radiative heat transfer analysis code S-FOKS has been developed to reduce computing time and to avoid using large memory area. In order to simulate the specular reflection, a new model (called 'model-2') is planned to install to S-FOKS code. The theoretical values with the specular reflection in simple geometry were lead to verify S-FOKS model-2. (author)

  8. Probabilistic assessment of spent-fuel cladding breach

    International Nuclear Information System (INIS)

    Foadian, H.; Rashid, Y.R.; Seager, K.D.

    1991-01-01

    A methodology for determining the probability spent-fuel cladding breach due to normal and accident class B cask transport conditions is introduced. This technique uses deterministic stress analysis results as well as probabilistic cladding material properties, initial flaws, and breach criteria. Best estimates are presented for the probability distributions of irradiated Zircaloy properties such as ductility and fracture toughness, and for fuel rod initial conditions such as manufacturing flaws and PCI part-wall cracks. Example analyses are used to illustrate the implementation of this methodology for a BWR (GE 7 x 7) and a PWR (B ampersand W 15 x 15) assembly. The cladding breach probabilities for each assembly are tabulated for regulatory normal and accident transport conditions including fire

  9. Probabilistic assessment of spent-fuel cladding breach

    International Nuclear Information System (INIS)

    Foadian, H.; Rashid, Y.R.; Seager, K.D.

    1992-01-01

    In this paper a methodology for determining the probability of spent-fuel cladding breach due to normal and accident class B cask transport conditions is introduced. This technique uses deterministic stress analysis results as well as probabilistic cladding material properties, initial flaws, and breach criteria. Best estimates are presented for the probability distributions of irradiated Zircaloy properties such as ductility and fracture toughness, and for fuel rod initial conditions such as manufacturing flaws and PCI part-wall cracks. Example analyses are used to illustrate the implementation of this methodology for a BWR (GE 7 x 7) and a PWR (B and W 15 x 15) assembly. The cladding breach probabilities for each assembly are tabulated for regulatory normal and accident transport conditions including fire

  10. Development of Methodology for Spent Fuel Pool Severe Accident Analysis Using MELCOR Program

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won-Tae; Shin, Jae-Uk [RETech. Co. LTD., Yongin (Korea, Republic of); Ahn, Kwang-Il [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The general reason why SFP severe accident analysis has to be considered is that there is a potential great risk due to the huge number of fuel assemblies and no containment in a SFP building. In most cases, the SFP building is vulnerable to external damage or attack. In contrary, low decay heat of fuel assemblies may make the accident processes slow compared to the accident in reactor core because of a great deal of water. In short, its severity of consequence cannot exclude the consideration of SFP risk management. The U.S. Nuclear Regulatory Commission has performed the consequence studies of postulated spent fuel pool accident. The Fukushima-Daiichi accident has accelerated the needs for the consequence studies of postulated spent fuel pool accidents, causing the nuclear industry and regulatory bodies to reexamine several assumptions concerning beyond-design basis events such as a station blackout. The tsunami brought about the loss of coolant accident, leading to the explosion of hydrogen in the SFP building. Analyses of SFP accident processes in the case of a loss of coolant with no heat removal have studied. Few studies however have focused on a long term process of SFP severe accident under no mitigation action such as a water makeup to SFP. USNRC and OECD have co-worked to examine the behavior of PWR fuel assemblies under severe accident conditions in a spent fuel rack. In support of the investigation, several new features of MELCOR model have been added to simulate both BWR fuel assembly and PWR 17 x 17 assembly in a spent fuel pool rack undergoing severe accident conditions. The purpose of the study in this paper is to develop a methodology of the long-term analysis for the plant level SFP severe accident by using the new-featured MELCOR program in the OPR-1000 Nuclear Power Plant. The study is to investigate the ability of MELCOR in predicting an entire process of SFP severe accident phenomena including the molten corium and concrete reaction. The

  11. Computational simulation of natural convection of a molten core in lower head of a PWR pressure vessel

    International Nuclear Information System (INIS)

    Vieira, Camila Braga; Romero, Gabriel Alves; Jian Su

    2010-01-01

    Computational simulation of natural convection in a molten core during a hypothetical severe accident in the lower head of a typical PWR pressure vessel was performed for two-dimensional semi-circular geometry with isothermal walls. Transient turbulent natural convection heat transfer of a fluid with uniformly distributed volumetric heat generation rate was simulated by using a commercial computational fluid dynamics software ANSYS CFX 12.0. The Boussinesq model was used for the buoyancy effect generated by the internal heat source in the flow field. The two-equation k-ω based SST (Shear Stress Transport) turbulence model was used to mould the turbulent stresses in the Reynolds-Average Navier-Stokes equations (RANS). Two Prandtl numbers, 6:13 and 7:0, were considered. Five Rayleigh numbers were simulated for each Prandtl number used (109, 1010, 1011, 1012, and 1013). The average Nusselt numbers on the bottom surface of the semicircular cavity were in excellent agreement with Mayinger et al. (1976) correlation and only at Ra = 109 the average Nusselt number on the top flat surface was in agreement with Mayinger et al. (1976) and Kulacki and Emara (1975) correlations. (author)

  12. Parametric studies of the effect of MOx environment and control rods for PWR-UOx burnup credit implementation

    International Nuclear Information System (INIS)

    Barreau, Anne; Roque, Benedicte; Marimbeau, Pierre; Venard, Christophe; Bioux, Philippe; Toubon, Herve

    2003-01-01

    The increase of PWR-UOX fuel initial enrichment and the extensive needs for spent fuel storage or cask capacities reinforce the interest in taking burnup credit into account in criticality calculations. However, this utilization of credit for fuel burnup requires the definition of a methodology that ensures the conservatism of calculations. In order to guarantee the conservatism of the spent fuel inventory calculation, a depletion calculation scheme for burnup credit is under development. This paper presents the studies on the main parameters which have an effect on nuclides concentration: the presence of control rods during depletion and the fuel assembly environment, particularly the presence of MOx fuels around the UO 2 assembly. Reactivity effects which are relevant to these parameters are then presented, and physics phenomena are identified. (author)

  13. LSDS Development for Isotopic Fissile Assay in Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Deok; Park, Chang Je; Park, Geun Il; Lee, Jung Won; Song, Kee Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-07-01

    As an option to reduce a spent fuel and reuse an existing fissile material in spent fuel, sodium fast reactor SFR program linked with pyro-processing is under development in KAERI. A uranium-TRU mixture through a pyro-process is used to fabricate SFR fuel. An assay of isotopic fissile content plays an important role in an optimum design of storage site and reuse of fissile materials of spent fuel. Lead slowing down spectrometer LSDS is being developed in KAERI to analyze isotopic fissile material content. LSDS has several features: direct fissile assay, near real time fissile assay, no influence from radiation background, fissile isotopic assay and applicable to spent fuel and recycled fuel. Based on the designed geometry, neutron energy resolution was investigated. The neutron energy spectrum was analyzed as well. Spent fuel emits large number of neutrons by spontaneous fission. Neutron generator must overcome the neutron background to get the pure fission signals from fissile materials. Neutron generator is planned to have compact system with one section electron linac which is easy maintenance, less cost and high neutron yield. The LSD has the power to resolve the fission characteristics from each fissile material. This feature can analyze the content of isotopic fissile. From 1keV to 0.1eV energy range, the energy resolution is enough to get the individual fissile fission signatures. The dominant fission signature is shown below 1eV for each fissile isotope. The neutron generation system with target was designed to get fission signals by fissile materials. The system was decided to overcome neutron backgrounds and to get good counting statistics. Finally, an accurate fissile material content will contribute to safety of spent fuel reuse in future nuclear energy system and optimum design of spent fuel storage site. Additionally, an accurate fissile material content will increase international transparence and credibility for the reuse of PWR spent fuel.

  14. LSDS Development for Isotopic Fissile Assay in Spent Fuel

    International Nuclear Information System (INIS)

    Lee, Yong Deok; Park, Chang Je; Park, Geun Il; Lee, Jung Won; Song, Kee Chan

    2011-01-01

    As an option to reduce a spent fuel and reuse an existing fissile material in spent fuel, sodium fast reactor SFR program linked with pyro-processing is under development in KAERI. A uranium-TRU mixture through a pyro-process is used to fabricate SFR fuel. An assay of isotopic fissile content plays an important role in an optimum design of storage site and reuse of fissile materials of spent fuel. Lead slowing down spectrometer LSDS is being developed in KAERI to analyze isotopic fissile material content. LSDS has several features: direct fissile assay, near real time fissile assay, no influence from radiation background, fissile isotopic assay and applicable to spent fuel and recycled fuel. Based on the designed geometry, neutron energy resolution was investigated. The neutron energy spectrum was analyzed as well. Spent fuel emits large number of neutrons by spontaneous fission. Neutron generator must overcome the neutron background to get the pure fission signals from fissile materials. Neutron generator is planned to have compact system with one section electron linac which is easy maintenance, less cost and high neutron yield. The LSD has the power to resolve the fission characteristics from each fissile material. This feature can analyze the content of isotopic fissile. From 1keV to 0.1eV energy range, the energy resolution is enough to get the individual fissile fission signatures. The dominant fission signature is shown below 1eV for each fissile isotope. The neutron generation system with target was designed to get fission signals by fissile materials. The system was decided to overcome neutron backgrounds and to get good counting statistics. Finally, an accurate fissile material content will contribute to safety of spent fuel reuse in future nuclear energy system and optimum design of spent fuel storage site. Additionally, an accurate fissile material content will increase international transparence and credibility for the reuse of PWR spent fuel

  15. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Yoon, Ji Sup; Park, B. S.; Park, Y. S.; Oh, S. C.; Kim, S. H.; Cho, M. W.; Hong, D. H.

    1997-12-01

    Since the nation's policy on spent fuel management is not finalized, the technical items commonly required for safe management and recycling of spent fuel - remote technologies of transportation, inspection, maintenance, and disassembly of spent fuel - are selected and pursued. In this regards, the following R and D activities are carried out : collision free transportation of spent fuel assembly, mechanical disassembly of spent nuclear fuel and graphical simulation of fuel handling / disassembly process. (author). 36 refs., 16 tabs., 77 figs

  16. Horizontal loading test by whole model specimen simulating inner concrete structure of PWR type nuclear power plant

    International Nuclear Information System (INIS)

    Furuya, Noriyuki; Sekine, Masataka; Kimura, Kozo; Yamaguchi, Yoshihiro; Yamaguchi, Tsuneo; Takeda, Toshikazu

    1985-01-01

    The Nuclear Power Engineering Test Center has performed a horizontal loading test by a whole model specimen simulating the inner concrete structure of a PWR type nuclear power plant in order to investigate restoring force characteristics of reactor buildings. This report describes the results of examination of applicability to the test results of analysis methods based on elastic theory. The analysis results of elastic stiffness, concrete cracking load, rebar yielding loads and ultimate strength were compared with the test results. According to this examination, it is recognized that even these analysis methods based on elastic theory are comparatively effective for analysis of an inner concrete structure of fairly complex configuration, although there are limits of the scope of applicability. (author)

  17. Methodology to evaluate the crack growth rate by stress corrosion cracking in dissimilar metals weld in simulated environment of PWR nuclear reactor

    International Nuclear Information System (INIS)

    Paula, Raphael G.; Figueiredo, Celia A.; Rabelo, Emerson G.

    2013-01-01

    Inconel alloys weld metal is widely used to join dissimilar metals in nuclear reactors applications. It was recently observed failures of weld components in plants, which have triggered an international effort to determine reliable data on the stress corrosion cracking behavior of this material in reactor environment. The objective of this work is to develop a methodology to determine the crack growth rate caused by stress corrosion in Inconel alloy 182, using the specimen (Compact Tensile) in simulated PWR environment. (author)

  18. Transient study of a PWR pressurizer

    International Nuclear Information System (INIS)

    Sotoma, H.

    1973-01-01

    An appropriate method for the calculation and transient performance of the pressurizer of a pressurized water reactor is presented. The study shows a digital program of simulation of pressurizer dynamics based on the First Law of Thermodynamic and Laws of Heat and Mass Transfer. The importance of the digital program that was written for a pressurizer of PWR, lies in the fact that, this can be of practical use in the safety analysis of a reactor of Angra dos Reis type with a power of about 500 M We. (author)

  19. Essays of leaching in cemented products containing simulated waste from evaporator concentrated of PWR reactor; Ensaios de lixiviacao em produtos cimentados contendo rejeito simulado de concentrado do evaporador de reator PWR

    Energy Technology Data Exchange (ETDEWEB)

    Haucz, Maria Judite A.; Calabria, Jaqueline A. Almeida; Tello, Cledola Cassia O.; Candido, Francisco Donizete; Seles, Sandro Rogerio Novaes, E-mail: hauczmj@cdtn.b, E-mail: jaalmeida@cdtn.b, E-mail: tellocc@cdtn.b, E-mail: fdc@cdtn.b, E-mail: seless@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-10-26

    This paper evaluated the results from leaching resistance essays of cemented products, prepared from three distinct formulations, containing simulated waste of concentrated from the PWR reactor evaporator. The leaching rate is a parameter of qualification of solidified products containing radioactive waste and is determined in accordance with regulation ISO 6961. This procedure evaluates the capacity of transfer organic and inorganic substances presents in the waste through dissolution in the extractor medium. For the case of radioactive waste it is reached the more retention of contaminants in the cemented product, i.e.the lesser value of lixiviation rate. Therefore, this work evaluated among the proposed formulation that one which attend the criterion established in the regulation CNEN-NN-6.09

  20. Development of spent fuel remote handling technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Sup; Park, B S; Park, Y S; Oh, S C; Kim, S H; Cho, M W; Hong, D H

    1997-12-01

    Since the nation`s policy on spent fuel management is not finalized, the technical items commonly required for safe management and recycling of spent fuel - remote technologies of transportation, inspection, maintenance, and disassembly of spent fuel - are selected and pursued. In this regards, the following R and D activities are carried out : collision free transportation of spent fuel assembly, mechanical disassembly of spent nuclear fuel and graphical simulation of fuel handling / disassembly process. (author). 36 refs., 16 tabs., 77 figs

  1. Multi-recycling of transuranic elements in a PWR assembly with reduced fuel rod diameter

    International Nuclear Information System (INIS)

    Chambers, Alex; Ragusa, Jean C.

    2014-01-01

    Highlights: • Study of multiple recycling passes of transuranic elements: (a) without exceeding 5 wt.% on U-235 enrichment; (b) using PWR fuel assemblies compatible with current reactor core internals. • Isotopic concentrations tend towards an equilibrium after 15 recycle passes, suggesting that thermal recycling may be continued beyond that point. • Radiotoxicity comparisons for once-through UOX, once-recycle MOX-Pu, and multiple recycle passes of MOX-PuNpAm and MOX-PuNpAmCm are presented. - Abstract: This paper examines the multi-recycling of transuranic (TRU) elements (Pu-Np-Am-Cm) in standard Pressurized Water Reactor (PWR) assemblies. The original feed of TRU comes from legacy spent UOX fuel. For all subsequent recycling passes, TRU elements from the previous generation are employed, supplemented by TRU from legacy UOX fuel, as needed. The design criteria include: 235 U enrichment requirements to remain below 5 w/o, TRU loading limits to avoid return to criticality under voided conditions, and assembly power peaking factors. In order to carry out multiple recycling passes within the design envelope, additional neutron moderation is required and achieved by reducing the fuel pellet diameter by about 13%, thus keeping the assembly design compatible with current PWR core internals. TRU transmutation rates and long-term ingestion radiotoxicity results are presented for 15 recycling passes and compared to standard UOX and MOX once-through cycles. The results also show that TRU fuel isotopics and radiotoxicity tend towards an equilibrium, enabling further additional recycling passes

  2. ENVI Model Development for Korean Nuclear Spent Fuel Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sunyoung; Jeong, Yon Hong; Han, Jae-Jun; Lee, Aeri; Hwang, Yong-Soo [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-10-15

    The disposal facility of the spent nuclear fuel will be operated from 2051. This paper presents the ENVI code developed by GoldSim Software to simulate options for managing spent nuclear fuel (SNF) in South Korea. The ENVI is a simulator to allow decision-makers to assist to evaluate the performance for spent nuclear fuel management. The multiple options for managing the spent nuclear fuel including the storage and transportation are investigated into interim storage, permanent disposal in geological repositories and overseas and domestic reprocessing. The ENVI code uses the GoldSim software to simulate the logistics of the associated activities. The result by the ENVI model not only produces the total cost to compare among the multiple options but also predict the sizes and timings of different facilities required. In order to decide the policy for spent nuclear management this purpose of this paper is to draw the optimum management plan to solve the nuclear spent fuel issue in the economical aspects. This paper is focused on the development of the ENVI's logic and calculations to simulate four options(No Reprocessing, Overseas Reprocessing, Domestic Reprocessing, and Overseas and Domestic Reprocessing) for managing the spent nuclear fuel in South Korea. The time history of the spent nuclear fuel produced from both the existing and future NPP's can be predicted, based on the Goldsim software made available very user friendly model. The simulation result will be used to suggest the strategic plans for the spent nuclear fuel management.

  3. ENVI Model Development for Korean Nuclear Spent Fuel Options Analysis

    International Nuclear Information System (INIS)

    Chang, Sunyoung; Jeong, Yon Hong; Han, Jae-Jun; Lee, Aeri; Hwang, Yong-Soo

    2015-01-01

    The disposal facility of the spent nuclear fuel will be operated from 2051. This paper presents the ENVI code developed by GoldSim Software to simulate options for managing spent nuclear fuel (SNF) in South Korea. The ENVI is a simulator to allow decision-makers to assist to evaluate the performance for spent nuclear fuel management. The multiple options for managing the spent nuclear fuel including the storage and transportation are investigated into interim storage, permanent disposal in geological repositories and overseas and domestic reprocessing. The ENVI code uses the GoldSim software to simulate the logistics of the associated activities. The result by the ENVI model not only produces the total cost to compare among the multiple options but also predict the sizes and timings of different facilities required. In order to decide the policy for spent nuclear management this purpose of this paper is to draw the optimum management plan to solve the nuclear spent fuel issue in the economical aspects. This paper is focused on the development of the ENVI's logic and calculations to simulate four options(No Reprocessing, Overseas Reprocessing, Domestic Reprocessing, and Overseas and Domestic Reprocessing) for managing the spent nuclear fuel in South Korea. The time history of the spent nuclear fuel produced from both the existing and future NPP's can be predicted, based on the Goldsim software made available very user friendly model. The simulation result will be used to suggest the strategic plans for the spent nuclear fuel management

  4. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Shin, Young Joon; Cho, S. H.; You, G. S.

    2001-04-01

    Currently, the economic advantage of any known approach to the back end fuel cycle of a nuclear power reactor has not been well established. Thus the long term storage of the spent fuel in a safe manner is one of the important issues to be resolved in countries where the nuclear power has a relatively heavy weight in power production of that country. At KAERI, as a solution to this particular issue midterm storage of the spent fuel, an alternative approach has been developed. This approach includes the decladding and pulverization process of the spent PWR fuel rod, the reducing process from the uranium oxide to a metallic uranium powder using Li metal in a LiCl salt, the continuous casting process of the reduced metal, and the recovery process of Li from mixed salts by the electrolysis. We conducted the laboratory scale tests of each processes for the technical feasibility and determination for the operational conditions for this approach. Also, we performed the theoretical safety analysis and conducted integral tests for the equipment integration through the Mock-up facility with non-radioactive samples. There were no major issues in the approach, however, material incompatibility of the alkaline metal and oxide in a salt at a high temperature and the reactor that contains the salt became a show stopper of the process. Also the difficulty of the clear separation of the salt with metals reduced from the oxide became a major issue

  5. Study of the burning capability of the Los Alamos ATW system

    Energy Technology Data Exchange (ETDEWEB)

    Landeyro, P.A. [ENEA, Roma (Italy); Buccafurni, A.; Orazi, A. [ANPA, Roma (Italy)

    1995-10-01

    The aim of calculations is to evaluate the evolution of the infinate multiplication factor (k{sub inf}) during the irradiation of minor actinides, High Level Waste (HLWL) and Plutonium. The most important results are independently verified with Monte Carlo calculations. The relative importance of the main parameters affecting the k{sub inf} was investigated by performing calculations with several minor actinide and plutonium concentrations as well as different {sup 238}U decontamination factors for HLW. The merit figure value for minor actinide alone, considering a constant neutron flux indicates that the best results are reached for minor actinide concentration equal to PWR spent fuel. The best plutonium burning results are obtained for a concentration (50.23 g/l) equal to the half of PWR spent fuel one. The simulations lead to two different reactor concepts: one for HLW burning and the other for plutonium burning purposes. To burn the HLW the most suitable reactor is an homogeneous one. This kind of reactor can effectively be utilised to burn minor actinide in low concentration (namely the PWR spent fuel). On the other hand an heterogeneous reactor with channels filled by all actinides present in PWR spent fuel with the exclusion of U isotopes with a concentration of 50 g/l can be studied.

  6. Performance of high burned PWR fuel during transient

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Fujishiro, Toshio

    1992-01-01

    In a majority of Japanese light water type commercial powder reactors (LWRs), UO 2 pellet sheathed by zircaloy cladding is used. Licensed discharged burn-up of the PWR fuel rod is going to be increased from 39 MWd/kgU to 48 MWd/kgU. This requests the increased reliability of cladding material as a strong barrier against fission product (FP). A long time usage in the neutron field and in the high temperature coolant will cause the zircaloy hardening and embrittlement. The cladding material is also degraded by waterside corrosion. These degradations are enhanced much by increased burn-up. A increased magnitude of the pellet-cladding mechanical interaction (PCMI) is of importance for increasing the stress of cladding material. In addition, aggressive FPs released from the fuel tends to attack the cladding material to cause stress corrosion cracking (SCC). At the Nuclear Safety Research Reactor (NSRR) in JAERI, 14 x 14 PWR type fuel rods preirradiation up to 42 MWd/kgU was prepared for the transient pulse irradiation under the simulated reactivity initiated accident (RIA) conditions. This will cause a prompt increase of the fuel temperature and stress on the highly burned cladding material. In the present paper, steady-state and transient behavior observed from the tested PWR fuel rod and calculational results obtained from the computer code FPRETAIN will be described. (author)

  7. Criticality calculations of a generic fuel container for fuel assemblies PWR, by means of the code MCNP

    International Nuclear Information System (INIS)

    Vargas E, S.; Esquivel E, J.; Ramirez S, J. R.

    2013-10-01

    The purpose of the concept of burned consideration (Burn-up credit) is determining the capacity of the calculation codes, as well as of the nuclear data associates to predict the isotopic composition and the corresponding neutrons effective multiplication factor in a generic container of spent fuel during some time of relevant storage. The present work has as objective determining this capacity of the calculation code MCNP in the prediction of the neutrons effective multiplication factor for a fuel assemblies arrangement type PWR inside a container of generic storage. The calculations are divided in two parts, the first, in the decay calculations with specified nuclide concentrations by the reference for a pressure water reactor (PWR) with enriched fuel to 4.5% and a discharge burned of 50 GW d/Mtu. The second, in criticality calculations with isotopic compositions dependent of the time for actinides and important fission products, taking 30 time steps, for two actinide groups and fission products. (Author)

  8. Dissolution experiments of commercial PWR (52 MWd/kgU) and BWR (53 MWd/kgU) spent nuclear fuel cladded segments in bicarbonate water under oxidizing conditions. Experimental determination of matrix and instant release fraction

    Energy Technology Data Exchange (ETDEWEB)

    González-Robles, E., E-mail: ernesto.gonzalez-robles@kit.edu [CTM Centre Tecnològic, Plaça de la Ciència 2, 08243 Manresa (Spain); Serrano-Purroy, D. [European Commission - EC, Joint Research Centre (JRC), Institute for Transuranium Elements - ITU, Postfach 2340, D-76125 Karlsruhe (Germany); Sureda, R. [CTM Centre Tecnològic, Plaça de la Ciència 2, 08243 Manresa (Spain); Casas, I. [Chemical Engineering Department, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Pablo, J. de [CTM Centre Tecnològic, Plaça de la Ciència 2, 08243 Manresa (Spain); Chemical Engineering Department, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain)

    2015-10-15

    The denominated instant release fraction (IRF) is considered in performance assessment (PA) exercises to govern the dose that could arise from the repository. A conservative definition of IRF comprises the total inventory of radionuclides located in the gap, fractures, and the grain boundaries and, if present, in the high burn-up structure (HBS). The values calculated from this theoretical approach correspond to an upper limit that likely does not correspond to what it will be expected to be instantaneously released in the real system. Trying to ascertain this IRF from an experimental point of view, static leaching experiments have been carried out with two commercial UO{sub 2} spent nuclear fuels (SNF): one from a pressurized water reactor (PWR), labelled PWR, with an average burn-up (BU) of 52 MWd/kgU and fission gas release (FGR) of 23.1%, and one from a boiling water reactor (BWR), labelled BWR, with an average BU of and 53 MWd/kgU and FGR of 3.9%. One sample of each SNF, consisting of fuel and cladding, has been leached in bicarbonate water during one year under oxidizing conditions at room temperature (25 ± 5)°C. The behaviour of the concentration measured in solution can be divided in two according to the release rate. All radionuclides presented an initial release rate that after some days levels down to a slower second one, which remains constant until the end of the experiment. Cumulative fraction of inventory in aqueous phase (FIAP{sub c}) values has been calculated. Results show faster release in the case of the PWR SNF. In both cases Np, Pu, Am, Cm, Y, Tc, La and Nd dissolve congruently with U, while dissolution of Zr, Ru and Rh is slower. Rb, Sr, Cs and Mo, dissolve faster than U. The IRF of Cs at 10 and 200 days has been calculated, being (3.10 ± 0.62) and (3.66 ± 0.73) for PWR fuel, and (0.35 ± 0.07) and (0.51 ± 0.10) for BWR fuel.

  9. NDA measurements on spent fuel assemblies at Tihange 1 by means of the ION 1/FORK

    International Nuclear Information System (INIS)

    Carchon, R.; Smaers, G.; Verrecchia, G.P.D.; Arlt, R.; Stoyanova, I.; Satinet, J.

    1986-06-01

    This report describes field tests performed at Tihange 1 Nuclear Power Station on PWR spent fuel by means of the ION 1-FORK detector. Two detector systems and three electronics systems were used to investigate the same fuel assemblies with various burn-ups and cooling times. The purpose of the exercise was to test the performance of the instrument for as well inspection purposes as for fuel management. The results are presented and discussed. (Author)

  10. A study on the direct use of spent PWR fuel in CANDU reactors -Fuel management and safety analysis-

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Soo; Lee, Boh Wook; Choi, Hang Bok; Lee, Yung Wook; Cho, Jae Sun; Huh, Chang Wook [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The reference DUPIC fuel composition was determined based on the reactor safety, thermal-hydraulics, economics, and refabrication aspects. The center pin of the reference DUPIC fuel bundle is poisoned with natural dysprosium. The worst LOCA analysis has shown that the transient power and heat deposition of the reference DUPIC core are the same as those of natural uranium CANDU core. The intra-code comparison has shown that the accuracy of DUPIC physics code system is comparable to the current CANDU core design code system. The sensitivity studies were performed for the refuelling schemes of DUPIC core and the 2-bundle shift refuelling scheme was selected as the standard refuelling scheme of the DUPIC core. The application of 4-bundle shift refuelling scheme will be studied in parallel as the auto-refuelling method is improved and the reference core parameters of the heterogeneous DUPIC core are defined. The heterogeneity effect was analyzed in a preliminary fashion using 33 fuel types and the random loading strategy. The refuelling simulation has shown that the DUPIC core satisfies the current CANDU 6 operating limits of channel and bundle power regardless of the fuel composition heterogeneity. The 33 fuel types used in the heterogeneity analysis was determined based on the initial enrichment and discharge burnup of the PWR fuel. 90 figs, 62 tabs, 63 refs. (Author).

  11. Analyses of the transportation of spent research reactor fuel in the United States

    International Nuclear Information System (INIS)

    Cashwell, J.W.; Neuhauser, K.S.

    1989-01-01

    We analyzed the impacts of transportation of research reactor spent fuel from US and foreign reactors for the US Department of Energy's (DOE) Office of Defense Programs. Two separate shipment programs were analyzed. The shipment of research reactor spent fuel from Taiwan to the US (Fuel Movement Program), and the return of research reactor spent fuels of US origin from foreign and domestic reactors (Research Reactor Fuel Return Program). To perform these analyses, a comprehensive methodology for analyzing the probabilities and consequences of transportation in coastal waters and port facilities, handling at the port, and shipment by truck to reprocessing facilities was developed. The Taiwanese fuel consists of low-burnup aluminum-clad metallic uranium research reactor spent fuel; the other fuels are primarily aluminum-clad oxide fuels. The Fuel Movement Program is ongoing, while the Fuel Return Program addresses future shipments over a ten-year period. The operational aspects of the Taiwanese shipments have been uniform, but several possible shipping configurations are possible for the Fuel Return Program shipments. The risks of transporting spent nuclear fuel and other radioactive materials by all modes have been analyzed extensively. Comprehensive assessments, which bound the impacts of spent fuel transport, demonstrate that when shipments are made in compliance with applicable regulations, the risks for all such transport are low. For comparison with previously licensed transport activities and to provide continuity with earlier analyses, the results for shipment of 150-day-old commercial pressurized water reactor (PWR) spent fuel are presented as part of this study

  12. PWR secondary water chemistry guidelines: Revision 3

    International Nuclear Information System (INIS)

    Lurie, S.; Bucci, G.; Johnson, L.; King, M.; Lamanna, L.; Morgan, E.; Bates, J.; Burns, R.; Eaker, R.; Ward, G.; Linnenbom, V.; Millet, P.; Paine, J.P.; Wood, C.J.; Gatten, T.; Meatheany, D.; Seager, J.; Thompson, R.; Brobst, G.; Connor, W.; Lewis, G.; Shirmer, R.; Gillen, J.; Kerns, M.; Jones, V.; Lappegaard, S.; Sawochka, S.; Smith, F.; Spires, D.; Pagan, S.; Gardner, J.; Polidoroff, T.; Lambert, S.; Dahl, B.; Hundley, F.; Miller, B.; Andersson, P.; Briden, D.; Fellers, B.; Harvey, S.; Polchow, J.; Rootham, M.; Fredrichs, T.; Flint, W.

    1993-05-01

    An effective, state-of-the art secondary water chemistry control program is essential to maximize the availability and operating life of major PWR components. Furthermore, the costs related to maintaining secondary water chemistry will likely be less than the repair or replacement of steam generators or large turbine rotors, with resulting outages taken into account. The revised PWR secondary water chemistry guidelines in this report represent the latest field and laboratory data on steam generator corrosion phenomena. This document supersedes Interim PWR Secondary Water Chemistry Recommendations for IGA/SCC Control (EPRI report TR-101230) as well as PWR Secondary Water Chemistry Guidelines--Revision 2 (NP-6239)

  13. Some thermalhydraulics of closure head adapters in a 3 loops PWR

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, F.; Daubert, O.; Hecker, M. [EDF/DER/National Hydraulics Laboratory, Chatou (France)] [and others

    1995-09-01

    In 1993 a R&D action, based on numerical simulations and experiments on PWR`s upper head was initiated. This paper presents the test facility TRAVERSIN (a scale model of a 900 MW PWR adapter) and the calculations performed on the geometry of different upper head sections with the Thermalhydraulic Finite Element Code N3S used for 2D and 3D computations. The paper presents the method followed to bring the adapter and upper head study to a successful conclusion. Two complementary approaches are performed to obtain global results on complete fluid flow in the upper head and local results on the flow around the adapters of closure head. A validation test case of these experimental and numerical tools is also presented.

  14. Preliminary safety analysis of the PWR with accident-tolerant fuels during severe accident conditions

    International Nuclear Information System (INIS)

    Wu, Xiaoli; Li, Wei; Wang, Yang; Zhang, Yapei; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng; Liu, Tong; Deng, Yongjun; Huang, Heng

    2015-01-01

    Highlights: • Analysis of severe accident scenarios for a PWR fueled with ATF system is performed. • A large-break LOCA without ECCS is analyzed for the PWR fueled with ATF system. • Extended SBO cases are discussed for the PWR fueled with ATF system. • The accident-tolerance of ATF system for application in PWR is illustrated. - Abstract: Experience gained in decades of nuclear safety research and previous nuclear accidents direct to the investigation of passive safety system design and accident-tolerant fuel (ATF) system which is now becoming a hot research point in the nuclear energy field. The ATF system is aimed at upgrading safety characteristics of the nuclear fuel and cladding in a reactor core where active cooling has been lost, and is preferable or comparable to the current UO 2 –Zr system when the reactor is in normal operation. By virtue of advanced materials with improved properties, the ATF system will obviously slow down the progression of accidents, allowing wider margin of time for the mitigation measures to work. Specifically, the simulation and analysis of a large break loss of coolant accident (LBLOCA) without ECCS and extended station blackout (SBO) severe accident are performed for a pressurized water reactor (PWR) loaded with ATF candidates, to reflect the accident-tolerance of ATF

  15. Comparison of computational performance of GA and PSO optimization techniques when designing similar systems - Typical PWR core case

    Energy Technology Data Exchange (ETDEWEB)

    Souza Lima, Carlos A. [Instituto de Engenharia Nuclear - Divisao de Reatores/PPGIEN, Rua Helio de Almeida 75, Cidade Universitaria - Ilha do Fundao, P.O. Box: 68550 - Zip Code: 21941-972, Rio de Janeiro (Brazil); Instituto Politecnico, Universidade do Estado do Rio de Janeiro, Pos-Graduacao em Modelagem Computacional, Rua Alberto Rangel - s/n, Vila Nova, Nova Friburgo, Zip Code: 28630-050, Nova Friburgo (Brazil); Lapa, Celso Marcelo F.; Pereira, Claudio Marcio do N.A. [Instituto de Engenharia Nuclear - Divisao de Reatores/PPGIEN, Rua Helio de Almeida 75, Cidade Universitaria - Ilha do Fundao, P.O. Box: 68550 - Zip Code: 21941-972, Rio de Janeiro (Brazil); Instituto Nacional de Ciencia e Tecnologia de Reatores Nucleares Inovadores (INCT) (Brazil); Cunha, Joao J. da [Eletronuclear Eletrobras Termonuclear - Gerencia de Analise de Seguranca Nuclear, Rua da Candelaria, 65, 7 andar. Centro, Zip Code: 20091-906, Rio de Janeiro (Brazil); Alvim, Antonio Carlos M. [Universidade Federal do Rio de Janeiro, COPPE/Nuclear, Cidade Universitaria - Ilha do Fundao s/n, P.O.Box 68509 - Zip Code: 21945-970, Rio de Janeiro (Brazil); Instituto Nacional de Ciencia e Tecnologia de Reatores Nucleares Inovadores (INCT) (Brazil)

    2011-06-15

    Research highlights: > Performance of PSO and GA techniques applied to similar system design. > This work uses ANGRA1 (two loop PWR) core as a prototype. > Results indicate that PSO technique is more adequate than GA to solve this kind of problem. - Abstract: This paper compares the performance of two optimization techniques, particle swarm optimization (PSO) and genetic algorithm (GA) applied to the design a typical reduced scale two loop Pressurized Water Reactor (PWR) core, at full power in single phase forced circulation flow. This comparison aims at analyzing the performance in reaching the global optimum, considering that both heuristics are based on population search methods, that is, methods whose population (candidate solution set) evolve from one generation to the next using a combination of deterministic and probabilistic rules. The simulated PWR, similar to ANGRA 1 power plant, was used as a case example to compare the performance of PSO and GA. Results from simulations indicated that PSO is more adequate to solve this kind of problem.

  16. Stochastic optimization of loading pattern for PWR

    International Nuclear Information System (INIS)

    Smuc, T.; Pevec, D.

    1994-01-01

    The application of stochastic optimization methods in solving in-core fuel management problems is restrained by the need for a large number of proposed solutions loading patterns, if a high quality final solution is wanted. Proposed loading patterns have to be evaluated by core neutronics simulator, which can impose unrealistic computer time requirements. A new loading pattern optimization code Monte Carlo Loading Pattern Search has been developed by coupling the simulated annealing optimization algorithm with a fast one-and-a-half dimensional core depletion simulator. The structure of the optimization method provides more efficient performance and allows the user to empty precious experience in the search process, thus reducing the search space size. Hereinafter, we discuss the characteristics of the method and illustrate them on the results obtained by solving the PWR reload problem. (authors). 7 refs., 1 tab., 1 fig

  17. Influence of fuel composition on the spent fuel verification by Self‑Interrogation Neutron Resonance Densitometry

    International Nuclear Information System (INIS)

    Rossa, Riccardo; Borella, Alessandro; Van der Meer, Klaas; Labeau, Pierre‑Etienne; Pauly, Nicolas

    2015-01-01

    The Self‑Interrogation Neutron Resonance Densitometry (SINRD) is a passive Non‑Destructive Assay (NDA) that is developed for the safeguards verification of spent nuclear fuel. The main goal of SINRD is the direct quantification of 239Pu by estimating the SINRD signature, which is the ratio between the neutron flux in the fast energy region and in the region close to the 0.3 eV resonance of 239 Pu. The resonance region was chosen because the reduction of the neutron flux within 0.2-0.4 eV is due mainly to neutron absorption from 239 Pu, and therefore the SINRD signature can be correlated to the 239Pu mass in the fuel assembly. This work provides an estimate of the influence of 239 Pu and other nuclides on the SINRD signature. This assessment is performed by Monte Carlo simulations by introducing several nuclides in the fuel material composition and by calculating the SINRD signature for each case. The reference spent fuel library developed by SCK CEN was used for the detailed fuel compositions of PWR 17x17 fuel assemblies with different initial enrichments, burnup, and cooling times. The results from the simulations show that the SINRD signature is mainly correlated to the 239 Pu mass, with significant influence by 235 U. Moreover, the SINRD technique is largely insensitive to the cooling time of the assembly, while it is affected by the burnup and initial enrichment of the fuel. Apart from 239 Pu and 235 U, many other nuclides give minor contributions to the SINRD signature, especially at burnup higher than 20 GWd/tHM.

  18. Analysis of dynamic behavior of a PWR utilizing the computer program SARDAN 2

    International Nuclear Information System (INIS)

    Pessanha, J.A.O.

    1982-07-01

    In the design of a PWR nuclear plant it is necessary to verify if the design limits are respected, even under abnormal operation condition. An evolution of SARDAN code, developed to simulate transients in PWR, are presented. The new aspects incorporeted in SARDAN 2 are: the fuel ROD analysis in finite-diference, an open channel model for the critic subchannel analysis and the introduction of a simplified model for the automatic control system. The program has been tested in accident condition II, in special, uncontrolled ROD cluster assembly bank withoraw, dropped full-length assembly group, uncontrolled Boron dilution, and the results obtained were considered satisfactory. (Author) [pt

  19. China's spent fuel treatment: The present status and prospects

    International Nuclear Information System (INIS)

    Jiang Yunqing

    1999-01-01

    In the mid 1980s, China launched the development of nuclear power dominated by PWRs and opted for the closed fuel cycle strategy. On the basis of irradiated fuel reprocessing for defence purpose, an R and D programme for civil reprocessing has been implemented. Currently, China's spent fuel arising is limited but its amount will sharply increase with nuclear power expansion early next century. Spent fuel stored at reactor site for at least 5 years will be transported either by a combination of sea and rail or by road directly to the Lanzhou Nuclear Fuel Complex. A wet centralized storage facility with a 550 tHM capacity has been built for interim storage of spent fuel. Also, a multi-purpose reprocessing pilot plant with a maximum throughput of 400 kg HM/d is now under construction and will be put into commissioning by the turn of the century. A large-scale commercial reprocessing plant, perhaps with a capacity of 800 tHM/a, will be set up around 2020. Recovered uranium and plutonium from reprocessing will go to a demonstration plant and be manufactured into MOX fuel for FBR and PWR. The defence radwaste from reprocessing is at present being conditioned into the proper forms and will be disposed in appropriate repositories. All expertise and experience gained from these practices will be utilized in the future civil radwaste management. (author)

  20. Radioactive characteristics of spent fuels and reprocessing products in thorium fueled alternative cycles

    International Nuclear Information System (INIS)

    Maeda, Mitsuru

    1978-09-01

    In order to provide one fundamental material for the evaluation of Th cycle, compositions of the spent fuels were calculated with the ORIGEN code on following fuel cycles: (1) PWR fueled with Th- enriched U, (2) PWR fueled with Th-denatured U, (3) CANDU fueled with Th-enriched U and (4) HTGR fueled with Th-enriched U. Using these data, product specifications on radioactivity for their reprocessing were calculated, based on a criterion that radioactivities due to foreign elements do not exceed those inherent in nuclear fuel elements, due to 232 U in bred U or 228 Th in recovered Th, respectively. Conclusions are as the following: (1) Because of very high contents of 232 U and 228 Th in the Th cycle fuels from water moderated reactors, especially from PWR, required decontamination factors for their reprocessing will be smaller by a factor of 10 3 to 10 4 , compared with those from U-Pu fueled LWR cycle. (2) These less stringent product specifications on the radioactivity of bred U and recovered Th will justify introduction of some low decontaminating process, with additional advantage of increased proliferation resistance. (3) Decontamination factors required for HTGR fuel will be 10 to 30 times higher than for the other fuels, because of less 232 U and 228 Th generation, and higher burn-up in the fuel. (author)

  1. Spent fuel dry storage technology development: thermal evaluation of three adjacent drywells (each containing a 0.6 kW PWR spent fuel assembly)

    International Nuclear Information System (INIS)

    Unterzuber, R.; Hanson, J.P.

    1981-09-01

    A spent fuel Adjacent Drywell Test was conducted at the Engine-Maintenance, Assembly and Disassembly (E-MAD) facility on the Nevada Test Site utilizing three nearly identical pressurized water reactor spent fuel assemblies each having a decay heat level of approximately 0.6 kW. Each fuel assembly was encapsulated inside the E-MAD Hot Bay and placed in an instrumented near-surface drywell storage cell for thermal testing. Each fuel assembly was sealed inside a 14-in. diam, 168-in.-long stainless steel canister and attached to a concrete-filled, 20-in.-diam, 34-in.-long, shield plug. The canister assembly was then placed in a carbon steel drywell liner which had been grouted into a hole drilled in the soil adjacent to E-MAD. The three drywells were located 25 feet apart in a linear array. Thermocouples, provided to measure canister, liner and soil temperatures, were inserted into tubes on the outside of the canister and drywell liner and were attached to plastic pipes which were grouted into holes in the soil. Temperatures from the three drywells and the adjacent soil were recorded throughout the Adjacent Drywell Test. Drywell thermal data showed virtually no thermal interaction between adjacent drywells. However, peak temperatures reached by the three drywells did show a fairly significant difference. Peak canister and drywell liner temperatures were reached in August 1981 for all three drywells. The two previously unused drywells responded similarly with peak canister and liner temperatures reaching 199 0 F and 158 0 F, respectively. Comparable peak temperatures for the third drywell which had previously contained spent fuel for nearly 21 months prior to the Adjacent Drywell Test reached 210 0 F for the canister and 169 0 F for the drywell liner. This difference is attributed to a decrease in soil thermal conductivity caused by the dryout of soil around the drywell used for previous spent fuel testing

  2. Improved Retrieval Technique of pin-wise composition for spent fuel recycling

    Energy Technology Data Exchange (ETDEWEB)

    Park, YunSeo; Kim, Myung Hyun [Kyung Hee University , Yongin (Korea, Republic of)

    2016-10-15

    New reutilization method which does not require fabrication processing was suggested and showed feasibility by Dr. Aung Tharn Daing. This new reutilization method is predict spent nuclear fuel pin composition, reconstruct new fuel assembly by spent nuclear pin, and directly reutilize in same PWR core. There are some limitation to predict spent nuclear fuel pin composition on his methodology such as spatial effect was not considered enough. This research suggests improving Dr. Aung Tharn Daing's retrieval technique of pin-wise composition. This new method classify fuel pin groups by its location effect in fuel assembly. Most of fuel pin composition along to burnup in fuel assembly is not highly dependent on location. However, compositions of few fuel pins where near water hole and corner of fuel assembly are quite different in same burnup. Required number of nuclide table is slightly increased from 3 to 6 for one fuel assembly with this new method. Despite of this little change, prediction of the pin-wise composition became more accurate. This new method guarantees two advantages than previous retrieving technique. First, accurate pin-wise isotope prediction is possible by considering location effect in a fuel assembly. Second, it requires much less nuclide tables than using full single assembly database. Retrieving technique of pin-wise composition can be applied on spent fuel management field useful. This technique can be used on direct use of spent fuel such as Dr. Aung Tharn Daing showed or applied on pin-wise waste management instead of conventional assembly-wise waste management.

  3. Status of work on the final repository concept concerning direct disposal of spent fuel rods in fuel rod casks (BSK)

    International Nuclear Information System (INIS)

    Filbert, W.; Wehrmann, J.; Bollingerfehr, W.; Graf, R.; Fopp, S.

    2008-01-01

    The reference concept in Germany on direct final storage of spent fuel rods is the burial of POLLUX containers in the final repository salt dome. The POLLUX container is self-shielded. The final storage concept also includes un-shielded borehole storage of high-level waste and packages of compacted waste. GNS has developed a spent fuel container (BSK-3) for unshielded borehole storage with a mass of 5.2 tons that can carry the fuel rods of three PWR reactors of 9 BWR reactors. The advantages of BSK storage include space saving, faster storage processes, less requirements concerning technical barriers, cost savings for self-shielded casks.

  4. Evaluation of fission product worth margins in PWR spent nuclear fuel burnup credit calculations

    International Nuclear Information System (INIS)

    Blomquist, R.N.; Finck, P.J.; Jammes, C.; Stenberg, C.G.

    1999-01-01

    Current criticality safety calculations for the transportation of irradiated LWR fuel make the very conservative assumption that the fuel is fresh. This results in a very substantial overprediction of the actual k eff of the transportation casks; in certain cases, this decreases the amount of spent fuel which can be loaded in a cask, and increases the cost of transporting the spent fuel to the repository. Accounting for the change of reactivity due to fuel depletion is usually referred to as ''burnup credit.'' The US DOE is currently funding a program aimed at establishing an actinide only burnup credit methodology (in this case, the calculated reactivity takes into account the buildup or depletion of a limited number of actinides). This work is undergoing NRC review. While this methodology is being validated on a significant experimental basis, it implicitly relies on additional margins: in particular, the absorption of neutrons by certain actinides and by all fission products is not taken into account. This provides an important additional margin and helps guarantee that the methodology is conservative provided these neglected absorption are known with reasonable accuracy. This report establishes the accuracy of fission product absorption rate calculations: (1) the analysis of European fission product worth experiments demonstrates that fission product cross-sections available in the US provide very good predictions of fission product worth; (2) this is confirmed by a direct comparison of European and US cross section evaluations; (3) accuracy of Spent Nuclear Fuel (SNF) fission product content predictions is established in a recent ORNL report where several SNF isotopic assays are analyzed; and (4) these data are then combined to establish in a conservative manner the fraction of the predicted total fission product absorption which can be guaranteed based on available experimental data

  5. Reactor control system. PWR

    International Nuclear Information System (INIS)

    2009-01-01

    At present, 23 units of PWR type reactors have been operated in Japan since the start of Mihama Unit 1 operation in 1970 and various improvements have been made to upgrade operability of power stations as well as reliability and safety of power plants. As the share of nuclear power increases, further improvements of operating performance such as load following capability will be requested for power stations with more reliable and safer operation. This article outlined the reactor control system of PWR type reactors and described the control performance of power plants realized with those systems. The PWR control system is characterized that the turbine power is automatic or manually controlled with request of the electric power system and then the nuclear power is followingly controlled with the change of core reactivity. The system mainly consists of reactor automatic control system (control rod control system), pressurizer pressure control system, pressurizer water level control system, steam generator water level control system and turbine bypass control system. (T. Tanaka)

  6. Spent fuel shipping cask accident evaluation

    International Nuclear Information System (INIS)

    Fields, S.R.

    1975-12-01

    Mathematical models have been developed to simulate the dynamic behavior, following a hypothetical accident and fire, of typical casks designed for the rail shipment of spent fuel from nuclear reactors, and to determine the extent of radioactive releases under postulated conditions. The casks modeled were the IF-300, designed by the General Electric Company for the shipment of spent LWR fuel, and a cask designed by the Aerojet Manufacturing Company for the shipment of spent LMFBR fuel

  7. Multi-recycling of transuranic elements in a PWR assembly with reduced fuel rod diameter

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, Alex, E-mail: acchamb@gmail.com; Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu

    2014-04-01

    Highlights: • Study of multiple recycling passes of transuranic elements: (a) without exceeding 5 wt.% on U-235 enrichment; (b) using PWR fuel assemblies compatible with current reactor core internals. • Isotopic concentrations tend towards an equilibrium after 15 recycle passes, suggesting that thermal recycling may be continued beyond that point. • Radiotoxicity comparisons for once-through UOX, once-recycle MOX-Pu, and multiple recycle passes of MOX-PuNpAm and MOX-PuNpAmCm are presented. - Abstract: This paper examines the multi-recycling of transuranic (TRU) elements (Pu-Np-Am-Cm) in standard Pressurized Water Reactor (PWR) assemblies. The original feed of TRU comes from legacy spent UOX fuel. For all subsequent recycling passes, TRU elements from the previous generation are employed, supplemented by TRU from legacy UOX fuel, as needed. The design criteria include: {sup 235}U enrichment requirements to remain below 5 w/o, TRU loading limits to avoid return to criticality under voided conditions, and assembly power peaking factors. In order to carry out multiple recycling passes within the design envelope, additional neutron moderation is required and achieved by reducing the fuel pellet diameter by about 13%, thus keeping the assembly design compatible with current PWR core internals. TRU transmutation rates and long-term ingestion radiotoxicity results are presented for 15 recycling passes and compared to standard UOX and MOX once-through cycles. The results also show that TRU fuel isotopics and radiotoxicity tend towards an equilibrium, enabling further additional recycling passes.

  8. The evaluation of minimum cooling period for loading of PWR spent nuclear fuel of a dual purpose metal cask

    Energy Technology Data Exchange (ETDEWEB)

    Dho, Ho Seog; Kim, Tae Man; Cho, Chun Hyung [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-12-15

    Recently, because the wet pool storage facilities of NPPs in Korea has become saturated, there has been much active R and D on an interim dry storage system using a transportation and storage cask. Generally, the shielding evaluation for the design of a spent fuel transportation and storage cask is performed by the design basis fuel, which selects the most conservative fuel among the fuels to be loaded into the cask. However, the loading of actual spent fuel into the transportation metal cask is not limited to the design basis fuel used in the shielding evaluation; the loading feasibility of actual spent fuel is determined by the shielding evaluation that considers the characteristics of the initial enrichment, the maximum burnup and the minimum cooling period. This study describes a shielding analysis method for determining the minimum cooling period of spent fuel that meets the domestic transportation standard of the dual purpose metal cask. In particular, the spent fuel of 3.0-4.5wt% initial enrichment, which has a large amount of release, was evaluated by segmented shielding calculations for efficient improvement of the results. The shielding evaluation revealed that about 81% of generated spent fuel from the domestic nuclear power plants until 2008 could be transported by the dual purpose metal cask. The results of this study will be helpful in establishing a technical basis for developing operating procedures for transportation of the dual purpose metal cask.

  9. The evaluation of minimum cooling period for loading of PWR spent nuclear fuel of a dual purpose metal cask

    International Nuclear Information System (INIS)

    Dho, Ho Seog; Kim, Tae Man; Cho, Chun Hyung

    2016-01-01

    Recently, because the wet pool storage facilities of NPPs in Korea has become saturated, there has been much active R and D on an interim dry storage system using a transportation and storage cask. Generally, the shielding evaluation for the design of a spent fuel transportation and storage cask is performed by the design basis fuel, which selects the most conservative fuel among the fuels to be loaded into the cask. However, the loading of actual spent fuel into the transportation metal cask is not limited to the design basis fuel used in the shielding evaluation; the loading feasibility of actual spent fuel is determined by the shielding evaluation that considers the characteristics of the initial enrichment, the maximum burnup and the minimum cooling period. This study describes a shielding analysis method for determining the minimum cooling period of spent fuel that meets the domestic transportation standard of the dual purpose metal cask. In particular, the spent fuel of 3.0-4.5wt% initial enrichment, which has a large amount of release, was evaluated by segmented shielding calculations for efficient improvement of the results. The shielding evaluation revealed that about 81% of generated spent fuel from the domestic nuclear power plants until 2008 could be transported by the dual purpose metal cask. The results of this study will be helpful in establishing a technical basis for developing operating procedures for transportation of the dual purpose metal cask

  10. Sensitivity Analysis of Depletion Parameters for Heat Load Evaluation of PWR Spent Fuel Storage Pool

    International Nuclear Information System (INIS)

    Kim, In Young; Lee, Un Chul

    2011-01-01

    As necessity of safety re-evaluation for spent fuel storage facility has emphasized after the Fukushima accident, accuracy improvement of heat load evaluation has become more important to acquire reliable thermal-hydraulic evaluation results. As groundwork, parametric and sensitivity analyses of various storage conditions for Kori Unit 4 spent fuel storage pool and spent fuel depletion parameters such as axial burnup effect, operation history, and specific heat are conducted using ORIGEN2 code. According to heat load evaluation and parametric sensitivity analyses, decay heat of last discharged fuel comprises maximum 80.42% of total heat load of storage facility and there is a negative correlation between effect of depletion parameters and cooling period. It is determined that specific heat is most influential parameter and operation history is secondly influential parameter. And decay heat of just discharged fuel is varied from 0.34 to 1.66 times of average value and decay heat of 1 year cooled fuel is varied from 0.55 to 1.37 times of average value in accordance with change of specific power. Namely depletion parameters can cause large variation in decay heat calculation of short-term cooled fuel. Therefore application of real operation data instead of user selection value is needed to improve evaluation accuracy. It is expected that these results could be used to improve accuracy of heat load assessment and evaluate uncertainty of calculated heat load.

  11. Simulation of steam generator plugging tubes in a PWR to analyze the operating impact

    Energy Technology Data Exchange (ETDEWEB)

    Pla, Patricia, E-mail: patricia.pla-freixa@ec.europa.eu [Nuclear Reactor Safety Assessment Unit, Institute for Energy and Transport, Joint Research Centre (JRC) of the European Commission, Petten (Netherlands); Reventos, Francesc, E-mail: francesc.reventos@upc.edu [Technical University of Catalonia (UPC), Barcelona (Spain); Martin Ramos, Manuel, E-mail: manuel.martin-ramos@ec.europa.eu [Nuclear Safety and Security Coordination Unit, Policy Support Coordination, Joint Research Centre of the European Commission, Brussels (Belgium); Sol, Ismael, E-mail: isol@anacnv.com [Asociación Nuclear Ascó-Vandellós-II (ANAV), Tarragona (Spain); Strucic, Miodrag, E-mail: miodrag.strucic@ec.europa.eu [Nuclear Reactor Safety Assessment Unit, Institute for Energy and Transport, Joint Research Centre (JRC) of the European Commission, Petten (Netherlands)

    2016-08-15

    Highlights: • Plugging a fraction of the SG tubes does not affect power output of the plant. • There is a limit to SG plugging in the range of 10–15%. • The rupture of a SG tube in a 12% plugged SG has shown no significant differences in operator actions. • A SBLOCA in a 12% plugged SG has shown no significant differences in operator actions. - Abstract: A number of nuclear power plants (NPPs) with pressurized water reactors (PWR) in the world have replaced their steam generators (SG) due to degradation of the SG tubes caused by different problems. Several methods were attempted to correct the defects of the tubes, but eventually the only permanent solution was to plug them. The consequences of plugging the tubes are the decrease of heat transfer surface, the reduction of the flow area and subsequent reduction of the primary system mass flow and for a fraction of plugged tubes higher than a given value, the reduction of reactor output and economic losses. The objective of this paper is to analyze whether steam generator tube plugging has an impact in the effectiveness of accident management actions. An analysis with Relap5 Mod 3.3 patch03 for the Spanish reactor Ascó-2, a 3-loop 2940.6 MWth Westinghouse PWR, in which plugging of steam generator tubes are simulated, is presented in order to find the limit for the adequate operation of the plant. Several steady state calculations were performed with different fractions of plugged SG tubes, by modeling the reduction of the primary to secondary heat transfer surface and the reduction of the primary coolant mass flow area in the tubes as well. The results of the analysis yield that plugging 12% of the SG tubes is around the limit for optimal reactor operation. To complete the study two events, in which the steam generators are used to cooldown the plant, were simulated to find out if the plugging of SGs tubes could influence the efficiency of the operator actions described in the emergency operating

  12. Material property changes of stainless steels under PWR irradiation

    International Nuclear Information System (INIS)

    Fukuya, Koji; Nishioka, Hiromasa; Fujii, Katsuhiko; Kamaya, Masayuki; Miura, Terumitsu; Torimaru, Tadahiko

    2009-01-01

    Structural integrity of core structural materials is one of the key issues for long and safe operation of pressurized water reactors. The stainless steel components are exposed to neutron irradiation and high-temperature water, which cause significant property changes and irradiation assisted stress corrosion cracking (IASCC) in some cases. Understanding of irradiation induced material property changes is essential to predict integrity of core components. In the present study, microstructure and microchemistry, mechanical properties, and IASCC behavior were examined in 316 stainless steels irradiated to 1 - 73 dpa in a PWR. Dose-dependent changes of dislocation loops and cavities, grain boundary segregation, tensile properties and fracture mode, deformation behavior, and their interrelation were discussed. Tensile properties and deformation behavior were well coincident with microstructural changes. IASCC susceptibility under slow strain rate tensile tests, IASCC initiation under constant load tests in simulated PWR primary water, and their relationship to material changes were discussed. (author)

  13. RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR Simulation with RELAP-7

    International Nuclear Information System (INIS)

    Andrs, David; Berry, Ray; Gaston, Derek; Martineau, Richard; Peterson, John; Zhang, Hongbin; Zhao, Haihua; Zou, Ling

    2012-01-01

    The document contains the simulation results of a steady state model PWR problem with the RELAP-7 code. The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on INL's modern scientific software development framework - MOOSE (Multi-Physics Object-Oriented Simulation Environment). This report summarizes the initial results of simulating a model steady-state single phase PWR problem using the current version of the RELAP-7 code. The major purpose of this demonstration simulation is to show that RELAP-7 code can be rapidly developed to simulate single-phase reactor problems. RELAP-7 is a new project started on October 1st, 2011. It will become the main reactor systems simulation toolkit for RISMC (Risk Informed Safety Margin Characterization) and the next generation tool in the RELAP reactor safety/systems analysis application series (the replacement for RELAP5). The key to the success of RELAP-7 is the simultaneous advancement of physical models, numerical methods, and software design while maintaining a solid user perspective. Physical models include both PDEs (Partial Differential Equations) and ODEs (Ordinary Differential Equations) and experimental based closure models. RELAP-7 will eventually utilize well posed governing equations for multiphase flow, which can be strictly verified. Closure models used in RELAP5 and newly developed models will be reviewed and selected to reflect the progress made during the past three decades. RELAP-7 uses modern numerical methods, which allow implicit time integration, higher order schemes in both time and space, and strongly coupled multi-physics simulations. RELAP-7 is written with object oriented programming language C++. Its development follows modern software design paradigms. The code is easy to read, develop, maintain, and couple with other codes. Most importantly, the modern software design allows the RELAP-7 code to

  14. Analyses of the transportation of spent research reactor fuel in the United States

    International Nuclear Information System (INIS)

    Cashwell, J.W.; Neuhauser, K.S.

    1989-01-01

    The Transportation Technology Center at Sandia National Laboratories has analyzed the impacts of transportation of research reactor spent fuel from US and foreign reactors for the US Department of Energy (DOE) Office of Defense Programs. This effort represents the first comprehensive analytical evaluation of the risks of transporting high-, medium-, and low-enriched uranium spent research reactor fuel by both sea and land. Two separate shipment programs have been analyzed: the shipment of research reactor spent fuel from Taiwan to the US (Fuel Movement Program), and the return of research reactor spent fuels of US origin from foreign and domestic reactors (Research Reactor Fuel Return Program). In order to perform these analyses, a comprehensive methodology for analyzing the probabilities and consequences of transportation in coastal waters and port facilities, handling at the port, and shipment by truck to reprocessing facilities was developed. The Taiwanese fuel consists of low-burnup aluminum-clad metallic uranium research reactor spent fuel; the other fuels are primarily aluminum-clad oxide fuels. The Fuel Movement Program is ongoing, while the Fuel Return Program addresses future shipments over a ten-year period. The operational aspects of the Taiwanese shipments have been uniform, but several possible shipping configurations are possible for the Fuel Return Program shipments. Comprehensive assessments, which bound the impacts of spent fuel transport, demonstrate that when shipments are made in compliance with applicable regulations, the risks for all such transport are low. For comparison with previously licensed transport activities and to provide continuity with earlier analyses, the results for shipment of 150-day-old commercial pressurized water reactor (PWR) spent fuel are presented as part of this study

  15. Radiation risk analysis of tritium in PWR plants

    International Nuclear Information System (INIS)

    Yang Maochun; Wang Shimin

    1999-03-01

    Tritium is a common radionuclide in PWR nuclear power plant. In the normal operation conditions, its radiation risk to plant workers is the internal radiation exposure when tritium existing in air as HTO (hydrogen tritium oxide) is breathed in. As the HTO has the same physical and chemical characteristics as water, the main way that HTO entering the air is by evaporation. There are few opening systems in Nuclear Power Plant, the radiation risk of tritium mainly exists near the area of spent fuel pit and reactor pit. The highest possible radiation risk it may cause--the maximum concentration in air is the level when equilibrium is established between water and air phases for tritium. The author analyzed the relationship among the concentration of HTO in water, in air and the water temperature when equilibrium is established, the equilibrated HTO concentration in air increases with HTO concentration in water and water temperature. The analysis revealed that at 30 degree C, the equilibrated HTO concentration in air might reach 1 DAC (derived air concentration) when the HTO concentration in water is 28 GBq/m 3 . Owing to the operation of plant ventilation systems and the existence of moisture in the input air of the ventilation, the practical tritium concentration in air is much lower than its equilibrated levels, the radiation risk of tritium in PWR plant is quite limited. In 1997, Daya Bay Nuclear Power Plant's practical monitoring result of the HTO concentration in the air of the nuclear island and the urine of workers supported this conclusion. Based on this analysis, some suggestions to the reduction of tritium radiation risk were made

  16. Disposal Of Spent Fuel In Salt Using Borehole Technology: BSK 3 Concept

    Energy Technology Data Exchange (ETDEWEB)

    Fopp, Stefan; Graf, Reinhold [GNS Gesellschaft fuer Nuklear-Service mbH, Hollestrasse 7A, D-45127 Essen (Germany); Filbert, Wolfgang [DBE TECHNOLOGY GmbH, Eschenstrasse 55, D-31224 Peine (Germany)

    2008-07-01

    The BSK 3 concept was developed for the direct disposal of spent fuel in rock salt. It is based on the conditioning of fuel assemblies and inserting fuel rods into a steel canister which can be placed in vertical boreholes. The BSK 3 canister is suitable for spent fuel rods from 3 PWR or 9 BWR fuel assemblies. The emplacement system developed for the handling and disposal of BSK 3 canisters comprises a transfer cask which provides appropriate shielding during the transport and emplacement process, a transport cart, and an emplacement device. Using the emplacement device the transfer cask will be positioned onto the top of the borehole lock. The presentation describes the development and the design of the transfer cask and the borehole lock. A technically feasible and safe design for the transfer cask and the borehole lock was found regarding the existing safety requirements for radiation shielding, heat dissipation and handling procedure. (authors)

  17. An investigation into the efficiency of ion-exchange membranes in simulated PWR coolants

    International Nuclear Information System (INIS)

    Clune, T.

    1980-11-01

    This report describes an investigation of the retention efficiency of cation-exchange membranes for magnesium, calcium and nickel ions in PWR-coolant type solutions containing 2 ppm lithium (as lithium hydroxide) and 1000 ppm boron (as boric acid). By analysis of the membranes themselves or of the effluent, the retention characteristics of the membranes in various experimental conditions have been examined. (author)

  18. Spent fuel dry storage technology development: report of consolidated thermal data

    International Nuclear Information System (INIS)

    Lundberg, W.L.

    1980-09-01

    Experiments indicate that PWR fuel with decay heat levels in excess of 2 kW could be stored in isolated drywells in Nevada Test Site soil without exceeding the current fuel clad temperature limit (715 0 F). The document also assesses the ability to thermally analyze near-surface drywells and above-ground storage casks and it identifies analysis development areas. It is concluded that the required analysis procedures, computer programs, etc., are already developed and available. Analysis uncertainties, however, still exist but they lie mainly in the numerical input area. Soil thermal conductivity, of primary importance in analysis, requires additional study to better understand the soil drying mechanism and effects of moisture. Work is also required to develop an internal canister subchannel model. In addition, the ability of the overall drywell thermal model to accommodate thermal interaction effects between adjacent drywells should be confirmed. In the experimental area, tests with two BWR spent fuel assemblies encapsulated in a single canister should be performed to establish the fuel clad and canister temperature relationship. This is needed to supplement similar experimental work which has already been completed with PWR fuel

  19. Modeling of PWR fuel at extended burnup

    International Nuclear Information System (INIS)

    Dias, Raphael Mejias

    2016-01-01

    This work studies the modifications implemented over successive versions in the empirical models of the computer program FRAPCON used to simulate the steady state irradiation performance of Pressurized Water Reactor (PWR) fuel rods under high burnup condition. In the study, the empirical models present in FRAPCON official documentation were analyzed. A literature study was conducted on the effects of high burnup in nuclear fuels and to improve the understanding of the models used by FRAPCON program in these conditions. A steady state fuel performance analysis was conducted for a typical PWR fuel rod using FRAPCON program versions 3.3, 3.4, and 3.5. The results presented by the different versions of the program were compared in order to verify the impact of model changes in the output parameters of the program. It was observed that the changes brought significant differences in the results of the fuel rod thermal and mechanical parameters, especially when they evolved from FRAPCON-3.3 version to FRAPCON-3.5 version. Lower temperatures, lower cladding stress and strain, lower cladding oxide layer thickness were obtained in the fuel rod analyzed with the FRAPCON-3.5 version. (author)

  20. Radionuclide release from PWR fuels in a reference tuff repository groundwater

    International Nuclear Information System (INIS)

    Wilson, C.N.; Oversby, V.M.

    1985-03-01

    The Nevada Nuclear Waste Storage Investigations Project (NNWSI) is studying the suitability of the welded devitrified Topopah Spring tuff at Yucca Mountain, Nye County, Nevada, for potential use as a high-level nuclear waste repository. In support of the Waste Package task of NNWSI, tests have been conducted under ambient air environment to measure radionuclide release from two pressurized water reactor (PWR) spent fuels in water obtained from the J-13 well near the Yucca Mountain site. Four specimen types, representing a range of fuel physical conditions that may exist in a failed waste canister containing a limited amount of water were tested. The specimen types were: fuel rod sections split open to expose bare fuel particles; rod sections with water-tight end fittings with a 2.5-cm long by 150-μm wide slit through the cladding; rod sections with water-tight end fittings and two 200-μm-diameter holes through the cladding; and undefected rod segments with water-tight end fittings. Radionuclide release results from the first 223-day test runs on H.B. Robinson spent fuel specimens in J-13 water are reported and compared to results from a previous test series in which similar Turkey Point reactor spent fuel specimens were tested on deionized water. Selected initial results are also given for Turkey Point fuel specimens tested on J-13 water. Results suggest that the actinides Pu, Am, Cm and Np are released congruently with U as the UO 2 spent fuel matrix dissolves. Fractional release of 137 Cs and 99 Tc was greater than that measured for the actinides. Generally, lower radionuclide releases were measured for the H.B. Robinson fuel in J-13 water than for Turkey Point Fuel in deionized water. 8 references, 7 figures, 9 tables

  1. The hold-time effects on the low cycle fatigue behaviors of 316 SS in PWR primary environment

    International Nuclear Information System (INIS)

    Lee, Junho; Hong, Jong-Dae; Seo, Myung-Gyu; Jang, Changheui

    2015-01-01

    The effects of the environments on fatigue life of the structural materials used in nuclear power plants (NPPs) were known to be significant according to the extensive test results. Accordingly, the fatigue analysis procedures and the design fatigue curves were proposed in the ASME Code. However, the implication that the existing ASME design fatigue curves did not sufficiently reflect the effect of the operation conditions of nuclear power plants emerged as an issue to be resolved. One of possible reasons to explain the discrepancy is that the laboratory test conditions do not represent the actual plant transients. Therefore, it is necessary to clarify the effects of light water environments on fatigue life while considering more plant-relevant transient conditions such as hold-time. For this reason, this study will focus on the fatigue life of type 316 stainless steel (SS) in the pressurized water reactor (PWR) environments while incorporating the hold-time during the low cycle fatigue (LCF) test in simulated PWR environments. The objective of this study is to characterize the effects of hold-time on the fatigue life of austenitic stainless steels in PWR environments in comparison with the existing fixed strain rate results. Low cycle fatigue life tests were conducted for the type 316 SS in 310 .deg. C air and simulated PWR environments. To simulate the heat-up and cool-down transient, sub-peak strain holding during the down-hill of strain amplitude was chosen. Currently, LCF tests with 60 seconds holding are in progress. The 0.4, 0.04%/s strain rate condition test results are presented in this study, which shows somewhat longer fatigue life

  2. The hold-time effects on the low cycle fatigue behaviors of 316 SS in PWR primary environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Junho; Hong, Jong-Dae; Seo, Myung-Gyu; Jang, Changheui [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The effects of the environments on fatigue life of the structural materials used in nuclear power plants (NPPs) were known to be significant according to the extensive test results. Accordingly, the fatigue analysis procedures and the design fatigue curves were proposed in the ASME Code. However, the implication that the existing ASME design fatigue curves did not sufficiently reflect the effect of the operation conditions of nuclear power plants emerged as an issue to be resolved. One of possible reasons to explain the discrepancy is that the laboratory test conditions do not represent the actual plant transients. Therefore, it is necessary to clarify the effects of light water environments on fatigue life while considering more plant-relevant transient conditions such as hold-time. For this reason, this study will focus on the fatigue life of type 316 stainless steel (SS) in the pressurized water reactor (PWR) environments while incorporating the hold-time during the low cycle fatigue (LCF) test in simulated PWR environments. The objective of this study is to characterize the effects of hold-time on the fatigue life of austenitic stainless steels in PWR environments in comparison with the existing fixed strain rate results. Low cycle fatigue life tests were conducted for the type 316 SS in 310 .deg. C air and simulated PWR environments. To simulate the heat-up and cool-down transient, sub-peak strain holding during the down-hill of strain amplitude was chosen. Currently, LCF tests with 60 seconds holding are in progress. The 0.4, 0.04%/s strain rate condition test results are presented in this study, which shows somewhat longer fatigue life.

  3. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Yoon, J. S.; Hong, H. D.; Kim, S. H.

    2004-02-01

    In this research, the remote handling technology is developed for the advanced spent fuel conditioning process which gives a possible solution to deal with the rapidly increasing spent fuels. In detail, a fuel rod slitting device is developed for the decladding of the spent fuel. A series of experiments has been performed to find out the optimal condition of the spent fuel voloxidation which converts the UO 2 pellet into U 3 O 8 powder. The design requirements of the ACP equipment for hot test is established by analysing the modular requirement, radiation hardening and thermal protection of the process equipment, etc. The prototype of the servo manipulator is developed. The manipulator has an excellent performance in terms of the payload to weight ratio that is 30 % higher than that of existing manipulators. To provide reliability and safety of the ACP, the 3 dimensional graphic simulator is developed. Using the simulator the remote handling operation is simulated and as a result, the optimal layout of ACP is obtained. The supervisory control system is designed to control and monitor the several different unit processes. Also the failure monitoring system is developed to detect the possible accidents of the reduction reactor

  4. PWR and BWR light water reactor systems in the USA and their fuel cycle

    International Nuclear Information System (INIS)

    Crawford, W.D.

    1977-01-01

    Light water reactor operating experience in the USA can be considered to date from the choice of the pressurized water reactor (PWR) for use in the naval reactor program and the subsequent construction and operation of the nuclear power plant at Shippingport, Pennsylvania in 1957. The development of the boiling water reactor (BWR) in 1954 and its selection for the plant at Dresden, Illinois in 1959 established this concept as the other major reactor type in the US nuclear power program. The subsequent growth profile is presented, leading to 31 PWR's and 23 BWR's currently in operation as well as to plants in the planning and construction phase. A significant operating record has been accumulated concerning the availability of each of these reactor types as determined by: (1) outage for refueling, (2) component reliability, (3) maintenance requirements, and (4) retrofitting required by government regulation. In addition, the use and performance of BWR's and PWR's in meeting system load requirements is discussed. The growing concern regarding possible terrorist activities and other potential threats has resulted in systems and procedures designed to assure effective safeguards at nuclear power installations. Safeguards measures currently in place are described. Environmental effects of operating plants are subject to both radiological and non-radiological monitoring to verify that results are within the limits established in the licensing process. The operating results achieved and the types of modifications that have been required of operating plants by the Nuclear Regulatory Commission are reviewed. The PWR and BWR Fuel Cycle is examined in terms of: (1) fuel burnup experience and prospects for improvement, (2) the status and outlook for natural uranium resources, (3) enrichment capacity, (4) reprocessing and recycle, and the interrelationships among the latter three factors. High level waste management currently involving on-site storage of spent fuel is discussed

  5. Activity transport models for PWR primary circuits; PWR-ydinvoimalaitoksen primaeaeripiirin aktiivisuuskulkeutumismallit

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, V; Rosenberg, R [VTT Chemical Technology, Otaniemi (Finland)

    1995-03-01

    The corrosion products activated in the primary circuit form a major source of occupational radiation dose in the PWR reactors. Transport of corrosion activity is a complex process including chemistry, reactor physics, thermodynamics and hydrodynamics. All the mechanisms involved are not known and there is no comprehensive theory for the process, so experimental test loops and plant data are very important in research efforts. Several activity transport modelling attempts have been made to improve the water chemistry control and to minimise corrosion in PWR`s. In this research report some of these models are reviewed with special emphasis on models designed for Soviet VVER type reactors. (51 refs., 16 figs., 4 tabs.).

  6. Disposal of spent fuel from German nuclear power plants - 16028

    International Nuclear Information System (INIS)

    Graf, Reinhold; Brammer, Klaus-Juergen; Filbert, Wolfgang; Bollingerfehr, Wilhelm

    2009-01-01

    The 'direct disposal of spent fuel' as a part of the current German reference concept was developed as an alternative to spent fuel reprocessing and vitrified HLW disposal. The technical facilities necessary for the implementation of this part of the reference concept, the so called POLLUX R concept, i.e. interim storage buildings for casks containing spent fuel, a pilot conditioning facility, and a special cask 'POLLUX' for final disposal have been built. With view to a geological salt formation all handling procedures for the direct disposal of spent fuel were tested aboveground in full-scale test facilities. To optimise the reference concept, all operational steps have been reviewed for possible improvements. The two additional concepts for the direct disposal of SF are the BSK 3 concept and the DIREGT concept. Both concepts rely on borehole emplacement technology, vertical boreholes for the BSK 3 concept und horizontal boreholes for the DIREGT concept. Supported by the EU and the German Federal Ministry of Economics and Technology (BMWi), DBE TECHNOLOGY built an aboveground full-scale test facility to simulate all relevant handling procedures for the BSK 3 disposal concept. GNS (Company for Nuclear Service), representing the German utilities, provided the main components and its know-how concerning cask design and manufacturing. The test program was concluded recently after more than 1.000 emplacement operations had been performed successfully. The BSK 3 emplacement system in total comprises an emplacement device, a borehole lock, a transport cart, a transfer cask which will shuttle between the aboveground conditioning facility and the underground repository, and the BSK 3 canister itself, designed to contain the fuel rods of three PWR-fuel assemblies with a total of about 1.6 tHM. The BSK 3 concept simplifies the operation of the repository because the handling procedures and techniques can also be applied for the disposal of reprocessing residues. In addition

  7. Coupled simulation of steam line break accident

    International Nuclear Information System (INIS)

    Royer, E.; Raimond, E.; Caruge, D.

    2000-01-01

    The steam line break is a PWR type reactor design accident, which concerns coupled physical phenomena. To control these problems simulation are needed to define and validate the operating procedures. The benchmark OECD PWR MSLB (Main Steam Line Break) has been proposed by the OECD to validate the feasibility and the contribution of the multi-dimensional tools in the simulation of the core transients. First the benchmark OECD PWR MSLB is presented. Then the analysis of the three exercises (system with pinpoint kinetic, three-dimensional core and whole system with three-dimensional core) are discussed. (A.L.B.)

  8. Retarding effect of prior-overloading on stress corrosion cracking of cold rolled 316L SS in simulated PWR water environment

    Science.gov (United States)

    Chen, Junjie; Lu, Zhanpeng; Xiao, Qian; Ru, Xiangkun; Ma, Jiarong; Shoji, Tetsuo

    2017-12-01

    The effect of prior single tensile overloading on the stress corrosion cracking behavior of cold rolled 316L in a simulated PWR water environment at 310 °C was investigated. SCC growth retardation by overloading was observed in cold rolled 316L specimens in both the T-L and L-T orientations. The stretch zone observed on the fracture surfaces of the overloaded specimens affected SCC propagation. The compressive residual stress induced by overloading process reduced the effective driving force of SCC propagation. The negative dK/da effect ahead of the crack tip likely contributes to the retardation of SCC growth. The duration of overloading is dependent on water chemistry and the local stress conditions.

  9. Comparison of computational performance of GA and PSO optimization techniques when designing similar systems - Typical PWR core case

    International Nuclear Information System (INIS)

    Souza Lima, Carlos A.; Lapa, Celso Marcelo F.; Pereira, Claudio Marcio do N.A.; Cunha, Joao J. da; Alvim, Antonio Carlos M.

    2011-01-01

    Research highlights: → Performance of PSO and GA techniques applied to similar system design. → This work uses ANGRA1 (two loop PWR) core as a prototype. → Results indicate that PSO technique is more adequate than GA to solve this kind of problem. - Abstract: This paper compares the performance of two optimization techniques, particle swarm optimization (PSO) and genetic algorithm (GA) applied to the design a typical reduced scale two loop Pressurized Water Reactor (PWR) core, at full power in single phase forced circulation flow. This comparison aims at analyzing the performance in reaching the global optimum, considering that both heuristics are based on population search methods, that is, methods whose population (candidate solution set) evolve from one generation to the next using a combination of deterministic and probabilistic rules. The simulated PWR, similar to ANGRA 1 power plant, was used as a case example to compare the performance of PSO and GA. Results from simulations indicated that PSO is more adequate to solve this kind of problem.

  10. Thermal-hydraulic study of integrated steam generator in PWR

    International Nuclear Information System (INIS)

    Osakabe, Masahiro

    1989-01-01

    One of the safety aspects of innovative reactor concepts is the integration of steam generators (SGs) into the reactor vessel in the case of the pressurized water reactor (PWR). All of the reactor system components including the pressurizer are within the reactor vessel in the SG integrated PWR. The simple heat transfer code was developed for the parametric study of the integrated SG. The code was compared to the once-through 19-tube SG experiment and the good agreement between the experimental results and the code predictions was obtained. The assessed code was used for the parametric study of the integrated once-through 16 m-straight-tube SG installed in the annular downcomer. The proposed integrated SG as a first attempt has approximately the same tube size and pitch as the present PWR and the SG primary and secondary sides in the present PWR is inverted in the integrated PWR. Based on the study, the reactor vessel size of the SG integrated PWR was calculated. (author)

  11. Safety assessment of spent-fuel transportation in extreme environments

    International Nuclear Information System (INIS)

    Sandoval, R.P.; Weber, J.P.; Newton, G.J.

    1981-01-01

    Preliminary estimates of the health effects and/or consequences resulting from a malevolent attack on a spent fuel truck shipment in downtown New York City have been made. This estimate is based upon a measured quantity (0.78 +- 0.05 g) of respirable radioactive material released from a 1/4 scale event. A linear extrapolation from the 1/4 scale event to the generic full scale event has been made and an aerosolized release fraction (0.0023 percent) of the total heavy metal inventory of a three-PWR assembly truck cask has been calculated. Although scaling of the source term parameters is tentative at this point in the program, a full scale experiment is planned in 1981 to verify the scaling methodology used in these calculations. A preliminary correlation between spent fuel and surrogate fuel source terms has been shown to be feasible and that radionuclide size partitioning can be determined experimentally. Finally, it has been shown, based on our preliminary experimental source term data, that a maximum of 25 total latent cancer fatalities could occur, assuming a release in downtown New York City. This is 20 times smaller than the latent cancer fatalities predicted in the Urban Study

  12. Predicting spent fuel oxidation states in a tuff repository

    International Nuclear Information System (INIS)

    Einziger, R.E.; Woodley, R.E.

    1987-01-01

    Nevada Nuclear Waste Storage Investigations Project (NNWSI) is studying the suitability of the tuffaceous rocks at Yucca Mountain as a waste repository for spent fuel disposal. The oxidation state of the LWR spent fuel in the moist air environment of a tuff repository could be a significant factor in determining its leaching and dissolution characteristics. Predictions as to which oxidation states would be present are important in analyzing such a repository and thus the present study was undertaken. A set of TGA (thermogravimetric analysis) tests were conducted on well-controlled samples of irradiated PWR fuel with time and temperature as the only variables. The tests were conducted between 140 and 225 0 C for a duration up to 2200 hours. The weight gain curves were analyzed in terms of diffusion through a layer of U 3 O 7 , diffusion into the grains to form a solid solution, a simplified empirical representation of a combination of grain boundary diffusion and bulk grain oxidation. Reaction rate constants were determined in each case, but analysis of these data could not establish a definitive mechanism. 21 refs., 10 figs., 3 tabs

  13. Considerations for a national program on spent fuel management

    International Nuclear Information System (INIS)

    Lopez-Perez, B.; Melches-Serrano, C.

    1980-01-01

    The spent fuel discharged from the two LWR's that are in operation (Zorita, 160 MW PWR, and Santa Maria de Garona, 460 MW BWR) is being reprocessed under contracts with BNFL; these contracts will expire in the next few years. The fuel discharged from Vandelos (50 MW GCR) is being reprocessed by Cogema under a long-term contract. No new reprocessing contracts for LWR's in operation, under construction, or planned have been signed or are being considered for the near future. The plutonium and the residual uranium contained in LWR spent fuel are considered important potential energy resources. They are especially valuable for countries such as Spain, which is short of energy resources, and they might be used in the future in fast breeder or thermal reactors. This is the reason that, until reprocessing is justified and appropriate solutions to make reprocessing available are developed, Spain has decided to build the appropriate capacity for the temporary storage of spent fuel. The capacity is being achieved, on short term, by the extension of AR storage capacity. It is being achieved, at medium or longer term, by the construction of centralized AFR facilities to serve all Spanish nuclear power plants. Spanish utilities are undertaking the expansion of reactor storage capacities, using densified racks, to increment capacity to at least 8 to 10 reloads, in addition to full core discharge capacity. Spain has the time and the financial and technical resources to implement a national solution for spent fuel storage. Financial strategy, technology choice, and licensing considerations are under examination in order to make a decision for medium- and long-term storage alternatives

  14. Comparison of the transportation risks for the spent fuel in Korea for different transportation scenarios

    International Nuclear Information System (INIS)

    Jeong, Jongtae; Cho, D.K.; Choi, H.J.; Choi, J.W.

    2011-01-01

    According to the long term management strategy for spent fuels in Korea, they will be transported from the spent fuel pools in each nuclear power plant to the central interim storage facility (CISF) which is to start operation in 2016. At the start of the operation of the final repository (FR), by the year 2065, transport will then take place between the CISF and the FR. Therefore, we have to determine the safe and economical logistics for the transportation of these spent fuels by considering their transportation risks and costs. In this study, we developed four transportation scenarios for a maritime transportation by considering the type of transportation casks and transport means in order to suggest safe and economical transportation logistics for the spent fuels in Korea. And, we estimated and compared the transportation risks for these four transportation scenarios. Also, we estimated and compared the transportation risks resulting from accidents during the transportation of PWR and PHWR spent fuels by road trailers from the CISF and the FR. From the results of this study, we found that risks resulting from accidents during the transportation of the spent fuels have a very low radiological risk activity with a manageable safety and health consequences. The results of this study can be used as basic data for the development of safe and economical logistics for a transportation of the spent fuels in Korea by considering the transportation costs for the four scenarios which will be needed in the near future.

  15. Fuel rod behavior of a PWR during load following

    International Nuclear Information System (INIS)

    Perrotta, J.A.; Andrade, G.G. de

    1982-01-01

    The behavior of a PWR fuel rod when operating in normal power cycles, excluding in case of accidents, is analysed. A computer code, that makes the mechanical analysis of the cladding using the finite element method was developed. The ramps and power cycles were simulated suposing the existence of cracks in pellets when the cladding-pellet interaction are done. As a result, an operation procedure of the fuel rod in power cycle is recommended. (E.G.) [pt

  16. Determination of welding parameters for execution of weld overlayer on PWR nuclear reactor nozzles

    International Nuclear Information System (INIS)

    Ribeiro, Gabriela M.; Lima, Luciana I.; Quinan, Marco A.; Schvartzman, Monica M.

    2009-01-01

    In the PWR reactors, nickel based dissimilar welds have been presented susceptibilities the stress corrosion (S C). For the mitigation the problem a deposition of weld layers on the external surface of the nozzle is an alternative, viewing to provoke the compression of the region subjected to S C. This paper presents a preliminary study on the determination of welding parameters to obtain these welding overlayers. Welding depositions were performed on a test piece welded with nickel 182 alloy, simulating the conditions of a nozzle used in a PWR nuclear power plant. The welding process was the GTAW (Gas Tungsten Arc Welding), and a nickel 52 alloy as addition material. The overlayers were performed on the base metals, carbon steel an stainless steel, changing the welding parameters and verifying the the time of each weld filet. After that, the samples were micro structurally characterized. The macro structures and the microstructures obtained through optical microscopy and Vickers microhardness are presented. The preliminary results make evident the good weld quality. However, a small weld parameters influence used in the base material microstructure (carbon steel and stainless steel). The obtained results in this study will be used as reference in the construction of a mock up which will simulate all the conditions of a pressurizer nozzle of PWR reactor

  17. Transport experience of NH-25 spent fuel shipping cask for post irradiation examination

    International Nuclear Information System (INIS)

    Mori, Ryuji

    1982-01-01

    Since the Japan Atomic Energy Research Institute and Nippon Nuclear Fuel Development Co. hot laboratories are located far off from the port which can handle spent fuel shipping casks, it is necessary to use a trailer-mounted cask which can be transported by public roads, bridges and intersections for the transportation of spent fuel specimens to these hot laboratories. Model NH-25 shipping cask was designed, manufactured and oualification tested to meet Japanese regulations and was officially registered as a BM type cask. The NH-25 cask accomodates two BWR fuel assemblies, one PWR assembly or one ATR fuel assembly using interchangeable inner containers. The cask weight is 29.2 t. The cask has three concentric stainless steel shells. Gamma shielding is lead cast between the inner shell and the intermediate shell. Neutro n shielding consists of ethylene-glycol-aqueous solution layer formed between the intermediate shell and the outer shell. The NH-25 cask now has been in operation for 2.5 yr. It was used for the transportation of spent fuel assemblies from six LWR power plants to the port on shipping cask carrier ''Hinouramaru'' on the sea, as well as from the port to the hot laboratory on a trailer. The capability of safe handling and transporting of spent fuel assemblies has been well demonstrated. (author)

  18. Spent fuel's behavior under dynamic drip tests

    International Nuclear Information System (INIS)

    Finn, P.A.; Buck, E.C.; Hoh, J.C.; Bates, J.K.

    1995-01-01

    In the potential repository at Yucca Mountain, failure of the waste package container and the cladding of the spent nuclear fuel would expose the fuel to water under oxidizing conditions. To simulate the release behavior of radionuclides from spent fuel, dynamic drip and vapor tests with spent nuclear fuel have been ongoing for 2.5 years. Rapid alteration of the spent fuel has been noted with concurrent release of radionuclides. Colloidal species containing americium and plutonium have been found in the leachate. This observation suggests that colloidal transport of radionuclides should be included in the performance assessment of a potential repository

  19. FLUOLE-2: An Experiment for PWR Pressure Vessel Surveillance

    Directory of Open Access Journals (Sweden)

    Thiollay Nicolas

    2016-01-01

    Full Text Available FLUOLE-2 is a benchmark-type experiment dedicated to 900 and 1450 MWe PWR vessels surveillance dosimetry. This two-year program started in 2014 and will end in 2015. It will provide precise experimental data for the validation of the neutron spectrum propagation calculation from core to vessel. It is composed of a square core surrounded by a stainless steel baffe and internals: PWR barrel is simulated by steel structures leading to different steel-water slides; two steel components stand for a surveillance capsule holder and for a part of the pressure vessel. Measurement locations are available on the whole experimental structure. The experimental knowledge of core sources will be obtained by integral gamma scanning measurements directly on fuel pins. Reaction rates measured by calibrated fission chambers and a large set of dosimeters will give information on the neutron energy and spatial distributions. Due to the low level neutron flux of EOLE ZPR a special, high efficiency, calibrated gamma spectrometry device will be used for some dosimeters, allowing to measure an activity as low as 7. 10−2 Bq per sample. 103mRh activities will be measured on an absolute calibrated X spectrometry device. FLUOLE-2 experiment goal is to usefully complete the current experimental benchmarks database used for the validation of neutron calculation codes. This two-year program completes the initial FLUOLE program held in 2006–2007 in a geometry representative of 1300 MWe PWR.

  20. Spent fuel composition database system on WWW. SFCOMPO on WWW Ver.2

    International Nuclear Information System (INIS)

    Mochizuki, Hiroki; Suyama, Kenya; Nomura, Yasushi; Okuno, Hiroshi

    2001-08-01

    'SFCOMPO on WWW Ver.2' is an advanced version of 'SFCOMPO on WWW (Spent Fuel Composition Database System on WWW' released in 1997. This new version has a function of database management by an introduced relational database software 'PostgreSQL' and has various searching methods. All of the data required for the calculation of isotopic composition is available from the web site of this system. This report describes the outline of this system and the searching method using Internet. In addition, the isotopic composition data and the reactor data of the 14 LWRs (7 PWR and 7 BWR) registered in this system are described. (author)

  1. Modeling of the thermo-mechanical behaviour of the PWR fuel

    International Nuclear Information System (INIS)

    Mailhe, P.

    2014-01-01

    This article reviews the various physical phenomena that take place in an irradiated fuel rod and presents the development of the thermo-mechanical codes able to simulate them. Though technically simple the fuel rod is the place where appear 4 types of process: thermal, gas behaviour, mechanical and corrosion that combine involving 5 elements: the fuel pellet, the fuel clad, the fuel-clad gap, the inside volume and the coolant. For instance the pellet is the place where the following mechanical processes took place: thermal dilatation, elastic deformation, creep deformation, densification, solid swelling, gaseous swelling and cracking. The first industrial code simulating the behaviour of the fuel rod was COCCINEL, it was developed by AREVA teams from the American PAD code that was included in the Westinghouse license. Today the GALILEO code has replaced the COPERNIC code that was developed in the beginning of the 2000 years. GALILEO is a synthesis of the state of the art of the different models used in the codes validated for PWR and BWR. GALILEO has been validated on more than 1500 fuel rods concerning PWR, BWR and specific reactors like Siloe, Osiris, HFR, Halden, Studsvik, BR2/3,...) and also for extended burn-ups. (A.C.)

  2. COBRA-SFS thermal analysis of a sealed storage cask for the Monitored Retrievable Storage of spent fuel

    International Nuclear Information System (INIS)

    Rector, D.R.; Wheeler, C.L.

    1986-01-01

    The COBRA-SFS (Spent Fuel Storage) computer code was used to predict temperature distributions in a concrete Sealed Storage Cask (SSC). This cask was designed for the Department of Energy in the Monitored Retrievable Storage (MRS) program for storage of spent fuel from commercial power operations. Analytical results were obtained for nominal operation of the SSC with spent fuel from 36 PWR fuel assemblies consolidated in 12 cylindrical canisters. Each canister generates 1650 W of thermal power. A parametric study was performed to assess the effects on cask thermal performance of thermal conductivity of the concrete, the fin material, and the amount of radial reinforcing steel bars (rebar). Seven different cases were modeled. The results of the COBRA-SFS analysis of the current cask design predict that the peak fuel cladding temperature in the SSC will not exceed the 37 0 C design limit for the maximum spent fuel load of 19.8 kW and a maximum expected ambient temperature of 37.8 0 C (100 0 F). The results of the parametric analyses illustrate the importance of material selection and design optimization with regard to the SSC thermal performance

  3. Behaviour of organic iodides under pwr accident conditions

    International Nuclear Information System (INIS)

    Alm, M.

    1982-01-01

    Laboratory experiments were performed to study the behaviour of radioactive methyl iodide under PWR loss-of-coolant conditions. The pressure relief equipment consisted of an autoclave for simulating the primary circuit and of an expansion vessel for simulating the conditions after a rupture in the reactor coolant system. After pressure relief, the composition of the CH 3 sup(127/131)I-containing steam-air mixture within the expansion vessel was analysed at 80 0 C over a period of 42 days. On the basis of the values measured and of data taken from the literature, both qualitative and quantitative assessments have been made as to the behaviour of radioactive methyl iodide in the event of loss-of-coolant accidents. (author)

  4. Chernobyl reactor transient simulation study

    International Nuclear Information System (INIS)

    Gaber, F.A.; El Messiry, A.M.

    1988-01-01

    This paper deals with the Chernobyl nuclear power station transient simulation study. The Chernobyl (RBMK) reactor is a graphite moderated pressure tube type reactor. It is cooled by circulating light water that boils in the upper parts of vertical pressure tubes to produce steam. At equilibrium fuel irradiation, the RBMK reactor has a positive void reactivity coefficient. However, the fuel temperature coefficient is negative and the net effect of a power change depends upon the power level. Under normal operating conditions the net effect (power coefficient) is negative at full power and becomes positive under certain transient conditions. A series of dynamic performance transient analysis for RBMK reactor, pressurized water reactor (PWR) and fast breeder reactor (FBR) have been performed using digital simulator codes, the purpose of this transient study is to show that an accident of Chernobyl's severity does not occur in PWR or FBR nuclear power reactors. This appears from the study of the inherent, stability of RBMK, PWR and FBR under certain transient conditions. This inherent stability is related to the effect of the feed back reactivity. The power distribution stability in the graphite RBMK reactor is difficult to maintain throughout its entire life, so the reactor has an inherent instability. PWR has larger negative temperature coefficient of reactivity, therefore, the PWR by itself has a large amount of natural stability, so PWR is inherently safe. FBR has positive sodium expansion coefficient, therefore it has insufficient stability it has been concluded that PWR has safe operation than FBR and RBMK reactors

  5. Introduction of a new structural material for spent nuclear fuel transportation casks

    International Nuclear Information System (INIS)

    Severson, W.J.; Mello, R.M.; Ciez, A.P.

    1991-01-01

    The From-Reactor Transportation Cask Initiative of the DOE Office of Civilian Radioactive Waste Management (OCRWM) has, since 1988, supported the development of cask systems for the shipment of spent nuclear fuel by both legal weight truck (LWT) and rail or barge. The design basis fuel to be transported would be 10 years out-of-reactor with maximum burnups of 35 and 30 GWD/MTU for PWR and BWR assemblies, respectively. Westinghouse's work on the program led to the development of a common use LWT cask design capable of transporting either three PWR or seven BWR assemblies. This payload in a common use cask is achieved by the use of depleted uranium for the gamma shielding material and Grade 9 titanium as the principal structural material. The use of Grade 9 titanium for cask structures has no certification precedent. This paper describes the work performed to characterize the material and the status of steps taken to gain its acceptance by the NRC, which includes ASME approval of its use in the construction of Section 3 Class 1 components. 9 refs., 7 figs., 9 tabs

  6. Validating criticality calculations for spent fuel with 252Cf-source-driven noise measurements

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; Krass, A.W.; Valentine, T.E.

    1992-01-01

    The 252 Cf-Source-driven noise analysis method can be used for measuring the subcritical neutron multiplication factor k of arrays of spent light water reactor (LWR) fuel. This type of measurement provides a parameter that is directly related to the criticality state of arrays of LWR fuel. Measurements of this parameter can verify the criticality safety margins of spent LWR fuel configurations and thus could be a means of obtaining the information to justify burnup credit for spent LWR transportation/storage casks. The practicality of a measurement depends on the ability to install the hardware required to perform the measurement. Source chambers containing the 252 Cf at the required source intensity for this application have been constructed and have operated successfully for ∼10 years and can be fabricated to fit into control rod guide tubes of PWR fuel elements. Fission counters especially developed for spent-fuel measurements are available that would allow measurements of a special 3 x 3 spent fuel array and a typical burnup credit rail cask with spent fuel in unborated water. Adding a moderator around these fission counters would allow measurements with the typical burnup credit rail cask with borated water and the special 3 x 3 array with borated water. The recent work of Ficaro on modifying the KENO Va code to calculate by the Monte Carlo method the time sequences of pulses at two detectors near a fissile assembly from the fission chain multiplication process, initiated by a 252 Cf source in the assembly allows a direct computer calculation of the noise analysis data from this measurement method

  7. SCALE6 Hybrid Deterministic-Stochastic Shielding Methodology for PWR Containment Calculations

    International Nuclear Information System (INIS)

    Matijevic, Mario; Pevec, Dubravko; Trontl, Kresimir

    2014-01-01

    The capabilities and limitations of SCALE6/MAVRIC hybrid deterministic-stochastic shielding methodology (CADIS and FW-CADIS) are demonstrated when applied to a realistic deep penetration Monte Carlo (MC) shielding problem of full-scale PWR containment model. The ultimate goal of such automatic variance reduction (VR) techniques is to achieve acceptable precision for the MC simulation in reasonable time by preparation of phase-space VR parameters via deterministic transport theory methods (discrete ordinates SN) by generating space-energy mesh-based adjoint function distribution. The hybrid methodology generates VR parameters that work in tandem (biased source distribution and importance map) in automated fashion which is paramount step for MC simulation of complex models with fairly uniform mesh tally uncertainties. The aim in this paper was determination of neutron-gamma dose rate distribution (radiation field) over large portions of PWR containment phase-space with uniform MC uncertainties. The sources of ionizing radiation included fission neutrons and gammas (reactor core) and gammas from activated two-loop coolant. Special attention was given to focused adjoint source definition which gave improved MC statistics in selected materials and/or regions of complex model. We investigated benefits and differences of FW-CADIS over CADIS and manual (i.e. analog) MC simulation of particle transport. Computer memory consumption by deterministic part of hybrid methodology represents main obstacle when using meshes with millions of cells together with high SN/PN parameters, so optimization of control and numerical parameters of deterministic module plays important role for computer memory management. We investigated the possibility of using deterministic module (memory intense) with broad group library v7 2 7n19g opposed to fine group library v7 2 00n47g used with MC module to fully take effect of low energy particle transport and secondary gamma emission. Compared with

  8. Demonstration of cask transportation and dry storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Teer, B.R.; Clark, J.

    1984-01-01

    Nuclear Fuel Services, Inc. and the Department of Energy's Idaho Operations Office have signed a cost sharing contract to demonstrate dual purpose shipping and storage casks for spent nuclear fuel. Transnuclear, Inc. has been selected by NFS to design and supply two forged steel casks - one for 40 PWR assemblies from the Ginna reactor, the other for 85 BWR assemblies from the Big Rock Point reactor. The casks will be delivered to West Valley in mid-1985, loaded with the fuel assemblies and shipped by rail to the Idaho National Engineering Laboratory. The shipments will be made under a DOE Certificate of Compliance which will be issued based on reviews by Oak Ridge National Laboratory of Transnuclear's designs

  9. Valve testing for UK PWR safety applications

    International Nuclear Information System (INIS)

    George, P.T.; Bryant, S.

    1989-01-01

    Extensive testing and development has been done by the Central Electricity Generating Board (CEGB) to support the design, construction and operation of Sizewell B, the UK's first PWR. A Blowdown Rig for the Assessment of Valve Operability - (BRAVO) has been constructed at the CEGB Marchwood Engineering Laboratory to reproduce PWR Pressurizer fluid conditions for the full scale testing of Pressurizer Relief System (PRS) valves. A full size tandem pair of Pilot Operated Safety Relief Valves (POSRVs) is being tested under the full range of pressurizer fluid conditions. Tests to date have produced important data on the performance of the valve in its Cold Overpressure protection mode of operation and on methods for the in-service testing of the valve. Also, a full size pressurizer safety valve has been tested under full PRS fluid conditions to develop a methodology for the pre-service testing of the Sizewell valves. Further work will be carried out to develop procedures for the in-service testing of the valve. In the Main Steam Safety Valve test program carried out at the Siemens-KWU Test Facilities, a single MSSV from three potential suppliers was tested under full secondary system conditions. The test results have been analyzed and are reflected in the CEGB's arrangements for the pre-service and in-service testing of the Sizewell MSSVs. Valves required to interrupt pipebreak flow must be qualified for this duty by testing or a combination of testing and analysis. To obtain guidance on the performance of such tests gate and globe valves have been subjected to simulated pipebreaks under PWR primary circuit conditions. In the light of problems encountered with gate valve closure under these conditions, further tests are currently being carried out on the BRAVO facility on a gate valve, in preparation for the full scale flow interruption qualification testing of the Sizewell main steam isolation valve

  10. Fatigue life evaluation method of austenitic stainless steel in PWR water

    International Nuclear Information System (INIS)

    Sakaguchi, Katsumi; Nomura, Yuichiro; Suzuki, Shigeki; Kanasaki, Hiroshi; Higuchi, Makoto

    2006-09-01

    It is known that the fatigue life in elevated temperature water is substantially reduced compared with that in the air. The fatigue life reduction has been investigated experimentally in EFT project of Japan Nuclear Energy Safety Organization (JNES) to evaluate the environmental effect on fatigue life. Many tests have been done for carbon, low alloy, stainless steels and nickel-based alloy under the various conditions. In this paper, the results of the stainless steel in simulated PWR water environments were reported. Fatigue life tests in simulated PWR environments were carried out and the effect of key parameters on fatigue life reduction was examined. The materials used in this study were base and weld metal of austenitic stainless steel SS316, weld metal of SS304 and the base and aged metal of the duplex stainless steel SCS14A. In order to evaluate the effects of stain amplitude, strain rate, strain ratio, temperature, aging, water flow rate and strain holding time, many fatigue tests were examined. In transient condition in an actual plant, however, such parameters as temperature and strain rate are not constant. In order to evaluate fatigue damage in actual plant on the basis of experimental results under constant temperature and strain rate condition, the modified rate approach method was developed. Various kinds of transient have to be taken into account of in actual plant fatigue evaluation, and stress cycle of several ranges of amplitude has to be considered in assessing damage from fatigue. Generally, cumulative usage factor is applied in this type of evaluation. In this study, in order to confirm the applicability of modified rate approach method together with cumulative usage factor, fatigue tests were carried out by combining stress cycle blocks of different strain amplitude levels, in which strain rate changes in response to temperature in a simulated PWR water environment. Consequently, fatigue life could be evaluated with an accuracy of factor of 3

  11. Moving the largest capacity PWR dual-purpose cask in the world from Goesgen NPP to the Zwilag interim storage site

    International Nuclear Information System (INIS)

    Delannay, M.; Dudragne, S.

    2002-01-01

    The Swiss Goesgen nuclear power plant (NPP) has decided to use two different methods for the disposal of its spent fuel. (1) To reprocess some of its spent fuel in dedicated facilities. Some of the vitrified waste from the reprocessing will be shipped back to Switzerland using the new COGEMA Logistics, TN81 cask. (2) To ship the other part of its spent fuel to the central interim storage facility of Zwilag (Switzerland) using a COGEMA Logistics dual-purpose TN24G cask. The TN24G is the heaviest and largest dual-purpose cask manufactured so far by COGEMA Logistics in Europe. It is intended for the transport and storage of 37 pressurised water-reactor (PWR) spent fuel assemblies. Four casks were delivered by COGEMA Logistics to Goesgen NPP. Three transports of loaded TN24G casks between Goesgen and Zwilag were successfully performed at the beginning of 2002 with the new COGEMA Logistics Q76 wagon specifically designed to transport heavy casks. This article describes the procedure of operations and shipments for the first TN24G casks up to storage at Zwilag. The fourth transport of loaded TN24G was due to happen in October 2002. The TN24G cask, as part of the TN24 casks family, proved to be a very efficient solution for the KKG spent fuel management. (author)

  12. A new approach to PWR power control using intelligent techniques

    International Nuclear Information System (INIS)

    Boroushaki, M.; Ghofrani, M.B.; Lucas, C.; Yazdanpanah, M.J.; Sadati, N.

    2004-01-01

    Improved load following capability is one of the main technical performances of advanced PWR(APWR). Controlling the nuclear reactor core during load following operation encounters some difficulties. These difficulties mainly arise from nuclear reactor core limitations in local power peaking, while the core is subject to large and sharp variation of local power density during transients. Axial offset (A.O) is the parameter usually used to represent of core power peaking, in form of a practical parameter. This paper, proposes a new intelligent approach to A.o control of PWR nuclear reactors core during load following operation. This method uses a neural network model of the core to predict the dynamic behavior of the core and a fuzzy critic based on the operator knowledge and experience for the purpose of decision-making during load following operations. Simulation results show that this method can use optimum control rod groups maneuver with variable overlapping and may improve the reactor load following capability

  13. First interim examination of defected BWR and PWR rods tested in unlimited air at 2290C

    International Nuclear Information System (INIS)

    Einziger, R.E.; Cook, J.A.

    1983-01-01

    A five-year whole rod test was initiated to investigate the long-term stability of spent fuel rods under a variety of possible dry storage conditions. Both PWR and BWR rods were included in the test. The first interim examination was conducted after three months of testing to determine if there was any degradation in those defected rods stored in an unlimited air atmosphere. Visual observations, diametral measurements and radiographic smears were used to assess the degree of cladding deformation and particulate dispersal. The PWR rod showed no measurable change from the pre-test condition. The two original artificial defects had not changed in appearance and there was no diametral growth of the cladding. One of the defects in BWR rod showed significant deformation. There was approximately 10% cladding strain at the defect site and a small axial crack had formed. The fuel in the defect did not appear to be friable. The second defect showed no visible change and no cladding strain. Following examination, the test was continued at 230 0 C. Another interim examination is planned during the summer of 1983. This paper discusses the details and meaning of the data from the first interim examination

  14. Pyroprocessing oxide spent nuclear fuels for efficient disposal

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Pierce, R.D.; Mulcahey, T.P.

    1994-01-01

    Pyrochemical processing as a means for conditioning spent nuclear fuels for disposal offers significant advantages over the direct disposal option. The advantages include reduction in high-level waste volume; conversion of most of the high-level waste to a low-level waste in which nearly all the transuranics (TRU) have been removed; and incorporation of the TRUs into a stable, highly radioactive waste form suitable for interim storage, ultimate destruction, or repository disposal. The lithium process has been under development at Argonne National Laboratory for use in pyrochemical conditioning of spent fuel for disposal. All of the process steps have been demonstrated in small-scale (0.5-kg simulated spent fuel) experiments. Engineering-scale (20-kg simulated spent fuel) demonstration of the process is underway, and small-scale experiments have been conducted with actual spent fuel from a light water reactor (LWR). The lithium process is simple, operates at relatively low temperatures, and can achieve high decontamination factors for the TRU elements. Ordinary materials, such as carbon steel, can be used for process containment

  15. Development of a Computer Program (CASK) for the Analysis of Logistics and Transportation Cost of the Spent Fuels

    International Nuclear Information System (INIS)

    Cha, Jeong-Hun; Choi, Heui-Joo; Cho, Dong-Keun; Kim, Seong-Ki; Lee, Jong-Youl; Choi, Jong-Won

    2008-07-01

    The cost for the spent fuel management includes the costs for the interim storage, the transportation, and the permanent disposal of the spent fuels. The CASK(Cost and logistics Analysis program for Spent fuel transportation in Korea) program is developed to analyze logistics and transportation cost of the spent fuels. And the total amount of PWR spent fuels stored in four nuclear plant sites, a centralized interim storage facility near coast and a permanent disposal facility near the interim storage facility are considered in this program. The CASK program is developed by using Visual Basic language and coupled with an excel sheet. The excel sheet shows a change of logistics and transportation cost. Also transportation unit cost is easily changed in the excel sheet. The scopes of the report are explanation of parameters in the CASK program and a preliminary calculation. We have developed the CASK version 1.0 so far, and will update its parameters in transportation cost and transportation scenario. Also, we will incorporate it into the program which is used for the projection of spent fuels from the nuclear power plants. Finally, it is expected that the CASK program could be a part of the cost estimation tools which are under development at KAERI. And this program will be a very useful tool for the establishment of transportation scenario and transportation cost in Korean situations

  16. Comparison of DUPIC fuel composition heterogeneity control methods

    International Nuclear Information System (INIS)

    Choi, Hang Bok; Ko, Won Il

    1999-08-01

    A method to reduce the fuel composition heterogeneity effect on the core performance parameters has been studied for the DUPIC fuel which is made of spent pressurized water reactor (PWR) fuels by a dry refabrication process. This study focuses on the reactivity control method which uses either slightly enriched, depleted, or natural uranium to minimize the cost rise effect on the manufacturing of DUPIC fuel, when adjusting the excess reactivity control by slightly enriched and depleted uranium, reactivity control by natural uranium for high reactivity spent PWR fuels, and reactivity control by natural uranium for linear reactivity spent PWR fuels. The results of this study have shown that the reactivity control by slightly enriched and depleted uranium, all the spent PWR fuels can be utilized as the DUPIC fuel and the fraction of fresh uranium feed is 3.4% on an average. For the reactivity control by natural uranium, about 88% of spent PWR fuel can be utilized as the DUPIC fuel when the linear reactivity spent PWR fuels are used, and the amount of natural uranium feed needed to control the DUPIC fuel reactivity is negligible. (author). 13 refs., 16 tabs., 6 figs

  17. The effects of cold rolling orientation and water chemistry on stress corrosion cracking behavior of 316L stainless steel in simulated PWR water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junjie [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); Lu, Zhanpeng, E-mail: zplu@t.shu.edu.cn [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Xiao, Qian; Ru, Xiangkun; Han, Guangdong; Chen, Zhen [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); Zhou, Bangxin [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Shoji, Tetsuo [New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan)

    2016-04-15

    Stress corrosion cracking behaviors of one-directionally cold rolled 316L stainless steel specimens in T–L and L–T orientations were investigated in hydrogenated and deaerated PWR primary water environments at 310 °C. Transgranular cracking was observed during the in situ pre-cracking procedure and the crack growth rate was almost not affected by the specimen orientation. Locally intergranular stress corrosion cracks were found on the fracture surfaces of specimens in the hydrogenated PWR water. Extensive intergranular stress corrosion cracks were found on the fracture surfaces of specimens in deaerated PWR water. More extensive cracks were found in specimen T–L orientation with a higher crack growth rate than that in the specimen L–T orientation with a lower crack growth rate. Crack branching phenomenon found in specimen L–T orientation in deaerated PWR water was synergistically affected by the applied stress direction as well as the preferential oxidation path along the elongated grain boundaries, and the latter was dominant. - Highlights: • Transgranular fatigue crack growth rate was not affected by the cold rolling orientation. • Locally intergranular SCC was found in the hydrogenated PWR water. • Extensive intergranular SCC cracks were found in deaerated PWR water. • T–L specimen showed more extensive SCC cracks and a higher crack growth rate. • Crack branching related to the applied stress and the preferential oxidation path.

  18. Study of a loss of coolant accident of a PWR reactor through a Full Scope Simulator and computational code RELAP

    International Nuclear Information System (INIS)

    Soares, Alexandre de Souza

    2014-01-01

    The present paper proposes a study of a loss of coolant accident of a PWR reactor through a Full Scope Simulator and computational code RELAP. To this end, it considered a loss of coolant accident with 160 cm 2 breaking area in cold leg of 20 circuit of the reactor cooling system of nuclear power plant Angra 2, with the reactor operating in stationary condition, to 100% power. It considered that occurred at the same time the loss of External Power Supply and the availability of emergency cooling system was not full. The results obtained are quite relevant and with the possibility of being used in the planning of future activities, given that the construction of Angra 3 is underway and resembles the Angra 2. (author)

  19. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods

    International Nuclear Information System (INIS)

    Johnson, G.L.

    1988-09-01

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. One such package would store lightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97/degree/C and whether the cladding of the stored spent fuel ever exceeds 350/degree/C. Limiting the borehole to temperatures of 97/degree/C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350/degree/C cladding limit minimizes the possibility of creep-related failure in the spent fuel rod cladding. For a series of packages stored in a 8 x 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97/degree/C for the full 1000-yr analysis period

  20. Characterization of interfacial reactions and oxide films on 316L stainless steel in various simulated PWR primary water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junjie; Xiao, Qian [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Lu, Zhanpeng, E-mail: zplu@t.shu.edu.cn [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Ru, Xiangkun; Peng, Hao; Xiong, Qi; Li, Hongjuan [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China)

    2017-06-15

    The effect of water chemistry on the electrochemical and oxidizing behaviors of 316L SS was investigated in hydrogenated, deaerated and oxygenated PWR primary water at 310 °C. Water chemistry significantly influenced the electrochemical impedance spectroscopy parameters. The highest charge-transfer resistance and oxide-film resistance occurred in oxygenated water. The highest electric double-layer capacitance and constant phase element of the oxide film were in hydrogenated water. The oxide films formed in deaerated and hydrogenated environments were similar in composition but different in morphology. An oxide film with spinel outer particles and a compact and Cr-rich inner layer was formed in both hydrogenated and deaerated water. Larger and more loosely distributed outer oxide particles were formed in deaerated water. In oxygenated water, an oxide film with hematite outer particles and a porous and Ni-rich inner layer was formed. The reaction kinetics parameters obtained by electrochemical impedance spectroscopy measurements and oxidation film properties relating to the steady or quasi-steady state conditions in the time-period of measurements could provide fundamental information for understanding stress corrosion cracking processes and controlling parameters. - Highlights: •Long-term EIS measurements of 316L SS in simulated PWR primary water. •Highest charge-transfer resistance and oxide film resistance in oxygenated water. •Highest electric double-layer capacitance and oxide film CPE in hydrogenated water. •Similar compositions, different shapes of oxides in deaerated/hydrogenated water. •Inner layer Cr-rich in hydrogenated/deaerated water, Ni-rich in oxygenated water.

  1. PREP-PWR-1.0: a WIMS-D/4 pre-processor code for the generation of data for PWR fuel assemblies

    International Nuclear Information System (INIS)

    Ball, G.

    1991-06-01

    The PREP-PWR-1.0 computer code is a substantially modified version of the PREWIM code which formed part of the original MARIA System (Report J.E.N. 543). PREP-PWR-1.0 is a comprehensive pre-processor code which generates input data for the WIMS-D/4.1 code (Report PEL 294) for PWR fuel assemblies, with or without control and burnable poison rods. This data is generated at various base and off-base conditions. The overall cross section generation methodology is described, followed by a brief overview of the model. Aspects of the base/off-base calculational scheme are outlined. Additional features of the code are described while the input data format of PREP-PWR-1.0 is listed. The sample problems and suggestions for further improvements to the code are also described. 2 figs., 2 tabs., 12 refs

  2. Generalized perturbation theory error control within PWR core-loading pattern optimization

    International Nuclear Information System (INIS)

    Imbriani, J.S.; Turinsky, P.J.; Kropaczek, D.J.

    1995-01-01

    The fuel management optimization code FORMOSA-P has been developed to determine the family of near-optimum loading patterns for PWR reactors. The code couples the optimization technique of simulated annealing (SA) with a generalized perturbation theory (GPT) model for evaluating core physics characteristics. To ensure the accuracy of the GPT predictions, as well as to maximize the efficient of the SA search, a GPT error control method has been developed

  3. A Monte Carlo Based Spent Fuel Analysis Safeguards Strategy Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Fensin, Michael L.; Tobin, Stephen J.; Swinhoe, Martyn T.; Menlove, Howard O.; Sandoval, Nathan P. [Los Alamos National Laboratory, E540, Los Alamos, NM 87545 (United States)

    2009-06-15

    the generalized assessment process, the techniques employed to automate the coupled facets of the assessment process, and the standard burnup/enrichment/cooling time dependent spent fuel assembly library. We also clearly define the diversion scenarios that will be analyzed during the standardized assessments. Though this study is currently limited to generic PWR assemblies, it is expected that the results of the assessment will yield an adequate spent fuel analysis strategy knowledge that will help the down-select process for other reactor types. (authors)

  4. A Monte Carlo based spent fuel analysis safeguards strategy assessment

    International Nuclear Information System (INIS)

    Fensin, Michael L.; Tobin, Stephen J.; Swinhoe, Martyn T.; Menlove, Howard O.; Sandoval, Nathan P.

    2009-01-01

    assessment process, the techniques employed to automate the coupled facets of the assessment process, and the standard burnup/enrichment/cooling time dependent spent fuel assembly library. We also clearly define the diversion scenarios that will be analyzed during the standardized assessments. Though this study is currently limited to generic PWR assemblies, it is expected that the results of the assessment will yield an adequate spent fuel analysis strategy knowledge that will help the down-select process for other reactor types

  5. PSA LEVEL 3 DAN IMPLEMENTASINYA PADA KAJIAN KESELAMATAN PWR

    Directory of Open Access Journals (Sweden)

    Pande Made Udiyani

    2015-03-01

    Full Text Available Kajian keselamatan PLTN menggunakan metodologi kajian probabilistik sangat penting selain kajian deterministik. Metodologi kajian menggunakan Probabilistic Safety Assessment (PSA Level 3 diperlukan terutama untuk estimasi kecelakaan parah atau kecelakaan luar dasar desain PLTN. Metode ini banyak dilakukan setelah kejadian kecelakaan Fukushima. Dalam penelitian ini dilakukan implementasi PSA Level 3 pada kajian keselamatan PWR, postulasi kecelakan luar dasar desain PWR AP-1000 dan disimulasikan di contoh tapak Bangka Barat. Rangkaian perhitungan yang dilakukan adalah: menghitung suku sumber dari kegagalan teras yang terjadi, pemodelan kondisi meteorologi tapak dan lingkungan, pemodelan jalur paparan, analisis dispersi radionuklida dan transportasi fenomena di lingkungan, analisis deposisi radionuklida, analisis dosis radiasi, analisis perlindungan & mitigasi, dan analisis risiko. Kajian menggunakan rangkaian subsistem pada perangkat lunak PC Cosyma. Hasil penelitian membuktikan bahwa implementasi metode kajian keselamatan PSA Level 3 sangat efektif dan komprehensif terhadap estimasi dampak, konsekuensi, risiko, kesiapsiagaan kedaruratan nuklir (nuclear emergency preparedness, dan manajemen kecelakaan reaktor terutama untuk kecelakaan parah atau kecelakaan luar dasar desain PLTN. Hasil kajian dapat digunakan sebagai umpan balik untuk kajian keselamatan PSA Level 1 dan PSA Level 2. Kata kunci: PSA level 3, kecelakaan, PWR   Reactor safety assessment of nuclear power plants using probabilistic assessment methodology is most important in addition to the deterministic assessment. The methodology of Level 3 Probabilistic Safety Assessment (PSA is especially required to estimate severe accident or beyond design basis accidents of nuclear power plants. This method is carried out after the Fukushima accident. In this research, the postulations beyond design basis accidentsof PWR AP - 1000 would be taken, and simulated at West Bangka sample site. The

  6. Comparison of DUPIC fuel composition heterogeneity control methods

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Ko, Won Il [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-08-01

    A method to reduce the fuel composition heterogeneity effect on the core performance parameters has been studied for the DUPIC fuel which is made of spent pressurized water reactor (PWR) fuels by a dry refabrication process. This study focuses on the reactivity control method which uses either slightly enriched, depleted, or natural uranium to minimize the cost rise effect on the manufacturing of DUPIC fuel, when adjusting the excess reactivity of the spent PWR fuel. In order to reduce the variation of isotopic composition of the DUPIC fuel, the inter-assembly mixing operation was taken three times. Then, three options have been considered: reactivity control by slightly enriched and depleted uranium, reactivity control by natural uranium for high reactivity spent PWR fuels, and reactivity control by natural uranium for linear reactivity spent PWR fuels. The results of this study have shown that the reactivity of DUPIC fuel can be tightly controlled with the minimum amount of fresh uranium feed. For the reactivity control by slightly enriched and depleted uranium, all the spent PWR fuels can be utilized as the DUPIC fuel and the fraction of fresh uranium feed is 3.4% on an average. For the reactivity control by natural uranium, about 88% of spent PWR fuel can be utilized as the DUPIC fuel when the linear reactivity spent PWR fuels are used, and the amount of natural uranium feed needed to control the DUPIC fuel reactivity is negligible. 13 refs., 6 figs., 16 tabs. (Author)

  7. An intelligent pedagogic tool for teaching the operators of PWR type reactors

    International Nuclear Information System (INIS)

    Cordier, B.; Guillermard, M.

    1990-01-01

    A tool was developed for assisting the instruction of the operators of a PWR type nuclear power plant. For achieving the objectives, an expert system and a simulator were combined. The main objective of the system is to improve the work of the operators in performing remedial actions in case of accident. The simulator applies two IBM PC AT3 and a MC 680 20 microprocessor. The use and the validation of the expert system are presented. The perspectives for the system, implanted on the Tricastin nuclear power plant, are analyzed [fr

  8. Monte Carlo based radial shield design of typical PWR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gul, Anas; Khan, Rustam; Qureshi, M. Ayub; Azeem, Muhammad Waqar; Raza, S.A. [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan). Dept. of Nuclear Engineering; Stummer, Thomas [Technische Univ. Wien (Austria). Atominst.

    2017-04-15

    This paper presents the radiation shielding model of a typical PWR (CNPP-II) at Chashma, Pakistan. The model was developed using Monte Carlo N Particle code [2], equipped with ENDF/B-VI continuous energy cross section libraries. This model was applied to calculate the neutron and gamma flux and dose rates in the radial direction at core mid plane. The simulated results were compared with the reference results of Shanghai Nuclear Engineering Research and Design Institute (SNERDI).

  9. Development of a thermal-hydraulic code for reflood analysis in a PWR experimental loop

    International Nuclear Information System (INIS)

    Alves, Sabrina P.; Mesquita, Amir Z.; Rezende, Hugo C.; Palma, Daniel A.P.

    2017-01-01

    A process of fundamental importance in the event of Loss of Coolant Accident (LOCA) in Pressurized Water nuclear Reactors (PWR) is the reflood of the core or rewetting of nuclear fuels. The Nuclear Technology Development Center (CDTN) has been developing since the 70’s programs to allow Brazil to become independent in the field of reactor safety analysis. To that end, in the 80’s was designed, assembled and commissioned one Rewetting Test Facility (ITR in Portuguese). This facility aims to investigate the phenomena involved in the thermal hydraulic reflood phase of a Loss of Coolant Accident in a PWR nuclear reactor. This work aim is the analysis of physical and mathematical models governing the rewetting phenomenon, and the development a thermo-hydraulic simulation code of a representative experimental circuit of the PWR reactors core cooling channels. It was possible to elaborate and develop a code called REWET. The results obtained with REWET were compared with the experimental results of the ITR, and with the results of the Hydroflut code, that was the old program previously used. An analysis was made of the evolution of the wall temperature of the test section as well as the evolution of the front for two typical tests using the two codes calculation, and experimental results. The result simulated by REWET code for the rewetting time also came closer to the experimental results more than those calculated by Hydroflut code. (author)

  10. Development of a thermal-hydraulic code for reflood analysis in a PWR experimental loop

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Sabrina P.; Mesquita, Amir Z.; Rezende, Hugo C., E-mail: sabrinapral@gmail.com, E-mail: amir@cdtn.brm, E-mail: hcr@cdtn.br, E-mail: hcr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Palma, Daniel A.P., E-mail: dapalma@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    A process of fundamental importance in the event of Loss of Coolant Accident (LOCA) in Pressurized Water nuclear Reactors (PWR) is the reflood of the core or rewetting of nuclear fuels. The Nuclear Technology Development Center (CDTN) has been developing since the 70’s programs to allow Brazil to become independent in the field of reactor safety analysis. To that end, in the 80’s was designed, assembled and commissioned one Rewetting Test Facility (ITR in Portuguese). This facility aims to investigate the phenomena involved in the thermal hydraulic reflood phase of a Loss of Coolant Accident in a PWR nuclear reactor. This work aim is the analysis of physical and mathematical models governing the rewetting phenomenon, and the development a thermo-hydraulic simulation code of a representative experimental circuit of the PWR reactors core cooling channels. It was possible to elaborate and develop a code called REWET. The results obtained with REWET were compared with the experimental results of the ITR, and with the results of the Hydroflut code, that was the old program previously used. An analysis was made of the evolution of the wall temperature of the test section as well as the evolution of the front for two typical tests using the two codes calculation, and experimental results. The result simulated by REWET code for the rewetting time also came closer to the experimental results more than those calculated by Hydroflut code. (author)

  11. Model-based fault detection and isolation of a PWR nuclear power plant using neural networks

    International Nuclear Information System (INIS)

    Far, R.R.; Davilu, H.; Lucas, C.

    2008-01-01

    The proper and timely fault detection and isolation of industrial plant is of premier importance to guarantee the safe and reliable operation of industrial plants. The paper presents application of a neural networks-based scheme for fault detection and isolation, for the pressurizer of a PWR nuclear power plant. The scheme is constituted by 2 components: residual generation and fault isolation. The first component generates residuals via the discrepancy between measurements coming from the plant and a nominal model. The neutral network estimator is trained with healthy data collected from a full-scale simulator. For the second component detection thresholds are used to encode the residuals as bipolar vectors which represent fault patterns. These patterns are stored in an associative memory based on a recurrent neutral network. The proposed fault diagnosis tool is evaluated on-line via a full-scale simulator detected and isolate the main faults appearing in the pressurizer of a PWR. (orig.)

  12. Effect of long-term storage of LWR spent fuel on Pu-thermal fuel cycle

    International Nuclear Information System (INIS)

    Kurosawa, Masayoshi; Naito, Yoshitaka; Suyama, Kenya; Itahara, Kuniyuki; Suzuki, Katsuo; Hamada, Koji

    1998-01-01

    According to the Long-term Program for Research, Development and Utilization of Nuclear Energy (June, 1994) in Japan, the Rokkasho Reprocessing Plant will be operated shortly after the year 2000, and the planning of the construction of the second commercial plant will be decided around 2010. Also, it is described that spent fuel storage has a positive meaning as an energy resource for the future utilization of Pu. Considering the balance between the increase of spent fuels and the domestic reprocessing capacity in Japan, it can be expected that the long-term storage of UO 2 spent fuels will be required. Then, we studied the effect of long-term storage of spent fuels on Pu-thermal fuel cycle. The burnup calculation were performed on the typical Japanese PWR fuel, and the burnup and criticality calculations were carried out on the Pu-thermal cores with MOX fuel. Based on the results, we evaluate the influence of extending the spent fuel storage term on the criticality safety, shielding design of the reprocessing plant and the core life time of the MOX core, etc. As the result of this work on long-term storage of LWR spent fuels, it becomes clear that there are few demerits regarding the lifetime of a MOX reactor core, and that there are many merits regarding the safety aspects of the fuel cycle facilities. Furthermore, long-term storage is meaningful as energy storage for effective utilization of Pu to be improved by technological innovation in future, and it will allow for sufficient time for the important policymaking of nuclear fuel cycle establishment in Japan. (author)

  13. The pseudo-harmonics method: an application involving perturbations caused by control rod insertion in PWR reactors

    International Nuclear Information System (INIS)

    Claro, L.H.; Alvim, A.C.M.; Thome, Z.D.

    1988-08-01

    The objective of this work is to stydy the effect of intense perturbations, such as control rod insertion in the core of PWR reactors, through a perturbation approach consisting of a modified version of the pseudo-harmonics method. A typical one-dimensional PWR reactor model was used as a reference state, from which two perturbations were imposed, simulation gray and black control rod insertion. In the first case, eigenvalue convergence was achieved with the eighth order of approximation approximation and perturbed fluxes and eigenvalue estimates agreed very well with direct calculation results. The second case tested represents a very intense localized perturbation. Oscillation in keff were observed er of approximation increased and the method failed to converge. Results obtained indicate that the pseudo-harmonics method can be used to compute 2 group fluxes and fundamental eigenvalue of perturbated states resulting from gray control rod insertion in PWR reactors. The method is limited, however, by perturbation intensity, as other perturbation methods are. (author) [pt

  14. Reducing the radiotoxicity of PWR cladding hulls by cold-crucible melting

    Energy Technology Data Exchange (ETDEWEB)

    Berthier, P.; Boen, R.; Piccinato, R.; Ladirat, C.

    1994-12-31

    PWR cladding wastes from spent fuel reprocessing plants are highly radiotoxic due to the presence of long-lived alpha-emitting nuclides and certain beta-gamma emitters. Various options are now under consideration for disposal of such wastes. The ``Commissariat a l`Energie Atomique`` is now developing a melting process at Marcoule that promises to diminish their radiotoxicity. Work has focused on two complementary research areas: obtaining a high quality metallic containment matrix and achieving maximum decontamination by concentrating the plutonium and minor actinides together with cesium and strontium in the slag. Vitrification represents a short-term solution for the slag; from a longer-term perspective, this waste form is ideally suited for the SPIN programme. This is an indispensable step toward the possible implementation of an advanced waste management strategy involving actinide separation and transmutation to reduce the long-term nuclear waste disposal hazard. (author). 1 ref., 2 figs., 8 tabs.

  15. Seismic qualification of PWR plant auxiliary feedwater systems

    International Nuclear Information System (INIS)

    Lu, S.C.; Tsai, N.C.

    1983-08-01

    The NRC Standard Review Plan specifies that the auxiliary feedwater (AFW) system of a pressurized water reactor (PWR) is a safeguard system that functions in the event of a Safe Shutdown Earthquake (SSE) to remove the decay heat via the steam generator. Only recently licensed PWR plants have an AFW system designed to the current Standard Review Plan specifications. The NRC devised the Multiplant Action Plan C-14 in order to make a survey of the seismic capability of the AFW systems of operating PWR plants. The purpose of this survey is to enable the NRC to make decisions regarding the need of requiring the licensees to upgrade the AFW systems to an SSE level of seismic capability. To implement the first phase of the C-14 plan, the NRC issued a Generic Letter (GL) 81-14 to all operating PWR licensees requesting information on the seismic capability of their AFW systems. This report summarizes Lawrence Livermore National Laboratory's efforts to assist the NRC in evaluating the status of seismic qualification of the AFW systems in 40 PWR plants, by reviewing the licensees' responses to GL 81-14

  16. Spent fuel sabotage test program, characterization of aerosol dispersal : interim final report

    International Nuclear Information System (INIS)

    Gregson, Michael Warren; Brockmann, John E.; Loiseau, Olivier; Klennert, Lindsay A.; Nolte, Oliver; Molecke, Martin Alan; Autrusson, Bruno A.; Koch, Wolfgang; Pretzsch, Gunter Guido; Brucher, Wenzel; Steyskal, Michele D.

    2008-01-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program provides source-term data that are relevant to plausible sabotage scenarios in relation to spent fuel transport and storage casks and associated risk assessments. We present details and significant results obtained from this program from 2001 through 2007. Measured aerosol results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; measurements of volatile fission product species enhanced sorption--enrichment factors onto respirable particles; and, status on determination of the spent fuel ratio, SFR, needed for scaling studies. Emphasis is provided on recent Phase 3 tests using depleted uranium oxide pellets plus non-radioactive fission product dopants in surrogate spent fuel test rodlets, plus the latest surrogate cerium oxide results and aerosol laboratory supporting calibration work. The DUO 2 , CeO 2 , plus fission product dopant aerosol particle results are compared with available historical data. We also provide a status review on continuing preparations for the final Phase 4 in this program, tests using individual short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. The source-term data, aerosol results, and program design have been tailored to support and guide follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage, aerosol test program was performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission. This program has significant input from, and is cooperatively supported and

  17. Spent fuel sabotage test program, characterization of aerosol dispersal : interim final report.

    Energy Technology Data Exchange (ETDEWEB)

    Gregson, Michael Warren; Brockmann, John E.; Loiseau, Olivier (Institut de Radioprotection et de Surete Nucleaire, France); Klennert, Lindsay A.; Nolte, Oliver (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Molecke, Martin Alan; Autrusson, Bruno A. (Institut de Radioprotection et de Surete Nucleaire, France); Koch, Wolfgang (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Pretzsch, Gunter Guido (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Brucher, Wenzel (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Steyskal, Michele D.

    2008-03-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program provides source-term data that are relevant to plausible sabotage scenarios in relation to spent fuel transport and storage casks and associated risk assessments. We present details and significant results obtained from this program from 2001 through 2007. Measured aerosol results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; measurements of volatile fission product species enhanced sorption--enrichment factors onto respirable particles; and, status on determination of the spent fuel ratio, SFR, needed for scaling studies. Emphasis is provided on recent Phase 3 tests using depleted uranium oxide pellets plus non-radioactive fission product dopants in surrogate spent fuel test rodlets, plus the latest surrogate cerium oxide results and aerosol laboratory supporting calibration work. The DUO{sub 2}, CeO{sub 2}, plus fission product dopant aerosol particle results are compared with available historical data. We also provide a status review on continuing preparations for the final Phase 4 in this program, tests using individual short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. The source-term data, aerosol results, and program design have been tailored to support and guide follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage, aerosol test program was performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission. This program has significant input from, and is cooperatively

  18. PWR Facility Dose Modeling Using MCNP5 and the CADIS/ADVANTG Variance-Reduction Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Blakeman, Edward D [ORNL; Peplow, Douglas E. [ORNL; Wagner, John C [ORNL; Murphy, Brian D [ORNL; Mueller, Don [ORNL

    2007-09-01

    The feasibility of modeling a pressurized-water-reactor (PWR) facility and calculating dose rates at all locations within the containment and adjoining structures using MCNP5 with mesh tallies is presented. Calculations of dose rates resulting from neutron and photon sources from the reactor (operating and shut down for various periods) and the spent fuel pool, as well as for the photon source from the primary coolant loop, were all of interest. Identification of the PWR facility, development of the MCNP-based model and automation of the run process, calculation of the various sources, and development of methods for visually examining mesh tally files and extracting dose rates were all a significant part of the project. Advanced variance reduction, which was required because of the size of the model and the large amount of shielding, was performed via the CADIS/ADVANTG approach. This methodology uses an automatically generated three-dimensional discrete ordinates model to calculate adjoint fluxes from which MCNP weight windows and source bias parameters are generated. Investigative calculations were performed using a simple block model and a simplified full-scale model of the PWR containment, in which the adjoint source was placed in various regions. In general, it was shown that placement of the adjoint source on the periphery of the model provided adequate results for regions reasonably close to the source (e.g., within the containment structure for the reactor source). A modification to the CADIS/ADVANTG methodology was also studied in which a global adjoint source is weighted by the reciprocal of the dose response calculated by an earlier forward discrete ordinates calculation. This method showed improved results over those using the standard CADIS/ADVANTG approach, and its further investigation is recommended for future efforts.

  19. PWR Facility Dose Modeling Using MCNP5 and the CADIS/ADVANTG Variance-Reduction Methodology

    International Nuclear Information System (INIS)

    Blakeman, Edward D.; Peplow, Douglas E.; Wagner, John C.; Murphy, Brian D.; Mueller, Don

    2007-01-01

    The feasibility of modeling a pressurized-water-reactor (PWR) facility and calculating dose rates at all locations within the containment and adjoining structures using MCNP5 with mesh tallies is presented. Calculations of dose rates resulting from neutron and photon sources from the reactor (operating and shut down for various periods) and the spent fuel pool, as well as for the photon source from the primary coolant loop, were all of interest. Identification of the PWR facility, development of the MCNP-based model and automation of the run process, calculation of the various sources, and development of methods for visually examining mesh tally files and extracting dose rates were all a significant part of the project. Advanced variance reduction, which was required because of the size of the model and the large amount of shielding, was performed via the CADIS/ADVANTG approach. This methodology uses an automatically generated three-dimensional discrete ordinates model to calculate adjoint fluxes from which MCNP weight windows and source bias parameters are generated. Investigative calculations were performed using a simple block model and a simplified full-scale model of the PWR containment, in which the adjoint source was placed in various regions. In general, it was shown that placement of the adjoint source on the periphery of the model provided adequate results for regions reasonably close to the source (e.g., within the containment structure for the reactor source). A modification to the CADIS/ADVANTG methodology was also studied in which a global adjoint source is weighted by the reciprocal of the dose response calculated by an earlier forward discrete ordinates calculation. This method showed improved results over those using the standard CADIS/ADVANTG approach, and its further investigation is recommended for future efforts

  20. Statistical analysis of the early phase of SBO accident for PWR

    Energy Technology Data Exchange (ETDEWEB)

    Kozmenkov, Yaroslav, E-mail: y.kozmenkov@hzdr.de; Jobst, Matthias, E-mail: m.jobst@hzdr.de; Kliem, Soeren, E-mail: s.kliem@hzdr.de; Schaefer, Frank, E-mail: f.schaefer@hzdr.de; Wilhelm, Polina, E-mail: p.wilhelm@hzdr.de

    2017-04-01

    Highlights: • Best estimate model of generic German PWR is used in ATHLET-CD simulations. • Uncertainty and sensitivity analysis of the early phase of SBO accident is presented. • Prediction intervals for occurrence of main events are evaluated. - Abstract: A statistical approach is used to analyse the early phase of station blackout accident for generic German PWR with the best estimate system code ATHLET-CD as a computation tool. The analysis is mainly focused on the timescale uncertainties of the accident events which can be detected at the plant. The developed input deck allows variations of all input uncertainty parameters relevant to the case. The list of identified and quantified input uncertainties includes 30 parameters related to the simulated physical phenomena/processes. Time uncertainties of main events as well as the major contributors to these uncertainties are defined. The uncertainty in decay heat has the highest contribution to the uncertainties of the analysed events. A linear regression analysis is used for predicting times of future events from detected times of occurred/past events. An accuracy of event predictions is estimated and verified. The presented statistical approach could be helpful for assessing and improving existing or elaborating additional emergency operating procedures aimed to prevent severe damage of reactor core.

  1. Spent fuel composition database system on WWW. SFCOMPO on WWW Ver.2

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Hiroki [Japan Research Institute, Ltd., Tokyo (Japan); Suyama, Kenya; Nomura, Yasushi; Okuno, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-08-01

    'SFCOMPO on WWW Ver.2' is an advanced version of 'SFCOMPO on WWW' ('Spent Fuel Composition Database System on WWW') released in 1997. This new version has a function of database management by an introduced relational database software 'PostgreSQL' and has various searching methods. All of the data required for the calculation of isotopic composition is available from the web site of this system. This report describes the outline of this system and the searching method using Internet. In addition, the isotopic composition data and the reactor data of the 14 LWRs (7 PWR and 7 BWR) registered in this system are described. (author)

  2. Characterization of Factors affecting IASCC of PWR Core Internals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Woo; Hwang, Seong Sik; Kim, Won Sam [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-09-15

    A lot works have been performed on IASCC in BWR. Recent efforts have been devoted to investigate IASCC in PWR, but the mechanism in PWR is not fully understood yet as compared with that in BWR due to a lack of data from laboratories and fields. Therefore it is strongly needed to review and analyse recent researches of IASCC in both BWR and PWR for establishing a proactive management technology for IASCC of core internals in Korean PWRs. This work is aimed to review mainly recent technical reports on IASCC of stainless steels for core internals in PWR. For comparison, the works on IASCC in BWR were also reviewed and briefly introduced in this report.

  3. Development of the ENVI simulator to estimate Korean SNF flow and its cost - 16060

    International Nuclear Information System (INIS)

    Hwang, Yongsoo; Miller, Ian

    2009-01-01

    This paper describes an integrated model developed by the Korean Atomic Energy Research Institute (KAERI) to simulate options for managing spent nuclear fuel (SNF) in South Korea. A companion paper (Hwang and Miller, 2009) describes a performance assessment model to address the long-term safety of alternative geological disposal options for different waste streams. The model addresses alternative concepts for storage, transportation, and processing of SNF of different types (Candu, PWR), leading up to permanent disposal in geological repositories. It uses the GoldSim software to simulate the logistics of the associated activities, including the associated capital and operating costs. The model's results allow direct comparison of alternative waste management concepts, and predict the sizes and timings of different facilities required. Future versions of the model will also address the uncertainties associated with the different system components in order to provide risk-based assessments. (authors)

  4. Generation of consistent nuclear properties of DUPIC fuel by DRAGON with ENDF/B-VI nuclear data library

    International Nuclear Information System (INIS)

    Shen, W.; Rozon, D.

    1998-01-01

    DRAGON code with 89-groups ENDF/B-VI cross section library was used in this paper to generate consistent nuclear properties of DUPIC fuel. The reference feed material used for the DUPIC fuel cycle is a 17x17 French standard 900 MWe PWR spent fuel assembly with 3.2 w/o initial enrichment and 32500 MWD/7 discharge burnup. The PWR fuel assembly was modeled by JPMT/SYBILT transport method in DRAGON to generate nuclide fields of spent PWR fuel. The resultant nuclide fields constitute the initial fuel composition files for reference DUPIC fuel which can be accessed by DRAGON for CANDU 2D cluster geometry depletion calculation and 3D supercell calculation. Because of uneven spatial power distribution in PWR assemblies and full core, unexpected transition cycle, and various fuel management strategy, the spent PWR fuel composition is expected to be different from one assembly to the next. This heterogeneity was characterized also by modeling various spent PWR fuel assembly types in the paper. (author)

  5. Development of spent solvent treatment process by a submerged combustion technique

    International Nuclear Information System (INIS)

    Uchiyama, Gunzo; Maeda, Mitsuru; Fujine, Sachio; Amakawa, Masayuki; Uchida, Katsuhide; Chida, Mitsuhisa

    1994-01-01

    An experimental study using a bench-scale equipment of 1 kg-simulated spent solvents per hour has been conducted in order to evaluate the applicability of a submerged combustion technique to the treatment of spent solvents contaminated with TRU elements. This report describes the experimental results on the combustion characteristics of the simulated spent solvents of tri-n-butyl phosphate and/or n-dodecane, and on the distribution behaviors of combustion products such as phosphoric acid, Ru, I, Zr and lanthanides as TRU simulants in the submerged combustion process. Also the experimental results of TRU separation from phosphoric acid solution by co-precipitation using bismuth phosphate are reported. It was shown that the submerged combustion technique was applicable to the treatment of spent solvents including the distillation residues of the solvent. Based on the experimental data, a new treatment process of spent solvent was proposed which consisted of submerged combustion, co-precipitation using bismuth phosphate, ceramic membrane filtration, cementation of TRU lean phosphate, and vitrification of TRU rich waste. (author)

  6. PWR and WWER fuel performance. A comparison of major characteristics

    International Nuclear Information System (INIS)

    Weidinger, H.

    2006-01-01

    PWR and WWER fuel technologies have the same basic performance targets: most effective use of the energy stored in the fuel and highest possible reliability. Both fuel technologies use basically the same strategies to reach these targets: 1) Optimized reload strategies; 2) Maximal use of structural material with low neutron cross sections; 3) Decrease the fuel failure frequency towards a 'zero failure' performance by understanding and eliminating the root causes of those defects. The key driving force of the technology of both, PWR and WWER fuel is high burn-up. Presently a range of 45 - 50 MWD/kgU have been reached commercially for PWR and WWER fuel. The main technical limitations to reach high burn-up are typically different for PWR and WWER fuel: for PWR fuel it is the corrosion and hydrogen uptake of the Zr-based materials; for WWER fuel it is the mechanical and dimensional stability of the FA (and the whole core). Corrosion and hydrogen uptake of Zr-materials is a 'non-problem' for WWER fuel. Other performance criteria that are important for high burn-up are the creep and growth behaviour of the Zr materials and the fission gas release in the fuel rod. There exists a good and broad data base to model and design both fuel types. FA and fuel rod vibration appears to be a generic problem for both fuel types but with more evidence for PWR fuel performance reliability. Grid-to-rod fretting is still a major issue in the fuel failure statistics of PWR fuel. Fuel rod cladding defects by debris fretting is no longer a key problem for PWR fuel, while it still appears to be a significant root cause for WWER fuel failures. 'Zero defect' fuel performance is achievable with a high probability, as statistics for US PWR and WWER-1000 fuel has shown

  7. Bioremediation of 60Co from simulated spent decontamination solutions

    International Nuclear Information System (INIS)

    Rashmi, K.; Naga Sowjanya, T.; Maruthi Mohan, P.; Balaji, V.; Venkateswaran, G.

    2004-01-01

    Bioremediation of 60 Co from simulated spent decontamination solutions by utilizing different biomass of (Neurospora crassa, Trichoderma viridae, Mucor recemosus, Rhizopus chinensis, Penicillium citrinum, Aspergillus niger and, Aspergillus flavus) fungi is reported. Various fungal species were screened to evaluate their potential for removing cobalt from very low concentrations (0.03-0.16 μM) in presence of a high background of iron (9.33 mM) and nickel (0.93 mM) complexed with EDTA (10.3 mM). The different fungal isolates employed in this study showed a pickup of cobalt in the range 8-500 ng/g of dry biomass. The [Fe]/[Co] and [Ni]/[Co] ratios in the solutions before and after exposure to the fungi were also determined. At micromolar level the cobalt pickup by many fungi especially the mutants of N. crassa is seen to be proportional to the initial cobalt concentration taken in the solution. However, R. chinensis exhibits a low but iron concentration dependent cobalt pickup. Prior saturating the fungi with excess of iron during their growth showed the presence of selective cobalt pickup sites. The existence of cobalt specific sorption sites is shown by a model experiment with R. chinensis wherein at a constant cobalt concentration (0.034 μM) and varying iron concentrations so as to yield [Fe/Co] initial ratios in solution of 10, 100, 1000 and 287 000 have all yielded a definite Co pickup capacity in the range 8-47 ng/g. The presence of Cr(III)EDTA (3 mM) in solution along with complexed Fe and Ni has not influenced the cobalt removal. The significant feature of this study is that even when cobalt is present in trace level (sub-micromolar) in a matrix of high concentration (millimolar levels) of iron, nickel and chromium, a situation typically encountered in spent decontamination solutions arising from stainless steel based primary systems of nuclear reactors, a number of fungi studied in this work showed a good sensitivity for cobalt pickup

  8. Use of 'tail' as spent fuel dilution factor of Angra-1 (PWR) for use in the Embalse (Candu) reactor

    International Nuclear Information System (INIS)

    Mai, Luiz Antonio; Maiorino, Jose Rubens

    1995-01-01

    This work purposes a process to use the tail of isotopic enrichment as a factor of dilution (blending) for the burned fuel of Angra-I reactor (PWR) for final utilization in the Embalse (Candu). It was made use of the same technic in previous works that used natural uranium. For this purpose, it was made a tail parametrization inside of the traditional limits of enrichment (between 0.2 and 0.3%). The study showed that the tail utilization represents great savings for the uranium supplies and environment and economic advantages. (author). 8 refs, 4 figs, 11 tabs

  9. Numerical simulation of minor actinide recovery behaviour in batch processing of spent metallic fuel by electrorefining

    Energy Technology Data Exchange (ETDEWEB)

    Nawada, H P; Bhat, N P [Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Balasubramanian, G R [Atomic Energy Commission, Mumbai (India)

    1994-06-01

    Numerical simulation of electro-transport of fuel actinides (FAs), minor actinides (MAs) and rare earths (REs) in the electro-refiner (ER) for pyrochemical reprocessing of a typical spent IFR metallic fuel has been attempted based on improved thermo-chemical model developed for application to multi-component system in the ER. Optimization of MA recovery and decontamination factors (DFs) for MAs and REs in batch processing is presented. (author). 7 refs., 4 figs., 1 tab.

  10. PWR core follow calculations using the ELCOS code system

    International Nuclear Information System (INIS)

    Grimm, P.; Paratte, J.M.

    1990-01-01

    The ELCOS code system developed at PSI is used to simulate a cycle of a PWR in which one fifth of the assemblies are MOX fuel. The reactor and the calculational methods are briefly described. The calculated critical boron concentrations and power distributions are compared with the measurements at the plant. Although the critical boron concentration is somewhat overpredicted and the computed power distributions are slightly flatter than the measured ones the results of the calculations agree generally well with the measured data. (author) 1 tab., 8 figs., 6 refs

  11. Bituminization of simulated waste, spent resins, evaporator concentrates and animal ashes by extrusion process

    International Nuclear Information System (INIS)

    Grosche Filho, C.E.; Chandra, U.

    1986-01-01

    The results of the study of simulated radwaste, spent ion-exchange resins, borates/evaporator-concentrates and animal ashes, in bituminized form, are presented and discussed. Distilled and oxidized bitumen were used for characterizing the crude material and simulated wastes-bitumen mixtures of varying weight composition 30, 40, 50, 60% by weight the dry waste material. The asphaltine and parafin contents in the bitumens were determined. Some additives and clays were used aiming best characteristics of solidified wastes. For leaching studies, granular ion-exchange resins were loaded with Cs 134 and mixtures of resins-bitumens were prepared. The leaching studies were executed using the IAEA recommendation and the ISO method. It was used a conventional screw-extruder, used in plastic industry, to determine operational conditions and process difficulties. Mixtures resins-bitumen and concentrate-bitumen in differents operational condition were prepared and analysed. (Author) [pt

  12. Sizewell 'B' PWR reference design

    International Nuclear Information System (INIS)

    1982-04-01

    The reference design for a PWR power station to be constructed as Sizewell 'B' is presented in 3 volumes containing 14 chapters and in a volume of drawings. The report describes the proposed design and provides the basis upon which the safety case and the Pre-Construction Safety Report have been prepared. The station is based on a 3425MWt Westinghouse PWR providing steam to two turbine generators each of 600 MW. The layout and many of the systems are based on the SNUPPS design for Callaway which has been chosen as the US reference plant for the project. (U.K.)

  13. The influence of simultaneous or sequential test conditions in the properties of industrial polymers, submitted to PWR accident simulations

    International Nuclear Information System (INIS)

    Carlin, F.; Alba, C.; Chenion, J.; Gaussens, G.; Henry, J.Y.

    1986-10-01

    The effect of PWR plant normal and accident operating conditions on polymers forms the basis of nuclear qualification of safety-related containment equipment. This study was carried out on the request of safety organizations. Its purpose was to check whether accident simulations carried out sequentially during equipment qualification tests would lead to the same deterioration as that caused by an accident involving simultaneous irradiation and thermodynamic effects. The IPSN, DAS and the United States NRC have collaborated in preparing this study. The work carried out by ORIS Company as well as the results obtained from measurement of the mechanical properties of 8 industrial polymers are described in this report. The results are given in the conclusion. They tend to show that, overall, the most suitable test cycle for simulating accident operating conditions would be one which included irradiation and consecutive thermodynamic shock. The results of this study and the results obtained in a previous study, which included the same test cycles, except for more severe thermo-ageing, have been compared. This comparison, which was made on three elastomers, shows that ageing after the accident has a different effect on each material [fr

  14. Burnup Credit of French PWR-MOx fuels: methodology and associated conservatisms with the JEFF-3.1.1 evaluation

    International Nuclear Information System (INIS)

    Chambon, A.

    2013-01-01

    Considering spent fuel management (storage, transport and reprocessing), the approach using 'fresh fuel assumption' in criticality-safety studies results in a significant conservatism in the calculated value of the system reactivity. The concept of Burnup Credit (BUC) consists in considering the reduction of the spent fuel reactivity due to its burnup. A careful BUC methodology, developed by CEA in association with AREVA-NC was recently validated and written up for PWR-UOx fuels. However, 22 of 58 French reactors use MOx fuel, so more and more irradiated MOx fuels have to be stored and transported. As a result, why industrial partners are interested in this concept is because taking into account this BUC concept would enable for example a load increase in several fuel cycle devices. Recent publications and discussions within the French BUC Working Group highlight the current interest of the BUC concept in PWR-MOx spent fuel industrial applications. In this case of PWR-MOx fuel, studies show in particular that the 15 FPs selected thanks to their properties (absorbing, stable, non-gaseous) are responsible for more than a half of the total reactivity credit and 80% of the FPs credit. That is why, in order to get a conservative and physically realistic value of the application k eff and meet the Upper Safety Limit constraint, calculation biases on these 15 FPs inventory and individual reactivity worth should be considered in a criticality-safety approach. In this context, thanks to an exhaustive literature study, PWR-MOx fuels particularities have been identified and by following a rigorous approach, a validated and physically representative BUC methodology, adapted to this type of fuel has been proposed, allowing to take fission products into account and to determine the biases related to considered isotopes inventory and to reactivity worth. This approach consists of the following studies: - isotopic correction factors determination to guarantee the criticality

  15. Spent fuels conditioning and irradiated nuclear fuel elements examination: the STAR facility and its abilities

    Energy Technology Data Exchange (ETDEWEB)

    Boussard, F.; Huillery, R. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d`Etudes des Combustibles; Averseng, J.L.; Serpantie, J.P. [Novatome Industries, 92 - Le Plessis-Robinson (France)

    1994-12-31

    This paper is a presentation of the STAR facility, a high activity laboratory located in Cadarache Nuclear Research Center (France). The purpose of the STAR facility and of the associated processes, is the treatment, cleaning and conditioning of spent fuels from Gas Cooled Reactors (GCR) and in particular of about 2300 spent GCR fuel cartridges irradiated more than 20 years ago in Electricite de France (EDF) or CEA Uranium Graphite GCR. The processes are: to separate the nuclear fuel from the clad remains, to chemically stabilize the nuclear material and to condition it in sealed canisters. An additional objective of STAR consists in non-destructive or destructive examinations and tests on PWR rods or FBR pins in the frame of fuel development programs. The paper describes the STAR facility conceptual design (safety design rules, hot cells..) and the different options corresponding to the GCR reconditioning process and to further research and development works on various fuel types. (J.S.). 3 figs.

  16. Spent fuels conditioning and irradiated nuclear fuel elements examination: the STAR facility and its abilities

    International Nuclear Information System (INIS)

    Boussard, F.; Huillery, R.

    1994-01-01

    This paper is a presentation of the STAR facility, a high activity laboratory located in Cadarache Nuclear Research Center (France). The purpose of the STAR facility and of the associated processes, is the treatment, cleaning and conditioning of spent fuels from Gas Cooled Reactors (GCR) and in particular of about 2300 spent GCR fuel cartridges irradiated more than 20 years ago in Electricite de France (EDF) or CEA Uranium Graphite GCR. The processes are: to separate the nuclear fuel from the clad remains, to chemically stabilize the nuclear material and to condition it in sealed canisters. An additional objective of STAR consists in non-destructive or destructive examinations and tests on PWR rods or FBR pins in the frame of fuel development programs. The paper describes the STAR facility conceptual design (safety design rules, hot cells..) and the different options corresponding to the GCR reconditioning process and to further research and development works on various fuel types. (J.S.). 3 figs

  17. Program of monitoring PWR fuel in Spain; Programa de Vigilancia de Combustible pwr en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Murillo, J. C.; Quecedo, M.; Munoz-Roja, C.

    2015-07-01

    In the year 2000 the PWR utilities: Centrales Nucleares Almaraz-Trillo (CNAT) and Asociacion Nuclear Asco-Vandellos (ANAV), and ENUSA Industrias Avanzadas developed and executed a coordinated strategy named PIC (standing for Coordinated Research Program), for achieving the highest level of fuel reliability. The paper will present the scope and results of this program along the years and will summarize the way the changes are managed to ensure fuel integrity. The excellent performance of the ENUSA manufactured fuel in the PWR Spanish NPPs is the best indicator that the expectations on this program are being met. (Author)

  18. Laser surveillance system for spent fuel

    International Nuclear Information System (INIS)

    Fiarman, S.; Zucker, M.S.; Bieber, A.M. Jr.

    1980-01-01

    A laser surveillance system installed at spent fuel storage pools will provide the safeguard inspector with specific knowledge of spent fuel movement that cannot be obtained with current surveillance systems. The laser system will allow for the division of the pool's spent fuel inventory into two populations - those assemblies which have been moved and those which haven't - which is essential for maximizing the efficiency and effectiveness of the inspection effort. We have designed, constructed, and tested a laser system and have used it with a simulated BWR assembly. The reflected signal from the zircaloy rods depends on the position of the assembly, but in all cases is easily discernable from the reference scan of background with no assembly

  19. Conservatism in the actinide-only burnup credit for PWR spent nuclear fuel packages

    International Nuclear Information System (INIS)

    Lancaster, D.B.; Rahimi, M.; Thornton, J.

    1996-01-01

    In May 1995, the U.S. Department of Energy (DOE) submitted a topical report to the U.S. Nuclear Regulatory Commission (NRC) to gain actinide-only burnup credit for spent nuclear fuel (SNF) storage, transportation, or disposal packages. After approval of this topical report, DOE intends further submittals to the NRC to acquire additional burnup credit (e.g., the topical does not use fission products and is limited to only the first 100 yr of disposal). The NRC has responded to the topical with its preliminary questions. To aid in evaluation of the method, a review of the conservatism in the actinide-only burnup credit methodology was performed. An overview of the actinide-only burnup credit methodology is presented followed by a summary of the conservatism

  20. Calculation of source term in spent PWR fuel assemblies for dry storage and shipping cask design; Calculo de los terminos fuente de combustibles irradiados PWR para el diseno de contenedores de almacenamiento y transporte

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J L; Lopez, J

    1986-07-01

    Using the ORIGEN-2 Coda, the decay heat and neutron and photon sources for an irradiated PWR fuel element have been calculated. Also, parametric studies on the behaviour of the magnitudes with the burn-up, linear heat power and irradiation and cooling times were performed. Finally, a comparison between our results and other design calculations shows a good agreement and confirms the validity of the used method. (Author) 6 refs.

  1. Simplified model of a PWR primary circuit

    International Nuclear Information System (INIS)

    Souza, A.L.; Faya, A.J.G.

    1988-07-01

    The computer program RENUR was developed to perform a very simplified simulation of a typical PWR primary circuit. The program has mathematical models for the thermal-hydraulics of the reactor core and the pressurizer, the rest of the circuit being treated as a single volume. Heat conduction in the fuel rod is analyzed by a nodal model. Average and hot channels are treated so that bulk response of the core and DNBR can be evaluated. A homogenenous model is employed in the pressurizer. Results are presented for a steady-state situation as well as for a loss of load transient. Agreement with the results of more elaborate computer codes is good with substantial reduction in computer costs. (author) [pt

  2. Water chemistry in PWR

    International Nuclear Information System (INIS)

    Abe, Kenji

    1987-01-01

    This article outlines major features and basic concept of the secondary system of PWR's and water properties control measures adopted in recent PWR plants. The secondary system of a PWR consists of a condenser cooling pipe (aluminum-brass, titanium, or stainless steel), low-pressure make-up water heating pipe (aluminum-brass or stainless steel), high-ressure make-up water heating pipe (cupro-nickel or stainless steel), steam generator heat-transfer pipe (Inconel 600 or 690), and bleed/drain pipe (carbon steel, low alloy steel or stainless steel). Other major pipes and equipment are made of carbon steel or stainless steel. Major troubles likely to be caused by water in the secondary system include reduction in wall thickness of the heat-transfer pipe, stress corrosion cracking in the heat-transfer pipe, and denting. All of these are caused by local corrosion due to concentration of purities contained in water. For controlling the water properties in the secondary system, it is necessary to prevent impurities from entering the system, to remove impurities and corrosion products from the system, and to prevent corrosion of apparatus making up the system. Measures widely adopted for controlling the formation of IGA include the addition of boric acid for decreasing the concentration of free alkali and high hydrazine operation for providing a highly reducing atmospere. (Nogami, K.)

  3. Digital mock-up for the spent fuel disassembly processes

    International Nuclear Information System (INIS)

    Lee, J. Y.; Kim, S. H.; Song, T. G.; Kim, Y. H.; Hong, D. H.; Yoon, J. S.

    2000-12-01

    In this study, the graphical design system is developed and the digital mock-up is implemented for designing the spent fuel handling and disassembly processes. The system consists of a 3D graphical modeling system, a devices assembling system, and a motion simulation system. This system is used throughout the design stages from the conceptual design to the motion analysis. By using this system, all the process involved in the spent fuel handling and disassembly processes are analyzed and optimized. Also, this system is used in developing the on-line graphic simulator which synchronously simulates the motion of the equipment in a real time basis by connecting the device controllers with the graphic server through the TCP/IP network. This simulator can be effectively used for detecting the malfunctions of the process equipment which is remotely operated. Thus, the simulator enhances the reliability and safety of the spent fuel handling process by providing the remote monitoring function of the process. The graphical design system and the digital mock-up system can be effectively used for designing the process equipment, as well as the optimized process and maintenance process. And the on-line graphic simulator can be an alternative of the conventional process monitoring system which is a hardware based system

  4. Reactivity loss validation of high burn-up PWR fuels with pile-oscillation experiments in MINERVE

    Energy Technology Data Exchange (ETDEWEB)

    Leconte, P.; Vaglio-Gaudard, C.; Eschbach, R.; Di-Salvo, J.; Antony, M.; Pepino, A. [CEA, DEN, DER, Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

    2012-07-01

    The ALIX experimental program relies on the experimental validation of the spent fuel inventory, by chemical analysis of samples irradiated in a PWR between 5 and 7 cycles, and also on the experimental validation of the spent fuel reactivity loss with bum-up, obtained by pile-oscillation measurements in the MINERVE reactor. These latter experiments provide an overall validation of both the fuel inventory and of the nuclear data responsible for the reactivity loss. This program offers also unique experimental data for fuels with a burn-up reaching 85 GWd/t, as spent fuels in French PWRs never exceeds 70 GWd/t up to now. The analysis of these experiments is done in two steps with the APOLLO2/SHEM-MOC/CEA2005v4 package. In the first one, the fuel inventory of each sample is obtained by assembly calculations. The calculation route consists in the self-shielding of cross sections on the 281 energy group SHEM mesh, followed by the flux calculation by the Method Of Characteristics in a 2D-exact heterogeneous geometry of the assembly, and finally a depletion calculation by an iterative resolution of the Bateman equations. In the second step, the fuel inventory is used in the analysis of pile-oscillation experiments in which the reactivity of the ALIX spent fuel samples is compared to the reactivity of fresh fuel samples. The comparison between Experiment and Calculation shows satisfactory results with the JEFF3.1.1 library which predicts the reactivity loss within 2% for burn-up of {approx}75 GWd/t and within 4% for burn-up of {approx}85 GWd/t. (authors)

  5. Burn-up credit criticality safety benchmark phase VII - UO2 fuel: study of spent fuel compositions for long-term disposal

    International Nuclear Information System (INIS)

    2012-01-01

    After spent nuclear fuel (SNF) is discharged from a nuclear reactor, fuel composition and reactivity continue to vary as a function of time due to the decay of unstable nuclides. Accurate predictions of the concentrations of long-lived radionuclides in SNF, which represent a significant potential hazard to human beings and to the environment over a very long period, are particularly necessary for radiological dose assessments. This report assesses the ability of existing computer codes and associated nuclear data to predict isotopic compositions and their corresponding neutron multiplication factor (k eff ) values for pressurised-water-reactor (PWR) UO 2 fuel at 50 GWd/MTU burn-up in a generic spent fuel cask configuration. Fuel decay compositions and k eff values have been calculated for 30 post-irradiation time steps out to one million years

  6. ABB advanced BWR and PWR fuel

    International Nuclear Information System (INIS)

    Junkrans, S.; Helmersson, S.; Andersson, S.

    1999-01-01

    Fuel designed and fabricated by ABB is now operating in 40 PWRs and BWRs in Europe, the United States and Korea. An excellent fuel reliability track record has been established. High burnups are proven for both BWR and PWR. Thermal margin improving features and advanced burnable absorber concepts enable the utilities to adopt demanding duty cycles to meet new economic objectives. In particular we note the excellent reliability record of ABB PWR fuel equipped with Guardian TM debris filter, proven to meet the -6 rod-cycles fuel failure goal, and the out-standing operating record of the SVEA 10x10 BWR fuel, where ABB is the only vendor to date with multi batch experience to high burnup. ABB is dedicated to maintain high fuel reliability as well as continually improve and develop a broad line of BWR and PWR products. ABB's development and fuel follow-up activities are performed in close co-operation with its customers. (orig.)

  7. Neutron and Gamma Shielding Evaluation for KN-12 Spent Nuclear Fuel Transport Cask

    Energy Technology Data Exchange (ETDEWEB)

    Cho, I. J.; Min, D. K.; Lee, J. C.; You, G. S.; Yoon, J. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chang, G. H.; Jeong, Y. C.; Ko, Y. W. [Korea Hydro and Nuclear Power Co., LTD., Kori (Korea, Republic of)

    2007-07-01

    The CASTOR KN-12 is designed to transport 12 intact PWR spent fuel assemblies for dry and wet transportation conditions. The overall cask length is 480.1 cm with a wall thickness 37.5 cm. Shield for the KN-12 is maintained by the thick walled cask body and the lid. For neutron shielding, polyethylene rods (PE) are arranged in longitudinal boreholes in the vessel wall and PE-plates are inserted between the cask lid and lid side shock absorber and between the cask bottom and bottom steel plate. The shielding evaluation of the cask has been performed with MCNP to confirm the shielding integrity of cask for pre-service inspection of transport cask.

  8. Substitution of cobalt alloying in PWR primary circuit gate valves

    International Nuclear Information System (INIS)

    Cachon, L.; Sudreau, F.; Brunel, L.

    1995-01-01

    The object of this study is qualify cobalt-free alternative alloys for valve applications. This paper focus on tribological characterization of numerous coatings is done by using the first one, of a classical type. Then tests are performed with the second one which simulates solicitations supported by gate valves in primary circuit of PWR. 35% Ni-Cr - 65% Cr 3 C 2 coating, deposited by detonation gun technology, gives us hope to find a substitute of Stelite 6. (author). 5 refs., 16 figs., 2 tabs

  9. Pacific Northwest Laboratory (PNL) spent fuel transportation and handling facility models

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, W.B.; Bower, J.C.; Burnett, R.A.; Engel, R.L.; Rolland, C.W.

    1979-09-01

    A spent fuel logistics study was conducted in support of the US DOE program to develop facilities for preparing spent unreprocessed fuel from commercial LWRs for geological storage. Two computerized logistics models were developed. The first one was the site evaluation model. Two studies of spent fuel handling facility and spent fuel disposal facility siting were completed; the first postulates a single spent fuel handling facility located at any of six DOE laboratory sites, while the second study examined siting strategies with the spent fuel repository relative to the spent fuel handling facility. A second model to conduct storage/handling facility simulations was developed. (DLC)

  10. Pacific Northwest Laboratory (PNL) spent fuel transportation and handling facility models

    International Nuclear Information System (INIS)

    Andrews, W.B.; Bower, J.C.; Burnett, R.A.; Engel, R.L.; Rolland, C.W.

    1979-09-01

    A spent fuel logistics study was conducted in support of the US DOE program to develop facilities for preparing spent unreprocessed fuel from commercial LWRs for geological storage. Two computerized logistics models were developed. The first one was the site evaluation model. Two studies of spent fuel handling facility and spent fuel disposal facility siting were completed; the first postulates a single spent fuel handling facility located at any of six DOE laboratory sites, while the second study examined siting strategies with the spent fuel repository relative to the spent fuel handling facility. A second model to conduct storage/handling facility simulations was developed

  11. Development of simulation code for FBR spent fuel dissolution with rotary drum type continuous dissolver

    International Nuclear Information System (INIS)

    Sano, Yuichi; Katsurai, Kiyomichi; Washiya, Tadahiro; Koizumi, Tsutomu; Matsumoto, Satoshi

    2011-01-01

    Japan Atomic Energy Agency (JAEA) has been studying rotary drum type continuous dissolver for FBR spent fuel dissolution. For estimating the fuel dissolution behavior under several operational conditions in this dissolver, we have been developing the simulation code, PLUM, which mainly consists of 3 modules for calculating chemical reaction, mass transfer and thermal balance in the rotary drum type continuous dissolver. Under the various conditions where dissolution experiments were carried out with the batch-wise dissolver for FBR spent fuel and with the rotary drum type continuous dissolver for UO 2 fuel, it was confirmed that the fuel dissolution behaviors calculated by the PLUM code showed good agreement with the experimental ones. Based on this result, the condition for obtaining the dissolver solution with high HM (heavy metal : U and Pu) concentration (∼500g/L), which is required for the next step, i.e. crystallization process, was also analyzed by this code and appropriate operational conditions with the rotary drum type continuous dissolver, such as feedrate, concentration and temperature of nitric acid, could be clarified. (author)

  12. The GC computer code for flow sheet simulation of pyrochemical processing of spent nuclear fuels

    International Nuclear Information System (INIS)

    Ahluwalia, R.K.; Geyer, H.K.

    1996-01-01

    The GC computer code has been developed for flow sheet simulation of pyrochemical processing of spent nuclear fuel. It utilizes a robust algorithm SLG for analyzing simultaneous chemical reactions between species distributed across many phases. Models have been developed for analysis of the oxide fuel reduction process, salt recovery by electrochemical decomposition of lithium oxide, uranium separation from the reduced fuel by electrorefining, and extraction of fission products into liquid cadmium. The versatility of GC is demonstrated by applying the code to a flow sheet of current interest

  13. Determination of uncertainties of PWR spent fuel radionuclide inventory based on real operational history data

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Ivan; Bosbach, Dirk [Institute of Energy- and Climate Research, Nuclear Waste Management and Reactor Safety Research, IEK-6, Forschungszentrum, Julich GmbH, (Germany); Aksyutina, Yuliya; Tietze-Jaensch, Holger [German Product Control Office for Radioactive Waste (PKS), Institute of Energy- and Climate Research, Nuclear Waste Management and Reactor Safety Research, IEK-6, Forschungszentrum Julich GmbH, (Germany)

    2015-07-01

    A requisite for the official approval of the safe final disposal of SNF is a comprehensive specification and declaration of the nuclear inventory in SNF by the waste supplier. In the verification process both the values of the radionuclide (RN) activities and their uncertainties are required. Burn-up (BU) calculations based on typical and generic reactor operational parameters do not encompass any possible uncertainties observed in real reactor operations. At the same time, the details of the irradiation history are often not well known, which complicates the assessment of declared RN inventories. Here, we have compiled a set of burnup calculations accounting for the operational history of 339 published or anonymized real PWR fuel assemblies (FA). These histories were used as a basis for a 'SRP analysis', to provide information about the range of the values of the associated secondary reactor parameters (SRP's). Hence, we can calculate the realistic variation or spectrum of RN inventories. SCALE 6.1 has been employed for the burn-up calculations. The results have been validated using experimental data from the online database - SFCOMPO-1 and -2. (authors)

  14. Determination of uncertainties of PWR spent fuel radionuclide inventory based on real operational history data

    International Nuclear Information System (INIS)

    Fast, Ivan; Bosbach, Dirk; Aksyutina, Yuliya; Tietze-Jaensch, Holger

    2015-01-01

    A requisite for the official approval of the safe final disposal of SNF is a comprehensive specification and declaration of the nuclear inventory in SNF by the waste supplier. In the verification process both the values of the radionuclide (RN) activities and their uncertainties are required. Burn-up (BU) calculations based on typical and generic reactor operational parameters do not encompass any possible uncertainties observed in real reactor operations. At the same time, the details of the irradiation history are often not well known, which complicates the assessment of declared RN inventories. Here, we have compiled a set of burnup calculations accounting for the operational history of 339 published or anonymized real PWR fuel assemblies (FA). These histories were used as a basis for a 'SRP analysis', to provide information about the range of the values of the associated secondary reactor parameters (SRP's). Hence, we can calculate the realistic variation or spectrum of RN inventories. SCALE 6.1 has been employed for the burn-up calculations. The results have been validated using experimental data from the online database - SFCOMPO-1 and -2. (authors)

  15. Design of a steam generator for PWR power plants and steady state simulation

    International Nuclear Information System (INIS)

    Ferreira, W.J.

    1982-01-01

    A procedure and a computer code for the thermal design of a steam generator for PWR power plants is developed. A vertical integral steam generator with inverted U-tubes and natural circulation of the secondary side is selected for modelling. Primary fluid velocity and recirculation ratio are varied to obtain the preliminary dimensions. Further, adjustments are made through iteractive solution of the equations of conservation of mass, energy and momentum. An agreement is found between design calculations for steam generators of different capacities and existing designs. (Author) [pt

  16. Optimization of refueling-shuffling scheme in PWR core by random search strategy

    International Nuclear Information System (INIS)

    Wu Yuan

    1991-11-01

    A random method for simulating optimization of refueling management in a pressurized water reactor (PWR) core is described. The main purpose of the optimization was to select the 'best' refueling arrangement scheme which would produce maximum economic benefits under certain imposed conditions. To fulfill this goal, an effective optimization strategy, two-stage random search method was developed. First, the search was made in a manner similar to the stratified sampling technique. A local optimum can be reached by comparison of the successive results. Then the other random experiences would be carried on between different strata to try to find the global optimum. In general, it can be used as a practical tool for conventional fuel management scheme. However, it can also be used in studies on optimization of Low-Leakage fuel management. Some calculations were done for a typical PWR core on a CYBER-180/830 computer. The results show that the method proposed can obtain satisfactory approach at reasonable low computational cost

  17. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Yoon, J. S.; Hong, H. D.; Kim, Y. H.

    2001-03-01

    Since the amount of the spent fuel rapidly increases, the current R and D activities are focused on the technology development related with the storage and utilization of the spent fuel. In this research, to provide such a technology, the mechanical head-end process has been developed. In detail, the swing and shock-free crane and the RCGLUD(Remote Cask Grappling and Lid Unbolting Device) were developed for the safe transportation of the spent fuel assembly, the LLW drum and the transportation cask. Also, the disassembly devices required for the head-end process were developed. This process consists of an assembly downender, a rod extractor, a rod cutter, a fuel decladding device, a skeleton compactor, a force-rectifiable manipulator for the abnormal spent fuel disassembly, and the gantry type telescopic transporter, etc. To provide reliability and safety of these devices, the 3 dimensional graphic design system is developed. In this system, the mechanical devices are modelled and their operation is simulated in the virtual environment using the graphic simulation tools. So that the performance and the operational mal-function can be investigated prior to the fabrication of the devices. All the devices are tested and verified by using the fuel prototype at the mockup facility

  18. Residual salts separation from metal reduced electrolytically in a LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Hur, Jin Mok; Oh, Seung Chul; Hong, Sun Seok; Seo, Chung Seok; Park, Seong Won

    2005-01-01

    The PWR spent oxide fuel can be reduced electrolytically in a hot molten salt for the conditioning and the preparation of a metallic fuel. Then the metal product is smelted into an ingot to be treated in the post process. Incidentally, the residual salt which originated from the molten salt and spent fuel elements should be separated from the metal product during the smelting. In this work, we constructed a surrogate material system to simulate the salt separation from the reduced spent fuel and studied the vaporization behaviors of the salts

  19. Dry refabrication technology development of spent nuclear fuel

    International Nuclear Information System (INIS)

    Park, Geun Il; Lee, J. W.; Song, K. C.

    2012-04-01

    Key technologies highly applicable to the development of advanced nuclear fuel cycle for the spent fuel recycling were developed using spent fuel and simulated spent fuel (SIMFUEL). In the frame work of dry process oxide products fabrication and the property characteristics of dry process products, hot cell experimental data for decladding, powdering and oxide product fabrication from low and high burnup spent fuel have been produced, basic technology for fabrication of spent fuel standard material has been developed, and remotely modulated welding equipment has been designed and fabricated. Also, fabrication technology of simulated dry process products was established and property models were developed based on reproducible property measurement data. In the development of head-end technology for dry refabrication of spent nuclear fuel and key technologies for volume reduction of head-end process waste which are essential in back-end fuel cycle field including pyro-processing, advanced head-end unit process technology development includes the establishment of experimental conditions for synthesis of porous fuel particles using a granulating furnace and for preparation of UO2 pellets, and fabrication and performance demonstration of engineering scale equipment for off-gas treatment of semi-volatile nuclides, and development of phosphate ceramic technology for immobilization of used filters. Radioactivation characterization and treatment equipment design of metal wastes from pretreatment process was conducted, and preliminary experiments of chlorination/electrorefining techniques for the treatment of hull wastes were performed. Based on the verification of the key technologies for head-end process via the hot-cell tests using spent nuclear fuel, pre-conceptual design for the head-end equipments was performed

  20. Dry refabrication technology development of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Geun Il; Lee, J. W.; Song, K. C.; and others

    2012-04-15

    Key technologies highly applicable to the development of advanced nuclear fuel cycle for the spent fuel recycling were developed using spent fuel and simulated spent fuel (SIMFUEL). In the frame work of dry process oxide products fabrication and the property characteristics of dry process products, hot cell experimental data for decladding, powdering and oxide product fabrication from low and high burnup spent fuel have been produced, basic technology for fabrication of spent fuel standard material has been developed, and remotely modulated welding equipment has been designed and fabricated. Also, fabrication technology of simulated dry process products was established and property models were developed based on reproducible property measurement data. In the development of head-end technology for dry refabrication of spent nuclear fuel and key technologies for volume reduction of head-end process waste which are essential in back-end fuel cycle field including pyro-processing, advanced head-end unit process technology development includes the establishment of experimental conditions for synthesis of porous fuel particles using a granulating furnace and for preparation of UO2 pellets, and fabrication and performance demonstration of engineering scale equipment for off-gas treatment of semi-volatile nuclides, and development of phosphate ceramic technology for immobilization of used filters. Radioactivation characterization and treatment equipment design of metal wastes from pretreatment process was conducted, and preliminary experiments of chlorination/electrorefining techniques for the treatment of hull wastes were performed. Based on the verification of the key technologies for head-end process via the hot-cell tests using spent nuclear fuel, pre-conceptual design for the head-end equipments was performed.